]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/Scalar/StraightLineStrengthReduce.cpp
Merge ^/head r310169 through r310190.
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / Scalar / StraightLineStrengthReduce.cpp
1 //===-- StraightLineStrengthReduce.cpp - ------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements straight-line strength reduction (SLSR). Unlike loop
11 // strength reduction, this algorithm is designed to reduce arithmetic
12 // redundancy in straight-line code instead of loops. It has proven to be
13 // effective in simplifying arithmetic statements derived from an unrolled loop.
14 // It can also simplify the logic of SeparateConstOffsetFromGEP.
15 //
16 // There are many optimizations we can perform in the domain of SLSR. This file
17 // for now contains only an initial step. Specifically, we look for strength
18 // reduction candidates in the following forms:
19 //
20 // Form 1: B + i * S
21 // Form 2: (B + i) * S
22 // Form 3: &B[i * S]
23 //
24 // where S is an integer variable, and i is a constant integer. If we found two
25 // candidates S1 and S2 in the same form and S1 dominates S2, we may rewrite S2
26 // in a simpler way with respect to S1. For example,
27 //
28 // S1: X = B + i * S
29 // S2: Y = B + i' * S   => X + (i' - i) * S
30 //
31 // S1: X = (B + i) * S
32 // S2: Y = (B + i') * S => X + (i' - i) * S
33 //
34 // S1: X = &B[i * S]
35 // S2: Y = &B[i' * S]   => &X[(i' - i) * S]
36 //
37 // Note: (i' - i) * S is folded to the extent possible.
38 //
39 // This rewriting is in general a good idea. The code patterns we focus on
40 // usually come from loop unrolling, so (i' - i) * S is likely the same
41 // across iterations and can be reused. When that happens, the optimized form
42 // takes only one add starting from the second iteration.
43 //
44 // When such rewriting is possible, we call S1 a "basis" of S2. When S2 has
45 // multiple bases, we choose to rewrite S2 with respect to its "immediate"
46 // basis, the basis that is the closest ancestor in the dominator tree.
47 //
48 // TODO:
49 //
50 // - Floating point arithmetics when fast math is enabled.
51 //
52 // - SLSR may decrease ILP at the architecture level. Targets that are very
53 //   sensitive to ILP may want to disable it. Having SLSR to consider ILP is
54 //   left as future work.
55 //
56 // - When (i' - i) is constant but i and i' are not, we could still perform
57 //   SLSR.
58 #include <vector>
59
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/Analysis/TargetTransformInfo.h"
62 #include "llvm/Analysis/ValueTracking.h"
63 #include "llvm/IR/DataLayout.h"
64 #include "llvm/IR/Dominators.h"
65 #include "llvm/IR/IRBuilder.h"
66 #include "llvm/IR/Module.h"
67 #include "llvm/IR/PatternMatch.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Transforms/Scalar.h"
70 #include "llvm/Transforms/Utils/Local.h"
71
72 using namespace llvm;
73 using namespace PatternMatch;
74
75 namespace {
76
77 static const unsigned UnknownAddressSpace = ~0u;
78
79 class StraightLineStrengthReduce : public FunctionPass {
80 public:
81   // SLSR candidate. Such a candidate must be in one of the forms described in
82   // the header comments.
83   struct Candidate : public ilist_node<Candidate> {
84     enum Kind {
85       Invalid, // reserved for the default constructor
86       Add,     // B + i * S
87       Mul,     // (B + i) * S
88       GEP,     // &B[..][i * S][..]
89     };
90
91     Candidate()
92         : CandidateKind(Invalid), Base(nullptr), Index(nullptr),
93           Stride(nullptr), Ins(nullptr), Basis(nullptr) {}
94     Candidate(Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
95               Instruction *I)
96         : CandidateKind(CT), Base(B), Index(Idx), Stride(S), Ins(I),
97           Basis(nullptr) {}
98     Kind CandidateKind;
99     const SCEV *Base;
100     // Note that Index and Stride of a GEP candidate do not necessarily have the
101     // same integer type. In that case, during rewriting, Stride will be
102     // sign-extended or truncated to Index's type.
