]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/Scalar/StraightLineStrengthReduce.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / Scalar / StraightLineStrengthReduce.cpp
1 //===- StraightLineStrengthReduce.cpp - -----------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements straight-line strength reduction (SLSR). Unlike loop
11 // strength reduction, this algorithm is designed to reduce arithmetic
12 // redundancy in straight-line code instead of loops. It has proven to be
13 // effective in simplifying arithmetic statements derived from an unrolled loop.
14 // It can also simplify the logic of SeparateConstOffsetFromGEP.
15 //
16 // There are many optimizations we can perform in the domain of SLSR. This file
17 // for now contains only an initial step. Specifically, we look for strength
18 // reduction candidates in the following forms:
19 //
20 // Form 1: B + i * S
21 // Form 2: (B + i) * S
22 // Form 3: &B[i * S]
23 //
24 // where S is an integer variable, and i is a constant integer. If we found two
25 // candidates S1 and S2 in the same form and S1 dominates S2, we may rewrite S2
26 // in a simpler way with respect to S1. For example,
27 //
28 // S1: X = B + i * S
29 // S2: Y = B + i' * S   => X + (i' - i) * S
30 //
31 // S1: X = (B + i) * S
32 // S2: Y = (B + i') * S => X + (i' - i) * S
33 //
34 // S1: X = &B[i * S]
35 // S2: Y = &B[i' * S]   => &X[(i' - i) * S]
36 //
37 // Note: (i' - i) * S is folded to the extent possible.
38 //
39 // This rewriting is in general a good idea. The code patterns we focus on
40 // usually come from loop unrolling, so (i' - i) * S is likely the same
41 // across iterations and can be reused. When that happens, the optimized form
42 // takes only one add starting from the second iteration.
43 //
44 // When such rewriting is possible, we call S1 a "basis" of S2. When S2 has
45 // multiple bases, we choose to rewrite S2 with respect to its "immediate"
46 // basis, the basis that is the closest ancestor in the dominator tree.
47 //
48 // TODO:
49 //
50 // - Floating point arithmetics when fast math is enabled.
51 //
52 // - SLSR may decrease ILP at the architecture level. Targets that are very
53 //   sensitive to ILP may want to disable it. Having SLSR to consider ILP is
54 //   left as future work.
55 //
56 // - When (i' - i) is constant but i and i' are not, we could still perform
57 //   SLSR.
58
59 #include "llvm/ADT/APInt.h"
60 #include "llvm/ADT/DepthFirstIterator.h"
61 #include "llvm/ADT/SmallVector.h"
62 #include "llvm/Analysis/ScalarEvolution.h"
63 #include "llvm/Analysis/TargetTransformInfo.h"
64 #include "llvm/Transforms/Utils/Local.h"
65 #include "llvm/Analysis/ValueTracking.h"
66 #include "llvm/IR/Constants.h"
67 #include "llvm/IR/DataLayout.h"
68 #include "llvm/IR/DerivedTypes.h"
69 #include "llvm/IR/Dominators.h"
70 #include "llvm/IR/GetElementPtrTypeIterator.h"
71 #include "llvm/IR/IRBuilder.h"
72 #include "llvm/IR/InstrTypes.h"
73 #include "llvm/IR/Instruction.h"
74 #include "llvm/IR/Instructions.h"
75 #include "llvm/IR/Module.h"
76 #include "llvm/IR/Operator.h"
77 #include "llvm/IR/PatternMatch.h"
78 #include "llvm/IR/Type.h"
79 #include "llvm/IR/Value.h"
80 #include "llvm/Pass.h"
81 #include "llvm/Support/Casting.h"
82 #include "llvm/Support/ErrorHandling.h"
83 #include "llvm/Transforms/Scalar.h"
84 #include <cassert>
85 #include <cstdint>
86 #include <limits>
87 #include <list>
88 #include <vector>
89
90 using namespace llvm;
91 using namespace PatternMatch;
92
93 static const unsigned UnknownAddressSpace =
94     std::numeric_limits<unsigned>::max();
95
96 namespace {
97
98 class StraightLineStrengthReduce : public FunctionPass {
99 public:
100   // SLSR candidate. Such a candidate must be in one of the forms described in
101   // the header comments.
