]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/Scalar/StructurizeCFG.cpp
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / Scalar / StructurizeCFG.cpp
1 //===- StructurizeCFG.cpp -------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "llvm/ADT/DenseMap.h"
11 #include "llvm/ADT/MapVector.h"
12 #include "llvm/ADT/PostOrderIterator.h"
13 #include "llvm/ADT/STLExtras.h"
14 #include "llvm/ADT/SmallPtrSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/Analysis/DivergenceAnalysis.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/Analysis/RegionInfo.h"
19 #include "llvm/Analysis/RegionIterator.h"
20 #include "llvm/Analysis/RegionPass.h"
21 #include "llvm/IR/Argument.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/CFG.h"
24 #include "llvm/IR/Constant.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/Use.h"
35 #include "llvm/IR/User.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Transforms/Scalar.h"
43 #include "llvm/Transforms/Utils.h"
44 #include "llvm/Transforms/Utils/SSAUpdater.h"
45 #include <algorithm>
46 #include <cassert>
47 #include <utility>
48
49 using namespace llvm;
50 using namespace llvm::PatternMatch;
51
52 #define DEBUG_TYPE "structurizecfg"
53
54 // The name for newly created blocks.
55 static const char *const FlowBlockName = "Flow";
56
57 namespace {
58
59 static cl::opt<bool> ForceSkipUniformRegions(
60   "structurizecfg-skip-uniform-regions",
61   cl::Hidden,
62   cl::desc("Force whether the StructurizeCFG pass skips uniform regions"),
63   cl::init(false));
64
65 // Definition of the complex types used in this pass.
66
67 using BBValuePair = std::pair<BasicBlock *, Value *>;
68
69 using RNVector = SmallVector<RegionNode *, 8>;
70 using BBVector = SmallVector<BasicBlock *, 8>;
71 using BranchVector = SmallVector<BranchInst *, 8>;
72 using BBValueVector = SmallVector<BBValuePair, 2>;
73
74 using BBSet = SmallPtrSet<BasicBlock *, 8>;
75
76 using PhiMap = MapVector<PHINode *, BBValueVector>;
77 using BB2BBVecMap = MapVector<BasicBlock *, BBVector>;
78
79 using BBPhiMap = DenseMap<BasicBlock *, PhiMap>;
80 using BBPredicates = DenseMap<BasicBlock *, Value *>;
81 using PredMap = DenseMap<BasicBlock *, BBPredicates>;
82 using BB2BBMap = DenseMap<BasicBlock *, BasicBlock *>;
83
84 /// Finds the nearest common dominator of a set of BasicBlocks.
85 ///
86 /// For every BB you add to the set, you can specify whether we "remember" the
87 /// block.  When you get the common dominator, you can also ask whether it's one
88 /// of the blocks we remembered.
89 class NearestCommonDominator {
90   DominatorTree *DT;
91   BasicBlock *Result = nullptr;
92   bool ResultIsRemembered = false;
93
94   /// Add BB to the resulting dominator.
95   void addBlock(BasicBlock *BB, bool Remember) {
96     if (!Result) {
97       Result = BB;
98       ResultIsRemembered = Remember;
99       return;
100     }
101
102     BasicBlock *NewResult = DT->findNearestCommonDominator(Result, BB);
103     if (NewResult != Result)
104       ResultIsRemembered = false;
105     if (NewResult == BB)
106       ResultIsRemembered |= Remember;
107     Result = NewResult;
108   }
109
110 public:
111   explicit NearestCommonDominator(DominatorTree *DomTree) : DT(DomTree) {}
112
113   void addBlock(BasicBlock *BB) {
114     addBlock(BB, /* Remember = */ false);
115   }
116
117   void addAndRememberBlock(BasicBlock *BB) {
118     addBlock(BB, /* Remember = */ true);
119   }
120
121   /// Get the nearest common dominator of all the BBs added via addBlock() and
122   /// addAndRememberBlock().
123   BasicBlock *result() { return Result; }
124
125   /// Is the BB returned by getResult() one of the blocks we added to the set
126   /// with addAndRememberBlock()?
127   bool resultIsRememberedBlock() { return ResultIsRemembered; }
128 };
129
130 /// Transforms the control flow graph on one single entry/exit region
131 /// at a time.
132 ///
133 /// After the transform all "If"/"Then"/"Else" style control flow looks like
134 /// this:
135 ///
136 /// \verbatim
137 /// 1
138 /// ||
139 /// | |
140 /// 2 |
141 /// | /
142 /// |/
143 /// 3
144 /// ||   Where:
145 /// | |  1 = "If" block, calculates the condition
146 /// 4 |  2 = "Then" subregion, runs if the condition is true
147 /// | /  3 = "Flow" blocks, newly inserted flow blocks, rejoins the flow
148 /// |/   4 = "Else" optional subregion, runs if the condition is false
149 /// 5    5 = "End" block, also rejoins the control flow
150 /// \endverbatim
151 ///
152 /// Control flow is expressed as a branch where the true exit goes into the
153 /// "Then"/"Else" region, while the false exit skips the region
154 /// The condition for the optional "Else" region is expressed as a PHI node.
