]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/Utils/Local.cpp
Merge llvm, clang, lld, lldb, compiler-rt and libc++ r302418, and update
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / Utils / Local.cpp
1 //===-- Local.cpp - Functions to perform local transformations ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform various local transformations to the
11 // program.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/EHPersonalities.h"
24 #include "llvm/Analysis/InstructionSimplify.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/LazyValueInfo.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/CFG.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DIBuilder.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/DebugInfo.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/GetElementPtrTypeIterator.h"
36 #include "llvm/IR/GlobalAlias.h"
37 #include "llvm/IR/GlobalVariable.h"
38 #include "llvm/IR/IRBuilder.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/Intrinsics.h"
42 #include "llvm/IR/MDBuilder.h"
43 #include "llvm/IR/Metadata.h"
44 #include "llvm/IR/Operator.h"
45 #include "llvm/IR/PatternMatch.h"
46 #include "llvm/IR/ValueHandle.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/KnownBits.h"
49 #include "llvm/Support/MathExtras.h"
50 #include "llvm/Support/raw_ostream.h"
51 using namespace llvm;
52 using namespace llvm::PatternMatch;
53
54 #define DEBUG_TYPE "local"
55
56 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
57
58 //===----------------------------------------------------------------------===//
59 //  Local constant propagation.
60 //
61
62 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
63 /// constant value, convert it into an unconditional branch to the constant
64 /// destination.  This is a nontrivial operation because the successors of this
65 /// basic block must have their PHI nodes updated.
66 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
67 /// conditions and indirectbr addresses this might make dead if
68 /// DeleteDeadConditions is true.
69 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
70                                   const TargetLibraryInfo *TLI) {
71   TerminatorInst *T = BB->getTerminator();
72   IRBuilder<> Builder(T);
73
74   // Branch - See if we are conditional jumping on constant
75   if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
76     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
77     BasicBlock *Dest1 = BI->getSuccessor(0);
78     BasicBlock *Dest2 = BI->getSuccessor(1);
79
80     if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
81       // Are we branching on constant?
82       // YES.  Change to unconditional branch...
83       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
84       BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
85
86       //cerr << "Function: " << T->getParent()->getParent()
87       //     << "\nRemoving branch from " << T->getParent()
88       //     << "\n\nTo: " << OldDest << endl;
89
90       // Let the basic block know that we are letting go of it.  Based on this,
91       // it will adjust it's PHI nodes.
92       OldDest->removePredecessor(BB);
93
94       // Replace the conditional branch with an unconditional one.
95       Builder.CreateBr(Destination);
96       BI->eraseFromParent();
97       return true;
98     }
99
100     if (Dest2 == Dest1) {       // Conditional branch to same location?
101       // This branch matches something like this:
102       //     br bool %cond, label %Dest, label %Dest
103       // and changes it into:  br label %Dest
104
105       // Let the basic block know that we are letting go of one copy of it.
106       assert(BI->getParent() && "Terminator not inserted in block!");
107       Dest1->removePredecessor(BI->getParent());
108
109       // Replace the conditional branch with an unconditional one.
110       Builder.CreateBr(Dest1);
111       Value *Cond = BI->getCondition();
112       BI->eraseFromParent();
113       if (DeleteDeadConditions)
114         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
115       return true;
116     }
117     return false;
118   }
119
120   if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
121     // If we are switching on a constant, we can convert the switch to an
122     // unconditional branch.
123     ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
124     BasicBlock *DefaultDest = SI->getDefaultDest();
125     BasicBlock *TheOnlyDest = DefaultDest;
126
127     // If the default is unreachable, ignore it when searching for TheOnlyDest.
128     if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
129         SI->getNumCases() > 0) {
130       TheOnlyDest = SI->case_begin()->getCaseSuccessor();
131     }
132
133     // Figure out which case it goes to.
134     for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
135       // Found case matching a constant operand?
136       if (i->getCaseValue() == CI) {
137         TheOnlyDest = i->getCaseSuccessor();
138         break;
139       }
140
141       // Check to see if this branch is going to the same place as the default
142       // dest.  If so, eliminate it as an explicit compare.
143       if (i->getCaseSuccessor() == DefaultDest) {
144         MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
145         unsigned NCases = SI->getNumCases();
146         // Fold the case metadata into the default if there will be any branches
147         // left, unless the metadata doesn't match the switch.
148         if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
149           // Collect branch weights into a vector.
150           SmallVector<uint32_t, 8> Weights;
151           for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
152                ++MD_i) {
153             auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
154             Weights.push_back(CI->getValue().getZExtValue());
155           }
156           // Merge weight of this case to the default weight.
157           unsigned idx = i->getCaseIndex();
158           Weights[0] += Weights[idx+1];
159           // Remove weight for this case.
160           std::swap(Weights[idx+1], Weights.back());
161           Weights.pop_back();
162           SI->setMetadata(LLVMContext::MD_prof,
163                           MDBuilder(BB->getContext()).
164                           createBranchWeights(Weights));
165         }
166         // Remove this entry.
167         DefaultDest->removePredecessor(SI->getParent());
168         i = SI->removeCase(i);
169         e = SI->case_end();
170         continue;
171       }
172
173       // Otherwise, check to see if the switch only branches to one destination.
174       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
175       // destinations.
176       if (i->getCaseSuccessor() != TheOnlyDest)
177         TheOnlyDest = nullptr;
178
179       // Increment this iterator as we haven't removed the case.
180       ++i;
181     }
182
183     if (CI && !TheOnlyDest) {
184       // Branching on a constant, but not any of the cases, go to the default
185       // successor.
186       TheOnlyDest = SI->getDefaultDest();
187     }
188
189     // If we found a single destination that we can fold the switch into, do so
190     // now.
191     if (TheOnlyDest) {
192       // Insert the new branch.
193       Builder.CreateBr(TheOnlyDest);
194       BasicBlock *BB = SI->getParent();
195
196       // Remove entries from PHI nodes which we no longer branch to...
197       for (BasicBlock *Succ : SI->successors()) {
198         // Found case matching a constant operand?
199         if (Succ == TheOnlyDest)
200           TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
201         else
202           Succ->removePredecessor(BB);
203       }
204
205       // Delete the old switch.
206       Value *Cond = SI->getCondition();
207       SI->eraseFromParent();
208       if (DeleteDeadConditions)
209         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
210       return true;
211     }
212
213     if (SI->getNumCases() == 1) {
214       // Otherwise, we can fold this switch into a conditional branch
215       // instruction if it has only one non-default destination.
216       auto FirstCase = *SI->case_begin();
217       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
218           FirstCase.getCaseValue(), "cond");
219
220       // Insert the new branch.
221       BranchInst *NewBr = Builder.CreateCondBr(Cond,
222                                                FirstCase.getCaseSuccessor(),
223                                                SI->getDefaultDest());
224       MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
225       if (MD && MD->getNumOperands() == 3) {
226         ConstantInt *SICase =
227             mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
228         ConstantInt *SIDef =
229             mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
230         assert(SICase && SIDef);
231         // The TrueWeight should be the weight for the single case of SI.
232         NewBr->setMetadata(LLVMContext::MD_prof,
233                         MDBuilder(BB->getContext()).
234                         createBranchWeights(SICase->getValue().getZExtValue(),
235                                             SIDef->getValue().getZExtValue()));
236       }
237
238       // Update make.implicit metadata to the newly-created conditional branch.
239       MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
240       if (MakeImplicitMD)
241         NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
242
243       // Delete the old switch.
244       SI->eraseFromParent();
245       return true;
246     }
247     return false;
248   }
249
250   if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
251     // indirectbr blockaddress(@F, @BB) -> br label @BB
252     if (BlockAddress *BA =
253           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
254       BasicBlock *TheOnlyDest = BA->getBasicBlock();
255       // Insert the new branch.
256       Builder.CreateBr(TheOnlyDest);
257
258       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
259         if (IBI->getDestination(i) == TheOnlyDest)
260           TheOnlyDest = nullptr;
261         else
262           IBI->getDestination(i)->removePredecessor(IBI->getParent());
263       }
264       Value *Address = IBI->getAddress();
265       IBI->eraseFromParent();
266       if (DeleteDeadConditions)
267         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
268
269       // If we didn't find our destination in the IBI successor list, then we
270       // have undefined behavior.  Replace the unconditional branch with an
271       // 'unreachable' instruction.
272       if (TheOnlyDest) {
273         BB->getTerminator()->eraseFromParent();
274         new UnreachableInst(BB->getContext(), BB);
275       }
276
277       return true;
278     }
279   }
280
281   return false;
282 }
283
284
285 //===----------------------------------------------------------------------===//
286 //  Local dead code elimination.
287 //
288
289 /// isInstructionTriviallyDead - Return true if the result produced by the
290 /// instruction is not used, and the instruction has no side effects.
291 ///
292 bool llvm::isInstructionTriviallyDead(Instruction *I,
293                                       const TargetLibraryInfo *TLI) {
294   if (!I->use_empty())
295     return false;
296   return wouldInstructionBeTriviallyDead(I, TLI);
297 }
298
299 bool llvm::wouldInstructionBeTriviallyDead(Instruction *I,
300                                            const TargetLibraryInfo *TLI) {
301   if (isa<TerminatorInst>(I))
302     return false;
303
304   // We don't want the landingpad-like instructions removed by anything this
305   // general.