102   struct Candidate {
103     enum Kind {
104       Invalid, // reserved for the default constructor
105       Add,     // B + i * S
106       Mul,     // (B + i) * S
107       GEP,     // &B[..][i * S][..]
108     };
109
110     Candidate() = default;
111     Candidate(Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
112               Instruction *I)
113         : CandidateKind(CT), Base(B), Index(Idx), Stride(S), Ins(I) {}
114
115     Kind CandidateKind = Invalid;
116
117     const SCEV *Base = nullptr;
118
119     // Note that Index and Stride of a GEP candidate do not necessarily have the
120     // same integer type. In that case, during rewriting, Stride will be
121     // sign-extended or truncated to Index's type.
122     ConstantInt *Index = nullptr;
123
124     Value *Stride = nullptr;
125
126     // The instruction this candidate corresponds to. It helps us to rewrite a
127     // candidate with respect to its immediate basis. Note that one instruction
128     // can correspond to multiple candidates depending on how you associate the
129     // expression. For instance,
130     //
131     // (a + 1) * (b + 2)
132     //
133     // can be treated as
134     //
135     // <Base: a, Index: 1, Stride: b + 2>
136     //
137     // or
138     //
139     // <Base: b, Index: 2, Stride: a + 1>
140     Instruction *Ins = nullptr;
141
142     // Points to the immediate basis of this candidate, or nullptr if we cannot
143     // find any basis for this candidate.
144     Candidate *Basis = nullptr;
145   };
146
147   static char ID;
148
149   StraightLineStrengthReduce() : FunctionPass(ID) {
150     initializeStraightLineStrengthReducePass(*PassRegistry::getPassRegistry());
151   }
152
153   void getAnalysisUsage(AnalysisUsage &AU) const override {
154     AU.addRequired<DominatorTreeWrapperPass>();
155     AU.addRequired<ScalarEvolutionWrapperPass>();
156     AU.addRequired<TargetTransformInfoWrapperPass>();
157     // We do not modify the shape of the CFG.
158     AU.setPreservesCFG();
159   }
160
161   bool doInitialization(Module &M) override {
162     DL = &M.getDataLayout();
163     return false;
164   }
165
166   bool runOnFunction(Function &F) override;
167
168 private:
169   // Returns true if Basis is a basis for C, i.e., Basis dominates C and they
170   // share the same base and stride.
171   bool isBasisFor(const Candidate &Basis, const Candidate &C);
172
173   // Returns whether the candidate can be folded into an addressing mode.
174   bool isFoldable(const Candidate &C, TargetTransformInfo *TTI,
175                   const DataLayout *DL);
176
177   // Returns true if C is already in a simplest form and not worth being
178   // rewritten.
179   bool isSimplestForm(const Candidate &C);
180
181   // Checks whether I is in a candidate form. If so, adds all the matching forms
182   // to Candidates, and tries to find the immediate basis for each of them.
183   void allocateCandidatesAndFindBasis(Instruction *I);
184
185   // Allocate candidates and find bases for Add instructions.
186   void allocateCandidatesAndFindBasisForAdd(Instruction *I);
187
188   // Given I = LHS + RHS, factors RHS into i * S and makes (LHS + i * S) a
189   // candidate.
190   void allocateCandidatesAndFindBasisForAdd(Value *LHS, Value *RHS,
191                                             Instruction *I);
192   // Allocate candidates and find bases for Mul instructions.
193   void allocateCandidatesAndFindBasisForMul(Instruction *I);
194
195   // Splits LHS into Base + Index and, if succeeds, calls
196   // allocateCandidatesAndFindBasis.
197   void allocateCandidatesAndFindBasisForMul(Value *LHS, Value *RHS,
198                                             Instruction *I);
199
200   // Allocate candidates and find bases for GetElementPtr instructions.
201   void allocateCandidatesAndFindBasisForGEP(GetElementPtrInst *GEP);
202
203   // A helper function that scales Idx with ElementSize before invoking
204   // allocateCandidatesAndFindBasis.
205   void allocateCandidatesAndFindBasisForGEP(const SCEV *B, ConstantInt *Idx,
206                                             Value *S, uint64_t ElementSize,
207                                             Instruction *I);
208
209   // Adds the given form <CT, B, Idx, S> to Candidates, and finds its immediate
210   // basis.
