]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/Scalar/Scalarizer.cpp
MFV r329770: 9035 zfs: this statement may fall through
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / Scalar / Scalarizer.cpp
1 //===- Scalarizer.cpp - Scalarize vector operations -----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass converts vector operations into scalar operations, in order
11 // to expose optimization opportunities on the individual scalar operations.
12 // It is mainly intended for targets that do not have vector units, but it
13 // may also be useful for revectorizing code to different vector widths.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Analysis/VectorUtils.h"
20 #include "llvm/IR/Argument.h"
21 #include "llvm/IR/BasicBlock.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/InstVisitor.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/LLVMContext.h"
33 #include "llvm/IR/Module.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Pass.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Support/Options.h"
40 #include "llvm/Transforms/Scalar.h"
41 #include <cassert>
42 #include <cstdint>
43 #include <iterator>
44 #include <map>
45 #include <utility>
46
47 using namespace llvm;
48
49 #define DEBUG_TYPE "scalarizer"
50
51 namespace {
52
53 // Used to store the scattered form of a vector.
54 using ValueVector = SmallVector<Value *, 8>;
55
56 // Used to map a vector Value to its scattered form.  We use std::map
57 // because we want iterators to persist across insertion and because the
58 // values are relatively large.
59 using ScatterMap = std::map<Value *, ValueVector>;
60
61 // Lists Instructions that have been replaced with scalar implementations,
62 // along with a pointer to their scattered forms.
63 using GatherList = SmallVector<std::pair<Instruction *, ValueVector *>, 16>;
64
65 // Provides a very limited vector-like interface for lazily accessing one
66 // component of a scattered vector or vector pointer.
67 class Scatterer {
68 public:
69   Scatterer() = default;
70
71   // Scatter V into Size components.  If new instructions are needed,
72   // insert them before BBI in BB.  If Cache is nonnull, use it to cache
73   // the results.
74   Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
75             ValueVector *cachePtr = nullptr);
76
77   // Return component I, creating a new Value for it if necessary.
78   Value *operator[](unsigned I);
79
80   // Return the number of components.
81   unsigned size() const { return Size; }
82
83 private:
84   BasicBlock *BB;
85   BasicBlock::iterator BBI;
86   Value *V;
87   ValueVector *CachePtr;
88   PointerType *PtrTy;
89   ValueVector Tmp;
90   unsigned Size;
91 };
92
93 // FCmpSpliiter(FCI)(Builder, X, Y, Name) uses Builder to create an FCmp
94 // called Name that compares X and Y in the same way as FCI.
95 struct FCmpSplitter {
96   FCmpSplitter(FCmpInst &fci) : FCI(fci) {}
97
98   Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
99                     const Twine &Name) const {
100     return Builder.CreateFCmp(FCI.getPredicate(), Op0, Op1, Name);
101   }
102
103   FCmpInst &FCI;
104 };
105
106 // ICmpSpliiter(ICI)(Builder, X, Y, Name) uses Builder to create an ICmp
107 // called Name that compares X and Y in the same way as ICI.
108 struct ICmpSplitter {
109   ICmpSplitter(ICmpInst &ici) : ICI(ici) {}
110
111   Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
112                     const Twine &Name) const {
113     return Builder.CreateICmp(ICI.getPredicate(), Op0, Op1, Name);
114   }
115
116   ICmpInst &ICI;
117 };
118
119 // BinarySpliiter(BO)(Builder, X, Y, Name) uses Builder to create
120 // a binary operator like BO called Name with operands X and Y.
121 struct BinarySplitter {
122   BinarySplitter(BinaryOperator &bo) : BO(bo) {}
123
124   Value *operator()(IRBuilder<> &Builder, Value *Op0, Value *Op1,
125                     const Twine &Name) const {
126     return Builder.CreateBinOp(BO.getOpcode(), Op0, Op1, Name);
127   }
128
129   BinaryOperator &BO;
130 };
131
132 // Information about a load or store that we're scalarizing.
133 struct VectorLayout {
134   VectorLayout() = default;
135
136   // Return the alignment of element I.
