]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/Scalar/SROA.cpp
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / Scalar / SROA.cpp
1 //===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 /// \file
10 /// This transformation implements the well known scalar replacement of
11 /// aggregates transformation. It tries to identify promotable elements of an
12 /// aggregate alloca, and promote them to registers. It will also try to
13 /// convert uses of an element (or set of elements) of an alloca into a vector
14 /// or bitfield-style integer scalar if appropriate.
15 ///
16 /// It works to do this with minimal slicing of the alloca so that regions
17 /// which are merely transferred in and out of external memory remain unchanged
18 /// and are not decomposed to scalar code.
19 ///
20 /// Because this also performs alloca promotion, it can be thought of as also
21 /// serving the purpose of SSA formation. The algorithm iterates on the
22 /// function until all opportunities for promotion have been realized.
23 ///
24 //===----------------------------------------------------------------------===//
25
26 #include "llvm/Transforms/Scalar/SROA.h"
27 #include "llvm/ADT/APInt.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/PointerIntPair.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/SetVector.h"
33 #include "llvm/ADT/SmallBitVector.h"
34 #include "llvm/ADT/SmallPtrSet.h"
35 #include "llvm/ADT/SmallVector.h"
36 #include "llvm/ADT/Statistic.h"
37 #include "llvm/ADT/StringRef.h"
38 #include "llvm/ADT/Twine.h"
39 #include "llvm/ADT/iterator.h"
40 #include "llvm/ADT/iterator_range.h"
41 #include "llvm/Analysis/AssumptionCache.h"
42 #include "llvm/Analysis/GlobalsModRef.h"
43 #include "llvm/Analysis/Loads.h"
44 #include "llvm/Analysis/PtrUseVisitor.h"
45 #include "llvm/Transforms/Utils/Local.h"
46 #include "llvm/Config/llvm-config.h"
47 #include "llvm/IR/BasicBlock.h"
48 #include "llvm/IR/Constant.h"
49 #include "llvm/IR/ConstantFolder.h"
50 #include "llvm/IR/Constants.h"
51 #include "llvm/IR/DIBuilder.h"
52 #include "llvm/IR/DataLayout.h"
53 #include "llvm/IR/DebugInfoMetadata.h"
54 #include "llvm/IR/DerivedTypes.h"
55 #include "llvm/IR/Dominators.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/GetElementPtrTypeIterator.h"
58 #include "llvm/IR/GlobalAlias.h"
59 #include "llvm/IR/IRBuilder.h"
60 #include "llvm/IR/InstVisitor.h"
61 #include "llvm/IR/InstrTypes.h"
62 #include "llvm/IR/Instruction.h"
63 #include "llvm/IR/Instructions.h"
64 #include "llvm/IR/IntrinsicInst.h"
65 #include "llvm/IR/Intrinsics.h"
66 #include "llvm/IR/LLVMContext.h"
67 #include "llvm/IR/Metadata.h"
68 #include "llvm/IR/Module.h"
69 #include "llvm/IR/Operator.h"
70 #include "llvm/IR/PassManager.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/Use.h"
73 #include "llvm/IR/User.h"
74 #include "llvm/IR/Value.h"
75 #include "llvm/Pass.h"
76 #include "llvm/Support/Casting.h"
77 #include "llvm/Support/CommandLine.h"
78 #include "llvm/Support/Compiler.h"
79 #include "llvm/Support/Debug.h"
80 #include "llvm/Support/ErrorHandling.h"
81 #include "llvm/Support/MathExtras.h"
82 #include "llvm/Support/raw_ostream.h"
83 #include "llvm/Transforms/Scalar.h"
84 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
85 #include <algorithm>
86 #include <cassert>
87 #include <chrono>
88 #include <cstddef>
89 #include <cstdint>
90 #include <cstring>
91 #include <iterator>
92 #include <string>
93 #include <tuple>
94 #include <utility>
95 #include <vector>
96
97 #ifndef NDEBUG
98 // We only use this for a debug check.
99 #include <random>
100 #endif
101
102 using namespace llvm;
103 using namespace llvm::sroa;
104
105 #define DEBUG_TYPE "sroa"
106
107 STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement");
108 STATISTIC(NumAllocaPartitions, "Number of alloca partitions formed");
109 STATISTIC(MaxPartitionsPerAlloca, "Maximum number of partitions per alloca");
110 STATISTIC(NumAllocaPartitionUses, "Number of alloca partition uses rewritten");
111 STATISTIC(MaxUsesPerAllocaPartition, "Maximum number of uses of a partition");
112 STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced");
113 STATISTIC(NumPromoted, "Number of allocas promoted to SSA values");
114 STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion");
115 STATISTIC(NumDeleted, "Number of instructions deleted");
116 STATISTIC(NumVectorized, "Number of vectorized aggregates");
117
118 /// Hidden option to enable randomly shuffling the slices to help uncover
119 /// instability in their order.
120 static cl::opt<bool> SROARandomShuffleSlices("sroa-random-shuffle-slices",
121                                              cl::init(false), cl::Hidden);
122
123 /// Hidden option to experiment with completely strict handling of inbounds
124 /// GEPs.
125 static cl::opt<bool> SROAStrictInbounds("sroa-strict-inbounds", cl::init(false),
126                                         cl::Hidden);
127
128 namespace {
129
130 /// A custom IRBuilder inserter which prefixes all names, but only in
131 /// Assert builds.
132 class IRBuilderPrefixedInserter : public IRBuilderDefaultInserter {
133   std::string Prefix;
134
135   const Twine getNameWithPrefix(const Twine &Name) const {
136     return Name.isTriviallyEmpty() ? Name : Prefix + Name;
137   }
138
139 public:
140   void SetNamePrefix(const Twine &P) { Prefix = P.str(); }
141
142 protected:
143   void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB,
144                     BasicBlock::iterator InsertPt) const {
145     IRBuilderDefaultInserter::InsertHelper(I, getNameWithPrefix(Name), BB,
146                                            InsertPt);
147   }
148 };
149
150 /// Provide a type for IRBuilder that drops names in release builds.
151 using IRBuilderTy = IRBuilder<ConstantFolder, IRBuilderPrefixedInserter>;
152
153 /// A used slice of an alloca.
154 ///
155 /// This structure represents a slice of an alloca used by some instruction. It
156 /// stores both the begin and end offsets of this use, a pointer to the use
157 /// itself, and a flag indicating whether we can classify the use as splittable
158 /// or not when forming partitions of the alloca.
159 class Slice {
160   /// The beginning offset of the range.
161   uint64_t BeginOffset = 0;
162
163   /// The ending offset, not included in the range.
164   uint64_t EndOffset = 0;
165
166   /// Storage for both the use of this slice and whether it can be
167   /// split.
168   PointerIntPair<Use *, 1, bool> UseAndIsSplittable;
169
170 public:
171   Slice() = default;
172
173   Slice(uint64_t BeginOffset, uint64_t EndOffset, Use *U, bool IsSplittable)
174       : BeginOffset(BeginOffset), EndOffset(EndOffset),
175         UseAndIsSplittable(U, IsSplittable) {}
176
177   uint64_t beginOffset() const { return BeginOffset; }
178   uint64_t endOffset() const { return EndOffset; }
179
180   bool isSplittable() const { return UseAndIsSplittable.getInt(); }
181   void makeUnsplittable() { UseAndIsSplittable.setInt(false); }
182
183   Use *getUse() const { return UseAndIsSplittable.getPointer(); }
184
185   bool isDead() const { return getUse() == nullptr; }
186   void kill() { UseAndIsSplittable.setPointer(nullptr); }
187
188   /// Support for ordering ranges.
189   ///
190   /// This provides an ordering over ranges such that start offsets are
191   /// always increasing, and within equal start offsets, the end offsets are
192   /// decreasing. Thus the spanning range comes first in a cluster with the
193   /// same start position.
194   bool operator<(const Slice &RHS) const {
195     if (beginOffset() < RHS.beginOffset())
196       return true;
197     if (beginOffset() > RHS.beginOffset())
198       return false;
199     if (isSplittable() != RHS.isSplittable())
200       return !isSplittable();
201     if (endOffset() > RHS.endOffset())
202       return true;
203     return false;
204   }
205
206   /// Support comparison with a single offset to allow binary searches.
207   friend LLVM_ATTRIBUTE_UNUSED bool operator<(const Slice &LHS,
208                                               uint64_t RHSOffset) {
209     return LHS.beginOffset() < RHSOffset;
210   }
211   friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset,
212                                               const Slice &RHS) {
213     return LHSOffset < RHS.beginOffset();
214   }
215
216   bool operator==(const Slice &RHS) const {
217     return isSplittable() == RHS.isSplittable() &&
218            beginOffset() == RHS.beginOffset() && endOffset() == RHS.endOffset();
219   }
220   bool operator!=(const Slice &RHS) const { return !operator==(RHS); }
221 };
222
223 } // end anonymous namespace
224
225 namespace llvm {
226
227 template <typename T> struct isPodLike;
228 template <> struct isPodLike<Slice> { static const bool value = true; };
229
230 } // end namespace llvm
231
232 /// Representation of the alloca slices.
233 ///
234 /// This class represents the slices of an alloca which are formed by its
235 /// various uses. If a pointer escapes, we can't fully build a representation
236 /// for the slices used and we reflect that in this structure. The uses are
237 /// stored, sorted by increasing beginning offset and with unsplittable slices
238 /// starting at a particular offset before splittable slices.
239 class llvm::sroa::AllocaSlices {
240 public:
241   /// Construct the slices of a particular alloca.
242   AllocaSlices(const DataLayout &DL, AllocaInst &AI);
243
244   /// Test whether a pointer to the allocation escapes our analysis.
245   ///
246   /// If this is true, the slices are never fully built and should be
247   /// ignored.
248   bool isEscaped() const { return PointerEscapingInstr; }
249
250   /// Support for iterating over the slices.
251   /// @{
252   using iterator = SmallVectorImpl<Slice>::iterator;
253   using range = iterator_range<iterator>;
254
255   iterator begin() { return Slices.begin(); }
256   iterator end() { return Slices.end(); }
257
258   using const_iterator = SmallVectorImpl<Slice>::const_iterator;
259   using const_range = iterator_range<const_iterator>;
260
261   const_iterator begin() const { return Slices.begin(); }
262   const_iterator end() const { return Slices.end(); }
263   /// @}
264
265   /// Erase a range of slices.
266   void erase(iterator Start, iterator Stop) { Slices.erase(Start, Stop); }
267
268   /// Insert new slices for this alloca.
269   ///
270   /// This moves the slices into the alloca's slices collection, and re-sorts
271   /// everything so that the usual ordering properties of the alloca's slices
272   /// hold.
273   void insert(ArrayRef<Slice> NewSlices) {
274     int OldSize = Slices.size();
275     Slices.append(NewSlices.begin(), NewSlices.end());
276     auto SliceI = Slices.begin() + OldSize;
277     llvm::sort(SliceI, Slices.end());
278     std::inplace_merge(Slices.begin(), SliceI, Slices.end());
279   }
280
281   // Forward declare the iterator and range accessor for walking the
282   // partitions.
283   class partition_iterator;
284   iterator_range<partition_iterator> partitions();
285
286   /// Access the dead users for this alloca.
287   ArrayRef<Instruction *> getDeadUsers() const { return DeadUsers; }
288
289   /// Access the dead operands referring to this alloca.
290   ///
291   /// These are operands which have cannot actually be used to refer to the
292   /// alloca as they are outside its range and the user doesn't correct for
293   /// that. These mostly consist of PHI node inputs and the like which we just
294   /// need to replace with undef.
295   ArrayRef<Use *> getDeadOperands() const { return DeadOperands; }
296
297 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
298   void print(raw_ostream &OS, const_iterator I, StringRef Indent = "  ") const;
299   void printSlice(raw_ostream &OS, const_iterator I,
300                   StringRef Indent = "  ") const;
301   void printUse(raw_ostream &OS, const_iterator I,
302                 StringRef Indent = "  ") const;
303   void print(raw_ostream &OS) const;
304   void dump(const_iterator I) const;
305   void dump() const;
306 #endif
307
308 private:
309   template <typename DerivedT, typename RetT = void> class BuilderBase;
310   class SliceBuilder;
311
312   friend class AllocaSlices::SliceBuilder;
313
314 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
315   /// Handle to alloca instruction to simplify method interfaces.
316   AllocaInst &AI;
317 #endif
318
319   /// The instruction responsible for this alloca not having a known set
320   /// of slices.
321   ///
322   /// When an instruction (potentially) escapes the pointer to the alloca, we
323   /// store a pointer to that here and abort trying to form slices of the
324   /// alloca. This will be null if the alloca slices are analyzed successfully.
325   Instruction *PointerEscapingInstr;
326
327   /// The slices of the alloca.
328   ///
329   /// We store a vector of the slices formed by uses of the alloca here. This
330   /// vector is sorted by increasing begin offset, and then the unsplittable
331   /// slices before the splittable ones. See the Slice inner class for more
332   /// details.
333   SmallVector<Slice, 8> Slices;
334
335   /// Instructions which will become dead if we rewrite the alloca.
336   ///
337   /// Note that these are not separated by slice. This is because we expect an
338   /// alloca to be completely rewritten or not rewritten at all. If rewritten,
339   /// all these instructions can simply be removed and replaced with undef as
340   /// they come from outside of the allocated space.
341   SmallVector<Instruction *, 8> DeadUsers;
342
343   /// Operands which will become dead if we rewrite the alloca.
344   ///
345   /// These are operands that in their particular use can be replaced with
346   /// undef when we rewrite the alloca. These show up in out-of-bounds inputs
347   /// to PHI nodes and the like. They aren't entirely dead (there might be
348   /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we
349   /// want to swap this particular input for undef to simplify the use lists of
350   /// the alloca.
351   SmallVector<Use *, 8> DeadOperands;
352 };
353
354 /// A partition of the slices.
355 ///
356 /// An ephemeral representation for a range of slices which can be viewed as
357 /// a partition of the alloca. This range represents a span of the alloca's
358 /// memory which cannot be split, and provides access to all of the slices
359 /// overlapping some part of the partition.
360 ///
361 /// Objects of this type are produced by traversing the alloca's slices, but
362 /// are only ephemeral and not persistent.
363 class llvm::sroa::Partition {
364 private:
365   friend class AllocaSlices;
366   friend class AllocaSlices::partition_iterator;
367
368   using iterator = AllocaSlices::iterator;
369
370   /// The beginning and ending offsets of the alloca for this
371   /// partition.
372   uint64_t BeginOffset, EndOffset;
373
374   /// The start and end iterators of this partition.
375   iterator SI, SJ;
376
377   /// A collection of split slice tails overlapping the partition.
378   SmallVector<Slice *, 4> SplitTails;
379
380   /// Raw constructor builds an empty partition starting and ending at
381   /// the given iterator.
382   Partition(iterator SI) : SI(SI), SJ(SI) {}
383
384 public:
385   /// The start offset of this partition.
386   ///
387   /// All of the contained slices start at or after this offset.
388   uint64_t beginOffset() const { return BeginOffset; }
389
390   /// The end offset of this partition.
391   ///
392   /// All of the contained slices end at or before this offset.
393   uint64_t endOffset() const { return EndOffset; }
394
395   /// The size of the partition.
396   ///
397   /// Note that this can never be zero.
398   uint64_t size() const {
399     assert(BeginOffset < EndOffset && "Partitions must span some bytes!");
400     return EndOffset - BeginOffset;
401   }
402
403   /// Test whether this partition contains no slices, and merely spans
404   /// a region occupied by split slices.
405   bool empty() const { return SI == SJ; }
406
407   /// \name Iterate slices that start within the partition.
408   /// These may be splittable or unsplittable. They have a begin offset >= the
409   /// partition begin offset.
410   /// @{
411   // FIXME: We should probably define a "concat_iterator" helper and use that
412   // to stitch together pointee_iterators over the split tails and the
413   // contiguous iterators of the partition. That would give a much nicer
414   // interface here. We could then additionally expose filtered iterators for
415   // split, unsplit, and unsplittable splices based on the usage patterns.
416   iterator begin() const { return SI; }
417   iterator end() const { return SJ; }
418   /// @}
419
420   /// Get the sequence of split slice tails.
421   ///
422   /// These tails are of slices which start before this partition but are
423   /// split and overlap into the partition. We accumulate these while forming
424   /// partitions.
425   ArrayRef<Slice *> splitSliceTails() const { return SplitTails; }
426 };
427
428 /// An iterator over partitions of the alloca's slices.
429 ///
430 /// This iterator implements the core algorithm for partitioning the alloca's
431 /// slices. It is a forward iterator as we don't support backtracking for
432 /// efficiency reasons, and re-use a single storage area to maintain the
433 /// current set of split slices.
434 ///
435 /// It is templated on the slice iterator type to use so that it can operate
436 /// with either const or non-const slice iterators.
437 class AllocaSlices::partition_iterator
438     : public iterator_facade_base<partition_iterator, std::forward_iterator_tag,
439                                   Partition> {
440   friend class AllocaSlices;
441
442   /// Most of the state for walking the partitions is held in a class
443   /// with a nice interface for examining them.
444   Partition P;
445
446   /// We need to keep the end of the slices to know when to stop.
447   AllocaSlices::iterator SE;
448
449   /// We also need to keep track of the maximum split end offset seen.
450   /// FIXME: Do we really?
451   uint64_t MaxSplitSliceEndOffset = 0;
452
453   /// Sets the partition to be empty at given iterator, and sets the
454   /// end iterator.
455   partition_iterator(AllocaSlices::iterator SI, AllocaSlices::iterator SE)
456       : P(SI), SE(SE) {
457     // If not already at the end, advance our state to form the initial
458     // partition.
459     if (SI != SE)
460       advance();
461   }
462
463   /// Advance the iterator to the next partition.
464   ///
465   /// Requires that the iterator not be at the end of the slices.
466   void advance() {
467     assert((P.SI != SE || !P.SplitTails.empty()) &&
468            "Cannot advance past the end of the slices!");
469
470     // Clear out any split uses which have ended.
471     if (!P.SplitTails.empty()) {
472       if (P.EndOffset >= MaxSplitSliceEndOffset) {
473         // If we've finished all splits, this is easy.
474         P.SplitTails.clear();
475         MaxSplitSliceEndOffset = 0;
476       } else {
477         // Remove the uses which have ended in the prior partition. This
478         // cannot change the max split slice end because we just checked that
479         // the prior partition ended prior to that max.
480         P.SplitTails.erase(llvm::remove_if(P.SplitTails,
481                                            [&](Slice *S) {
482                                              return S->endOffset() <=
483                                                     P.EndOffset;
484                                            }),
485                            P.SplitTails.end());
486         assert(llvm::any_of(P.SplitTails,
487                             [&](Slice *S) {
488                               return S->endOffset() == MaxSplitSliceEndOffset;
489                             }) &&
490                "Could not find the current max split slice offset!");
491         assert(llvm::all_of(P.SplitTails,
492                             [&](Slice *S) {
493                               return S->endOffset() <= MaxSplitSliceEndOffset;
494                             }) &&
495                "Max split slice end offset is not actually the max!");
496       }
497     }
498
499     // If P.SI is already at the end, then we've cleared the split tail and
500     // now have an end iterator.
501     if (P.SI == SE) {
502       assert(P.SplitTails.empty() && "Failed to clear the split slices!");
503       return;
504     }
505
506     // If we had a non-empty partition previously, set up the state for
507     // subsequent partitions.
508     if (P.SI != P.SJ) {
509       // Accumulate all the splittable slices which started in the old
510       // partition into the split list.
511       for (Slice &S : P)
512         if (S.isSplittable() && S.endOffset() > P.EndOffset) {
513           P.SplitTails.push_back(&S);
514           MaxSplitSliceEndOffset =
515               std::max(S.endOffset(), MaxSplitSliceEndOffset);
516         }
517
518       // Start from the end of the previous partition.
519       P.SI = P.SJ;
520
521       // If P.SI is now at the end, we at most have a tail of split slices.
522       if (P.SI == SE) {
523         P.BeginOffset = P.EndOffset;
524         P.EndOffset = MaxSplitSliceEndOffset;
525         return;
526       }
527
528       // If the we have split slices and the next slice is after a gap and is
529       // not splittable immediately form an empty partition for the split
530       // slices up until the next slice begins.
531       if (!P.SplitTails.empty() && P.SI->beginOffset() != P.EndOffset &&
532           !P.SI->isSplittable()) {
533         P.BeginOffset = P.EndOffset;
534         P.EndOffset = P.SI->beginOffset();
535         return;
536       }
537     }
538
539     // OK, we need to consume new slices. Set the end offset based on the
540     // current slice, and step SJ past it. The beginning offset of the
541     // partition is the beginning offset of the next slice unless we have
542     // pre-existing split slices that are continuing, in which case we begin
543     // at the prior end offset.
544     P.BeginOffset = P.SplitTails.empty() ? P.SI->beginOffset() : P.EndOffset;
545     P.EndOffset = P.SI->endOffset();
546     ++P.SJ;
547
548     // There are two strategies to form a partition based on whether the
549     // partition starts with an unsplittable slice or a splittable slice.
550     if (!P.SI->isSplittable()) {
551       // When we're forming an unsplittable region, it must always start at
552       // the first slice and will extend through its end.
553       assert(P.BeginOffset == P.SI->beginOffset());
554
555       // Form a partition including all of the overlapping slices with this
556       // unsplittable slice.
557       while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) {
558         if (!P.SJ->isSplittable())
559           P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset());
560         ++P.SJ;
561       }
562
563       // We have a partition across a set of overlapping unsplittable
564       // partitions.
565       return;
566     }
567
568     // If we're starting with a splittable slice, then we need to form
569     // a synthetic partition spanning it and any other overlapping splittable
570     // splices.
571     assert(P.SI->isSplittable() && "Forming a splittable partition!");
572
573     // Collect all of the overlapping splittable slices.
574     while (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset &&
575            P.SJ->isSplittable()) {
576       P.EndOffset = std::max(P.EndOffset, P.SJ->endOffset());
577       ++P.SJ;
578     }
579
580     // Back upiP.EndOffset if we ended the span early when encountering an
581     // unsplittable slice. This synthesizes the early end offset of
582     // a partition spanning only splittable slices.
583     if (P.SJ != SE && P.SJ->beginOffset() < P.EndOffset) {
584       assert(!P.SJ->isSplittable());
585       P.EndOffset = P.SJ->beginOffset();
586     }
587   }
588
589 public:
590   bool operator==(const partition_iterator &RHS) const {
591     assert(SE == RHS.SE &&
592            "End iterators don't match between compared partition iterators!");
593
594     // The observed positions of partitions is marked by the P.SI iterator and
595     // the emptiness of the split slices. The latter is only relevant when
596     // P.SI == SE, as the end iterator will additionally have an empty split
597     // slices list, but the prior may have the same P.SI and a tail of split
598     // slices.
599     if (P.SI == RHS.P.SI && P.SplitTails.empty() == RHS.P.SplitTails.empty()) {
600       assert(P.SJ == RHS.P.SJ &&
601              "Same set of slices formed two different sized partitions!");
602       assert(P.SplitTails.size() == RHS.P.SplitTails.size() &&
603              "Same slice position with differently sized non-empty split "
604              "slice tails!");
605       return true;
606     }
607     return false;
608   }
609
610   partition_iterator &operator++() {
611     advance();
612     return *this;
613   }
614
615   Partition &operator*() { return P; }
616 };
617
618 /// A forward range over the partitions of the alloca's slices.
619 ///
620 /// This accesses an iterator range over the partitions of the alloca's
621 /// slices. It computes these partitions on the fly based on the overlapping
622 /// offsets of the slices and the ability to split them. It will visit "empty"
623 /// partitions to cover regions of the alloca only accessed via split
624 /// slices.
625 iterator_range<AllocaSlices::partition_iterator> AllocaSlices::partitions() {
626   return make_range(partition_iterator(begin(), end()),
627                     partition_iterator(end(), end()));
628 }
629
630 static Value *foldSelectInst(SelectInst &SI) {
631   // If the condition being selected on is a constant or the same value is
632   // being selected between, fold the select. Yes this does (rarely) happen
633   // early on.
634   if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition()))
635     return SI.getOperand(1 + CI->isZero());
636   if (SI.getOperand(1) == SI.getOperand(2))
637     return SI.getOperand(1);
638
639   return nullptr;
640 }
641
642 /// A helper that folds a PHI node or a select.
643 static Value *foldPHINodeOrSelectInst(Instruction &I) {
644   if (PHINode *PN = dyn_cast<PHINode>(&I)) {
645     // If PN merges together the same value, return that value.
646     return PN->hasConstantValue();
647   }
648   return foldSelectInst(cast<SelectInst>(I));
649 }
650
651 /// Builder for the alloca slices.