306   if (I->isEHPad())
307     return false;
308
309   // We don't want debug info removed by anything this general, unless
310   // debug info is empty.
311   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
312     if (DDI->getAddress())
313       return false;
314     return true;
315   }
316   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
317     if (DVI->getValue())
318       return false;
319     return true;
320   }
321
322   if (!I->mayHaveSideEffects())
323     return true;
324
325   // Special case intrinsics that "may have side effects" but can be deleted
326   // when dead.
327   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
328     // Safe to delete llvm.stacksave if dead.
329     if (II->getIntrinsicID() == Intrinsic::stacksave)
330       return true;
331
332     // Lifetime intrinsics are dead when their right-hand is undef.
333     if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
334         II->getIntrinsicID() == Intrinsic::lifetime_end)
335       return isa<UndefValue>(II->getArgOperand(1));
336
337     // Assumptions are dead if their condition is trivially true.  Guards on
338     // true are operationally no-ops.  In the future we can consider more
339     // sophisticated tradeoffs for guards considering potential for check
340     // widening, but for now we keep things simple.
341     if (II->getIntrinsicID() == Intrinsic::assume ||
342         II->getIntrinsicID() == Intrinsic::experimental_guard) {
343       if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
344         return !Cond->isZero();
345
346       return false;
347     }
348   }
349
350   if (isAllocLikeFn(I, TLI))
351     return true;
352
353   if (CallInst *CI = isFreeCall(I, TLI))
354     if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
355       return C->isNullValue() || isa<UndefValue>(C);
356
357   if (CallSite CS = CallSite(I))
358     if (isMathLibCallNoop(CS, TLI))
359       return true;
360
361   return false;
362 }
363
364 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
365 /// trivially dead instruction, delete it.  If that makes any of its operands
366 /// trivially dead, delete them too, recursively.  Return true if any
367 /// instructions were deleted.
368 bool
369 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
370                                                  const TargetLibraryInfo *TLI) {
371   Instruction *I = dyn_cast<Instruction>(V);
372   if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
373     return false;
374
375   SmallVector<Instruction*, 16> DeadInsts;
376   DeadInsts.push_back(I);
377
378   do {
379     I = DeadInsts.pop_back_val();
380
381     // Null out all of the instruction's operands to see if any operand becomes
382     // dead as we go.
383     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
384       Value *OpV = I->getOperand(i);
385       I->setOperand(i, nullptr);
386
387       if (!OpV->use_empty()) continue;
388
389       // If the operand is an instruction that became dead as we nulled out the
390       // operand, and if it is 'trivially' dead, delete it in a future loop
391       // iteration.
392       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
393         if (isInstructionTriviallyDead(OpI, TLI))
394           DeadInsts.push_back(OpI);
395     }
396
397     I->eraseFromParent();
398   } while (!DeadInsts.empty());
399
400   return true;
401 }
402
403 /// areAllUsesEqual - Check whether the uses of a value are all the same.
404 /// This is similar to Instruction::hasOneUse() except this will also return
405 /// true when there are no uses or multiple uses that all refer to the same
406 /// value.
407 static bool areAllUsesEqual(Instruction *I) {
408   Value::user_iterator UI = I->user_begin();
409   Value::user_iterator UE = I->user_end();
410   if (UI == UE)
411     return true;
412
413   User *TheUse = *UI;
414   for (++UI; UI != UE; ++UI) {
415     if (*UI != TheUse)
416       return false;
417   }
418   return true;
419 }
420
421 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
422 /// dead PHI node, due to being a def-use chain of single-use nodes that
423 /// either forms a cycle or is terminated by a trivially dead instruction,
424 /// delete it.  If that makes any of its operands trivially dead, delete them
425 /// too, recursively.  Return true if a change was made.
426 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
427                                         const TargetLibraryInfo *TLI) {
428   SmallPtrSet<Instruction*, 4> Visited;
429   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
430        I = cast<Instruction>(*I->user_begin())) {
431     if (I->use_empty())
432       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
433
434     // If we find an instruction more than once, we're on a cycle that
435     // won't prove fruitful.
436     if (!Visited.insert(I).second) {
437       // Break the cycle and delete the instruction and its operands.
438       I->replaceAllUsesWith(UndefValue::get(I->getType()));
439       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
440       return true;
441     }
442   }
443   return false;
444 }
445
446 static bool
447 simplifyAndDCEInstruction(Instruction *I,
448                           SmallSetVector<Instruction *, 16> &WorkList,
449                           const DataLayout &DL,
450                           const TargetLibraryInfo *TLI) {
451   if (isInstructionTriviallyDead(I, TLI)) {
452     // Null out all of the instruction's operands to see if any operand becomes
453     // dead as we go.
454     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
455       Value *OpV = I->getOperand(i);
456       I->setOperand(i, nullptr);
457
458       if (!OpV->use_empty() || I == OpV)
459         continue;
460
461       // If the operand is an instruction that became dead as we nulled out the
462       // operand, and if it is 'trivially' dead, delete it in a future loop
463       // iteration.
464       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
465         if (isInstructionTriviallyDead(OpI, TLI))
466           WorkList.insert(OpI);
467     }
468
469     I->eraseFromParent();
470
471     return true;
472   }
473
474   if (Value *SimpleV = SimplifyInstruction(I, DL)) {
475     // Add the users to the worklist. CAREFUL: an instruction can use itself,
476     // in the case of a phi node.
477     for (User *U : I->users()) {
478       if (U != I) {
479         WorkList.insert(cast<Instruction>(U));
480       }
481     }
482
483     // Replace the instruction with its simplified value.
484     bool Changed = false;
485     if (!I->use_empty()) {
486       I->replaceAllUsesWith(SimpleV);
487       Changed = true;
488     }
489     if (isInstructionTriviallyDead(I, TLI)) {
490       I->eraseFromParent();
491       Changed = true;
492     }
493     return Changed;
494   }
495   return false;
496 }
497
498 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
499 /// simplify any instructions in it and recursively delete dead instructions.
500 ///
501 /// This returns true if it changed the code, note that it can delete
502 /// instructions in other blocks as well in this block.
503 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
504                                        const TargetLibraryInfo *TLI) {
505   bool MadeChange = false;
506   const DataLayout &DL = BB->getModule()->getDataLayout();
507
508 #ifndef NDEBUG
509   // In debug builds, ensure that the terminator of the block is never replaced
510   // or deleted by these simplifications. The idea of simplification is that it
511   // cannot introduce new instructions, and there is no way to replace the
512   // terminator of a block without introducing a new instruction.
513   AssertingVH<Instruction> TerminatorVH(&BB->back());
514 #endif
515
516   SmallSetVector<Instruction *, 16> WorkList;
517   // Iterate over the original function, only adding insts to the worklist
518   // if they actually need to be revisited. This avoids having to pre-init
519   // the worklist with the entire function's worth of instructions.
520   for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
521        BI != E;) {
522     assert(!BI->isTerminator());
523     Instruction *I = &*BI;
524     ++BI;
525
526     // We're visiting this instruction now, so make sure it's not in the
527     // worklist from an earlier visit.
528     if (!WorkList.count(I))
529       MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
530   }
531
532   while (!WorkList.empty()) {
533     Instruction *I = WorkList.pop_back_val();
534     MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
535   }
536   return MadeChange;
537 }
538
539 //===----------------------------------------------------------------------===//
540 //  Control Flow Graph Restructuring.
541 //
542
543
544 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
545 /// method is called when we're about to delete Pred as a predecessor of BB.  If
546 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
547 ///
548 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
549 /// nodes that collapse into identity values.  For example, if we have:
550 ///   x = phi(1, 0, 0, 0)
551 ///   y = and x, z
552 ///
553 /// .. and delete the predecessor corresponding to the '1', this will attempt to
554 /// recursively fold the and to 0.
555 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred) {
556   // This only adjusts blocks with PHI nodes.
557   if (!isa<PHINode>(BB->begin()))
558     return;
559
560   // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
561   // them down.  This will leave us with single entry phi nodes and other phis
562   // that can be removed.
563   BB->removePredecessor(Pred, true);
564
565   WeakTrackingVH PhiIt = &BB->front();
566   while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
567     PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
568     Value *OldPhiIt = PhiIt;
569
570     if (!recursivelySimplifyInstruction(PN))
571       continue;
572
573     // If recursive simplification ended up deleting the next PHI node we would
574     // iterate to, then our iterator is invalid, restart scanning from the top
575     // of the block.
576     if (PhiIt != OldPhiIt) PhiIt = &BB->front();
577   }
578 }
579
580
581 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
582 /// predecessor is known to have one successor (DestBB!).  Eliminate the edge
583 /// between them, moving the instructions in the predecessor into DestBB and
584 /// deleting the predecessor block.
585 ///
586 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT) {
587   // If BB has single-entry PHI nodes, fold them.
588   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
589     Value *NewVal = PN->getIncomingValue(0);
590     // Replace self referencing PHI with undef, it must be dead.
591     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
592     PN->replaceAllUsesWith(NewVal);
593     PN->eraseFromParent();
594   }
595
596   BasicBlock *PredBB = DestBB->getSinglePredecessor();
597   assert(PredBB && "Block doesn't have a single predecessor!");
598
599   // Zap anything that took the address of DestBB.  Not doing this will give the
600   // address an invalid value.
