]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/Utils/Local.cpp
Merge ^/head r313055 through r313300.
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / Utils / Local.cpp
1 //===-- Local.cpp - Functions to perform local transformations ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This family of functions perform various local transformations to the
11 // program.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/Transforms/Utils/Local.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/Hashing.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/EHPersonalities.h"
24 #include "llvm/Analysis/InstructionSimplify.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/LazyValueInfo.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/CFG.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DIBuilder.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/DebugInfo.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/Dominators.h"
35 #include "llvm/IR/GetElementPtrTypeIterator.h"
36 #include "llvm/IR/GlobalAlias.h"
37 #include "llvm/IR/GlobalVariable.h"
38 #include "llvm/IR/IRBuilder.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/IntrinsicInst.h"
41 #include "llvm/IR/Intrinsics.h"
42 #include "llvm/IR/MDBuilder.h"
43 #include "llvm/IR/Metadata.h"
44 #include "llvm/IR/Operator.h"
45 #include "llvm/IR/PatternMatch.h"
46 #include "llvm/IR/ValueHandle.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/MathExtras.h"
49 #include "llvm/Support/raw_ostream.h"
50 using namespace llvm;
51 using namespace llvm::PatternMatch;
52
53 #define DEBUG_TYPE "local"
54
55 STATISTIC(NumRemoved, "Number of unreachable basic blocks removed");
56
57 //===----------------------------------------------------------------------===//
58 //  Local constant propagation.
59 //
60
61 /// ConstantFoldTerminator - If a terminator instruction is predicated on a
62 /// constant value, convert it into an unconditional branch to the constant
63 /// destination.  This is a nontrivial operation because the successors of this
64 /// basic block must have their PHI nodes updated.
65 /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch
66 /// conditions and indirectbr addresses this might make dead if
67 /// DeleteDeadConditions is true.
68 bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions,
69                                   const TargetLibraryInfo *TLI) {
70   TerminatorInst *T = BB->getTerminator();
71   IRBuilder<> Builder(T);
72
73   // Branch - See if we are conditional jumping on constant
74   if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
75     if (BI->isUnconditional()) return false;  // Can't optimize uncond branch
76     BasicBlock *Dest1 = BI->getSuccessor(0);
77     BasicBlock *Dest2 = BI->getSuccessor(1);
78
79     if (ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
80       // Are we branching on constant?
81       // YES.  Change to unconditional branch...
82       BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2;
83       BasicBlock *OldDest     = Cond->getZExtValue() ? Dest2 : Dest1;
84
85       //cerr << "Function: " << T->getParent()->getParent()
86       //     << "\nRemoving branch from " << T->getParent()
87       //     << "\n\nTo: " << OldDest << endl;
88
89       // Let the basic block know that we are letting go of it.  Based on this,
90       // it will adjust it's PHI nodes.
91       OldDest->removePredecessor(BB);
92
93       // Replace the conditional branch with an unconditional one.
94       Builder.CreateBr(Destination);
95       BI->eraseFromParent();
96       return true;
97     }
98
99     if (Dest2 == Dest1) {       // Conditional branch to same location?
100       // This branch matches something like this:
101       //     br bool %cond, label %Dest, label %Dest
102       // and changes it into:  br label %Dest
103
104       // Let the basic block know that we are letting go of one copy of it.
105       assert(BI->getParent() && "Terminator not inserted in block!");
106       Dest1->removePredecessor(BI->getParent());
107
108       // Replace the conditional branch with an unconditional one.
109       Builder.CreateBr(Dest1);
110       Value *Cond = BI->getCondition();
111       BI->eraseFromParent();
112       if (DeleteDeadConditions)
113         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
114       return true;
115     }
116     return false;
117   }
118
119   if (SwitchInst *SI = dyn_cast<SwitchInst>(T)) {
120     // If we are switching on a constant, we can convert the switch to an
121     // unconditional branch.
122     ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition());
123     BasicBlock *DefaultDest = SI->getDefaultDest();
124     BasicBlock *TheOnlyDest = DefaultDest;
125
126     // If the default is unreachable, ignore it when searching for TheOnlyDest.
127     if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) &&
128         SI->getNumCases() > 0) {
129       TheOnlyDest = SI->case_begin().getCaseSuccessor();
130     }
131
132     // Figure out which case it goes to.
133     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
134          i != e; ++i) {
135       // Found case matching a constant operand?
136       if (i.getCaseValue() == CI) {
137         TheOnlyDest = i.getCaseSuccessor();
138         break;
139       }
140
141       // Check to see if this branch is going to the same place as the default
142       // dest.  If so, eliminate it as an explicit compare.
143       if (i.getCaseSuccessor() == DefaultDest) {
144         MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
145         unsigned NCases = SI->getNumCases();
146         // Fold the case metadata into the default if there will be any branches
147         // left, unless the metadata doesn't match the switch.
148         if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) {
149           // Collect branch weights into a vector.
150           SmallVector<uint32_t, 8> Weights;
151           for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
152                ++MD_i) {
153             auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
154             Weights.push_back(CI->getValue().getZExtValue());
155           }
156           // Merge weight of this case to the default weight.
157           unsigned idx = i.getCaseIndex();
158           Weights[0] += Weights[idx+1];
159           // Remove weight for this case.
160           std::swap(Weights[idx+1], Weights.back());
161           Weights.pop_back();
162           SI->setMetadata(LLVMContext::MD_prof,
163                           MDBuilder(BB->getContext()).
164                           createBranchWeights(Weights));
165         }
166         // Remove this entry.