103     ConstantInt *Index;
104     Value *Stride;
105     // The instruction this candidate corresponds to. It helps us to rewrite a
106     // candidate with respect to its immediate basis. Note that one instruction
107     // can correspond to multiple candidates depending on how you associate the
108     // expression. For instance,
109     //
110     // (a + 1) * (b + 2)
111     //
112     // can be treated as
113     //
114     // <Base: a, Index: 1, Stride: b + 2>
115     //
116     // or
117     //
118     // <Base: b, Index: 2, Stride: a + 1>
119     Instruction *Ins;
120     // Points to the immediate basis of this candidate, or nullptr if we cannot
121     // find any basis for this candidate.
122     Candidate *Basis;
123   };
124
125   static char ID;
126
127   StraightLineStrengthReduce()
128       : FunctionPass(ID), DL(nullptr), DT(nullptr), TTI(nullptr) {
129     initializeStraightLineStrengthReducePass(*PassRegistry::getPassRegistry());
130   }
131
132   void getAnalysisUsage(AnalysisUsage &AU) const override {
133     AU.addRequired<DominatorTreeWrapperPass>();
134     AU.addRequired<ScalarEvolutionWrapperPass>();
135     AU.addRequired<TargetTransformInfoWrapperPass>();
136     // We do not modify the shape of the CFG.
137     AU.setPreservesCFG();
138   }
139
140   bool doInitialization(Module &M) override {
141     DL = &M.getDataLayout();
142     return false;
143   }
144
145   bool runOnFunction(Function &F) override;
146
147 private:
148   // Returns true if Basis is a basis for C, i.e., Basis dominates C and they
149   // share the same base and stride.
150   bool isBasisFor(const Candidate &Basis, const Candidate &C);
151   // Returns whether the candidate can be folded into an addressing mode.
152   bool isFoldable(const Candidate &C, TargetTransformInfo *TTI,
153                   const DataLayout *DL);
154   // Returns true if C is already in a simplest form and not worth being
155   // rewritten.
156   bool isSimplestForm(const Candidate &C);
157   // Checks whether I is in a candidate form. If so, adds all the matching forms
158   // to Candidates, and tries to find the immediate basis for each of them.
159   void allocateCandidatesAndFindBasis(Instruction *I);
160   // Allocate candidates and find bases for Add instructions.
161   void allocateCandidatesAndFindBasisForAdd(Instruction *I);
162   // Given I = LHS + RHS, factors RHS into i * S and makes (LHS + i * S) a
163   // candidate.
164   void allocateCandidatesAndFindBasisForAdd(Value *LHS, Value *RHS,
165                                             Instruction *I);
166   // Allocate candidates and find bases for Mul instructions.
167   void allocateCandidatesAndFindBasisForMul(Instruction *I);
168   // Splits LHS into Base + Index and, if succeeds, calls
169   // allocateCandidatesAndFindBasis.
170   void allocateCandidatesAndFindBasisForMul(Value *LHS, Value *RHS,
171                                             Instruction *I);
172   // Allocate candidates and find bases for GetElementPtr instructions.
173   void allocateCandidatesAndFindBasisForGEP(GetElementPtrInst *GEP);
174   // A helper function that scales Idx with ElementSize before invoking
175   // allocateCandidatesAndFindBasis.
176   void allocateCandidatesAndFindBasisForGEP(const SCEV *B, ConstantInt *Idx,
177                                             Value *S, uint64_t ElementSize,
178                                             Instruction *I);
179   // Adds the given form <CT, B, Idx, S> to Candidates, and finds its immediate
180   // basis.
181   void allocateCandidatesAndFindBasis(Candidate::Kind CT, const SCEV *B,
182                                       ConstantInt *Idx, Value *S,
183                                       Instruction *I);
184   // Rewrites candidate C with respect to Basis.
185   void rewriteCandidateWithBasis(const Candidate &C, const Candidate &Basis);
186   // A helper function that factors ArrayIdx to a product of a stride and a
187   // constant index, and invokes allocateCandidatesAndFindBasis with the
188   // factorings.