652 ///
653 /// This class builds a set of alloca slices by recursively visiting the uses
654 /// of an alloca and making a slice for each load and store at each offset.
655 class AllocaSlices::SliceBuilder : public PtrUseVisitor<SliceBuilder> {
656   friend class PtrUseVisitor<SliceBuilder>;
657   friend class InstVisitor<SliceBuilder>;
658
659   using Base = PtrUseVisitor<SliceBuilder>;
660
661   const uint64_t AllocSize;
662   AllocaSlices &AS;
663
664   SmallDenseMap<Instruction *, unsigned> MemTransferSliceMap;
665   SmallDenseMap<Instruction *, uint64_t> PHIOrSelectSizes;
666
667   /// Set to de-duplicate dead instructions found in the use walk.
668   SmallPtrSet<Instruction *, 4> VisitedDeadInsts;
669
670 public:
671   SliceBuilder(const DataLayout &DL, AllocaInst &AI, AllocaSlices &AS)
672       : PtrUseVisitor<SliceBuilder>(DL),
673         AllocSize(DL.getTypeAllocSize(AI.getAllocatedType())), AS(AS) {}
674
675 private:
676   void markAsDead(Instruction &I) {
677     if (VisitedDeadInsts.insert(&I).second)
678       AS.DeadUsers.push_back(&I);
679   }
680
681   void insertUse(Instruction &I, const APInt &Offset, uint64_t Size,
682                  bool IsSplittable = false) {
683     // Completely skip uses which have a zero size or start either before or
684     // past the end of the allocation.
685     if (Size == 0 || Offset.uge(AllocSize)) {
686       LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @"
687                         << Offset
688                         << " which has zero size or starts outside of the "
689                         << AllocSize << " byte alloca:\n"
690                         << "    alloca: " << AS.AI << "\n"
691                         << "       use: " << I << "\n");
692       return markAsDead(I);
693     }
694
695     uint64_t BeginOffset = Offset.getZExtValue();
696     uint64_t EndOffset = BeginOffset + Size;
697
698     // Clamp the end offset to the end of the allocation. Note that this is
699     // formulated to handle even the case where "BeginOffset + Size" overflows.
700     // This may appear superficially to be something we could ignore entirely,
701     // but that is not so! There may be widened loads or PHI-node uses where
702     // some instructions are dead but not others. We can't completely ignore
703     // them, and so have to record at least the information here.
704     assert(AllocSize >= BeginOffset); // Established above.
705     if (Size > AllocSize - BeginOffset) {
706       LLVM_DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @"
707                         << Offset << " to remain within the " << AllocSize
708                         << " byte alloca:\n"
709                         << "    alloca: " << AS.AI << "\n"
710                         << "       use: " << I << "\n");
711       EndOffset = AllocSize;
712     }
713
714     AS.Slices.push_back(Slice(BeginOffset, EndOffset, U, IsSplittable));
715   }
716
717   void visitBitCastInst(BitCastInst &BC) {
718     if (BC.use_empty())
719       return markAsDead(BC);
720
721     return Base::visitBitCastInst(BC);
722   }
723
724   void visitGetElementPtrInst(GetElementPtrInst &GEPI) {
725     if (GEPI.use_empty())
726       return markAsDead(GEPI);
727
728     if (SROAStrictInbounds && GEPI.isInBounds()) {
729       // FIXME: This is a manually un-factored variant of the basic code inside
730       // of GEPs with checking of the inbounds invariant specified in the
731       // langref in a very strict sense. If we ever want to enable
732       // SROAStrictInbounds, this code should be factored cleanly into
733       // PtrUseVisitor, but it is easier to experiment with SROAStrictInbounds
734       // by writing out the code here where we have the underlying allocation
735       // size readily available.
736       APInt GEPOffset = Offset;
737       const DataLayout &DL = GEPI.getModule()->getDataLayout();
738       for (gep_type_iterator GTI = gep_type_begin(GEPI),
739                              GTE = gep_type_end(GEPI);
740            GTI != GTE; ++GTI) {
741         ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand());
742         if (!OpC)
743           break;
744
745         // Handle a struct index, which adds its field offset to the pointer.
746         if (StructType *STy = GTI.getStructTypeOrNull()) {
747           unsigned ElementIdx = OpC->getZExtValue();
748           const StructLayout *SL = DL.getStructLayout(STy);
749           GEPOffset +=
750               APInt(Offset.getBitWidth(), SL->getElementOffset(ElementIdx));
751         } else {
752           // For array or vector indices, scale the index by the size of the
753           // type.
754           APInt Index = OpC->getValue().sextOrTrunc(Offset.getBitWidth());
755           GEPOffset += Index * APInt(Offset.getBitWidth(),
756                                      DL.getTypeAllocSize(GTI.getIndexedType()));
757         }
758
759         // If this index has computed an intermediate pointer which is not
760         // inbounds, then the result of the GEP is a poison value and we can
761         // delete it and all uses.
762         if (GEPOffset.ugt(AllocSize))
763           return markAsDead(GEPI);
764       }
765     }
766
767     return Base::visitGetElementPtrInst(GEPI);
768   }
769
770   void handleLoadOrStore(Type *Ty, Instruction &I, const APInt &Offset,
771                          uint64_t Size, bool IsVolatile) {
772     // We allow splitting of non-volatile loads and stores where the type is an
773     // integer type. These may be used to implement 'memcpy' or other "transfer
774     // of bits" patterns.
775     bool IsSplittable = Ty->isIntegerTy() && !IsVolatile;
776
777     insertUse(I, Offset, Size, IsSplittable);
778   }
779
780   void visitLoadInst(LoadInst &LI) {
781     assert((!LI.isSimple() || LI.getType()->isSingleValueType()) &&
782            "All simple FCA loads should have been pre-split");
783
784     if (!IsOffsetKnown)
785       return PI.setAborted(&LI);
786
787     const DataLayout &DL = LI.getModule()->getDataLayout();
788     uint64_t Size = DL.getTypeStoreSize(LI.getType());
789     return handleLoadOrStore(LI.getType(), LI, Offset, Size, LI.isVolatile());
790   }
791
792   void visitStoreInst(StoreInst &SI) {
793     Value *ValOp = SI.getValueOperand();
794     if (ValOp == *U)
795       return PI.setEscapedAndAborted(&SI);
796     if (!IsOffsetKnown)
797       return PI.setAborted(&SI);
798
799     const DataLayout &DL = SI.getModule()->getDataLayout();
800     uint64_t Size = DL.getTypeStoreSize(ValOp->getType());
801
802     // If this memory access can be shown to *statically* extend outside the
803     // bounds of the allocation, it's behavior is undefined, so simply
804     // ignore it. Note that this is more strict than the generic clamping
805     // behavior of insertUse. We also try to handle cases which might run the
806     // risk of overflow.
807     // FIXME: We should instead consider the pointer to have escaped if this
808     // function is being instrumented for addressing bugs or race conditions.
809     if (Size > AllocSize || Offset.ugt(AllocSize - Size)) {
810       LLVM_DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte store @"
811                         << Offset << " which extends past the end of the "
812                         << AllocSize << " byte alloca:\n"
813                         << "    alloca: " << AS.AI << "\n"
814                         << "       use: " << SI << "\n");
815       return markAsDead(SI);
816     }
817
818     assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) &&
819            "All simple FCA stores should have been pre-split");
820     handleLoadOrStore(ValOp->getType(), SI, Offset, Size, SI.isVolatile());
821   }
822
823   void visitMemSetInst(MemSetInst &II) {
824     assert(II.getRawDest() == *U && "Pointer use is not the destination?");
825     ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
826     if ((Length && Length->getValue() == 0) ||
827         (IsOffsetKnown && Offset.uge(AllocSize)))
828       // Zero-length mem transfer intrinsics can be ignored entirely.
829       return markAsDead(II);
830
831     if (!IsOffsetKnown)
832       return PI.setAborted(&II);
833
834     insertUse(II, Offset, Length ? Length->getLimitedValue()
835                                  : AllocSize - Offset.getLimitedValue(),
836               (bool)Length);
837   }
838
839   void visitMemTransferInst(MemTransferInst &II) {
840     ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength());
841     if (Length && Length->getValue() == 0)
842       // Zero-length mem transfer intrinsics can be ignored entirely.
843       return markAsDead(II);
844
845     // Because we can visit these intrinsics twice, also check to see if the
846     // first time marked this instruction as dead. If so, skip it.
847     if (VisitedDeadInsts.count(&II))
848       return;
849
850     if (!IsOffsetKnown)
851       return PI.setAborted(&II);
852
853     // This side of the transfer is completely out-of-bounds, and so we can
854     // nuke the entire transfer. However, we also need to nuke the other side
855     // if already added to our partitions.
856     // FIXME: Yet another place we really should bypass this when
857     // instrumenting for ASan.
858     if (Offset.uge(AllocSize)) {
859       SmallDenseMap<Instruction *, unsigned>::iterator MTPI =
860           MemTransferSliceMap.find(&II);
861       if (MTPI != MemTransferSliceMap.end())
862         AS.Slices[MTPI->second].kill();
863       return markAsDead(II);
864     }
865
866     uint64_t RawOffset = Offset.getLimitedValue();
867     uint64_t Size = Length ? Length->getLimitedValue() : AllocSize - RawOffset;
868
869     // Check for the special case where the same exact value is used for both
870     // source and dest.
871     if (*U == II.getRawDest() && *U == II.getRawSource()) {
872       // For non-volatile transfers this is a no-op.
873       if (!II.isVolatile())
874         return markAsDead(II);
875
876       return insertUse(II, Offset, Size, /*IsSplittable=*/false);
877     }
878
879     // If we have seen both source and destination for a mem transfer, then
880     // they both point to the same alloca.
881     bool Inserted;
882     SmallDenseMap<Instruction *, unsigned>::iterator MTPI;
883     std::tie(MTPI, Inserted) =
884         MemTransferSliceMap.insert(std::make_pair(&II, AS.Slices.size()));
885     unsigned PrevIdx = MTPI->second;
886     if (!Inserted) {
887       Slice &PrevP = AS.Slices[PrevIdx];
888
889       // Check if the begin offsets match and this is a non-volatile transfer.
890       // In that case, we can completely elide the transfer.
891       if (!II.isVolatile() && PrevP.beginOffset() == RawOffset) {
892         PrevP.kill();
893         return markAsDead(II);
894       }
895
896       // Otherwise we have an offset transfer within the same alloca. We can't
897       // split those.
898       PrevP.makeUnsplittable();
899     }
900
901     // Insert the use now that we've fixed up the splittable nature.
902     insertUse(II, Offset, Size, /*IsSplittable=*/Inserted && Length);
903
904     // Check that we ended up with a valid index in the map.
905     assert(AS.Slices[PrevIdx].getUse()->getUser() == &II &&
906            "Map index doesn't point back to a slice with this user.");
907   }
908
909   // Disable SRoA for any intrinsics except for lifetime invariants.
910   // FIXME: What about debug intrinsics? This matches old behavior, but
911   // doesn't make sense.
912   void visitIntrinsicInst(IntrinsicInst &II) {
913     if (!IsOffsetKnown)
914       return PI.setAborted(&II);
915
916     if (II.getIntrinsicID() == Intrinsic::lifetime_start ||
917         II.getIntrinsicID() == Intrinsic::lifetime_end) {
918       ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0));
919       uint64_t Size = std::min(AllocSize - Offset.getLimitedValue(),
920                                Length->getLimitedValue());
921       insertUse(II, Offset, Size, true);
922       return;
923     }
924
925     Base::visitIntrinsicInst(II);
926   }
927
928   Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) {
929     // We consider any PHI or select that results in a direct load or store of
930     // the same offset to be a viable use for slicing purposes. These uses
931     // are considered unsplittable and the size is the maximum loaded or stored
932     // size.
933     SmallPtrSet<Instruction *, 4> Visited;
934     SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses;
935     Visited.insert(Root);
936     Uses.push_back(std::make_pair(cast<Instruction>(*U), Root));
937     const DataLayout &DL = Root->getModule()->getDataLayout();
938     // If there are no loads or stores, the access is dead. We mark that as
939     // a size zero access.
940     Size = 0;
941     do {
942       Instruction *I, *UsedI;
943       std::tie(UsedI, I) = Uses.pop_back_val();
944
945       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
946         Size = std::max(Size, DL.getTypeStoreSize(LI->getType()));
947         continue;
948       }
949       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
950         Value *Op = SI->getOperand(0);
951         if (Op == UsedI)
952           return SI;
953         Size = std::max(Size, DL.getTypeStoreSize(Op->getType()));
954         continue;
955       }
956
957       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
958         if (!GEP->hasAllZeroIndices())
959           return GEP;
960       } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) &&
961                  !isa<SelectInst>(I)) {
962         return I;
963       }
964
965       for (User *U : I->users())
966         if (Visited.insert(cast<Instruction>(U)).second)
967           Uses.push_back(std::make_pair(I, cast<Instruction>(U)));
968     } while (!Uses.empty());
969
970     return nullptr;
971   }
972
973   void visitPHINodeOrSelectInst(Instruction &I) {
974     assert(isa<PHINode>(I) || isa<SelectInst>(I));
975     if (I.use_empty())
976       return markAsDead(I);
977
978     // TODO: We could use SimplifyInstruction here to fold PHINodes and
979     // SelectInsts. However, doing so requires to change the current
980     // dead-operand-tracking mechanism. For instance, suppose neither loading
981     // from %U nor %other traps. Then "load (select undef, %U, %other)" does not
982     // trap either.  However, if we simply replace %U with undef using the
983     // current dead-operand-tracking mechanism, "load (select undef, undef,
984     // %other)" may trap because the select may return the first operand
985     // "undef".
986     if (Value *Result = foldPHINodeOrSelectInst(I)) {
987       if (Result == *U)
988         // If the result of the constant fold will be the pointer, recurse
989         // through the PHI/select as if we had RAUW'ed it.
990         enqueueUsers(I);
991       else
992         // Otherwise the operand to the PHI/select is dead, and we can replace
993         // it with undef.
994         AS.DeadOperands.push_back(U);
995
996       return;
997     }
998
999     if (!IsOffsetKnown)
1000       return PI.setAborted(&I);
1001
1002     // See if we already have computed info on this node.
1003     uint64_t &Size = PHIOrSelectSizes[&I];
1004     if (!Size) {
1005       // This is a new PHI/Select, check for an unsafe use of it.
1006       if (Instruction *UnsafeI = hasUnsafePHIOrSelectUse(&I, Size))
1007         return PI.setAborted(UnsafeI);
1008     }
1009
1010     // For PHI and select operands outside the alloca, we can't nuke the entire
1011     // phi or select -- the other side might still be relevant, so we special
1012     // case them here and use a separate structure to track the operands
1013     // themselves which should be replaced with undef.
1014     // FIXME: This should instead be escaped in the event we're instrumenting
1015     // for address sanitization.
1016     if (Offset.uge(AllocSize)) {
1017       AS.DeadOperands.push_back(U);
1018       return;
1019     }
1020
1021     insertUse(I, Offset, Size);
1022   }
1023
1024   void visitPHINode(PHINode &PN) { visitPHINodeOrSelectInst(PN); }
1025
1026   void visitSelectInst(SelectInst &SI) { visitPHINodeOrSelectInst(SI); }
1027
1028   /// Disable SROA entirely if there are unhandled users of the alloca.
1029   void visitInstruction(Instruction &I) { PI.setAborted(&I); }
1030 };
1031
1032 AllocaSlices::AllocaSlices(const DataLayout &DL, AllocaInst &AI)
1033     :
1034 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1035       AI(AI),
1036 #endif
1037       PointerEscapingInstr(nullptr) {
1038   SliceBuilder PB(DL, AI, *this);
1039   SliceBuilder::PtrInfo PtrI = PB.visitPtr(AI);
1040   if (PtrI.isEscaped() || PtrI.isAborted()) {
1041     // FIXME: We should sink the escape vs. abort info into the caller nicely,
1042     // possibly by just storing the PtrInfo in the AllocaSlices.
1043     PointerEscapingInstr = PtrI.getEscapingInst() ? PtrI.getEscapingInst()
1044                                                   : PtrI.getAbortingInst();
1045     assert(PointerEscapingInstr && "Did not track a bad instruction");
1046     return;
1047   }
1048
1049   Slices.erase(
1050       llvm::remove_if(Slices, [](const Slice &S) { return S.isDead(); }),
1051       Slices.end());
1052
1053 #ifndef NDEBUG
1054   if (SROARandomShuffleSlices) {
1055     std::mt19937 MT(static_cast<unsigned>(
1056         std::chrono::system_clock::now().time_since_epoch().count()));
1057     std::shuffle(Slices.begin(), Slices.end(), MT);
1058   }
1059 #endif
1060
1061   // Sort the uses. This arranges for the offsets to be in ascending order,
1062   // and the sizes to be in descending order.
1063   llvm::sort(Slices.begin(), Slices.end());
1064 }
1065
1066 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1067
1068 void AllocaSlices::print(raw_ostream &OS, const_iterator I,
1069                          StringRef Indent) const {
1070   printSlice(OS, I, Indent);
1071   OS << "\n";
1072   printUse(OS, I, Indent);
1073 }
1074
1075 void AllocaSlices::printSlice(raw_ostream &OS, const_iterator I,
1076                               StringRef Indent) const {
1077   OS << Indent << "[" << I->beginOffset() << "," << I->endOffset() << ")"
1078      << " slice #" << (I - begin())
1079      << (I->isSplittable() ? " (splittable)" : "");
1080 }
1081
1082 void AllocaSlices::printUse(raw_ostream &OS, const_iterator I,
1083                             StringRef Indent) const {
1084   OS << Indent << "  used by: " << *I->getUse()->getUser() << "\n";
1085 }
1086
1087 void AllocaSlices::print(raw_ostream &OS) const {
1088   if (PointerEscapingInstr) {
1089     OS << "Can't analyze slices for alloca: " << AI << "\n"
1090        << "  A pointer to this alloca escaped by:\n"
1091        << "  " << *PointerEscapingInstr << "\n";
1092     return;
1093   }
1094
1095   OS << "Slices of alloca: " << AI << "\n";
1096   for (const_iterator I = begin(), E = end(); I != E; ++I)
1097     print(OS, I);
1098 }
1099
1100 LLVM_DUMP_METHOD void AllocaSlices::dump(const_iterator I) const {
1101   print(dbgs(), I);
1102 }
1103 LLVM_DUMP_METHOD void AllocaSlices::dump() const { print(dbgs()); }
1104
1105 #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1106
1107 /// Walk the range of a partitioning looking for a common type to cover this
1108 /// sequence of slices.
1109 static Type *findCommonType(AllocaSlices::const_iterator B,
1110                             AllocaSlices::const_iterator E,
1111                             uint64_t EndOffset) {
1112   Type *Ty = nullptr;
1113   bool TyIsCommon = true;
1114   IntegerType *ITy = nullptr;
1115
1116   // Note that we need to look at *every* alloca slice's Use to ensure we
1117   // always get consistent results regardless of the order of slices.
1118   for (AllocaSlices::const_iterator I = B; I != E; ++I) {
1119     Use *U = I->getUse();
1120     if (isa<IntrinsicInst>(*U->getUser()))
1121       continue;
1122     if (I->beginOffset() != B->beginOffset() || I->endOffset() != EndOffset)
1123       continue;
1124
1125     Type *UserTy = nullptr;
1126     if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1127       UserTy = LI->getType();
1128     } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1129       UserTy = SI->getValueOperand()->getType();
1130     }
1131
1132     if (IntegerType *UserITy = dyn_cast_or_null<IntegerType>(UserTy)) {
1133       // If the type is larger than the partition, skip it. We only encounter
1134       // this for split integer operations where we want to use the type of the
1135       // entity causing the split. Also skip if the type is not a byte width
1136       // multiple.
1137       if (UserITy->getBitWidth() % 8 != 0 ||
1138           UserITy->getBitWidth() / 8 > (EndOffset - B->beginOffset()))
1139         continue;
1140
1141       // Track the largest bitwidth integer type used in this way in case there
1142       // is no common type.
1143       if (!ITy || ITy->getBitWidth() < UserITy->getBitWidth())
1144         ITy = UserITy;
1145     }
1146
1147     // To avoid depending on the order of slices, Ty and TyIsCommon must not
1148     // depend on types skipped above.
1149     if (!UserTy || (Ty && Ty != UserTy))
1150       TyIsCommon = false; // Give up on anything but an iN type.
1151     else
1152       Ty = UserTy;
1153   }
1154
1155   return TyIsCommon ? Ty : ITy;
1156 }
1157
1158 /// PHI instructions that use an alloca and are subsequently loaded can be
1159 /// rewritten to load both input pointers in the pred blocks and then PHI the
1160 /// results, allowing the load of the alloca to be promoted.
1161 /// From this:
1162 ///   %P2 = phi [i32* %Alloca, i32* %Other]
1163 ///   %V = load i32* %P2
1164 /// to:
1165 ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1166 ///   ...
1167 ///   %V2 = load i32* %Other
1168 ///   ...
1169 ///   %V = phi [i32 %V1, i32 %V2]
1170 ///
1171 /// We can do this to a select if its only uses are loads and if the operands
1172 /// to the select can be loaded unconditionally.
1173 ///
1174 /// FIXME: This should be hoisted into a generic utility, likely in
1175 /// Transforms/Util/Local.h
1176 static bool isSafePHIToSpeculate(PHINode &PN) {
1177   // For now, we can only do this promotion if the load is in the same block
1178   // as the PHI, and if there are no stores between the phi and load.
1179   // TODO: Allow recursive phi users.
1180   // TODO: Allow stores.
1181   BasicBlock *BB = PN.getParent();
1182   unsigned MaxAlign = 0;
1183   bool HaveLoad = false;
1184   for (User *U : PN.users()) {
1185     LoadInst *LI = dyn_cast<LoadInst>(U);
1186     if (!LI || !LI->isSimple())
1187       return false;
1188
1189     // For now we only allow loads in the same block as the PHI.  This is
1190     // a common case that happens when instcombine merges two loads through
1191     // a PHI.
1192     if (LI->getParent() != BB)
1193       return false;
1194
1195     // Ensure that there are no instructions between the PHI and the load that
1196     // could store.
1197     for (BasicBlock::iterator BBI(PN); &*BBI != LI; ++BBI)
1198       if (BBI->mayWriteToMemory())
1199         return false;
1200
1201     MaxAlign = std::max(MaxAlign, LI->getAlignment());
1202     HaveLoad = true;
1203   }
1204
1205   if (!HaveLoad)
1206     return false;
1207
1208   const DataLayout &DL = PN.getModule()->getDataLayout();
1209
1210   // We can only transform this if it is safe to push the loads into the
1211   // predecessor blocks. The only thing to watch out for is that we can't put
1212   // a possibly trapping load in the predecessor if it is a critical edge.
1213   for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1214     TerminatorInst *TI = PN.getIncomingBlock(Idx)->getTerminator();
1215     Value *InVal = PN.getIncomingValue(Idx);
1216
1217     // If the value is produced by the terminator of the predecessor (an
1218     // invoke) or it has side-effects, there is no valid place to put a load
1219     // in the predecessor.
1220     if (TI == InVal || TI->mayHaveSideEffects())
1221       return false;
1222
1223     // If the predecessor has a single successor, then the edge isn't
1224     // critical.
1225     if (TI->getNumSuccessors() == 1)
1226       continue;
1227
1228     // If this pointer is always safe to load, or if we can prove that there
1229     // is already a load in the block, then we can move the load to the pred
1230     // block.
1231     if (isSafeToLoadUnconditionally(InVal, MaxAlign, DL, TI))
1232       continue;
1233
1234     return false;
1235   }
1236
1237   return true;
1238 }
1239
1240 static void speculatePHINodeLoads(PHINode &PN) {
1241   LLVM_DEBUG(dbgs() << "    original: " << PN << "\n");
1242
1243   Type *LoadTy = cast<PointerType>(PN.getType())->getElementType();
1244   IRBuilderTy PHIBuilder(&PN);
1245   PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues(),
1246                                         PN.getName() + ".sroa.speculated");
1247
1248   // Get the AA tags and alignment to use from one of the loads.  It doesn't
1249   // matter which one we get and if any differ.
1250   LoadInst *SomeLoad = cast<LoadInst>(PN.user_back());
1251
1252   AAMDNodes AATags;
1253   SomeLoad->getAAMetadata(AATags);
1254   unsigned Align = SomeLoad->getAlignment();
1255
1256   // Rewrite all loads of the PN to use the new PHI.
1257   while (!PN.use_empty()) {
1258     LoadInst *LI = cast<LoadInst>(PN.user_back());
1259     LI->replaceAllUsesWith(NewPN);
1260     LI->eraseFromParent();
1261   }
1262
1263   // Inject loads into all of the pred blocks.