155 /// The incoming values of the PHI node are true for the "If" edge and false
156 /// for the "Then" edge.
157 ///
158 /// Additionally to that even complicated loops look like this:
159 ///
160 /// \verbatim
161 /// 1
162 /// ||
163 /// | |
164 /// 2 ^  Where:
165 /// | /  1 = "Entry" block
166 /// |/   2 = "Loop" optional subregion, with all exits at "Flow" block
167 /// 3    3 = "Flow" block, with back edge to entry block
168 /// |
169 /// \endverbatim
170 ///
171 /// The back edge of the "Flow" block is always on the false side of the branch
172 /// while the true side continues the general flow. So the loop condition
173 /// consist of a network of PHI nodes where the true incoming values expresses
174 /// breaks and the false values expresses continue states.
175 class StructurizeCFG : public RegionPass {
176   bool SkipUniformRegions;
177
178   Type *Boolean;
179   ConstantInt *BoolTrue;
180   ConstantInt *BoolFalse;
181   UndefValue *BoolUndef;
182
183   Function *Func;
184   Region *ParentRegion;
185
186   DivergenceAnalysis *DA;
187   DominatorTree *DT;
188   LoopInfo *LI;
189
190   SmallVector<RegionNode *, 8> Order;
191   BBSet Visited;
192
193   BBPhiMap DeletedPhis;
194   BB2BBVecMap AddedPhis;
195
196   PredMap Predicates;
197   BranchVector Conditions;
198
199   BB2BBMap Loops;
200   PredMap LoopPreds;
201   BranchVector LoopConds;
202
203   RegionNode *PrevNode;
204
205   void orderNodes();
206
207   Loop *getAdjustedLoop(RegionNode *RN);
208   unsigned getAdjustedLoopDepth(RegionNode *RN);
209
210   void analyzeLoops(RegionNode *N);
211
212   Value *invert(Value *Condition);
213
214   Value *buildCondition(BranchInst *Term, unsigned Idx, bool Invert);
215
216   void gatherPredicates(RegionNode *N);
217
218   void collectInfos();
219
220   void insertConditions(bool Loops);
221
222   void delPhiValues(BasicBlock *From, BasicBlock *To);
223
224   void addPhiValues(BasicBlock *From, BasicBlock *To);
225
226   void setPhiValues();
227
228   void killTerminator(BasicBlock *BB);
229
230   void changeExit(RegionNode *Node, BasicBlock *NewExit,
231                   bool IncludeDominator);
232
233   BasicBlock *getNextFlow(BasicBlock *Dominator);
234
235   BasicBlock *needPrefix(bool NeedEmpty);
236
237   BasicBlock *needPostfix(BasicBlock *Flow, bool ExitUseAllowed);
238
239   void setPrevNode(BasicBlock *BB);
240
241   bool dominatesPredicates(BasicBlock *BB, RegionNode *Node);
242
243   bool isPredictableTrue(RegionNode *Node);
244
245   void wireFlow(bool ExitUseAllowed, BasicBlock *LoopEnd);
246
247   void handleLoops(bool ExitUseAllowed, BasicBlock *LoopEnd);
248
249   void createFlow();
250
251   void rebuildSSA();
252
253 public:
254   static char ID;
255
256   explicit StructurizeCFG(bool SkipUniformRegions_ = false)
257       : RegionPass(ID),
258         SkipUniformRegions(SkipUniformRegions_) {
259     if (ForceSkipUniformRegions.getNumOccurrences())
260       SkipUniformRegions = ForceSkipUniformRegions.getValue();
261     initializeStructurizeCFGPass(*PassRegistry::getPassRegistry());
262   }
263
264   bool doInitialization(Region *R, RGPassManager &RGM) override;
265
266   bool runOnRegion(Region *R, RGPassManager &RGM) override;
267
268   StringRef getPassName() const override { return "Structurize control flow"; }
269
270   void getAnalysisUsage(AnalysisUsage &AU) const override {
271     if (SkipUniformRegions)
272       AU.addRequired<DivergenceAnalysis>();
273     AU.addRequiredID(LowerSwitchID);
274     AU.addRequired<DominatorTreeWrapperPass>();
275     AU.addRequired<LoopInfoWrapperPass>();
276
277     AU.addPreserved<DominatorTreeWrapperPass>();
278     RegionPass::getAnalysisUsage(AU);
279   }
280 };
281
282 } // end anonymous namespace
283
284 char StructurizeCFG::ID = 0;
285
286 INITIALIZE_PASS_BEGIN(StructurizeCFG, "structurizecfg", "Structurize the CFG",
287                       false, false)
288 INITIALIZE_PASS_DEPENDENCY(DivergenceAnalysis)
289 INITIALIZE_PASS_DEPENDENCY(LowerSwitch)
290 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
291 INITIALIZE_PASS_DEPENDENCY(RegionInfoPass)
292 INITIALIZE_PASS_END(StructurizeCFG, "structurizecfg", "Structurize the CFG",
293                     false, false)
294
295 /// Initialize the types and constants used in the pass
296 bool StructurizeCFG::doInitialization(Region *R, RGPassManager &RGM) {
297   LLVMContext &Context = R->getEntry()->getContext();
298
299   Boolean = Type::getInt1Ty(Context);
300   BoolTrue = ConstantInt::getTrue(Context);
301   BoolFalse = ConstantInt::getFalse(Context);
302   BoolUndef = UndefValue::get(Boolean);
303
304   return false;
305 }
306
307 /// Use the exit block to determine the loop if RN is a SubRegion.
