]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/Utils/CodeExtractor.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / Utils / CodeExtractor.cpp
1 //===- CodeExtractor.cpp - Pull code region into a new function -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the interface to tear out a code region, such as an
10 // individual loop or a parallel section, into a new function, replacing it with
11 // a call to the new function.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/Utils/CodeExtractor.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/BlockFrequencyInfo.h"
25 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
26 #include "llvm/Analysis/BranchProbabilityInfo.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/IR/Argument.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CFG.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DerivedTypes.h"
36 #include "llvm/IR/Dominators.h"
37 #include "llvm/IR/Function.h"
38 #include "llvm/IR/GlobalValue.h"
39 #include "llvm/IR/InstrTypes.h"
40 #include "llvm/IR/Instruction.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/IntrinsicInst.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/MDBuilder.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/PatternMatch.h"
48 #include "llvm/IR/Type.h"
49 #include "llvm/IR/User.h"
50 #include "llvm/IR/Value.h"
51 #include "llvm/IR/Verifier.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/BlockFrequency.h"
54 #include "llvm/Support/BranchProbability.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
61 #include "llvm/Transforms/Utils/Local.h"
62 #include <cassert>
63 #include <cstdint>
64 #include <iterator>
65 #include <map>
66 #include <set>
67 #include <utility>
68 #include <vector>
69
70 using namespace llvm;
71 using namespace llvm::PatternMatch;
72 using ProfileCount = Function::ProfileCount;
73
74 #define DEBUG_TYPE "code-extractor"
75
76 // Provide a command-line option to aggregate function arguments into a struct
77 // for functions produced by the code extractor. This is useful when converting
78 // extracted functions to pthread-based code, as only one argument (void*) can
79 // be passed in to pthread_create().
80 static cl::opt<bool>
81 AggregateArgsOpt("aggregate-extracted-args", cl::Hidden,
82                  cl::desc("Aggregate arguments to code-extracted functions"));
83
84 /// Test whether a block is valid for extraction.
85 static bool isBlockValidForExtraction(const BasicBlock &BB,
86                                       const SetVector<BasicBlock *> &Result,
87                                       bool AllowVarArgs, bool AllowAlloca) {
88   // taking the address of a basic block moved to another function is illegal
89   if (BB.hasAddressTaken())
90     return false;
91
92   // don't hoist code that uses another basicblock address, as it's likely to
93   // lead to unexpected behavior, like cross-function jumps
94   SmallPtrSet<User const *, 16> Visited;
95   SmallVector<User const *, 16> ToVisit;
96
97   for (Instruction const &Inst : BB)
98     ToVisit.push_back(&Inst);
99
100   while (!ToVisit.empty()) {
101     User const *Curr = ToVisit.pop_back_val();
102     if (!Visited.insert(Curr).second)
103       continue;
104     if (isa<BlockAddress const>(Curr))
105       return false; // even a reference to self is likely to be not compatible
106
107     if (isa<Instruction>(Curr) && cast<Instruction>(Curr)->getParent() != &BB)
108       continue;
109
110     for (auto const &U : Curr->operands()) {
111       if (auto *UU = dyn_cast<User>(U))
112         ToVisit.push_back(UU);
113     }
114   }
115
116   // If explicitly requested, allow vastart and alloca. For invoke instructions
117   // verify that extraction is valid.
118   for (BasicBlock::const_iterator I = BB.begin(), E = BB.end(); I != E; ++I) {
119     if (isa<AllocaInst>(I)) {
120        if (!AllowAlloca)
121          return false;
122        continue;
123     }
124
125     if (const auto *II = dyn_cast<InvokeInst>(I)) {
126       // Unwind destination (either a landingpad, catchswitch, or cleanuppad)
127       // must be a part of the subgraph which is being extracted.
128       if (auto *UBB = II->getUnwindDest())
129         if (!Result.count(UBB))
130           return false;
131       continue;
132     }
133
134     // All catch handlers of a catchswitch instruction as well as the unwind
135     // destination must be in the subgraph.
136     if (const auto *CSI = dyn_cast<CatchSwitchInst>(I)) {
137       if (auto *UBB = CSI->getUnwindDest())
138         if (!Result.count(UBB))
139           return false;
140       for (auto *HBB : CSI->handlers())
141         if (!Result.count(const_cast<BasicBlock*>(HBB)))
142           return false;
143       continue;
144     }
145
146     // Make sure that entire catch handler is within subgraph. It is sufficient
147     // to check that catch return's block is in the list.
148     if (const auto *CPI = dyn_cast<CatchPadInst>(I)) {
149       for (const auto *U : CPI->users())
150         if (const auto *CRI = dyn_cast<CatchReturnInst>(U))
151           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
152             return false;
153       continue;
154     }
155
156     // And do similar checks for cleanup handler - the entire handler must be
157     // in subgraph which is going to be extracted. For cleanup return should
158     // additionally check that the unwind destination is also in the subgraph.
159     if (const auto *CPI = dyn_cast<CleanupPadInst>(I)) {
160       for (const auto *U : CPI->users())
161         if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
162           if (!Result.count(const_cast<BasicBlock*>(CRI->getParent())))
163             return false;
164       continue;
165     }
166     if (const auto *CRI = dyn_cast<CleanupReturnInst>(I)) {
167       if (auto *UBB = CRI->getUnwindDest())
168         if (!Result.count(UBB))
169           return false;
170       continue;
171     }
172
173     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
174       if (const Function *F = CI->getCalledFunction()) {
175         auto IID = F->getIntrinsicID();
176         if (IID == Intrinsic::vastart) {
177           if (AllowVarArgs)
178             continue;
179           else
180             return false;
181         }
182
183         // Currently, we miscompile outlined copies of eh_typid_for. There are
184         // proposals for fixing this in llvm.org/PR39545.
185         if (IID == Intrinsic::eh_typeid_for)
186           return false;
187       }
188     }
189   }
190
191   return true;
192 }
193
194 /// Build a set of blocks to extract if the input blocks are viable.
195 static SetVector<BasicBlock *>
196 buildExtractionBlockSet(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
197                         bool AllowVarArgs, bool AllowAlloca) {
198   assert(!BBs.empty() && "The set of blocks to extract must be non-empty");
199   SetVector<BasicBlock *> Result;
200
201   // Loop over the blocks, adding them to our set-vector, and aborting with an
202   // empty set if we encounter invalid blocks.
203   for (BasicBlock *BB : BBs) {
204     // If this block is dead, don't process it.
205     if (DT && !DT->isReachableFromEntry(BB))
206       continue;
207
208     if (!Result.insert(BB))
209       llvm_unreachable("Repeated basic blocks in extraction input");
210   }
211
212   LLVM_DEBUG(dbgs() << "Region front block: " << Result.front()->getName()
213                     << '\n');
214
215   for (auto *BB : Result) {
216     if (!isBlockValidForExtraction(*BB, Result, AllowVarArgs, AllowAlloca))
217       return {};
218
219     // Make sure that the first block is not a landing pad.
220     if (BB == Result.front()) {
221       if (BB->isEHPad()) {
222         LLVM_DEBUG(dbgs() << "The first block cannot be an unwind block\n");
223         return {};
224       }
225       continue;
226     }
227
228     // All blocks other than the first must not have predecessors outside of
229     // the subgraph which is being extracted.