211   void allocateCandidatesAndFindBasis(Candidate::Kind CT, const SCEV *B,
212                                       ConstantInt *Idx, Value *S,
213                                       Instruction *I);
214
215   // Rewrites candidate C with respect to Basis.
216   void rewriteCandidateWithBasis(const Candidate &C, const Candidate &Basis);
217
218   // A helper function that factors ArrayIdx to a product of a stride and a
219   // constant index, and invokes allocateCandidatesAndFindBasis with the
220   // factorings.
221   void factorArrayIndex(Value *ArrayIdx, const SCEV *Base, uint64_t ElementSize,
222                         GetElementPtrInst *GEP);
223
224   // Emit code that computes the "bump" from Basis to C. If the candidate is a
225   // GEP and the bump is not divisible by the element size of the GEP, this
226   // function sets the BumpWithUglyGEP flag to notify its caller to bump the
227   // basis using an ugly GEP.
228   static Value *emitBump(const Candidate &Basis, const Candidate &C,
229                          IRBuilder<> &Builder, const DataLayout *DL,
230                          bool &BumpWithUglyGEP);
231
232   const DataLayout *DL = nullptr;
233   DominatorTree *DT = nullptr;
234   ScalarEvolution *SE;
235   TargetTransformInfo *TTI = nullptr;
236   std::list<Candidate> Candidates;
237
238   // Temporarily holds all instructions that are unlinked (but not deleted) by
239   // rewriteCandidateWithBasis. These instructions will be actually removed
240   // after all rewriting finishes.
241   std::vector<Instruction *> UnlinkedInstructions;
242 };
243
244 } // end anonymous namespace
245
246 char StraightLineStrengthReduce::ID = 0;
247
248 INITIALIZE_PASS_BEGIN(StraightLineStrengthReduce, "slsr",
249                       "Straight line strength reduction", false, false)
250 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
251 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
252 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
253 INITIALIZE_PASS_END(StraightLineStrengthReduce, "slsr",
254                     "Straight line strength reduction", false, false)
255
256 FunctionPass *llvm::createStraightLineStrengthReducePass() {
257   return new StraightLineStrengthReduce();
258 }
259
260 bool StraightLineStrengthReduce::isBasisFor(const Candidate &Basis,
261                                             const Candidate &C) {
262   return (Basis.Ins != C.Ins && // skip the same instruction
263           // They must have the same type too. Basis.Base == C.Base doesn't
264           // guarantee their types are the same (PR23975).
265           Basis.Ins->getType() == C.Ins->getType() &&
266           // Basis must dominate C in order to rewrite C with respect to Basis.
267           DT->dominates(Basis.Ins->getParent(), C.Ins->getParent()) &&
268           // They share the same base, stride, and candidate kind.
269           Basis.Base == C.Base && Basis.Stride == C.Stride &&
270           Basis.CandidateKind == C.CandidateKind);
271 }
272
273 static bool isGEPFoldable(GetElementPtrInst *GEP,
274                           const TargetTransformInfo *TTI) {
275   SmallVector<const Value*, 4> Indices;
276   for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I)
277     Indices.push_back(*I);
278   return TTI->getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(),
279                          Indices) == TargetTransformInfo::TCC_Free;
280 }
281
282 // Returns whether (Base + Index * Stride) can be folded to an addressing mode.
283 static bool isAddFoldable(const SCEV *Base, ConstantInt *Index, Value *Stride,
284                           TargetTransformInfo *TTI) {
285   // Index->getSExtValue() may crash if Index is wider than 64-bit.
286   return Index->getBitWidth() <= 64 &&
287          TTI->isLegalAddressingMode(Base->getType(), nullptr, 0, true,
288                                     Index->getSExtValue(), UnknownAddressSpace);
289 }
290
291 bool StraightLineStrengthReduce::isFoldable(const Candidate &C,
292                                             TargetTransformInfo *TTI,
293                                             const DataLayout *DL) {
294   if (C.CandidateKind == Candidate::Add)
295     return isAddFoldable(C.Base, C.Index, C.Stride, TTI);
296   if (C.CandidateKind == Candidate::GEP)
297     return isGEPFoldable(cast<GetElementPtrInst>(C.Ins), TTI);
298   return false;
299 }
300
301 // Returns true if GEP has zero or one non-zero index.