601   if (DestBB->hasAddressTaken()) {
602     BlockAddress *BA = BlockAddress::get(DestBB);
603     Constant *Replacement =
604       ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
605     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
606                                                      BA->getType()));
607     BA->destroyConstant();
608   }
609
610   // Anything that branched to PredBB now branches to DestBB.
611   PredBB->replaceAllUsesWith(DestBB);
612
613   // Splice all the instructions from PredBB to DestBB.
614   PredBB->getTerminator()->eraseFromParent();
615   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
616
617   // If the PredBB is the entry block of the function, move DestBB up to
618   // become the entry block after we erase PredBB.
619   if (PredBB == &DestBB->getParent()->getEntryBlock())
620     DestBB->moveAfter(PredBB);
621
622   if (DT) {
623     BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock();
624     DT->changeImmediateDominator(DestBB, PredBBIDom);
625     DT->eraseNode(PredBB);
626   }
627   // Nuke BB.
628   PredBB->eraseFromParent();
629 }
630
631 /// CanMergeValues - Return true if we can choose one of these values to use
632 /// in place of the other. Note that we will always choose the non-undef
633 /// value to keep.
634 static bool CanMergeValues(Value *First, Value *Second) {
635   return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
636 }
637
638 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
639 /// almost-empty BB ending in an unconditional branch to Succ, into Succ.
640 ///
641 /// Assumption: Succ is the single successor for BB.
642 ///
643 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
644   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
645
646   DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
647         << Succ->getName() << "\n");
648   // Shortcut, if there is only a single predecessor it must be BB and merging
649   // is always safe
650   if (Succ->getSinglePredecessor()) return true;
651
652   // Make a list of the predecessors of BB
653   SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
654
655   // Look at all the phi nodes in Succ, to see if they present a conflict when
656   // merging these blocks
657   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
658     PHINode *PN = cast<PHINode>(I);
659
660     // If the incoming value from BB is again a PHINode in
661     // BB which has the same incoming value for *PI as PN does, we can
662     // merge the phi nodes and then the blocks can still be merged
663     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
664     if (BBPN && BBPN->getParent() == BB) {
665       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
666         BasicBlock *IBB = PN->getIncomingBlock(PI);
667         if (BBPreds.count(IBB) &&
668             !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
669                             PN->getIncomingValue(PI))) {
670           DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
671                 << Succ->getName() << " is conflicting with "
672                 << BBPN->getName() << " with regard to common predecessor "
673                 << IBB->getName() << "\n");
674           return false;
675         }
676       }
677     } else {
678       Value* Val = PN->getIncomingValueForBlock(BB);
679       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
680         // See if the incoming value for the common predecessor is equal to the
681         // one for BB, in which case this phi node will not prevent the merging
682         // of the block.
683         BasicBlock *IBB = PN->getIncomingBlock(PI);
684         if (BBPreds.count(IBB) &&
685             !CanMergeValues(Val, PN->getIncomingValue(PI))) {
686           DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
687                 << Succ->getName() << " is conflicting with regard to common "
688                 << "predecessor " << IBB->getName() << "\n");
689           return false;
690         }
691       }
692     }
693   }
694
695   return true;
696 }
697
698 typedef SmallVector<BasicBlock *, 16> PredBlockVector;
699 typedef DenseMap<BasicBlock *, Value *> IncomingValueMap;
700
701 /// \brief Determines the value to use as the phi node input for a block.
702 ///
703 /// Select between \p OldVal any value that we know flows from \p BB
704 /// to a particular phi on the basis of which one (if either) is not
705 /// undef. Update IncomingValues based on the selected value.
706 ///
707 /// \param OldVal The value we are considering selecting.
708 /// \param BB The block that the value flows in from.
709 /// \param IncomingValues A map from block-to-value for other phi inputs
710 /// that we have examined.
711 ///
712 /// \returns the selected value.
713 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
714                                           IncomingValueMap &IncomingValues) {
715   if (!isa<UndefValue>(OldVal)) {
716     assert((!IncomingValues.count(BB) ||
717             IncomingValues.find(BB)->second == OldVal) &&
718            "Expected OldVal to match incoming value from BB!");
719
720     IncomingValues.insert(std::make_pair(BB, OldVal));
721     return OldVal;
722   }
723
724   IncomingValueMap::const_iterator It = IncomingValues.find(BB);
725   if (It != IncomingValues.end()) return It->second;
726
727   return OldVal;
728 }
729
730 /// \brief Create a map from block to value for the operands of a
731 /// given phi.
732 ///
733 /// Create a map from block to value for each non-undef value flowing
734 /// into \p PN.
735 ///
736 /// \param PN The phi we are collecting the map for.
737 /// \param IncomingValues [out] The map from block to value for this phi.
738 static void gatherIncomingValuesToPhi(PHINode *PN,
739                                       IncomingValueMap &IncomingValues) {
740   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
741     BasicBlock *BB = PN->getIncomingBlock(i);
742     Value *V = PN->getIncomingValue(i);
743
744     if (!isa<UndefValue>(V))
745       IncomingValues.insert(std::make_pair(BB, V));
746   }
747 }
748
749 /// \brief Replace the incoming undef values to a phi with the values
750 /// from a block-to-value map.
751 ///
752 /// \param PN The phi we are replacing the undefs in.
753 /// \param IncomingValues A map from block to value.
754 static void replaceUndefValuesInPhi(PHINode *PN,
755                                     const IncomingValueMap &IncomingValues) {
756   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
757     Value *V = PN->getIncomingValue(i);
758
759     if (!isa<UndefValue>(V)) continue;
760
761     BasicBlock *BB = PN->getIncomingBlock(i);
762     IncomingValueMap::const_iterator It = IncomingValues.find(BB);
763     if (It == IncomingValues.end()) continue;
764
765     PN->setIncomingValue(i, It->second);
766   }
767 }
768
769 /// \brief Replace a value flowing from a block to a phi with
770 /// potentially multiple instances of that value flowing from the
771 /// block's predecessors to the phi.
772 ///
773 /// \param BB The block with the value flowing into the phi.
774 /// \param BBPreds The predecessors of BB.
775 /// \param PN The phi that we are updating.
776 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
777                                                 const PredBlockVector &BBPreds,
778                                                 PHINode *PN) {
779   Value *OldVal = PN->removeIncomingValue(BB, false);
780   assert(OldVal && "No entry in PHI for Pred BB!");
781
782   IncomingValueMap IncomingValues;
783
784   // We are merging two blocks - BB, and the block containing PN - and
785   // as a result we need to redirect edges from the predecessors of BB
786   // to go to the block containing PN, and update PN
787   // accordingly. Since we allow merging blocks in the case where the
788   // predecessor and successor blocks both share some predecessors,
789   // and where some of those common predecessors might have undef
790   // values flowing into PN, we want to rewrite those values to be
791   // consistent with the non-undef values.
792
793   gatherIncomingValuesToPhi(PN, IncomingValues);
794
795   // If this incoming value is one of the PHI nodes in BB, the new entries
796   // in the PHI node are the entries from the old PHI.
797   if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
798     PHINode *OldValPN = cast<PHINode>(OldVal);
799     for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
800       // Note that, since we are merging phi nodes and BB and Succ might
801       // have common predecessors, we could end up with a phi node with
802       // identical incoming branches. This will be cleaned up later (and
803       // will trigger asserts if we try to clean it up now, without also
804       // simplifying the corresponding conditional branch).
805       BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
806       Value *PredVal = OldValPN->getIncomingValue(i);
807       Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
808                                                     IncomingValues);
809
810       // And add a new incoming value for this predecessor for the
811       // newly retargeted branch.
812       PN->addIncoming(Selected, PredBB);
813     }
814   } else {
815     for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
816       // Update existing incoming values in PN for this
817       // predecessor of BB.
818       BasicBlock *PredBB = BBPreds[i];
819       Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
820                                                     IncomingValues);
821
822       // And add a new incoming value for this predecessor for the
823       // newly retargeted branch.
824       PN->addIncoming(Selected, PredBB);
825     }
826   }
827
828   replaceUndefValuesInPhi(PN, IncomingValues);
829 }
830
831 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
832 /// unconditional branch, and contains no instructions other than PHI nodes,
833 /// potential side-effect free intrinsics and the branch.  If possible,
834 /// eliminate BB by rewriting all the predecessors to branch to the successor
835 /// block and return true.  If we can't transform, return false.
836 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
837   assert(BB != &BB->getParent()->getEntryBlock() &&
838          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
839
840   // We can't eliminate infinite loops.
841   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
842   if (BB == Succ) return false;
843
844   // Check to see if merging these blocks would cause conflicts for any of the
845   // phi nodes in BB or Succ. If not, we can safely merge.
846   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
847
848   // Check for cases where Succ has multiple predecessors and a PHI node in BB
849   // has uses which will not disappear when the PHI nodes are merged.  It is
850   // possible to handle such cases, but difficult: it requires checking whether
851   // BB dominates Succ, which is non-trivial to calculate in the case where
852   // Succ has multiple predecessors.  Also, it requires checking whether
853   // constructing the necessary self-referential PHI node doesn't introduce any
854   // conflicts; this isn't too difficult, but the previous code for doing this
855   // was incorrect.
856   //
857   // Note that if this check finds a live use, BB dominates Succ, so BB is
858   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
859   // folding the branch isn't profitable in that case anyway.