189   void factorArrayIndex(Value *ArrayIdx, const SCEV *Base, uint64_t ElementSize,
190                         GetElementPtrInst *GEP);
191   // Emit code that computes the "bump" from Basis to C. If the candidate is a
192   // GEP and the bump is not divisible by the element size of the GEP, this
193   // function sets the BumpWithUglyGEP flag to notify its caller to bump the
194   // basis using an ugly GEP.
195   static Value *emitBump(const Candidate &Basis, const Candidate &C,
196                          IRBuilder<> &Builder, const DataLayout *DL,
197                          bool &BumpWithUglyGEP);
198
199   const DataLayout *DL;
200   DominatorTree *DT;
201   ScalarEvolution *SE;
202   TargetTransformInfo *TTI;
203   ilist<Candidate> Candidates;
204   // Temporarily holds all instructions that are unlinked (but not deleted) by
205   // rewriteCandidateWithBasis. These instructions will be actually removed
206   // after all rewriting finishes.
207   std::vector<Instruction *> UnlinkedInstructions;
208 };
209 }  // anonymous namespace
210
211 char StraightLineStrengthReduce::ID = 0;
212 INITIALIZE_PASS_BEGIN(StraightLineStrengthReduce, "slsr",
213                       "Straight line strength reduction", false, false)
214 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
215 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
216 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
217 INITIALIZE_PASS_END(StraightLineStrengthReduce, "slsr",
218                     "Straight line strength reduction", false, false)
219
220 FunctionPass *llvm::createStraightLineStrengthReducePass() {
221   return new StraightLineStrengthReduce();
222 }
223
224 bool StraightLineStrengthReduce::isBasisFor(const Candidate &Basis,
225                                             const Candidate &C) {
226   return (Basis.Ins != C.Ins && // skip the same instruction
227           // They must have the same type too. Basis.Base == C.Base doesn't
228           // guarantee their types are the same (PR23975).
229           Basis.Ins->getType() == C.Ins->getType() &&
230           // Basis must dominate C in order to rewrite C with respect to Basis.
231           DT->dominates(Basis.Ins->getParent(), C.Ins->getParent()) &&
232           // They share the same base, stride, and candidate kind.
233           Basis.Base == C.Base && Basis.Stride == C.Stride &&
234           Basis.CandidateKind == C.CandidateKind);
235 }
236
237 static bool isGEPFoldable(GetElementPtrInst *GEP,
238                           const TargetTransformInfo *TTI) {
239   SmallVector<const Value*, 4> Indices;
240   for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I)
241     Indices.push_back(*I);
242   return TTI->getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(),
243                          Indices) == TargetTransformInfo::TCC_Free;
244 }
245
246 // Returns whether (Base + Index * Stride) can be folded to an addressing mode.
247 static bool isAddFoldable(const SCEV *Base, ConstantInt *Index, Value *Stride,
248                           TargetTransformInfo *TTI) {
249   // Index->getSExtValue() may crash if Index is wider than 64-bit.
250   return Index->getBitWidth() <= 64 &&
251          TTI->isLegalAddressingMode(Base->getType(), nullptr, 0, true,
252                                     Index->getSExtValue(), UnknownAddressSpace);
253 }
254
255 bool StraightLineStrengthReduce::isFoldable(const Candidate &C,
256                                             TargetTransformInfo *TTI,
257                                             const DataLayout *DL) {
258   if (C.CandidateKind == Candidate::Add)
259     return isAddFoldable(C.Base, C.Index, C.Stride, TTI);
260   if (C.CandidateKind == Candidate::GEP)
261     return isGEPFoldable(cast<GetElementPtrInst>(C.Ins), TTI);
262   return false;
263 }
264
265 // Returns true if GEP has zero or one non-zero index.