1264   DenseMap<BasicBlock*, Value*> InjectedLoads;
1265   for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) {
1266     BasicBlock *Pred = PN.getIncomingBlock(Idx);
1267     Value *InVal = PN.getIncomingValue(Idx);
1268
1269     // A PHI node is allowed to have multiple (duplicated) entries for the same
1270     // basic block, as long as the value is the same. So if we already injected
1271     // a load in the predecessor, then we should reuse the same load for all
1272     // duplicated entries.
1273     if (Value* V = InjectedLoads.lookup(Pred)) {
1274       NewPN->addIncoming(V, Pred);
1275       continue;
1276     }
1277
1278     TerminatorInst *TI = Pred->getTerminator();
1279     IRBuilderTy PredBuilder(TI);
1280
1281     LoadInst *Load = PredBuilder.CreateLoad(
1282         InVal, (PN.getName() + ".sroa.speculate.load." + Pred->getName()));
1283     ++NumLoadsSpeculated;
1284     Load->setAlignment(Align);
1285     if (AATags)
1286       Load->setAAMetadata(AATags);
1287     NewPN->addIncoming(Load, Pred);
1288     InjectedLoads[Pred] = Load;
1289   }
1290
1291   LLVM_DEBUG(dbgs() << "          speculated to: " << *NewPN << "\n");
1292   PN.eraseFromParent();
1293 }
1294
1295 /// Select instructions that use an alloca and are subsequently loaded can be
1296 /// rewritten to load both input pointers and then select between the result,
1297 /// allowing the load of the alloca to be promoted.
1298 /// From this:
1299 ///   %P2 = select i1 %cond, i32* %Alloca, i32* %Other
1300 ///   %V = load i32* %P2
1301 /// to:
1302 ///   %V1 = load i32* %Alloca      -> will be mem2reg'd
1303 ///   %V2 = load i32* %Other
1304 ///   %V = select i1 %cond, i32 %V1, i32 %V2
1305 ///
1306 /// We can do this to a select if its only uses are loads and if the operand
1307 /// to the select can be loaded unconditionally.
1308 static bool isSafeSelectToSpeculate(SelectInst &SI) {
1309   Value *TValue = SI.getTrueValue();
1310   Value *FValue = SI.getFalseValue();
1311   const DataLayout &DL = SI.getModule()->getDataLayout();
1312
1313   for (User *U : SI.users()) {
1314     LoadInst *LI = dyn_cast<LoadInst>(U);
1315     if (!LI || !LI->isSimple())
1316       return false;
1317
1318     // Both operands to the select need to be dereferenceable, either
1319     // absolutely (e.g. allocas) or at this point because we can see other
1320     // accesses to it.
1321     if (!isSafeToLoadUnconditionally(TValue, LI->getAlignment(), DL, LI))
1322       return false;
1323     if (!isSafeToLoadUnconditionally(FValue, LI->getAlignment(), DL, LI))
1324       return false;
1325   }
1326
1327   return true;
1328 }
1329
1330 static void speculateSelectInstLoads(SelectInst &SI) {
1331   LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
1332
1333   IRBuilderTy IRB(&SI);
1334   Value *TV = SI.getTrueValue();
1335   Value *FV = SI.getFalseValue();
1336   // Replace the loads of the select with a select of two loads.
1337   while (!SI.use_empty()) {
1338     LoadInst *LI = cast<LoadInst>(SI.user_back());
1339     assert(LI->isSimple() && "We only speculate simple loads");
1340
1341     IRB.SetInsertPoint(LI);
1342     LoadInst *TL =
1343         IRB.CreateLoad(TV, LI->getName() + ".sroa.speculate.load.true");
1344     LoadInst *FL =
1345         IRB.CreateLoad(FV, LI->getName() + ".sroa.speculate.load.false");
1346     NumLoadsSpeculated += 2;
1347
1348     // Transfer alignment and AA info if present.
1349     TL->setAlignment(LI->getAlignment());
1350     FL->setAlignment(LI->getAlignment());
1351
1352     AAMDNodes Tags;
1353     LI->getAAMetadata(Tags);
1354     if (Tags) {
1355       TL->setAAMetadata(Tags);
1356       FL->setAAMetadata(Tags);
1357     }
1358
1359     Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL,
1360                                 LI->getName() + ".sroa.speculated");
1361
1362     LLVM_DEBUG(dbgs() << "          speculated to: " << *V << "\n");
1363     LI->replaceAllUsesWith(V);
1364     LI->eraseFromParent();
1365   }
1366   SI.eraseFromParent();
1367 }
1368
1369 /// Build a GEP out of a base pointer and indices.
1370 ///
1371 /// This will return the BasePtr if that is valid, or build a new GEP
1372 /// instruction using the IRBuilder if GEP-ing is needed.
1373 static Value *buildGEP(IRBuilderTy &IRB, Value *BasePtr,
1374                        SmallVectorImpl<Value *> &Indices, Twine NamePrefix) {
1375   if (Indices.empty())
1376     return BasePtr;
1377
1378   // A single zero index is a no-op, so check for this and avoid building a GEP
1379   // in that case.
1380   if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero())
1381     return BasePtr;
1382
1383   return IRB.CreateInBoundsGEP(nullptr, BasePtr, Indices,
1384                                NamePrefix + "sroa_idx");
1385 }
1386
1387 /// Get a natural GEP off of the BasePtr walking through Ty toward
1388 /// TargetTy without changing the offset of the pointer.
1389 ///
1390 /// This routine assumes we've already established a properly offset GEP with
1391 /// Indices, and arrived at the Ty type. The goal is to continue to GEP with
1392 /// zero-indices down through type layers until we find one the same as
1393 /// TargetTy. If we can't find one with the same type, we at least try to use
1394 /// one with the same size. If none of that works, we just produce the GEP as
1395 /// indicated by Indices to have the correct offset.
1396 static Value *getNaturalGEPWithType(IRBuilderTy &IRB, const DataLayout &DL,
1397                                     Value *BasePtr, Type *Ty, Type *TargetTy,
1398                                     SmallVectorImpl<Value *> &Indices,
1399                                     Twine NamePrefix) {
1400   if (Ty == TargetTy)
1401     return buildGEP(IRB, BasePtr, Indices, NamePrefix);
1402
1403   // Pointer size to use for the indices.
1404   unsigned PtrSize = DL.getPointerTypeSizeInBits(BasePtr->getType());
1405
1406   // See if we can descend into a struct and locate a field with the correct
1407   // type.
1408   unsigned NumLayers = 0;
1409   Type *ElementTy = Ty;
1410   do {
1411     if (ElementTy->isPointerTy())
1412       break;
1413
1414     if (ArrayType *ArrayTy = dyn_cast<ArrayType>(ElementTy)) {
1415       ElementTy = ArrayTy->getElementType();
1416       Indices.push_back(IRB.getIntN(PtrSize, 0));
1417     } else if (VectorType *VectorTy = dyn_cast<VectorType>(ElementTy)) {
1418       ElementTy = VectorTy->getElementType();
1419       Indices.push_back(IRB.getInt32(0));
1420     } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) {
1421       if (STy->element_begin() == STy->element_end())
1422         break; // Nothing left to descend into.
1423       ElementTy = *STy->element_begin();
1424       Indices.push_back(IRB.getInt32(0));
1425     } else {
1426       break;
1427     }
1428     ++NumLayers;
1429   } while (ElementTy != TargetTy);
1430   if (ElementTy != TargetTy)
1431     Indices.erase(Indices.end() - NumLayers, Indices.end());
1432
1433   return buildGEP(IRB, BasePtr, Indices, NamePrefix);
1434 }
1435
1436 /// Recursively compute indices for a natural GEP.
1437 ///
1438 /// This is the recursive step for getNaturalGEPWithOffset that walks down the
1439 /// element types adding appropriate indices for the GEP.
1440 static Value *getNaturalGEPRecursively(IRBuilderTy &IRB, const DataLayout &DL,
1441                                        Value *Ptr, Type *Ty, APInt &Offset,
1442                                        Type *TargetTy,
1443                                        SmallVectorImpl<Value *> &Indices,
1444                                        Twine NamePrefix) {
1445   if (Offset == 0)
1446     return getNaturalGEPWithType(IRB, DL, Ptr, Ty, TargetTy, Indices,
1447                                  NamePrefix);
1448
1449   // We can't recurse through pointer types.
1450   if (Ty->isPointerTy())
1451     return nullptr;
1452
1453   // We try to analyze GEPs over vectors here, but note that these GEPs are
1454   // extremely poorly defined currently. The long-term goal is to remove GEPing
1455   // over a vector from the IR completely.
1456   if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) {
1457     unsigned ElementSizeInBits = DL.getTypeSizeInBits(VecTy->getScalarType());
1458     if (ElementSizeInBits % 8 != 0) {
1459       // GEPs over non-multiple of 8 size vector elements are invalid.
1460       return nullptr;
1461     }
1462     APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8);
1463     APInt NumSkippedElements = Offset.sdiv(ElementSize);
1464     if (NumSkippedElements.ugt(VecTy->getNumElements()))
1465       return nullptr;
1466     Offset -= NumSkippedElements * ElementSize;
1467     Indices.push_back(IRB.getInt(NumSkippedElements));
1468     return getNaturalGEPRecursively(IRB, DL, Ptr, VecTy->getElementType(),
1469                                     Offset, TargetTy, Indices, NamePrefix);
1470   }
1471
1472   if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
1473     Type *ElementTy = ArrTy->getElementType();
1474     APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy));
1475     APInt NumSkippedElements = Offset.sdiv(ElementSize);
1476     if (NumSkippedElements.ugt(ArrTy->getNumElements()))
1477       return nullptr;
1478
1479     Offset -= NumSkippedElements * ElementSize;
1480     Indices.push_back(IRB.getInt(NumSkippedElements));
1481     return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1482                                     Indices, NamePrefix);
1483   }
1484
1485   StructType *STy = dyn_cast<StructType>(Ty);
1486   if (!STy)
1487     return nullptr;
1488
1489   const StructLayout *SL = DL.getStructLayout(STy);
1490   uint64_t StructOffset = Offset.getZExtValue();
1491   if (StructOffset >= SL->getSizeInBytes())
1492     return nullptr;
1493   unsigned Index = SL->getElementContainingOffset(StructOffset);
1494   Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index));
1495   Type *ElementTy = STy->getElementType(Index);
1496   if (Offset.uge(DL.getTypeAllocSize(ElementTy)))
1497     return nullptr; // The offset points into alignment padding.
1498
1499   Indices.push_back(IRB.getInt32(Index));
1500   return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1501                                   Indices, NamePrefix);
1502 }
1503
1504 /// Get a natural GEP from a base pointer to a particular offset and
1505 /// resulting in a particular type.
1506 ///
1507 /// The goal is to produce a "natural" looking GEP that works with the existing
1508 /// composite types to arrive at the appropriate offset and element type for
1509 /// a pointer. TargetTy is the element type the returned GEP should point-to if
1510 /// possible. We recurse by decreasing Offset, adding the appropriate index to
1511 /// Indices, and setting Ty to the result subtype.
1512 ///
1513 /// If no natural GEP can be constructed, this function returns null.
1514 static Value *getNaturalGEPWithOffset(IRBuilderTy &IRB, const DataLayout &DL,
1515                                       Value *Ptr, APInt Offset, Type *TargetTy,
1516                                       SmallVectorImpl<Value *> &Indices,
1517                                       Twine NamePrefix) {
1518   PointerType *Ty = cast<PointerType>(Ptr->getType());
1519
1520   // Don't consider any GEPs through an i8* as natural unless the TargetTy is
1521   // an i8.
1522   if (Ty == IRB.getInt8PtrTy(Ty->getAddressSpace()) && TargetTy->isIntegerTy(8))
1523     return nullptr;
1524
1525   Type *ElementTy = Ty->getElementType();
1526   if (!ElementTy->isSized())
1527     return nullptr; // We can't GEP through an unsized element.
1528   APInt ElementSize(Offset.getBitWidth(), DL.getTypeAllocSize(ElementTy));
1529   if (ElementSize == 0)
1530     return nullptr; // Zero-length arrays can't help us build a natural GEP.
1531   APInt NumSkippedElements = Offset.sdiv(ElementSize);
1532
1533   Offset -= NumSkippedElements * ElementSize;
1534   Indices.push_back(IRB.getInt(NumSkippedElements));
1535   return getNaturalGEPRecursively(IRB, DL, Ptr, ElementTy, Offset, TargetTy,
1536                                   Indices, NamePrefix);
1537 }
1538
1539 /// Compute an adjusted pointer from Ptr by Offset bytes where the
1540 /// resulting pointer has PointerTy.
1541 ///
1542 /// This tries very hard to compute a "natural" GEP which arrives at the offset
1543 /// and produces the pointer type desired. Where it cannot, it will try to use
1544 /// the natural GEP to arrive at the offset and bitcast to the type. Where that
1545 /// fails, it will try to use an existing i8* and GEP to the byte offset and
1546 /// bitcast to the type.
1547 ///
1548 /// The strategy for finding the more natural GEPs is to peel off layers of the
1549 /// pointer, walking back through bit casts and GEPs, searching for a base
1550 /// pointer from which we can compute a natural GEP with the desired
1551 /// properties. The algorithm tries to fold as many constant indices into
1552 /// a single GEP as possible, thus making each GEP more independent of the
1553 /// surrounding code.
1554 static Value *getAdjustedPtr(IRBuilderTy &IRB, const DataLayout &DL, Value *Ptr,
1555                              APInt Offset, Type *PointerTy, Twine NamePrefix) {
1556   // Even though we don't look through PHI nodes, we could be called on an
1557   // instruction in an unreachable block, which may be on a cycle.
1558   SmallPtrSet<Value *, 4> Visited;
1559   Visited.insert(Ptr);
1560   SmallVector<Value *, 4> Indices;
1561
1562   // We may end up computing an offset pointer that has the wrong type. If we
1563   // never are able to compute one directly that has the correct type, we'll
1564   // fall back to it, so keep it and the base it was computed from around here.
1565   Value *OffsetPtr = nullptr;
1566   Value *OffsetBasePtr;
1567
1568   // Remember any i8 pointer we come across to re-use if we need to do a raw
1569   // byte offset.
1570   Value *Int8Ptr = nullptr;
1571   APInt Int8PtrOffset(Offset.getBitWidth(), 0);
1572
1573   Type *TargetTy = PointerTy->getPointerElementType();
1574
1575   do {
1576     // First fold any existing GEPs into the offset.
1577     while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
1578       APInt GEPOffset(Offset.getBitWidth(), 0);
1579       if (!GEP->accumulateConstantOffset(DL, GEPOffset))
1580         break;
1581       Offset += GEPOffset;
1582       Ptr = GEP->getPointerOperand();
1583       if (!Visited.insert(Ptr).second)
1584         break;
1585     }
1586
1587     // See if we can perform a natural GEP here.
1588     Indices.clear();
1589     if (Value *P = getNaturalGEPWithOffset(IRB, DL, Ptr, Offset, TargetTy,
1590                                            Indices, NamePrefix)) {
1591       // If we have a new natural pointer at the offset, clear out any old
1592       // offset pointer we computed. Unless it is the base pointer or
1593       // a non-instruction, we built a GEP we don't need. Zap it.
1594       if (OffsetPtr && OffsetPtr != OffsetBasePtr)
1595         if (Instruction *I = dyn_cast<Instruction>(OffsetPtr)) {
1596           assert(I->use_empty() && "Built a GEP with uses some how!");
1597           I->eraseFromParent();
1598         }
1599       OffsetPtr = P;
1600       OffsetBasePtr = Ptr;
1601       // If we also found a pointer of the right type, we're done.
1602       if (P->getType() == PointerTy)
1603         return P;
1604     }
1605
1606     // Stash this pointer if we've found an i8*.
1607     if (Ptr->getType()->isIntegerTy(8)) {
1608       Int8Ptr = Ptr;
1609       Int8PtrOffset = Offset;
1610     }
1611
1612     // Peel off a layer of the pointer and update the offset appropriately.
1613     if (Operator::getOpcode(Ptr) == Instruction::BitCast) {
1614       Ptr = cast<Operator>(Ptr)->getOperand(0);
1615     } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
1616       if (GA->isInterposable())
1617         break;
1618       Ptr = GA->getAliasee();
1619     } else {
1620       break;
1621     }
1622     assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!");
1623   } while (Visited.insert(Ptr).second);
1624
1625   if (!OffsetPtr) {
1626     if (!Int8Ptr) {
1627       Int8Ptr = IRB.CreateBitCast(
1628           Ptr, IRB.getInt8PtrTy(PointerTy->getPointerAddressSpace()),
1629           NamePrefix + "sroa_raw_cast");
1630       Int8PtrOffset = Offset;
1631     }
1632
1633     OffsetPtr = Int8PtrOffset == 0
1634                     ? Int8Ptr
1635                     : IRB.CreateInBoundsGEP(IRB.getInt8Ty(), Int8Ptr,
1636                                             IRB.getInt(Int8PtrOffset),
1637                                             NamePrefix + "sroa_raw_idx");
1638   }
1639   Ptr = OffsetPtr;
1640
1641   // On the off chance we were targeting i8*, guard the bitcast here.
1642   if (Ptr->getType() != PointerTy)
1643     Ptr = IRB.CreateBitCast(Ptr, PointerTy, NamePrefix + "sroa_cast");
1644
1645   return Ptr;
1646 }
1647
1648 /// Compute the adjusted alignment for a load or store from an offset.
1649 static unsigned getAdjustedAlignment(Instruction *I, uint64_t Offset,
1650                                      const DataLayout &DL) {
1651   unsigned Alignment;
1652   Type *Ty;
1653   if (auto *LI = dyn_cast<LoadInst>(I)) {
1654     Alignment = LI->getAlignment();
1655     Ty = LI->getType();
1656   } else if (auto *SI = dyn_cast<StoreInst>(I)) {
1657     Alignment = SI->getAlignment();
1658     Ty = SI->getValueOperand()->getType();
1659   } else {
1660     llvm_unreachable("Only loads and stores are allowed!");
1661   }
1662
1663   if (!Alignment)
1664     Alignment = DL.getABITypeAlignment(Ty);
1665
1666   return MinAlign(Alignment, Offset);
1667 }
1668
1669 /// Test whether we can convert a value from the old to the new type.
1670 ///
1671 /// This predicate should be used to guard calls to convertValue in order to
1672 /// ensure that we only try to convert viable values. The strategy is that we
1673 /// will peel off single element struct and array wrappings to get to an
1674 /// underlying value, and convert that value.
1675 static bool canConvertValue(const DataLayout &DL, Type *OldTy, Type *NewTy) {
1676   if (OldTy == NewTy)
1677     return true;
1678
1679   // For integer types, we can't handle any bit-width differences. This would
1680   // break both vector conversions with extension and introduce endianness
1681   // issues when in conjunction with loads and stores.
1682   if (isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) {
1683     assert(cast<IntegerType>(OldTy)->getBitWidth() !=
1684                cast<IntegerType>(NewTy)->getBitWidth() &&
1685            "We can't have the same bitwidth for different int types");
1686     return false;
1687   }
1688
1689   if (DL.getTypeSizeInBits(NewTy) != DL.getTypeSizeInBits(OldTy))
1690     return false;
1691   if (!NewTy->isSingleValueType() || !OldTy->isSingleValueType())
1692     return false;
1693
1694   // We can convert pointers to integers and vice-versa. Same for vectors
1695   // of pointers and integers.
1696   OldTy = OldTy->getScalarType();
1697   NewTy = NewTy->getScalarType();
1698   if (NewTy->isPointerTy() || OldTy->isPointerTy()) {
1699     if (NewTy->isPointerTy() && OldTy->isPointerTy()) {
1700       return cast<PointerType>(NewTy)->getPointerAddressSpace() ==
1701         cast<PointerType>(OldTy)->getPointerAddressSpace();
1702     }
1703
1704     // We can convert integers to integral pointers, but not to non-integral
1705     // pointers.
1706     if (OldTy->isIntegerTy())
1707       return !DL.isNonIntegralPointerType(NewTy);
1708
1709     // We can convert integral pointers to integers, but non-integral pointers
1710     // need to remain pointers.
1711     if (!DL.isNonIntegralPointerType(OldTy))
1712       return NewTy->isIntegerTy();
1713
1714     return false;
1715   }
1716
1717   return true;
1718 }
1719
1720 /// Generic routine to convert an SSA value to a value of a different
1721 /// type.
1722 ///
1723 /// This will try various different casting techniques, such as bitcasts,
1724 /// inttoptr, and ptrtoint casts. Use the \c canConvertValue predicate to test
1725 /// two types for viability with this routine.
1726 static Value *convertValue(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
1727                            Type *NewTy) {
1728   Type *OldTy = V->getType();
1729   assert(canConvertValue(DL, OldTy, NewTy) && "Value not convertable to type");
1730
1731   if (OldTy == NewTy)
1732     return V;
1733
1734   assert(!(isa<IntegerType>(OldTy) && isa<IntegerType>(NewTy)) &&
1735          "Integer types must be the exact same to convert.");
1736
1737   // See if we need inttoptr for this type pair. A cast involving both scalars
1738   // and vectors requires and additional bitcast.
1739   if (OldTy->isIntOrIntVectorTy() && NewTy->isPtrOrPtrVectorTy()) {
1740     // Expand <2 x i32> to i8* --> <2 x i32> to i64 to i8*
1741     if (OldTy->isVectorTy() && !NewTy->isVectorTy())
1742       return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)),
1743                                 NewTy);
1744
1745     // Expand i128 to <2 x i8*> --> i128 to <2 x i64> to <2 x i8*>
1746     if (!OldTy->isVectorTy() && NewTy->isVectorTy())
1747       return IRB.CreateIntToPtr(IRB.CreateBitCast(V, DL.getIntPtrType(NewTy)),
1748                                 NewTy);
1749
1750     return IRB.CreateIntToPtr(V, NewTy);
1751   }
1752
1753   // See if we need ptrtoint for this type pair. A cast involving both scalars
1754   // and vectors requires and additional bitcast.
1755   if (OldTy->isPtrOrPtrVectorTy() && NewTy->isIntOrIntVectorTy()) {
1756     // Expand <2 x i8*> to i128 --> <2 x i8*> to <2 x i64> to i128
1757     if (OldTy->isVectorTy() && !NewTy->isVectorTy())
1758       return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
1759                                NewTy);
1760
1761     // Expand i8* to <2 x i32> --> i8* to i64 to <2 x i32>
1762     if (!OldTy->isVectorTy() && NewTy->isVectorTy())
1763       return IRB.CreateBitCast(IRB.CreatePtrToInt(V, DL.getIntPtrType(OldTy)),
1764                                NewTy);
1765
1766     return IRB.CreatePtrToInt(V, NewTy);
1767   }
1768
1769   return IRB.CreateBitCast(V, NewTy);
1770 }
1771
1772 /// Test whether the given slice use can be promoted to a vector.
1773 ///
1774 /// This function is called to test each entry in a partition which is slated
1775 /// for a single slice.
1776 static bool isVectorPromotionViableForSlice(Partition &P, const Slice &S,
1777                                             VectorType *Ty,
1778                                             uint64_t ElementSize,
1779                                             const DataLayout &DL) {
1780   // First validate the slice offsets.
1781   uint64_t BeginOffset =
1782       std::max(S.beginOffset(), P.beginOffset()) - P.beginOffset();
1783   uint64_t BeginIndex = BeginOffset / ElementSize;
1784   if (BeginIndex * ElementSize != BeginOffset ||
1785       BeginIndex >= Ty->getNumElements())
1786     return false;
1787   uint64_t EndOffset =
1788       std::min(S.endOffset(), P.endOffset()) - P.beginOffset();
1789   uint64_t EndIndex = EndOffset / ElementSize;
1790   if (EndIndex * ElementSize != EndOffset || EndIndex > Ty->getNumElements())
1791     return false;
1792
1793   assert(EndIndex > BeginIndex && "Empty vector!");
1794   uint64_t NumElements = EndIndex - BeginIndex;
1795   Type *SliceTy = (NumElements == 1)
1796                       ? Ty->getElementType()
1797                       : VectorType::get(Ty->getElementType(), NumElements);
1798
1799   Type *SplitIntTy =
1800       Type::getIntNTy(Ty->getContext(), NumElements * ElementSize * 8);
1801
1802   Use *U = S.getUse();
1803
1804   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
1805     if (MI->isVolatile())
1806       return false;
1807     if (!S.isSplittable())
1808       return false; // Skip any unsplittable intrinsics.
1809   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
1810     if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
1811         II->getIntrinsicID() != Intrinsic::lifetime_end)
1812       return false;
1813   } else if (U->get()->getType()->getPointerElementType()->isStructTy()) {
1814     // Disable vector promotion when there are loads or stores of an FCA.