302 static bool hasOnlyOneNonZeroIndex(GetElementPtrInst *GEP) {
303   unsigned NumNonZeroIndices = 0;
304   for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) {
305     ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I);
306     if (ConstIdx == nullptr || !ConstIdx->isZero())
307       ++NumNonZeroIndices;
308   }
309   return NumNonZeroIndices <= 1;
310 }
311
312 bool StraightLineStrengthReduce::isSimplestForm(const Candidate &C) {
313   if (C.CandidateKind == Candidate::Add) {
314     // B + 1 * S or B + (-1) * S
315     return C.Index->isOne() || C.Index->isMinusOne();
316   }
317   if (C.CandidateKind == Candidate::Mul) {
318     // (B + 0) * S
319     return C.Index->isZero();
320   }
321   if (C.CandidateKind == Candidate::GEP) {
322     // (char*)B + S or (char*)B - S
323     return ((C.Index->isOne() || C.Index->isMinusOne()) &&
324             hasOnlyOneNonZeroIndex(cast<GetElementPtrInst>(C.Ins)));
325   }
326   return false;
327 }
328
329 // TODO: We currently implement an algorithm whose time complexity is linear in
330 // the number of existing candidates. However, we could do better by using
331 // ScopedHashTable. Specifically, while traversing the dominator tree, we could
332 // maintain all the candidates that dominate the basic block being traversed in
333 // a ScopedHashTable. This hash table is indexed by the base and the stride of
334 // a candidate. Therefore, finding the immediate basis of a candidate boils down
335 // to one hash-table look up.
336 void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
337     Candidate::Kind CT, const SCEV *B, ConstantInt *Idx, Value *S,
338     Instruction *I) {
339   Candidate C(CT, B, Idx, S, I);
340   // SLSR can complicate an instruction in two cases:
341   //
342   // 1. If we can fold I into an addressing mode, computing I is likely free or
343   // takes only one instruction.
344   //
345   // 2. I is already in a simplest form. For example, when
346   //      X = B + 8 * S
347   //      Y = B + S,
348   //    rewriting Y to X - 7 * S is probably a bad idea.
349   //
350   // In the above cases, we still add I to the candidate list so that I can be
351   // the basis of other candidates, but we leave I's basis blank so that I
352   // won't be rewritten.
353   if (!isFoldable(C, TTI, DL) && !isSimplestForm(C)) {
354     // Try to compute the immediate basis of C.
355     unsigned NumIterations = 0;
356     // Limit the scan radius to avoid running in quadratice time.
357     static const unsigned MaxNumIterations = 50;
358     for (auto Basis = Candidates.rbegin();
359          Basis != Candidates.rend() && NumIterations < MaxNumIterations;
360          ++Basis, ++NumIterations) {
361       if (isBasisFor(*Basis, C)) {
362         C.Basis = &(*Basis);
363         break;
364       }
365     }
366   }
367   // Regardless of whether we find a basis for C, we need to push C to the
368   // candidate list so that it can be the basis of other candidates.
369   Candidates.push_back(C);
370 }
371
372 void StraightLineStrengthReduce::allocateCandidatesAndFindBasis(
373     Instruction *I) {
374   switch (I->getOpcode()) {
375   case Instruction::Add:
376     allocateCandidatesAndFindBasisForAdd(I);
377     break;
378   case Instruction::Mul:
379     allocateCandidatesAndFindBasisForMul(I);
380     break;
381   case Instruction::GetElementPtr:
382     allocateCandidatesAndFindBasisForGEP(cast<GetElementPtrInst>(I));
383     break;
384   }
385 }
386
387 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
388     Instruction *I) {
389   // Try matching B + i * S.