230     for (auto *PBB : predecessors(BB))
231       if (!Result.count(PBB)) {
232         LLVM_DEBUG(dbgs() << "No blocks in this region may have entries from "
233                              "outside the region except for the first block!\n"
234                           << "Problematic source BB: " << BB->getName() << "\n"
235                           << "Problematic destination BB: " << PBB->getName()
236                           << "\n");
237         return {};
238       }
239   }
240
241   return Result;
242 }
243
244 CodeExtractor::CodeExtractor(ArrayRef<BasicBlock *> BBs, DominatorTree *DT,
245                              bool AggregateArgs, BlockFrequencyInfo *BFI,
246                              BranchProbabilityInfo *BPI, AssumptionCache *AC,
247                              bool AllowVarArgs, bool AllowAlloca,
248                              std::string Suffix)
249     : DT(DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
250       BPI(BPI), AC(AC), AllowVarArgs(AllowVarArgs),
251       Blocks(buildExtractionBlockSet(BBs, DT, AllowVarArgs, AllowAlloca)),
252       Suffix(Suffix) {}
253
254 CodeExtractor::CodeExtractor(DominatorTree &DT, Loop &L, bool AggregateArgs,
255                              BlockFrequencyInfo *BFI,
256                              BranchProbabilityInfo *BPI, AssumptionCache *AC,
257                              std::string Suffix)
258     : DT(&DT), AggregateArgs(AggregateArgs || AggregateArgsOpt), BFI(BFI),
259       BPI(BPI), AC(AC), AllowVarArgs(false),
260       Blocks(buildExtractionBlockSet(L.getBlocks(), &DT,
261                                      /* AllowVarArgs */ false,
262                                      /* AllowAlloca */ false)),
263       Suffix(Suffix) {}
264
265 /// definedInRegion - Return true if the specified value is defined in the
266 /// extracted region.
267 static bool definedInRegion(const SetVector<BasicBlock *> &Blocks, Value *V) {
268   if (Instruction *I = dyn_cast<Instruction>(V))
269     if (Blocks.count(I->getParent()))
270       return true;
271   return false;
272 }
273
274 /// definedInCaller - Return true if the specified value is defined in the
275 /// function being code extracted, but not in the region being extracted.
276 /// These values must be passed in as live-ins to the function.
277 static bool definedInCaller(const SetVector<BasicBlock *> &Blocks, Value *V) {
278   if (isa<Argument>(V)) return true;
279   if (Instruction *I = dyn_cast<Instruction>(V))
280     if (!Blocks.count(I->getParent()))
281       return true;
282   return false;
283 }
284
285 static BasicBlock *getCommonExitBlock(const SetVector<BasicBlock *> &Blocks) {
286   BasicBlock *CommonExitBlock = nullptr;
287   auto hasNonCommonExitSucc = [&](BasicBlock *Block) {
288     for (auto *Succ : successors(Block)) {
289       // Internal edges, ok.
290       if (Blocks.count(Succ))
291         continue;
292       if (!CommonExitBlock) {
293         CommonExitBlock = Succ;
294         continue;
295       }
296       if (CommonExitBlock == Succ)
297         continue;
298
299       return true;
300     }
301     return false;
302   };
303
304   if (any_of(Blocks, hasNonCommonExitSucc))
305     return nullptr;
306
307   return CommonExitBlock;
308 }
309
310 bool CodeExtractor::isLegalToShrinkwrapLifetimeMarkers(
311     Instruction *Addr) const {
312   AllocaInst *AI = cast<AllocaInst>(Addr->stripInBoundsConstantOffsets());
313   Function *Func = (*Blocks.begin())->getParent();
314   for (BasicBlock &BB : *Func) {
315     if (Blocks.count(&BB))
316       continue;
317     for (Instruction &II : BB) {
318       if (isa<DbgInfoIntrinsic>(II))
319         continue;
320
321       unsigned Opcode = II.getOpcode();
322       Value *MemAddr = nullptr;
323       switch (Opcode) {
324       case Instruction::Store:
325       case Instruction::Load: {
326         if (Opcode == Instruction::Store) {
327           StoreInst *SI = cast<StoreInst>(&II);
328           MemAddr = SI->getPointerOperand();
329         } else {
330           LoadInst *LI = cast<LoadInst>(&II);
331           MemAddr = LI->getPointerOperand();
332         }
333         // Global variable can not be aliased with locals.
334         if (dyn_cast<Constant>(MemAddr))
335           break;
336         Value *Base = MemAddr->stripInBoundsConstantOffsets();
337         if (!isa<AllocaInst>(Base) || Base == AI)
338           return false;
339         break;
340       }
341       default: {
342         IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(&II);
343         if (IntrInst) {
344           if (IntrInst->isLifetimeStartOrEnd())
345             break;
346           return false;
347         }
348         // Treat all the other cases conservatively if it has side effects.
349         if (II.mayHaveSideEffects())
350           return false;
351       }
352       }
353     }
354   }
355
356   return true;
357 }
358
359 BasicBlock *
360 CodeExtractor::findOrCreateBlockForHoisting(BasicBlock *CommonExitBlock) {
361   BasicBlock *SinglePredFromOutlineRegion = nullptr;
362   assert(!Blocks.count(CommonExitBlock) &&
363          "Expect a block outside the region!");
364   for (auto *Pred : predecessors(CommonExitBlock)) {
365     if (!Blocks.count(Pred))
366       continue;
367     if (!SinglePredFromOutlineRegion) {
368       SinglePredFromOutlineRegion = Pred;
369     } else if (SinglePredFromOutlineRegion != Pred) {
370       SinglePredFromOutlineRegion = nullptr;
371       break;
372     }
373   }
374
375   if (SinglePredFromOutlineRegion)
376     return SinglePredFromOutlineRegion;
377
378 #ifndef NDEBUG
379   auto getFirstPHI = [](BasicBlock *BB) {
380     BasicBlock::iterator I = BB->begin();
381     PHINode *FirstPhi = nullptr;
382     while (I != BB->end()) {
383       PHINode *Phi = dyn_cast<PHINode>(I);
384       if (!Phi)
385         break;
386       if (!FirstPhi) {
387         FirstPhi = Phi;
388         break;
389       }
390     }
391     return FirstPhi;
392   };
393   // If there are any phi nodes, the single pred either exists or has already
394   // be created before code extraction.
395   assert(!getFirstPHI(CommonExitBlock) && "Phi not expected");
396 #endif
397
398   BasicBlock *NewExitBlock = CommonExitBlock->splitBasicBlock(
399       CommonExitBlock->getFirstNonPHI()->getIterator());
400
401   for (auto PI = pred_begin(CommonExitBlock), PE = pred_end(CommonExitBlock);
402        PI != PE;) {
403     BasicBlock *Pred = *PI++;
404     if (Blocks.count(Pred))
405       continue;
406     Pred->getTerminator()->replaceUsesOfWith(CommonExitBlock, NewExitBlock);
407   }
408   // Now add the old exit block to the outline region.
409   Blocks.insert(CommonExitBlock);
410   return CommonExitBlock;
411 }
412
413 // Find the pair of life time markers for address 'Addr' that are either
414 // defined inside the outline region or can legally be shrinkwrapped into the
415 // outline region. If there are not other untracked uses of the address, return
416 // the pair of markers if found; otherwise return a pair of nullptr.
417 CodeExtractor::LifetimeMarkerInfo
418 CodeExtractor::getLifetimeMarkers(Instruction *Addr,
419                                   BasicBlock *ExitBlock) const {
420   LifetimeMarkerInfo Info;
421
422   for (User *U : Addr->users()) {
423     IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(U);
424     if (IntrInst) {
425       if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start) {
426         // Do not handle the case where Addr has multiple start markers.
427         if (Info.LifeStart)
428           return {};
429         Info.LifeStart = IntrInst;
430       }
431       if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) {
432         if (Info.LifeEnd)
433           return {};
434         Info.LifeEnd = IntrInst;
435       }
436       continue;
437     }
438     // Find untracked uses of the address, bail.
439     if (!definedInRegion(Blocks, U))
440       return {};
441   }
442
443   if (!Info.LifeStart || !Info.LifeEnd)
444     return {};
445
446   Info.SinkLifeStart = !definedInRegion(Blocks, Info.LifeStart);
447   Info.HoistLifeEnd = !definedInRegion(Blocks, Info.LifeEnd);
448   // Do legality check.
449   if ((Info.SinkLifeStart || Info.HoistLifeEnd) &&
450       !isLegalToShrinkwrapLifetimeMarkers(Addr))
451     return {};
452
453   // Check to see if we have a place to do hoisting, if not, bail.