167         DefaultDest->removePredecessor(SI->getParent());
168         SI->removeCase(i);
169         --i; --e;
170         continue;
171       }
172
173       // Otherwise, check to see if the switch only branches to one destination.
174       // We do this by reseting "TheOnlyDest" to null when we find two non-equal
175       // destinations.
176       if (i.getCaseSuccessor() != TheOnlyDest) TheOnlyDest = nullptr;
177     }
178
179     if (CI && !TheOnlyDest) {
180       // Branching on a constant, but not any of the cases, go to the default
181       // successor.
182       TheOnlyDest = SI->getDefaultDest();
183     }
184
185     // If we found a single destination that we can fold the switch into, do so
186     // now.
187     if (TheOnlyDest) {
188       // Insert the new branch.
189       Builder.CreateBr(TheOnlyDest);
190       BasicBlock *BB = SI->getParent();
191
192       // Remove entries from PHI nodes which we no longer branch to...
193       for (BasicBlock *Succ : SI->successors()) {
194         // Found case matching a constant operand?
195         if (Succ == TheOnlyDest)
196           TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest
197         else
198           Succ->removePredecessor(BB);
199       }
200
201       // Delete the old switch.
202       Value *Cond = SI->getCondition();
203       SI->eraseFromParent();
204       if (DeleteDeadConditions)
205         RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI);
206       return true;
207     }
208
209     if (SI->getNumCases() == 1) {
210       // Otherwise, we can fold this switch into a conditional branch
211       // instruction if it has only one non-default destination.
212       SwitchInst::CaseIt FirstCase = SI->case_begin();
213       Value *Cond = Builder.CreateICmpEQ(SI->getCondition(),
214           FirstCase.getCaseValue(), "cond");
215
216       // Insert the new branch.
217       BranchInst *NewBr = Builder.CreateCondBr(Cond,
218                                                FirstCase.getCaseSuccessor(),
219                                                SI->getDefaultDest());
220       MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
221       if (MD && MD->getNumOperands() == 3) {
222         ConstantInt *SICase =
223             mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
224         ConstantInt *SIDef =
225             mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
226         assert(SICase && SIDef);
227         // The TrueWeight should be the weight for the single case of SI.
228         NewBr->setMetadata(LLVMContext::MD_prof,
229                         MDBuilder(BB->getContext()).
230                         createBranchWeights(SICase->getValue().getZExtValue(),
231                                             SIDef->getValue().getZExtValue()));
232       }
233
234       // Update make.implicit metadata to the newly-created conditional branch.
235       MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit);
236       if (MakeImplicitMD)
237         NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD);
238
239       // Delete the old switch.
240       SI->eraseFromParent();
241       return true;
242     }
243     return false;
244   }
245
246   if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(T)) {
247     // indirectbr blockaddress(@F, @BB) -> br label @BB
248     if (BlockAddress *BA =
249           dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) {
250       BasicBlock *TheOnlyDest = BA->getBasicBlock();
251       // Insert the new branch.
252       Builder.CreateBr(TheOnlyDest);
253
254       for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
255         if (IBI->getDestination(i) == TheOnlyDest)
256           TheOnlyDest = nullptr;
257         else
258           IBI->getDestination(i)->removePredecessor(IBI->getParent());
259       }
260       Value *Address = IBI->getAddress();
261       IBI->eraseFromParent();
262       if (DeleteDeadConditions)
263         RecursivelyDeleteTriviallyDeadInstructions(Address, TLI);
264
265       // If we didn't find our destination in the IBI successor list, then we
266       // have undefined behavior.  Replace the unconditional branch with an
267       // 'unreachable' instruction.
268       if (TheOnlyDest) {
269         BB->getTerminator()->eraseFromParent();
270         new UnreachableInst(BB->getContext(), BB);
271       }
272
273       return true;
274     }
275   }
276
277   return false;
278 }
279
280
281 //===----------------------------------------------------------------------===//
282 //  Local dead code elimination.
283 //
284
285 /// isInstructionTriviallyDead - Return true if the result produced by the
286 /// instruction is not used, and the instruction has no side effects.
287 ///
288 bool llvm::isInstructionTriviallyDead(Instruction *I,
289                                       const TargetLibraryInfo *TLI) {
290   if (!I->use_empty() || isa<TerminatorInst>(I)) return false;
291
292   // We don't want the landingpad-like instructions removed by anything this
293   // general.
294   if (I->isEHPad())
295     return false;
296
297   // We don't want debug info removed by anything this general, unless
298   // debug info is empty.
299   if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) {
300     if (DDI->getAddress())
301       return false;
302     return true;
303   }
304   if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) {
305     if (DVI->getValue())
306       return false;
307     return true;
308   }
309
310   if (!I->mayHaveSideEffects()) return true;
311
312   // Special case intrinsics that "may have side effects" but can be deleted
313   // when dead.
314   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
315     // Safe to delete llvm.stacksave if dead.
316     if (II->getIntrinsicID() == Intrinsic::stacksave)
317       return true;
318
319     // Lifetime intrinsics are dead when their right-hand is undef.
320     if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
321         II->getIntrinsicID() == Intrinsic::lifetime_end)
322       return isa<UndefValue>(II->getArgOperand(1));
323
324     // Assumptions are dead if their condition is trivially true.  Guards on
325     // true are operationally no-ops.  In the future we can consider more
326     // sophisticated tradeoffs for guards considering potential for check
327     // widening, but for now we keep things simple.