137   uint64_t getElemAlign(unsigned I) {
138     return MinAlign(VecAlign, I * ElemSize);
139   }
140
141   // The type of the vector.
142   VectorType *VecTy = nullptr;
143
144   // The type of each element.
145   Type *ElemTy = nullptr;
146
147   // The alignment of the vector.
148   uint64_t VecAlign = 0;
149
150   // The size of each element.
151   uint64_t ElemSize = 0;
152 };
153
154 class Scalarizer : public FunctionPass,
155                    public InstVisitor<Scalarizer, bool> {
156 public:
157   static char ID;
158
159   Scalarizer() : FunctionPass(ID) {
160     initializeScalarizerPass(*PassRegistry::getPassRegistry());
161   }
162
163   bool doInitialization(Module &M) override;
164   bool runOnFunction(Function &F) override;
165
166   // InstVisitor methods.  They return true if the instruction was scalarized,
167   // false if nothing changed.
168   bool visitInstruction(Instruction &I) { return false; }
169   bool visitSelectInst(SelectInst &SI);
170   bool visitICmpInst(ICmpInst &ICI);
171   bool visitFCmpInst(FCmpInst &FCI);
172   bool visitBinaryOperator(BinaryOperator &BO);
173   bool visitGetElementPtrInst(GetElementPtrInst &GEPI);
174   bool visitCastInst(CastInst &CI);
175   bool visitBitCastInst(BitCastInst &BCI);
176   bool visitShuffleVectorInst(ShuffleVectorInst &SVI);
177   bool visitPHINode(PHINode &PHI);
178   bool visitLoadInst(LoadInst &LI);
179   bool visitStoreInst(StoreInst &SI);
180   bool visitCallInst(CallInst &ICI);
181
182   static void registerOptions() {
183     // This is disabled by default because having separate loads and stores
184     // makes it more likely that the -combiner-alias-analysis limits will be
185     // reached.
186     OptionRegistry::registerOption<bool, Scalarizer,
187                                  &Scalarizer::ScalarizeLoadStore>(
188         "scalarize-load-store",
189         "Allow the scalarizer pass to scalarize loads and store", false);
190   }
191
192 private:
193   Scatterer scatter(Instruction *Point, Value *V);
194   void gather(Instruction *Op, const ValueVector &CV);
195   bool canTransferMetadata(unsigned Kind);
196   void transferMetadata(Instruction *Op, const ValueVector &CV);
197   bool getVectorLayout(Type *Ty, unsigned Alignment, VectorLayout &Layout,
198                        const DataLayout &DL);
199   bool finish();
200
201   template<typename T> bool splitBinary(Instruction &, const T &);
202
203   bool splitCall(CallInst &CI);
204
205   ScatterMap Scattered;
206   GatherList Gathered;
207   unsigned ParallelLoopAccessMDKind;
208   bool ScalarizeLoadStore;
209 };
210
211 } // end anonymous namespace
212
213 char Scalarizer::ID = 0;
214
215 INITIALIZE_PASS_WITH_OPTIONS(Scalarizer, "scalarizer",
216                              "Scalarize vector operations", false, false)
217
218 Scatterer::Scatterer(BasicBlock *bb, BasicBlock::iterator bbi, Value *v,
219                      ValueVector *cachePtr)
220   : BB(bb), BBI(bbi), V(v), CachePtr(cachePtr) {
221   Type *Ty = V->getType();
222   PtrTy = dyn_cast<PointerType>(Ty);
223   if (PtrTy)
224     Ty = PtrTy->getElementType();
225   Size = Ty->getVectorNumElements();
226   if (!CachePtr)
227     Tmp.resize(Size, nullptr);
228   else if (CachePtr->empty())
229     CachePtr->resize(Size, nullptr);
230   else
231     assert(Size == CachePtr->size() && "Inconsistent vector sizes");
232 }
233
234 // Return component I, creating a new Value for it if necessary.
235 Value *Scatterer::operator[](unsigned I) {
236   ValueVector &CV = (CachePtr ? *CachePtr : Tmp);
237   // Try to reuse a previous value.