860   if (!Succ->getSinglePredecessor()) {
861     BasicBlock::iterator BBI = BB->begin();
862     while (isa<PHINode>(*BBI)) {
863       for (Use &U : BBI->uses()) {
864         if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
865           if (PN->getIncomingBlock(U) != BB)
866             return false;
867         } else {
868           return false;
869         }
870       }
871       ++BBI;
872     }
873   }
874
875   DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
876
877   if (isa<PHINode>(Succ->begin())) {
878     // If there is more than one pred of succ, and there are PHI nodes in
879     // the successor, then we need to add incoming edges for the PHI nodes
880     //
881     const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
882
883     // Loop over all of the PHI nodes in the successor of BB.
884     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
885       PHINode *PN = cast<PHINode>(I);
886
887       redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
888     }
889   }
890
891   if (Succ->getSinglePredecessor()) {
892     // BB is the only predecessor of Succ, so Succ will end up with exactly
893     // the same predecessors BB had.
894
895     // Copy over any phi, debug or lifetime instruction.
896     BB->getTerminator()->eraseFromParent();
897     Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
898                                BB->getInstList());
899   } else {
900     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
901       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
902       assert(PN->use_empty() && "There shouldn't be any uses here!");
903       PN->eraseFromParent();
904     }
905   }
906
907   // If the unconditional branch we replaced contains llvm.loop metadata, we
908   // add the metadata to the branch instructions in the predecessors.
909   unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
910   Instruction *TI = BB->getTerminator();
911   if (TI)
912     if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
913       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
914         BasicBlock *Pred = *PI;
915         Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
916       }
917
918   // Everything that jumped to BB now goes to Succ.
919   BB->replaceAllUsesWith(Succ);
920   if (!Succ->hasName()) Succ->takeName(BB);
921   BB->eraseFromParent();              // Delete the old basic block.
922   return true;
923 }
924
925 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
926 /// nodes in this block. This doesn't try to be clever about PHI nodes
927 /// which differ only in the order of the incoming values, but instcombine
928 /// orders them so it usually won't matter.
929 ///
930 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
931   // This implementation doesn't currently consider undef operands
932   // specially. Theoretically, two phis which are identical except for
933   // one having an undef where the other doesn't could be collapsed.
934
935   struct PHIDenseMapInfo {
936     static PHINode *getEmptyKey() {
937       return DenseMapInfo<PHINode *>::getEmptyKey();
938     }
939     static PHINode *getTombstoneKey() {
940       return DenseMapInfo<PHINode *>::getTombstoneKey();
941     }
942     static unsigned getHashValue(PHINode *PN) {
943       // Compute a hash value on the operands. Instcombine will likely have
944       // sorted them, which helps expose duplicates, but we have to check all
945       // the operands to be safe in case instcombine hasn't run.
946       return static_cast<unsigned>(hash_combine(
947           hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
948           hash_combine_range(PN->block_begin(), PN->block_end())));
949     }
950     static bool isEqual(PHINode *LHS, PHINode *RHS) {
951       if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
952           RHS == getEmptyKey() || RHS == getTombstoneKey())
953         return LHS == RHS;
954       return LHS->isIdenticalTo(RHS);
955     }
956   };
957
958   // Set of unique PHINodes.
959   DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
960
961   // Examine each PHI.
962   bool Changed = false;
963   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
964     auto Inserted = PHISet.insert(PN);
965     if (!Inserted.second) {
966       // A duplicate. Replace this PHI with its duplicate.
967       PN->replaceAllUsesWith(*Inserted.first);
968       PN->eraseFromParent();
969       Changed = true;
970
971       // The RAUW can change PHIs that we already visited. Start over from the
972       // beginning.
973       PHISet.clear();
974       I = BB->begin();
975     }
976   }
977
978   return Changed;
979 }
980
981 /// enforceKnownAlignment - If the specified pointer points to an object that
982 /// we control, modify the object's alignment to PrefAlign. This isn't
983 /// often possible though. If alignment is important, a more reliable approach
984 /// is to simply align all global variables and allocation instructions to
985 /// their preferred alignment from the beginning.
986 ///
987 static unsigned enforceKnownAlignment(Value *V, unsigned Align,
988                                       unsigned PrefAlign,
989                                       const DataLayout &DL) {
990   assert(PrefAlign > Align);
991
992   V = V->stripPointerCasts();
993
994   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
995     // TODO: ideally, computeKnownBits ought to have used
996     // AllocaInst::getAlignment() in its computation already, making
997     // the below max redundant. But, as it turns out,
998     // stripPointerCasts recurses through infinite layers of bitcasts,
999     // while computeKnownBits is not allowed to traverse more than 6
1000     // levels.
1001     Align = std::max(AI->getAlignment(), Align);
1002     if (PrefAlign <= Align)
1003       return Align;
1004
1005     // If the preferred alignment is greater than the natural stack alignment
1006     // then don't round up. This avoids dynamic stack realignment.
1007     if (DL.exceedsNaturalStackAlignment(PrefAlign))
1008       return Align;
1009     AI->setAlignment(PrefAlign);
1010     return PrefAlign;
1011   }
1012
1013   if (auto *GO = dyn_cast<GlobalObject>(V)) {
1014     // TODO: as above, this shouldn't be necessary.
1015     Align = std::max(GO->getAlignment(), Align);
1016     if (PrefAlign <= Align)
1017       return Align;
1018
1019     // If there is a large requested alignment and we can, bump up the alignment
1020     // of the global.  If the memory we set aside for the global may not be the
1021     // memory used by the final program then it is impossible for us to reliably
1022     // enforce the preferred alignment.
1023     if (!GO->canIncreaseAlignment())
1024       return Align;
1025
1026     GO->setAlignment(PrefAlign);
1027     return PrefAlign;
1028   }
1029
1030   return Align;
1031 }
1032
1033 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
1034                                           const DataLayout &DL,
1035                                           const Instruction *CxtI,
1036                                           AssumptionCache *AC,
1037                                           const DominatorTree *DT) {
1038   assert(V->getType()->isPointerTy() &&
1039          "getOrEnforceKnownAlignment expects a pointer!");
1040   unsigned BitWidth = DL.getPointerTypeSizeInBits(V->getType());
1041
1042   KnownBits Known(BitWidth);
1043   computeKnownBits(V, Known, DL, 0, AC, CxtI, DT);
1044   unsigned TrailZ = Known.Zero.countTrailingOnes();
1045
1046   // Avoid trouble with ridiculously large TrailZ values, such as
1047   // those computed from a null pointer.
1048   TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
1049
1050   unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
1051
1052   // LLVM doesn't support alignments larger than this currently.
1053   Align = std::min(Align, +Value::MaximumAlignment);
1054
1055   if (PrefAlign > Align)
1056     Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
1057
1058   // We don't need to make any adjustment.
1059   return Align;
1060 }
1061
1062 ///===---------------------------------------------------------------------===//
1063 ///  Dbg Intrinsic utilities
1064 ///
1065
1066 /// See if there is a dbg.value intrinsic for DIVar before I.
1067 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr,
1068                               Instruction *I) {
1069   // Since we can't guarantee that the original dbg.declare instrinsic
1070   // is removed by LowerDbgDeclare(), we need to make sure that we are
1071   // not inserting the same dbg.value intrinsic over and over.
1072   llvm::BasicBlock::InstListType::iterator PrevI(I);
1073   if (PrevI != I->getParent()->getInstList().begin()) {
1074     --PrevI;
1075     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
1076       if (DVI->getValue() == I->getOperand(0) &&
1077           DVI->getOffset() == 0 &&
1078           DVI->getVariable() == DIVar &&
1079           DVI->getExpression() == DIExpr)
1080         return true;
1081   }
1082   return false;
1083 }
1084
1085 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1086 static bool PhiHasDebugValue(DILocalVariable *DIVar, 
1087                              DIExpression *DIExpr,
1088                              PHINode *APN) {
1089   // Since we can't guarantee that the original dbg.declare instrinsic
1090   // is removed by LowerDbgDeclare(), we need to make sure that we are
1091   // not inserting the same dbg.value intrinsic over and over.
1092   SmallVector<DbgValueInst *, 1> DbgValues;
1093   findDbgValues(DbgValues, APN);
1094   for (auto *DVI : DbgValues) {
1095     assert(DVI->getValue() == APN);
1096     assert(DVI->getOffset() == 0);
1097     if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1098       return true;
1099   }
1100   return false;
1101 }
1102
1103 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1104 /// that has an associated llvm.dbg.decl intrinsic.
1105 void llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
1106                                            StoreInst *SI, DIBuilder &Builder) {
1107   auto *DIVar = DDI->getVariable();
1108   auto *DIExpr = DDI->getExpression();
1109   assert(DIVar && "Missing variable");
1110
1111   // If an argument is zero extended then use argument directly. The ZExt
1112   // may be zapped by an optimization pass in future.
1113   Argument *ExtendedArg = nullptr;
1114   if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
1115     ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
1116   if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
1117     ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
1118   if (ExtendedArg) {
1119     // We're now only describing a subset of the variable. The fragment we're
1120     // describing will always be smaller than the variable size, because
1121     // VariableSize == Size of Alloca described by DDI. Since SI stores
1122     // to the alloca described by DDI, if it's first operand is an extend,
1123     // we're guaranteed that before extension, the value was narrower than
1124     // the size of the alloca, hence the size of the described variable.
