]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/Utils/BreakCriticalEdges.cpp
Merge ^/head r317281 through r317502.
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / Utils / BreakCriticalEdges.cpp
1 //===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // BreakCriticalEdges pass - Break all of the critical edges in the CFG by
11 // inserting a dummy basic block.  This pass may be "required" by passes that
12 // cannot deal with critical edges.  For this usage, the structure type is
13 // forward declared.  This pass obviously invalidates the CFG, but can update
14 // dominator trees.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #include "llvm/Transforms/Utils/BreakCriticalEdges.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/CFG.h"
23 #include "llvm/Analysis/LoopInfo.h"
24 #include "llvm/IR/CFG.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/Type.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Transforms/Scalar.h"
30 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
31 using namespace llvm;
32
33 #define DEBUG_TYPE "break-crit-edges"
34
35 STATISTIC(NumBroken, "Number of blocks inserted");
36
37 namespace {
38   struct BreakCriticalEdges : public FunctionPass {
39     static char ID; // Pass identification, replacement for typeid
40     BreakCriticalEdges() : FunctionPass(ID) {
41       initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry());
42     }
43
44     bool runOnFunction(Function &F) override {
45       auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
46       auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
47       auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
48       auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
49       unsigned N =
50           SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI));
51       NumBroken += N;
52       return N > 0;
53     }
54
55     void getAnalysisUsage(AnalysisUsage &AU) const override {
56       AU.addPreserved<DominatorTreeWrapperPass>();
57       AU.addPreserved<LoopInfoWrapperPass>();
58
59       // No loop canonicalization guarantees are broken by this pass.
60       AU.addPreservedID(LoopSimplifyID);
61     }
62   };
63 }
64
65 char BreakCriticalEdges::ID = 0;
66 INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges",
67                 "Break critical edges in CFG", false, false)
68
69 // Publicly exposed interface to pass...
70 char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID;
71 FunctionPass *llvm::createBreakCriticalEdgesPass() {
72   return new BreakCriticalEdges();
73 }
74
75 PreservedAnalyses BreakCriticalEdgesPass::run(Function &F,
76                                               FunctionAnalysisManager &AM) {
77   auto *DT = AM.getCachedResult<DominatorTreeAnalysis>(F);
78   auto *LI = AM.getCachedResult<LoopAnalysis>(F);
79   unsigned N = SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI));
80   NumBroken += N;
81   if (N == 0)
82     return PreservedAnalyses::all();
83   PreservedAnalyses PA;
84   PA.preserve<DominatorTreeAnalysis>();
85   PA.preserve<LoopAnalysis>();
86   return PA;
87 }
88
89 //===----------------------------------------------------------------------===//
90 //    Implementation of the external critical edge manipulation functions
91 //===----------------------------------------------------------------------===//
92
93 /// When a loop exit edge is split, LCSSA form may require new PHIs in the new
94 /// exit block. This function inserts the new PHIs, as needed. Preds is a list
95 /// of preds inside the loop, SplitBB is the new loop exit block, and DestBB is
96 /// the old loop exit, now the successor of SplitBB.
97 static void createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds,
98                                        BasicBlock *SplitBB,
99                                        BasicBlock *DestBB) {
100   // SplitBB shouldn't have anything non-trivial in it yet.
101   assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() ||
102           SplitBB->isLandingPad()) && "SplitBB has non-PHI nodes!");
103
104   // For each PHI in the destination block.
105   for (BasicBlock::iterator I = DestBB->begin();
106        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
107     unsigned Idx = PN->getBasicBlockIndex(SplitBB);
108     Value *V = PN->getIncomingValue(Idx);
109
110     // If the input is a PHI which already satisfies LCSSA, don't create
111     // a new one.
112     if (const PHINode *VP = dyn_cast<PHINode>(V))
113       if (VP->getParent() == SplitBB)
114         continue;
115
116     // Otherwise a new PHI is needed. Create one and populate it.
117     PHINode *NewPN = PHINode::Create(
118         PN->getType(), Preds.size(), "split",
119         SplitBB->isLandingPad() ? &SplitBB->front() : SplitBB->getTerminator());
120     for (unsigned i = 0, e = Preds.size(); i != e; ++i)
121       NewPN->addIncoming(V, Preds[i]);
122
123     // Update the original PHI.