454   if (Info.HoistLifeEnd && !ExitBlock)
455     return {};
456
457   return Info;
458 }
459
460 void CodeExtractor::findAllocas(ValueSet &SinkCands, ValueSet &HoistCands,
461                                 BasicBlock *&ExitBlock) const {
462   Function *Func = (*Blocks.begin())->getParent();
463   ExitBlock = getCommonExitBlock(Blocks);
464
465   auto moveOrIgnoreLifetimeMarkers =
466       [&](const LifetimeMarkerInfo &LMI) -> bool {
467     if (!LMI.LifeStart)
468       return false;
469     if (LMI.SinkLifeStart) {
470       LLVM_DEBUG(dbgs() << "Sinking lifetime.start: " << *LMI.LifeStart
471                         << "\n");
472       SinkCands.insert(LMI.LifeStart);
473     }
474     if (LMI.HoistLifeEnd) {
475       LLVM_DEBUG(dbgs() << "Hoisting lifetime.end: " << *LMI.LifeEnd << "\n");
476       HoistCands.insert(LMI.LifeEnd);
477     }
478     return true;
479   };
480
481   for (BasicBlock &BB : *Func) {
482     if (Blocks.count(&BB))
483       continue;
484     for (Instruction &II : BB) {
485       auto *AI = dyn_cast<AllocaInst>(&II);
486       if (!AI)
487         continue;
488
489       LifetimeMarkerInfo MarkerInfo = getLifetimeMarkers(AI, ExitBlock);
490       bool Moved = moveOrIgnoreLifetimeMarkers(MarkerInfo);
491       if (Moved) {
492         LLVM_DEBUG(dbgs() << "Sinking alloca: " << *AI << "\n");
493         SinkCands.insert(AI);
494         continue;
495       }
496
497       // Follow any bitcasts.
498       SmallVector<Instruction *, 2> Bitcasts;
499       SmallVector<LifetimeMarkerInfo, 2> BitcastLifetimeInfo;
500       for (User *U : AI->users()) {
501         if (U->stripInBoundsConstantOffsets() == AI) {
502           Instruction *Bitcast = cast<Instruction>(U);
503           LifetimeMarkerInfo LMI = getLifetimeMarkers(Bitcast, ExitBlock);
504           if (LMI.LifeStart) {
505             Bitcasts.push_back(Bitcast);
506             BitcastLifetimeInfo.push_back(LMI);
507             continue;
508           }
509         }
510
511         // Found unknown use of AI.
512         if (!definedInRegion(Blocks, U)) {
513           Bitcasts.clear();
514           break;
515         }
516       }
517
518       // Either no bitcasts reference the alloca or there are unknown uses.
519       if (Bitcasts.empty())
520         continue;
521
522       LLVM_DEBUG(dbgs() << "Sinking alloca (via bitcast): " << *AI << "\n");
523       SinkCands.insert(AI);
524       for (unsigned I = 0, E = Bitcasts.size(); I != E; ++I) {
525         Instruction *BitcastAddr = Bitcasts[I];
526         const LifetimeMarkerInfo &LMI = BitcastLifetimeInfo[I];
527         assert(LMI.LifeStart &&
528                "Unsafe to sink bitcast without lifetime markers");
529         moveOrIgnoreLifetimeMarkers(LMI);
530         if (!definedInRegion(Blocks, BitcastAddr)) {
531           LLVM_DEBUG(dbgs() << "Sinking bitcast-of-alloca: " << *BitcastAddr
532                             << "\n");
533           SinkCands.insert(BitcastAddr);
534         }
535       }
536     }
537   }
538 }
539
540 void CodeExtractor::findInputsOutputs(ValueSet &Inputs, ValueSet &Outputs,
541                                       const ValueSet &SinkCands) const {
542   for (BasicBlock *BB : Blocks) {
543     // If a used value is defined outside the region, it's an input.  If an
544     // instruction is used outside the region, it's an output.
545     for (Instruction &II : *BB) {
546       for (User::op_iterator OI = II.op_begin(), OE = II.op_end(); OI != OE;
547            ++OI) {
548         Value *V = *OI;
549         if (!SinkCands.count(V) && definedInCaller(Blocks, V))
550           Inputs.insert(V);
551       }
552
553       for (User *U : II.users())
554         if (!definedInRegion(Blocks, U)) {
555           Outputs.insert(&II);
556           break;
557         }
558     }
559   }
560 }
561
562 /// severSplitPHINodesOfEntry - If a PHI node has multiple inputs from outside
563 /// of the region, we need to split the entry block of the region so that the
564 /// PHI node is easier to deal with.
565 void CodeExtractor::severSplitPHINodesOfEntry(BasicBlock *&Header) {
566   unsigned NumPredsFromRegion = 0;
567   unsigned NumPredsOutsideRegion = 0;
568
569   if (Header != &Header->getParent()->getEntryBlock()) {
570     PHINode *PN = dyn_cast<PHINode>(Header->begin());
571     if (!PN) return;  // No PHI nodes.
572
573     // If the header node contains any PHI nodes, check to see if there is more
574     // than one entry from outside the region.  If so, we need to sever the
575     // header block into two.
576     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
577       if (Blocks.count(PN->getIncomingBlock(i)))
578         ++NumPredsFromRegion;
579       else
580         ++NumPredsOutsideRegion;
581
582     // If there is one (or fewer) predecessor from outside the region, we don't
583     // need to do anything special.
584     if (NumPredsOutsideRegion <= 1) return;
585   }
586
587   // Otherwise, we need to split the header block into two pieces: one
588   // containing PHI nodes merging values from outside of the region, and a
589   // second that contains all of the code for the block and merges back any
590   // incoming values from inside of the region.
591   BasicBlock *NewBB = SplitBlock(Header, Header->getFirstNonPHI(), DT);
592
593   // We only want to code extract the second block now, and it becomes the new
594   // header of the region.
595   BasicBlock *OldPred = Header;
596   Blocks.remove(OldPred);
597   Blocks.insert(NewBB);
598   Header = NewBB;
599
600   // Okay, now we need to adjust the PHI nodes and any branches from within the
601   // region to go to the new header block instead of the old header block.
602   if (NumPredsFromRegion) {
603     PHINode *PN = cast<PHINode>(OldPred->begin());
604     // Loop over all of the predecessors of OldPred that are in the region,
605     // changing them to branch to NewBB instead.
606     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
607       if (Blocks.count(PN->getIncomingBlock(i))) {
608         Instruction *TI = PN->getIncomingBlock(i)->getTerminator();
609         TI->replaceUsesOfWith(OldPred, NewBB);
610       }
611
612     // Okay, everything within the region is now branching to the right block, we
613     // just have to update the PHI nodes now, inserting PHI nodes into NewBB.
614     BasicBlock::iterator AfterPHIs;
615     for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) {
616       PHINode *PN = cast<PHINode>(AfterPHIs);
617       // Create a new PHI node in the new region, which has an incoming value
618       // from OldPred of PN.
619       PHINode *NewPN = PHINode::Create(PN->getType(), 1 + NumPredsFromRegion,
620                                        PN->getName() + ".ce", &NewBB->front());
621       PN->replaceAllUsesWith(NewPN);
622       NewPN->addIncoming(PN, OldPred);
623
624       // Loop over all of the incoming value in PN, moving them to NewPN if they
625       // are from the extracted region.
626       for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) {
627         if (Blocks.count(PN->getIncomingBlock(i))) {
628           NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i));
629           PN->removeIncomingValue(i);
630           --i;
631         }
632       }
633     }
634   }
635 }
636
637 /// severSplitPHINodesOfExits - if PHI nodes in exit blocks have inputs from
638 /// outlined region, we split these PHIs on two: one with inputs from region
639 /// and other with remaining incoming blocks; then first PHIs are placed in
640 /// outlined region.
641 void CodeExtractor::severSplitPHINodesOfExits(
642     const SmallPtrSetImpl<BasicBlock *> &Exits) {
643   for (BasicBlock *ExitBB : Exits) {
644     BasicBlock *NewBB = nullptr;
645
646     for (PHINode &PN : ExitBB->phis()) {
647       // Find all incoming values from the outlining region.