308 Loop *StructurizeCFG::getAdjustedLoop(RegionNode *RN) {
309   if (RN->isSubRegion()) {
310     Region *SubRegion = RN->getNodeAs<Region>();
311     return LI->getLoopFor(SubRegion->getExit());
312   }
313
314   return LI->getLoopFor(RN->getEntry());
315 }
316
317 /// Use the exit block to determine the loop depth if RN is a SubRegion.
318 unsigned StructurizeCFG::getAdjustedLoopDepth(RegionNode *RN) {
319   if (RN->isSubRegion()) {
320     Region *SubR = RN->getNodeAs<Region>();
321     return LI->getLoopDepth(SubR->getExit());
322   }
323
324   return LI->getLoopDepth(RN->getEntry());
325 }
326
327 /// Build up the general order of nodes
328 void StructurizeCFG::orderNodes() {
329   ReversePostOrderTraversal<Region*> RPOT(ParentRegion);
330   SmallDenseMap<Loop*, unsigned, 8> LoopBlocks;
331
332   // The reverse post-order traversal of the list gives us an ordering close
333   // to what we want.  The only problem with it is that sometimes backedges
334   // for outer loops will be visited before backedges for inner loops.
335   for (RegionNode *RN : RPOT) {
336     Loop *Loop = getAdjustedLoop(RN);
337     ++LoopBlocks[Loop];
338   }
339
340   unsigned CurrentLoopDepth = 0;
341   Loop *CurrentLoop = nullptr;
342   for (auto I = RPOT.begin(), E = RPOT.end(); I != E; ++I) {
343     RegionNode *RN = cast<RegionNode>(*I);
344     unsigned LoopDepth = getAdjustedLoopDepth(RN);
345
346     if (is_contained(Order, *I))
347       continue;
348
349     if (LoopDepth < CurrentLoopDepth) {
350       // Make sure we have visited all blocks in this loop before moving back to
351       // the outer loop.
352
353       auto LoopI = I;
354       while (unsigned &BlockCount = LoopBlocks[CurrentLoop]) {
355         LoopI++;
356         if (getAdjustedLoop(cast<RegionNode>(*LoopI)) == CurrentLoop) {
357           --BlockCount;
358           Order.push_back(*LoopI);
359         }
360       }
361     }
362
363     CurrentLoop = getAdjustedLoop(RN);
364     if (CurrentLoop)
365       LoopBlocks[CurrentLoop]--;
366
367     CurrentLoopDepth = LoopDepth;
368     Order.push_back(*I);
369   }
370
371   // This pass originally used a post-order traversal and then operated on
372   // the list in reverse. Now that we are using a reverse post-order traversal
373   // rather than re-working the whole pass to operate on the list in order,
374   // we just reverse the list and continue to operate on it in reverse.