1815     return false;
1816   } else if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1817     if (LI->isVolatile())
1818       return false;
1819     Type *LTy = LI->getType();
1820     if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) {
1821       assert(LTy->isIntegerTy());
1822       LTy = SplitIntTy;
1823     }
1824     if (!canConvertValue(DL, SliceTy, LTy))
1825       return false;
1826   } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
1827     if (SI->isVolatile())
1828       return false;
1829     Type *STy = SI->getValueOperand()->getType();
1830     if (P.beginOffset() > S.beginOffset() || P.endOffset() < S.endOffset()) {
1831       assert(STy->isIntegerTy());
1832       STy = SplitIntTy;
1833     }
1834     if (!canConvertValue(DL, STy, SliceTy))
1835       return false;
1836   } else {
1837     return false;
1838   }
1839
1840   return true;
1841 }
1842
1843 /// Test whether the given alloca partitioning and range of slices can be
1844 /// promoted to a vector.
1845 ///
1846 /// This is a quick test to check whether we can rewrite a particular alloca
1847 /// partition (and its newly formed alloca) into a vector alloca with only
1848 /// whole-vector loads and stores such that it could be promoted to a vector
1849 /// SSA value. We only can ensure this for a limited set of operations, and we
1850 /// don't want to do the rewrites unless we are confident that the result will
1851 /// be promotable, so we have an early test here.
1852 static VectorType *isVectorPromotionViable(Partition &P, const DataLayout &DL) {
1853   // Collect the candidate types for vector-based promotion. Also track whether
1854   // we have different element types.
1855   SmallVector<VectorType *, 4> CandidateTys;
1856   Type *CommonEltTy = nullptr;
1857   bool HaveCommonEltTy = true;
1858   auto CheckCandidateType = [&](Type *Ty) {
1859     if (auto *VTy = dyn_cast<VectorType>(Ty)) {
1860       CandidateTys.push_back(VTy);
1861       if (!CommonEltTy)
1862         CommonEltTy = VTy->getElementType();
1863       else if (CommonEltTy != VTy->getElementType())
1864         HaveCommonEltTy = false;
1865     }
1866   };
1867   // Consider any loads or stores that are the exact size of the slice.
1868   for (const Slice &S : P)
1869     if (S.beginOffset() == P.beginOffset() &&
1870         S.endOffset() == P.endOffset()) {
1871       if (auto *LI = dyn_cast<LoadInst>(S.getUse()->getUser()))
1872         CheckCandidateType(LI->getType());
1873       else if (auto *SI = dyn_cast<StoreInst>(S.getUse()->getUser()))
1874         CheckCandidateType(SI->getValueOperand()->getType());
1875     }
1876
1877   // If we didn't find a vector type, nothing to do here.
1878   if (CandidateTys.empty())
1879     return nullptr;
1880
1881   // Remove non-integer vector types if we had multiple common element types.
1882   // FIXME: It'd be nice to replace them with integer vector types, but we can't
1883   // do that until all the backends are known to produce good code for all
1884   // integer vector types.
1885   if (!HaveCommonEltTy) {
1886     CandidateTys.erase(
1887         llvm::remove_if(CandidateTys,
1888                         [](VectorType *VTy) {
1889                           return !VTy->getElementType()->isIntegerTy();
1890                         }),
1891         CandidateTys.end());
1892
1893     // If there were no integer vector types, give up.
1894     if (CandidateTys.empty())
1895       return nullptr;
1896
1897     // Rank the remaining candidate vector types. This is easy because we know
1898     // they're all integer vectors. We sort by ascending number of elements.
1899     auto RankVectorTypes = [&DL](VectorType *RHSTy, VectorType *LHSTy) {
1900       (void)DL;
1901       assert(DL.getTypeSizeInBits(RHSTy) == DL.getTypeSizeInBits(LHSTy) &&
1902              "Cannot have vector types of different sizes!");
1903       assert(RHSTy->getElementType()->isIntegerTy() &&
1904              "All non-integer types eliminated!");
1905       assert(LHSTy->getElementType()->isIntegerTy() &&
1906              "All non-integer types eliminated!");
1907       return RHSTy->getNumElements() < LHSTy->getNumElements();
1908     };
1909     llvm::sort(CandidateTys.begin(), CandidateTys.end(), RankVectorTypes);
1910     CandidateTys.erase(
1911         std::unique(CandidateTys.begin(), CandidateTys.end(), RankVectorTypes),
1912         CandidateTys.end());
1913   } else {
1914 // The only way to have the same element type in every vector type is to
1915 // have the same vector type. Check that and remove all but one.
1916 #ifndef NDEBUG
1917     for (VectorType *VTy : CandidateTys) {
1918       assert(VTy->getElementType() == CommonEltTy &&
1919              "Unaccounted for element type!");
1920       assert(VTy == CandidateTys[0] &&
1921              "Different vector types with the same element type!");
1922     }
1923 #endif
1924     CandidateTys.resize(1);
1925   }
1926
1927   // Try each vector type, and return the one which works.
1928   auto CheckVectorTypeForPromotion = [&](VectorType *VTy) {
1929     uint64_t ElementSize = DL.getTypeSizeInBits(VTy->getElementType());
1930
1931     // While the definition of LLVM vectors is bitpacked, we don't support sizes
1932     // that aren't byte sized.
1933     if (ElementSize % 8)
1934       return false;
1935     assert((DL.getTypeSizeInBits(VTy) % 8) == 0 &&
1936            "vector size not a multiple of element size?");
1937     ElementSize /= 8;
1938
1939     for (const Slice &S : P)
1940       if (!isVectorPromotionViableForSlice(P, S, VTy, ElementSize, DL))
1941         return false;
1942
1943     for (const Slice *S : P.splitSliceTails())
1944       if (!isVectorPromotionViableForSlice(P, *S, VTy, ElementSize, DL))
1945         return false;
1946
1947     return true;
1948   };
1949   for (VectorType *VTy : CandidateTys)
1950     if (CheckVectorTypeForPromotion(VTy))
1951       return VTy;
1952
1953   return nullptr;
1954 }
1955
1956 /// Test whether a slice of an alloca is valid for integer widening.
1957 ///
1958 /// This implements the necessary checking for the \c isIntegerWideningViable
1959 /// test below on a single slice of the alloca.
1960 static bool isIntegerWideningViableForSlice(const Slice &S,
1961                                             uint64_t AllocBeginOffset,
1962                                             Type *AllocaTy,
1963                                             const DataLayout &DL,
1964                                             bool &WholeAllocaOp) {
1965   uint64_t Size = DL.getTypeStoreSize(AllocaTy);
1966
1967   uint64_t RelBegin = S.beginOffset() - AllocBeginOffset;
1968   uint64_t RelEnd = S.endOffset() - AllocBeginOffset;
1969
1970   // We can't reasonably handle cases where the load or store extends past
1971   // the end of the alloca's type and into its padding.
1972   if (RelEnd > Size)
1973     return false;
1974
1975   Use *U = S.getUse();
1976
1977   if (LoadInst *LI = dyn_cast<LoadInst>(U->getUser())) {
1978     if (LI->isVolatile())
1979       return false;
1980     // We can't handle loads that extend past the allocated memory.
1981     if (DL.getTypeStoreSize(LI->getType()) > Size)
1982       return false;
1983     // So far, AllocaSliceRewriter does not support widening split slice tails
1984     // in rewriteIntegerLoad.
1985     if (S.beginOffset() < AllocBeginOffset)
1986       return false;
1987     // Note that we don't count vector loads or stores as whole-alloca
1988     // operations which enable integer widening because we would prefer to use
1989     // vector widening instead.
1990     if (!isa<VectorType>(LI->getType()) && RelBegin == 0 && RelEnd == Size)
1991       WholeAllocaOp = true;
1992     if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType())) {
1993       if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy))
1994         return false;
1995     } else if (RelBegin != 0 || RelEnd != Size ||
1996                !canConvertValue(DL, AllocaTy, LI->getType())) {
1997       // Non-integer loads need to be convertible from the alloca type so that
1998       // they are promotable.
1999       return false;
2000     }
2001   } else if (StoreInst *SI = dyn_cast<StoreInst>(U->getUser())) {
2002     Type *ValueTy = SI->getValueOperand()->getType();
2003     if (SI->isVolatile())
2004       return false;
2005     // We can't handle stores that extend past the allocated memory.
2006     if (DL.getTypeStoreSize(ValueTy) > Size)
2007       return false;
2008     // So far, AllocaSliceRewriter does not support widening split slice tails
2009     // in rewriteIntegerStore.
2010     if (S.beginOffset() < AllocBeginOffset)
2011       return false;
2012     // Note that we don't count vector loads or stores as whole-alloca
2013     // operations which enable integer widening because we would prefer to use
2014     // vector widening instead.
2015     if (!isa<VectorType>(ValueTy) && RelBegin == 0 && RelEnd == Size)
2016       WholeAllocaOp = true;
2017     if (IntegerType *ITy = dyn_cast<IntegerType>(ValueTy)) {
2018       if (ITy->getBitWidth() < DL.getTypeStoreSizeInBits(ITy))
2019         return false;
2020     } else if (RelBegin != 0 || RelEnd != Size ||
2021                !canConvertValue(DL, ValueTy, AllocaTy)) {
2022       // Non-integer stores need to be convertible to the alloca type so that
2023       // they are promotable.
2024       return false;
2025     }
2026   } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U->getUser())) {
2027     if (MI->isVolatile() || !isa<Constant>(MI->getLength()))
2028       return false;
2029     if (!S.isSplittable())
2030       return false; // Skip any unsplittable intrinsics.
2031   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U->getUser())) {
2032     if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
2033         II->getIntrinsicID() != Intrinsic::lifetime_end)
2034       return false;
2035   } else {
2036     return false;
2037   }
2038
2039   return true;
2040 }
2041
2042 /// Test whether the given alloca partition's integer operations can be
2043 /// widened to promotable ones.
2044 ///
2045 /// This is a quick test to check whether we can rewrite the integer loads and
2046 /// stores to a particular alloca into wider loads and stores and be able to
2047 /// promote the resulting alloca.
2048 static bool isIntegerWideningViable(Partition &P, Type *AllocaTy,
2049                                     const DataLayout &DL) {
2050   uint64_t SizeInBits = DL.getTypeSizeInBits(AllocaTy);
2051   // Don't create integer types larger than the maximum bitwidth.
2052   if (SizeInBits > IntegerType::MAX_INT_BITS)
2053     return false;
2054
2055   // Don't try to handle allocas with bit-padding.
2056   if (SizeInBits != DL.getTypeStoreSizeInBits(AllocaTy))
2057     return false;
2058
2059   // We need to ensure that an integer type with the appropriate bitwidth can
2060   // be converted to the alloca type, whatever that is. We don't want to force
2061   // the alloca itself to have an integer type if there is a more suitable one.
2062   Type *IntTy = Type::getIntNTy(AllocaTy->getContext(), SizeInBits);
2063   if (!canConvertValue(DL, AllocaTy, IntTy) ||
2064       !canConvertValue(DL, IntTy, AllocaTy))
2065     return false;
2066
2067   // While examining uses, we ensure that the alloca has a covering load or
2068   // store. We don't want to widen the integer operations only to fail to
2069   // promote due to some other unsplittable entry (which we may make splittable
2070   // later). However, if there are only splittable uses, go ahead and assume
2071   // that we cover the alloca.
2072   // FIXME: We shouldn't consider split slices that happen to start in the
2073   // partition here...
2074   bool WholeAllocaOp =
2075       P.begin() != P.end() ? false : DL.isLegalInteger(SizeInBits);
2076
2077   for (const Slice &S : P)
2078     if (!isIntegerWideningViableForSlice(S, P.beginOffset(), AllocaTy, DL,
2079                                          WholeAllocaOp))
2080       return false;
2081
2082   for (const Slice *S : P.splitSliceTails())
2083     if (!isIntegerWideningViableForSlice(*S, P.beginOffset(), AllocaTy, DL,
2084                                          WholeAllocaOp))
2085       return false;
2086
2087   return WholeAllocaOp;
2088 }
2089
2090 static Value *extractInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *V,
2091                              IntegerType *Ty, uint64_t Offset,
2092                              const Twine &Name) {
2093   LLVM_DEBUG(dbgs() << "       start: " << *V << "\n");
2094   IntegerType *IntTy = cast<IntegerType>(V->getType());
2095   assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
2096          "Element extends past full value");
2097   uint64_t ShAmt = 8 * Offset;
2098   if (DL.isBigEndian())
2099     ShAmt = 8 * (DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
2100   if (ShAmt) {
2101     V = IRB.CreateLShr(V, ShAmt, Name + ".shift");
2102     LLVM_DEBUG(dbgs() << "     shifted: " << *V << "\n");
2103   }
2104   assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
2105          "Cannot extract to a larger integer!");
2106   if (Ty != IntTy) {
2107     V = IRB.CreateTrunc(V, Ty, Name + ".trunc");
2108     LLVM_DEBUG(dbgs() << "     trunced: " << *V << "\n");
2109   }
2110   return V;
2111 }
2112
2113 static Value *insertInteger(const DataLayout &DL, IRBuilderTy &IRB, Value *Old,
2114                             Value *V, uint64_t Offset, const Twine &Name) {
2115   IntegerType *IntTy = cast<IntegerType>(Old->getType());
2116   IntegerType *Ty = cast<IntegerType>(V->getType());
2117   assert(Ty->getBitWidth() <= IntTy->getBitWidth() &&
2118          "Cannot insert a larger integer!");
2119   LLVM_DEBUG(dbgs() << "       start: " << *V << "\n");
2120   if (Ty != IntTy) {
2121     V = IRB.CreateZExt(V, IntTy, Name + ".ext");
2122     LLVM_DEBUG(dbgs() << "    extended: " << *V << "\n");
2123   }
2124   assert(DL.getTypeStoreSize(Ty) + Offset <= DL.getTypeStoreSize(IntTy) &&
2125          "Element store outside of alloca store");
2126   uint64_t ShAmt = 8 * Offset;
2127   if (DL.isBigEndian())
2128     ShAmt = 8 * (DL.getTypeStoreSize(IntTy) - DL.getTypeStoreSize(Ty) - Offset);
2129   if (ShAmt) {
2130     V = IRB.CreateShl(V, ShAmt, Name + ".shift");
2131     LLVM_DEBUG(dbgs() << "     shifted: " << *V << "\n");
2132   }
2133
2134   if (ShAmt || Ty->getBitWidth() < IntTy->getBitWidth()) {
2135     APInt Mask = ~Ty->getMask().zext(IntTy->getBitWidth()).shl(ShAmt);
2136     Old = IRB.CreateAnd(Old, Mask, Name + ".mask");
2137     LLVM_DEBUG(dbgs() << "      masked: " << *Old << "\n");
2138     V = IRB.CreateOr(Old, V, Name + ".insert");
2139     LLVM_DEBUG(dbgs() << "    inserted: " << *V << "\n");
2140   }
2141   return V;
2142 }
2143
2144 static Value *extractVector(IRBuilderTy &IRB, Value *V, unsigned BeginIndex,
2145                             unsigned EndIndex, const Twine &Name) {
2146   VectorType *VecTy = cast<VectorType>(V->getType());
2147   unsigned NumElements = EndIndex - BeginIndex;
2148   assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2149
2150   if (NumElements == VecTy->getNumElements())
2151     return V;
2152
2153   if (NumElements == 1) {
2154     V = IRB.CreateExtractElement(V, IRB.getInt32(BeginIndex),
2155                                  Name + ".extract");
2156     LLVM_DEBUG(dbgs() << "     extract: " << *V << "\n");
2157     return V;
2158   }
2159
2160   SmallVector<Constant *, 8> Mask;
2161   Mask.reserve(NumElements);
2162   for (unsigned i = BeginIndex; i != EndIndex; ++i)
2163     Mask.push_back(IRB.getInt32(i));
2164   V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
2165                               ConstantVector::get(Mask), Name + ".extract");
2166   LLVM_DEBUG(dbgs() << "     shuffle: " << *V << "\n");
2167   return V;
2168 }
2169
2170 static Value *insertVector(IRBuilderTy &IRB, Value *Old, Value *V,
2171                            unsigned BeginIndex, const Twine &Name) {
2172   VectorType *VecTy = cast<VectorType>(Old->getType());
2173   assert(VecTy && "Can only insert a vector into a vector");
2174
2175   VectorType *Ty = dyn_cast<VectorType>(V->getType());
2176   if (!Ty) {
2177     // Single element to insert.
2178     V = IRB.CreateInsertElement(Old, V, IRB.getInt32(BeginIndex),
2179                                 Name + ".insert");
2180     LLVM_DEBUG(dbgs() << "     insert: " << *V << "\n");
2181     return V;
2182   }
2183
2184   assert(Ty->getNumElements() <= VecTy->getNumElements() &&
2185          "Too many elements!");
2186   if (Ty->getNumElements() == VecTy->getNumElements()) {
2187     assert(V->getType() == VecTy && "Vector type mismatch");
2188     return V;
2189   }
2190   unsigned EndIndex = BeginIndex + Ty->getNumElements();
2191
2192   // When inserting a smaller vector into the larger to store, we first
2193   // use a shuffle vector to widen it with undef elements, and then
2194   // a second shuffle vector to select between the loaded vector and the
2195   // incoming vector.
2196   SmallVector<Constant *, 8> Mask;
2197   Mask.reserve(VecTy->getNumElements());
2198   for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
2199     if (i >= BeginIndex && i < EndIndex)
2200       Mask.push_back(IRB.getInt32(i - BeginIndex));
2201     else
2202       Mask.push_back(UndefValue::get(IRB.getInt32Ty()));
2203   V = IRB.CreateShuffleVector(V, UndefValue::get(V->getType()),
2204                               ConstantVector::get(Mask), Name + ".expand");
2205   LLVM_DEBUG(dbgs() << "    shuffle: " << *V << "\n");
2206
2207   Mask.clear();
2208   for (unsigned i = 0; i != VecTy->getNumElements(); ++i)
2209     Mask.push_back(IRB.getInt1(i >= BeginIndex && i < EndIndex));
2210
2211   V = IRB.CreateSelect(ConstantVector::get(Mask), V, Old, Name + "blend");
2212
2213   LLVM_DEBUG(dbgs() << "    blend: " << *V << "\n");
2214   return V;
2215 }
2216
2217 /// Visitor to rewrite instructions using p particular slice of an alloca
2218 /// to use a new alloca.
2219 ///
2220 /// Also implements the rewriting to vector-based accesses when the partition
2221 /// passes the isVectorPromotionViable predicate. Most of the rewriting logic
2222 /// lives here.
2223 class llvm::sroa::AllocaSliceRewriter
2224     : public InstVisitor<AllocaSliceRewriter, bool> {
2225   // Befriend the base class so it can delegate to private visit methods.
2226   friend class InstVisitor<AllocaSliceRewriter, bool>;
2227
2228   using Base = InstVisitor<AllocaSliceRewriter, bool>;
2229
2230   const DataLayout &DL;
2231   AllocaSlices &AS;
2232   SROA &Pass;
2233   AllocaInst &OldAI, &NewAI;
2234   const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset;
2235   Type *NewAllocaTy;
2236
2237   // This is a convenience and flag variable that will be null unless the new
2238   // alloca's integer operations should be widened to this integer type due to
2239   // passing isIntegerWideningViable above. If it is non-null, the desired
2240   // integer type will be stored here for easy access during rewriting.
2241   IntegerType *IntTy;
2242
2243   // If we are rewriting an alloca partition which can be written as pure
2244   // vector operations, we stash extra information here. When VecTy is
2245   // non-null, we have some strict guarantees about the rewritten alloca:
2246   //   - The new alloca is exactly the size of the vector type here.
2247   //   - The accesses all either map to the entire vector or to a single
2248   //     element.
2249   //   - The set of accessing instructions is only one of those handled above
2250   //     in isVectorPromotionViable. Generally these are the same access kinds
2251   //     which are promotable via mem2reg.
2252   VectorType *VecTy;
2253   Type *ElementTy;
2254   uint64_t ElementSize;
2255
2256   // The original offset of the slice currently being rewritten relative to
2257   // the original alloca.
2258   uint64_t BeginOffset = 0;
2259   uint64_t EndOffset = 0;
2260
2261   // The new offsets of the slice currently being rewritten relative to the
2262   // original alloca.
2263   uint64_t NewBeginOffset, NewEndOffset;
2264
2265   uint64_t SliceSize;
2266   bool IsSplittable = false;
2267   bool IsSplit = false;
2268   Use *OldUse = nullptr;
2269   Instruction *OldPtr = nullptr;
2270
2271   // Track post-rewrite users which are PHI nodes and Selects.
2272   SmallSetVector<PHINode *, 8> &PHIUsers;
2273   SmallSetVector<SelectInst *, 8> &SelectUsers;
2274
2275   // Utility IR builder, whose name prefix is setup for each visited use, and
2276   // the insertion point is set to point to the user.
2277   IRBuilderTy IRB;
2278
2279 public:
2280   AllocaSliceRewriter(const DataLayout &DL, AllocaSlices &AS, SROA &Pass,
2281                       AllocaInst &OldAI, AllocaInst &NewAI,
2282                       uint64_t NewAllocaBeginOffset,
2283                       uint64_t NewAllocaEndOffset, bool IsIntegerPromotable,
2284                       VectorType *PromotableVecTy,
2285                       SmallSetVector<PHINode *, 8> &PHIUsers,
2286                       SmallSetVector<SelectInst *, 8> &SelectUsers)
2287       : DL(DL), AS(AS), Pass(Pass), OldAI(OldAI), NewAI(NewAI),
2288         NewAllocaBeginOffset(NewAllocaBeginOffset),
2289         NewAllocaEndOffset(NewAllocaEndOffset),
2290         NewAllocaTy(NewAI.getAllocatedType()),
2291         IntTy(IsIntegerPromotable
2292                   ? Type::getIntNTy(
2293                         NewAI.getContext(),
2294                         DL.getTypeSizeInBits(NewAI.getAllocatedType()))
2295                   : nullptr),
2296         VecTy(PromotableVecTy),
2297         ElementTy(VecTy ? VecTy->getElementType() : nullptr),
2298         ElementSize(VecTy ? DL.getTypeSizeInBits(ElementTy) / 8 : 0),
2299         PHIUsers(PHIUsers), SelectUsers(SelectUsers),
2300         IRB(NewAI.getContext(), ConstantFolder()) {
2301     if (VecTy) {
2302       assert((DL.getTypeSizeInBits(ElementTy) % 8) == 0 &&
2303              "Only multiple-of-8 sized vector elements are viable");
2304       ++NumVectorized;
2305     }
2306     assert((!IntTy && !VecTy) || (IntTy && !VecTy) || (!IntTy && VecTy));
2307   }
2308
2309   bool visit(AllocaSlices::const_iterator I) {
2310     bool CanSROA = true;
2311     BeginOffset = I->beginOffset();
2312     EndOffset = I->endOffset();
2313     IsSplittable = I->isSplittable();
2314     IsSplit =
2315         BeginOffset < NewAllocaBeginOffset || EndOffset > NewAllocaEndOffset;
2316     LLVM_DEBUG(dbgs() << "  rewriting " << (IsSplit ? "split " : ""));
2317     LLVM_DEBUG(AS.printSlice(dbgs(), I, ""));
2318     LLVM_DEBUG(dbgs() << "\n");
2319
2320     // Compute the intersecting offset range.
2321     assert(BeginOffset < NewAllocaEndOffset);
2322     assert(EndOffset > NewAllocaBeginOffset);
2323     NewBeginOffset = std::max(BeginOffset, NewAllocaBeginOffset);
2324     NewEndOffset = std::min(EndOffset, NewAllocaEndOffset);
2325
2326     SliceSize = NewEndOffset - NewBeginOffset;
2327
2328     OldUse = I->getUse();
2329     OldPtr = cast<Instruction>(OldUse->get());
2330
2331     Instruction *OldUserI = cast<Instruction>(OldUse->getUser());
2332     IRB.SetInsertPoint(OldUserI);
2333     IRB.SetCurrentDebugLocation(OldUserI->getDebugLoc());
2334     IRB.SetNamePrefix(Twine(NewAI.getName()) + "." + Twine(BeginOffset) + ".");
2335
2336     CanSROA &= visit(cast<Instruction>(OldUse->getUser()));
2337     if (VecTy || IntTy)
2338       assert(CanSROA);
2339     return CanSROA;
2340   }
2341
2342 private:
2343   // Make sure the other visit overloads are visible.
2344   using Base::visit;
2345
2346   // Every instruction which can end up as a user must have a rewrite rule.
2347   bool visitInstruction(Instruction &I) {
2348     LLVM_DEBUG(dbgs() << "    !!!! Cannot rewrite: " << I << "\n");
2349     llvm_unreachable("No rewrite rule for this instruction!");
2350   }
2351
2352   Value *getNewAllocaSlicePtr(IRBuilderTy &IRB, Type *PointerTy) {
2353     // Note that the offset computation can use BeginOffset or NewBeginOffset
2354     // interchangeably for unsplit slices.