648       SmallVector<unsigned, 2> IncomingVals;
649       for (unsigned i = 0; i < PN.getNumIncomingValues(); ++i)
650         if (Blocks.count(PN.getIncomingBlock(i)))
651           IncomingVals.push_back(i);
652
653       // Do not process PHI if there is one (or fewer) predecessor from region.
654       // If PHI has exactly one predecessor from region, only this one incoming
655       // will be replaced on codeRepl block, so it should be safe to skip PHI.
656       if (IncomingVals.size() <= 1)
657         continue;
658
659       // Create block for new PHIs and add it to the list of outlined if it
660       // wasn't done before.
661       if (!NewBB) {
662         NewBB = BasicBlock::Create(ExitBB->getContext(),
663                                    ExitBB->getName() + ".split",
664                                    ExitBB->getParent(), ExitBB);
665         SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBB),
666                                            pred_end(ExitBB));
667         for (BasicBlock *PredBB : Preds)
668           if (Blocks.count(PredBB))
669             PredBB->getTerminator()->replaceUsesOfWith(ExitBB, NewBB);
670         BranchInst::Create(ExitBB, NewBB);
671         Blocks.insert(NewBB);
672       }
673
674       // Split this PHI.
675       PHINode *NewPN =
676           PHINode::Create(PN.getType(), IncomingVals.size(),
677                           PN.getName() + ".ce", NewBB->getFirstNonPHI());
678       for (unsigned i : IncomingVals)
679         NewPN->addIncoming(PN.getIncomingValue(i), PN.getIncomingBlock(i));
680       for (unsigned i : reverse(IncomingVals))
681         PN.removeIncomingValue(i, false);
682       PN.addIncoming(NewPN, NewBB);
683     }
684   }
685 }
686
687 void CodeExtractor::splitReturnBlocks() {
688   for (BasicBlock *Block : Blocks)
689     if (ReturnInst *RI = dyn_cast<ReturnInst>(Block->getTerminator())) {
690       BasicBlock *New =
691           Block->splitBasicBlock(RI->getIterator(), Block->getName() + ".ret");
692       if (DT) {
693         // Old dominates New. New node dominates all other nodes dominated
694         // by Old.
695         DomTreeNode *OldNode = DT->getNode(Block);
696         SmallVector<DomTreeNode *, 8> Children(OldNode->begin(),
697                                                OldNode->end());
698
699         DomTreeNode *NewNode = DT->addNewBlock(New, Block);
700
701         for (DomTreeNode *I : Children)
702           DT->changeImmediateDominator(I, NewNode);
703       }
704     }
705 }
706
707 /// constructFunction - make a function based on inputs and outputs, as follows:
708 /// f(in0, ..., inN, out0, ..., outN)
709 Function *CodeExtractor::constructFunction(const ValueSet &inputs,
710                                            const ValueSet &outputs,
711                                            BasicBlock *header,
712                                            BasicBlock *newRootNode,
713                                            BasicBlock *newHeader,
714                                            Function *oldFunction,
715                                            Module *M) {
716   LLVM_DEBUG(dbgs() << "inputs: " << inputs.size() << "\n");
717   LLVM_DEBUG(dbgs() << "outputs: " << outputs.size() << "\n");
718
719   // This function returns unsigned, outputs will go back by reference.
720   switch (NumExitBlocks) {
721   case 0:
722   case 1: RetTy = Type::getVoidTy(header->getContext()); break;
723   case 2: RetTy = Type::getInt1Ty(header->getContext()); break;
724   default: RetTy = Type::getInt16Ty(header->getContext()); break;
725   }
726
727   std::vector<Type *> paramTy;
728
729   // Add the types of the input values to the function's argument list
730   for (Value *value : inputs) {
731     LLVM_DEBUG(dbgs() << "value used in func: " << *value << "\n");
732     paramTy.push_back(value->getType());
733   }
734
735   // Add the types of the output values to the function's argument list.
736   for (Value *output : outputs) {
737     LLVM_DEBUG(dbgs() << "instr used in func: " << *output << "\n");
738     if (AggregateArgs)
739       paramTy.push_back(output->getType());
740     else
741       paramTy.push_back(PointerType::getUnqual(output->getType()));
742   }
743
744   LLVM_DEBUG({
745     dbgs() << "Function type: " << *RetTy << " f(";
746     for (Type *i : paramTy)
747       dbgs() << *i << ", ";
748     dbgs() << ")\n";
749   });
750
751   StructType *StructTy;
752   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
753     StructTy = StructType::get(M->getContext(), paramTy);
754     paramTy.clear();
755     paramTy.push_back(PointerType::getUnqual(StructTy));
756   }
757   FunctionType *funcType =
758                   FunctionType::get(RetTy, paramTy,
759                                     AllowVarArgs && oldFunction->isVarArg());
760
761   std::string SuffixToUse =
762       Suffix.empty()
763           ? (header->getName().empty() ? "extracted" : header->getName().str())
764           : Suffix;
765   // Create the new function
766   Function *newFunction = Function::Create(
767       funcType, GlobalValue::InternalLinkage, oldFunction->getAddressSpace(),
768       oldFunction->getName() + "." + SuffixToUse, M);
769   // If the old function is no-throw, so is the new one.
770   if (oldFunction->doesNotThrow())
771     newFunction->setDoesNotThrow();
772
773   // Inherit the uwtable attribute if we need to.
774   if (oldFunction->hasUWTable())
775     newFunction->setHasUWTable();
776
777   // Inherit all of the target dependent attributes and white-listed
778   // target independent attributes.
779   //  (e.g. If the extracted region contains a call to an x86.sse
780   //  instruction we need to make sure that the extracted region has the
781   //  "target-features" attribute allowing it to be lowered.
782   // FIXME: This should be changed to check to see if a specific
783   //           attribute can not be inherited.
784   for (const auto &Attr : oldFunction->getAttributes().getFnAttributes()) {
785     if (Attr.isStringAttribute()) {
786       if (Attr.getKindAsString() == "thunk")
787         continue;
788     } else
789       switch (Attr.getKindAsEnum()) {
790       // Those attributes cannot be propagated safely. Explicitly list them
791       // here so we get a warning if new attributes are added. This list also
792       // includes non-function attributes.
793       case Attribute::Alignment:
794       case Attribute::AllocSize:
795       case Attribute::ArgMemOnly:
796       case Attribute::Builtin:
797       case Attribute::ByVal:
798       case Attribute::Convergent:
799       case Attribute::Dereferenceable:
800       case Attribute::DereferenceableOrNull:
801       case Attribute::InAlloca:
802       case Attribute::InReg:
803       case Attribute::InaccessibleMemOnly:
804       case Attribute::InaccessibleMemOrArgMemOnly:
805       case Attribute::JumpTable:
806       case Attribute::Naked:
807       case Attribute::Nest:
808       case Attribute::NoAlias:
809       case Attribute::NoBuiltin:
810       case Attribute::NoCapture:
811       case Attribute::NoReturn:
812       case Attribute::NoSync:
813       case Attribute::None:
814       case Attribute::NonNull:
815       case Attribute::ReadNone:
816       case Attribute::ReadOnly:
817       case Attribute::Returned:
818       case Attribute::ReturnsTwice:
819       case Attribute::SExt:
820       case Attribute::Speculatable:
821       case Attribute::StackAlignment:
822       case Attribute::StructRet:
823       case Attribute::SwiftError:
824       case Attribute::SwiftSelf:
825       case Attribute::WillReturn:
826       case Attribute::WriteOnly:
827       case Attribute::ZExt:
828       case Attribute::ImmArg:
829       case Attribute::EndAttrKinds:
830         continue;
831       // Those attributes should be safe to propagate to the extracted function.
