]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/Utils/CloneFunction.cpp
MFV: r334448
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / Utils / CloneFunction.cpp
1 //===- CloneFunction.cpp - Clone a function into another function ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CloneFunctionInto interface, which is used as the
11 // low-level function cloner.  This is used by the CloneFunction and function
12 // inliner to do the dirty work of copying the body of a function around.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/ConstantFolding.h"
19 #include "llvm/Analysis/InstructionSimplify.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/IR/CFG.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DebugInfo.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/Function.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/IntrinsicInst.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
33 #include "llvm/Transforms/Utils/Cloning.h"
34 #include "llvm/Transforms/Utils/Local.h"
35 #include "llvm/Transforms/Utils/ValueMapper.h"
36 #include <map>
37 using namespace llvm;
38
39 /// See comments in Cloning.h.
40 BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap,
41                                   const Twine &NameSuffix, Function *F,
42                                   ClonedCodeInfo *CodeInfo,
43                                   DebugInfoFinder *DIFinder) {
44   DenseMap<const MDNode *, MDNode *> Cache;
45   BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F);
46   if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
47
48   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
49   Module *TheModule = F ? F->getParent() : nullptr;
50
51   // Loop over all instructions, and copy them over.
52   for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end();
53        II != IE; ++II) {
54
55     if (DIFinder && TheModule) {
56       if (auto *DDI = dyn_cast<DbgDeclareInst>(II))
57         DIFinder->processDeclare(*TheModule, DDI);
58       else if (auto *DVI = dyn_cast<DbgValueInst>(II))
59         DIFinder->processValue(*TheModule, DVI);
60
61       if (auto DbgLoc = II->getDebugLoc())
62         DIFinder->processLocation(*TheModule, DbgLoc.get());
63     }
64
65     Instruction *NewInst = II->clone();
66     if (II->hasName())
67       NewInst->setName(II->getName()+NameSuffix);
68     NewBB->getInstList().push_back(NewInst);
69     VMap[&*II] = NewInst; // Add instruction map to value.
70
71     hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
72     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
73       if (isa<ConstantInt>(AI->getArraySize()))
74         hasStaticAllocas = true;
75       else
76         hasDynamicAllocas = true;
77     }
78   }
79   
80   if (CodeInfo) {
81     CodeInfo->ContainsCalls          |= hasCalls;
82     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
83     CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 
84                                         BB != &BB->getParent()->getEntryBlock();
85   }
86   return NewBB;
87 }
88
89 // Clone OldFunc into NewFunc, transforming the old arguments into references to
90 // VMap values.
91 //
92 void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc,
93                              ValueToValueMapTy &VMap,
94                              bool ModuleLevelChanges,
95                              SmallVectorImpl<ReturnInst*> &Returns,
96                              const char *NameSuffix, ClonedCodeInfo *CodeInfo,
97                              ValueMapTypeRemapper *TypeMapper,
98                              ValueMaterializer *Materializer) {
99   assert(NameSuffix && "NameSuffix cannot be null!");
100
101 #ifndef NDEBUG
102   for (const Argument &I : OldFunc->args())
103     assert(VMap.count(&I) && "No mapping from source argument specified!");
104 #endif
105
106   // Copy all attributes other than those stored in the AttributeList.  We need
107   // to remap the parameter indices of the AttributeList.
108   AttributeList NewAttrs = NewFunc->getAttributes();
109   NewFunc->copyAttributesFrom(OldFunc);
110   NewFunc->setAttributes(NewAttrs);
111
112   // Fix up the personality function that got copied over.
113   if (OldFunc->hasPersonalityFn())
114     NewFunc->setPersonalityFn(
115         MapValue(OldFunc->getPersonalityFn(), VMap,
116                  ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
117                  TypeMapper, Materializer));
118
119   SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size());
120   AttributeList OldAttrs = OldFunc->getAttributes();
121
122   // Clone any argument attributes that are present in the VMap.