390   if (!isa<IntegerType>(I->getType()))
391     return;
392
393   assert(I->getNumOperands() == 2 && "isn't I an add?");
394   Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
395   allocateCandidatesAndFindBasisForAdd(LHS, RHS, I);
396   if (LHS != RHS)
397     allocateCandidatesAndFindBasisForAdd(RHS, LHS, I);
398 }
399
400 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd(
401     Value *LHS, Value *RHS, Instruction *I) {
402   Value *S = nullptr;
403   ConstantInt *Idx = nullptr;
404   if (match(RHS, m_Mul(m_Value(S), m_ConstantInt(Idx)))) {
405     // I = LHS + RHS = LHS + Idx * S
406     allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
407   } else if (match(RHS, m_Shl(m_Value(S), m_ConstantInt(Idx)))) {
408     // I = LHS + RHS = LHS + (S << Idx) = LHS + S * (1 << Idx)
409     APInt One(Idx->getBitWidth(), 1);
410     Idx = ConstantInt::get(Idx->getContext(), One << Idx->getValue());
411     allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I);
412   } else {
413     // At least, I = LHS + 1 * RHS
414     ConstantInt *One = ConstantInt::get(cast<IntegerType>(I->getType()), 1);
415     allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), One, RHS,
416                                    I);
417   }
418 }
419
420 // Returns true if A matches B + C where C is constant.
421 static bool matchesAdd(Value *A, Value *&B, ConstantInt *&C) {
422   return (match(A, m_Add(m_Value(B), m_ConstantInt(C))) ||
423           match(A, m_Add(m_ConstantInt(C), m_Value(B))));
424 }
425
426 // Returns true if A matches B | C where C is constant.
427 static bool matchesOr(Value *A, Value *&B, ConstantInt *&C) {
428   return (match(A, m_Or(m_Value(B), m_ConstantInt(C))) ||
429           match(A, m_Or(m_ConstantInt(C), m_Value(B))));
430 }
431
432 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
433     Value *LHS, Value *RHS, Instruction *I) {
434   Value *B = nullptr;
435   ConstantInt *Idx = nullptr;
436   if (matchesAdd(LHS, B, Idx)) {
437     // If LHS is in the form of "Base + Index", then I is in the form of
438     // "(Base + Index) * RHS".
439     allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
440   } else if (matchesOr(LHS, B, Idx) && haveNoCommonBitsSet(B, Idx, *DL)) {
441     // If LHS is in the form of "Base | Index" and Base and Index have no common
442     // bits set, then
443     //   Base | Index = Base + Index
444     // and I is thus in the form of "(Base + Index) * RHS".
445     allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I);
446   } else {
447     // Otherwise, at least try the form (LHS + 0) * RHS.
448     ConstantInt *Zero = ConstantInt::get(cast<IntegerType>(I->getType()), 0);
449     allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(LHS), Zero, RHS,
450                                    I);
451   }
452 }
453
454 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul(
455     Instruction *I) {
456   // Try matching (B + i) * S.
457   // TODO: we could extend SLSR to float and vector types.
458   if (!isa<IntegerType>(I->getType()))
459     return;
460
461   assert(I->getNumOperands() == 2 && "isn't I a mul?");
462   Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
463   allocateCandidatesAndFindBasisForMul(LHS, RHS, I);
464   if (LHS != RHS) {
465     // Symmetrically, try to split RHS to Base + Index.
466     allocateCandidatesAndFindBasisForMul(RHS, LHS, I);
467   }
468 }
469
470 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
471     const SCEV *B, ConstantInt *Idx, Value *S, uint64_t ElementSize,
472     Instruction *I) {
473   // I = B + sext(Idx *nsw S) * ElementSize
474   //   = B + (sext(Idx) * sext(S)) * ElementSize
475   //   = B + (sext(Idx) * ElementSize) * sext(S)
476   // Casting to IntegerType is safe because we skipped vector GEPs.
477   IntegerType *IntPtrTy = cast<IntegerType>(DL->getIntPtrType(I->getType()));
478   ConstantInt *ScaledIdx = ConstantInt::get(
479       IntPtrTy, Idx->getSExtValue() * (int64_t)ElementSize, true);
480   allocateCandidatesAndFindBasis(Candidate::GEP, B, ScaledIdx, S, I);
481 }
482
483 void StraightLineStrengthReduce::factorArrayIndex(Value *ArrayIdx,
484                                                   const SCEV *Base,
485                                                   uint64_t ElementSize,
486                                                   GetElementPtrInst *GEP) {
487   // At least, ArrayIdx = ArrayIdx *nsw 1.