2355     assert(IsSplit || BeginOffset == NewBeginOffset);
2356     uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2357
2358 #ifndef NDEBUG
2359     StringRef OldName = OldPtr->getName();
2360     // Skip through the last '.sroa.' component of the name.
2361     size_t LastSROAPrefix = OldName.rfind(".sroa.");
2362     if (LastSROAPrefix != StringRef::npos) {
2363       OldName = OldName.substr(LastSROAPrefix + strlen(".sroa."));
2364       // Look for an SROA slice index.
2365       size_t IndexEnd = OldName.find_first_not_of("0123456789");
2366       if (IndexEnd != StringRef::npos && OldName[IndexEnd] == '.') {
2367         // Strip the index and look for the offset.
2368         OldName = OldName.substr(IndexEnd + 1);
2369         size_t OffsetEnd = OldName.find_first_not_of("0123456789");
2370         if (OffsetEnd != StringRef::npos && OldName[OffsetEnd] == '.')
2371           // Strip the offset.
2372           OldName = OldName.substr(OffsetEnd + 1);
2373       }
2374     }
2375     // Strip any SROA suffixes as well.
2376     OldName = OldName.substr(0, OldName.find(".sroa_"));
2377 #endif
2378
2379     return getAdjustedPtr(IRB, DL, &NewAI,
2380                           APInt(DL.getPointerTypeSizeInBits(PointerTy), Offset),
2381                           PointerTy,
2382 #ifndef NDEBUG
2383                           Twine(OldName) + "."
2384 #else
2385                           Twine()
2386 #endif
2387                           );
2388   }
2389
2390   /// Compute suitable alignment to access this slice of the *new*
2391   /// alloca.
2392   ///
2393   /// You can optionally pass a type to this routine and if that type's ABI
2394   /// alignment is itself suitable, this will return zero.
2395   unsigned getSliceAlign(Type *Ty = nullptr) {
2396     unsigned NewAIAlign = NewAI.getAlignment();
2397     if (!NewAIAlign)
2398       NewAIAlign = DL.getABITypeAlignment(NewAI.getAllocatedType());
2399     unsigned Align =
2400         MinAlign(NewAIAlign, NewBeginOffset - NewAllocaBeginOffset);
2401     return (Ty && Align == DL.getABITypeAlignment(Ty)) ? 0 : Align;
2402   }
2403
2404   unsigned getIndex(uint64_t Offset) {
2405     assert(VecTy && "Can only call getIndex when rewriting a vector");
2406     uint64_t RelOffset = Offset - NewAllocaBeginOffset;
2407     assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds");
2408     uint32_t Index = RelOffset / ElementSize;
2409     assert(Index * ElementSize == RelOffset);
2410     return Index;
2411   }
2412
2413   void deleteIfTriviallyDead(Value *V) {
2414     Instruction *I = cast<Instruction>(V);
2415     if (isInstructionTriviallyDead(I))
2416       Pass.DeadInsts.insert(I);
2417   }
2418
2419   Value *rewriteVectorizedLoadInst() {
2420     unsigned BeginIndex = getIndex(NewBeginOffset);
2421     unsigned EndIndex = getIndex(NewEndOffset);
2422     assert(EndIndex > BeginIndex && "Empty vector!");
2423
2424     Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load");
2425     return extractVector(IRB, V, BeginIndex, EndIndex, "vec");
2426   }
2427
2428   Value *rewriteIntegerLoad(LoadInst &LI) {
2429     assert(IntTy && "We cannot insert an integer to the alloca");
2430     assert(!LI.isVolatile());
2431     Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load");
2432     V = convertValue(DL, IRB, V, IntTy);
2433     assert(NewBeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2434     uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2435     if (Offset > 0 || NewEndOffset < NewAllocaEndOffset) {
2436       IntegerType *ExtractTy = Type::getIntNTy(LI.getContext(), SliceSize * 8);
2437       V = extractInteger(DL, IRB, V, ExtractTy, Offset, "extract");
2438     }
2439     // It is possible that the extracted type is not the load type. This
2440     // happens if there is a load past the end of the alloca, and as
2441     // a consequence the slice is narrower but still a candidate for integer
2442     // lowering. To handle this case, we just zero extend the extracted
2443     // integer.
2444     assert(cast<IntegerType>(LI.getType())->getBitWidth() >= SliceSize * 8 &&
2445            "Can only handle an extract for an overly wide load");
2446     if (cast<IntegerType>(LI.getType())->getBitWidth() > SliceSize * 8)
2447       V = IRB.CreateZExt(V, LI.getType());
2448     return V;
2449   }
2450
2451   bool visitLoadInst(LoadInst &LI) {
2452     LLVM_DEBUG(dbgs() << "    original: " << LI << "\n");
2453     Value *OldOp = LI.getOperand(0);
2454     assert(OldOp == OldPtr);
2455
2456     AAMDNodes AATags;
2457     LI.getAAMetadata(AATags);
2458
2459     unsigned AS = LI.getPointerAddressSpace();
2460
2461     Type *TargetTy = IsSplit ? Type::getIntNTy(LI.getContext(), SliceSize * 8)
2462                              : LI.getType();
2463     const bool IsLoadPastEnd = DL.getTypeStoreSize(TargetTy) > SliceSize;
2464     bool IsPtrAdjusted = false;
2465     Value *V;
2466     if (VecTy) {
2467       V = rewriteVectorizedLoadInst();
2468     } else if (IntTy && LI.getType()->isIntegerTy()) {
2469       V = rewriteIntegerLoad(LI);
2470     } else if (NewBeginOffset == NewAllocaBeginOffset &&
2471                NewEndOffset == NewAllocaEndOffset &&
2472                (canConvertValue(DL, NewAllocaTy, TargetTy) ||
2473                 (IsLoadPastEnd && NewAllocaTy->isIntegerTy() &&
2474                  TargetTy->isIntegerTy()))) {
2475       LoadInst *NewLI = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(),
2476                                               LI.isVolatile(), LI.getName());
2477       if (AATags)
2478         NewLI->setAAMetadata(AATags);
2479       if (LI.isVolatile())
2480         NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
2481
2482       // Any !nonnull metadata or !range metadata on the old load is also valid
2483       // on the new load. This is even true in some cases even when the loads
2484       // are different types, for example by mapping !nonnull metadata to
2485       // !range metadata by modeling the null pointer constant converted to the
2486       // integer type.
2487       // FIXME: Add support for range metadata here. Currently the utilities
2488       // for this don't propagate range metadata in trivial cases from one
2489       // integer load to another, don't handle non-addrspace-0 null pointers
2490       // correctly, and don't have any support for mapping ranges as the
2491       // integer type becomes winder or narrower.
2492       if (MDNode *N = LI.getMetadata(LLVMContext::MD_nonnull))
2493         copyNonnullMetadata(LI, N, *NewLI);
2494
2495       // Try to preserve nonnull metadata
2496       V = NewLI;
2497
2498       // If this is an integer load past the end of the slice (which means the
2499       // bytes outside the slice are undef or this load is dead) just forcibly
2500       // fix the integer size with correct handling of endianness.
2501       if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy))
2502         if (auto *TITy = dyn_cast<IntegerType>(TargetTy))
2503           if (AITy->getBitWidth() < TITy->getBitWidth()) {
2504             V = IRB.CreateZExt(V, TITy, "load.ext");
2505             if (DL.isBigEndian())
2506               V = IRB.CreateShl(V, TITy->getBitWidth() - AITy->getBitWidth(),
2507                                 "endian_shift");
2508           }
2509     } else {
2510       Type *LTy = TargetTy->getPointerTo(AS);
2511       LoadInst *NewLI = IRB.CreateAlignedLoad(getNewAllocaSlicePtr(IRB, LTy),
2512                                               getSliceAlign(TargetTy),
2513                                               LI.isVolatile(), LI.getName());
2514       if (AATags)
2515         NewLI->setAAMetadata(AATags);
2516       if (LI.isVolatile())
2517         NewLI->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
2518
2519       V = NewLI;
2520       IsPtrAdjusted = true;
2521     }
2522     V = convertValue(DL, IRB, V, TargetTy);
2523
2524     if (IsSplit) {
2525       assert(!LI.isVolatile());
2526       assert(LI.getType()->isIntegerTy() &&
2527              "Only integer type loads and stores are split");
2528       assert(SliceSize < DL.getTypeStoreSize(LI.getType()) &&
2529              "Split load isn't smaller than original load");
2530       assert(LI.getType()->getIntegerBitWidth() ==
2531                  DL.getTypeStoreSizeInBits(LI.getType()) &&
2532              "Non-byte-multiple bit width");
2533       // Move the insertion point just past the load so that we can refer to it.
2534       IRB.SetInsertPoint(&*std::next(BasicBlock::iterator(&LI)));
2535       // Create a placeholder value with the same type as LI to use as the
2536       // basis for the new value. This allows us to replace the uses of LI with
2537       // the computed value, and then replace the placeholder with LI, leaving
2538       // LI only used for this computation.
2539       Value *Placeholder =
2540           new LoadInst(UndefValue::get(LI.getType()->getPointerTo(AS)));
2541       V = insertInteger(DL, IRB, Placeholder, V, NewBeginOffset - BeginOffset,
2542                         "insert");
2543       LI.replaceAllUsesWith(V);
2544       Placeholder->replaceAllUsesWith(&LI);
2545       Placeholder->deleteValue();
2546     } else {
2547       LI.replaceAllUsesWith(V);
2548     }
2549
2550     Pass.DeadInsts.insert(&LI);
2551     deleteIfTriviallyDead(OldOp);
2552     LLVM_DEBUG(dbgs() << "          to: " << *V << "\n");
2553     return !LI.isVolatile() && !IsPtrAdjusted;
2554   }
2555
2556   bool rewriteVectorizedStoreInst(Value *V, StoreInst &SI, Value *OldOp,
2557                                   AAMDNodes AATags) {
2558     if (V->getType() != VecTy) {
2559       unsigned BeginIndex = getIndex(NewBeginOffset);
2560       unsigned EndIndex = getIndex(NewEndOffset);
2561       assert(EndIndex > BeginIndex && "Empty vector!");
2562       unsigned NumElements = EndIndex - BeginIndex;
2563       assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2564       Type *SliceTy = (NumElements == 1)
2565                           ? ElementTy
2566                           : VectorType::get(ElementTy, NumElements);
2567       if (V->getType() != SliceTy)
2568         V = convertValue(DL, IRB, V, SliceTy);
2569
2570       // Mix in the existing elements.
2571       Value *Old = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load");
2572       V = insertVector(IRB, Old, V, BeginIndex, "vec");
2573     }
2574     StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
2575     if (AATags)
2576       Store->setAAMetadata(AATags);
2577     Pass.DeadInsts.insert(&SI);
2578
2579     LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
2580     return true;
2581   }
2582
2583   bool rewriteIntegerStore(Value *V, StoreInst &SI, AAMDNodes AATags) {
2584     assert(IntTy && "We cannot extract an integer from the alloca");
2585     assert(!SI.isVolatile());
2586     if (DL.getTypeSizeInBits(V->getType()) != IntTy->getBitWidth()) {
2587       Value *Old =
2588           IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload");
2589       Old = convertValue(DL, IRB, Old, IntTy);
2590       assert(BeginOffset >= NewAllocaBeginOffset && "Out of bounds offset");
2591       uint64_t Offset = BeginOffset - NewAllocaBeginOffset;
2592       V = insertInteger(DL, IRB, Old, SI.getValueOperand(), Offset, "insert");
2593     }
2594     V = convertValue(DL, IRB, V, NewAllocaTy);
2595     StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment());
2596     Store->copyMetadata(SI, LLVMContext::MD_mem_parallel_loop_access);
2597     if (AATags)
2598       Store->setAAMetadata(AATags);
2599     Pass.DeadInsts.insert(&SI);
2600     LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
2601     return true;
2602   }
2603
2604   bool visitStoreInst(StoreInst &SI) {
2605     LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
2606     Value *OldOp = SI.getOperand(1);
2607     assert(OldOp == OldPtr);
2608
2609     AAMDNodes AATags;
2610     SI.getAAMetadata(AATags);
2611
2612     Value *V = SI.getValueOperand();
2613
2614     // Strip all inbounds GEPs and pointer casts to try to dig out any root
2615     // alloca that should be re-examined after promoting this alloca.
2616     if (V->getType()->isPointerTy())
2617       if (AllocaInst *AI = dyn_cast<AllocaInst>(V->stripInBoundsOffsets()))
2618         Pass.PostPromotionWorklist.insert(AI);
2619
2620     if (SliceSize < DL.getTypeStoreSize(V->getType())) {
2621       assert(!SI.isVolatile());
2622       assert(V->getType()->isIntegerTy() &&
2623              "Only integer type loads and stores are split");
2624       assert(V->getType()->getIntegerBitWidth() ==
2625                  DL.getTypeStoreSizeInBits(V->getType()) &&
2626              "Non-byte-multiple bit width");
2627       IntegerType *NarrowTy = Type::getIntNTy(SI.getContext(), SliceSize * 8);
2628       V = extractInteger(DL, IRB, V, NarrowTy, NewBeginOffset - BeginOffset,
2629                          "extract");
2630     }
2631
2632     if (VecTy)
2633       return rewriteVectorizedStoreInst(V, SI, OldOp, AATags);
2634     if (IntTy && V->getType()->isIntegerTy())
2635       return rewriteIntegerStore(V, SI, AATags);
2636
2637     const bool IsStorePastEnd = DL.getTypeStoreSize(V->getType()) > SliceSize;
2638     StoreInst *NewSI;
2639     if (NewBeginOffset == NewAllocaBeginOffset &&
2640         NewEndOffset == NewAllocaEndOffset &&
2641         (canConvertValue(DL, V->getType(), NewAllocaTy) ||
2642          (IsStorePastEnd && NewAllocaTy->isIntegerTy() &&
2643           V->getType()->isIntegerTy()))) {
2644       // If this is an integer store past the end of slice (and thus the bytes
2645       // past that point are irrelevant or this is unreachable), truncate the
2646       // value prior to storing.
2647       if (auto *VITy = dyn_cast<IntegerType>(V->getType()))
2648         if (auto *AITy = dyn_cast<IntegerType>(NewAllocaTy))
2649           if (VITy->getBitWidth() > AITy->getBitWidth()) {
2650             if (DL.isBigEndian())
2651               V = IRB.CreateLShr(V, VITy->getBitWidth() - AITy->getBitWidth(),
2652                                  "endian_shift");
2653             V = IRB.CreateTrunc(V, AITy, "load.trunc");
2654           }
2655
2656       V = convertValue(DL, IRB, V, NewAllocaTy);
2657       NewSI = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
2658                                      SI.isVolatile());
2659     } else {
2660       unsigned AS = SI.getPointerAddressSpace();
2661       Value *NewPtr = getNewAllocaSlicePtr(IRB, V->getType()->getPointerTo(AS));
2662       NewSI = IRB.CreateAlignedStore(V, NewPtr, getSliceAlign(V->getType()),
2663                                      SI.isVolatile());
2664     }
2665     NewSI->copyMetadata(SI, LLVMContext::MD_mem_parallel_loop_access);
2666     if (AATags)
2667       NewSI->setAAMetadata(AATags);
2668     if (SI.isVolatile())
2669       NewSI->setAtomic(SI.getOrdering(), SI.getSyncScopeID());
2670     Pass.DeadInsts.insert(&SI);
2671     deleteIfTriviallyDead(OldOp);
2672
2673     LLVM_DEBUG(dbgs() << "          to: " << *NewSI << "\n");
2674     return NewSI->getPointerOperand() == &NewAI && !SI.isVolatile();
2675   }
2676
2677   /// Compute an integer value from splatting an i8 across the given
2678   /// number of bytes.
2679   ///
2680   /// Note that this routine assumes an i8 is a byte. If that isn't true, don't
2681   /// call this routine.
2682   /// FIXME: Heed the advice above.
2683   ///
2684   /// \param V The i8 value to splat.
2685   /// \param Size The number of bytes in the output (assuming i8 is one byte)
2686   Value *getIntegerSplat(Value *V, unsigned Size) {
2687     assert(Size > 0 && "Expected a positive number of bytes.");
2688     IntegerType *VTy = cast<IntegerType>(V->getType());
2689     assert(VTy->getBitWidth() == 8 && "Expected an i8 value for the byte");
2690     if (Size == 1)
2691       return V;
2692
2693     Type *SplatIntTy = Type::getIntNTy(VTy->getContext(), Size * 8);
2694     V = IRB.CreateMul(
2695         IRB.CreateZExt(V, SplatIntTy, "zext"),
2696         ConstantExpr::getUDiv(
2697             Constant::getAllOnesValue(SplatIntTy),
2698             ConstantExpr::getZExt(Constant::getAllOnesValue(V->getType()),
2699                                   SplatIntTy)),
2700         "isplat");
2701     return V;
2702   }
2703
2704   /// Compute a vector splat for a given element value.
2705   Value *getVectorSplat(Value *V, unsigned NumElements) {
2706     V = IRB.CreateVectorSplat(NumElements, V, "vsplat");
2707     LLVM_DEBUG(dbgs() << "       splat: " << *V << "\n");
2708     return V;
2709   }
2710
2711   bool visitMemSetInst(MemSetInst &II) {
2712     LLVM_DEBUG(dbgs() << "    original: " << II << "\n");
2713     assert(II.getRawDest() == OldPtr);
2714
2715     AAMDNodes AATags;
2716     II.getAAMetadata(AATags);
2717
2718     // If the memset has a variable size, it cannot be split, just adjust the
2719     // pointer to the new alloca.
2720     if (!isa<Constant>(II.getLength())) {
2721       assert(!IsSplit);
2722       assert(NewBeginOffset == BeginOffset);
2723       II.setDest(getNewAllocaSlicePtr(IRB, OldPtr->getType()));
2724       II.setDestAlignment(getSliceAlign());
2725
2726       deleteIfTriviallyDead(OldPtr);
2727       return false;
2728     }
2729
2730     // Record this instruction for deletion.
2731     Pass.DeadInsts.insert(&II);
2732
2733     Type *AllocaTy = NewAI.getAllocatedType();
2734     Type *ScalarTy = AllocaTy->getScalarType();
2735
2736     // If this doesn't map cleanly onto the alloca type, and that type isn't
2737     // a single value type, just emit a memset.
2738     if (!VecTy && !IntTy &&
2739         (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset ||
2740          SliceSize != DL.getTypeStoreSize(AllocaTy) ||
2741          !AllocaTy->isSingleValueType() ||
2742          !DL.isLegalInteger(DL.getTypeSizeInBits(ScalarTy)) ||
2743          DL.getTypeSizeInBits(ScalarTy) % 8 != 0)) {
2744       Type *SizeTy = II.getLength()->getType();
2745       Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
2746       CallInst *New = IRB.CreateMemSet(
2747           getNewAllocaSlicePtr(IRB, OldPtr->getType()), II.getValue(), Size,
2748           getSliceAlign(), II.isVolatile());
2749       if (AATags)
2750         New->setAAMetadata(AATags);
2751       LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
2752       return false;
2753     }
2754
2755     // If we can represent this as a simple value, we have to build the actual
2756     // value to store, which requires expanding the byte present in memset to
2757     // a sensible representation for the alloca type. This is essentially
2758     // splatting the byte to a sufficiently wide integer, splatting it across
2759     // any desired vector width, and bitcasting to the final type.
2760     Value *V;
2761
2762     if (VecTy) {
2763       // If this is a memset of a vectorized alloca, insert it.
2764       assert(ElementTy == ScalarTy);
2765
2766       unsigned BeginIndex = getIndex(NewBeginOffset);
2767       unsigned EndIndex = getIndex(NewEndOffset);
2768       assert(EndIndex > BeginIndex && "Empty vector!");
2769       unsigned NumElements = EndIndex - BeginIndex;
2770       assert(NumElements <= VecTy->getNumElements() && "Too many elements!");
2771
2772       Value *Splat =
2773           getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ElementTy) / 8);
2774       Splat = convertValue(DL, IRB, Splat, ElementTy);
2775       if (NumElements > 1)
2776         Splat = getVectorSplat(Splat, NumElements);
2777
2778       Value *Old =
2779           IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload");
2780       V = insertVector(IRB, Old, Splat, BeginIndex, "vec");
2781     } else if (IntTy) {
2782       // If this is a memset on an alloca where we can widen stores, insert the
2783       // set integer.
2784       assert(!II.isVolatile());
2785
2786       uint64_t Size = NewEndOffset - NewBeginOffset;
2787       V = getIntegerSplat(II.getValue(), Size);
2788
2789       if (IntTy && (BeginOffset != NewAllocaBeginOffset ||
2790                     EndOffset != NewAllocaBeginOffset)) {
2791         Value *Old =
2792             IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload");
2793         Old = convertValue(DL, IRB, Old, IntTy);
2794         uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2795         V = insertInteger(DL, IRB, Old, V, Offset, "insert");
2796       } else {
2797         assert(V->getType() == IntTy &&
2798                "Wrong type for an alloca wide integer!");
2799       }
2800       V = convertValue(DL, IRB, V, AllocaTy);
2801     } else {
2802       // Established these invariants above.
2803       assert(NewBeginOffset == NewAllocaBeginOffset);
2804       assert(NewEndOffset == NewAllocaEndOffset);
2805
2806       V = getIntegerSplat(II.getValue(), DL.getTypeSizeInBits(ScalarTy) / 8);
2807       if (VectorType *AllocaVecTy = dyn_cast<VectorType>(AllocaTy))
2808         V = getVectorSplat(V, AllocaVecTy->getNumElements());
2809
2810       V = convertValue(DL, IRB, V, AllocaTy);
2811     }
2812
2813     StoreInst *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(),
2814                                             II.isVolatile());
2815     if (AATags)
2816       New->setAAMetadata(AATags);
2817     LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
2818     return !II.isVolatile();
2819   }
2820
2821   bool visitMemTransferInst(MemTransferInst &II) {
2822     // Rewriting of memory transfer instructions can be a bit tricky. We break
2823     // them into two categories: split intrinsics and unsplit intrinsics.
2824
2825     LLVM_DEBUG(dbgs() << "    original: " << II << "\n");
2826
2827     AAMDNodes AATags;
2828     II.getAAMetadata(AATags);
2829
2830     bool IsDest = &II.getRawDestUse() == OldUse;
2831     assert((IsDest && II.getRawDest() == OldPtr) ||
2832            (!IsDest && II.getRawSource() == OldPtr));
2833
2834     unsigned SliceAlign = getSliceAlign();
2835
2836     // For unsplit intrinsics, we simply modify the source and destination
2837     // pointers in place. This isn't just an optimization, it is a matter of
2838     // correctness. With unsplit intrinsics we may be dealing with transfers
2839     // within a single alloca before SROA ran, or with transfers that have
2840     // a variable length. We may also be dealing with memmove instead of
2841     // memcpy, and so simply updating the pointers is the necessary for us to
2842     // update both source and dest of a single call.
2843     if (!IsSplittable) {
2844       Value *AdjustedPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
2845       if (IsDest) {
2846         II.setDest(AdjustedPtr);
2847         II.setDestAlignment(SliceAlign);
2848       }
2849       else {
2850         II.setSource(AdjustedPtr);
2851         II.setSourceAlignment(SliceAlign);
2852       }
2853
2854       LLVM_DEBUG(dbgs() << "          to: " << II << "\n");
2855       deleteIfTriviallyDead(OldPtr);
2856       return false;
2857     }
2858     // For split transfer intrinsics we have an incredibly useful assurance:
2859     // the source and destination do not reside within the same alloca, and at
2860     // least one of them does not escape. This means that we can replace
2861     // memmove with memcpy, and we don't need to worry about all manner of
2862     // downsides to splitting and transforming the operations.
2863
2864     // If this doesn't map cleanly onto the alloca type, and that type isn't
2865     // a single value type, just emit a memcpy.
2866     bool EmitMemCpy =
2867         !VecTy && !IntTy &&
2868         (BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset ||
2869          SliceSize != DL.getTypeStoreSize(NewAI.getAllocatedType()) ||
2870          !NewAI.getAllocatedType()->isSingleValueType());
2871
2872     // If we're just going to emit a memcpy, the alloca hasn't changed, and the
2873     // size hasn't been shrunk based on analysis of the viable range, this is
2874     // a no-op.
2875     if (EmitMemCpy && &OldAI == &NewAI) {
2876       // Ensure the start lines up.
2877       assert(NewBeginOffset == BeginOffset);
2878
2879       // Rewrite the size as needed.