123   for (const Argument &OldArg : OldFunc->args()) {
124     if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) {
125       NewArgAttrs[NewArg->getArgNo()] =
126           OldAttrs.getParamAttributes(OldArg.getArgNo());
127     }
128   }
129
130   NewFunc->setAttributes(
131       AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttributes(),
132                          OldAttrs.getRetAttributes(), NewArgAttrs));
133
134   bool MustCloneSP =
135       OldFunc->getParent() && OldFunc->getParent() == NewFunc->getParent();
136   DISubprogram *SP = OldFunc->getSubprogram();
137   if (SP) {
138     assert(!MustCloneSP || ModuleLevelChanges);
139     // Add mappings for some DebugInfo nodes that we don't want duplicated
140     // even if they're distinct.
141     auto &MD = VMap.MD();
142     MD[SP->getUnit()].reset(SP->getUnit());
143     MD[SP->getType()].reset(SP->getType());
144     MD[SP->getFile()].reset(SP->getFile());
145     // If we're not cloning into the same module, no need to clone the
146     // subprogram
147     if (!MustCloneSP)
148       MD[SP].reset(SP);
149   }
150
151   SmallVector<std::pair<unsigned, MDNode *>, 1> MDs;
152   OldFunc->getAllMetadata(MDs);
153   for (auto MD : MDs) {
154     NewFunc->addMetadata(
155         MD.first,
156         *MapMetadata(MD.second, VMap,
157                      ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
158                      TypeMapper, Materializer));
159   }
160
161   // When we remap instructions, we want to avoid duplicating inlined
162   // DISubprograms, so record all subprograms we find as we duplicate
163   // instructions and then freeze them in the MD map.
164   // We also record information about dbg.value and dbg.declare to avoid
165   // duplicating the types.
166   DebugInfoFinder DIFinder;
167
168   // Loop over all of the basic blocks in the function, cloning them as
169   // appropriate.  Note that we save BE this way in order to handle cloning of
170   // recursive functions into themselves.
171   //
172   for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end();
173        BI != BE; ++BI) {
174     const BasicBlock &BB = *BI;
175
176     // Create a new basic block and copy instructions into it!
177     BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo,
178                                       SP ? &DIFinder : nullptr);
179
180     // Add basic block mapping.
181     VMap[&BB] = CBB;
182
183     // It is only legal to clone a function if a block address within that
184     // function is never referenced outside of the function.  Given that, we
185     // want to map block addresses from the old function to block addresses in
186     // the clone. (This is different from the generic ValueMapper
187     // implementation, which generates an invalid blockaddress when
188     // cloning a function.)
189     if (BB.hasAddressTaken()) {
190       Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
191                                               const_cast<BasicBlock*>(&BB));
192       VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB);
193     }
194
195     // Note return instructions for the caller.
196     if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator()))
197       Returns.push_back(RI);
198   }
199
200   for (DISubprogram *ISP : DIFinder.subprograms()) {
201     if (ISP != SP) {
202       VMap.MD()[ISP].reset(ISP);
203     }
204   }
205
206   for (auto *Type : DIFinder.types()) {
207     VMap.MD()[Type].reset(Type);
208   }
209
210   // Loop over all of the instructions in the function, fixing up operand
211   // references as we go.  This uses VMap to do all the hard work.
212   for (Function::iterator BB =
213            cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(),
214                           BE = NewFunc->end();
215        BB != BE; ++BB)
216     // Loop over all instructions, fixing each one as we find it...
217     for (Instruction &II : *BB)
218       RemapInstruction(&II, VMap,
219                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
220                        TypeMapper, Materializer);
221 }
222
223 /// Return a copy of the specified function and add it to that function's
224 /// module.  Also, any references specified in the VMap are changed to refer to
225 /// their mapped value instead of the original one.  If any of the arguments to
226 /// the function are in the VMap, the arguments are deleted from the resultant
227 /// function.  The VMap is updated to include mappings from all of the
228 /// instructions and basicblocks in the function from their old to new values.