1125     SmallVector<uint64_t, 3> Ops;
1126     unsigned FragmentOffset = 0;
1127     // If this already is a bit fragment, we drop the bit fragment from the
1128     // expression and record the offset.
1129     auto Fragment = DIExpr->getFragmentInfo();
1130     if (Fragment) {
1131       Ops.append(DIExpr->elements_begin(), DIExpr->elements_end()-3);
1132       FragmentOffset = Fragment->OffsetInBits;
1133     } else {
1134       Ops.append(DIExpr->elements_begin(), DIExpr->elements_end());
1135     }
1136     Ops.push_back(dwarf::DW_OP_LLVM_fragment);
1137     Ops.push_back(FragmentOffset);
1138     const DataLayout &DL = DDI->getModule()->getDataLayout();
1139     Ops.push_back(DL.getTypeSizeInBits(ExtendedArg->getType()));
1140     auto NewDIExpr = Builder.createExpression(Ops);
1141     if (!LdStHasDebugValue(DIVar, NewDIExpr, SI))
1142       Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, NewDIExpr,
1143                                       DDI->getDebugLoc(), SI);
1144   } else if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1145     Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, DIExpr,
1146                                     DDI->getDebugLoc(), SI);
1147 }
1148
1149 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1150 /// that has an associated llvm.dbg.decl intrinsic.
1151 void llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
1152                                            LoadInst *LI, DIBuilder &Builder) {
1153   auto *DIVar = DDI->getVariable();
1154   auto *DIExpr = DDI->getExpression();
1155   assert(DIVar && "Missing variable");
1156
1157   if (LdStHasDebugValue(DIVar, DIExpr, LI))
1158     return;
1159
1160   // We are now tracking the loaded value instead of the address. In the
1161   // future if multi-location support is added to the IR, it might be
1162   // preferable to keep tracking both the loaded value and the original
1163   // address in case the alloca can not be elided.
1164   Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1165       LI, 0, DIVar, DIExpr, DDI->getDebugLoc(), (Instruction *)nullptr);
1166   DbgValue->insertAfter(LI);
1167 }
1168
1169 /// Inserts a llvm.dbg.value intrinsic after a phi 
1170 /// that has an associated llvm.dbg.decl intrinsic.
1171 void llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
1172                                            PHINode *APN, DIBuilder &Builder) {
1173   auto *DIVar = DDI->getVariable();
1174   auto *DIExpr = DDI->getExpression();
1175   assert(DIVar && "Missing variable");
1176
1177   if (PhiHasDebugValue(DIVar, DIExpr, APN))
1178     return;
1179
1180   BasicBlock *BB = APN->getParent();
1181   auto InsertionPt = BB->getFirstInsertionPt();
1182
1183   // The block may be a catchswitch block, which does not have a valid
1184   // insertion point.
1185   // FIXME: Insert dbg.value markers in the successors when appropriate.
1186   if (InsertionPt != BB->end())
1187     Builder.insertDbgValueIntrinsic(APN, 0, DIVar, DIExpr, DDI->getDebugLoc(),
1188                                     &*InsertionPt);
1189 }
1190
1191 /// Determine whether this alloca is either a VLA or an array.
1192 static bool isArray(AllocaInst *AI) {
1193   return AI->isArrayAllocation() ||
1194     AI->getType()->getElementType()->isArrayTy();
1195 }
1196
1197 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1198 /// of llvm.dbg.value intrinsics.
1199 bool llvm::LowerDbgDeclare(Function &F) {
1200   DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1201   SmallVector<DbgDeclareInst *, 4> Dbgs;
1202   for (auto &FI : F)
1203     for (Instruction &BI : FI)
1204       if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1205         Dbgs.push_back(DDI);
1206
1207   if (Dbgs.empty())
1208     return false;
1209
1210   for (auto &I : Dbgs) {
1211     DbgDeclareInst *DDI = I;
1212     AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1213     // If this is an alloca for a scalar variable, insert a dbg.value
1214     // at each load and store to the alloca and erase the dbg.declare.
1215     // The dbg.values allow tracking a variable even if it is not
1216     // stored on the stack, while the dbg.declare can only describe
1217     // the stack slot (and at a lexical-scope granularity). Later
1218     // passes will attempt to elide the stack slot.
1219     if (AI && !isArray(AI)) {
1220       for (auto &AIUse : AI->uses()) {
1221         User *U = AIUse.getUser();
1222         if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1223           if (AIUse.getOperandNo() == 1)
1224             ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1225         } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1226           ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1227         } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1228           // This is a call by-value or some other instruction that
1229           // takes a pointer to the variable. Insert a *value*
1230           // intrinsic that describes the alloca.
1231           DIB.insertDbgValueIntrinsic(AI, 0, DDI->getVariable(),
1232                                       DDI->getExpression(), DDI->getDebugLoc(),
1233                                       CI);
1234         }
1235       }
1236       DDI->eraseFromParent();
1237     }
1238   }
1239   return true;
1240 }
1241
1242 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the
1243 /// alloca 'V', if any.
1244 DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) {
1245   if (auto *L = LocalAsMetadata::getIfExists(V))
1246     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1247       for (User *U : MDV->users())
1248         if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
1249           return DDI;
1250
1251   return nullptr;
1252 }
1253
1254 void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) {
1255   if (auto *L = LocalAsMetadata::getIfExists(V))
1256     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1257       for (User *U : MDV->users())
1258         if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
1259           DbgValues.push_back(DVI);
1260 }
1261
1262
1263 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1264                              Instruction *InsertBefore, DIBuilder &Builder,
1265                              bool Deref, int Offset) {
1266   DbgDeclareInst *DDI = FindAllocaDbgDeclare(Address);
1267   if (!DDI)
1268     return false;
1269   DebugLoc Loc = DDI->getDebugLoc();
1270   auto *DIVar = DDI->getVariable();
1271   auto *DIExpr = DDI->getExpression();
1272   assert(DIVar && "Missing variable");
1273   DIExpr = DIExpression::prepend(DIExpr, Deref, Offset);
1274   // Insert llvm.dbg.declare immediately after the original alloca, and remove
1275   // old llvm.dbg.declare.
1276   Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
1277   DDI->eraseFromParent();
1278   return true;
1279 }
1280
1281 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1282                                       DIBuilder &Builder, bool Deref, int Offset) {
1283   return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder,
1284                            Deref, Offset);
1285 }
1286
1287 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
1288                                         DIBuilder &Builder, int Offset) {
1289   DebugLoc Loc = DVI->getDebugLoc();
1290   auto *DIVar = DVI->getVariable();
1291   auto *DIExpr = DVI->getExpression();
1292   assert(DIVar && "Missing variable");
1293
1294   // This is an alloca-based llvm.dbg.value. The first thing it should do with
1295   // the alloca pointer is dereference it. Otherwise we don't know how to handle
1296   // it and give up.
1297   if (!DIExpr || DIExpr->getNumElements() < 1 ||
1298       DIExpr->getElement(0) != dwarf::DW_OP_deref)
1299     return;
1300
1301   // Insert the offset immediately after the first deref.
1302   // We could just change the offset argument of dbg.value, but it's unsigned...
1303   if (Offset) {
1304     SmallVector<uint64_t, 4> Ops;
1305     Ops.push_back(dwarf::DW_OP_deref);
1306     DIExpression::appendOffset(Ops, Offset);
1307     Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end());
1308     DIExpr = Builder.createExpression(Ops);
1309   }
1310
1311   Builder.insertDbgValueIntrinsic(NewAddress, DVI->getOffset(), DIVar, DIExpr,
1312                                   Loc, DVI);
1313   DVI->eraseFromParent();
1314 }
1315
1316 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1317                                     DIBuilder &Builder, int Offset) {
1318   if (auto *L = LocalAsMetadata::getIfExists(AI))
1319     if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
1320       for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) {
1321         Use &U = *UI++;
1322         if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
1323           replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
1324       }
1325 }
1326
1327 void llvm::salvageDebugInfo(Instruction &I) {
1328   SmallVector<DbgValueInst *, 1> DbgValues;
1329   auto &M = *I.getModule();
1330
1331   auto MDWrap = [&](Value *V) {
1332     return MetadataAsValue::get(I.getContext(), ValueAsMetadata::get(V));
1333   };
1334
1335   if (isa<BitCastInst>(&I)) {
1336     findDbgValues(DbgValues, &I);
1337     for (auto *DVI : DbgValues) {
1338       // Bitcasts are entirely irrelevant for debug info. Rewrite the dbg.value
1339       // to use the cast's source.
1340       DVI->setOperand(0, MDWrap(I.getOperand(0)));
1341       DEBUG(dbgs() << "SALVAGE: " << *DVI << '\n');
1342     }
1343   } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
1344     findDbgValues(DbgValues, &I);
1345     for (auto *DVI : DbgValues) {
1346       unsigned BitWidth =
1347           M.getDataLayout().getPointerSizeInBits(GEP->getPointerAddressSpace());
1348       APInt Offset(BitWidth, 0);
1349       // Rewrite a constant GEP into a DIExpression.  Since we are performing
1350       // arithmetic to compute the variable's *value* in the DIExpression, we
1351       // need to mark the expression with a DW_OP_stack_value.