266 static bool hasOnlyOneNonZeroIndex(GetElementPtrInst *GEP) {
267   unsigned NumNonZeroIndices = 0;
268   for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) {
269     ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I);
270     if (ConstIdx == nullptr || !ConstIdx->isZero())
271       ++NumNonZeroIndices;
272   }
273   return NumNonZeroIndices <= 1;
274 }
275
276 bool StraightLineStrengthReduce::isSimplestForm(const Candidate &C) {
277   if (C.CandidateKind == Candidate::Add) {
278     // B + 1 * S or B + (-1) * S
279     return C.Index->isOne() || C.Index->isMinusOne();
280   }
281   if (C.CandidateKind == Candidate::Mul) {
282     // (B + 0) * S
283     return C.Index->isZero();
284   }
285   if (C.CandidateKind == Candidate::GEP) {
286     // (char*)B + S or (char*)B - S
287     return ((C.Index->isOne() || C.Index->isMinusOne()) &&
288             hasOnlyOneNonZeroIndex(cast<GetElementPtrInst>(C.Ins)));
289   }
290   return false;
291 }
292
293 // TODO: We currently implement an algorithm whose time complexity is linear in
294 // the number of existing candidates. However, we could do better by using
295 // ScopedHashTable. Specifically, while traversing the dominator tree, we could
296 // maintain all the candidates that dominate the basic block being traversed in
297 // a ScopedHashTable. This hash table is indexed by the base and the stride of
298 // a candidate. Therefore, finding the immediate basis of a candidate boils down
299 // to one hash-table look up.
300 void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
301     Candidate::Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
302     Instruction *I) {
303   Candidate C(CT, B, Idx, S, I);
304   // SLSR can complicate an instruction in two cases:
305   //
306   // 1. If we can fold I into an addressing mode, computing I is likely free or
307   // takes only one instruction.
308   //
309   // 2. I is already in a simplest form. For example, when
310   //      X = B + 8 * S
311   //      Y = B + S,
312   //    rewriting Y to X - 7 * S is probably a bad idea.
313   //
314   // In the above cases, we still add I to the candidate list so that I can be
315   // the basis of other candidates, but we leave I's basis blank so that I
316   // won't be rewritten.
317   if (!isFoldable(C, TTI, DL) && !isSimplestForm(C)) {
318     // Try to compute the immediate basis of C.
319     unsigned NumIterations = 0;
320     // Limit the scan radius to avoid running in quadratice time.
321     static const unsigned MaxNumIterations = 50;
322     for (auto Basis = Candidates.rbegin();
323          Basis != Candidates.rend() && NumIterations < MaxNumIterations;
324          ++Basis, ++NumIterations) {
325       if (isBasisFor(*Basis, C)) {
326         C.Basis = &(*Basis);
327         break;
328       }
329     }
330   }
331   // Regardless of whether we find a basis for C, we need to push C to the
332   // candidate list so that it can be the basis of other candidates.
333   Candidates.push_back(C);
334 }
335
336 void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
337     Instruction *I) {
338   switch (I->getOpcode()) {
339   case Instruction::Add:
340     allocateCandidatesAndFindBasisForAdd(I);
341     break;
342   case Instruction::Mul:
343     allocateCandidatesAndFindBasisForMul(I);
344     break;
345   case Instruction::GetElementPtr:
346     allocateCandidatesAndFindBasisForGEP(cast<GetElementPtrInst>(I));
347     break;
348   }
349 }
350
351 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
352     Instruction *I) {
353   // Try matching B + i * S.
354   if (!isa<IntegerType>(I->getType()))
355     return;
356
357   assert(I->getNumOperands() == 2 && "isn't I an add?");
358   Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
359   allocateCandidatesAndFindBasisForAdd(LHS, RHS, I);
360   if (LHS != RHS)
361     allocateCandidatesAndFindBasisForAdd(RHS, LHS, I);
362 }
363
364 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
365     Value *LHS, Value *RHS, Instruction *I) {
366   Value *S = nullptr;
367   ConstantInt *Idx = nullptr;
368   if (match(RHS, m_Mul(m_Value(S), m_ConstantInt(Idx)))) {
369     // I = LHS + RHS = LHS + Idx * S
370     allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
371   } else if (match(RHS, m_Shl(m_Value(S), m_ConstantInt(Idx)))) {
372     // I = LHS + RHS = LHS + (S << Idx) = LHS + S * (1 << Idx)
373     APInt One(Idx->getBitWidth(), 1);
374     Idx = ConstantInt::get(Idx->getContext(), One << Idx->getValue());
375     allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
376   } else {
377     // At least, I = LHS + 1 * RHS
378     ConstantInt *One = ConstantInt::get(cast<IntegerType>(I->getType()), 1);
379     allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), One, RHS,
380                                    I);
381   }
382 }
383
384 // Returns true if A matches B + C where C is constant.