124     PN->setIncomingValue(Idx, NewPN);
125   }
126 }
127
128 BasicBlock *
129 llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum,
130                         const CriticalEdgeSplittingOptions &Options) {
131   if (!isCriticalEdge(TI, SuccNum, Options.MergeIdenticalEdges))
132     return nullptr;
133
134   assert(!isa<IndirectBrInst>(TI) &&
135          "Cannot split critical edge from IndirectBrInst");
136
137   BasicBlock *TIBB = TI->getParent();
138   BasicBlock *DestBB = TI->getSuccessor(SuccNum);
139
140   // Splitting the critical edge to a pad block is non-trivial. Don't do
141   // it in this generic function.
142   if (DestBB->isEHPad()) return nullptr;
143
144   // Create a new basic block, linking it into the CFG.
145   BasicBlock *NewBB = BasicBlock::Create(TI->getContext(),
146                       TIBB->getName() + "." + DestBB->getName() + "_crit_edge");
147   // Create our unconditional branch.
148   BranchInst *NewBI = BranchInst::Create(DestBB, NewBB);
149   NewBI->setDebugLoc(TI->getDebugLoc());
150
151   // Branch to the new block, breaking the edge.
152   TI->setSuccessor(SuccNum, NewBB);
153
154   // Insert the block into the function... right after the block TI lives in.
155   Function &F = *TIBB->getParent();
156   Function::iterator FBBI = TIBB->getIterator();
157   F.getBasicBlockList().insert(++FBBI, NewBB);
158
159   // If there are any PHI nodes in DestBB, we need to update them so that they
160   // merge incoming values from NewBB instead of from TIBB.
161   {
162     unsigned BBIdx = 0;
163     for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) {
164       // We no longer enter through TIBB, now we come in through NewBB.
165       // Revector exactly one entry in the PHI node that used to come from
166       // TIBB to come from NewBB.
167       PHINode *PN = cast<PHINode>(I);
168
169       // Reuse the previous value of BBIdx if it lines up.  In cases where we
170       // have multiple phi nodes with *lots* of predecessors, this is a speed
171       // win because we don't have to scan the PHI looking for TIBB.  This
172       // happens because the BB list of PHI nodes are usually in the same
173       // order.
174       if (PN->getIncomingBlock(BBIdx) != TIBB)
175         BBIdx = PN->getBasicBlockIndex(TIBB);
176       PN->setIncomingBlock(BBIdx, NewBB);
177     }
178   }
179
180   // If there are any other edges from TIBB to DestBB, update those to go
181   // through the split block, making those edges non-critical as well (and
182   // reducing the number of phi entries in the DestBB if relevant).
183   if (Options.MergeIdenticalEdges) {
184     for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) {
185       if (TI->getSuccessor(i) != DestBB) continue;
186
187       // Remove an entry for TIBB from DestBB phi nodes.
188       DestBB->removePredecessor(TIBB, Options.DontDeleteUselessPHIs);
189
190       // We found another edge to DestBB, go to NewBB instead.
191       TI->setSuccessor(i, NewBB);
192     }
193   }
194
195   // If we have nothing to update, just return.
196   auto *DT = Options.DT;
197   auto *LI = Options.LI;
198   if (!DT && !LI)
199     return NewBB;
200
201   // Now update analysis information.  Since the only predecessor of NewBB is
202   // the TIBB, TIBB clearly dominates NewBB.  TIBB usually doesn't dominate
203   // anything, as there are other successors of DestBB.  However, if all other
204   // predecessors of DestBB are already dominated by DestBB (e.g. DestBB is a
205   // loop header) then NewBB dominates DestBB.
206   SmallVector<BasicBlock*, 8> OtherPreds;
207
208   // If there is a PHI in the block, loop over predecessors with it, which is
209   // faster than iterating pred_begin/end.
210   if (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
211     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
212       if (PN->getIncomingBlock(i) != NewBB)
213         OtherPreds.push_back(PN->getIncomingBlock(i));
214   } else {
215     for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB);
216          I != E; ++I) {
217       BasicBlock *P = *I;
218       if (P != NewBB)
219         OtherPreds.push_back(P);
220     }
221   }
222
223   bool NewBBDominatesDestBB = true;
224
225   // Should we update DominatorTree information?
226   if (DT) {
227     DomTreeNode *TINode = DT->getNode(TIBB);
228
229     // The new block is not the immediate dominator for any other nodes, but
230     // TINode is the immediate dominator for the new node.
231     //
232     if (TINode) {       // Don't break unreachable code!