229 ///
230 Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap,
231                               ClonedCodeInfo *CodeInfo) {
232   std::vector<Type*> ArgTypes;
233
234   // The user might be deleting arguments to the function by specifying them in
235   // the VMap.  If so, we need to not add the arguments to the arg ty vector
236   //
237   for (const Argument &I : F->args())
238     if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet?
239       ArgTypes.push_back(I.getType());
240
241   // Create a new function type...
242   FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(),
243                                     ArgTypes, F->getFunctionType()->isVarArg());
244
245   // Create the new function...
246   Function *NewF =
247       Function::Create(FTy, F->getLinkage(), F->getName(), F->getParent());
248
249   // Loop over the arguments, copying the names of the mapped arguments over...
250   Function::arg_iterator DestI = NewF->arg_begin();
251   for (const Argument & I : F->args())
252     if (VMap.count(&I) == 0) {     // Is this argument preserved?
253       DestI->setName(I.getName()); // Copy the name over...
254       VMap[&I] = &*DestI++;        // Add mapping to VMap
255     }
256
257   SmallVector<ReturnInst*, 8> Returns;  // Ignore returns cloned.
258   CloneFunctionInto(NewF, F, VMap, F->getSubprogram() != nullptr, Returns, "",
259                     CodeInfo);
260
261   return NewF;
262 }
263
264
265
266 namespace {
267   /// This is a private class used to implement CloneAndPruneFunctionInto.
268   struct PruningFunctionCloner {
269     Function *NewFunc;
270     const Function *OldFunc;
271     ValueToValueMapTy &VMap;
272     bool ModuleLevelChanges;
273     const char *NameSuffix;
274     ClonedCodeInfo *CodeInfo;
275
276   public:
277     PruningFunctionCloner(Function *newFunc, const Function *oldFunc,
278                           ValueToValueMapTy &valueMap, bool moduleLevelChanges,
279                           const char *nameSuffix, ClonedCodeInfo *codeInfo)
280         : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap),
281           ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix),
282           CodeInfo(codeInfo) {}
283
284     /// The specified block is found to be reachable, clone it and
285     /// anything that it can reach.
286     void CloneBlock(const BasicBlock *BB, 
287                     BasicBlock::const_iterator StartingInst,
288                     std::vector<const BasicBlock*> &ToClone);
289   };
290 }
291
292 /// The specified block is found to be reachable, clone it and
293 /// anything that it can reach.
294 void PruningFunctionCloner::CloneBlock(const BasicBlock *BB,
295                                        BasicBlock::const_iterator StartingInst,
296                                        std::vector<const BasicBlock*> &ToClone){
297   WeakTrackingVH &BBEntry = VMap[BB];
298
299   // Have we already cloned this block?
300   if (BBEntry) return;
301   
302   // Nope, clone it now.
303   BasicBlock *NewBB;
304   BBEntry = NewBB = BasicBlock::Create(BB->getContext());
305   if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix);
306
307   // It is only legal to clone a function if a block address within that
308   // function is never referenced outside of the function.  Given that, we
309   // want to map block addresses from the old function to block addresses in
310   // the clone. (This is different from the generic ValueMapper
311   // implementation, which generates an invalid blockaddress when
312   // cloning a function.)
313   //
314   // Note that we don't need to fix the mapping for unreachable blocks;
315   // the default mapping there is safe.
316   if (BB->hasAddressTaken()) {
317     Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc),
318                                             const_cast<BasicBlock*>(BB));
319     VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB);
320   }
321
322   bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false;
323
324   // Loop over all instructions, and copy them over, DCE'ing as we go.  This
325   // loop doesn't include the terminator.
326   for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end();
327        II != IE; ++II) {
328
329     Instruction *NewInst = II->clone();
330
331     // Eagerly remap operands to the newly cloned instruction, except for PHI
332     // nodes for which we defer processing until we update the CFG.