385 static bool matchesAdd(Value *A, Value *&B, ConstantInt *&C) {
386   return (match(A, m_Add(m_Value(B), m_ConstantInt(C))) ||
387           match(A, m_Add(m_ConstantInt(C), m_Value(B))));
388 }
389
390 // Returns true if A matches B | C where C is constant.
391 static bool matchesOr(Value *A, Value *&B, ConstantInt *&C) {
392   return (match(A, m_Or(m_Value(B), m_ConstantInt(C))) ||
393           match(A, m_Or(m_ConstantInt(C), m_Value(B))));
394 }
395
396 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
397     Value *LHS, Value *RHS, Instruction *I) {
398   Value *B = nullptr;
399   ConstantInt *Idx = nullptr;
400   if (matchesAdd(LHS, B, Idx)) {
401     // If LHS is in the form of "Base + Index", then I is in the form of
402     // "(Base + Index) * RHS".
403     allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
404   } else if (matchesOr(LHS, B, Idx) && haveNoCommonBitsSet(B, Idx, *DL)) {
405     // If LHS is in the form of "Base | Index" and Base and Index have no common
406     // bits set, then
407     //   Base | Index = Base + Index
408     // and I is thus in the form of "(Base + Index) * RHS".
409     allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
410   } else {
411     // Otherwise, at least try the form (LHS + 0) * RHS.
412     ConstantInt *Zero = ConstantInt::get(cast<IntegerType>(I->getType()), 0);
413     allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(LHS), Zero, RHS,
414                                    I);
415   }
416 }
417
418 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
419     Instruction *I) {
420   // Try matching (B + i) * S.
421   // TODO: we could extend SLSR to float and vector types.
422   if (!isa<IntegerType>(I->getType()))
423     return;
424
425   assert(I->getNumOperands() == 2 && "isn't I a mul?");
426   Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
427   allocateCandidatesAndFindBasisForMul(LHS, RHS, I);
428   if (LHS != RHS) {
429     // Symmetrically, try to split RHS to Base + Index.
430     allocateCandidatesAndFindBasisForMul(RHS, LHS, I);
431   }
432 }
433
434 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
435     const SCEV *B, ConstantInt *Idx, Value *S, uint64_t ElementSize,
436     Instruction *I) {
437   // I = B + sext(Idx *nsw S) * ElementSize
438   //   = B + (sext(Idx) * sext(S)) * ElementSize
439   //   = B + (sext(Idx) * ElementSize) * sext(S)
440   // Casting to IntegerType is safe because we skipped vector GEPs.
441   IntegerType *IntPtrTy = cast<IntegerType>(DL->getIntPtrType(I->getType()));
442   ConstantInt *ScaledIdx = ConstantInt::get(
443       IntPtrTy, Idx->getSExtValue() * (int64_t)ElementSize, true);
444   allocateCandidatesAndFindBasis(Candidate::GEP, B, ScaledIdx, S, I);
445 }
446
447 void StraightLineStrengthReduce::factorArrayIndex(Value *ArrayIdx,
448                                                   const SCEV *Base,
449                                                   uint64_t ElementSize,
450                                                   GetElementPtrInst *GEP) {
451   // At least, ArrayIdx = ArrayIdx *nsw 1.
452   allocateCandidatesAndFindBasisForGEP(
453       Base, ConstantInt::get(cast<IntegerType>(ArrayIdx->getType()), 1),
454       ArrayIdx, ElementSize, GEP);
455   Value *LHS = nullptr;
456   ConstantInt *RHS = nullptr;
457   // One alternative is matching the SCEV of ArrayIdx instead of ArrayIdx
458   // itself. This would allow us to handle the shl case for free. However,
459   // matching SCEVs has two issues:
460   //
461   // 1. this would complicate rewriting because the rewriting procedure
462   // would have to translate SCEVs back to IR instructions. This translation
463   // is difficult when LHS is further evaluated to a composite SCEV.