238   if (CV[I])
239     return CV[I];
240   IRBuilder<> Builder(BB, BBI);
241   if (PtrTy) {
242     if (!CV[0]) {
243       Type *Ty =
244         PointerType::get(PtrTy->getElementType()->getVectorElementType(),
245                          PtrTy->getAddressSpace());
246       CV[0] = Builder.CreateBitCast(V, Ty, V->getName() + ".i0");
247     }
248     if (I != 0)
249       CV[I] = Builder.CreateConstGEP1_32(nullptr, CV[0], I,
250                                          V->getName() + ".i" + Twine(I));
251   } else {
252     // Search through a chain of InsertElementInsts looking for element I.
253     // Record other elements in the cache.  The new V is still suitable
254     // for all uncached indices.
255     while (true) {
256       InsertElementInst *Insert = dyn_cast<InsertElementInst>(V);
257       if (!Insert)
258         break;
259       ConstantInt *Idx = dyn_cast<ConstantInt>(Insert->getOperand(2));
260       if (!Idx)
261         break;
262       unsigned J = Idx->getZExtValue();
263       V = Insert->getOperand(0);
264       if (I == J) {
265         CV[J] = Insert->getOperand(1);
266         return CV[J];
267       } else if (!CV[J]) {
268         // Only cache the first entry we find for each index we're not actively
269         // searching for. This prevents us from going too far up the chain and
270         // caching incorrect entries.
271         CV[J] = Insert->getOperand(1);
272       }
273     }
274     CV[I] = Builder.CreateExtractElement(V, Builder.getInt32(I),
275                                          V->getName() + ".i" + Twine(I));
276   }
277   return CV[I];
278 }
279
280 bool Scalarizer::doInitialization(Module &M) {
281   ParallelLoopAccessMDKind =
282       M.getContext().getMDKindID("llvm.mem.parallel_loop_access");
283   ScalarizeLoadStore =
284       M.getContext().getOption<bool, Scalarizer, &Scalarizer::ScalarizeLoadStore>();
285   return false;
286 }
287
288 bool Scalarizer::runOnFunction(Function &F) {
289   if (skipFunction(F))
290     return false;
291   assert(Gathered.empty() && Scattered.empty());
292   for (BasicBlock &BB : F) {
293     for (BasicBlock::iterator II = BB.begin(), IE = BB.end(); II != IE;) {
294       Instruction *I = &*II;
295       bool Done = visit(I);
296       ++II;
297       if (Done && I->getType()->isVoidTy())
298         I->eraseFromParent();
299     }
300   }
301   return finish();
302 }
303
304 // Return a scattered form of V that can be accessed by Point.  V must be a
305 // vector or a pointer to a vector.
306 Scatterer Scalarizer::scatter(Instruction *Point, Value *V) {
307   if (Argument *VArg = dyn_cast<Argument>(V)) {
308     // Put the scattered form of arguments in the entry block,
309     // so that it can be used everywhere.
310     Function *F = VArg->getParent();
311     BasicBlock *BB = &F->getEntryBlock();
312     return Scatterer(BB, BB->begin(), V, &Scattered[V]);
313   }
314   if (Instruction *VOp = dyn_cast<Instruction>(V)) {
315     // Put the scattered form of an instruction directly after the
316     // instruction.
317     BasicBlock *BB = VOp->getParent();
318     return Scatterer(BB, std::next(BasicBlock::iterator(VOp)),
319                      V, &Scattered[V]);
320   }
321   // In the fallback case, just put the scattered before Point and
322   // keep the result local to Point.
323   return Scatterer(Point->getParent(), Point->getIterator(), V);
324 }
325
326 // Replace Op with the gathered form of the components in CV.  Defer the
327 // deletion of Op and creation of the gathered form to the end of the pass,
328 // so that we can avoid creating the gathered form if all uses of Op are
329 // replaced with uses of CV.
330 void Scalarizer::gather(Instruction *Op, const ValueVector &CV) {
331   // Since we're not deleting Op yet, stub out its operands, so that it
332   // doesn't make anything live unnecessarily.