1352       if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) {
1353         auto *DIExpr = DVI->getExpression();
1354         DIBuilder DIB(M, /*AllowUnresolved*/ false);
1355         // GEP offsets are i32 and thus always fit into an int64_t.
1356         DIExpr = DIExpression::prepend(DIExpr, DIExpression::NoDeref,
1357                                        Offset.getSExtValue(),
1358                                        DIExpression::WithStackValue);
1359         DVI->setOperand(0, MDWrap(I.getOperand(0)));
1360         DVI->setOperand(3, MetadataAsValue::get(I.getContext(), DIExpr));
1361         DEBUG(dbgs() << "SALVAGE: " << *DVI << '\n');
1362       }
1363     }
1364   } else if (isa<LoadInst>(&I)) {
1365     findDbgValues(DbgValues, &I);
1366     for (auto *DVI : DbgValues) {
1367       // Rewrite the load into DW_OP_deref.
1368       auto *DIExpr = DVI->getExpression();
1369       DIBuilder DIB(M, /*AllowUnresolved*/ false);
1370       DIExpr = DIExpression::prepend(DIExpr, DIExpression::WithDeref);
1371       DVI->setOperand(0, MDWrap(I.getOperand(0)));
1372       DVI->setOperand(3, MetadataAsValue::get(I.getContext(), DIExpr));
1373       DEBUG(dbgs() << "SALVAGE:  " << *DVI << '\n');
1374     }
1375   }
1376 }
1377
1378 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
1379   unsigned NumDeadInst = 0;
1380   // Delete the instructions backwards, as it has a reduced likelihood of
1381   // having to update as many def-use and use-def chains.
1382   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1383   while (EndInst != &BB->front()) {
1384     // Delete the next to last instruction.
1385     Instruction *Inst = &*--EndInst->getIterator();
1386     if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
1387       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1388     if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
1389       EndInst = Inst;
1390       continue;
1391     }
1392     if (!isa<DbgInfoIntrinsic>(Inst))
1393       ++NumDeadInst;
1394     Inst->eraseFromParent();
1395   }
1396   return NumDeadInst;
1397 }
1398
1399 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap,
1400                                    bool PreserveLCSSA) {
1401   BasicBlock *BB = I->getParent();
1402   // Loop over all of the successors, removing BB's entry from any PHI
1403   // nodes.
1404   for (BasicBlock *Successor : successors(BB))
1405     Successor->removePredecessor(BB, PreserveLCSSA);
1406
1407   // Insert a call to llvm.trap right before this.  This turns the undefined
1408   // behavior into a hard fail instead of falling through into random code.
1409   if (UseLLVMTrap) {
1410     Function *TrapFn =
1411       Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
1412     CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
1413     CallTrap->setDebugLoc(I->getDebugLoc());
1414   }
1415   new UnreachableInst(I->getContext(), I);
1416
1417   // All instructions after this are dead.
1418   unsigned NumInstrsRemoved = 0;
1419   BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
1420   while (BBI != BBE) {
1421     if (!BBI->use_empty())
1422       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
1423     BB->getInstList().erase(BBI++);
1424     ++NumInstrsRemoved;
1425   }
1426   return NumInstrsRemoved;
1427 }
1428
1429 /// changeToCall - Convert the specified invoke into a normal call.
1430 static void changeToCall(InvokeInst *II) {
1431   SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end());
1432   SmallVector<OperandBundleDef, 1> OpBundles;
1433   II->getOperandBundlesAsDefs(OpBundles);
1434   CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles,
1435                                        "", II);
1436   NewCall->takeName(II);
1437   NewCall->setCallingConv(II->getCallingConv());
1438   NewCall->setAttributes(II->getAttributes());
1439   NewCall->setDebugLoc(II->getDebugLoc());
1440   II->replaceAllUsesWith(NewCall);
1441
1442   // Follow the call by a branch to the normal destination.
1443   BranchInst::Create(II->getNormalDest(), II);
1444
1445   // Update PHI nodes in the unwind destination
1446   II->getUnwindDest()->removePredecessor(II->getParent());
1447   II->eraseFromParent();
1448 }
1449
1450 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
1451                                                    BasicBlock *UnwindEdge) {
1452   BasicBlock *BB = CI->getParent();
1453
1454   // Convert this function call into an invoke instruction.  First, split the
1455   // basic block.
1456   BasicBlock *Split =
1457       BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");
1458
1459   // Delete the unconditional branch inserted by splitBasicBlock
1460   BB->getInstList().pop_back();
1461
1462   // Create the new invoke instruction.
1463   SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end());
1464   SmallVector<OperandBundleDef, 1> OpBundles;
1465
1466   CI->getOperandBundlesAsDefs(OpBundles);
1467
1468   // Note: we're round tripping operand bundles through memory here, and that
1469   // can potentially be avoided with a cleverer API design that we do not have
1470   // as of this time.
1471
1472   InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge,
1473                                       InvokeArgs, OpBundles, CI->getName(), BB);
1474   II->setDebugLoc(CI->getDebugLoc());
1475   II->setCallingConv(CI->getCallingConv());
1476   II->setAttributes(CI->getAttributes());
1477
1478   // Make sure that anything using the call now uses the invoke!  This also
1479   // updates the CallGraph if present, because it uses a WeakTrackingVH.
1480   CI->replaceAllUsesWith(II);
1481
1482   // Delete the original call
1483   Split->getInstList().pop_front();
1484   return Split;
1485 }
1486
1487 static bool markAliveBlocks(Function &F,
1488                             SmallPtrSetImpl<BasicBlock*> &Reachable) {
1489
1490   SmallVector<BasicBlock*, 128> Worklist;
1491   BasicBlock *BB = &F.front();
1492   Worklist.push_back(BB);
1493   Reachable.insert(BB);
1494   bool Changed = false;
1495   do {
1496     BB = Worklist.pop_back_val();
1497
1498     // Do a quick scan of the basic block, turning any obviously unreachable
1499     // instructions into LLVM unreachable insts.  The instruction combining pass
1500     // canonicalizes unreachable insts into stores to null or undef.
1501     for (Instruction &I : *BB) {
1502       // Assumptions that are known to be false are equivalent to unreachable.
1503       // Also, if the condition is undefined, then we make the choice most
1504       // beneficial to the optimizer, and choose that to also be unreachable.
1505       if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
1506         if (II->getIntrinsicID() == Intrinsic::assume) {
1507           if (match(II->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
1508             // Don't insert a call to llvm.trap right before the unreachable.
1509             changeToUnreachable(II, false);
1510             Changed = true;
1511             break;
1512           }
1513         }
1514
1515         if (II->getIntrinsicID() == Intrinsic::experimental_guard) {
1516           // A call to the guard intrinsic bails out of the current compilation
1517           // unit if the predicate passed to it is false.  If the predicate is a
1518           // constant false, then we know the guard will bail out of the current
1519           // compile unconditionally, so all code following it is dead.
1520           //
1521           // Note: unlike in llvm.assume, it is not "obviously profitable" for
1522           // guards to treat `undef` as `false` since a guard on `undef` can
1523           // still be useful for widening.
1524           if (match(II->getArgOperand(0), m_Zero()))
1525             if (!isa<UnreachableInst>(II->getNextNode())) {
1526               changeToUnreachable(II->getNextNode(), /*UseLLVMTrap=*/ false);
1527               Changed = true;
1528               break;
1529             }
1530         }
1531       }
1532
1533       if (auto *CI = dyn_cast<CallInst>(&I)) {
1534         Value *Callee = CI->getCalledValue();
1535         if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
1536           changeToUnreachable(CI, /*UseLLVMTrap=*/false);
1537           Changed = true;
1538           break;
1539         }
1540         if (CI->doesNotReturn()) {
1541           // If we found a call to a no-return function, insert an unreachable
1542           // instruction after it.  Make sure there isn't *already* one there
1543           // though.
1544           if (!isa<UnreachableInst>(CI->getNextNode())) {
1545             // Don't insert a call to llvm.trap right before the unreachable.
1546             changeToUnreachable(CI->getNextNode(), false);
1547             Changed = true;
1548           }
1549           break;
1550         }
1551       }
1552
1553       // Store to undef and store to null are undefined and used to signal that
1554       // they should be changed to unreachable by passes that can't modify the
1555       // CFG.
1556       if (auto *SI = dyn_cast<StoreInst>(&I)) {
1557         // Don't touch volatile stores.
1558         if (SI->isVolatile()) continue;
1559
1560         Value *Ptr = SI->getOperand(1);
1561
1562         if (isa<UndefValue>(Ptr) ||
1563             (isa<ConstantPointerNull>(Ptr) &&
1564              SI->getPointerAddressSpace() == 0)) {
1565           changeToUnreachable(SI, true);
1566           Changed = true;
1567           break;
1568         }
1569       }
1570     }
1571
1572     TerminatorInst *Terminator = BB->getTerminator();
1573     if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
1574       // Turn invokes that call 'nounwind' functions into ordinary calls.
1575       Value *Callee = II->getCalledValue();
1576       if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
1577         changeToUnreachable(II, true);
1578         Changed = true;
1579       } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
1580         if (II->use_empty() && II->onlyReadsMemory()) {
1581           // jump to the normal destination branch.
1582           BranchInst::Create(II->getNormalDest(), II);
1583           II->getUnwindDest()->removePredecessor(II->getParent());
1584           II->eraseFromParent();
1585         } else
1586           changeToCall(II);
1587         Changed = true;
1588       }
1589     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
1590       // Remove catchpads which cannot be reached.