464   //
465   // 2. ScalarEvolution is designed to be control-flow oblivious. It tends
466   // to strip nsw/nuw flags which are critical for SLSR to trace into
467   // sext'ed multiplication.
468   if (match(ArrayIdx, m_NSWMul(m_Value(LHS), m_ConstantInt(RHS)))) {
469     // SLSR is currently unsafe if i * S may overflow.
470     // GEP = Base + sext(LHS *nsw RHS) * ElementSize
471     allocateCandidatesAndFindBasisForGEP(Base, RHS, LHS, ElementSize, GEP);
472   } else if (match(ArrayIdx, m_NSWShl(m_Value(LHS), m_ConstantInt(RHS)))) {
473     // GEP = Base + sext(LHS <<nsw RHS) * ElementSize
474     //     = Base + sext(LHS *nsw (1 << RHS)) * ElementSize
475     APInt One(RHS->getBitWidth(), 1);
476     ConstantInt *PowerOf2 =
477         ConstantInt::get(RHS->getContext(), One << RHS->getValue());
478     allocateCandidatesAndFindBasisForGEP(Base, PowerOf2, LHS, ElementSize, GEP);
479   }
480 }
481
482 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
483     GetElementPtrInst *GEP) {
484   // TODO: handle vector GEPs
485   if (GEP->getType()->isVectorTy())
486     return;
487
488   SmallVector<const SCEV *, 4> IndexExprs;
489   for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I)
490     IndexExprs.push_back(SE->getSCEV(*I));
491
492   gep_type_iterator GTI = gep_type_begin(GEP);
493   for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I) {
494     if (!isa<SequentialType>(*GTI++))
495       continue;
496
497     const SCEV *OrigIndexExpr = IndexExprs[I - 1];
498     IndexExprs[I - 1] = SE->getZero(OrigIndexExpr->getType());
499
500     // The base of this candidate is GEP's base plus the offsets of all
501     // indices except this current one.
502     const SCEV *BaseExpr = SE->getGEPExpr(GEP->getSourceElementType(),
503                                           SE->getSCEV(GEP->getPointerOperand()),
504                                           IndexExprs, GEP->isInBounds());
505     Value *ArrayIdx = GEP->getOperand(I);
506     uint64_t ElementSize = DL->getTypeAllocSize(*GTI);
507     if (ArrayIdx->getType()->getIntegerBitWidth() <=
508         DL->getPointerSizeInBits(GEP->getAddressSpace())) {
509       // Skip factoring if ArrayIdx is wider than the pointer size, because
510       // ArrayIdx is implicitly truncated to the pointer size.
511       factorArrayIndex(ArrayIdx, BaseExpr, ElementSize, GEP);
512     }
513     // When ArrayIdx is the sext of a value, we try to factor that value as
514     // well.  Handling this case is important because array indices are
515     // typically sign-extended to the pointer size.
516     Value *TruncatedArrayIdx = nullptr;
517     if (match(ArrayIdx, m_SExt(m_Value(TruncatedArrayIdx))) &&
518         TruncatedArrayIdx->getType()->getIntegerBitWidth() <=
519             DL->getPointerSizeInBits(GEP->getAddressSpace())) {
520       // Skip factoring if TruncatedArrayIdx is wider than the pointer size,
521       // because TruncatedArrayIdx is implicitly truncated to the pointer size.
522       factorArrayIndex(TruncatedArrayIdx, BaseExpr, ElementSize, GEP);
523     }
524
525     IndexExprs[I - 1] = OrigIndexExpr;
526   }
527 }
528
529 // A helper function that unifies the bitwidth of A and B.