333   for (unsigned I = 0, E = Op->getNumOperands(); I != E; ++I)
334     Op->setOperand(I, UndefValue::get(Op->getOperand(I)->getType()));
335
336   transferMetadata(Op, CV);
337
338   // If we already have a scattered form of Op (created from ExtractElements
339   // of Op itself), replace them with the new form.
340   ValueVector &SV = Scattered[Op];
341   if (!SV.empty()) {
342     for (unsigned I = 0, E = SV.size(); I != E; ++I) {
343       Value *V = SV[I];
344       if (V == nullptr)
345         continue;
346
347       Instruction *Old = cast<Instruction>(V);
348       CV[I]->takeName(Old);
349       Old->replaceAllUsesWith(CV[I]);
350       Old->eraseFromParent();
351     }
352   }
353   SV = CV;
354   Gathered.push_back(GatherList::value_type(Op, &SV));
355 }
356
357 // Return true if it is safe to transfer the given metadata tag from
358 // vector to scalar instructions.
359 bool Scalarizer::canTransferMetadata(unsigned Tag) {
360   return (Tag == LLVMContext::MD_tbaa
361           || Tag == LLVMContext::MD_fpmath
362           || Tag == LLVMContext::MD_tbaa_struct
363           || Tag == LLVMContext::MD_invariant_load
364           || Tag == LLVMContext::MD_alias_scope
365           || Tag == LLVMContext::MD_noalias
366           || Tag == ParallelLoopAccessMDKind);
367 }
368
369 // Transfer metadata from Op to the instructions in CV if it is known
370 // to be safe to do so.
371 void Scalarizer::transferMetadata(Instruction *Op, const ValueVector &CV) {
372   SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
373   Op->getAllMetadataOtherThanDebugLoc(MDs);
374   for (unsigned I = 0, E = CV.size(); I != E; ++I) {
375     if (Instruction *New = dyn_cast<Instruction>(CV[I])) {
376       for (const auto &MD : MDs)
377         if (canTransferMetadata(MD.first))
378           New->setMetadata(MD.first, MD.second);
379       if (Op->getDebugLoc() && !New->getDebugLoc())
380         New->setDebugLoc(Op->getDebugLoc());
381     }
382   }
383 }
384
385 // Try to fill in Layout from Ty, returning true on success.  Alignment is
386 // the alignment of the vector, or 0 if the ABI default should be used.
387 bool Scalarizer::getVectorLayout(Type *Ty, unsigned Alignment,
388                                  VectorLayout &Layout, const DataLayout &DL) {
389   // Make sure we're dealing with a vector.
390   Layout.VecTy = dyn_cast<VectorType>(Ty);
391   if (!Layout.VecTy)
392     return false;
393
394   // Check that we're dealing with full-byte elements.
395   Layout.ElemTy = Layout.VecTy->getElementType();
396   if (DL.getTypeSizeInBits(Layout.ElemTy) !=
397       DL.getTypeStoreSizeInBits(Layout.ElemTy))
398     return false;
399
400   if (Alignment)
401     Layout.VecAlign = Alignment;
402   else
403     Layout.VecAlign = DL.getABITypeAlignment(Layout.VecTy);
404   Layout.ElemSize = DL.getTypeStoreSize(Layout.ElemTy);
405   return true;
406 }
407
408 // Scalarize two-operand instruction I, using Split(Builder, X, Y, Name)
409 // to create an instruction like I with operands X and Y and name Name.
410 template<typename Splitter>
411 bool Scalarizer::splitBinary(Instruction &I, const Splitter &Split) {
412   VectorType *VT = dyn_cast<VectorType>(I.getType());
413   if (!VT)
414     return false;
415
416   unsigned NumElems = VT->getNumElements();
417   IRBuilder<> Builder(&I);
418   Scatterer Op0 = scatter(&I, I.getOperand(0));
419   Scatterer Op1 = scatter(&I, I.getOperand(1));
420   assert(Op0.size() == NumElems && "Mismatched binary operation");
421   assert(Op1.size() == NumElems && "Mismatched binary operation");
422   ValueVector Res;
423   Res.resize(NumElems);
424   for (unsigned Elem = 0; Elem < NumElems; ++Elem)
425     Res[Elem] = Split(Builder, Op0[Elem], Op1[Elem],
426                       I.getName() + ".i" + Twine(Elem));
427   gather(&I, Res);
428   return true;
429 }
430
431 static bool isTriviallyScalariable(Intrinsic::ID ID) {
432   return isTriviallyVectorizable(ID);
433 }
434
435 // All of the current scalarizable intrinsics only have one mangled type.