832       case Attribute::AlwaysInline:
833       case Attribute::Cold:
834       case Attribute::NoRecurse:
835       case Attribute::InlineHint:
836       case Attribute::MinSize:
837       case Attribute::NoDuplicate:
838       case Attribute::NoFree:
839       case Attribute::NoImplicitFloat:
840       case Attribute::NoInline:
841       case Attribute::NonLazyBind:
842       case Attribute::NoRedZone:
843       case Attribute::NoUnwind:
844       case Attribute::OptForFuzzing:
845       case Attribute::OptimizeNone:
846       case Attribute::OptimizeForSize:
847       case Attribute::SafeStack:
848       case Attribute::ShadowCallStack:
849       case Attribute::SanitizeAddress:
850       case Attribute::SanitizeMemory:
851       case Attribute::SanitizeThread:
852       case Attribute::SanitizeHWAddress:
853       case Attribute::SanitizeMemTag:
854       case Attribute::SpeculativeLoadHardening:
855       case Attribute::StackProtect:
856       case Attribute::StackProtectReq:
857       case Attribute::StackProtectStrong:
858       case Attribute::StrictFP:
859       case Attribute::UWTable:
860       case Attribute::NoCfCheck:
861         break;
862       }
863
864     newFunction->addFnAttr(Attr);
865   }
866   newFunction->getBasicBlockList().push_back(newRootNode);
867
868   // Create an iterator to name all of the arguments we inserted.
869   Function::arg_iterator AI = newFunction->arg_begin();
870
871   // Rewrite all users of the inputs in the extracted region to use the
872   // arguments (or appropriate addressing into struct) instead.
873   for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
874     Value *RewriteVal;
875     if (AggregateArgs) {
876       Value *Idx[2];
877       Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext()));
878       Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i);
879       Instruction *TI = newFunction->begin()->getTerminator();
880       GetElementPtrInst *GEP = GetElementPtrInst::Create(
881           StructTy, &*AI, Idx, "gep_" + inputs[i]->getName(), TI);
882       RewriteVal = new LoadInst(StructTy->getElementType(i), GEP,
883                                 "loadgep_" + inputs[i]->getName(), TI);
884     } else
885       RewriteVal = &*AI++;
886
887     std::vector<User *> Users(inputs[i]->user_begin(), inputs[i]->user_end());
888     for (User *use : Users)
889       if (Instruction *inst = dyn_cast<Instruction>(use))
890         if (Blocks.count(inst->getParent()))
891           inst->replaceUsesOfWith(inputs[i], RewriteVal);
892   }
893
894   // Set names for input and output arguments.
895   if (!AggregateArgs) {
896     AI = newFunction->arg_begin();
897     for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI)
898       AI->setName(inputs[i]->getName());
899     for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI)
900       AI->setName(outputs[i]->getName()+".out");
901   }
902
903   // Rewrite branches to basic blocks outside of the loop to new dummy blocks
904   // within the new function. This must be done before we lose track of which
905   // blocks were originally in the code region.
906   std::vector<User *> Users(header->user_begin(), header->user_end());
907   for (unsigned i = 0, e = Users.size(); i != e; ++i)
908     // The BasicBlock which contains the branch is not in the region
909     // modify the branch target to a new block
910     if (Instruction *I = dyn_cast<Instruction>(Users[i]))
911       if (I->isTerminator() && !Blocks.count(I->getParent()) &&
912           I->getParent()->getParent() == oldFunction)
913         I->replaceUsesOfWith(header, newHeader);
914
915   return newFunction;
916 }
917
918 /// Erase lifetime.start markers which reference inputs to the extraction
919 /// region, and insert the referenced memory into \p LifetimesStart.
920 ///
921 /// The extraction region is defined by a set of blocks (\p Blocks), and a set
922 /// of allocas which will be moved from the caller function into the extracted
923 /// function (\p SunkAllocas).
924 static void eraseLifetimeMarkersOnInputs(const SetVector<BasicBlock *> &Blocks,
925                                          const SetVector<Value *> &SunkAllocas,
926                                          SetVector<Value *> &LifetimesStart) {
927   for (BasicBlock *BB : Blocks) {
928     for (auto It = BB->begin(), End = BB->end(); It != End;) {
929       auto *II = dyn_cast<IntrinsicInst>(&*It);
930       ++It;
931       if (!II || !II->isLifetimeStartOrEnd())
932         continue;
933
934       // Get the memory operand of the lifetime marker. If the underlying
935       // object is a sunk alloca, or is otherwise defined in the extraction
936       // region, the lifetime marker must not be erased.
937       Value *Mem = II->getOperand(1)->stripInBoundsOffsets();
938       if (SunkAllocas.count(Mem) || definedInRegion(Blocks, Mem))
939         continue;
940
941       if (II->getIntrinsicID() == Intrinsic::lifetime_start)
942         LifetimesStart.insert(Mem);
943       II->eraseFromParent();
944     }
945   }
946 }
947
948 /// Insert lifetime start/end markers surrounding the call to the new function
949 /// for objects defined in the caller.
950 static void insertLifetimeMarkersSurroundingCall(
951     Module *M, ArrayRef<Value *> LifetimesStart, ArrayRef<Value *> LifetimesEnd,
952     CallInst *TheCall) {
953   LLVMContext &Ctx = M->getContext();
954   auto Int8PtrTy = Type::getInt8PtrTy(Ctx);
955   auto NegativeOne = ConstantInt::getSigned(Type::getInt64Ty(Ctx), -1);
956   Instruction *Term = TheCall->getParent()->getTerminator();
957
958   // The memory argument to a lifetime marker must be a i8*. Cache any bitcasts
959   // needed to satisfy this requirement so they may be reused.
960   DenseMap<Value *, Value *> Bitcasts;
961
962   // Emit lifetime markers for the pointers given in \p Objects. Insert the
963   // markers before the call if \p InsertBefore, and after the call otherwise.
964   auto insertMarkers = [&](Function *MarkerFunc, ArrayRef<Value *> Objects,
965                            bool InsertBefore) {
966     for (Value *Mem : Objects) {
967       assert((!isa<Instruction>(Mem) || cast<Instruction>(Mem)->getFunction() ==
968                                             TheCall->getFunction()) &&
969              "Input memory not defined in original function");
970       Value *&MemAsI8Ptr = Bitcasts[Mem];
971       if (!MemAsI8Ptr) {
972         if (Mem->getType() == Int8PtrTy)
973           MemAsI8Ptr = Mem;
974         else
975           MemAsI8Ptr =
976               CastInst::CreatePointerCast(Mem, Int8PtrTy, "lt.cast", TheCall);
977       }
978
979       auto Marker = CallInst::Create(MarkerFunc, {NegativeOne, MemAsI8Ptr});
980       if (InsertBefore)
981         Marker->insertBefore(TheCall);
982       else
983         Marker->insertBefore(Term);
984     }
985   };
986
987   if (!LifetimesStart.empty()) {
988     auto StartFn = llvm::Intrinsic::getDeclaration(
989         M, llvm::Intrinsic::lifetime_start, Int8PtrTy);
990     insertMarkers(StartFn, LifetimesStart, /*InsertBefore=*/true);
991   }
992
993   if (!LifetimesEnd.empty()) {
994     auto EndFn = llvm::Intrinsic::getDeclaration(
995         M, llvm::Intrinsic::lifetime_end, Int8PtrTy);
996     insertMarkers(EndFn, LifetimesEnd, /*InsertBefore=*/false);
997   }
998 }
999
1000 /// emitCallAndSwitchStatement - This method sets up the caller side by adding
1001 /// the call instruction, splitting any PHI nodes in the header block as
1002 /// necessary.