375   std::reverse(Order.begin(), Order.end());
376 }
377
378 /// Determine the end of the loops
379 void StructurizeCFG::analyzeLoops(RegionNode *N) {
380   if (N->isSubRegion()) {
381     // Test for exit as back edge
382     BasicBlock *Exit = N->getNodeAs<Region>()->getExit();
383     if (Visited.count(Exit))
384       Loops[Exit] = N->getEntry();
385
386   } else {
387     // Test for successors as back edge
388     BasicBlock *BB = N->getNodeAs<BasicBlock>();
389     BranchInst *Term = cast<BranchInst>(BB->getTerminator());
390
391     for (BasicBlock *Succ : Term->successors())
392       if (Visited.count(Succ))
393         Loops[Succ] = BB;
394   }
395 }
396
397 /// Invert the given condition
398 Value *StructurizeCFG::invert(Value *Condition) {
399   // First: Check if it's a constant
400   if (Constant *C = dyn_cast<Constant>(Condition))
401     return ConstantExpr::getNot(C);
402
403   // Second: If the condition is already inverted, return the original value
404   Value *NotCondition;
405   if (match(Condition, m_Not(m_Value(NotCondition))))
406     return NotCondition;
407
408   if (Instruction *Inst = dyn_cast<Instruction>(Condition)) {
409     // Third: Check all the users for an invert
410     BasicBlock *Parent = Inst->getParent();
411     for (User *U : Condition->users())
412       if (Instruction *I = dyn_cast<Instruction>(U))
413         if (I->getParent() == Parent && match(I, m_Not(m_Specific(Condition))))
414           return I;
415
416     // Last option: Create a new instruction
417     return BinaryOperator::CreateNot(Condition, "", Parent->getTerminator());
418   }
419
420   if (Argument *Arg = dyn_cast<Argument>(Condition)) {
421     BasicBlock &EntryBlock = Arg->getParent()->getEntryBlock();
422     return BinaryOperator::CreateNot(Condition,
423                                      Arg->getName() + ".inv",
424                                      EntryBlock.getTerminator());
425   }
426
427   llvm_unreachable("Unhandled condition to invert");
428 }
429
430 /// Build the condition for one edge
431 Value *StructurizeCFG::buildCondition(BranchInst *Term, unsigned Idx,
432                                       bool Invert) {
433   Value *Cond = Invert ? BoolFalse : BoolTrue;
434   if (Term->isConditional()) {
435     Cond = Term->getCondition();
436
437     if (Idx != (unsigned)Invert)
438       Cond = invert(Cond);
439   }
440   return Cond;
441 }
442
443 /// Analyze the predecessors of each block and build up predicates
444 void StructurizeCFG::gatherPredicates(RegionNode *N) {
445   RegionInfo *RI = ParentRegion->getRegionInfo();
446   BasicBlock *BB = N->getEntry();
447   BBPredicates &Pred = Predicates[BB];
448   BBPredicates &LPred = LoopPreds[BB];
449
450   for (BasicBlock *P : predecessors(BB)) {
451     // Ignore it if it's a branch from outside into our region entry
452     if (!ParentRegion->contains(P))
453       continue;
454
455     Region *R = RI->getRegionFor(P);
456     if (R == ParentRegion) {
457       // It's a top level block in our region
458       BranchInst *Term = cast<BranchInst>(P->getTerminator());
459       for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) {
460         BasicBlock *Succ = Term->getSuccessor(i);
461         if (Succ != BB)
462           continue;
463
464         if (Visited.count(P)) {
465           // Normal forward edge
466           if (Term->isConditional()) {
467             // Try to treat it like an ELSE block
468             BasicBlock *Other = Term->getSuccessor(!i);
469             if (Visited.count(Other) && !Loops.count(Other) &&
470                 !Pred.count(Other) && !Pred.count(P)) {
471
472               Pred[Other] = BoolFalse;
473               Pred[P] = BoolTrue;
474               continue;
475             }
476           }
477           Pred[P] = buildCondition(Term, i, false);
478         } else {
479           // Back edge
480           LPred[P] = buildCondition(Term, i, true);
481         }
482       }
483     } else {
484       // It's an exit from a sub region
485       while (R->getParent() != ParentRegion)
486         R = R->getParent();
487
488       // Edge from inside a subregion to its entry, ignore it
489       if (*R == *N)
490         continue;
491
492       BasicBlock *Entry = R->getEntry();
493       if (Visited.count(Entry))
494         Pred[Entry] = BoolTrue;
495       else
496         LPred[Entry] = BoolFalse;
497     }
498   }
499 }
500
501 /// Collect various loop and predicate infos
502 void StructurizeCFG::collectInfos() {
503   // Reset predicate
