]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/Utils/LCSSA.cpp
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / Utils / LCSSA.cpp
1 //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass transforms loops by placing phi nodes at the end of the loops for
11 // all values that are live across the loop boundary.  For example, it turns
12 // the left into the right code:
13 //
14 // for (...)                for (...)
15 //   if (c)                   if (c)
16 //     X1 = ...                 X1 = ...
17 //   else                     else
18 //     X2 = ...                 X2 = ...
19 //   X3 = phi(X1, X2)         X3 = phi(X1, X2)
20 // ... = X3 + 4             X4 = phi(X3)
21 //                          ... = X4 + 4
22 //
23 // This is still valid LLVM; the extra phi nodes are purely redundant, and will
24 // be trivially eliminated by InstCombine.  The major benefit of this
25 // transformation is that it makes many other loop optimizations, such as
26 // LoopUnswitching, simpler.
27 //
28 //===----------------------------------------------------------------------===//
29
30 #include "llvm/Transforms/Utils/LCSSA.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/Analysis/AliasAnalysis.h"
34 #include "llvm/Analysis/BasicAliasAnalysis.h"
35 #include "llvm/Analysis/GlobalsModRef.h"
36 #include "llvm/Analysis/LoopPass.h"
37 #include "llvm/Analysis/ScalarEvolution.h"
38 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
39 #include "llvm/Transforms/Utils/Local.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/Dominators.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/PredIteratorCache.h"
46 #include "llvm/Pass.h"
47 #include "llvm/Transforms/Utils.h"
48 #include "llvm/Transforms/Utils/LoopUtils.h"
49 #include "llvm/Transforms/Utils/SSAUpdater.h"
50 using namespace llvm;
51
52 #define DEBUG_TYPE "lcssa"
53
54 STATISTIC(NumLCSSA, "Number of live out of a loop variables");
55
56 #ifdef EXPENSIVE_CHECKS
57 static bool VerifyLoopLCSSA = true;
58 #else
59 static bool VerifyLoopLCSSA = false;
60 #endif
61 static cl::opt<bool, true>
62     VerifyLoopLCSSAFlag("verify-loop-lcssa", cl::location(VerifyLoopLCSSA),
63                         cl::Hidden,
64                         cl::desc("Verify loop lcssa form (time consuming)"));
65
66 /// Return true if the specified block is in the list.
67 static bool isExitBlock(BasicBlock *BB,
68                         const SmallVectorImpl<BasicBlock *> &ExitBlocks) {
69   return is_contained(ExitBlocks, BB);
70 }
71
72 /// For every instruction from the worklist, check to see if it has any uses
73 /// that are outside the current loop.  If so, insert LCSSA PHI nodes and
74 /// rewrite the uses.
75 bool llvm::formLCSSAForInstructions(SmallVectorImpl<Instruction *> &Worklist,
76                                     DominatorTree &DT, LoopInfo &LI) {
77   SmallVector<Use *, 16> UsesToRewrite;
78   SmallSetVector<PHINode *, 16> PHIsToRemove;
79   PredIteratorCache PredCache;
80   bool Changed = false;
81
82   // Cache the Loop ExitBlocks across this loop.  We expect to get a lot of
83   // instructions within the same loops, computing the exit blocks is
84   // expensive, and we're not mutating the loop structure.
85   SmallDenseMap<Loop*, SmallVector<BasicBlock *,1>> LoopExitBlocks;
86
87   while (!Worklist.empty()) {
88     UsesToRewrite.clear();
89
90     Instruction *I = Worklist.pop_back_val();
91     assert(!I->getType()->isTokenTy() && "Tokens shouldn't be in the worklist");
92     BasicBlock *InstBB = I->getParent();
93     Loop *L = LI.getLoopFor(InstBB);
94     assert(L && "Instruction belongs to a BB that's not part of a loop");
95     if (!LoopExitBlocks.count(L))
96       L->getExitBlocks(LoopExitBlocks[L]);
97     assert(LoopExitBlocks.count(L));
98     const SmallVectorImpl<BasicBlock *> &ExitBlocks = LoopExitBlocks[L];
99
100     if (ExitBlocks.empty())
101       continue;
102
103     for (Use &U : I->uses()) {
104       Instruction *User = cast<Instruction>(U.getUser());
105       BasicBlock *UserBB = User->getParent();
106       if (auto *PN = dyn_cast<PHINode>(User))
107         UserBB = PN->getIncomingBlock(U);
108
109       if (InstBB != UserBB && !L->contains(UserBB))
110         UsesToRewrite.push_back(&U);
111     }
112
113     // If there are no uses outside the loop, exit with no change.