333     if (!isa<PHINode>(NewInst)) {
334       RemapInstruction(NewInst, VMap,
335                        ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
336
337       // If we can simplify this instruction to some other value, simply add
338       // a mapping to that value rather than inserting a new instruction into
339       // the basic block.
340       if (Value *V =
341               SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) {
342         // On the off-chance that this simplifies to an instruction in the old
343         // function, map it back into the new function.
344         if (NewFunc != OldFunc)
345           if (Value *MappedV = VMap.lookup(V))
346             V = MappedV;
347
348         if (!NewInst->mayHaveSideEffects()) {
349           VMap[&*II] = V;
350           NewInst->deleteValue();
351           continue;
352         }
353       }
354     }
355
356     if (II->hasName())
357       NewInst->setName(II->getName()+NameSuffix);
358     VMap[&*II] = NewInst; // Add instruction map to value.
359     NewBB->getInstList().push_back(NewInst);
360     hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II));
361
362     if (CodeInfo)
363       if (auto CS = ImmutableCallSite(&*II))
364         if (CS.hasOperandBundles())
365           CodeInfo->OperandBundleCallSites.push_back(NewInst);
366
367     if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
368       if (isa<ConstantInt>(AI->getArraySize()))
369         hasStaticAllocas = true;
370       else
371         hasDynamicAllocas = true;
372     }
373   }
374   
375   // Finally, clone over the terminator.
376   const TerminatorInst *OldTI = BB->getTerminator();
377   bool TerminatorDone = false;
378   if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) {
379     if (BI->isConditional()) {
380       // If the condition was a known constant in the callee...
381       ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
382       // Or is a known constant in the caller...
383       if (!Cond) {
384         Value *V = VMap.lookup(BI->getCondition());
385         Cond = dyn_cast_or_null<ConstantInt>(V);
386       }
387
388       // Constant fold to uncond branch!
389       if (Cond) {
390         BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue());
391         VMap[OldTI] = BranchInst::Create(Dest, NewBB);
392         ToClone.push_back(Dest);
393         TerminatorDone = true;
394       }
395     }
396   } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) {
397     // If switching on a value known constant in the caller.
398     ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
399     if (!Cond) { // Or known constant after constant prop in the callee...
400       Value *V = VMap.lookup(SI->getCondition());
401       Cond = dyn_cast_or_null<ConstantInt>(V);
402     }
403     if (Cond) {     // Constant fold to uncond branch!
404       SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond);
405       BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor());
406       VMap[OldTI] = BranchInst::Create(Dest, NewBB);
407       ToClone.push_back(Dest);
408       TerminatorDone = true;
409     }
410   }
411   
412   if (!TerminatorDone) {
413     Instruction *NewInst = OldTI->clone();
414     if (OldTI->hasName())
415       NewInst->setName(OldTI->getName()+NameSuffix);
416     NewBB->getInstList().push_back(NewInst);
417     VMap[OldTI] = NewInst;             // Add instruction map to value.
418
419     if (CodeInfo)
420       if (auto CS = ImmutableCallSite(OldTI))
421         if (CS.hasOperandBundles())
422           CodeInfo->OperandBundleCallSites.push_back(NewInst);
423
424     // Recursively clone any reachable successor blocks.
425     const TerminatorInst *TI = BB->getTerminator();
426     for (const BasicBlock *Succ : TI->successors())
427       ToClone.push_back(Succ);
428   }
429   
430   if (CodeInfo) {
431     CodeInfo->ContainsCalls          |= hasCalls;
432     CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas;
433     CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && 
434       BB != &BB->getParent()->front();
435   }
436 }
437
438 /// This works like CloneAndPruneFunctionInto, except that it does not clone the
439 /// entire function. Instead it starts at an instruction provided by the caller
440 /// and copies (and prunes) only the code reachable from that instruction.