504   Predicates.clear();
505
506   // and loop infos
507   Loops.clear();
508   LoopPreds.clear();
509
510   // Reset the visited nodes
511   Visited.clear();
512
513   for (RegionNode *RN : reverse(Order)) {
514     LLVM_DEBUG(dbgs() << "Visiting: "
515                       << (RN->isSubRegion() ? "SubRegion with entry: " : "")
516                       << RN->getEntry()->getName() << " Loop Depth: "
517                       << LI->getLoopDepth(RN->getEntry()) << "\n");
518
519     // Analyze all the conditions leading to a node
520     gatherPredicates(RN);
521
522     // Remember that we've seen this node
523     Visited.insert(RN->getEntry());
524
525     // Find the last back edges
526     analyzeLoops(RN);
527   }
528 }
529
530 /// Insert the missing branch conditions
531 void StructurizeCFG::insertConditions(bool Loops) {
532   BranchVector &Conds = Loops ? LoopConds : Conditions;
533   Value *Default = Loops ? BoolTrue : BoolFalse;
534   SSAUpdater PhiInserter;
535
536   for (BranchInst *Term : Conds) {
537     assert(Term->isConditional());
538
539     BasicBlock *Parent = Term->getParent();
540     BasicBlock *SuccTrue = Term->getSuccessor(0);
541     BasicBlock *SuccFalse = Term->getSuccessor(1);
542
543     PhiInserter.Initialize(Boolean, "");
544     PhiInserter.AddAvailableValue(&Func->getEntryBlock(), Default);
545     PhiInserter.AddAvailableValue(Loops ? SuccFalse : Parent, Default);
546
547     BBPredicates &Preds = Loops ? LoopPreds[SuccFalse] : Predicates[SuccTrue];
548
549     NearestCommonDominator Dominator(DT);
550     Dominator.addBlock(Parent);
551
552     Value *ParentValue = nullptr;
553     for (std::pair<BasicBlock *, Value *> BBAndPred : Preds) {
554       BasicBlock *BB = BBAndPred.first;
555       Value *Pred = BBAndPred.second;
556
557       if (BB == Parent) {
558         ParentValue = Pred;
559         break;
560       }
561       PhiInserter.AddAvailableValue(BB, Pred);
562       Dominator.addAndRememberBlock(BB);
563     }
564
565     if (ParentValue) {
566       Term->setCondition(ParentValue);
567     } else {
568       if (!Dominator.resultIsRememberedBlock())
569         PhiInserter.AddAvailableValue(Dominator.result(), Default);
570
571       Term->setCondition(PhiInserter.GetValueInMiddleOfBlock(Parent));
572     }
573   }
574 }
575
576 /// Remove all PHI values coming from "From" into "To" and remember
577 /// them in DeletedPhis
578 void StructurizeCFG::delPhiValues(BasicBlock *From, BasicBlock *To) {
579   PhiMap &Map = DeletedPhis[To];
580   for (PHINode &Phi : To->phis()) {
581     while (Phi.getBasicBlockIndex(From) != -1) {
582       Value *Deleted = Phi.removeIncomingValue(From, false);
583       Map[&Phi].push_back(std::make_pair(From, Deleted));
584     }
585   }
586 }
587
588 /// Add a dummy PHI value as soon as we knew the new predecessor
589 void StructurizeCFG::addPhiValues(BasicBlock *From, BasicBlock *To) {
590   for (PHINode &Phi : To->phis()) {
591     Value *Undef = UndefValue::get(Phi.getType());
592     Phi.addIncoming(Undef, From);
593   }
594   AddedPhis[To].push_back(From);
595 }
596
597 /// Add the real PHI value as soon as everything is set up
598 void StructurizeCFG::setPhiValues() {
599   SSAUpdater Updater;
600   for (const auto &AddedPhi : AddedPhis) {
601     BasicBlock *To = AddedPhi.first;
602     const BBVector &From = AddedPhi.second;
603
604     if (!DeletedPhis.count(To))
605       continue;
606
607     PhiMap &Map = DeletedPhis[To];
608     for (const auto &PI : Map) {
609       PHINode *Phi = PI.first;
610       Value *Undef = UndefValue::get(Phi->getType());
611       Updater.Initialize(Phi->getType(), "");
612       Updater.AddAvailableValue(&Func->getEntryBlock(), Undef);
613       Updater.AddAvailableValue(To, Undef);
614
615       NearestCommonDominator Dominator(DT);
616       Dominator.addBlock(To);
617       for (const auto &VI : PI.second) {
618         Updater.AddAvailableValue(VI.first, VI.second);
619         Dominator.addAndRememberBlock(VI.first);
620       }
621
622       if (!Dominator.resultIsRememberedBlock())
623         Updater.AddAvailableValue(Dominator.result(), Undef);
624
625       for (BasicBlock *FI : From) {
626         int Idx = Phi->getBasicBlockIndex(FI);
627         assert(Idx != -1);
628         Phi->setIncomingValue(Idx, Updater.GetValueAtEndOfBlock(FI));
629       }
630     }
631
632     DeletedPhis.erase(To);
633   }
634   assert(DeletedPhis.empty());
635 }
636
637 /// Remove phi values from all successors and then remove the terminator.