436 static Function *getScalarIntrinsicDeclaration(Module *M,
437                                                Intrinsic::ID ID,
438                                                VectorType *Ty) {
439   return Intrinsic::getDeclaration(M, ID, { Ty->getScalarType() });
440 }
441
442 /// If a call to a vector typed intrinsic function, split into a scalar call per
443 /// element if possible for the intrinsic.
444 bool Scalarizer::splitCall(CallInst &CI) {
445   VectorType *VT = dyn_cast<VectorType>(CI.getType());
446   if (!VT)
447     return false;
448
449   Function *F = CI.getCalledFunction();
450   if (!F)
451     return false;
452
453   Intrinsic::ID ID = F->getIntrinsicID();
454   if (ID == Intrinsic::not_intrinsic || !isTriviallyScalariable(ID))
455     return false;
456
457   unsigned NumElems = VT->getNumElements();
458   unsigned NumArgs = CI.getNumArgOperands();
459
460   ValueVector ScalarOperands(NumArgs);
461   SmallVector<Scatterer, 8> Scattered(NumArgs);
462
463   Scattered.resize(NumArgs);
464
465   // Assumes that any vector type has the same number of elements as the return
466   // vector type, which is true for all current intrinsics.
467   for (unsigned I = 0; I != NumArgs; ++I) {
468     Value *OpI = CI.getOperand(I);
469     if (OpI->getType()->isVectorTy()) {
470       Scattered[I] = scatter(&CI, OpI);
471       assert(Scattered[I].size() == NumElems && "mismatched call operands");
472     } else {
473       ScalarOperands[I] = OpI;
474     }
475   }
476
477   ValueVector Res(NumElems);
478   ValueVector ScalarCallOps(NumArgs);
479
480   Function *NewIntrin = getScalarIntrinsicDeclaration(F->getParent(), ID, VT);
481   IRBuilder<> Builder(&CI);
482
483   // Perform actual scalarization, taking care to preserve any scalar operands.
484   for (unsigned Elem = 0; Elem < NumElems; ++Elem) {
485     ScalarCallOps.clear();
486
487     for (unsigned J = 0; J != NumArgs; ++J) {
488       if (hasVectorInstrinsicScalarOpd(ID, J))
489         ScalarCallOps.push_back(ScalarOperands[J]);
490       else
491         ScalarCallOps.push_back(Scattered[J][Elem]);
492     }
493
494     Res[Elem] = Builder.CreateCall(NewIntrin, ScalarCallOps,
495                                    CI.getName() + ".i" + Twine(Elem));
496   }
497
498   gather(&CI, Res);
499   return true;
500 }
501
502 bool Scalarizer::visitSelectInst(SelectInst &SI) {
503   VectorType *VT = dyn_cast<VectorType>(SI.getType());
504   if (!VT)
505     return false;
506
507   unsigned NumElems = VT->getNumElements();
508   IRBuilder<> Builder(&SI);
509   Scatterer Op1 = scatter(&SI, SI.getOperand(1));
510   Scatterer Op2 = scatter(&SI, SI.getOperand(2));
511   assert(Op1.size() == NumElems && "Mismatched select");
512   assert(Op2.size() == NumElems && "Mismatched select");
513   ValueVector Res;
514   Res.resize(NumElems);
515
516   if (SI.getOperand(0)->getType()->isVectorTy()) {
517     Scatterer Op0 = scatter(&SI, SI.getOperand(0));
518     assert(Op0.size() == NumElems && "Mismatched select");
519     for (unsigned I = 0; I < NumElems; ++I)
520       Res[I] = Builder.CreateSelect(Op0[I], Op1[I], Op2[I],
521                                     SI.getName() + ".i" + Twine(I));
522   } else {
523     Value *Op0 = SI.getOperand(0);
524     for (unsigned I = 0; I < NumElems; ++I)
525       Res[I] = Builder.CreateSelect(Op0, Op1[I], Op2[I],
526                                     SI.getName() + ".i" + Twine(I));
527   }
528   gather(&SI, Res);
529   return true;
530 }
531
532 bool Scalarizer::visitICmpInst(ICmpInst &ICI) {