441 void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc,
442                                      const Instruction *StartingInst,
443                                      ValueToValueMapTy &VMap,
444                                      bool ModuleLevelChanges,
445                                      SmallVectorImpl<ReturnInst *> &Returns,
446                                      const char *NameSuffix,
447                                      ClonedCodeInfo *CodeInfo) {
448   assert(NameSuffix && "NameSuffix cannot be null!");
449
450   ValueMapTypeRemapper *TypeMapper = nullptr;
451   ValueMaterializer *Materializer = nullptr;
452
453 #ifndef NDEBUG
454   // If the cloning starts at the beginning of the function, verify that
455   // the function arguments are mapped.
456   if (!StartingInst)
457     for (const Argument &II : OldFunc->args())
458       assert(VMap.count(&II) && "No mapping from source argument specified!");
459 #endif
460
461   PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges,
462                             NameSuffix, CodeInfo);
463   const BasicBlock *StartingBB;
464   if (StartingInst)
465     StartingBB = StartingInst->getParent();
466   else {
467     StartingBB = &OldFunc->getEntryBlock();
468     StartingInst = &StartingBB->front();
469   }
470
471   // Clone the entry block, and anything recursively reachable from it.
472   std::vector<const BasicBlock*> CloneWorklist;
473   PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist);
474   while (!CloneWorklist.empty()) {
475     const BasicBlock *BB = CloneWorklist.back();
476     CloneWorklist.pop_back();
477     PFC.CloneBlock(BB, BB->begin(), CloneWorklist);
478   }
479   
480   // Loop over all of the basic blocks in the old function.  If the block was
481   // reachable, we have cloned it and the old block is now in the value map:
482   // insert it into the new function in the right order.  If not, ignore it.
483   //
484   // Defer PHI resolution until rest of function is resolved.
485   SmallVector<const PHINode*, 16> PHIToResolve;
486   for (const BasicBlock &BI : *OldFunc) {
487     Value *V = VMap.lookup(&BI);
488     BasicBlock *NewBB = cast_or_null<BasicBlock>(V);
489     if (!NewBB) continue;  // Dead block.
490
491     // Add the new block to the new function.
492     NewFunc->getBasicBlockList().push_back(NewBB);
493
494     // Handle PHI nodes specially, as we have to remove references to dead
495     // blocks.
496     for (const PHINode &PN : BI.phis()) {
497       // PHI nodes may have been remapped to non-PHI nodes by the caller or
498       // during the cloning process.
499       if (isa<PHINode>(VMap[&PN]))
500         PHIToResolve.push_back(&PN);
501       else
502         break;
503     }
504
505     // Finally, remap the terminator instructions, as those can't be remapped
506     // until all BBs are mapped.
507     RemapInstruction(NewBB->getTerminator(), VMap,
508                      ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges,
509                      TypeMapper, Materializer);
510   }
511   
512   // Defer PHI resolution until rest of function is resolved, PHI resolution
513   // requires the CFG to be up-to-date.
514   for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) {
515     const PHINode *OPN = PHIToResolve[phino];
516     unsigned NumPreds = OPN->getNumIncomingValues();
517     const BasicBlock *OldBB = OPN->getParent();
518     BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]);
519
520     // Map operands for blocks that are live and remove operands for blocks
521     // that are dead.
522     for (; phino != PHIToResolve.size() &&
523          PHIToResolve[phino]->getParent() == OldBB; ++phino) {
524       OPN = PHIToResolve[phino];
525       PHINode *PN = cast<PHINode>(VMap[OPN]);
526       for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) {
527         Value *V = VMap.lookup(PN->getIncomingBlock(pred));
528         if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) {
529           Value *InVal = MapValue(PN->getIncomingValue(pred),
530                                   VMap, 
531                         ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges);
532           assert(InVal && "Unknown input value?");
533           PN->setIncomingValue(pred, InVal);
534           PN->setIncomingBlock(pred, MappedBlock);
535         } else {
536           PN->removeIncomingValue(pred, false);
537           --pred;  // Revisit the next entry.