638 void StructurizeCFG::killTerminator(BasicBlock *BB) {
639   TerminatorInst *Term = BB->getTerminator();
640   if (!Term)
641     return;
642
643   for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
644        SI != SE; ++SI)
645     delPhiValues(BB, *SI);
646
647   if (DA)
648     DA->removeValue(Term);
649   Term->eraseFromParent();
650 }
651
652 /// Let node exit(s) point to NewExit
653 void StructurizeCFG::changeExit(RegionNode *Node, BasicBlock *NewExit,
654                                 bool IncludeDominator) {
655   if (Node->isSubRegion()) {
656     Region *SubRegion = Node->getNodeAs<Region>();
657     BasicBlock *OldExit = SubRegion->getExit();
658     BasicBlock *Dominator = nullptr;
659
660     // Find all the edges from the sub region to the exit
661     for (auto BBI = pred_begin(OldExit), E = pred_end(OldExit); BBI != E;) {
662       // Incrememt BBI before mucking with BB's terminator.
663       BasicBlock *BB = *BBI++;
664
665       if (!SubRegion->contains(BB))
666         continue;
667
668       // Modify the edges to point to the new exit
669       delPhiValues(BB, OldExit);
670       BB->getTerminator()->replaceUsesOfWith(OldExit, NewExit);
671       addPhiValues(BB, NewExit);
672
673       // Find the new dominator (if requested)
674       if (IncludeDominator) {
675         if (!Dominator)
676           Dominator = BB;
677         else
678           Dominator = DT->findNearestCommonDominator(Dominator, BB);
679       }
680     }
681
682     // Change the dominator (if requested)
683     if (Dominator)
684       DT->changeImmediateDominator(NewExit, Dominator);
685
686     // Update the region info
687     SubRegion->replaceExit(NewExit);
688   } else {
689     BasicBlock *BB = Node->getNodeAs<BasicBlock>();
690     killTerminator(BB);
691     BranchInst::Create(NewExit, BB);
692     addPhiValues(BB, NewExit);
693     if (IncludeDominator)
694       DT->changeImmediateDominator(NewExit, BB);
695   }
696 }
697
698 /// Create a new flow node and update dominator tree and region info
699 BasicBlock *StructurizeCFG::getNextFlow(BasicBlock *Dominator) {
700   LLVMContext &Context = Func->getContext();
701   BasicBlock *Insert = Order.empty() ? ParentRegion->getExit() :
702                        Order.back()->getEntry();
703   BasicBlock *Flow = BasicBlock::Create(Context, FlowBlockName,
704                                         Func, Insert);
705   DT->addNewBlock(Flow, Dominator);
706   ParentRegion->getRegionInfo()->setRegionFor(Flow, ParentRegion);
707   return Flow;
708 }
709
710 /// Create a new or reuse the previous node as flow node
711 BasicBlock *StructurizeCFG::needPrefix(bool NeedEmpty) {
712   BasicBlock *Entry = PrevNode->getEntry();
713
714   if (!PrevNode->isSubRegion()) {
715     killTerminator(Entry);
716     if (!NeedEmpty || Entry->getFirstInsertionPt() == Entry->end())
717       return Entry;
718   }
719
720   // create a new flow node
721   BasicBlock *Flow = getNextFlow(Entry);
722
723   // and wire it up
724   changeExit(PrevNode, Flow, true);
725   PrevNode = ParentRegion->getBBNode(Flow);
726   return Flow;
727 }
728
729 /// Returns the region exit if possible, otherwise just a new flow node
730 BasicBlock *StructurizeCFG::needPostfix(BasicBlock *Flow,
731                                         bool ExitUseAllowed) {
732   if (!Order.empty() || !ExitUseAllowed)
733     return getNextFlow(Flow);
734
735   BasicBlock *Exit = ParentRegion->getExit();
736   DT->changeImmediateDominator(Exit, Flow);
737   addPhiValues(Flow, Exit);
738   return Exit;
739 }
740
741 /// Set the previous node
742 void StructurizeCFG::setPrevNode(BasicBlock *BB) {
743   PrevNode = ParentRegion->contains(BB) ? ParentRegion->getBBNode(BB)
744                                         : nullptr;
745 }
746
747 /// Does BB dominate all the predicates of Node?
748 bool StructurizeCFG::dominatesPredicates(BasicBlock *BB, RegionNode *Node) {
749   BBPredicates &Preds = Predicates[Node->getEntry()];
750   return llvm::all_of(Preds, [&](std::pair<BasicBlock *, Value *> Pred) {
751     return DT->dominates(BB, Pred.first);
752   });
753 }
754
755 /// Can we predict that this node will always be called?