328     if (II->getIntrinsicID() == Intrinsic::assume ||
329         II->getIntrinsicID() == Intrinsic::experimental_guard) {
330       if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0)))
331         return !Cond->isZero();
332
333       return false;
334     }
335   }
336
337   if (isAllocLikeFn(I, TLI)) return true;
338
339   if (CallInst *CI = isFreeCall(I, TLI))
340     if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0)))
341       return C->isNullValue() || isa<UndefValue>(C);
342
343   if (CallSite CS = CallSite(I))
344     if (isMathLibCallNoop(CS, TLI))
345       return true;
346
347   return false;
348 }
349
350 /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a
351 /// trivially dead instruction, delete it.  If that makes any of its operands
352 /// trivially dead, delete them too, recursively.  Return true if any
353 /// instructions were deleted.
354 bool
355 llvm::RecursivelyDeleteTriviallyDeadInstructions(Value *V,
356                                                  const TargetLibraryInfo *TLI) {
357   Instruction *I = dyn_cast<Instruction>(V);
358   if (!I || !I->use_empty() || !isInstructionTriviallyDead(I, TLI))
359     return false;
360
361   SmallVector<Instruction*, 16> DeadInsts;
362   DeadInsts.push_back(I);
363
364   do {
365     I = DeadInsts.pop_back_val();
366
367     // Null out all of the instruction's operands to see if any operand becomes
368     // dead as we go.
369     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
370       Value *OpV = I->getOperand(i);
371       I->setOperand(i, nullptr);
372
373       if (!OpV->use_empty()) continue;
374
375       // If the operand is an instruction that became dead as we nulled out the
376       // operand, and if it is 'trivially' dead, delete it in a future loop
377       // iteration.
378       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
379         if (isInstructionTriviallyDead(OpI, TLI))
380           DeadInsts.push_back(OpI);
381     }
382
383     I->eraseFromParent();
384   } while (!DeadInsts.empty());
385
386   return true;
387 }
388
389 /// areAllUsesEqual - Check whether the uses of a value are all the same.
390 /// This is similar to Instruction::hasOneUse() except this will also return
391 /// true when there are no uses or multiple uses that all refer to the same
392 /// value.
393 static bool areAllUsesEqual(Instruction *I) {
394   Value::user_iterator UI = I->user_begin();
395   Value::user_iterator UE = I->user_end();
396   if (UI == UE)
397     return true;
398
399   User *TheUse = *UI;
400   for (++UI; UI != UE; ++UI) {
401     if (*UI != TheUse)
402       return false;
403   }
404   return true;
405 }
406
407 /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively
408 /// dead PHI node, due to being a def-use chain of single-use nodes that
409 /// either forms a cycle or is terminated by a trivially dead instruction,
410 /// delete it.  If that makes any of its operands trivially dead, delete them
411 /// too, recursively.  Return true if a change was made.
412 bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN,
413                                         const TargetLibraryInfo *TLI) {
414   SmallPtrSet<Instruction*, 4> Visited;
415   for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects();
416        I = cast<Instruction>(*I->user_begin())) {
417     if (I->use_empty())
418       return RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
419
420     // If we find an instruction more than once, we're on a cycle that
421     // won't prove fruitful.
422     if (!Visited.insert(I).second) {
423       // Break the cycle and delete the instruction and its operands.
424       I->replaceAllUsesWith(UndefValue::get(I->getType()));
425       (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI);
426       return true;
427     }
428   }
429   return false;
430 }
431
432 static bool
433 simplifyAndDCEInstruction(Instruction *I,
434                           SmallSetVector<Instruction *, 16> &WorkList,
435                           const DataLayout &DL,
436                           const TargetLibraryInfo *TLI) {
437   if (isInstructionTriviallyDead(I, TLI)) {
438     // Null out all of the instruction's operands to see if any operand becomes
439     // dead as we go.
440     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
441       Value *OpV = I->getOperand(i);
442       I->setOperand(i, nullptr);
443
444       if (!OpV->use_empty() || I == OpV)
445         continue;
446
447       // If the operand is an instruction that became dead as we nulled out the
448       // operand, and if it is 'trivially' dead, delete it in a future loop
449       // iteration.
450       if (Instruction *OpI = dyn_cast<Instruction>(OpV))
451         if (isInstructionTriviallyDead(OpI, TLI))
452           WorkList.insert(OpI);
453     }
454
455     I->eraseFromParent();
456
457     return true;
458   }
459
460   if (Value *SimpleV = SimplifyInstruction(I, DL)) {
461     // Add the users to the worklist. CAREFUL: an instruction can use itself,
462     // in the case of a phi node.
463     for (User *U : I->users()) {
464       if (U != I) {
465         WorkList.insert(cast<Instruction>(U));
466       }
467     }
468
469     // Replace the instruction with its simplified value.
470     bool Changed = false;
471     if (!I->use_empty()) {
472       I->replaceAllUsesWith(SimpleV);
473       Changed = true;
474     }
475     if (isInstructionTriviallyDead(I, TLI)) {
476       I->eraseFromParent();
477       Changed = true;
478     }
479     return Changed;
480   }
481   return false;
482 }
483
484 /// SimplifyInstructionsInBlock - Scan the specified basic block and try to
485 /// simplify any instructions in it and recursively delete dead instructions.
486 ///
487 /// This returns true if it changed the code, note that it can delete
488 /// instructions in other blocks as well in this block.