1591       struct CatchPadDenseMapInfo {
1592         static CatchPadInst *getEmptyKey() {
1593           return DenseMapInfo<CatchPadInst *>::getEmptyKey();
1594         }
1595         static CatchPadInst *getTombstoneKey() {
1596           return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
1597         }
1598         static unsigned getHashValue(CatchPadInst *CatchPad) {
1599           return static_cast<unsigned>(hash_combine_range(
1600               CatchPad->value_op_begin(), CatchPad->value_op_end()));
1601         }
1602         static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
1603           if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
1604               RHS == getEmptyKey() || RHS == getTombstoneKey())
1605             return LHS == RHS;
1606           return LHS->isIdenticalTo(RHS);
1607         }
1608       };
1609
1610       // Set of unique CatchPads.
1611       SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
1612                     CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
1613           HandlerSet;
1614       detail::DenseSetEmpty Empty;
1615       for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
1616                                              E = CatchSwitch->handler_end();
1617            I != E; ++I) {
1618         BasicBlock *HandlerBB = *I;
1619         auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
1620         if (!HandlerSet.insert({CatchPad, Empty}).second) {
1621           CatchSwitch->removeHandler(I);
1622           --I;
1623           --E;
1624           Changed = true;
1625         }
1626       }
1627     }
1628
1629     Changed |= ConstantFoldTerminator(BB, true);
1630     for (BasicBlock *Successor : successors(BB))
1631       if (Reachable.insert(Successor).second)
1632         Worklist.push_back(Successor);
1633   } while (!Worklist.empty());
1634   return Changed;
1635 }
1636
1637 void llvm::removeUnwindEdge(BasicBlock *BB) {
1638   TerminatorInst *TI = BB->getTerminator();
1639
1640   if (auto *II = dyn_cast<InvokeInst>(TI)) {
1641     changeToCall(II);
1642     return;
1643   }
1644
1645   TerminatorInst *NewTI;
1646   BasicBlock *UnwindDest;
1647
1648   if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
1649     NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
1650     UnwindDest = CRI->getUnwindDest();
1651   } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
1652     auto *NewCatchSwitch = CatchSwitchInst::Create(
1653         CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
1654         CatchSwitch->getName(), CatchSwitch);
1655     for (BasicBlock *PadBB : CatchSwitch->handlers())
1656       NewCatchSwitch->addHandler(PadBB);
1657
1658     NewTI = NewCatchSwitch;
1659     UnwindDest = CatchSwitch->getUnwindDest();
1660   } else {
1661     llvm_unreachable("Could not find unwind successor");
1662   }
1663
1664   NewTI->takeName(TI);
1665   NewTI->setDebugLoc(TI->getDebugLoc());
1666   UnwindDest->removePredecessor(BB);
1667   TI->replaceAllUsesWith(NewTI);
1668   TI->eraseFromParent();
1669 }
1670
1671 /// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even
1672 /// if they are in a dead cycle.  Return true if a change was made, false
1673 /// otherwise.
1674 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI) {
1675   SmallPtrSet<BasicBlock*, 16> Reachable;
1676   bool Changed = markAliveBlocks(F, Reachable);
1677
1678   // If there are unreachable blocks in the CFG...
1679   if (Reachable.size() == F.size())
1680     return Changed;
1681
1682   assert(Reachable.size() < F.size());
1683   NumRemoved += F.size()-Reachable.size();
1684
1685   // Loop over all of the basic blocks that are not reachable, dropping all of
1686   // their internal references...
1687   for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) {
1688     if (Reachable.count(&*BB))
1689       continue;
1690
1691     for (BasicBlock *Successor : successors(&*BB))
1692       if (Reachable.count(Successor))
1693         Successor->removePredecessor(&*BB);
1694     if (LVI)
1695       LVI->eraseBlock(&*BB);
1696     BB->dropAllReferences();
1697   }
1698
1699   for (Function::iterator I = ++F.begin(); I != F.end();)
1700     if (!Reachable.count(&*I))
1701       I = F.getBasicBlockList().erase(I);
1702     else
1703       ++I;
1704
1705   return true;
1706 }
1707
1708 void llvm::combineMetadata(Instruction *K, const Instruction *J,
1709                            ArrayRef<unsigned> KnownIDs) {
1710   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
1711   K->dropUnknownNonDebugMetadata(KnownIDs);
1712   K->getAllMetadataOtherThanDebugLoc(Metadata);
1713   for (const auto &MD : Metadata) {
1714     unsigned Kind = MD.first;
1715     MDNode *JMD = J->getMetadata(Kind);
1716     MDNode *KMD = MD.second;
1717
1718     switch (Kind) {
1719       default:
1720         K->setMetadata(Kind, nullptr); // Remove unknown metadata
1721         break;
1722       case LLVMContext::MD_dbg:
1723         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
1724       case LLVMContext::MD_tbaa:
1725         K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
1726         break;
1727       case LLVMContext::MD_alias_scope:
1728         K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
1729         break;
1730       case LLVMContext::MD_noalias:
1731       case LLVMContext::MD_mem_parallel_loop_access:
1732         K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
1733         break;
1734       case LLVMContext::MD_range:
1735         K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
1736         break;
1737       case LLVMContext::MD_fpmath:
1738         K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
1739         break;
1740       case LLVMContext::MD_invariant_load:
1741         // Only set the !invariant.load if it is present in both instructions.
1742         K->setMetadata(Kind, JMD);
1743         break;
1744       case LLVMContext::MD_nonnull:
1745         // Only set the !nonnull if it is present in both instructions.
1746         K->setMetadata(Kind, JMD);
1747         break;
1748       case LLVMContext::MD_invariant_group:
1749         // Preserve !invariant.group in K.
1750         break;
1751       case LLVMContext::MD_align:
1752         K->setMetadata(Kind, 
1753           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
1754         break;
1755       case LLVMContext::MD_dereferenceable:
1756       case LLVMContext::MD_dereferenceable_or_null:
1757         K->setMetadata(Kind, 
1758           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
1759         break;
1760     }
1761   }
1762   // Set !invariant.group from J if J has it. If both instructions have it
1763   // then we will just pick it from J - even when they are different.
1764   // Also make sure that K is load or store - f.e. combining bitcast with load
1765   // could produce bitcast with invariant.group metadata, which is invalid.
1766   // FIXME: we should try to preserve both invariant.group md if they are
1767   // different, but right now instruction can only have one invariant.group.
1768   if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
1769     if (isa<LoadInst>(K) || isa<StoreInst>(K))
1770       K->setMetadata(LLVMContext::MD_invariant_group, JMD);
1771 }
1772
1773 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J) {
1774   unsigned KnownIDs[] = {
1775       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
1776       LLVMContext::MD_noalias,         LLVMContext::MD_range,
1777       LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
1778       LLVMContext::MD_invariant_group, LLVMContext::MD_align,
1779       LLVMContext::MD_dereferenceable,
1780       LLVMContext::MD_dereferenceable_or_null};
1781   combineMetadata(K, J, KnownIDs);
1782 }
1783
1784 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
1785                                         DominatorTree &DT,
1786                                         const BasicBlockEdge &Root) {
1787   assert(From->getType() == To->getType());
1788   
1789   unsigned Count = 0;
1790   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
1791        UI != UE; ) {
1792     Use &U = *UI++;
1793     if (DT.dominates(Root, U)) {
1794       U.set(To);
1795       DEBUG(dbgs() << "Replace dominated use of '"
1796             << From->getName() << "' as "
1797             << *To << " in " << *U << "\n");
1798       ++Count;
1799     }
1800   }
1801   return Count;
1802 }
1803
1804 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
1805                                         DominatorTree &DT,
1806                                         const BasicBlock *BB) {
1807   assert(From->getType() == To->getType());
1808
1809   unsigned Count = 0;
1810   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
1811        UI != UE;) {
1812     Use &U = *UI++;
1813     auto *I = cast<Instruction>(U.getUser());
1814     if (DT.properlyDominates(BB, I->getParent())) {
1815       U.set(To);
1816       DEBUG(dbgs() << "Replace dominated use of '" << From->getName() << "' as "
1817                    << *To << " in " << *U << "\n");
1818       ++Count;
1819     }
1820   }
1821   return Count;
1822 }
1823
1824 bool llvm::callsGCLeafFunction(ImmutableCallSite CS) {
1825   // Check if the function is specifically marked as a gc leaf function.
1826   if (CS.hasFnAttr("gc-leaf-function"))
1827     return true;
1828   if (const Function *F = CS.getCalledFunction()) {
1829     if (F->hasFnAttribute("gc-leaf-function"))
1830       return true;
1831
1832     if (auto IID = F->getIntrinsicID())
1833       // Most LLVM intrinsics do not take safepoints.
1834       return IID != Intrinsic::experimental_gc_statepoint &&
1835              IID != Intrinsic::experimental_deoptimize;
1836   }
1837
1838   return false;
1839 }
1840
1841 namespace {
1842 /// A potential constituent of a bitreverse or bswap expression. See
1843 /// collectBitParts for a fuller explanation.
1844 struct BitPart {
1845   BitPart(Value *P, unsigned BW) : Provider(P) {
1846     Provenance.resize(BW);
1847   }
1848
1849   /// The Value that this is a bitreverse/bswap of.