2880       if (NewEndOffset != EndOffset)
2881         II.setLength(ConstantInt::get(II.getLength()->getType(),
2882                                       NewEndOffset - NewBeginOffset));
2883       return false;
2884     }
2885     // Record this instruction for deletion.
2886     Pass.DeadInsts.insert(&II);
2887
2888     // Strip all inbounds GEPs and pointer casts to try to dig out any root
2889     // alloca that should be re-examined after rewriting this instruction.
2890     Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest();
2891     if (AllocaInst *AI =
2892             dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets())) {
2893       assert(AI != &OldAI && AI != &NewAI &&
2894              "Splittable transfers cannot reach the same alloca on both ends.");
2895       Pass.Worklist.insert(AI);
2896     }
2897
2898     Type *OtherPtrTy = OtherPtr->getType();
2899     unsigned OtherAS = OtherPtrTy->getPointerAddressSpace();
2900
2901     // Compute the relative offset for the other pointer within the transfer.
2902     unsigned IntPtrWidth = DL.getPointerSizeInBits(OtherAS);
2903     APInt OtherOffset(IntPtrWidth, NewBeginOffset - BeginOffset);
2904     unsigned OtherAlign =
2905       IsDest ? II.getSourceAlignment() : II.getDestAlignment();
2906     OtherAlign =  MinAlign(OtherAlign ? OtherAlign : 1,
2907                            OtherOffset.zextOrTrunc(64).getZExtValue());
2908
2909     if (EmitMemCpy) {
2910       // Compute the other pointer, folding as much as possible to produce
2911       // a single, simple GEP in most cases.
2912       OtherPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
2913                                 OtherPtr->getName() + ".");
2914
2915       Value *OurPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
2916       Type *SizeTy = II.getLength()->getType();
2917       Constant *Size = ConstantInt::get(SizeTy, NewEndOffset - NewBeginOffset);
2918
2919       Value *DestPtr, *SrcPtr;
2920       unsigned DestAlign, SrcAlign;
2921       // Note: IsDest is true iff we're copying into the new alloca slice
2922       if (IsDest) {
2923         DestPtr = OurPtr;
2924         DestAlign = SliceAlign;
2925         SrcPtr = OtherPtr;
2926         SrcAlign = OtherAlign;
2927       } else {
2928         DestPtr = OtherPtr;
2929         DestAlign = OtherAlign;
2930         SrcPtr = OurPtr;
2931         SrcAlign = SliceAlign;
2932       }
2933       CallInst *New = IRB.CreateMemCpy(DestPtr, DestAlign, SrcPtr, SrcAlign,
2934                                        Size, II.isVolatile());
2935       if (AATags)
2936         New->setAAMetadata(AATags);
2937       LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
2938       return false;
2939     }
2940
2941     bool IsWholeAlloca = NewBeginOffset == NewAllocaBeginOffset &&
2942                          NewEndOffset == NewAllocaEndOffset;
2943     uint64_t Size = NewEndOffset - NewBeginOffset;
2944     unsigned BeginIndex = VecTy ? getIndex(NewBeginOffset) : 0;
2945     unsigned EndIndex = VecTy ? getIndex(NewEndOffset) : 0;
2946     unsigned NumElements = EndIndex - BeginIndex;
2947     IntegerType *SubIntTy =
2948         IntTy ? Type::getIntNTy(IntTy->getContext(), Size * 8) : nullptr;
2949
2950     // Reset the other pointer type to match the register type we're going to
2951     // use, but using the address space of the original other pointer.
2952     if (VecTy && !IsWholeAlloca) {
2953       if (NumElements == 1)
2954         OtherPtrTy = VecTy->getElementType();
2955       else
2956         OtherPtrTy = VectorType::get(VecTy->getElementType(), NumElements);
2957
2958       OtherPtrTy = OtherPtrTy->getPointerTo(OtherAS);
2959     } else if (IntTy && !IsWholeAlloca) {
2960       OtherPtrTy = SubIntTy->getPointerTo(OtherAS);
2961     } else {
2962       OtherPtrTy = NewAllocaTy->getPointerTo(OtherAS);
2963     }
2964
2965     Value *SrcPtr = getAdjustedPtr(IRB, DL, OtherPtr, OtherOffset, OtherPtrTy,
2966                                    OtherPtr->getName() + ".");
2967     unsigned SrcAlign = OtherAlign;
2968     Value *DstPtr = &NewAI;
2969     unsigned DstAlign = SliceAlign;
2970     if (!IsDest) {
2971       std::swap(SrcPtr, DstPtr);
2972       std::swap(SrcAlign, DstAlign);
2973     }
2974
2975     Value *Src;
2976     if (VecTy && !IsWholeAlloca && !IsDest) {
2977       Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load");
2978       Src = extractVector(IRB, Src, BeginIndex, EndIndex, "vec");
2979     } else if (IntTy && !IsWholeAlloca && !IsDest) {
2980       Src = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "load");
2981       Src = convertValue(DL, IRB, Src, IntTy);
2982       uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
2983       Src = extractInteger(DL, IRB, Src, SubIntTy, Offset, "extract");
2984     } else {
2985       LoadInst *Load = IRB.CreateAlignedLoad(SrcPtr, SrcAlign, II.isVolatile(),
2986                                              "copyload");
2987       if (AATags)
2988         Load->setAAMetadata(AATags);
2989       Src = Load;
2990     }
2991
2992     if (VecTy && !IsWholeAlloca && IsDest) {
2993       Value *Old =
2994           IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload");
2995       Src = insertVector(IRB, Old, Src, BeginIndex, "vec");
2996     } else if (IntTy && !IsWholeAlloca && IsDest) {
2997       Value *Old =
2998           IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), "oldload");
2999       Old = convertValue(DL, IRB, Old, IntTy);
3000       uint64_t Offset = NewBeginOffset - NewAllocaBeginOffset;
3001       Src = insertInteger(DL, IRB, Old, Src, Offset, "insert");
3002       Src = convertValue(DL, IRB, Src, NewAllocaTy);
3003     }
3004
3005     StoreInst *Store = cast<StoreInst>(
3006         IRB.CreateAlignedStore(Src, DstPtr, DstAlign, II.isVolatile()));
3007     if (AATags)
3008       Store->setAAMetadata(AATags);
3009     LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
3010     return !II.isVolatile();
3011   }
3012
3013   bool visitIntrinsicInst(IntrinsicInst &II) {
3014     assert(II.getIntrinsicID() == Intrinsic::lifetime_start ||
3015            II.getIntrinsicID() == Intrinsic::lifetime_end);
3016     LLVM_DEBUG(dbgs() << "    original: " << II << "\n");
3017     assert(II.getArgOperand(1) == OldPtr);
3018
3019     // Record this instruction for deletion.
3020     Pass.DeadInsts.insert(&II);
3021
3022     // Lifetime intrinsics are only promotable if they cover the whole alloca.
3023     // Therefore, we drop lifetime intrinsics which don't cover the whole
3024     // alloca.
3025     // (In theory, intrinsics which partially cover an alloca could be
3026     // promoted, but PromoteMemToReg doesn't handle that case.)
3027     // FIXME: Check whether the alloca is promotable before dropping the
3028     // lifetime intrinsics?
3029     if (NewBeginOffset != NewAllocaBeginOffset ||
3030         NewEndOffset != NewAllocaEndOffset)
3031       return true;
3032
3033     ConstantInt *Size =
3034         ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()),
3035                          NewEndOffset - NewBeginOffset);
3036     Value *Ptr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
3037     Value *New;
3038     if (II.getIntrinsicID() == Intrinsic::lifetime_start)
3039       New = IRB.CreateLifetimeStart(Ptr, Size);
3040     else
3041       New = IRB.CreateLifetimeEnd(Ptr, Size);
3042
3043     (void)New;
3044     LLVM_DEBUG(dbgs() << "          to: " << *New << "\n");
3045
3046     return true;
3047   }
3048
3049   void fixLoadStoreAlign(Instruction &Root) {
3050     // This algorithm implements the same visitor loop as
3051     // hasUnsafePHIOrSelectUse, and fixes the alignment of each load
3052     // or store found.
3053     SmallPtrSet<Instruction *, 4> Visited;
3054     SmallVector<Instruction *, 4> Uses;
3055     Visited.insert(&Root);
3056     Uses.push_back(&Root);
3057     do {
3058       Instruction *I = Uses.pop_back_val();
3059
3060       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
3061         unsigned LoadAlign = LI->getAlignment();
3062         if (!LoadAlign)
3063           LoadAlign = DL.getABITypeAlignment(LI->getType());
3064         LI->setAlignment(std::min(LoadAlign, getSliceAlign()));
3065         continue;
3066       }
3067       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
3068         unsigned StoreAlign = SI->getAlignment();
3069         if (!StoreAlign) {
3070           Value *Op = SI->getOperand(0);
3071           StoreAlign = DL.getABITypeAlignment(Op->getType());
3072         }
3073         SI->setAlignment(std::min(StoreAlign, getSliceAlign()));
3074         continue;
3075       }
3076
3077       assert(isa<BitCastInst>(I) || isa<PHINode>(I) ||
3078              isa<SelectInst>(I) || isa<GetElementPtrInst>(I));
3079       for (User *U : I->users())
3080         if (Visited.insert(cast<Instruction>(U)).second)
3081           Uses.push_back(cast<Instruction>(U));
3082     } while (!Uses.empty());
3083   }
3084
3085   bool visitPHINode(PHINode &PN) {
3086     LLVM_DEBUG(dbgs() << "    original: " << PN << "\n");
3087     assert(BeginOffset >= NewAllocaBeginOffset && "PHIs are unsplittable");
3088     assert(EndOffset <= NewAllocaEndOffset && "PHIs are unsplittable");
3089
3090     // We would like to compute a new pointer in only one place, but have it be
3091     // as local as possible to the PHI. To do that, we re-use the location of
3092     // the old pointer, which necessarily must be in the right position to
3093     // dominate the PHI.
3094     IRBuilderTy PtrBuilder(IRB);
3095     if (isa<PHINode>(OldPtr))
3096       PtrBuilder.SetInsertPoint(&*OldPtr->getParent()->getFirstInsertionPt());
3097     else
3098       PtrBuilder.SetInsertPoint(OldPtr);
3099     PtrBuilder.SetCurrentDebugLocation(OldPtr->getDebugLoc());
3100
3101     Value *NewPtr = getNewAllocaSlicePtr(PtrBuilder, OldPtr->getType());
3102     // Replace the operands which were using the old pointer.
3103     std::replace(PN.op_begin(), PN.op_end(), cast<Value>(OldPtr), NewPtr);
3104
3105     LLVM_DEBUG(dbgs() << "          to: " << PN << "\n");
3106     deleteIfTriviallyDead(OldPtr);
3107
3108     // Fix the alignment of any loads or stores using this PHI node.
3109     fixLoadStoreAlign(PN);
3110
3111     // PHIs can't be promoted on their own, but often can be speculated. We
3112     // check the speculation outside of the rewriter so that we see the
3113     // fully-rewritten alloca.
3114     PHIUsers.insert(&PN);
3115     return true;
3116   }
3117
3118   bool visitSelectInst(SelectInst &SI) {
3119     LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
3120     assert((SI.getTrueValue() == OldPtr || SI.getFalseValue() == OldPtr) &&
3121            "Pointer isn't an operand!");
3122     assert(BeginOffset >= NewAllocaBeginOffset && "Selects are unsplittable");
3123     assert(EndOffset <= NewAllocaEndOffset && "Selects are unsplittable");
3124
3125     Value *NewPtr = getNewAllocaSlicePtr(IRB, OldPtr->getType());
3126     // Replace the operands which were using the old pointer.
3127     if (SI.getOperand(1) == OldPtr)
3128       SI.setOperand(1, NewPtr);
3129     if (SI.getOperand(2) == OldPtr)
3130       SI.setOperand(2, NewPtr);
3131
3132     LLVM_DEBUG(dbgs() << "          to: " << SI << "\n");
3133     deleteIfTriviallyDead(OldPtr);
3134
3135     // Fix the alignment of any loads or stores using this select.
3136     fixLoadStoreAlign(SI);
3137
3138     // Selects can't be promoted on their own, but often can be speculated. We
3139     // check the speculation outside of the rewriter so that we see the
3140     // fully-rewritten alloca.
3141     SelectUsers.insert(&SI);
3142     return true;
3143   }
3144 };
3145
3146 namespace {
3147
3148 /// Visitor to rewrite aggregate loads and stores as scalar.
3149 ///
3150 /// This pass aggressively rewrites all aggregate loads and stores on
3151 /// a particular pointer (or any pointer derived from it which we can identify)
3152 /// with scalar loads and stores.
3153 class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> {
3154   // Befriend the base class so it can delegate to private visit methods.
3155   friend class InstVisitor<AggLoadStoreRewriter, bool>;
3156
3157   /// Queue of pointer uses to analyze and potentially rewrite.
3158   SmallVector<Use *, 8> Queue;
3159
3160   /// Set to prevent us from cycling with phi nodes and loops.
3161   SmallPtrSet<User *, 8> Visited;
3162
3163   /// The current pointer use being rewritten. This is used to dig up the used
3164   /// value (as opposed to the user).
3165   Use *U;
3166
3167 public:
3168   /// Rewrite loads and stores through a pointer and all pointers derived from
3169   /// it.
3170   bool rewrite(Instruction &I) {
3171     LLVM_DEBUG(dbgs() << "  Rewriting FCA loads and stores...\n");
3172     enqueueUsers(I);
3173     bool Changed = false;
3174     while (!Queue.empty()) {
3175       U = Queue.pop_back_val();
3176       Changed |= visit(cast<Instruction>(U->getUser()));
3177     }
3178     return Changed;
3179   }
3180
3181 private:
3182   /// Enqueue all the users of the given instruction for further processing.
3183   /// This uses a set to de-duplicate users.
3184   void enqueueUsers(Instruction &I) {
3185     for (Use &U : I.uses())
3186       if (Visited.insert(U.getUser()).second)
3187         Queue.push_back(&U);
3188   }
3189
3190   // Conservative default is to not rewrite anything.
3191   bool visitInstruction(Instruction &I) { return false; }
3192
3193   /// Generic recursive split emission class.
3194   template <typename Derived> class OpSplitter {
3195   protected:
3196     /// The builder used to form new instructions.
3197     IRBuilderTy IRB;
3198
3199     /// The indices which to be used with insert- or extractvalue to select the
3200     /// appropriate value within the aggregate.
3201     SmallVector<unsigned, 4> Indices;
3202
3203     /// The indices to a GEP instruction which will move Ptr to the correct slot
3204     /// within the aggregate.
3205     SmallVector<Value *, 4> GEPIndices;
3206
3207     /// The base pointer of the original op, used as a base for GEPing the
3208     /// split operations.
3209     Value *Ptr;
3210
3211     /// Initialize the splitter with an insertion point, Ptr and start with a
3212     /// single zero GEP index.
3213     OpSplitter(Instruction *InsertionPoint, Value *Ptr)
3214         : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr) {}
3215
3216   public:
3217     /// Generic recursive split emission routine.
3218     ///
3219     /// This method recursively splits an aggregate op (load or store) into
3220     /// scalar or vector ops. It splits recursively until it hits a single value
3221     /// and emits that single value operation via the template argument.
3222     ///
3223     /// The logic of this routine relies on GEPs and insertvalue and
3224     /// extractvalue all operating with the same fundamental index list, merely
3225     /// formatted differently (GEPs need actual values).
3226     ///
3227     /// \param Ty  The type being split recursively into smaller ops.
3228     /// \param Agg The aggregate value being built up or stored, depending on
3229     /// whether this is splitting a load or a store respectively.
3230     void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) {
3231       if (Ty->isSingleValueType())
3232         return static_cast<Derived *>(this)->emitFunc(Ty, Agg, Name);
3233
3234       if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
3235         unsigned OldSize = Indices.size();
3236         (void)OldSize;
3237         for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size;
3238              ++Idx) {
3239           assert(Indices.size() == OldSize && "Did not return to the old size");
3240           Indices.push_back(Idx);
3241           GEPIndices.push_back(IRB.getInt32(Idx));
3242           emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx));
3243           GEPIndices.pop_back();
3244           Indices.pop_back();
3245         }
3246         return;
3247       }
3248
3249       if (StructType *STy = dyn_cast<StructType>(Ty)) {
3250         unsigned OldSize = Indices.size();
3251         (void)OldSize;
3252         for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size;
3253              ++Idx) {
3254           assert(Indices.size() == OldSize && "Did not return to the old size");
3255           Indices.push_back(Idx);
3256           GEPIndices.push_back(IRB.getInt32(Idx));
3257           emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx));
3258           GEPIndices.pop_back();
3259           Indices.pop_back();
3260         }
3261         return;
3262       }
3263
3264       llvm_unreachable("Only arrays and structs are aggregate loadable types");
3265     }
3266   };
3267
3268   struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> {
3269     AAMDNodes AATags;
3270
3271     LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr, AAMDNodes AATags)
3272         : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr), AATags(AATags) {}
3273
3274     /// Emit a leaf load of a single value. This is called at the leaves of the
3275     /// recursive emission to actually load values.
3276     void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
3277       assert(Ty->isSingleValueType());
3278       // Load the single value and insert it using the indices.
3279       Value *GEP =
3280           IRB.CreateInBoundsGEP(nullptr, Ptr, GEPIndices, Name + ".gep");
3281       LoadInst *Load = IRB.CreateLoad(GEP, Name + ".load");
3282       if (AATags)
3283         Load->setAAMetadata(AATags);
3284       Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert");
3285       LLVM_DEBUG(dbgs() << "          to: " << *Load << "\n");
3286     }
3287   };
3288
3289   bool visitLoadInst(LoadInst &LI) {
3290     assert(LI.getPointerOperand() == *U);
3291     if (!LI.isSimple() || LI.getType()->isSingleValueType())
3292       return false;
3293
3294     // We have an aggregate being loaded, split it apart.
3295     LLVM_DEBUG(dbgs() << "    original: " << LI << "\n");
3296     AAMDNodes AATags;
3297     LI.getAAMetadata(AATags);
3298     LoadOpSplitter Splitter(&LI, *U, AATags);
3299     Value *V = UndefValue::get(LI.getType());
3300     Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca");
3301     LI.replaceAllUsesWith(V);
3302     LI.eraseFromParent();
3303     return true;
3304   }
3305
3306   struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> {
3307     StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr, AAMDNodes AATags)
3308         : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr), AATags(AATags) {}
3309     AAMDNodes AATags;
3310
3311     /// Emit a leaf store of a single value. This is called at the leaves of the
3312     /// recursive emission to actually produce stores.
3313     void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) {
3314       assert(Ty->isSingleValueType());
3315       // Extract the single value and store it using the indices.
3316       //
3317       // The gep and extractvalue values are factored out of the CreateStore
3318       // call to make the output independent of the argument evaluation order.
3319       Value *ExtractValue =
3320           IRB.CreateExtractValue(Agg, Indices, Name + ".extract");
3321       Value *InBoundsGEP =
3322           IRB.CreateInBoundsGEP(nullptr, Ptr, GEPIndices, Name + ".gep");
3323       StoreInst *Store = IRB.CreateStore(ExtractValue, InBoundsGEP);
3324       if (AATags)
3325         Store->setAAMetadata(AATags);
3326       LLVM_DEBUG(dbgs() << "          to: " << *Store << "\n");
3327     }
3328   };
3329
3330   bool visitStoreInst(StoreInst &SI) {
3331     if (!SI.isSimple() || SI.getPointerOperand() != *U)
3332       return false;
3333     Value *V = SI.getValueOperand();
3334     if (V->getType()->isSingleValueType())
3335       return false;
3336
3337     // We have an aggregate being stored, split it apart.
3338     LLVM_DEBUG(dbgs() << "    original: " << SI << "\n");
3339     AAMDNodes AATags;
3340     SI.getAAMetadata(AATags);
3341     StoreOpSplitter Splitter(&SI, *U, AATags);
3342     Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca");
3343     SI.eraseFromParent();
3344     return true;
3345   }
3346
3347   bool visitBitCastInst(BitCastInst &BC) {
3348     enqueueUsers(BC);
3349     return false;
3350   }
3351
3352   bool visitGetElementPtrInst(GetElementPtrInst &GEPI) {
3353     enqueueUsers(GEPI);
3354     return false;
3355   }
3356
3357   bool visitPHINode(PHINode &PN) {
3358     enqueueUsers(PN);
3359     return false;
3360   }
3361
3362   bool visitSelectInst(SelectInst &SI) {
3363     enqueueUsers(SI);
3364     return false;
3365   }
3366 };
3367
3368 } // end anonymous namespace
3369
3370 /// Strip aggregate type wrapping.
3371 ///
3372 /// This removes no-op aggregate types wrapping an underlying type. It will
3373 /// strip as many layers of types as it can without changing either the type
3374 /// size or the allocated size.
3375 static Type *stripAggregateTypeWrapping(const DataLayout &DL, Type *Ty) {
3376   if (Ty->isSingleValueType())
3377     return Ty;
3378
3379   uint64_t AllocSize = DL.getTypeAllocSize(Ty);
3380   uint64_t TypeSize = DL.getTypeSizeInBits(Ty);
3381
3382   Type *InnerTy;
3383   if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) {
3384     InnerTy = ArrTy->getElementType();
3385   } else if (StructType *STy = dyn_cast<StructType>(Ty)) {
3386     const StructLayout *SL = DL.getStructLayout(STy);
3387     unsigned Index = SL->getElementContainingOffset(0);
3388     InnerTy = STy->getElementType(Index);
3389   } else {
3390     return Ty;
3391   }
3392
3393   if (AllocSize > DL.getTypeAllocSize(InnerTy) ||
3394       TypeSize > DL.getTypeSizeInBits(InnerTy))
3395     return Ty;
3396
3397   return stripAggregateTypeWrapping(DL, InnerTy);
3398 }
3399
3400 /// Try to find a partition of the aggregate type passed in for a given
3401 /// offset and size.
3402 ///
3403 /// This recurses through the aggregate type and tries to compute a subtype
3404 /// based on the offset and size. When the offset and size span a sub-section
3405 /// of an array, it will even compute a new array type for that sub-section,
3406 /// and the same for structs.
3407 ///
3408 /// Note that this routine is very strict and tries to find a partition of the
3409 /// type which produces the *exact* right offset and size. It is not forgiving
3410 /// when the size or offset cause either end of type-based partition to be off.
3411 /// Also, this is a best-effort routine. It is reasonable to give up and not
3412 /// return a type if necessary.
3413 static Type *getTypePartition(const DataLayout &DL, Type *Ty, uint64_t Offset,
3414                               uint64_t Size) {
3415   if (Offset == 0 && DL.getTypeAllocSize(Ty) == Size)
3416     return stripAggregateTypeWrapping(DL, Ty);
3417   if (Offset > DL.getTypeAllocSize(Ty) ||
3418       (DL.getTypeAllocSize(Ty) - Offset) < Size)
3419     return nullptr;
3420
3421   if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) {
3422     Type *ElementTy = SeqTy->getElementType();
3423     uint64_t ElementSize = DL.getTypeAllocSize(ElementTy);
3424     uint64_t NumSkippedElements = Offset / ElementSize;
3425     if (NumSkippedElements >= SeqTy->getNumElements())
3426       return nullptr;
3427     Offset -= NumSkippedElements * ElementSize;
3428
3429     // First check if we need to recurse.
3430     if (Offset > 0 || Size < ElementSize) {
3431       // Bail if the partition ends in a different array element.
3432       if ((Offset + Size) > ElementSize)
3433         return nullptr;
3434       // Recurse through the element type trying to peel off offset bytes.
3435       return getTypePartition(DL, ElementTy, Offset, Size);
3436     }
3437     assert(Offset == 0);
3438
3439     if (Size == ElementSize)
3440       return stripAggregateTypeWrapping(DL, ElementTy);
3441     assert(Size > ElementSize);
3442     uint64_t NumElements = Size / ElementSize;
3443     if (NumElements * ElementSize != Size)
3444       return nullptr;
3445     return ArrayType::get(ElementTy, NumElements);
3446   }
3447
3448   StructType *STy = dyn_cast<StructType>(Ty);
3449   if (!STy)
3450     return nullptr;
3451
3452   const StructLayout *SL = DL.getStructLayout(STy);
3453   if (Offset >= SL->getSizeInBytes())
3454     return nullptr;
3455   uint64_t EndOffset = Offset + Size;
3456   if (EndOffset > SL->getSizeInBytes())
3457     return nullptr;
3458
3459   unsigned Index = SL->getElementContainingOffset(Offset);
3460   Offset -= SL->getElementOffset(Index);
3461
3462   Type *ElementTy = STy->getElementType(Index);
3463   uint64_t ElementSize = DL.getTypeAllocSize(ElementTy);
3464   if (Offset >= ElementSize)
3465     return nullptr; // The offset points into alignment padding.