1003 CallInst *CodeExtractor::emitCallAndSwitchStatement(Function *newFunction,
1004                                                     BasicBlock *codeReplacer,
1005                                                     ValueSet &inputs,
1006                                                     ValueSet &outputs) {
1007   // Emit a call to the new function, passing in: *pointer to struct (if
1008   // aggregating parameters), or plan inputs and allocated memory for outputs
1009   std::vector<Value *> params, StructValues, ReloadOutputs, Reloads;
1010
1011   Module *M = newFunction->getParent();
1012   LLVMContext &Context = M->getContext();
1013   const DataLayout &DL = M->getDataLayout();
1014   CallInst *call = nullptr;
1015
1016   // Add inputs as params, or to be filled into the struct
1017   unsigned ArgNo = 0;
1018   SmallVector<unsigned, 1> SwiftErrorArgs;
1019   for (Value *input : inputs) {
1020     if (AggregateArgs)
1021       StructValues.push_back(input);
1022     else {
1023       params.push_back(input);
1024       if (input->isSwiftError())
1025         SwiftErrorArgs.push_back(ArgNo);
1026     }
1027     ++ArgNo;
1028   }
1029
1030   // Create allocas for the outputs
1031   for (Value *output : outputs) {
1032     if (AggregateArgs) {
1033       StructValues.push_back(output);
1034     } else {
1035       AllocaInst *alloca =
1036         new AllocaInst(output->getType(), DL.getAllocaAddrSpace(),
1037                        nullptr, output->getName() + ".loc",
1038                        &codeReplacer->getParent()->front().front());
1039       ReloadOutputs.push_back(alloca);
1040       params.push_back(alloca);
1041     }
1042   }
1043
1044   StructType *StructArgTy = nullptr;
1045   AllocaInst *Struct = nullptr;
1046   if (AggregateArgs && (inputs.size() + outputs.size() > 0)) {
1047     std::vector<Type *> ArgTypes;
1048     for (ValueSet::iterator v = StructValues.begin(),
1049            ve = StructValues.end(); v != ve; ++v)
1050       ArgTypes.push_back((*v)->getType());
1051
1052     // Allocate a struct at the beginning of this function
1053     StructArgTy = StructType::get(newFunction->getContext(), ArgTypes);
1054     Struct = new AllocaInst(StructArgTy, DL.getAllocaAddrSpace(), nullptr,
1055                             "structArg",
1056                             &codeReplacer->getParent()->front().front());
1057     params.push_back(Struct);
1058
1059     for (unsigned i = 0, e = inputs.size(); i != e; ++i) {
1060       Value *Idx[2];
1061       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1062       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i);
1063       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1064           StructArgTy, Struct, Idx, "gep_" + StructValues[i]->getName());
1065       codeReplacer->getInstList().push_back(GEP);
1066       StoreInst *SI = new StoreInst(StructValues[i], GEP);
1067       codeReplacer->getInstList().push_back(SI);
1068     }
1069   }
1070
1071   // Emit the call to the function
1072   call = CallInst::Create(newFunction, params,
1073                           NumExitBlocks > 1 ? "targetBlock" : "");
1074   // Add debug location to the new call, if the original function has debug
1075   // info. In that case, the terminator of the entry block of the extracted
1076   // function contains the first debug location of the extracted function,
1077   // set in extractCodeRegion.
1078   if (codeReplacer->getParent()->getSubprogram()) {
1079     if (auto DL = newFunction->getEntryBlock().getTerminator()->getDebugLoc())
1080       call->setDebugLoc(DL);
1081   }
1082   codeReplacer->getInstList().push_back(call);
1083
1084   // Set swifterror parameter attributes.
1085   for (unsigned SwiftErrArgNo : SwiftErrorArgs) {
1086     call->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1087     newFunction->addParamAttr(SwiftErrArgNo, Attribute::SwiftError);
1088   }
1089
1090   Function::arg_iterator OutputArgBegin = newFunction->arg_begin();
1091   unsigned FirstOut = inputs.size();
1092   if (!AggregateArgs)
1093     std::advance(OutputArgBegin, inputs.size());
1094
1095   // Reload the outputs passed in by reference.
1096   for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
1097     Value *Output = nullptr;
1098     if (AggregateArgs) {
1099       Value *Idx[2];
1100       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1101       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
1102       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1103           StructArgTy, Struct, Idx, "gep_reload_" + outputs[i]->getName());
1104       codeReplacer->getInstList().push_back(GEP);
1105       Output = GEP;
1106     } else {
1107       Output = ReloadOutputs[i];
1108     }
1109     LoadInst *load = new LoadInst(outputs[i]->getType(), Output,
1110                                   outputs[i]->getName() + ".reload");
1111     Reloads.push_back(load);
1112     codeReplacer->getInstList().push_back(load);
1113     std::vector<User *> Users(outputs[i]->user_begin(), outputs[i]->user_end());
1114     for (unsigned u = 0, e = Users.size(); u != e; ++u) {
1115       Instruction *inst = cast<Instruction>(Users[u]);
1116       if (!Blocks.count(inst->getParent()))
1117         inst->replaceUsesOfWith(outputs[i], load);
1118     }
1119   }
1120
1121   // Now we can emit a switch statement using the call as a value.
1122   SwitchInst *TheSwitch =
1123       SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)),
1124                          codeReplacer, 0, codeReplacer);
1125
1126   // Since there may be multiple exits from the original region, make the new
1127   // function return an unsigned, switch on that number.  This loop iterates
1128   // over all of the blocks in the extracted region, updating any terminator
1129   // instructions in the to-be-extracted region that branch to blocks that are
1130   // not in the region to be extracted.
1131   std::map<BasicBlock *, BasicBlock *> ExitBlockMap;
1132
1133   unsigned switchVal = 0;
1134   for (BasicBlock *Block : Blocks) {
1135     Instruction *TI = Block->getTerminator();
1136     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
1137       if (!Blocks.count(TI->getSuccessor(i))) {
1138         BasicBlock *OldTarget = TI->getSuccessor(i);
1139         // add a new basic block which returns the appropriate value
1140         BasicBlock *&NewTarget = ExitBlockMap[OldTarget];
1141         if (!NewTarget) {
1142           // If we don't already have an exit stub for this non-extracted
1143           // destination, create one now!
1144           NewTarget = BasicBlock::Create(Context,
1145                                          OldTarget->getName() + ".exitStub",
1146                                          newFunction);
1147           unsigned SuccNum = switchVal++;
1148
1149           Value *brVal = nullptr;
1150           switch (NumExitBlocks) {
1151           case 0:
1152           case 1: break;  // No value needed.
1153           case 2:         // Conditional branch, return a bool
1154             brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum);
1155             break;
1156           default:
1157             brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum);
1158             break;
1159           }
1160
1161           ReturnInst::Create(Context, brVal, NewTarget);
1162
1163           // Update the switch instruction.
1164           TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context),
1165                                               SuccNum),
1166                              OldTarget);
1167         }
1168
1169         // rewrite the original branch instruction with this new target
1170         TI->setSuccessor(i, NewTarget);
1171       }
1172   }
1173
1174   // Store the arguments right after the definition of output value.
1175   // This should be proceeded after creating exit stubs to be ensure that invoke
1176   // result restore will be placed in the outlined function.
1177   Function::arg_iterator OAI = OutputArgBegin;
1178   for (unsigned i = 0, e = outputs.size(); i != e; ++i) {
1179     auto *OutI = dyn_cast<Instruction>(outputs[i]);
1180     if (!OutI)
1181       continue;
1182
1183     // Find proper insertion point.
1184     BasicBlock::iterator InsertPt;
1185     // In case OutI is an invoke, we insert the store at the beginning in the
1186     // 'normal destination' BB. Otherwise we insert the store right after OutI.
1187     if (auto *InvokeI = dyn_cast<InvokeInst>(OutI))
1188       InsertPt = InvokeI->getNormalDest()->getFirstInsertionPt();
1189     else if (auto *Phi = dyn_cast<PHINode>(OutI))
1190       InsertPt = Phi->getParent()->getFirstInsertionPt();
1191     else
1192       InsertPt = std::next(OutI->getIterator());
1193
1194     Instruction *InsertBefore = &*InsertPt;
1195     assert((InsertBefore->getFunction() == newFunction ||
1196             Blocks.count(InsertBefore->getParent())) &&
1197            "InsertPt should be in new function");
1198     assert(OAI != newFunction->arg_end() &&
1199            "Number of output arguments should match "
1200            "the amount of defined values");
1201     if (AggregateArgs) {
1202       Value *Idx[2];
1203       Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context));
1204       Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i);
1205       GetElementPtrInst *GEP = GetElementPtrInst::Create(
1206           StructArgTy, &*OAI, Idx, "gep_" + outputs[i]->getName(),
1207           InsertBefore);
1208       new StoreInst(outputs[i], GEP, InsertBefore);
1209       // Since there should be only one struct argument aggregating
1210       // all the output values, we shouldn't increment OAI, which always
1211       // points to the struct argument, in this case.