530 static void unifyBitWidth(APInt &A, APInt &B) {
531   if (A.getBitWidth() < B.getBitWidth())
532     A = A.sext(B.getBitWidth());
533   else if (A.getBitWidth() > B.getBitWidth())
534     B = B.sext(A.getBitWidth());
535 }
536
537 Value *StraightLineStrengthReduce::emitBump(const Candidate &Basis,
538                                             const Candidate &C,
539                                             IRBuilder<> &Builder,
540                                             const DataLayout *DL,
541                                             bool &BumpWithUglyGEP) {
542   APInt Idx = C.Index->getValue(), BasisIdx = Basis.Index->getValue();
543   unifyBitWidth(Idx, BasisIdx);
544   APInt IndexOffset = Idx - BasisIdx;
545
546   BumpWithUglyGEP = false;
547   if (Basis.CandidateKind == Candidate::GEP) {
548     APInt ElementSize(
549         IndexOffset.getBitWidth(),
550         DL->getTypeAllocSize(
551             cast<GetElementPtrInst>(Basis.Ins)->getResultElementType()));
552     APInt Q, R;
553     APInt::sdivrem(IndexOffset, ElementSize, Q, R);
554     if (R == 0)
555       IndexOffset = Q;
556     else
557       BumpWithUglyGEP = true;
558   }
559
560   // Compute Bump = C - Basis = (i' - i) * S.
561   // Common case 1: if (i' - i) is 1, Bump = S.
562   if (IndexOffset == 1)
563     return C.Stride;
564   // Common case 2: if (i' - i) is -1, Bump = -S.
565   if (IndexOffset.isAllOnesValue())
566     return Builder.CreateNeg(C.Stride);
567
568   // Otherwise, Bump = (i' - i) * sext/trunc(S). Note that (i' - i) and S may
569   // have different bit widths.
570   IntegerType *DeltaType =
571       IntegerType::get(Basis.Ins->getContext(), IndexOffset.getBitWidth());
572   Value *ExtendedStride = Builder.CreateSExtOrTrunc(C.Stride, DeltaType);
573   if (IndexOffset.isPowerOf2()) {
574     // If (i' - i) is a power of 2, Bump = sext/trunc(S) << log(i' - i).
575     ConstantInt *Exponent = ConstantInt::get(DeltaType, IndexOffset.logBase2());
576     return Builder.CreateShl(ExtendedStride, Exponent);
577   }
578   if ((-IndexOffset).isPowerOf2()) {
579     // If (i - i') is a power of 2, Bump = -sext/trunc(S) << log(i' - i).
580     ConstantInt *Exponent =
581         ConstantInt::get(DeltaType, (-IndexOffset).logBase2());
582     return Builder.CreateNeg(Builder.CreateShl(ExtendedStride, Exponent));
583   }
584   Constant *Delta = ConstantInt::get(DeltaType, IndexOffset);
585   return Builder.CreateMul(ExtendedStride, Delta);
586 }
587
588 void StraightLineStrengthReduce::rewriteCandidateWithBasis(
589     const Candidate &C, const Candidate &Basis) {
590   assert(C.CandidateKind == Basis.CandidateKind && C.Base == Basis.Base &&
591          C.Stride == Basis.Stride);
592   // We run rewriteCandidateWithBasis on all candidates in a post-order, so the
593   // basis of a candidate cannot be unlinked before the candidate.
594   assert(Basis.Ins->getParent() != nullptr && "the basis is unlinked");
595
596   // An instruction can correspond to multiple candidates. Therefore, instead of
597   // simply deleting an instruction when we rewrite it, we mark its parent as
598   // nullptr (i.e. unlink it) so that we can skip the candidates whose
599   // instruction is already rewritten.
600   if (!C.Ins->getParent())
601     return;
602
603   IRBuilder<> Builder(C.Ins);
604   bool BumpWithUglyGEP;
605   Value *Bump = emitBump(Basis, C, Builder, DL, BumpWithUglyGEP);
606   Value *Reduced = nullptr; // equivalent to but weaker than C.Ins
607   switch (C.CandidateKind) {
608   case Candidate::Add:
609   case Candidate::Mul:
610     // C = Basis + Bump
611     if (BinaryOperator::isNeg(Bump)) {
612       // If Bump is a neg instruction, emit C = Basis - (-Bump).