489 bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB,
490                                        const TargetLibraryInfo *TLI) {
491   bool MadeChange = false;
492   const DataLayout &DL = BB->getModule()->getDataLayout();
493
494 #ifndef NDEBUG
495   // In debug builds, ensure that the terminator of the block is never replaced
496   // or deleted by these simplifications. The idea of simplification is that it
497   // cannot introduce new instructions, and there is no way to replace the
498   // terminator of a block without introducing a new instruction.
499   AssertingVH<Instruction> TerminatorVH(&BB->back());
500 #endif
501
502   SmallSetVector<Instruction *, 16> WorkList;
503   // Iterate over the original function, only adding insts to the worklist
504   // if they actually need to be revisited. This avoids having to pre-init
505   // the worklist with the entire function's worth of instructions.
506   for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end());
507        BI != E;) {
508     assert(!BI->isTerminator());
509     Instruction *I = &*BI;
510     ++BI;
511
512     // We're visiting this instruction now, so make sure it's not in the
513     // worklist from an earlier visit.
514     if (!WorkList.count(I))
515       MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
516   }
517
518   while (!WorkList.empty()) {
519     Instruction *I = WorkList.pop_back_val();
520     MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI);
521   }
522   return MadeChange;
523 }
524
525 //===----------------------------------------------------------------------===//
526 //  Control Flow Graph Restructuring.
527 //
528
529
530 /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
531 /// method is called when we're about to delete Pred as a predecessor of BB.  If
532 /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
533 ///
534 /// Unlike the removePredecessor method, this attempts to simplify uses of PHI
535 /// nodes that collapse into identity values.  For example, if we have:
536 ///   x = phi(1, 0, 0, 0)
537 ///   y = and x, z
538 ///
539 /// .. and delete the predecessor corresponding to the '1', this will attempt to
540 /// recursively fold the and to 0.
541 void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred) {
542   // This only adjusts blocks with PHI nodes.
543   if (!isa<PHINode>(BB->begin()))
544     return;
545
546   // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
547   // them down.  This will leave us with single entry phi nodes and other phis
548   // that can be removed.
549   BB->removePredecessor(Pred, true);
550
551   WeakVH PhiIt = &BB->front();
552   while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
553     PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
554     Value *OldPhiIt = PhiIt;
555
556     if (!recursivelySimplifyInstruction(PN))
557       continue;
558
559     // If recursive simplification ended up deleting the next PHI node we would
560     // iterate to, then our iterator is invalid, restart scanning from the top
561     // of the block.
562     if (PhiIt != OldPhiIt) PhiIt = &BB->front();
563   }
564 }
565
566
567 /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its
568 /// predecessor is known to have one successor (DestBB!).  Eliminate the edge
569 /// between them, moving the instructions in the predecessor into DestBB and
570 /// deleting the predecessor block.
571 ///
572 void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, DominatorTree *DT) {
573   // If BB has single-entry PHI nodes, fold them.
574   while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) {
575     Value *NewVal = PN->getIncomingValue(0);
576     // Replace self referencing PHI with undef, it must be dead.
577     if (NewVal == PN) NewVal = UndefValue::get(PN->getType());
578     PN->replaceAllUsesWith(NewVal);
579     PN->eraseFromParent();
580   }
581
582   BasicBlock *PredBB = DestBB->getSinglePredecessor();
583   assert(PredBB && "Block doesn't have a single predecessor!");
584
585   // Zap anything that took the address of DestBB.  Not doing this will give the
586   // address an invalid value.
587   if (DestBB->hasAddressTaken()) {
588     BlockAddress *BA = BlockAddress::get(DestBB);
589     Constant *Replacement =
590       ConstantInt::get(llvm::Type::getInt32Ty(BA->getContext()), 1);
591     BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
592                                                      BA->getType()));
593     BA->destroyConstant();
594   }
595
596   // Anything that branched to PredBB now branches to DestBB.
597   PredBB->replaceAllUsesWith(DestBB);
598
599   // Splice all the instructions from PredBB to DestBB.
600   PredBB->getTerminator()->eraseFromParent();
601   DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList());
602
603   // If the PredBB is the entry block of the function, move DestBB up to
604   // become the entry block after we erase PredBB.
605   if (PredBB == &DestBB->getParent()->getEntryBlock())
606     DestBB->moveAfter(PredBB);
607
608   if (DT) {
609     BasicBlock *PredBBIDom = DT->getNode(PredBB)->getIDom()->getBlock();
610     DT->changeImmediateDominator(DestBB, PredBBIDom);
611     DT->eraseNode(PredBB);
612   }
613   // Nuke BB.
614   PredBB->eraseFromParent();
615 }
616
617 /// CanMergeValues - Return true if we can choose one of these values to use
618 /// in place of the other. Note that we will always choose the non-undef
619 /// value to keep.
620 static bool CanMergeValues(Value *First, Value *Second) {
621   return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second);
622 }
623
624 /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
625 /// almost-empty BB ending in an unconditional branch to Succ, into Succ.
626 ///
627 /// Assumption: Succ is the single successor for BB.