756 bool StructurizeCFG::isPredictableTrue(RegionNode *Node) {
757   BBPredicates &Preds = Predicates[Node->getEntry()];
758   bool Dominated = false;
759
760   // Regionentry is always true
761   if (!PrevNode)
762     return true;
763
764   for (std::pair<BasicBlock*, Value*> Pred : Preds) {
765     BasicBlock *BB = Pred.first;
766     Value *V = Pred.second;
767
768     if (V != BoolTrue)
769       return false;
770
771     if (!Dominated && DT->dominates(BB, PrevNode->getEntry()))
772       Dominated = true;
773   }
774
775   // TODO: The dominator check is too strict
776   return Dominated;
777 }
778
779 /// Take one node from the order vector and wire it up
780 void StructurizeCFG::wireFlow(bool ExitUseAllowed,
781                               BasicBlock *LoopEnd) {
782   RegionNode *Node = Order.pop_back_val();
783   Visited.insert(Node->getEntry());
784
785   if (isPredictableTrue(Node)) {
786     // Just a linear flow
787     if (PrevNode) {
788       changeExit(PrevNode, Node->getEntry(), true);
789     }
790     PrevNode = Node;
791   } else {
792     // Insert extra prefix node (or reuse last one)
793     BasicBlock *Flow = needPrefix(false);
794
795     // Insert extra postfix node (or use exit instead)
796     BasicBlock *Entry = Node->getEntry();
797     BasicBlock *Next = needPostfix(Flow, ExitUseAllowed);
798
799     // let it point to entry and next block
800     Conditions.push_back(BranchInst::Create(Entry, Next, BoolUndef, Flow));
801     addPhiValues(Flow, Entry);
802     DT->changeImmediateDominator(Entry, Flow);
803
804     PrevNode = Node;
805     while (!Order.empty() && !Visited.count(LoopEnd) &&
806            dominatesPredicates(Entry, Order.back())) {
807       handleLoops(false, LoopEnd);
808     }
809
810     changeExit(PrevNode, Next, false);
811     setPrevNode(Next);
812   }
813 }
814
815 void StructurizeCFG::handleLoops(bool ExitUseAllowed,
816                                  BasicBlock *LoopEnd) {
817   RegionNode *Node = Order.back();
818   BasicBlock *LoopStart = Node->getEntry();
819
820   if (!Loops.count(LoopStart)) {
821     wireFlow(ExitUseAllowed, LoopEnd);
822     return;
823   }
824
825   if (!isPredictableTrue(Node))
826     LoopStart = needPrefix(true);
827
828   LoopEnd = Loops[Node->getEntry()];
829   wireFlow(false, LoopEnd);
830   while (!Visited.count(LoopEnd)) {
831     handleLoops(false, LoopEnd);
832   }
833
834   // If the start of the loop is the entry block, we can't branch to it so
835   // insert a new dummy entry block.
836   Function *LoopFunc = LoopStart->getParent();
837   if (LoopStart == &LoopFunc->getEntryBlock()) {
838     LoopStart->setName("entry.orig");
839
840     BasicBlock *NewEntry =
841       BasicBlock::Create(LoopStart->getContext(),
842                          "entry",
843                          LoopFunc,
844                          LoopStart);
845     BranchInst::Create(LoopStart, NewEntry);
846     DT->setNewRoot(NewEntry);
847   }
848
849   // Create an extra loop end node
850   LoopEnd = needPrefix(false);
851   BasicBlock *Next = needPostfix(LoopEnd, ExitUseAllowed);
852   LoopConds.push_back(BranchInst::Create(Next, LoopStart,
853                                          BoolUndef, LoopEnd));
854   addPhiValues(LoopEnd, LoopStart);
855   setPrevNode(Next);
856 }
857
858 /// After this function control flow looks like it should be, but
859 /// branches and PHI nodes only have undefined conditions.
860 void StructurizeCFG::createFlow() {
861   BasicBlock *Exit = ParentRegion->getExit();
862   bool EntryDominatesExit = DT->dominates(ParentRegion->getEntry(), Exit);
863
864   DeletedPhis.clear();
865   AddedPhis.clear();
866   Conditions.clear();
867   LoopConds.clear();
868
869   PrevNode = nullptr;
870   Visited.clear();
871
872   while (!Order.empty()) {
873     handleLoops(EntryDominatesExit, nullptr);
874   }
875
876   if (PrevNode)
877     changeExit(PrevNode, Exit, EntryDominatesExit);
878   else
879     assert(EntryDominatesExit);
880 }
881
882 /// Handle a rare case where the disintegrated nodes instructions
883 /// no longer dominate all their uses. Not sure if this is really necessary
884 void StructurizeCFG::rebuildSSA() {
885   SSAUpdater Updater;
886   for (BasicBlock *BB : ParentRegion->blocks())
887     for (Instruction &I : *BB) {
888       bool Initialized = false;
889       // We may modify the use list as we iterate over it, so be careful to
890       // compute the next element in the use list at the top of the loop.