613       Reduced =
614           Builder.CreateSub(Basis.Ins, BinaryOperator::getNegArgument(Bump));
615       // We only use the negative argument of Bump, and Bump itself may be
616       // trivially dead.
617       RecursivelyDeleteTriviallyDeadInstructions(Bump);
618     } else {
619       // It's tempting to preserve nsw on Bump and/or Reduced. However, it's
620       // usually unsound, e.g.,
621       //
622       // X = (-2 +nsw 1) *nsw INT_MAX
623       // Y = (-2 +nsw 3) *nsw INT_MAX
624       //   =>
625       // Y = X + 2 * INT_MAX
626       //
627       // Neither + and * in the resultant expression are nsw.
628       Reduced = Builder.CreateAdd(Basis.Ins, Bump);
629     }
630     break;
631   case Candidate::GEP:
632     {
633       Type *IntPtrTy = DL->getIntPtrType(C.Ins->getType());
634       bool InBounds = cast<GetElementPtrInst>(C.Ins)->isInBounds();
635       if (BumpWithUglyGEP) {
636         // C = (char *)Basis + Bump
637         unsigned AS = Basis.Ins->getType()->getPointerAddressSpace();
638         Type *CharTy = Type::getInt8PtrTy(Basis.Ins->getContext(), AS);
639         Reduced = Builder.CreateBitCast(Basis.Ins, CharTy);
640         if (InBounds)
641           Reduced =
642               Builder.CreateInBoundsGEP(Builder.getInt8Ty(), Reduced, Bump);
643         else
644           Reduced = Builder.CreateGEP(Builder.getInt8Ty(), Reduced, Bump);
645         Reduced = Builder.CreateBitCast(Reduced, C.Ins->getType());
646       } else {
647         // C = gep Basis, Bump
648         // Canonicalize bump to pointer size.
649         Bump = Builder.CreateSExtOrTrunc(Bump, IntPtrTy);
650         if (InBounds)
651           Reduced = Builder.CreateInBoundsGEP(nullptr, Basis.Ins, Bump);
652         else
653           Reduced = Builder.CreateGEP(nullptr, Basis.Ins, Bump);
654       }
655     }
656     break;
657   default:
658     llvm_unreachable("C.CandidateKind is invalid");
659   };
660   Reduced->takeName(C.Ins);
661   C.Ins->replaceAllUsesWith(Reduced);
662   // Unlink C.Ins so that we can skip other candidates also corresponding to
663   // C.Ins. The actual deletion is postponed to the end of runOnFunction.
664   C.Ins->removeFromParent();
665   UnlinkedInstructions.push_back(C.Ins);
666 }
667
668 bool StraightLineStrengthReduce::runOnFunction(Function &F) {
669   if (skipFunction(F))
670     return false;
671
672   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
673   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
674   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
675   // Traverse the dominator tree in the depth-first order. This order makes sure
676   // all bases of a candidate are in Candidates when we process it.
677   for (auto node = GraphTraits<DominatorTree *>::nodes_begin(DT);
678        node != GraphTraits<DominatorTree *>::nodes_end(DT); ++node) {
679     for (auto &I : *node->getBlock())
680       allocateCandidatesAndFindBasis(&I);
681   }
682
683   // Rewrite candidates in the reverse depth-first order. This order makes sure
684   // a candidate being rewritten is not a basis for any other candidate.
685   while (!Candidates.empty()) {
686     const Candidate &C = Candidates.back();
687     if (C.Basis != nullptr) {
688       rewriteCandidateWithBasis(C, *C.Basis);
689     }
690     Candidates.pop_back();
691   }
692
693   // Delete all unlink instructions.
694   for (auto *UnlinkedInst : UnlinkedInstructions) {
695     for (unsigned I = 0, E = UnlinkedInst->getNumOperands(); I != E; ++I) {
696       Value *Op = UnlinkedInst->getOperand(I);
697       UnlinkedInst->setOperand(I, nullptr);
698       RecursivelyDeleteTriviallyDeadInstructions(Op);
699     }
700     delete UnlinkedInst;
701   }
702   bool Ret = !UnlinkedInstructions.empty();
703   UnlinkedInstructions.clear();
704   return Ret;
705 }