1212     } else {
1213       new StoreInst(outputs[i], &*OAI, InsertBefore);
1214       ++OAI;
1215     }
1216   }
1217
1218   // Now that we've done the deed, simplify the switch instruction.
1219   Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType();
1220   switch (NumExitBlocks) {
1221   case 0:
1222     // There are no successors (the block containing the switch itself), which
1223     // means that previously this was the last part of the function, and hence
1224     // this should be rewritten as a `ret'
1225
1226     // Check if the function should return a value
1227     if (OldFnRetTy->isVoidTy()) {
1228       ReturnInst::Create(Context, nullptr, TheSwitch);  // Return void
1229     } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) {
1230       // return what we have
1231       ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch);
1232     } else {
1233       // Otherwise we must have code extracted an unwind or something, just
1234       // return whatever we want.
1235       ReturnInst::Create(Context,
1236                          Constant::getNullValue(OldFnRetTy), TheSwitch);
1237     }
1238
1239     TheSwitch->eraseFromParent();
1240     break;
1241   case 1:
1242     // Only a single destination, change the switch into an unconditional
1243     // branch.
1244     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch);
1245     TheSwitch->eraseFromParent();
1246     break;
1247   case 2:
1248     BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2),
1249                        call, TheSwitch);
1250     TheSwitch->eraseFromParent();
1251     break;
1252   default:
1253     // Otherwise, make the default destination of the switch instruction be one
1254     // of the other successors.
1255     TheSwitch->setCondition(call);
1256     TheSwitch->setDefaultDest(TheSwitch->getSuccessor(NumExitBlocks));
1257     // Remove redundant case
1258     TheSwitch->removeCase(SwitchInst::CaseIt(TheSwitch, NumExitBlocks-1));
1259     break;
1260   }
1261
1262   // Insert lifetime markers around the reloads of any output values. The
1263   // allocas output values are stored in are only in-use in the codeRepl block.
1264   insertLifetimeMarkersSurroundingCall(M, ReloadOutputs, ReloadOutputs, call);
1265
1266   return call;
1267 }
1268
1269 void CodeExtractor::moveCodeToFunction(Function *newFunction) {
1270   Function *oldFunc = (*Blocks.begin())->getParent();
1271   Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList();
1272   Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList();
1273
1274   for (BasicBlock *Block : Blocks) {
1275     // Delete the basic block from the old function, and the list of blocks
1276     oldBlocks.remove(Block);
1277
1278     // Insert this basic block into the new function
1279     newBlocks.push_back(Block);
1280
1281     // Remove @llvm.assume calls that were moved to the new function from the
1282     // old function's assumption cache.
1283     if (AC)
1284       for (auto &I : *Block)
1285         if (match(&I, m_Intrinsic<Intrinsic::assume>()))
1286           AC->unregisterAssumption(cast<CallInst>(&I));
1287   }
1288 }
1289
1290 void CodeExtractor::calculateNewCallTerminatorWeights(
1291     BasicBlock *CodeReplacer,
1292     DenseMap<BasicBlock *, BlockFrequency> &ExitWeights,
1293     BranchProbabilityInfo *BPI) {
1294   using Distribution = BlockFrequencyInfoImplBase::Distribution;
1295   using BlockNode = BlockFrequencyInfoImplBase::BlockNode;
1296
1297   // Update the branch weights for the exit block.
1298   Instruction *TI = CodeReplacer->getTerminator();
1299   SmallVector<unsigned, 8> BranchWeights(TI->getNumSuccessors(), 0);
1300
1301   // Block Frequency distribution with dummy node.
1302   Distribution BranchDist;
1303
1304   // Add each of the frequencies of the successors.
1305   for (unsigned i = 0, e = TI->getNumSuccessors(); i < e; ++i) {
1306     BlockNode ExitNode(i);
1307     uint64_t ExitFreq = ExitWeights[TI->getSuccessor(i)].getFrequency();
1308     if (ExitFreq != 0)
1309       BranchDist.addExit(ExitNode, ExitFreq);
1310     else
1311       BPI->setEdgeProbability(CodeReplacer, i, BranchProbability::getZero());
1312   }
1313
1314   // Check for no total weight.
1315   if (BranchDist.Total == 0)
1316     return;
1317
1318   // Normalize the distribution so that they can fit in unsigned.
1319   BranchDist.normalize();
1320
1321   // Create normalized branch weights and set the metadata.
1322   for (unsigned I = 0, E = BranchDist.Weights.size(); I < E; ++I) {
1323     const auto &Weight = BranchDist.Weights[I];
1324
1325     // Get the weight and update the current BFI.
1326     BranchWeights[Weight.TargetNode.Index] = Weight.Amount;
1327     BranchProbability BP(Weight.Amount, BranchDist.Total);
1328     BPI->setEdgeProbability(CodeReplacer, Weight.TargetNode.Index, BP);
1329   }
1330   TI->setMetadata(
1331       LLVMContext::MD_prof,
1332       MDBuilder(TI->getContext()).createBranchWeights(BranchWeights));
1333 }
1334
1335 Function *CodeExtractor::extractCodeRegion() {
1336   if (!isEligible())
1337     return nullptr;
1338
1339   // Assumption: this is a single-entry code region, and the header is the first
1340   // block in the region.
1341   BasicBlock *header = *Blocks.begin();
1342   Function *oldFunction = header->getParent();
1343
1344   // For functions with varargs, check that varargs handling is only done in the
1345   // outlined function, i.e vastart and vaend are only used in outlined blocks.
1346   if (AllowVarArgs && oldFunction->getFunctionType()->isVarArg()) {
1347     auto containsVarArgIntrinsic = [](Instruction &I) {
1348       if (const CallInst *CI = dyn_cast<CallInst>(&I))
1349         if (const Function *F = CI->getCalledFunction())
1350           return F->getIntrinsicID() == Intrinsic::vastart ||
1351                  F->getIntrinsicID() == Intrinsic::vaend;
1352       return false;
1353     };
1354
1355     for (auto &BB : *oldFunction) {
1356       if (Blocks.count(&BB))
1357         continue;
1358       if (llvm::any_of(BB, containsVarArgIntrinsic))
1359         return nullptr;
1360     }
1361   }
1362   ValueSet inputs, outputs, SinkingCands, HoistingCands;
1363   BasicBlock *CommonExit = nullptr;
1364
1365   // Calculate the entry frequency of the new function before we change the root
1366   //   block.
1367   BlockFrequency EntryFreq;
1368   if (BFI) {
1369     assert(BPI && "Both BPI and BFI are required to preserve profile info");
1370     for (BasicBlock *Pred : predecessors(header)) {
1371       if (Blocks.count(Pred))
1372         continue;
1373       EntryFreq +=
1374           BFI->getBlockFreq(Pred) * BPI->getEdgeProbability(Pred, header);
1375     }
1376   }
1377
1378   // If we have any return instructions in the region, split those blocks so
1379   // that the return is not in the region.
1380   splitReturnBlocks();
1381
1382   // Calculate the exit blocks for the extracted region and the total exit
1383   // weights for each of those blocks.
1384   DenseMap<BasicBlock *, BlockFrequency> ExitWeights;
1385   SmallPtrSet<BasicBlock *, 1> ExitBlocks;
1386   for (BasicBlock *Block : Blocks) {
1387     for (succ_iterator SI = succ_begin(Block), SE = succ_end(Block); SI != SE;
1388          ++SI) {
1389       if (!Blocks.count(*SI)) {
1390         // Update the branch weight for this successor.