114     if (UsesToRewrite.empty())
115       continue;
116
117     ++NumLCSSA; // We are applying the transformation
118
119     // Invoke instructions are special in that their result value is not
120     // available along their unwind edge. The code below tests to see whether
121     // DomBB dominates the value, so adjust DomBB to the normal destination
122     // block, which is effectively where the value is first usable.
123     BasicBlock *DomBB = InstBB;
124     if (auto *Inv = dyn_cast<InvokeInst>(I))
125       DomBB = Inv->getNormalDest();
126
127     DomTreeNode *DomNode = DT.getNode(DomBB);
128
129     SmallVector<PHINode *, 16> AddedPHIs;
130     SmallVector<PHINode *, 8> PostProcessPHIs;
131
132     SmallVector<PHINode *, 4> InsertedPHIs;
133     SSAUpdater SSAUpdate(&InsertedPHIs);
134     SSAUpdate.Initialize(I->getType(), I->getName());
135
136     // Insert the LCSSA phi's into all of the exit blocks dominated by the
137     // value, and add them to the Phi's map.
138     for (BasicBlock *ExitBB : ExitBlocks) {
139       if (!DT.dominates(DomNode, DT.getNode(ExitBB)))
140         continue;
141
142       // If we already inserted something for this BB, don't reprocess it.
143       if (SSAUpdate.HasValueForBlock(ExitBB))
144         continue;
145
146       PHINode *PN = PHINode::Create(I->getType(), PredCache.size(ExitBB),
147                                     I->getName() + ".lcssa", &ExitBB->front());
148       // Get the debug location from the original instruction.
149       PN->setDebugLoc(I->getDebugLoc());
150       // Add inputs from inside the loop for this PHI.
151       for (BasicBlock *Pred : PredCache.get(ExitBB)) {
152         PN->addIncoming(I, Pred);
153
154         // If the exit block has a predecessor not within the loop, arrange for
155         // the incoming value use corresponding to that predecessor to be
156         // rewritten in terms of a different LCSSA PHI.
157         if (!L->contains(Pred))
158           UsesToRewrite.push_back(
159               &PN->getOperandUse(PN->getOperandNumForIncomingValue(
160                   PN->getNumIncomingValues() - 1)));
161       }
162
163       AddedPHIs.push_back(PN);
164
165       // Remember that this phi makes the value alive in this block.
166       SSAUpdate.AddAvailableValue(ExitBB, PN);
167
168       // LoopSimplify might fail to simplify some loops (e.g. when indirect
169       // branches are involved). In such situations, it might happen that an
170       // exit for Loop L1 is the header of a disjoint Loop L2. Thus, when we
171       // create PHIs in such an exit block, we are also inserting PHIs into L2's
172       // header. This could break LCSSA form for L2 because these inserted PHIs
173       // can also have uses outside of L2. Remember all PHIs in such situation
174       // as to revisit than later on. FIXME: Remove this if indirectbr support
175       // into LoopSimplify gets improved.
176       if (auto *OtherLoop = LI.getLoopFor(ExitBB))
177         if (!L->contains(OtherLoop))
178           PostProcessPHIs.push_back(PN);
179     }
180
181     // Rewrite all uses outside the loop in terms of the new PHIs we just
182     // inserted.
183     for (Use *UseToRewrite : UsesToRewrite) {
184       // If this use is in an exit block, rewrite to use the newly inserted PHI.