3466
3467   // See if any partition must be contained by the element.
3468   if (Offset > 0 || Size < ElementSize) {
3469     if ((Offset + Size) > ElementSize)
3470       return nullptr;
3471     return getTypePartition(DL, ElementTy, Offset, Size);
3472   }
3473   assert(Offset == 0);
3474
3475   if (Size == ElementSize)
3476     return stripAggregateTypeWrapping(DL, ElementTy);
3477
3478   StructType::element_iterator EI = STy->element_begin() + Index,
3479                                EE = STy->element_end();
3480   if (EndOffset < SL->getSizeInBytes()) {
3481     unsigned EndIndex = SL->getElementContainingOffset(EndOffset);
3482     if (Index == EndIndex)
3483       return nullptr; // Within a single element and its padding.
3484
3485     // Don't try to form "natural" types if the elements don't line up with the
3486     // expected size.
3487     // FIXME: We could potentially recurse down through the last element in the
3488     // sub-struct to find a natural end point.
3489     if (SL->getElementOffset(EndIndex) != EndOffset)
3490       return nullptr;
3491
3492     assert(Index < EndIndex);
3493     EE = STy->element_begin() + EndIndex;
3494   }
3495
3496   // Try to build up a sub-structure.
3497   StructType *SubTy =
3498       StructType::get(STy->getContext(), makeArrayRef(EI, EE), STy->isPacked());
3499   const StructLayout *SubSL = DL.getStructLayout(SubTy);
3500   if (Size != SubSL->getSizeInBytes())
3501     return nullptr; // The sub-struct doesn't have quite the size needed.
3502
3503   return SubTy;
3504 }
3505
3506 /// Pre-split loads and stores to simplify rewriting.
3507 ///
3508 /// We want to break up the splittable load+store pairs as much as
3509 /// possible. This is important to do as a preprocessing step, as once we
3510 /// start rewriting the accesses to partitions of the alloca we lose the
3511 /// necessary information to correctly split apart paired loads and stores
3512 /// which both point into this alloca. The case to consider is something like
3513 /// the following:
3514 ///
3515 ///   %a = alloca [12 x i8]
3516 ///   %gep1 = getelementptr [12 x i8]* %a, i32 0, i32 0
3517 ///   %gep2 = getelementptr [12 x i8]* %a, i32 0, i32 4
3518 ///   %gep3 = getelementptr [12 x i8]* %a, i32 0, i32 8
3519 ///   %iptr1 = bitcast i8* %gep1 to i64*
3520 ///   %iptr2 = bitcast i8* %gep2 to i64*
3521 ///   %fptr1 = bitcast i8* %gep1 to float*
3522 ///   %fptr2 = bitcast i8* %gep2 to float*
3523 ///   %fptr3 = bitcast i8* %gep3 to float*
3524 ///   store float 0.0, float* %fptr1
3525 ///   store float 1.0, float* %fptr2
3526 ///   %v = load i64* %iptr1
3527 ///   store i64 %v, i64* %iptr2
3528 ///   %f1 = load float* %fptr2
3529 ///   %f2 = load float* %fptr3
3530 ///
3531 /// Here we want to form 3 partitions of the alloca, each 4 bytes large, and
3532 /// promote everything so we recover the 2 SSA values that should have been
3533 /// there all along.
3534 ///
3535 /// \returns true if any changes are made.
3536 bool SROA::presplitLoadsAndStores(AllocaInst &AI, AllocaSlices &AS) {
3537   LLVM_DEBUG(dbgs() << "Pre-splitting loads and stores\n");
3538
3539   // Track the loads and stores which are candidates for pre-splitting here, in
3540   // the order they first appear during the partition scan. These give stable
3541   // iteration order and a basis for tracking which loads and stores we
3542   // actually split.
3543   SmallVector<LoadInst *, 4> Loads;
3544   SmallVector<StoreInst *, 4> Stores;
3545
3546   // We need to accumulate the splits required of each load or store where we
3547   // can find them via a direct lookup. This is important to cross-check loads
3548   // and stores against each other. We also track the slice so that we can kill
3549   // all the slices that end up split.
3550   struct SplitOffsets {
3551     Slice *S;
3552     std::vector<uint64_t> Splits;
3553   };
3554   SmallDenseMap<Instruction *, SplitOffsets, 8> SplitOffsetsMap;
3555
3556   // Track loads out of this alloca which cannot, for any reason, be pre-split.
3557   // This is important as we also cannot pre-split stores of those loads!
3558   // FIXME: This is all pretty gross. It means that we can be more aggressive
3559   // in pre-splitting when the load feeding the store happens to come from
3560   // a separate alloca. Put another way, the effectiveness of SROA would be
3561   // decreased by a frontend which just concatenated all of its local allocas
3562   // into one big flat alloca. But defeating such patterns is exactly the job
3563   // SROA is tasked with! Sadly, to not have this discrepancy we would have
3564   // change store pre-splitting to actually force pre-splitting of the load
3565   // that feeds it *and all stores*. That makes pre-splitting much harder, but
3566   // maybe it would make it more principled?
3567   SmallPtrSet<LoadInst *, 8> UnsplittableLoads;
3568
3569   LLVM_DEBUG(dbgs() << "  Searching for candidate loads and stores\n");
3570   for (auto &P : AS.partitions()) {
3571     for (Slice &S : P) {
3572       Instruction *I = cast<Instruction>(S.getUse()->getUser());
3573       if (!S.isSplittable() || S.endOffset() <= P.endOffset()) {
3574         // If this is a load we have to track that it can't participate in any
3575         // pre-splitting. If this is a store of a load we have to track that
3576         // that load also can't participate in any pre-splitting.
3577         if (auto *LI = dyn_cast<LoadInst>(I))
3578           UnsplittableLoads.insert(LI);
3579         else if (auto *SI = dyn_cast<StoreInst>(I))
3580           if (auto *LI = dyn_cast<LoadInst>(SI->getValueOperand()))
3581             UnsplittableLoads.insert(LI);
3582         continue;
3583       }
3584       assert(P.endOffset() > S.beginOffset() &&
3585              "Empty or backwards partition!");
3586
3587       // Determine if this is a pre-splittable slice.
3588       if (auto *LI = dyn_cast<LoadInst>(I)) {
3589         assert(!LI->isVolatile() && "Cannot split volatile loads!");
3590
3591         // The load must be used exclusively to store into other pointers for
3592         // us to be able to arbitrarily pre-split it. The stores must also be
3593         // simple to avoid changing semantics.
3594         auto IsLoadSimplyStored = [](LoadInst *LI) {
3595           for (User *LU : LI->users()) {
3596             auto *SI = dyn_cast<StoreInst>(LU);
3597             if (!SI || !SI->isSimple())
3598               return false;
3599           }
3600           return true;
3601         };
3602         if (!IsLoadSimplyStored(LI)) {
3603           UnsplittableLoads.insert(LI);
3604           continue;
3605         }
3606
3607         Loads.push_back(LI);
3608       } else if (auto *SI = dyn_cast<StoreInst>(I)) {
3609         if (S.getUse() != &SI->getOperandUse(SI->getPointerOperandIndex()))
3610           // Skip stores *of* pointers. FIXME: This shouldn't even be possible!
3611           continue;
3612         auto *StoredLoad = dyn_cast<LoadInst>(SI->getValueOperand());
3613         if (!StoredLoad || !StoredLoad->isSimple())
3614           continue;
3615         assert(!SI->isVolatile() && "Cannot split volatile stores!");
3616
3617         Stores.push_back(SI);
3618       } else {
3619         // Other uses cannot be pre-split.
3620         continue;
3621       }
3622
3623       // Record the initial split.
3624       LLVM_DEBUG(dbgs() << "    Candidate: " << *I << "\n");
3625       auto &Offsets = SplitOffsetsMap[I];
3626       assert(Offsets.Splits.empty() &&
3627              "Should not have splits the first time we see an instruction!");
3628       Offsets.S = &S;
3629       Offsets.Splits.push_back(P.endOffset() - S.beginOffset());
3630     }
3631
3632     // Now scan the already split slices, and add a split for any of them which
3633     // we're going to pre-split.
3634     for (Slice *S : P.splitSliceTails()) {
3635       auto SplitOffsetsMapI =
3636           SplitOffsetsMap.find(cast<Instruction>(S->getUse()->getUser()));
3637       if (SplitOffsetsMapI == SplitOffsetsMap.end())
3638         continue;
3639       auto &Offsets = SplitOffsetsMapI->second;
3640
3641       assert(Offsets.S == S && "Found a mismatched slice!");
3642       assert(!Offsets.Splits.empty() &&
3643              "Cannot have an empty set of splits on the second partition!");
3644       assert(Offsets.Splits.back() ==
3645                  P.beginOffset() - Offsets.S->beginOffset() &&
3646              "Previous split does not end where this one begins!");
3647
3648       // Record each split. The last partition's end isn't needed as the size
3649       // of the slice dictates that.
3650       if (S->endOffset() > P.endOffset())
3651         Offsets.Splits.push_back(P.endOffset() - Offsets.S->beginOffset());
3652     }
3653   }
3654
3655   // We may have split loads where some of their stores are split stores. For
3656   // such loads and stores, we can only pre-split them if their splits exactly
3657   // match relative to their starting offset. We have to verify this prior to
3658   // any rewriting.
3659   Stores.erase(
3660       llvm::remove_if(Stores,
3661                       [&UnsplittableLoads, &SplitOffsetsMap](StoreInst *SI) {
3662                         // Lookup the load we are storing in our map of split
3663                         // offsets.
3664                         auto *LI = cast<LoadInst>(SI->getValueOperand());
3665                         // If it was completely unsplittable, then we're done,
3666                         // and this store can't be pre-split.
3667                         if (UnsplittableLoads.count(LI))
3668                           return true;
3669
3670                         auto LoadOffsetsI = SplitOffsetsMap.find(LI);
3671                         if (LoadOffsetsI == SplitOffsetsMap.end())
3672                           return false; // Unrelated loads are definitely safe.
3673                         auto &LoadOffsets = LoadOffsetsI->second;
3674
3675                         // Now lookup the store's offsets.
3676                         auto &StoreOffsets = SplitOffsetsMap[SI];
3677
3678                         // If the relative offsets of each split in the load and
3679                         // store match exactly, then we can split them and we
3680                         // don't need to remove them here.
3681                         if (LoadOffsets.Splits == StoreOffsets.Splits)
3682                           return false;
3683
3684                         LLVM_DEBUG(
3685                             dbgs()
3686                             << "    Mismatched splits for load and store:\n"
3687                             << "      " << *LI << "\n"
3688                             << "      " << *SI << "\n");
3689
3690                         // We've found a store and load that we need to split
3691                         // with mismatched relative splits. Just give up on them
3692                         // and remove both instructions from our list of
3693                         // candidates.
3694                         UnsplittableLoads.insert(LI);
3695                         return true;
3696                       }),
3697       Stores.end());
3698   // Now we have to go *back* through all the stores, because a later store may
3699   // have caused an earlier store's load to become unsplittable and if it is
3700   // unsplittable for the later store, then we can't rely on it being split in
3701   // the earlier store either.
3702   Stores.erase(llvm::remove_if(Stores,
3703                                [&UnsplittableLoads](StoreInst *SI) {
3704                                  auto *LI =
3705                                      cast<LoadInst>(SI->getValueOperand());
3706                                  return UnsplittableLoads.count(LI);
3707                                }),
3708                Stores.end());
3709   // Once we've established all the loads that can't be split for some reason,
3710   // filter any that made it into our list out.
3711   Loads.erase(llvm::remove_if(Loads,
3712                               [&UnsplittableLoads](LoadInst *LI) {
3713                                 return UnsplittableLoads.count(LI);
3714                               }),
3715               Loads.end());
3716
3717   // If no loads or stores are left, there is no pre-splitting to be done for
3718   // this alloca.
3719   if (Loads.empty() && Stores.empty())
3720     return false;
3721
3722   // From here on, we can't fail and will be building new accesses, so rig up
3723   // an IR builder.
3724   IRBuilderTy IRB(&AI);
3725
3726   // Collect the new slices which we will merge into the alloca slices.
3727   SmallVector<Slice, 4> NewSlices;
3728
3729   // Track any allocas we end up splitting loads and stores for so we iterate
3730   // on them.
3731   SmallPtrSet<AllocaInst *, 4> ResplitPromotableAllocas;
3732
3733   // At this point, we have collected all of the loads and stores we can
3734   // pre-split, and the specific splits needed for them. We actually do the
3735   // splitting in a specific order in order to handle when one of the loads in
3736   // the value operand to one of the stores.
3737   //
3738   // First, we rewrite all of the split loads, and just accumulate each split
3739   // load in a parallel structure. We also build the slices for them and append
3740   // them to the alloca slices.
3741   SmallDenseMap<LoadInst *, std::vector<LoadInst *>, 1> SplitLoadsMap;
3742   std::vector<LoadInst *> SplitLoads;
3743   const DataLayout &DL = AI.getModule()->getDataLayout();
3744   for (LoadInst *LI : Loads) {
3745     SplitLoads.clear();
3746
3747     IntegerType *Ty = cast<IntegerType>(LI->getType());
3748     uint64_t LoadSize = Ty->getBitWidth() / 8;
3749     assert(LoadSize > 0 && "Cannot have a zero-sized integer load!");
3750
3751     auto &Offsets = SplitOffsetsMap[LI];
3752     assert(LoadSize == Offsets.S->endOffset() - Offsets.S->beginOffset() &&
3753            "Slice size should always match load size exactly!");
3754     uint64_t BaseOffset = Offsets.S->beginOffset();
3755     assert(BaseOffset + LoadSize > BaseOffset &&
3756            "Cannot represent alloca access size using 64-bit integers!");
3757
3758     Instruction *BasePtr = cast<Instruction>(LI->getPointerOperand());
3759     IRB.SetInsertPoint(LI);
3760
3761     LLVM_DEBUG(dbgs() << "  Splitting load: " << *LI << "\n");
3762
3763     uint64_t PartOffset = 0, PartSize = Offsets.Splits.front();
3764     int Idx = 0, Size = Offsets.Splits.size();
3765     for (;;) {
3766       auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8);
3767       auto AS = LI->getPointerAddressSpace();
3768       auto *PartPtrTy = PartTy->getPointerTo(AS);
3769       LoadInst *PLoad = IRB.CreateAlignedLoad(
3770           getAdjustedPtr(IRB, DL, BasePtr,
3771                          APInt(DL.getIndexSizeInBits(AS), PartOffset),
3772                          PartPtrTy, BasePtr->getName() + "."),
3773           getAdjustedAlignment(LI, PartOffset, DL), /*IsVolatile*/ false,
3774           LI->getName());
3775       PLoad->copyMetadata(*LI, LLVMContext::MD_mem_parallel_loop_access);
3776
3777       // Append this load onto the list of split loads so we can find it later
3778       // to rewrite the stores.
3779       SplitLoads.push_back(PLoad);
3780
3781       // Now build a new slice for the alloca.
3782       NewSlices.push_back(
3783           Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize,
3784                 &PLoad->getOperandUse(PLoad->getPointerOperandIndex()),
3785                 /*IsSplittable*/ false));
3786       LLVM_DEBUG(dbgs() << "    new slice [" << NewSlices.back().beginOffset()
3787                         << ", " << NewSlices.back().endOffset()
3788                         << "): " << *PLoad << "\n");
3789
3790       // See if we've handled all the splits.
3791       if (Idx >= Size)
3792         break;
3793
3794       // Setup the next partition.
3795       PartOffset = Offsets.Splits[Idx];
3796       ++Idx;
3797       PartSize = (Idx < Size ? Offsets.Splits[Idx] : LoadSize) - PartOffset;
3798     }
3799
3800     // Now that we have the split loads, do the slow walk over all uses of the
3801     // load and rewrite them as split stores, or save the split loads to use
3802     // below if the store is going to be split there anyways.
3803     bool DeferredStores = false;
3804     for (User *LU : LI->users()) {
3805       StoreInst *SI = cast<StoreInst>(LU);
3806       if (!Stores.empty() && SplitOffsetsMap.count(SI)) {
3807         DeferredStores = true;
3808         LLVM_DEBUG(dbgs() << "    Deferred splitting of store: " << *SI
3809                           << "\n");
3810         continue;
3811       }
3812
3813       Value *StoreBasePtr = SI->getPointerOperand();
3814       IRB.SetInsertPoint(SI);
3815
3816       LLVM_DEBUG(dbgs() << "    Splitting store of load: " << *SI << "\n");
3817
3818       for (int Idx = 0, Size = SplitLoads.size(); Idx < Size; ++Idx) {
3819         LoadInst *PLoad = SplitLoads[Idx];
3820         uint64_t PartOffset = Idx == 0 ? 0 : Offsets.Splits[Idx - 1];
3821         auto *PartPtrTy =
3822             PLoad->getType()->getPointerTo(SI->getPointerAddressSpace());
3823
3824         auto AS = SI->getPointerAddressSpace();
3825         StoreInst *PStore = IRB.CreateAlignedStore(
3826             PLoad,
3827             getAdjustedPtr(IRB, DL, StoreBasePtr,
3828                            APInt(DL.getIndexSizeInBits(AS), PartOffset),
3829                            PartPtrTy, StoreBasePtr->getName() + "."),
3830             getAdjustedAlignment(SI, PartOffset, DL), /*IsVolatile*/ false);
3831         PStore->copyMetadata(*LI, LLVMContext::MD_mem_parallel_loop_access);
3832         LLVM_DEBUG(dbgs() << "      +" << PartOffset << ":" << *PStore << "\n");
3833       }
3834
3835       // We want to immediately iterate on any allocas impacted by splitting
3836       // this store, and we have to track any promotable alloca (indicated by
3837       // a direct store) as needing to be resplit because it is no longer
3838       // promotable.
3839       if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(StoreBasePtr)) {
3840         ResplitPromotableAllocas.insert(OtherAI);
3841         Worklist.insert(OtherAI);
3842       } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(
3843                      StoreBasePtr->stripInBoundsOffsets())) {
3844         Worklist.insert(OtherAI);
3845       }
3846
3847       // Mark the original store as dead.
3848       DeadInsts.insert(SI);
3849     }
3850
3851     // Save the split loads if there are deferred stores among the users.
3852     if (DeferredStores)
3853       SplitLoadsMap.insert(std::make_pair(LI, std::move(SplitLoads)));
3854
3855     // Mark the original load as dead and kill the original slice.
3856     DeadInsts.insert(LI);
3857     Offsets.S->kill();
3858   }
3859
3860   // Second, we rewrite all of the split stores. At this point, we know that
3861   // all loads from this alloca have been split already. For stores of such
3862   // loads, we can simply look up the pre-existing split loads. For stores of
3863   // other loads, we split those loads first and then write split stores of
3864   // them.
3865   for (StoreInst *SI : Stores) {
3866     auto *LI = cast<LoadInst>(SI->getValueOperand());
3867     IntegerType *Ty = cast<IntegerType>(LI->getType());
3868     uint64_t StoreSize = Ty->getBitWidth() / 8;
3869     assert(StoreSize > 0 && "Cannot have a zero-sized integer store!");
3870
3871     auto &Offsets = SplitOffsetsMap[SI];
3872     assert(StoreSize == Offsets.S->endOffset() - Offsets.S->beginOffset() &&
3873            "Slice size should always match load size exactly!");
3874     uint64_t BaseOffset = Offsets.S->beginOffset();
3875     assert(BaseOffset + StoreSize > BaseOffset &&
3876            "Cannot represent alloca access size using 64-bit integers!");
3877
3878     Value *LoadBasePtr = LI->getPointerOperand();
3879     Instruction *StoreBasePtr = cast<Instruction>(SI->getPointerOperand());
3880
3881     LLVM_DEBUG(dbgs() << "  Splitting store: " << *SI << "\n");
3882
3883     // Check whether we have an already split load.
3884     auto SplitLoadsMapI = SplitLoadsMap.find(LI);
3885     std::vector<LoadInst *> *SplitLoads = nullptr;
3886     if (SplitLoadsMapI != SplitLoadsMap.end()) {
3887       SplitLoads = &SplitLoadsMapI->second;
3888       assert(SplitLoads->size() == Offsets.Splits.size() + 1 &&
3889              "Too few split loads for the number of splits in the store!");
3890     } else {
3891       LLVM_DEBUG(dbgs() << "          of load: " << *LI << "\n");
3892     }
3893
3894     uint64_t PartOffset = 0, PartSize = Offsets.Splits.front();
3895     int Idx = 0, Size = Offsets.Splits.size();
3896     for (;;) {
3897       auto *PartTy = Type::getIntNTy(Ty->getContext(), PartSize * 8);
3898       auto *LoadPartPtrTy = PartTy->getPointerTo(LI->getPointerAddressSpace());
3899       auto *StorePartPtrTy = PartTy->getPointerTo(SI->getPointerAddressSpace());
3900
3901       // Either lookup a split load or create one.
3902       LoadInst *PLoad;
3903       if (SplitLoads) {
3904         PLoad = (*SplitLoads)[Idx];
3905       } else {
3906         IRB.SetInsertPoint(LI);
3907         auto AS = LI->getPointerAddressSpace();
3908         PLoad = IRB.CreateAlignedLoad(
3909             getAdjustedPtr(IRB, DL, LoadBasePtr,
3910                            APInt(DL.getIndexSizeInBits(AS), PartOffset),
3911                            LoadPartPtrTy, LoadBasePtr->getName() + "."),
3912             getAdjustedAlignment(LI, PartOffset, DL), /*IsVolatile*/ false,
3913             LI->getName());
3914       }
3915
3916       // And store this partition.
3917       IRB.SetInsertPoint(SI);
3918       auto AS = SI->getPointerAddressSpace();
3919       StoreInst *PStore = IRB.CreateAlignedStore(
3920           PLoad,
3921           getAdjustedPtr(IRB, DL, StoreBasePtr,
3922                          APInt(DL.getIndexSizeInBits(AS), PartOffset),
3923                          StorePartPtrTy, StoreBasePtr->getName() + "."),
3924           getAdjustedAlignment(SI, PartOffset, DL), /*IsVolatile*/ false);
3925
3926       // Now build a new slice for the alloca.
3927       NewSlices.push_back(
3928           Slice(BaseOffset + PartOffset, BaseOffset + PartOffset + PartSize,
3929                 &PStore->getOperandUse(PStore->getPointerOperandIndex()),
3930                 /*IsSplittable*/ false));
3931       LLVM_DEBUG(dbgs() << "    new slice [" << NewSlices.back().beginOffset()
3932                         << ", " << NewSlices.back().endOffset()
3933                         << "): " << *PStore << "\n");
3934       if (!SplitLoads) {
3935         LLVM_DEBUG(dbgs() << "      of split load: " << *PLoad << "\n");
3936       }
3937
3938       // See if we've finished all the splits.
3939       if (Idx >= Size)
3940         break;
3941
3942       // Setup the next partition.
3943       PartOffset = Offsets.Splits[Idx];
3944       ++Idx;
3945       PartSize = (Idx < Size ? Offsets.Splits[Idx] : StoreSize) - PartOffset;
3946     }
3947
3948     // We want to immediately iterate on any allocas impacted by splitting
3949     // this load, which is only relevant if it isn't a load of this alloca and
3950     // thus we didn't already split the loads above. We also have to keep track
3951     // of any promotable allocas we split loads on as they can no longer be
3952     // promoted.
3953     if (!SplitLoads) {
3954       if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(LoadBasePtr)) {
3955         assert(OtherAI != &AI && "We can't re-split our own alloca!");
3956         ResplitPromotableAllocas.insert(OtherAI);
3957         Worklist.insert(OtherAI);
3958       } else if (AllocaInst *OtherAI = dyn_cast<AllocaInst>(
3959                      LoadBasePtr->stripInBoundsOffsets())) {
3960         assert(OtherAI != &AI && "We can't re-split our own alloca!");
3961         Worklist.insert(OtherAI);
3962       }
3963     }
3964
3965     // Mark the original store as dead now that we've split it up and kill its
3966     // slice. Note that we leave the original load in place unless this store
3967     // was its only use. It may in turn be split up if it is an alloca load
3968     // for some other alloca, but it may be a normal load. This may introduce
3969     // redundant loads, but where those can be merged the rest of the optimizer
3970     // should handle the merging, and this uncovers SSA splits which is more
3971     // important. In practice, the original loads will almost always be fully
3972     // split and removed eventually, and the splits will be merged by any
3973     // trivial CSE, including instcombine.
3974     if (LI->hasOneUse()) {
3975       assert(*LI->user_begin() == SI && "Single use isn't this store!");
3976       DeadInsts.insert(LI);
3977     }
3978     DeadInsts.insert(SI);
3979     Offsets.S->kill();
3980   }
3981
3982   // Remove the killed slices that have ben pre-split.