628 ///
629 static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
630   assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
631
632   DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into "
633         << Succ->getName() << "\n");
634   // Shortcut, if there is only a single predecessor it must be BB and merging
635   // is always safe
636   if (Succ->getSinglePredecessor()) return true;
637
638   // Make a list of the predecessors of BB
639   SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
640
641   // Look at all the phi nodes in Succ, to see if they present a conflict when
642   // merging these blocks
643   for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
644     PHINode *PN = cast<PHINode>(I);
645
646     // If the incoming value from BB is again a PHINode in
647     // BB which has the same incoming value for *PI as PN does, we can
648     // merge the phi nodes and then the blocks can still be merged
649     PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
650     if (BBPN && BBPN->getParent() == BB) {
651       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
652         BasicBlock *IBB = PN->getIncomingBlock(PI);
653         if (BBPreds.count(IBB) &&
654             !CanMergeValues(BBPN->getIncomingValueForBlock(IBB),
655                             PN->getIncomingValue(PI))) {
656           DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
657                 << Succ->getName() << " is conflicting with "
658                 << BBPN->getName() << " with regard to common predecessor "
659                 << IBB->getName() << "\n");
660           return false;
661         }
662       }
663     } else {
664       Value* Val = PN->getIncomingValueForBlock(BB);
665       for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) {
666         // See if the incoming value for the common predecessor is equal to the
667         // one for BB, in which case this phi node will not prevent the merging
668         // of the block.
669         BasicBlock *IBB = PN->getIncomingBlock(PI);
670         if (BBPreds.count(IBB) &&
671             !CanMergeValues(Val, PN->getIncomingValue(PI))) {
672           DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() << " in "
673                 << Succ->getName() << " is conflicting with regard to common "
674                 << "predecessor " << IBB->getName() << "\n");
675           return false;
676         }
677       }
678     }
679   }
680
681   return true;
682 }
683
684 typedef SmallVector<BasicBlock *, 16> PredBlockVector;
685 typedef DenseMap<BasicBlock *, Value *> IncomingValueMap;
686
687 /// \brief Determines the value to use as the phi node input for a block.
688 ///
689 /// Select between \p OldVal any value that we know flows from \p BB
690 /// to a particular phi on the basis of which one (if either) is not
691 /// undef. Update IncomingValues based on the selected value.
692 ///
693 /// \param OldVal The value we are considering selecting.
694 /// \param BB The block that the value flows in from.
695 /// \param IncomingValues A map from block-to-value for other phi inputs
696 /// that we have examined.
697 ///
698 /// \returns the selected value.
699 static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB,
700                                           IncomingValueMap &IncomingValues) {
701   if (!isa<UndefValue>(OldVal)) {
702     assert((!IncomingValues.count(BB) ||
703             IncomingValues.find(BB)->second == OldVal) &&
704            "Expected OldVal to match incoming value from BB!");
705
706     IncomingValues.insert(std::make_pair(BB, OldVal));
707     return OldVal;
708   }
709
710   IncomingValueMap::const_iterator It = IncomingValues.find(BB);
711   if (It != IncomingValues.end()) return It->second;
712
713   return OldVal;
714 }
715
716 /// \brief Create a map from block to value for the operands of a
717 /// given phi.
718 ///
719 /// Create a map from block to value for each non-undef value flowing
720 /// into \p PN.
721 ///
722 /// \param PN The phi we are collecting the map for.
723 /// \param IncomingValues [out] The map from block to value for this phi.
724 static void gatherIncomingValuesToPhi(PHINode *PN,
725                                       IncomingValueMap &IncomingValues) {
726   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
727     BasicBlock *BB = PN->getIncomingBlock(i);
728     Value *V = PN->getIncomingValue(i);
729
730     if (!isa<UndefValue>(V))
731       IncomingValues.insert(std::make_pair(BB, V));
732   }
733 }
734
735 /// \brief Replace the incoming undef values to a phi with the values
736 /// from a block-to-value map.
737 ///
738 /// \param PN The phi we are replacing the undefs in.
739 /// \param IncomingValues A map from block to value.
740 static void replaceUndefValuesInPhi(PHINode *PN,
741                                     const IncomingValueMap &IncomingValues) {
742   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
743     Value *V = PN->getIncomingValue(i);
744
745     if (!isa<UndefValue>(V)) continue;
746
747     BasicBlock *BB = PN->getIncomingBlock(i);
748     IncomingValueMap::const_iterator It = IncomingValues.find(BB);
749     if (It == IncomingValues.end()) continue;
750
751     PN->setIncomingValue(i, It->second);
752   }
753 }
754
755 /// \brief Replace a value flowing from a block to a phi with
756 /// potentially multiple instances of that value flowing from the
757 /// block's predecessors to the phi.
758 ///
759 /// \param BB The block with the value flowing into the phi.
760 /// \param BBPreds The predecessors of BB.
761 /// \param PN The phi that we are updating.
762 static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB,
763                                                 const PredBlockVector &BBPreds,
764                                                 PHINode *PN) {
765   Value *OldVal = PN->removeIncomingValue(BB, false);
766   assert(OldVal && "No entry in PHI for Pred BB!");
767
768   IncomingValueMap IncomingValues;
769
770   // We are merging two blocks - BB, and the block containing PN - and
771   // as a result we need to redirect edges from the predecessors of BB
772   // to go to the block containing PN, and update PN
773   // accordingly. Since we allow merging blocks in the case where the
774   // predecessor and successor blocks both share some predecessors,
775   // and where some of those common predecessors might have undef
776   // values flowing into PN, we want to rewrite those values to be
777   // consistent with the non-undef values.
778
779   gatherIncomingValuesToPhi(PN, IncomingValues);
780
781   // If this incoming value is one of the PHI nodes in BB, the new entries
782   // in the PHI node are the entries from the old PHI.