185       // This is required for correctness because SSAUpdate doesn't handle uses
186       // in the same block.  It assumes the PHI we inserted is at the end of the
187       // block.
188       Instruction *User = cast<Instruction>(UseToRewrite->getUser());
189       BasicBlock *UserBB = User->getParent();
190       if (auto *PN = dyn_cast<PHINode>(User))
191         UserBB = PN->getIncomingBlock(*UseToRewrite);
192
193       if (isa<PHINode>(UserBB->begin()) && isExitBlock(UserBB, ExitBlocks)) {
194         // Tell the VHs that the uses changed. This updates SCEV's caches.
195         if (UseToRewrite->get()->hasValueHandle())
196           ValueHandleBase::ValueIsRAUWd(*UseToRewrite, &UserBB->front());
197         UseToRewrite->set(&UserBB->front());
198         continue;
199       }
200
201       // Otherwise, do full PHI insertion.
202       SSAUpdate.RewriteUse(*UseToRewrite);
203     }
204
205     SmallVector<DbgValueInst *, 4> DbgValues;
206     llvm::findDbgValues(DbgValues, I);
207
208     // Update pre-existing debug value uses that reside outside the loop.
209     auto &Ctx = I->getContext();
210     for (auto DVI : DbgValues) {
211       BasicBlock *UserBB = DVI->getParent();
212       if (InstBB == UserBB || L->contains(UserBB))
213         continue;
214       // We currently only handle debug values residing in blocks where we have
215       // inserted a PHI instruction.
216       if (Value *V = SSAUpdate.FindValueForBlock(UserBB))
217         DVI->setOperand(0, MetadataAsValue::get(Ctx, ValueAsMetadata::get(V)));
218     }
219
220     // SSAUpdater might have inserted phi-nodes inside other loops. We'll need
221     // to post-process them to keep LCSSA form.
222     for (PHINode *InsertedPN : InsertedPHIs) {
223       if (auto *OtherLoop = LI.getLoopFor(InsertedPN->getParent()))
224         if (!L->contains(OtherLoop))
225           PostProcessPHIs.push_back(InsertedPN);
226     }
227
228     // Post process PHI instructions that were inserted into another disjoint
229     // loop and update their exits properly.
230     for (auto *PostProcessPN : PostProcessPHIs)
231       if (!PostProcessPN->use_empty())
232         Worklist.push_back(PostProcessPN);
233
234     // Keep track of PHI nodes that we want to remove because they did not have
235     // any uses rewritten. If the new PHI is used, store it so that we can
236     // try to propagate dbg.value intrinsics to it.
237     SmallVector<PHINode *, 2> NeedDbgValues;
238     for (PHINode *PN : AddedPHIs)
239       if (PN->use_empty())
240         PHIsToRemove.insert(PN);
241       else
242         NeedDbgValues.push_back(PN);
243     insertDebugValuesForPHIs(InstBB, NeedDbgValues);
244     Changed = true;
245   }
246   // Remove PHI nodes that did not have any uses rewritten. We need to redo the
247   // use_empty() check here, because even if the PHI node wasn't used when added
248   // to PHIsToRemove, later added PHI nodes can be using it.  This cleanup is
249   // not guaranteed to handle trees/cycles of PHI nodes that only are used by
250   // each other. Such situations has only been noticed when the input IR
251   // contains unreachable code, and leaving some extra redundant PHI nodes in
252   // such situations is considered a minor problem.
253   for (PHINode *PN : PHIsToRemove)
254     if (PN->use_empty())
255       PN->eraseFromParent();
256   return Changed;
257 }
258
259 // Compute the set of BasicBlocks in the loop `L` dominating at least one exit.
260 static void computeBlocksDominatingExits(
261     Loop &L, DominatorTree &DT, SmallVector<BasicBlock *, 8> &ExitBlocks,
262     SmallSetVector<BasicBlock *, 8> &BlocksDominatingExits) {
263   SmallVector<BasicBlock *, 8> BBWorklist;
264
265   // We start from the exit blocks, as every block trivially dominates itself
266   // (not strictly).