233       DomTreeNode *NewBBNode = DT->addNewBlock(NewBB, TIBB);
234       DomTreeNode *DestBBNode = nullptr;
235
236       // If NewBBDominatesDestBB hasn't been computed yet, do so with DT.
237       if (!OtherPreds.empty()) {
238         DestBBNode = DT->getNode(DestBB);
239         while (!OtherPreds.empty() && NewBBDominatesDestBB) {
240           if (DomTreeNode *OPNode = DT->getNode(OtherPreds.back()))
241             NewBBDominatesDestBB = DT->dominates(DestBBNode, OPNode);
242           OtherPreds.pop_back();
243         }
244         OtherPreds.clear();
245       }
246
247       // If NewBBDominatesDestBB, then NewBB dominates DestBB, otherwise it
248       // doesn't dominate anything.
249       if (NewBBDominatesDestBB) {
250         if (!DestBBNode) DestBBNode = DT->getNode(DestBB);
251         DT->changeImmediateDominator(DestBBNode, NewBBNode);
252       }
253     }
254   }
255
256   // Update LoopInfo if it is around.
257   if (LI) {
258     if (Loop *TIL = LI->getLoopFor(TIBB)) {
259       // If one or the other blocks were not in a loop, the new block is not
260       // either, and thus LI doesn't need to be updated.
261       if (Loop *DestLoop = LI->getLoopFor(DestBB)) {
262         if (TIL == DestLoop) {
263           // Both in the same loop, the NewBB joins loop.
264           DestLoop->addBasicBlockToLoop(NewBB, *LI);
265         } else if (TIL->contains(DestLoop)) {
266           // Edge from an outer loop to an inner loop.  Add to the outer loop.
267           TIL->addBasicBlockToLoop(NewBB, *LI);
268         } else if (DestLoop->contains(TIL)) {
269           // Edge from an inner loop to an outer loop.  Add to the outer loop.
270           DestLoop->addBasicBlockToLoop(NewBB, *LI);
271         } else {
272           // Edge from two loops with no containment relation.  Because these
273           // are natural loops, we know that the destination block must be the
274           // header of its loop (adding a branch into a loop elsewhere would
275           // create an irreducible loop).
276           assert(DestLoop->getHeader() == DestBB &&
277                  "Should not create irreducible loops!");
278           if (Loop *P = DestLoop->getParentLoop())
279             P->addBasicBlockToLoop(NewBB, *LI);
280         }
281       }
282
283       // If TIBB is in a loop and DestBB is outside of that loop, we may need
284       // to update LoopSimplify form and LCSSA form.
285       if (!TIL->contains(DestBB)) {
286         assert(!TIL->contains(NewBB) &&
287                "Split point for loop exit is contained in loop!");
288
289         // Update LCSSA form in the newly created exit block.
290         if (Options.PreserveLCSSA) {
291           createPHIsForSplitLoopExit(TIBB, NewBB, DestBB);
292         }
293
294         // The only that we can break LoopSimplify form by splitting a critical
295         // edge is if after the split there exists some edge from TIL to DestBB
296         // *and* the only edge into DestBB from outside of TIL is that of
297         // NewBB. If the first isn't true, then LoopSimplify still holds, NewBB
298         // is the new exit block and it has no non-loop predecessors. If the
299         // second isn't true, then DestBB was not in LoopSimplify form prior to
300         // the split as it had a non-loop predecessor. In both of these cases,
301         // the predecessor must be directly in TIL, not in a subloop, or again
302         // LoopSimplify doesn't hold.
303         SmallVector<BasicBlock *, 4> LoopPreds;
304         for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB); I != E;
305              ++I) {
306           BasicBlock *P = *I;
307           if (P == NewBB)
308             continue; // The new block is known.
309           if (LI->getLoopFor(P) != TIL) {
310             // No need to re-simplify, it wasn't to start with.
311             LoopPreds.clear();
312             break;
313           }
314           LoopPreds.push_back(P);
315         }
316         if (!LoopPreds.empty()) {
317           assert(!DestBB->isEHPad() && "We don't split edges to EH pads!");
318           BasicBlock *NewExitBB = SplitBlockPredecessors(
319               DestBB, LoopPreds, "split", DT, LI, Options.PreserveLCSSA);
320           if (Options.PreserveLCSSA)
321             createPHIsForSplitLoopExit(LoopPreds, NewExitBB, DestBB);
322         }
323       }
324     }
325   }
326
327   return NewBB;
328 }