783   if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
784     PHINode *OldValPN = cast<PHINode>(OldVal);
785     for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) {
786       // Note that, since we are merging phi nodes and BB and Succ might
787       // have common predecessors, we could end up with a phi node with
788       // identical incoming branches. This will be cleaned up later (and
789       // will trigger asserts if we try to clean it up now, without also
790       // simplifying the corresponding conditional branch).
791       BasicBlock *PredBB = OldValPN->getIncomingBlock(i);
792       Value *PredVal = OldValPN->getIncomingValue(i);
793       Value *Selected = selectIncomingValueForBlock(PredVal, PredBB,
794                                                     IncomingValues);
795
796       // And add a new incoming value for this predecessor for the
797       // newly retargeted branch.
798       PN->addIncoming(Selected, PredBB);
799     }
800   } else {
801     for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) {
802       // Update existing incoming values in PN for this
803       // predecessor of BB.
804       BasicBlock *PredBB = BBPreds[i];
805       Value *Selected = selectIncomingValueForBlock(OldVal, PredBB,
806                                                     IncomingValues);
807
808       // And add a new incoming value for this predecessor for the
809       // newly retargeted branch.
810       PN->addIncoming(Selected, PredBB);
811     }
812   }
813
814   replaceUndefValuesInPhi(PN, IncomingValues);
815 }
816
817 /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an
818 /// unconditional branch, and contains no instructions other than PHI nodes,
819 /// potential side-effect free intrinsics and the branch.  If possible,
820 /// eliminate BB by rewriting all the predecessors to branch to the successor
821 /// block and return true.  If we can't transform, return false.
822 bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB) {
823   assert(BB != &BB->getParent()->getEntryBlock() &&
824          "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!");
825
826   // We can't eliminate infinite loops.
827   BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0);
828   if (BB == Succ) return false;
829
830   // Check to see if merging these blocks would cause conflicts for any of the
831   // phi nodes in BB or Succ. If not, we can safely merge.
832   if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
833
834   // Check for cases where Succ has multiple predecessors and a PHI node in BB
835   // has uses which will not disappear when the PHI nodes are merged.  It is
836   // possible to handle such cases, but difficult: it requires checking whether
837   // BB dominates Succ, which is non-trivial to calculate in the case where
838   // Succ has multiple predecessors.  Also, it requires checking whether
839   // constructing the necessary self-referential PHI node doesn't introduce any
840   // conflicts; this isn't too difficult, but the previous code for doing this
841   // was incorrect.
842   //
843   // Note that if this check finds a live use, BB dominates Succ, so BB is
844   // something like a loop pre-header (or rarely, a part of an irreducible CFG);
845   // folding the branch isn't profitable in that case anyway.
846   if (!Succ->getSinglePredecessor()) {
847     BasicBlock::iterator BBI = BB->begin();
848     while (isa<PHINode>(*BBI)) {
849       for (Use &U : BBI->uses()) {
850         if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) {
851           if (PN->getIncomingBlock(U) != BB)
852             return false;
853         } else {
854           return false;
855         }
856       }
857       ++BBI;
858     }
859   }
860
861   DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB);
862
863   if (isa<PHINode>(Succ->begin())) {
864     // If there is more than one pred of succ, and there are PHI nodes in
865     // the successor, then we need to add incoming edges for the PHI nodes
866     //
867     const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB));
868
869     // Loop over all of the PHI nodes in the successor of BB.
870     for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
871       PHINode *PN = cast<PHINode>(I);
872
873       redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN);
874     }
875   }
876
877   if (Succ->getSinglePredecessor()) {
878     // BB is the only predecessor of Succ, so Succ will end up with exactly
879     // the same predecessors BB had.
880
881     // Copy over any phi, debug or lifetime instruction.
882     BB->getTerminator()->eraseFromParent();
883     Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(),
884                                BB->getInstList());
885   } else {
886     while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) {
887       // We explicitly check for such uses in CanPropagatePredecessorsForPHIs.
888       assert(PN->use_empty() && "There shouldn't be any uses here!");
889       PN->eraseFromParent();
890     }
891   }
892
893   // If the unconditional branch we replaced contains llvm.loop metadata, we
894   // add the metadata to the branch instructions in the predecessors.
895   unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop");
896   Instruction *TI = BB->getTerminator();
897   if (TI)
898     if (MDNode *LoopMD = TI->getMetadata(LoopMDKind))
899       for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
900         BasicBlock *Pred = *PI;
901         Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD);
902       }
903
904   // Everything that jumped to BB now goes to Succ.
905   BB->replaceAllUsesWith(Succ);
906   if (!Succ->hasName()) Succ->takeName(BB);
907   BB->eraseFromParent();              // Delete the old basic block.
908   return true;
909 }
910
911 /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI
912 /// nodes in this block. This doesn't try to be clever about PHI nodes
913 /// which differ only in the order of the incoming values, but instcombine
914 /// orders them so it usually won't matter.
915 ///
916 bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) {
917   // This implementation doesn't currently consider undef operands
918   // specially. Theoretically, two phis which are identical except for
919   // one having an undef where the other doesn't could be collapsed.
920
921   struct PHIDenseMapInfo {
922     static PHINode *getEmptyKey() {
923       return DenseMapInfo<PHINode *>::getEmptyKey();
924     }
925     static PHINode *getTombstoneKey() {
926       return DenseMapInfo<PHINode *>::getTombstoneKey();
927     }
928     static unsigned getHashValue(PHINode *PN) {
929       // Compute a hash value on the operands. Instcombine will likely have
930       // sorted them, which helps expose duplicates, but we have to check all
931       // the operands to be safe in case instcombine hasn't run.