488   allocateCandidatesAndFindBasisForGEP(
489       Base, ConstantInt::get(cast<IntegerType>(ArrayIdx->getType()), 1),
490       ArrayIdx, ElementSize, GEP);
491   Value *LHS = nullptr;
492   ConstantInt *RHS = nullptr;
493   // One alternative is matching the SCEV of ArrayIdx instead of ArrayIdx
494   // itself. This would allow us to handle the shl case for free. However,
495   // matching SCEVs has two issues:
496   //
497   // 1. this would complicate rewriting because the rewriting procedure
498   // would have to translate SCEVs back to IR instructions. This translation
499   // is difficult when LHS is further evaluated to a composite SCEV.
500   //
501   // 2. ScalarEvolution is designed to be control-flow oblivious. It tends
502   // to strip nsw/nuw flags which are critical for SLSR to trace into
503   // sext'ed multiplication.
504   if (match(ArrayIdx, m_NSWMul(m_Value(LHS), m_ConstantInt(RHS)))) {
505     // SLSR is currently unsafe if i * S may overflow.
506     // GEP = Base + sext(LHS *nsw RHS) * ElementSize
507     allocateCandidatesAndFindBasisForGEP(Base, RHS, LHS, ElementSize, GEP);
508   } else if (match(ArrayIdx, m_NSWShl(m_Value(LHS), m_ConstantInt(RHS)))) {
509     // GEP = Base + sext(LHS <<nsw RHS) * ElementSize
510     //     = Base + sext(LHS *nsw (1 << RHS)) * ElementSize
511     APInt One(RHS->getBitWidth(), 1);
512     ConstantInt *PowerOf2 =
513         ConstantInt::get(RHS->getContext(), One << RHS->getValue());
514     allocateCandidatesAndFindBasisForGEP(Base, PowerOf2, LHS, ElementSize, GEP);
515   }
516 }
517
518 void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP(
519     GetElementPtrInst *GEP) {
520   // TODO: handle vector GEPs
521   if (GEP->getType()->isVectorTy())
522     return;
523
524   SmallVector<const SCEV *, 4> IndexExprs;
525   for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I)
526     IndexExprs.push_back(SE->getSCEV(*I));
527
528   gep_type_iterator GTI = gep_type_begin(GEP);
529   for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
530     if (GTI.isStruct())
531       continue;
532
533     const SCEV *OrigIndexExpr = IndexExprs[I - 1];
534     IndexExprs[I - 1] = SE->getZero(OrigIndexExpr->getType());
535
536     // The base of this candidate is GEP's base plus the offsets of all
537     // indices except this current one.
538     const SCEV *BaseExpr = SE->getGEPExpr(cast<GEPOperator>(GEP), IndexExprs);
539     Value *ArrayIdx = GEP->getOperand(I);
540     uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType());
541     if (ArrayIdx->getType()->getIntegerBitWidth() <=
542         DL->getPointerSizeInBits(GEP->getAddressSpace())) {
543       // Skip factoring if ArrayIdx is wider than the pointer size, because
544       // ArrayIdx is implicitly truncated to the pointer size.
545       factorArrayIndex(ArrayIdx, BaseExpr, ElementSize, GEP);
546     }
547     // When ArrayIdx is the sext of a value, we try to factor that value as
548     // well.  Handling this case is important because array indices are
549     // typically sign-extended to the pointer size.
550     Value *TruncatedArrayIdx = nullptr;
551     if (match(ArrayIdx, m_SExt(m_Value(TruncatedArrayIdx))) &&
552         TruncatedArrayIdx->getType()->getIntegerBitWidth() <=
553             DL->getPointerSizeInBits(GEP->getAddressSpace())) {
554       // Skip factoring if TruncatedArrayIdx is wider than the pointer size,
555       // because TruncatedArrayIdx is implicitly truncated to the pointer size.
556       factorArrayIndex(TruncatedArrayIdx, BaseExpr, ElementSize, GEP);
557     }
558
559     IndexExprs[I - 1] = OrigIndexExpr;
560   }
561 }
562
563 // A helper function that unifies the bitwidth of A and B.