538           --e;
539         }
540       } 
541     }
542     
543     // The loop above has removed PHI entries for those blocks that are dead
544     // and has updated others.  However, if a block is live (i.e. copied over)
545     // but its terminator has been changed to not go to this block, then our
546     // phi nodes will have invalid entries.  Update the PHI nodes in this
547     // case.
548     PHINode *PN = cast<PHINode>(NewBB->begin());
549     NumPreds = std::distance(pred_begin(NewBB), pred_end(NewBB));
550     if (NumPreds != PN->getNumIncomingValues()) {
551       assert(NumPreds < PN->getNumIncomingValues());
552       // Count how many times each predecessor comes to this block.
553       std::map<BasicBlock*, unsigned> PredCount;
554       for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB);
555            PI != E; ++PI)
556         --PredCount[*PI];
557       
558       // Figure out how many entries to remove from each PHI.
559       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
560         ++PredCount[PN->getIncomingBlock(i)];
561       
562       // At this point, the excess predecessor entries are positive in the
563       // map.  Loop over all of the PHIs and remove excess predecessor
564       // entries.
565       BasicBlock::iterator I = NewBB->begin();
566       for (; (PN = dyn_cast<PHINode>(I)); ++I) {
567         for (const auto &PCI : PredCount) {
568           BasicBlock *Pred = PCI.first;
569           for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove)
570             PN->removeIncomingValue(Pred, false);
571         }
572       }
573     }
574     
575     // If the loops above have made these phi nodes have 0 or 1 operand,
576     // replace them with undef or the input value.  We must do this for
577     // correctness, because 0-operand phis are not valid.
578     PN = cast<PHINode>(NewBB->begin());
579     if (PN->getNumIncomingValues() == 0) {
580       BasicBlock::iterator I = NewBB->begin();
581       BasicBlock::const_iterator OldI = OldBB->begin();
582       while ((PN = dyn_cast<PHINode>(I++))) {
583         Value *NV = UndefValue::get(PN->getType());
584         PN->replaceAllUsesWith(NV);
585         assert(VMap[&*OldI] == PN && "VMap mismatch");
586         VMap[&*OldI] = NV;
587         PN->eraseFromParent();
588         ++OldI;
589       }
590     }
591   }
592
593   // Make a second pass over the PHINodes now that all of them have been
594   // remapped into the new function, simplifying the PHINode and performing any
595   // recursive simplifications exposed. This will transparently update the
596   // WeakTrackingVH in the VMap. Notably, we rely on that so that if we coalesce
597   // two PHINodes, the iteration over the old PHIs remains valid, and the
598   // mapping will just map us to the new node (which may not even be a PHI
599   // node).
600   const DataLayout &DL = NewFunc->getParent()->getDataLayout();
601   SmallSetVector<const Value *, 8> Worklist;
602   for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx)
603     if (isa<PHINode>(VMap[PHIToResolve[Idx]]))
604       Worklist.insert(PHIToResolve[Idx]);
605
606   // Note that we must test the size on each iteration, the worklist can grow.
607   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
608     const Value *OrigV = Worklist[Idx];
609     auto *I = dyn_cast_or_null<Instruction>(VMap.lookup(OrigV));
610     if (!I)
611       continue;
612
613     // Skip over non-intrinsic callsites, we don't want to remove any nodes from
614     // the CGSCC.
615     CallSite CS = CallSite(I);
616     if (CS && CS.getCalledFunction() && !CS.getCalledFunction()->isIntrinsic())
617       continue;
618
619     // See if this instruction simplifies.
620     Value *SimpleV = SimplifyInstruction(I, DL);
621     if (!SimpleV)
622       continue;
623
624     // Stash away all the uses of the old instruction so we can check them for
625     // recursive simplifications after a RAUW. This is cheaper than checking all
626     // uses of To on the recursive step in most cases.