932       return static_cast<unsigned>(hash_combine(
933           hash_combine_range(PN->value_op_begin(), PN->value_op_end()),
934           hash_combine_range(PN->block_begin(), PN->block_end())));
935     }
936     static bool isEqual(PHINode *LHS, PHINode *RHS) {
937       if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
938           RHS == getEmptyKey() || RHS == getTombstoneKey())
939         return LHS == RHS;
940       return LHS->isIdenticalTo(RHS);
941     }
942   };
943
944   // Set of unique PHINodes.
945   DenseSet<PHINode *, PHIDenseMapInfo> PHISet;
946
947   // Examine each PHI.
948   bool Changed = false;
949   for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) {
950     auto Inserted = PHISet.insert(PN);
951     if (!Inserted.second) {
952       // A duplicate. Replace this PHI with its duplicate.
953       PN->replaceAllUsesWith(*Inserted.first);
954       PN->eraseFromParent();
955       Changed = true;
956
957       // The RAUW can change PHIs that we already visited. Start over from the
958       // beginning.
959       PHISet.clear();
960       I = BB->begin();
961     }
962   }
963
964   return Changed;
965 }
966
967 /// enforceKnownAlignment - If the specified pointer points to an object that
968 /// we control, modify the object's alignment to PrefAlign. This isn't
969 /// often possible though. If alignment is important, a more reliable approach
970 /// is to simply align all global variables and allocation instructions to
971 /// their preferred alignment from the beginning.
972 ///
973 static unsigned enforceKnownAlignment(Value *V, unsigned Align,
974                                       unsigned PrefAlign,
975                                       const DataLayout &DL) {
976   assert(PrefAlign > Align);
977
978   V = V->stripPointerCasts();
979
980   if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
981     // TODO: ideally, computeKnownBits ought to have used
982     // AllocaInst::getAlignment() in its computation already, making
983     // the below max redundant. But, as it turns out,
984     // stripPointerCasts recurses through infinite layers of bitcasts,
985     // while computeKnownBits is not allowed to traverse more than 6
986     // levels.
987     Align = std::max(AI->getAlignment(), Align);
988     if (PrefAlign <= Align)
989       return Align;
990
991     // If the preferred alignment is greater than the natural stack alignment
992     // then don't round up. This avoids dynamic stack realignment.
993     if (DL.exceedsNaturalStackAlignment(PrefAlign))
994       return Align;
995     AI->setAlignment(PrefAlign);
996     return PrefAlign;
997   }
998
999   if (auto *GO = dyn_cast<GlobalObject>(V)) {
1000     // TODO: as above, this shouldn't be necessary.
1001     Align = std::max(GO->getAlignment(), Align);
1002     if (PrefAlign <= Align)
1003       return Align;
1004
1005     // If there is a large requested alignment and we can, bump up the alignment
1006     // of the global.  If the memory we set aside for the global may not be the
1007     // memory used by the final program then it is impossible for us to reliably
1008     // enforce the preferred alignment.
1009     if (!GO->canIncreaseAlignment())
1010       return Align;
1011
1012     GO->setAlignment(PrefAlign);
1013     return PrefAlign;
1014   }
1015
1016   return Align;
1017 }
1018
1019 unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign,
1020                                           const DataLayout &DL,
1021                                           const Instruction *CxtI,
1022                                           AssumptionCache *AC,
1023                                           const DominatorTree *DT) {
1024   assert(V->getType()->isPointerTy() &&
1025          "getOrEnforceKnownAlignment expects a pointer!");
1026   unsigned BitWidth = DL.getPointerTypeSizeInBits(V->getType());
1027
1028   APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
1029   computeKnownBits(V, KnownZero, KnownOne, DL, 0, AC, CxtI, DT);
1030   unsigned TrailZ = KnownZero.countTrailingOnes();
1031
1032   // Avoid trouble with ridiculously large TrailZ values, such as
1033   // those computed from a null pointer.
1034   TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1));
1035
1036   unsigned Align = 1u << std::min(BitWidth - 1, TrailZ);
1037
1038   // LLVM doesn't support alignments larger than this currently.
1039   Align = std::min(Align, +Value::MaximumAlignment);
1040
1041   if (PrefAlign > Align)
1042     Align = enforceKnownAlignment(V, Align, PrefAlign, DL);
1043
1044   // We don't need to make any adjustment.
1045   return Align;
1046 }
1047
1048 ///===---------------------------------------------------------------------===//
1049 ///  Dbg Intrinsic utilities
1050 ///
1051
1052 /// See if there is a dbg.value intrinsic for DIVar before I.
1053 static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr,
1054                               Instruction *I) {
1055   // Since we can't guarantee that the original dbg.declare instrinsic
1056   // is removed by LowerDbgDeclare(), we need to make sure that we are
1057   // not inserting the same dbg.value intrinsic over and over.
1058   llvm::BasicBlock::InstListType::iterator PrevI(I);
1059   if (PrevI != I->getParent()->getInstList().begin()) {
1060     --PrevI;
1061     if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI))
1062       if (DVI->getValue() == I->getOperand(0) &&
1063           DVI->getOffset() == 0 &&
1064           DVI->getVariable() == DIVar &&
1065           DVI->getExpression() == DIExpr)
1066         return true;
1067   }
1068   return false;
1069 }
1070
1071 /// See if there is a dbg.value intrinsic for DIVar for the PHI node.