891       for (auto UI = I.use_begin(), E = I.use_end(); UI != E;) {
892         Use &U = *UI++;
893         Instruction *User = cast<Instruction>(U.getUser());
894         if (User->getParent() == BB) {
895           continue;
896         } else if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
897           if (UserPN->getIncomingBlock(U) == BB)
898             continue;
899         }
900
901         if (DT->dominates(&I, User))
902           continue;
903
904         if (!Initialized) {
905           Value *Undef = UndefValue::get(I.getType());
906           Updater.Initialize(I.getType(), "");
907           Updater.AddAvailableValue(&Func->getEntryBlock(), Undef);
908           Updater.AddAvailableValue(BB, &I);
909           Initialized = true;
910         }
911         Updater.RewriteUseAfterInsertions(U);
912       }
913     }
914 }
915
916 static bool hasOnlyUniformBranches(Region *R, unsigned UniformMDKindID,
917                                    const DivergenceAnalysis &DA) {
918   for (auto E : R->elements()) {
919     if (!E->isSubRegion()) {
920       auto Br = dyn_cast<BranchInst>(E->getEntry()->getTerminator());
921       if (!Br || !Br->isConditional())
922         continue;
923
924       if (!DA.isUniform(Br))
925         return false;
926       LLVM_DEBUG(dbgs() << "BB: " << Br->getParent()->getName()
927                         << " has uniform terminator\n");
928     } else {
929       // Explicitly refuse to treat regions as uniform if they have non-uniform
930       // subregions. We cannot rely on DivergenceAnalysis for branches in
931       // subregions because those branches may have been removed and re-created,
932       // so we look for our metadata instead.
933       //
934       // Warning: It would be nice to treat regions as uniform based only on
935       // their direct child basic blocks' terminators, regardless of whether
936       // subregions are uniform or not. However, this requires a very careful
937       // look at SIAnnotateControlFlow to make sure nothing breaks there.
938       for (auto BB : E->getNodeAs<Region>()->blocks()) {
939         auto Br = dyn_cast<BranchInst>(BB->getTerminator());
940         if (!Br || !Br->isConditional())
941           continue;
942
943         if (!Br->getMetadata(UniformMDKindID))
944           return false;
945       }
946     }
947   }
948   return true;
949 }
950
951 /// Run the transformation for each region found
952 bool StructurizeCFG::runOnRegion(Region *R, RGPassManager &RGM) {
953   if (R->isTopLevelRegion())
954     return false;
955
956   DA = nullptr;
957
958   if (SkipUniformRegions) {
959     // TODO: We could probably be smarter here with how we handle sub-regions.
960     // We currently rely on the fact that metadata is set by earlier invocations
961     // of the pass on sub-regions, and that this metadata doesn't get lost --
962     // but we shouldn't rely on metadata for correctness!
963     unsigned UniformMDKindID =
964         R->getEntry()->getContext().getMDKindID("structurizecfg.uniform");
965     DA = &getAnalysis<DivergenceAnalysis>();
966
967     if (hasOnlyUniformBranches(R, UniformMDKindID, *DA)) {
968       LLVM_DEBUG(dbgs() << "Skipping region with uniform control flow: " << *R
969                         << '\n');
970
971       // Mark all direct child block terminators as having been treated as
972       // uniform. To account for a possible future in which non-uniform
973       // sub-regions are treated more cleverly, indirect children are not
974       // marked as uniform.
975       MDNode *MD = MDNode::get(R->getEntry()->getParent()->getContext(), {});
976       for (RegionNode *E : R->elements()) {
977         if (E->isSubRegion())
978           continue;
979
980         if (Instruction *Term = E->getEntry()->getTerminator())
981           Term->setMetadata(UniformMDKindID, MD);
982       }
983
984       return false;
985     }
986   }
987
988   Func = R->getEntry()->getParent();
989   ParentRegion = R;
990
991   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
992   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
993
994   orderNodes();
995   collectInfos();
996   createFlow();
997   insertConditions(false);
998   insertConditions(true);
999   setPhiValues();
1000   rebuildSSA();
1001
1002   // Cleanup
1003   Order.clear();
1004   Visited.clear();
1005   DeletedPhis.clear();
1006   AddedPhis.clear();
1007   Predicates.clear();
1008   Conditions.clear();
1009   Loops.clear();
1010   LoopPreds.clear();
1011   LoopConds.clear();
1012
1013   return true;
1014 }
1015
1016 Pass *llvm::createStructurizeCFGPass(bool SkipUniformRegions) {
1017   return new StructurizeCFG(SkipUniformRegions);
1018 }