1391         if (BFI) {
1392           BlockFrequency &BF = ExitWeights[*SI];
1393           BF += BFI->getBlockFreq(Block) * BPI->getEdgeProbability(Block, *SI);
1394         }
1395         ExitBlocks.insert(*SI);
1396       }
1397     }
1398   }
1399   NumExitBlocks = ExitBlocks.size();
1400
1401   // If we have to split PHI nodes of the entry or exit blocks, do so now.
1402   severSplitPHINodesOfEntry(header);
1403   severSplitPHINodesOfExits(ExitBlocks);
1404
1405   // This takes place of the original loop
1406   BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(),
1407                                                 "codeRepl", oldFunction,
1408                                                 header);
1409
1410   // The new function needs a root node because other nodes can branch to the
1411   // head of the region, but the entry node of a function cannot have preds.
1412   BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(),
1413                                                "newFuncRoot");
1414   auto *BranchI = BranchInst::Create(header);
1415   // If the original function has debug info, we have to add a debug location
1416   // to the new branch instruction from the artificial entry block.
1417   // We use the debug location of the first instruction in the extracted
1418   // blocks, as there is no other equivalent line in the source code.
1419   if (oldFunction->getSubprogram()) {
1420     any_of(Blocks, [&BranchI](const BasicBlock *BB) {
1421       return any_of(*BB, [&BranchI](const Instruction &I) {
1422         if (!I.getDebugLoc())
1423           return false;
1424         BranchI->setDebugLoc(I.getDebugLoc());
1425         return true;
1426       });
1427     });
1428   }
1429   newFuncRoot->getInstList().push_back(BranchI);
1430
1431   findAllocas(SinkingCands, HoistingCands, CommonExit);
1432   assert(HoistingCands.empty() || CommonExit);
1433
1434   // Find inputs to, outputs from the code region.
1435   findInputsOutputs(inputs, outputs, SinkingCands);
1436
1437   // Now sink all instructions which only have non-phi uses inside the region.
1438   // Group the allocas at the start of the block, so that any bitcast uses of
1439   // the allocas are well-defined.
1440   AllocaInst *FirstSunkAlloca = nullptr;
1441   for (auto *II : SinkingCands) {
1442     if (auto *AI = dyn_cast<AllocaInst>(II)) {
1443       AI->moveBefore(*newFuncRoot, newFuncRoot->getFirstInsertionPt());
1444       if (!FirstSunkAlloca)
1445         FirstSunkAlloca = AI;
1446     }
1447   }
1448   assert((SinkingCands.empty() || FirstSunkAlloca) &&
1449          "Did not expect a sink candidate without any allocas");
1450   for (auto *II : SinkingCands) {
1451     if (!isa<AllocaInst>(II)) {
1452       cast<Instruction>(II)->moveAfter(FirstSunkAlloca);
1453     }
1454   }
1455
1456   if (!HoistingCands.empty()) {
1457     auto *HoistToBlock = findOrCreateBlockForHoisting(CommonExit);
1458     Instruction *TI = HoistToBlock->getTerminator();
1459     for (auto *II : HoistingCands)
1460       cast<Instruction>(II)->moveBefore(TI);
1461   }
1462
1463   // Collect objects which are inputs to the extraction region and also
1464   // referenced by lifetime start markers within it. The effects of these
1465   // markers must be replicated in the calling function to prevent the stack
1466   // coloring pass from merging slots which store input objects.
1467   ValueSet LifetimesStart;
1468   eraseLifetimeMarkersOnInputs(Blocks, SinkingCands, LifetimesStart);
1469
1470   // Construct new function based on inputs/outputs & add allocas for all defs.
1471   Function *newFunction =
1472       constructFunction(inputs, outputs, header, newFuncRoot, codeReplacer,
1473                         oldFunction, oldFunction->getParent());
1474
1475   // Update the entry count of the function.
1476   if (BFI) {
1477     auto Count = BFI->getProfileCountFromFreq(EntryFreq.getFrequency());
1478     if (Count.hasValue())
1479       newFunction->setEntryCount(
1480           ProfileCount(Count.getValue(), Function::PCT_Real)); // FIXME
1481     BFI->setBlockFreq(codeReplacer, EntryFreq.getFrequency());
1482   }
1483
1484   CallInst *TheCall =
1485       emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs);
1486
1487   moveCodeToFunction(newFunction);
1488
1489   // Replicate the effects of any lifetime start/end markers which referenced
1490   // input objects in the extraction region by placing markers around the call.
1491   insertLifetimeMarkersSurroundingCall(
1492       oldFunction->getParent(), LifetimesStart.getArrayRef(), {}, TheCall);
1493
1494   // Propagate personality info to the new function if there is one.
1495   if (oldFunction->hasPersonalityFn())
1496     newFunction->setPersonalityFn(oldFunction->getPersonalityFn());
1497
1498   // Update the branch weights for the exit block.
1499   if (BFI && NumExitBlocks > 1)
1500     calculateNewCallTerminatorWeights(codeReplacer, ExitWeights, BPI);
1501
1502   // Loop over all of the PHI nodes in the header and exit blocks, and change
1503   // any references to the old incoming edge to be the new incoming edge.
1504   for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) {
1505     PHINode *PN = cast<PHINode>(I);
1506     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1507       if (!Blocks.count(PN->getIncomingBlock(i)))
1508         PN->setIncomingBlock(i, newFuncRoot);
1509   }
1510
1511   for (BasicBlock *ExitBB : ExitBlocks)
1512     for (PHINode &PN : ExitBB->phis()) {
1513       Value *IncomingCodeReplacerVal = nullptr;
1514       for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1515         // Ignore incoming values from outside of the extracted region.
1516         if (!Blocks.count(PN.getIncomingBlock(i)))
1517           continue;
1518
1519         // Ensure that there is only one incoming value from codeReplacer.
1520         if (!IncomingCodeReplacerVal) {
1521           PN.setIncomingBlock(i, codeReplacer);
1522           IncomingCodeReplacerVal = PN.getIncomingValue(i);
1523         } else
1524           assert(IncomingCodeReplacerVal == PN.getIncomingValue(i) &&
1525                  "PHI has two incompatbile incoming values from codeRepl");
1526       }
1527     }
1528
1529   // Erase debug info intrinsics. Variable updates within the new function are
1530   // invisible to debuggers. This could be improved by defining a DISubprogram
1531   // for the new function.
1532   for (BasicBlock &BB : *newFunction) {
1533     auto BlockIt = BB.begin();
1534     // Remove debug info intrinsics from the new function.
1535     while (BlockIt != BB.end()) {
1536       Instruction *Inst = &*BlockIt;
1537       ++BlockIt;
1538       if (isa<DbgInfoIntrinsic>(Inst))
1539         Inst->eraseFromParent();
1540     }
1541     // Remove debug info intrinsics which refer to values in the new function
1542     // from the old function.
1543     SmallVector<DbgVariableIntrinsic *, 4> DbgUsers;
1544     for (Instruction &I : BB)
1545       findDbgUsers(DbgUsers, &I);
1546     for (DbgVariableIntrinsic *DVI : DbgUsers)
1547       DVI->eraseFromParent();
1548   }
1549
1550   // Mark the new function `noreturn` if applicable. Terminators which resume
1551   // exception propagation are treated as returning instructions. This is to
1552   // avoid inserting traps after calls to outlined functions which unwind.
1553   bool doesNotReturn = none_of(*newFunction, [](const BasicBlock &BB) {
1554     const Instruction *Term = BB.getTerminator();
1555     return isa<ReturnInst>(Term) || isa<ResumeInst>(Term);
1556   });
1557   if (doesNotReturn)
1558     newFunction->setDoesNotReturn();
1559
1560   LLVM_DEBUG(if (verifyFunction(*newFunction, &errs())) {
1561     newFunction->dump();
1562     report_fatal_error("verification of newFunction failed!");
1563   });
1564   LLVM_DEBUG(if (verifyFunction(*oldFunction))
1565              report_fatal_error("verification of oldFunction failed!"));
1566   return newFunction;
1567 }