267   for (BasicBlock *BB : ExitBlocks)
268     BBWorklist.push_back(BB);
269
270   while (!BBWorklist.empty()) {
271     BasicBlock *BB = BBWorklist.pop_back_val();
272
273     // Check if this is a loop header. If this is the case, we're done.
274     if (L.getHeader() == BB)
275       continue;
276
277     // Otherwise, add its immediate predecessor in the dominator tree to the
278     // worklist, unless we visited it already.
279     BasicBlock *IDomBB = DT.getNode(BB)->getIDom()->getBlock();
280
281     // Exit blocks can have an immediate dominator not beloinging to the
282     // loop. For an exit block to be immediately dominated by another block
283     // outside the loop, it implies not all paths from that dominator, to the
284     // exit block, go through the loop.
285     // Example:
286     //
287     // |---- A
288     // |     |
289     // |     B<--
290     // |     |  |
291     // |---> C --
292     //       |
293     //       D
294     //
295     // C is the exit block of the loop and it's immediately dominated by A,
296     // which doesn't belong to the loop.
297     if (!L.contains(IDomBB))
298       continue;
299
300     if (BlocksDominatingExits.insert(IDomBB))
301       BBWorklist.push_back(IDomBB);
302   }
303 }
304
305 bool llvm::formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI,
306                      ScalarEvolution *SE) {
307   bool Changed = false;
308
309   SmallVector<BasicBlock *, 8> ExitBlocks;
310   L.getExitBlocks(ExitBlocks);
311   if (ExitBlocks.empty())
312     return false;
313
314   SmallSetVector<BasicBlock *, 8> BlocksDominatingExits;
315
316   // We want to avoid use-scanning leveraging dominance informations.
317   // If a block doesn't dominate any of the loop exits, the none of the values
318   // defined in the loop can be used outside.
319   // We compute the set of blocks fullfilling the conditions in advance
320   // walking the dominator tree upwards until we hit a loop header.
321   computeBlocksDominatingExits(L, DT, ExitBlocks, BlocksDominatingExits);
322
323   SmallVector<Instruction *, 8> Worklist;
324
325   // Look at all the instructions in the loop, checking to see if they have uses
326   // outside the loop.  If so, put them into the worklist to rewrite those uses.
327   for (BasicBlock *BB : BlocksDominatingExits) {
328     for (Instruction &I : *BB) {
329       // Reject two common cases fast: instructions with no uses (like stores)
330       // and instructions with one use that is in the same block as this.
331       if (I.use_empty() ||
332           (I.hasOneUse() && I.user_back()->getParent() == BB &&
333            !isa<PHINode>(I.user_back())))
334         continue;
335
336       // Tokens cannot be used in PHI nodes, so we skip over them.
337       // We can run into tokens which are live out of a loop with catchswitch
338       // instructions in Windows EH if the catchswitch has one catchpad which
339       // is inside the loop and another which is not.
340       if (I.getType()->isTokenTy())
341         continue;
342
343       Worklist.push_back(&I);
344     }
345   }
346   Changed = formLCSSAForInstructions(Worklist, DT, *LI);
347
348   // If we modified the code, remove any caches about the loop from SCEV to
349   // avoid dangling entries.
350   // FIXME: This is a big hammer, can we clear the cache more selectively?
351   if (SE && Changed)
352     SE->forgetLoop(&L);
353
354   assert(L.isLCSSAForm(DT));
355
356   return Changed;
357 }
358
359 /// Process a loop nest depth first.
360 bool llvm::formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI,
361                                 ScalarEvolution *SE) {
362   bool Changed = false;
363
364   // Recurse depth-first through inner loops.
365   for (Loop *SubLoop : L.getSubLoops())
366     Changed |= formLCSSARecursively(*SubLoop, DT, LI, SE);
367
368   Changed |= formLCSSA(L, DT, LI, SE);
369   return Changed;
370 }
371
372 /// Process all loops in the function, inner-most out.