627     for (const User *U : OrigV->users())
628       Worklist.insert(cast<Instruction>(U));
629
630     // Replace the instruction with its simplified value.
631     I->replaceAllUsesWith(SimpleV);
632
633     // If the original instruction had no side effects, remove it.
634     if (isInstructionTriviallyDead(I))
635       I->eraseFromParent();
636     else
637       VMap[OrigV] = I;
638   }
639
640   // Now that the inlined function body has been fully constructed, go through
641   // and zap unconditional fall-through branches. This happens all the time when
642   // specializing code: code specialization turns conditional branches into
643   // uncond branches, and this code folds them.
644   Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator();
645   Function::iterator I = Begin;
646   while (I != NewFunc->end()) {
647     // Check if this block has become dead during inlining or other
648     // simplifications. Note that the first block will appear dead, as it has
649     // not yet been wired up properly.
650     if (I != Begin && (pred_begin(&*I) == pred_end(&*I) ||
651                        I->getSinglePredecessor() == &*I)) {
652       BasicBlock *DeadBB = &*I++;
653       DeleteDeadBlock(DeadBB);
654       continue;
655     }
656
657     // We need to simplify conditional branches and switches with a constant
658     // operand. We try to prune these out when cloning, but if the
659     // simplification required looking through PHI nodes, those are only
660     // available after forming the full basic block. That may leave some here,
661     // and we still want to prune the dead code as early as possible.
662     ConstantFoldTerminator(&*I);
663
664     BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator());
665     if (!BI || BI->isConditional()) { ++I; continue; }
666     
667     BasicBlock *Dest = BI->getSuccessor(0);
668     if (!Dest->getSinglePredecessor()) {
669       ++I; continue;
670     }
671
672     // We shouldn't be able to get single-entry PHI nodes here, as instsimplify
673     // above should have zapped all of them..
674     assert(!isa<PHINode>(Dest->begin()));
675
676     // We know all single-entry PHI nodes in the inlined function have been
677     // removed, so we just need to splice the blocks.
678     BI->eraseFromParent();
679     
680     // Make all PHI nodes that referred to Dest now refer to I as their source.
681     Dest->replaceAllUsesWith(&*I);
682
683     // Move all the instructions in the succ to the pred.
684     I->getInstList().splice(I->end(), Dest->getInstList());
685     
686     // Remove the dest block.
687     Dest->eraseFromParent();
688     
689     // Do not increment I, iteratively merge all things this block branches to.
690   }
691
692   // Make a final pass over the basic blocks from the old function to gather
693   // any return instructions which survived folding. We have to do this here
694   // because we can iteratively remove and merge returns above.
695   for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(),
696                           E = NewFunc->end();
697        I != E; ++I)
698     if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator()))
699       Returns.push_back(RI);
700 }
701
702
703 /// This works exactly like CloneFunctionInto,
704 /// except that it does some simple constant prop and DCE on the fly.  The
705 /// effect of this is to copy significantly less code in cases where (for
706 /// example) a function call with constant arguments is inlined, and those
707 /// constant arguments cause a significant amount of code in the callee to be
708 /// dead.  Since this doesn't produce an exact copy of the input, it can't be
709 /// used for things like CloneFunction or CloneModule.
710 void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc,
711                                      ValueToValueMapTy &VMap,
712                                      bool ModuleLevelChanges,
713                                      SmallVectorImpl<ReturnInst*> &Returns,
714                                      const char *NameSuffix, 
715                                      ClonedCodeInfo *CodeInfo,
716                                      Instruction *TheCall) {
717   CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap,
718                             ModuleLevelChanges, Returns, NameSuffix, CodeInfo);
719 }
720
721 /// \brief Remaps instructions in \p Blocks using the mapping in \p VMap.
722 void llvm::remapInstructionsInBlocks(
723     const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) {
724   // Rewrite the code to refer to itself.