533   return splitBinary(ICI, ICmpSplitter(ICI));
534 }
535
536 bool Scalarizer::visitFCmpInst(FCmpInst &FCI) {
537   return splitBinary(FCI, FCmpSplitter(FCI));
538 }
539
540 bool Scalarizer::visitBinaryOperator(BinaryOperator &BO) {
541   return splitBinary(BO, BinarySplitter(BO));
542 }
543
544 bool Scalarizer::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
545   VectorType *VT = dyn_cast<VectorType>(GEPI.getType());
546   if (!VT)
547     return false;
548
549   IRBuilder<> Builder(&GEPI);
550   unsigned NumElems = VT->getNumElements();
551   unsigned NumIndices = GEPI.getNumIndices();
552
553   // The base pointer might be scalar even if it's a vector GEP. In those cases,
554   // splat the pointer into a vector value, and scatter that vector.
555   Value *Op0 = GEPI.getOperand(0);
556   if (!Op0->getType()->isVectorTy())
557     Op0 = Builder.CreateVectorSplat(NumElems, Op0);
558   Scatterer Base = scatter(&GEPI, Op0);
559
560   SmallVector<Scatterer, 8> Ops;
561   Ops.resize(NumIndices);
562   for (unsigned I = 0; I < NumIndices; ++I) {
563     Value *Op = GEPI.getOperand(I + 1);
564
565     // The indices might be scalars even if it's a vector GEP. In those cases,
566     // splat the scalar into a vector value, and scatter that vector.
567     if (!Op->getType()->isVectorTy())
568       Op = Builder.CreateVectorSplat(NumElems, Op);
569
570     Ops[I] = scatter(&GEPI, Op);
571   }
572
573   ValueVector Res;
574   Res.resize(NumElems);
575   for (unsigned I = 0; I < NumElems; ++I) {
576     SmallVector<Value *, 8> Indices;
577     Indices.resize(NumIndices);
578     for (unsigned J = 0; J < NumIndices; ++J)
579       Indices[J] = Ops[J][I];
580     Res[I] = Builder.CreateGEP(GEPI.getSourceElementType(), Base[I], Indices,
581                                GEPI.getName() + ".i" + Twine(I));
582     if (GEPI.isInBounds())
583       if (GetElementPtrInst *NewGEPI = dyn_cast<GetElementPtrInst>(Res[I]))
584         NewGEPI->setIsInBounds();
585   }
586   gather(&GEPI, Res);
587   return true;
588 }
589
590 bool Scalarizer::visitCastInst(CastInst &CI) {
591   VectorType *VT = dyn_cast<VectorType>(CI.getDestTy());
592   if (!VT)
593     return false;
594
595   unsigned NumElems = VT->getNumElements();
596   IRBuilder<> Builder(&CI);
597   Scatterer Op0 = scatter(&CI, CI.getOperand(0));
598   assert(Op0.size() == NumElems && "Mismatched cast");
599   ValueVector Res;
600   Res.resize(NumElems);
601   for (unsigned I = 0; I < NumElems; ++I)
602     Res[I] = Builder.CreateCast(CI.getOpcode(), Op0[I], VT->getElementType(),
603                                 CI.getName() + ".i" + Twine(I));
604   gather(&CI, Res);
605   return true;
606 }
607
608 bool Scalarizer::visitBitCastInst(BitCastInst &BCI) {
609   VectorType *DstVT = dyn_cast<VectorType>(BCI.getDestTy());
610   VectorType *SrcVT = dyn_cast<VectorType>(BCI.getSrcTy());
611   if (!DstVT || !SrcVT)
612     return false;
613
614   unsigned DstNumElems = DstVT->getNumElements();
615   unsigned SrcNumElems = SrcVT->getNumElements();
616   IRBuilder<> Builder(&BCI);
617   Scatterer Op0 = scatter(&BCI, BCI.getOperand(0));
618   ValueVector Res;
619   Res.resize(DstNumElems);
620
621   if (DstNumElems == SrcNumElems) {
622     for (unsigned I = 0; I < DstNumElems; ++I)
623       Res[I] = Builder.CreateBitCast(Op0[I], DstVT->getElementType(),
624                                      BCI.getName() + ".i" + Twine(I));
625   } else if (DstNumElems > SrcNumElems) {
626     // <M x t1> -> <N*M x t2>.  Convert each t1 to <N x t2> and copy the
627     // individual elements to the destination.