373 static bool formLCSSAOnAllLoops(LoopInfo *LI, DominatorTree &DT,
374                                 ScalarEvolution *SE) {
375   bool Changed = false;
376   for (auto &L : *LI)
377     Changed |= formLCSSARecursively(*L, DT, LI, SE);
378   return Changed;
379 }
380
381 namespace {
382 struct LCSSAWrapperPass : public FunctionPass {
383   static char ID; // Pass identification, replacement for typeid
384   LCSSAWrapperPass() : FunctionPass(ID) {
385     initializeLCSSAWrapperPassPass(*PassRegistry::getPassRegistry());
386   }
387
388   // Cached analysis information for the current function.
389   DominatorTree *DT;
390   LoopInfo *LI;
391   ScalarEvolution *SE;
392
393   bool runOnFunction(Function &F) override;
394   void verifyAnalysis() const override {
395     // This check is very expensive. On the loop intensive compiles it may cause
396     // up to 10x slowdown. Currently it's disabled by default. LPPassManager
397     // always does limited form of the LCSSA verification. Similar reasoning
398     // was used for the LoopInfo verifier.
399     if (VerifyLoopLCSSA) {
400       assert(all_of(*LI,
401                     [&](Loop *L) {
402                       return L->isRecursivelyLCSSAForm(*DT, *LI);
403                     }) &&
404              "LCSSA form is broken!");
405     }
406   };
407
408   /// This transformation requires natural loop information & requires that
409   /// loop preheaders be inserted into the CFG.  It maintains both of these,
410   /// as well as the CFG.  It also requires dominator information.
411   void getAnalysisUsage(AnalysisUsage &AU) const override {
412     AU.setPreservesCFG();
413
414     AU.addRequired<DominatorTreeWrapperPass>();
415     AU.addRequired<LoopInfoWrapperPass>();
416     AU.addPreservedID(LoopSimplifyID);
417     AU.addPreserved<AAResultsWrapperPass>();
418     AU.addPreserved<BasicAAWrapperPass>();
419     AU.addPreserved<GlobalsAAWrapperPass>();
420     AU.addPreserved<ScalarEvolutionWrapperPass>();
421     AU.addPreserved<SCEVAAWrapperPass>();
422
423     // This is needed to perform LCSSA verification inside LPPassManager
424     AU.addRequired<LCSSAVerificationPass>();
425     AU.addPreserved<LCSSAVerificationPass>();
426   }
427 };
428 }
429
430 char LCSSAWrapperPass::ID = 0;
431 INITIALIZE_PASS_BEGIN(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
432                       false, false)
433 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
434 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
435 INITIALIZE_PASS_DEPENDENCY(LCSSAVerificationPass)
436 INITIALIZE_PASS_END(LCSSAWrapperPass, "lcssa", "Loop-Closed SSA Form Pass",
437                     false, false)
438
439 Pass *llvm::createLCSSAPass() { return new LCSSAWrapperPass(); }
440 char &llvm::LCSSAID = LCSSAWrapperPass::ID;
441
442 /// Transform \p F into loop-closed SSA form.
443 bool LCSSAWrapperPass::runOnFunction(Function &F) {
444   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
445   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
446   auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
447   SE = SEWP ? &SEWP->getSE() : nullptr;
448
449   return formLCSSAOnAllLoops(LI, *DT, SE);
450 }
451
452 PreservedAnalyses LCSSAPass::run(Function &F, FunctionAnalysisManager &AM) {
453   auto &LI = AM.getResult<LoopAnalysis>(F);
454   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
455   auto *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F);
456   if (!formLCSSAOnAllLoops(&LI, DT, SE))
457     return PreservedAnalyses::all();
458
459   PreservedAnalyses PA;
460   PA.preserveSet<CFGAnalyses>();
461   PA.preserve<BasicAA>();
462   PA.preserve<GlobalsAA>();
463   PA.preserve<SCEVAA>();
464   PA.preserve<ScalarEvolutionAnalysis>();
465   return PA;
466 }