725   for (auto *BB : Blocks)
726     for (auto &Inst : *BB)
727       RemapInstruction(&Inst, VMap,
728                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
729 }
730
731 /// \brief Clones a loop \p OrigLoop.  Returns the loop and the blocks in \p
732 /// Blocks.
733 ///
734 /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block
735 /// \p LoopDomBB.  Insert the new blocks before block specified in \p Before.
736 Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB,
737                                    Loop *OrigLoop, ValueToValueMapTy &VMap,
738                                    const Twine &NameSuffix, LoopInfo *LI,
739                                    DominatorTree *DT,
740                                    SmallVectorImpl<BasicBlock *> &Blocks) {
741   assert(OrigLoop->getSubLoops().empty() && 
742          "Loop to be cloned cannot have inner loop");
743   Function *F = OrigLoop->getHeader()->getParent();
744   Loop *ParentLoop = OrigLoop->getParentLoop();
745
746   Loop *NewLoop = LI->AllocateLoop();
747   if (ParentLoop)
748     ParentLoop->addChildLoop(NewLoop);
749   else
750     LI->addTopLevelLoop(NewLoop);
751
752   BasicBlock *OrigPH = OrigLoop->getLoopPreheader();
753   assert(OrigPH && "No preheader");
754   BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F);
755   // To rename the loop PHIs.
756   VMap[OrigPH] = NewPH;
757   Blocks.push_back(NewPH);
758
759   // Update LoopInfo.
760   if (ParentLoop)
761     ParentLoop->addBasicBlockToLoop(NewPH, *LI);
762
763   // Update DominatorTree.
764   DT->addNewBlock(NewPH, LoopDomBB);
765
766   for (BasicBlock *BB : OrigLoop->getBlocks()) {
767     BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F);
768     VMap[BB] = NewBB;
769
770     // Update LoopInfo.
771     NewLoop->addBasicBlockToLoop(NewBB, *LI);
772
773     // Add DominatorTree node. After seeing all blocks, update to correct IDom.
774     DT->addNewBlock(NewBB, NewPH);
775
776     Blocks.push_back(NewBB);
777   }
778
779   for (BasicBlock *BB : OrigLoop->getBlocks()) {
780     // Update DominatorTree.
781     BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock();
782     DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]),
783                                  cast<BasicBlock>(VMap[IDomBB]));
784   }
785
786   // Move them physically from the end of the block list.
787   F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
788                                 NewPH);
789   F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(),
790                                 NewLoop->getHeader()->getIterator(), F->end());
791
792   return NewLoop;
793 }
794
795 /// \brief Duplicate non-Phi instructions from the beginning of block up to
796 /// StopAt instruction into a split block between BB and its predecessor.
797 BasicBlock *
798 llvm::DuplicateInstructionsInSplitBetween(BasicBlock *BB, BasicBlock *PredBB,
799                                           Instruction *StopAt,
800                                           ValueToValueMapTy &ValueMapping) {
801   // We are going to have to map operands from the original BB block to the new
802   // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to
803   // account for entry from PredBB.
804   BasicBlock::iterator BI = BB->begin();
805   for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
806     ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
807
808   BasicBlock *NewBB = SplitEdge(PredBB, BB);
809   NewBB->setName(PredBB->getName() + ".split");
810   Instruction *NewTerm = NewBB->getTerminator();
811
812   // Clone the non-phi instructions of BB into NewBB, keeping track of the
813   // mapping and using it to remap operands in the cloned instructions.
814   for (; StopAt != &*BI; ++BI) {
815     Instruction *New = BI->clone();
816     New->setName(BI->getName());
817     New->insertBefore(NewTerm);
818     ValueMapping[&*BI] = New;
819
820     // Remap operands to patch up intra-block references.
821     for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
822       if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
823         auto I = ValueMapping.find(Inst);
824         if (I != ValueMapping.end())
825           New->setOperand(i, I->second);
826       }
827   }
828
829   return NewBB;
830 }