564 static void unifyBitWidth(APInt &A, APInt &B) {
565   if (A.getBitWidth() < B.getBitWidth())
566     A = A.sext(B.getBitWidth());
567   else if (A.getBitWidth() > B.getBitWidth())
568     B = B.sext(A.getBitWidth());
569 }
570
571 Value *StraightLineStrengthReduce::emitBump(const Candidate &Basis,
572                                             const Candidate &C,
573                                             IRBuilder<> &Builder,
574                                             const DataLayout *DL,
575                                             bool &BumpWithUglyGEP) {
576   APInt Idx = C.Index->getValue(), BasisIdx = Basis.Index->getValue();
577   unifyBitWidth(Idx, BasisIdx);
578   APInt IndexOffset = Idx - BasisIdx;
579
580   BumpWithUglyGEP = false;
581   if (Basis.CandidateKind == Candidate::GEP) {
582     APInt ElementSize(
583         IndexOffset.getBitWidth(),
584         DL->getTypeAllocSize(
585             cast<GetElementPtrInst>(Basis.Ins)->getResultElementType()));
586     APInt Q, R;
587     APInt::sdivrem(IndexOffset, ElementSize, Q, R);
588     if (R == 0)
589       IndexOffset = Q;
590     else
591       BumpWithUglyGEP = true;
592   }
593
594   // Compute Bump = C - Basis = (i' - i) * S.
595   // Common case 1: if (i' - i) is 1, Bump = S.
596   if (IndexOffset == 1)
597     return C.Stride;
598   // Common case 2: if (i' - i) is -1, Bump = -S.
599   if (IndexOffset.isAllOnesValue())
600     return Builder.CreateNeg(C.Stride);
601
602   // Otherwise, Bump = (i' - i) * sext/trunc(S). Note that (i' - i) and S may
603   // have different bit widths.
604   IntegerType *DeltaType =
605       IntegerType::get(Basis.Ins->getContext(), IndexOffset.getBitWidth());
606   Value *ExtendedStride = Builder.CreateSExtOrTrunc(C.Stride, DeltaType);
607   if (IndexOffset.isPowerOf2()) {
608     // If (i' - i) is a power of 2, Bump = sext/trunc(S) << log(i' - i).
609     ConstantInt *Exponent = ConstantInt::get(DeltaType, IndexOffset.logBase2());
610     return Builder.CreateShl(ExtendedStride, Exponent);
611   }
612   if ((-IndexOffset).isPowerOf2()) {
613     // If (i - i') is a power of 2, Bump = -sext/trunc(S) << log(i' - i).
614     ConstantInt *Exponent =
615         ConstantInt::get(DeltaType, (-IndexOffset).logBase2());
616     return Builder.CreateNeg(Builder.CreateShl(ExtendedStride, Exponent));
617   }
618   Constant *Delta = ConstantInt::get(DeltaType, IndexOffset);
619   return Builder.CreateMul(ExtendedStride, Delta);
620 }
621
622 void StraightLineStrengthReduce::rewriteCandidateWithBasis(
623     const Candidate &C, const Candidate &Basis) {
624   assert(C.CandidateKind == Basis.CandidateKind && C.Base == Basis.Base &&
625          C.Stride == Basis.Stride);
626   // We run rewriteCandidateWithBasis on all candidates in a post-order, so the
627   // basis of a candidate cannot be unlinked before the candidate.
628   assert(Basis.Ins->getParent() != nullptr && "the basis is unlinked");
629
630   // An instruction can correspond to multiple candidates. Therefore, instead of
631   // simply deleting an instruction when we rewrite it, we mark its parent as
632   // nullptr (i.e. unlink it) so that we can skip the candidates whose
633   // instruction is already rewritten.
634   if (!C.Ins->getParent())
635     return;
636
637   IRBuilder<> Builder(C.Ins);
638   bool BumpWithUglyGEP;
639   Value *Bump = emitBump(Basis, C, Builder, DL, BumpWithUglyGEP);
640   Value *Reduced = nullptr; // equivalent to but weaker than C.Ins
641   switch (C.CandidateKind) {
642   case Candidate::Add:
643   case Candidate::Mul: {
644     // C = Basis + Bump
645     Value *NegBump;
646     if (match(Bump, m_Neg(m_Value(NegBump)))) {
647       // If Bump is a neg instruction, emit C = Basis - (-Bump).