1850   Value *Provider;
1851   /// The "provenance" of each bit. Provenance[A] = B means that bit A
1852   /// in Provider becomes bit B in the result of this expression.
1853   SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
1854
1855   enum { Unset = -1 };
1856 };
1857 } // end anonymous namespace
1858
1859 /// Analyze the specified subexpression and see if it is capable of providing
1860 /// pieces of a bswap or bitreverse. The subexpression provides a potential
1861 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
1862 /// the output of the expression came from a corresponding bit in some other
1863 /// value. This function is recursive, and the end result is a mapping of
1864 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
1865 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
1866 ///
1867 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
1868 /// that the expression deposits the low byte of %X into the high byte of the
1869 /// result and that all other bits are zero. This expression is accepted and a
1870 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
1871 /// [0-7].
1872 ///
1873 /// To avoid revisiting values, the BitPart results are memoized into the
1874 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
1875 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
1876 /// store BitParts objects, not pointers. As we need the concept of a nullptr
1877 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
1878 /// type instead to provide the same functionality.
1879 ///
1880 /// Because we pass around references into \c BPS, we must use a container that
1881 /// does not invalidate internal references (std::map instead of DenseMap).
1882 ///
1883 static const Optional<BitPart> &
1884 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
1885                 std::map<Value *, Optional<BitPart>> &BPS) {
1886   auto I = BPS.find(V);
1887   if (I != BPS.end())
1888     return I->second;
1889
1890   auto &Result = BPS[V] = None;
1891   auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
1892
1893   if (Instruction *I = dyn_cast<Instruction>(V)) {
1894     // If this is an or instruction, it may be an inner node of the bswap.
1895     if (I->getOpcode() == Instruction::Or) {
1896       auto &A = collectBitParts(I->getOperand(0), MatchBSwaps,
1897                                 MatchBitReversals, BPS);
1898       auto &B = collectBitParts(I->getOperand(1), MatchBSwaps,
1899                                 MatchBitReversals, BPS);
1900       if (!A || !B)
1901         return Result;
1902
1903       // Try and merge the two together.
1904       if (!A->Provider || A->Provider != B->Provider)
1905         return Result;
1906
1907       Result = BitPart(A->Provider, BitWidth);
1908       for (unsigned i = 0; i < A->Provenance.size(); ++i) {
1909         if (A->Provenance[i] != BitPart::Unset &&
1910             B->Provenance[i] != BitPart::Unset &&
1911             A->Provenance[i] != B->Provenance[i])
1912           return Result = None;
1913
1914         if (A->Provenance[i] == BitPart::Unset)
1915           Result->Provenance[i] = B->Provenance[i];
1916         else
1917           Result->Provenance[i] = A->Provenance[i];
1918       }
1919
1920       return Result;
1921     }
1922
1923     // If this is a logical shift by a constant, recurse then shift the result.
1924     if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
1925       unsigned BitShift =
1926           cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
1927       // Ensure the shift amount is defined.
1928       if (BitShift > BitWidth)
1929         return Result;
1930
1931       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
1932                                   MatchBitReversals, BPS);
1933       if (!Res)
1934         return Result;
1935       Result = Res;
1936
1937       // Perform the "shift" on BitProvenance.
1938       auto &P = Result->Provenance;
1939       if (I->getOpcode() == Instruction::Shl) {
1940         P.erase(std::prev(P.end(), BitShift), P.end());
1941         P.insert(P.begin(), BitShift, BitPart::Unset);
1942       } else {
1943         P.erase(P.begin(), std::next(P.begin(), BitShift));
1944         P.insert(P.end(), BitShift, BitPart::Unset);
1945       }
1946
1947       return Result;
1948     }
1949
1950     // If this is a logical 'and' with a mask that clears bits, recurse then
1951     // unset the appropriate bits.
1952     if (I->getOpcode() == Instruction::And &&
1953         isa<ConstantInt>(I->getOperand(1))) {
1954       APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
1955       const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
1956
1957       // Check that the mask allows a multiple of 8 bits for a bswap, for an
1958       // early exit.
1959       unsigned NumMaskedBits = AndMask.countPopulation();
1960       if (!MatchBitReversals && NumMaskedBits % 8 != 0)
1961         return Result;
1962       
1963       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
1964                                   MatchBitReversals, BPS);
1965       if (!Res)
1966         return Result;
1967       Result = Res;
1968
1969       for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1)
1970         // If the AndMask is zero for this bit, clear the bit.
1971         if ((AndMask & Bit) == 0)
1972           Result->Provenance[i] = BitPart::Unset;
1973       return Result;
1974     }
1975
1976     // If this is a zext instruction zero extend the result.
1977     if (I->getOpcode() == Instruction::ZExt) {
1978       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
1979                                   MatchBitReversals, BPS);
1980       if (!Res)
1981         return Result;
1982
1983       Result = BitPart(Res->Provider, BitWidth);
1984       auto NarrowBitWidth =
1985           cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth();
1986       for (unsigned i = 0; i < NarrowBitWidth; ++i)
1987         Result->Provenance[i] = Res->Provenance[i];
1988       for (unsigned i = NarrowBitWidth; i < BitWidth; ++i)
1989         Result->Provenance[i] = BitPart::Unset;
1990       return Result;
1991     }
1992   }
1993
1994   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
1995   // the input value to the bswap/bitreverse.
1996   Result = BitPart(V, BitWidth);
1997   for (unsigned i = 0; i < BitWidth; ++i)
1998     Result->Provenance[i] = i;
1999   return Result;
2000 }
2001
2002 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
2003                                           unsigned BitWidth) {
2004   if (From % 8 != To % 8)
2005     return false;
2006   // Convert from bit indices to byte indices and check for a byte reversal.
2007   From >>= 3;
2008   To >>= 3;
2009   BitWidth >>= 3;
2010   return From == BitWidth - To - 1;
2011 }
2012
2013 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
2014                                                unsigned BitWidth) {
2015   return From == BitWidth - To - 1;
2016 }
2017
2018 /// Given an OR instruction, check to see if this is a bitreverse
2019 /// idiom. If so, insert the new intrinsic and return true.
2020 bool llvm::recognizeBSwapOrBitReverseIdiom(
2021     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
2022     SmallVectorImpl<Instruction *> &InsertedInsts) {
2023   if (Operator::getOpcode(I) != Instruction::Or)
2024     return false;
2025   if (!MatchBSwaps && !MatchBitReversals)
2026     return false;
2027   IntegerType *ITy = dyn_cast<IntegerType>(I->getType());
2028   if (!ITy || ITy->getBitWidth() > 128)
2029     return false;   // Can't do vectors or integers > 128 bits.
2030   unsigned BW = ITy->getBitWidth();
2031
2032   unsigned DemandedBW = BW;
2033   IntegerType *DemandedTy = ITy;
2034   if (I->hasOneUse()) {
2035     if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) {
2036       DemandedTy = cast<IntegerType>(Trunc->getType());
2037       DemandedBW = DemandedTy->getBitWidth();
2038     }
2039   }
2040
2041   // Try to find all the pieces corresponding to the bswap.
2042   std::map<Value *, Optional<BitPart>> BPS;
2043   auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS);
2044   if (!Res)
2045     return false;
2046   auto &BitProvenance = Res->Provenance;
2047
2048   // Now, is the bit permutation correct for a bswap or a bitreverse? We can
2049   // only byteswap values with an even number of bytes.
2050   bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true;
2051   for (unsigned i = 0; i < DemandedBW; ++i) {
2052     OKForBSwap &=
2053         bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW);
2054     OKForBitReverse &=
2055         bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW);
2056   }
2057
2058   Intrinsic::ID Intrin;
2059   if (OKForBSwap && MatchBSwaps)
2060     Intrin = Intrinsic::bswap;
2061   else if (OKForBitReverse && MatchBitReversals)
2062     Intrin = Intrinsic::bitreverse;
2063   else
2064     return false;
2065
2066   if (ITy != DemandedTy) {
2067     Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
2068     Value *Provider = Res->Provider;
2069     IntegerType *ProviderTy = cast<IntegerType>(Provider->getType());
2070     // We may need to truncate the provider.
2071     if (DemandedTy != ProviderTy) {
2072       auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy,
2073                                      "trunc", I);
2074       InsertedInsts.push_back(Trunc);
2075       Provider = Trunc;
2076     }
2077     auto *CI = CallInst::Create(F, Provider, "rev", I);
2078     InsertedInsts.push_back(CI);
2079     auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I);
2080     InsertedInsts.push_back(ExtInst);
2081     return true;
2082   }
2083
2084   Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy);
2085   InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I));
2086   return true;
2087 }
2088
2089 // CodeGen has special handling for some string functions that may replace
2090 // them with target-specific intrinsics.  Since that'd skip our interceptors
2091 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
2092 // we mark affected calls as NoBuiltin, which will disable optimization
2093 // in CodeGen.
2094 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
2095     CallInst *CI, const TargetLibraryInfo *TLI) {
2096   Function *F = CI->getCalledFunction();
2097   LibFunc Func;
2098   if (F && !F->hasLocalLinkage() && F->hasName() &&
2099       TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
2100       !F->doesNotAccessMemory())
2101     CI->addAttribute(AttributeList::FunctionIndex, Attribute::NoBuiltin);
2102 }