3983   AS.erase(llvm::remove_if(AS, [](const Slice &S) { return S.isDead(); }),
3984            AS.end());
3985
3986   // Insert our new slices. This will sort and merge them into the sorted
3987   // sequence.
3988   AS.insert(NewSlices);
3989
3990   LLVM_DEBUG(dbgs() << "  Pre-split slices:\n");
3991 #ifndef NDEBUG
3992   for (auto I = AS.begin(), E = AS.end(); I != E; ++I)
3993     LLVM_DEBUG(AS.print(dbgs(), I, "    "));
3994 #endif
3995
3996   // Finally, don't try to promote any allocas that new require re-splitting.
3997   // They have already been added to the worklist above.
3998   PromotableAllocas.erase(
3999       llvm::remove_if(
4000           PromotableAllocas,
4001           [&](AllocaInst *AI) { return ResplitPromotableAllocas.count(AI); }),
4002       PromotableAllocas.end());
4003
4004   return true;
4005 }
4006
4007 /// Rewrite an alloca partition's users.
4008 ///
4009 /// This routine drives both of the rewriting goals of the SROA pass. It tries
4010 /// to rewrite uses of an alloca partition to be conducive for SSA value
4011 /// promotion. If the partition needs a new, more refined alloca, this will
4012 /// build that new alloca, preserving as much type information as possible, and
4013 /// rewrite the uses of the old alloca to point at the new one and have the
4014 /// appropriate new offsets. It also evaluates how successful the rewrite was
4015 /// at enabling promotion and if it was successful queues the alloca to be
4016 /// promoted.
4017 AllocaInst *SROA::rewritePartition(AllocaInst &AI, AllocaSlices &AS,
4018                                    Partition &P) {
4019   // Try to compute a friendly type for this partition of the alloca. This
4020   // won't always succeed, in which case we fall back to a legal integer type
4021   // or an i8 array of an appropriate size.
4022   Type *SliceTy = nullptr;
4023   const DataLayout &DL = AI.getModule()->getDataLayout();
4024   if (Type *CommonUseTy = findCommonType(P.begin(), P.end(), P.endOffset()))
4025     if (DL.getTypeAllocSize(CommonUseTy) >= P.size())
4026       SliceTy = CommonUseTy;
4027   if (!SliceTy)
4028     if (Type *TypePartitionTy = getTypePartition(DL, AI.getAllocatedType(),
4029                                                  P.beginOffset(), P.size()))
4030       SliceTy = TypePartitionTy;
4031   if ((!SliceTy || (SliceTy->isArrayTy() &&
4032                     SliceTy->getArrayElementType()->isIntegerTy())) &&
4033       DL.isLegalInteger(P.size() * 8))
4034     SliceTy = Type::getIntNTy(*C, P.size() * 8);
4035   if (!SliceTy)
4036     SliceTy = ArrayType::get(Type::getInt8Ty(*C), P.size());
4037   assert(DL.getTypeAllocSize(SliceTy) >= P.size());
4038
4039   bool IsIntegerPromotable = isIntegerWideningViable(P, SliceTy, DL);
4040
4041   VectorType *VecTy =
4042       IsIntegerPromotable ? nullptr : isVectorPromotionViable(P, DL);
4043   if (VecTy)
4044     SliceTy = VecTy;
4045
4046   // Check for the case where we're going to rewrite to a new alloca of the
4047   // exact same type as the original, and with the same access offsets. In that
4048   // case, re-use the existing alloca, but still run through the rewriter to
4049   // perform phi and select speculation.
4050   // P.beginOffset() can be non-zero even with the same type in a case with
4051   // out-of-bounds access (e.g. @PR35657 function in SROA/basictest.ll).
4052   AllocaInst *NewAI;
4053   if (SliceTy == AI.getAllocatedType() && P.beginOffset() == 0) {
4054     NewAI = &AI;
4055     // FIXME: We should be able to bail at this point with "nothing changed".
4056     // FIXME: We might want to defer PHI speculation until after here.
4057     // FIXME: return nullptr;
4058   } else {
4059     unsigned Alignment = AI.getAlignment();
4060     if (!Alignment) {
4061       // The minimum alignment which users can rely on when the explicit
4062       // alignment is omitted or zero is that required by the ABI for this
4063       // type.
4064       Alignment = DL.getABITypeAlignment(AI.getAllocatedType());
4065     }
4066     Alignment = MinAlign(Alignment, P.beginOffset());
4067     // If we will get at least this much alignment from the type alone, leave
4068     // the alloca's alignment unconstrained.
4069     if (Alignment <= DL.getABITypeAlignment(SliceTy))
4070       Alignment = 0;
4071     NewAI = new AllocaInst(
4072       SliceTy, AI.getType()->getAddressSpace(), nullptr, Alignment,
4073         AI.getName() + ".sroa." + Twine(P.begin() - AS.begin()), &AI);
4074     // Copy the old AI debug location over to the new one.
4075     NewAI->setDebugLoc(AI.getDebugLoc());
4076     ++NumNewAllocas;
4077   }
4078
4079   LLVM_DEBUG(dbgs() << "Rewriting alloca partition "
4080                     << "[" << P.beginOffset() << "," << P.endOffset()
4081                     << ") to: " << *NewAI << "\n");
4082
4083   // Track the high watermark on the worklist as it is only relevant for
4084   // promoted allocas. We will reset it to this point if the alloca is not in
4085   // fact scheduled for promotion.
4086   unsigned PPWOldSize = PostPromotionWorklist.size();
4087   unsigned NumUses = 0;
4088   SmallSetVector<PHINode *, 8> PHIUsers;
4089   SmallSetVector<SelectInst *, 8> SelectUsers;
4090
4091   AllocaSliceRewriter Rewriter(DL, AS, *this, AI, *NewAI, P.beginOffset(),
4092                                P.endOffset(), IsIntegerPromotable, VecTy,
4093                                PHIUsers, SelectUsers);
4094   bool Promotable = true;
4095   for (Slice *S : P.splitSliceTails()) {
4096     Promotable &= Rewriter.visit(S);
4097     ++NumUses;
4098   }
4099   for (Slice &S : P) {
4100     Promotable &= Rewriter.visit(&S);
4101     ++NumUses;
4102   }
4103
4104   NumAllocaPartitionUses += NumUses;
4105   MaxUsesPerAllocaPartition.updateMax(NumUses);
4106
4107   // Now that we've processed all the slices in the new partition, check if any
4108   // PHIs or Selects would block promotion.
4109   for (PHINode *PHI : PHIUsers)
4110     if (!isSafePHIToSpeculate(*PHI)) {
4111       Promotable = false;
4112       PHIUsers.clear();
4113       SelectUsers.clear();
4114       break;
4115     }
4116
4117   for (SelectInst *Sel : SelectUsers)
4118     if (!isSafeSelectToSpeculate(*Sel)) {
4119       Promotable = false;
4120       PHIUsers.clear();
4121       SelectUsers.clear();
4122       break;
4123     }
4124
4125   if (Promotable) {
4126     if (PHIUsers.empty() && SelectUsers.empty()) {
4127       // Promote the alloca.
4128       PromotableAllocas.push_back(NewAI);
4129     } else {
4130       // If we have either PHIs or Selects to speculate, add them to those
4131       // worklists and re-queue the new alloca so that we promote in on the
4132       // next iteration.
4133       for (PHINode *PHIUser : PHIUsers)
4134         SpeculatablePHIs.insert(PHIUser);
4135       for (SelectInst *SelectUser : SelectUsers)
4136         SpeculatableSelects.insert(SelectUser);
4137       Worklist.insert(NewAI);
4138     }
4139   } else {
4140     // Drop any post-promotion work items if promotion didn't happen.
4141     while (PostPromotionWorklist.size() > PPWOldSize)
4142       PostPromotionWorklist.pop_back();
4143
4144     // We couldn't promote and we didn't create a new partition, nothing
4145     // happened.
4146     if (NewAI == &AI)
4147       return nullptr;
4148
4149     // If we can't promote the alloca, iterate on it to check for new
4150     // refinements exposed by splitting the current alloca. Don't iterate on an
4151     // alloca which didn't actually change and didn't get promoted.
4152     Worklist.insert(NewAI);
4153   }
4154
4155   return NewAI;
4156 }
4157
4158 /// Walks the slices of an alloca and form partitions based on them,
4159 /// rewriting each of their uses.
4160 bool SROA::splitAlloca(AllocaInst &AI, AllocaSlices &AS) {
4161   if (AS.begin() == AS.end())
4162     return false;
4163
4164   unsigned NumPartitions = 0;
4165   bool Changed = false;
4166   const DataLayout &DL = AI.getModule()->getDataLayout();
4167
4168   // First try to pre-split loads and stores.
4169   Changed |= presplitLoadsAndStores(AI, AS);
4170
4171   // Now that we have identified any pre-splitting opportunities,
4172   // mark loads and stores unsplittable except for the following case.
4173   // We leave a slice splittable if all other slices are disjoint or fully
4174   // included in the slice, such as whole-alloca loads and stores.
4175   // If we fail to split these during pre-splitting, we want to force them
4176   // to be rewritten into a partition.
4177   bool IsSorted = true;
4178
4179   uint64_t AllocaSize = DL.getTypeAllocSize(AI.getAllocatedType());
4180   const uint64_t MaxBitVectorSize = 1024;
4181   if (AllocaSize <= MaxBitVectorSize) {
4182     // If a byte boundary is included in any load or store, a slice starting or
4183     // ending at the boundary is not splittable.
4184     SmallBitVector SplittableOffset(AllocaSize + 1, true);
4185     for (Slice &S : AS)
4186       for (unsigned O = S.beginOffset() + 1;
4187            O < S.endOffset() && O < AllocaSize; O++)
4188         SplittableOffset.reset(O);
4189
4190     for (Slice &S : AS) {
4191       if (!S.isSplittable())
4192         continue;
4193
4194       if ((S.beginOffset() > AllocaSize || SplittableOffset[S.beginOffset()]) &&
4195           (S.endOffset() > AllocaSize || SplittableOffset[S.endOffset()]))
4196         continue;
4197
4198       if (isa<LoadInst>(S.getUse()->getUser()) ||
4199           isa<StoreInst>(S.getUse()->getUser())) {
4200         S.makeUnsplittable();
4201         IsSorted = false;
4202       }
4203     }
4204   }
4205   else {
4206     // We only allow whole-alloca splittable loads and stores
4207     // for a large alloca to avoid creating too large BitVector.
4208     for (Slice &S : AS) {
4209       if (!S.isSplittable())
4210         continue;
4211
4212       if (S.beginOffset() == 0 && S.endOffset() >= AllocaSize)
4213         continue;
4214
4215       if (isa<LoadInst>(S.getUse()->getUser()) ||
4216           isa<StoreInst>(S.getUse()->getUser())) {
4217         S.makeUnsplittable();
4218         IsSorted = false;
4219       }
4220     }
4221   }
4222
4223   if (!IsSorted)
4224     llvm::sort(AS.begin(), AS.end());
4225
4226   /// Describes the allocas introduced by rewritePartition in order to migrate
4227   /// the debug info.
4228   struct Fragment {
4229     AllocaInst *Alloca;
4230     uint64_t Offset;
4231     uint64_t Size;
4232     Fragment(AllocaInst *AI, uint64_t O, uint64_t S)
4233       : Alloca(AI), Offset(O), Size(S) {}
4234   };
4235   SmallVector<Fragment, 4> Fragments;
4236
4237   // Rewrite each partition.
4238   for (auto &P : AS.partitions()) {
4239     if (AllocaInst *NewAI = rewritePartition(AI, AS, P)) {
4240       Changed = true;
4241       if (NewAI != &AI) {
4242         uint64_t SizeOfByte = 8;
4243         uint64_t AllocaSize = DL.getTypeSizeInBits(NewAI->getAllocatedType());
4244         // Don't include any padding.
4245         uint64_t Size = std::min(AllocaSize, P.size() * SizeOfByte);
4246         Fragments.push_back(Fragment(NewAI, P.beginOffset() * SizeOfByte, Size));
4247       }
4248     }
4249     ++NumPartitions;
4250   }
4251
4252   NumAllocaPartitions += NumPartitions;
4253   MaxPartitionsPerAlloca.updateMax(NumPartitions);
4254
4255   // Migrate debug information from the old alloca to the new alloca(s)
4256   // and the individual partitions.
4257   TinyPtrVector<DbgInfoIntrinsic *> DbgDeclares = FindDbgAddrUses(&AI);
4258   if (!DbgDeclares.empty()) {
4259     auto *Var = DbgDeclares.front()->getVariable();
4260     auto *Expr = DbgDeclares.front()->getExpression();
4261     auto VarSize = Var->getSizeInBits();
4262     DIBuilder DIB(*AI.getModule(), /*AllowUnresolved*/ false);
4263     uint64_t AllocaSize = DL.getTypeSizeInBits(AI.getAllocatedType());
4264     for (auto Fragment : Fragments) {
4265       // Create a fragment expression describing the new partition or reuse AI's
4266       // expression if there is only one partition.
4267       auto *FragmentExpr = Expr;
4268       if (Fragment.Size < AllocaSize || Expr->isFragment()) {
4269         // If this alloca is already a scalar replacement of a larger aggregate,
4270         // Fragment.Offset describes the offset inside the scalar.
4271         auto ExprFragment = Expr->getFragmentInfo();
4272         uint64_t Offset = ExprFragment ? ExprFragment->OffsetInBits : 0;
4273         uint64_t Start = Offset + Fragment.Offset;
4274         uint64_t Size = Fragment.Size;
4275         if (ExprFragment) {
4276           uint64_t AbsEnd =
4277               ExprFragment->OffsetInBits + ExprFragment->SizeInBits;
4278           if (Start >= AbsEnd)
4279             // No need to describe a SROAed padding.
4280             continue;
4281           Size = std::min(Size, AbsEnd - Start);
4282         }
4283         // The new, smaller fragment is stenciled out from the old fragment.
4284         if (auto OrigFragment = FragmentExpr->getFragmentInfo()) {
4285           assert(Start >= OrigFragment->OffsetInBits &&
4286                  "new fragment is outside of original fragment");
4287           Start -= OrigFragment->OffsetInBits;
4288         }
4289
4290         // The alloca may be larger than the variable.
4291         if (VarSize) {
4292           if (Size > *VarSize)
4293             Size = *VarSize;
4294           if (Size == 0 || Start + Size > *VarSize)
4295             continue;
4296         }
4297
4298         // Avoid creating a fragment expression that covers the entire variable.
4299         if (!VarSize || *VarSize != Size) {
4300           if (auto E =
4301                   DIExpression::createFragmentExpression(Expr, Start, Size))
4302             FragmentExpr = *E;
4303           else
4304             continue;
4305         }
4306       }
4307
4308       // Remove any existing intrinsics describing the same alloca.
4309       for (DbgInfoIntrinsic *OldDII : FindDbgAddrUses(Fragment.Alloca))
4310         OldDII->eraseFromParent();
4311
4312       DIB.insertDeclare(Fragment.Alloca, Var, FragmentExpr,
4313                         DbgDeclares.front()->getDebugLoc(), &AI);
4314     }
4315   }
4316   return Changed;
4317 }
4318
4319 /// Clobber a use with undef, deleting the used value if it becomes dead.
4320 void SROA::clobberUse(Use &U) {
4321   Value *OldV = U;
4322   // Replace the use with an undef value.
4323   U = UndefValue::get(OldV->getType());
4324
4325   // Check for this making an instruction dead. We have to garbage collect
4326   // all the dead instructions to ensure the uses of any alloca end up being
4327   // minimal.
4328   if (Instruction *OldI = dyn_cast<Instruction>(OldV))
4329     if (isInstructionTriviallyDead(OldI)) {
4330       DeadInsts.insert(OldI);
4331     }
4332 }
4333
4334 /// Analyze an alloca for SROA.
4335 ///
4336 /// This analyzes the alloca to ensure we can reason about it, builds
4337 /// the slices of the alloca, and then hands it off to be split and
4338 /// rewritten as needed.
4339 bool SROA::runOnAlloca(AllocaInst &AI) {
4340   LLVM_DEBUG(dbgs() << "SROA alloca: " << AI << "\n");
4341   ++NumAllocasAnalyzed;
4342
4343   // Special case dead allocas, as they're trivial.
4344   if (AI.use_empty()) {
4345     AI.eraseFromParent();
4346     return true;
4347   }
4348   const DataLayout &DL = AI.getModule()->getDataLayout();
4349
4350   // Skip alloca forms that this analysis can't handle.
4351   if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() ||
4352       DL.getTypeAllocSize(AI.getAllocatedType()) == 0)
4353     return false;
4354
4355   bool Changed = false;
4356
4357   // First, split any FCA loads and stores touching this alloca to promote
4358   // better splitting and promotion opportunities.
4359   AggLoadStoreRewriter AggRewriter;
4360   Changed |= AggRewriter.rewrite(AI);
4361
4362   // Build the slices using a recursive instruction-visiting builder.
4363   AllocaSlices AS(DL, AI);
4364   LLVM_DEBUG(AS.print(dbgs()));
4365   if (AS.isEscaped())
4366     return Changed;
4367
4368   // Delete all the dead users of this alloca before splitting and rewriting it.
4369   for (Instruction *DeadUser : AS.getDeadUsers()) {
4370     // Free up everything used by this instruction.
4371     for (Use &DeadOp : DeadUser->operands())
4372       clobberUse(DeadOp);
4373
4374     // Now replace the uses of this instruction.
4375     DeadUser->replaceAllUsesWith(UndefValue::get(DeadUser->getType()));
4376
4377     // And mark it for deletion.
4378     DeadInsts.insert(DeadUser);
4379     Changed = true;
4380   }
4381   for (Use *DeadOp : AS.getDeadOperands()) {
4382     clobberUse(*DeadOp);
4383     Changed = true;
4384   }
4385
4386   // No slices to split. Leave the dead alloca for a later pass to clean up.
4387   if (AS.begin() == AS.end())
4388     return Changed;
4389
4390   Changed |= splitAlloca(AI, AS);
4391
4392   LLVM_DEBUG(dbgs() << "  Speculating PHIs\n");
4393   while (!SpeculatablePHIs.empty())
4394     speculatePHINodeLoads(*SpeculatablePHIs.pop_back_val());
4395
4396   LLVM_DEBUG(dbgs() << "  Speculating Selects\n");
4397   while (!SpeculatableSelects.empty())
4398     speculateSelectInstLoads(*SpeculatableSelects.pop_back_val());
4399
4400   return Changed;
4401 }
4402
4403 /// Delete the dead instructions accumulated in this run.
4404 ///
4405 /// Recursively deletes the dead instructions we've accumulated. This is done
4406 /// at the very end to maximize locality of the recursive delete and to
4407 /// minimize the problems of invalidated instruction pointers as such pointers
4408 /// are used heavily in the intermediate stages of the algorithm.
4409 ///
4410 /// We also record the alloca instructions deleted here so that they aren't
4411 /// subsequently handed to mem2reg to promote.
4412 bool SROA::deleteDeadInstructions(
4413     SmallPtrSetImpl<AllocaInst *> &DeletedAllocas) {
4414   bool Changed = false;
4415   while (!DeadInsts.empty()) {
4416     Instruction *I = DeadInsts.pop_back_val();
4417     LLVM_DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n");
4418
4419     // If the instruction is an alloca, find the possible dbg.declare connected
4420     // to it, and remove it too. We must do this before calling RAUW or we will
4421     // not be able to find it.
4422     if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
4423       DeletedAllocas.insert(AI);
4424       for (DbgInfoIntrinsic *OldDII : FindDbgAddrUses(AI))
4425         OldDII->eraseFromParent();
4426     }
4427
4428     I->replaceAllUsesWith(UndefValue::get(I->getType()));
4429
4430     for (Use &Operand : I->operands())
4431       if (Instruction *U = dyn_cast<Instruction>(Operand)) {
4432         // Zero out the operand and see if it becomes trivially dead.
4433         Operand = nullptr;
4434         if (isInstructionTriviallyDead(U))
4435           DeadInsts.insert(U);
4436       }
4437
4438     ++NumDeleted;
4439     I->eraseFromParent();
4440     Changed = true;
4441   }
4442   return Changed;
4443 }
4444
4445 /// Promote the allocas, using the best available technique.
4446 ///
4447 /// This attempts to promote whatever allocas have been identified as viable in
4448 /// the PromotableAllocas list. If that list is empty, there is nothing to do.
4449 /// This function returns whether any promotion occurred.
4450 bool SROA::promoteAllocas(Function &F) {
4451   if (PromotableAllocas.empty())
4452     return false;
4453
4454   NumPromoted += PromotableAllocas.size();
4455
4456   LLVM_DEBUG(dbgs() << "Promoting allocas with mem2reg...\n");
4457   PromoteMemToReg(PromotableAllocas, *DT, AC);
4458   PromotableAllocas.clear();
4459   return true;
4460 }
4461
4462 PreservedAnalyses SROA::runImpl(Function &F, DominatorTree &RunDT,
4463                                 AssumptionCache &RunAC) {
4464   LLVM_DEBUG(dbgs() << "SROA function: " << F.getName() << "\n");
4465   C = &F.getContext();
4466   DT = &RunDT;
4467   AC = &RunAC;
4468
4469   BasicBlock &EntryBB = F.getEntryBlock();
4470   for (BasicBlock::iterator I = EntryBB.begin(), E = std::prev(EntryBB.end());
4471        I != E; ++I) {
4472     if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
4473       Worklist.insert(AI);
4474   }
4475
4476   bool Changed = false;
4477   // A set of deleted alloca instruction pointers which should be removed from
4478   // the list of promotable allocas.
4479   SmallPtrSet<AllocaInst *, 4> DeletedAllocas;
4480
4481   do {
4482     while (!Worklist.empty()) {
4483       Changed |= runOnAlloca(*Worklist.pop_back_val());
4484       Changed |= deleteDeadInstructions(DeletedAllocas);
4485
4486       // Remove the deleted allocas from various lists so that we don't try to
4487       // continue processing them.
4488       if (!DeletedAllocas.empty()) {
4489         auto IsInSet = [&](AllocaInst *AI) { return DeletedAllocas.count(AI); };
4490         Worklist.remove_if(IsInSet);
4491         PostPromotionWorklist.remove_if(IsInSet);
4492         PromotableAllocas.erase(llvm::remove_if(PromotableAllocas, IsInSet),
4493                                 PromotableAllocas.end());
4494         DeletedAllocas.clear();
4495       }
4496     }
4497
4498     Changed |= promoteAllocas(F);
4499
4500     Worklist = PostPromotionWorklist;
4501     PostPromotionWorklist.clear();
4502   } while (!Worklist.empty());
4503
4504   if (!Changed)
4505     return PreservedAnalyses::all();
4506
4507   PreservedAnalyses PA;
4508   PA.preserveSet<CFGAnalyses>();
4509   PA.preserve<GlobalsAA>();
4510   return PA;
4511 }
4512
4513 PreservedAnalyses SROA::run(Function &F, FunctionAnalysisManager &AM) {
4514   return runImpl(F, AM.getResult<DominatorTreeAnalysis>(F),
4515                  AM.getResult<AssumptionAnalysis>(F));
4516 }
4517
4518 /// A legacy pass for the legacy pass manager that wraps the \c SROA pass.
4519 ///
4520 /// This is in the llvm namespace purely to allow it to be a friend of the \c
4521 /// SROA pass.
4522 class llvm::sroa::SROALegacyPass : public FunctionPass {
4523   /// The SROA implementation.
4524   SROA Impl;
4525
4526 public:
4527   static char ID;
4528
4529   SROALegacyPass() : FunctionPass(ID) {
4530     initializeSROALegacyPassPass(*PassRegistry::getPassRegistry());
4531   }
4532
4533   bool runOnFunction(Function &F) override {
4534     if (skipFunction(F))
4535       return false;
4536
4537     auto PA = Impl.runImpl(
4538         F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
4539         getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
4540     return !PA.areAllPreserved();
4541   }
4542
4543   void getAnalysisUsage(AnalysisUsage &AU) const override {
4544     AU.addRequired<AssumptionCacheTracker>();
4545     AU.addRequired<DominatorTreeWrapperPass>();
4546     AU.addPreserved<GlobalsAAWrapperPass>();
4547     AU.setPreservesCFG();
4548   }
4549
4550   StringRef getPassName() const override { return "SROA"; }
4551 };
4552
4553 char SROALegacyPass::ID = 0;
4554
4555 FunctionPass *llvm::createSROAPass() { return new SROALegacyPass(); }
4556
4557 INITIALIZE_PASS_BEGIN(SROALegacyPass, "sroa",
4558                       "Scalar Replacement Of Aggregates", false, false)
4559 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
4560 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
4561 INITIALIZE_PASS_END(SROALegacyPass, "sroa", "Scalar Replacement Of Aggregates",
4562                     false, false)