628     unsigned FanOut = DstNumElems / SrcNumElems;
629     Type *MidTy = VectorType::get(DstVT->getElementType(), FanOut);
630     unsigned ResI = 0;
631     for (unsigned Op0I = 0; Op0I < SrcNumElems; ++Op0I) {
632       Value *V = Op0[Op0I];
633       Instruction *VI;
634       // Look through any existing bitcasts before converting to <N x t2>.
635       // In the best case, the resulting conversion might be a no-op.
636       while ((VI = dyn_cast<Instruction>(V)) &&
637              VI->getOpcode() == Instruction::BitCast)
638         V = VI->getOperand(0);
639       V = Builder.CreateBitCast(V, MidTy, V->getName() + ".cast");
640       Scatterer Mid = scatter(&BCI, V);
641       for (unsigned MidI = 0; MidI < FanOut; ++MidI)
642         Res[ResI++] = Mid[MidI];
643     }
644   } else {
645     // <N*M x t1> -> <M x t2>.  Convert each group of <N x t1> into a t2.
646     unsigned FanIn = SrcNumElems / DstNumElems;
647     Type *MidTy = VectorType::get(SrcVT->getElementType(), FanIn);
648     unsigned Op0I = 0;
649     for (unsigned ResI = 0; ResI < DstNumElems; ++ResI) {
650       Value *V = UndefValue::get(MidTy);
651       for (unsigned MidI = 0; MidI < FanIn; ++MidI)
652         V = Builder.CreateInsertElement(V, Op0[Op0I++], Builder.getInt32(MidI),
653                                         BCI.getName() + ".i" + Twine(ResI)
654                                         + ".upto" + Twine(MidI));
655       Res[ResI] = Builder.CreateBitCast(V, DstVT->getElementType(),
656                                         BCI.getName() + ".i" + Twine(ResI));
657     }
658   }
659   gather(&BCI, Res);
660   return true;
661 }
662
663 bool Scalarizer::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
664   VectorType *VT = dyn_cast<VectorType>(SVI.getType());
665   if (!VT)
666     return false;
667
668   unsigned NumElems = VT->getNumElements();
669   Scatterer Op0 = scatter(&SVI, SVI.getOperand(0));
670   Scatterer Op1 = scatter(&SVI, SVI.getOperand(1));
671   ValueVector Res;
672   Res.resize(NumElems);
673
674   for (unsigned I = 0; I < NumElems; ++I) {
675     int Selector = SVI.getMaskValue(I);
676     if (Selector < 0)
677       Res[I] = UndefValue::get(VT->getElementType());
678     else if (unsigned(Selector) < Op0.size())
679       Res[I] = Op0[Selector];
680     else
681       Res[I] = Op1[Selector - Op0.size()];
682   }
683   gather(&SVI, Res);
684   return true;
685 }
686
687 bool Scalarizer::visitPHINode(PHINode &PHI) {
688   VectorType *VT = dyn_cast<VectorType>(PHI.getType());
689   if (!VT)
690     return false;
691
692   unsigned NumElems = VT->getNumElements();
693   IRBuilder<> Builder(&PHI);
694   ValueVector Res;
695   Res.resize(NumElems);
696
697   unsigned NumOps = PHI.getNumOperands();
698   for (unsigned I = 0; I < NumElems; ++I)
699     Res[I] = Builder.CreatePHI(VT->getElementType(), NumOps,
700                                PHI.getName() + ".i" + Twine(I));
701
702   for (unsigned I = 0; I < NumOps; ++I) {
703     Scatterer Op = scatter(&PHI, PHI.getIncomingValue(I));
704     BasicBlock *IncomingBlock = PHI.getIncomingBlock(I);
705     for (unsigned J = 0; J < NumElems; ++J)
706       cast<PHINode>(Res[J])->addIncoming(Op[J], IncomingBlock);