648       Reduced = Builder.CreateSub(Basis.Ins, NegBump);
649       // We only use the negative argument of Bump, and Bump itself may be
650       // trivially dead.
651       RecursivelyDeleteTriviallyDeadInstructions(Bump);
652     } else {
653       // It's tempting to preserve nsw on Bump and/or Reduced. However, it's
654       // usually unsound, e.g.,
655       //
656       // X = (-2 +nsw 1) *nsw INT_MAX
657       // Y = (-2 +nsw 3) *nsw INT_MAX
658       //   =>
659       // Y = X + 2 * INT_MAX
660       //
661       // Neither + and * in the resultant expression are nsw.
662       Reduced = Builder.CreateAdd(Basis.Ins, Bump);
663     }
664     break;
665   }
666   case Candidate::GEP:
667     {
668       Type *IntPtrTy = DL->getIntPtrType(C.Ins->getType());
669       bool InBounds = cast<GetElementPtrInst>(C.Ins)->isInBounds();
670       if (BumpWithUglyGEP) {
671         // C = (char *)Basis + Bump
672         unsigned AS = Basis.Ins->getType()->getPointerAddressSpace();
673         Type *CharTy = Type::getInt8PtrTy(Basis.Ins->getContext(), AS);
674         Reduced = Builder.CreateBitCast(Basis.Ins, CharTy);
675         if (InBounds)
676           Reduced =
677               Builder.CreateInBoundsGEP(Builder.getInt8Ty(), Reduced, Bump);
678         else
679           Reduced = Builder.CreateGEP(Builder.getInt8Ty(), Reduced, Bump);
680         Reduced = Builder.CreateBitCast(Reduced, C.Ins->getType());
681       } else {
682         // C = gep Basis, Bump
683         // Canonicalize bump to pointer size.
684         Bump = Builder.CreateSExtOrTrunc(Bump, IntPtrTy);
685         if (InBounds)
686           Reduced = Builder.CreateInBoundsGEP(nullptr, Basis.Ins, Bump);
687         else
688           Reduced = Builder.CreateGEP(nullptr, Basis.Ins, Bump);
689       }
690       break;
691     }
692   default:
693     llvm_unreachable("C.CandidateKind is invalid");
694   };
695   Reduced->takeName(C.Ins);
696   C.Ins->replaceAllUsesWith(Reduced);
697   // Unlink C.Ins so that we can skip other candidates also corresponding to
698   // C.Ins. The actual deletion is postponed to the end of runOnFunction.
699   C.Ins->removeFromParent();
700   UnlinkedInstructions.push_back(C.Ins);
701 }
702
703 bool StraightLineStrengthReduce::runOnFunction(Function &F) {
704   if (skipFunction(F))
705     return false;
706
707   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
708   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
709   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
710   // Traverse the dominator tree in the depth-first order. This order makes sure
711   // all bases of a candidate are in Candidates when we process it.
712   for (const auto Node : depth_first(DT))
713     for (auto &I : *(Node->getBlock()))
714       allocateCandidatesAndFindBasis(&I);
715
716   // Rewrite candidates in the reverse depth-first order. This order makes sure
717   // a candidate being rewritten is not a basis for any other candidate.
718   while (!Candidates.empty()) {
719     const Candidate &C = Candidates.back();
720     if (C.Basis != nullptr) {
721       rewriteCandidateWithBasis(C, *C.Basis);
722     }
723     Candidates.pop_back();
724   }
725
726   // Delete all unlink instructions.
727   for (auto *UnlinkedInst : UnlinkedInstructions) {
728     for (unsigned I = 0, E = UnlinkedInst->getNumOperands(); I != E; ++I) {
729       Value *Op = UnlinkedInst->getOperand(I);
730       UnlinkedInst->setOperand(I, nullptr);
731       RecursivelyDeleteTriviallyDeadInstructions(Op);
732     }
733     UnlinkedInst->deleteValue();
734   }
735   bool Ret = !UnlinkedInstructions.empty();
736   UnlinkedInstructions.clear();
737   return Ret;
738 }