707   }
708   gather(&PHI, Res);
709   return true;
710 }
711
712 bool Scalarizer::visitLoadInst(LoadInst &LI) {
713   if (!ScalarizeLoadStore)
714     return false;
715   if (!LI.isSimple())
716     return false;
717
718   VectorLayout Layout;
719   if (!getVectorLayout(LI.getType(), LI.getAlignment(), Layout,
720                        LI.getModule()->getDataLayout()))
721     return false;
722
723   unsigned NumElems = Layout.VecTy->getNumElements();
724   IRBuilder<> Builder(&LI);
725   Scatterer Ptr = scatter(&LI, LI.getPointerOperand());
726   ValueVector Res;
727   Res.resize(NumElems);
728
729   for (unsigned I = 0; I < NumElems; ++I)
730     Res[I] = Builder.CreateAlignedLoad(Ptr[I], Layout.getElemAlign(I),
731                                        LI.getName() + ".i" + Twine(I));
732   gather(&LI, Res);
733   return true;
734 }
735
736 bool Scalarizer::visitStoreInst(StoreInst &SI) {
737   if (!ScalarizeLoadStore)
738     return false;
739   if (!SI.isSimple())
740     return false;
741
742   VectorLayout Layout;
743   Value *FullValue = SI.getValueOperand();
744   if (!getVectorLayout(FullValue->getType(), SI.getAlignment(), Layout,
745                        SI.getModule()->getDataLayout()))
746     return false;
747
748   unsigned NumElems = Layout.VecTy->getNumElements();
749   IRBuilder<> Builder(&SI);
750   Scatterer Ptr = scatter(&SI, SI.getPointerOperand());
751   Scatterer Val = scatter(&SI, FullValue);
752
753   ValueVector Stores;
754   Stores.resize(NumElems);
755   for (unsigned I = 0; I < NumElems; ++I) {
756     unsigned Align = Layout.getElemAlign(I);
757     Stores[I] = Builder.CreateAlignedStore(Val[I], Ptr[I], Align);
758   }
759   transferMetadata(&SI, Stores);
760   return true;
761 }
762
763 bool Scalarizer::visitCallInst(CallInst &CI) {
764   return splitCall(CI);
765 }
766
767 // Delete the instructions that we scalarized.  If a full vector result
768 // is still needed, recreate it using InsertElements.
769 bool Scalarizer::finish() {
770   // The presence of data in Gathered or Scattered indicates changes
771   // made to the Function.
772   if (Gathered.empty() && Scattered.empty())
773     return false;
774   for (const auto &GMI : Gathered) {
775     Instruction *Op = GMI.first;
776     ValueVector &CV = *GMI.second;
777     if (!Op->use_empty()) {
778       // The value is still needed, so recreate it using a series of
779       // InsertElements.
780       Type *Ty = Op->getType();
781       Value *Res = UndefValue::get(Ty);
782       BasicBlock *BB = Op->getParent();
783       unsigned Count = Ty->getVectorNumElements();
784       IRBuilder<> Builder(Op);
785       if (isa<PHINode>(Op))
786         Builder.SetInsertPoint(BB, BB->getFirstInsertionPt());
787       for (unsigned I = 0; I < Count; ++I)
788         Res = Builder.CreateInsertElement(Res, CV[I], Builder.getInt32(I),
789                                           Op->getName() + ".upto" + Twine(I));
790       Res->takeName(Op);
791       Op->replaceAllUsesWith(Res);
792     }
793     Op->eraseFromParent();
794   }
795   Gathered.clear();
796   Scattered.clear();
797   return true;
798 }
799
800 FunctionPass *llvm::createScalarizerPass() {
801   return new Scalarizer();
802 }