1072 static bool PhiHasDebugValue(DILocalVariable *DIVar, 
1073                              DIExpression *DIExpr,
1074                              PHINode *APN) {
1075   // Since we can't guarantee that the original dbg.declare instrinsic
1076   // is removed by LowerDbgDeclare(), we need to make sure that we are
1077   // not inserting the same dbg.value intrinsic over and over.
1078   DbgValueList DbgValues;
1079   FindAllocaDbgValues(DbgValues, APN);
1080   for (auto DVI : DbgValues) {
1081     assert (DVI->getValue() == APN);
1082     assert (DVI->getOffset() == 0);
1083     if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr))
1084       return true;
1085   }
1086   return false;
1087 }
1088
1089 /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value
1090 /// that has an associated llvm.dbg.decl intrinsic.
1091 void llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
1092                                            StoreInst *SI, DIBuilder &Builder) {
1093   auto *DIVar = DDI->getVariable();
1094   auto *DIExpr = DDI->getExpression();
1095   assert(DIVar && "Missing variable");
1096
1097   // If an argument is zero extended then use argument directly. The ZExt
1098   // may be zapped by an optimization pass in future.
1099   Argument *ExtendedArg = nullptr;
1100   if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0)))
1101     ExtendedArg = dyn_cast<Argument>(ZExt->getOperand(0));
1102   if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0)))
1103     ExtendedArg = dyn_cast<Argument>(SExt->getOperand(0));
1104   if (ExtendedArg) {
1105     // We're now only describing a subset of the variable. The fragment we're
1106     // describing will always be smaller than the variable size, because
1107     // VariableSize == Size of Alloca described by DDI. Since SI stores
1108     // to the alloca described by DDI, if it's first operand is an extend,
1109     // we're guaranteed that before extension, the value was narrower than
1110     // the size of the alloca, hence the size of the described variable.
1111     SmallVector<uint64_t, 3> Ops;
1112     unsigned FragmentOffset = 0;
1113     // If this already is a bit fragment, we drop the bit fragment from the
1114     // expression and record the offset.
1115     auto Fragment = DIExpr->getFragmentInfo();
1116     if (Fragment) {
1117       Ops.append(DIExpr->elements_begin(), DIExpr->elements_end()-3);
1118       FragmentOffset = Fragment->OffsetInBits;
1119     } else {
1120       Ops.append(DIExpr->elements_begin(), DIExpr->elements_end());
1121     }
1122     Ops.push_back(dwarf::DW_OP_LLVM_fragment);
1123     Ops.push_back(FragmentOffset);
1124     const DataLayout &DL = DDI->getModule()->getDataLayout();
1125     Ops.push_back(DL.getTypeSizeInBits(ExtendedArg->getType()));
1126     auto NewDIExpr = Builder.createExpression(Ops);
1127     if (!LdStHasDebugValue(DIVar, NewDIExpr, SI))
1128       Builder.insertDbgValueIntrinsic(ExtendedArg, 0, DIVar, NewDIExpr,
1129                                       DDI->getDebugLoc(), SI);
1130   } else if (!LdStHasDebugValue(DIVar, DIExpr, SI))
1131     Builder.insertDbgValueIntrinsic(SI->getOperand(0), 0, DIVar, DIExpr,
1132                                     DDI->getDebugLoc(), SI);
1133 }
1134
1135 /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value
1136 /// that has an associated llvm.dbg.decl intrinsic.
1137 void llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
1138                                            LoadInst *LI, DIBuilder &Builder) {
1139   auto *DIVar = DDI->getVariable();
1140   auto *DIExpr = DDI->getExpression();
1141   assert(DIVar && "Missing variable");
1142
1143   if (LdStHasDebugValue(DIVar, DIExpr, LI))
1144     return;
1145
1146   // We are now tracking the loaded value instead of the address. In the
1147   // future if multi-location support is added to the IR, it might be
1148   // preferable to keep tracking both the loaded value and the original
1149   // address in case the alloca can not be elided.
1150   Instruction *DbgValue = Builder.insertDbgValueIntrinsic(
1151       LI, 0, DIVar, DIExpr, DDI->getDebugLoc(), (Instruction *)nullptr);
1152   DbgValue->insertAfter(LI);
1153 }
1154
1155 /// Inserts a llvm.dbg.value intrinsic after a phi 
1156 /// that has an associated llvm.dbg.decl intrinsic.
1157 void llvm::ConvertDebugDeclareToDebugValue(DbgDeclareInst *DDI,
1158                                            PHINode *APN, DIBuilder &Builder) {
1159   auto *DIVar = DDI->getVariable();
1160   auto *DIExpr = DDI->getExpression();
1161   assert(DIVar && "Missing variable");
1162
1163   if (PhiHasDebugValue(DIVar, DIExpr, APN))
1164     return;
1165
1166   BasicBlock *BB = APN->getParent();
1167   auto InsertionPt = BB->getFirstInsertionPt();
1168
1169   // The block may be a catchswitch block, which does not have a valid
1170   // insertion point.
1171   // FIXME: Insert dbg.value markers in the successors when appropriate.
1172   if (InsertionPt != BB->end())
1173     Builder.insertDbgValueIntrinsic(APN, 0, DIVar, DIExpr, DDI->getDebugLoc(),
1174                                     &*InsertionPt);
1175 }
1176
1177 /// Determine whether this alloca is either a VLA or an array.
1178 static bool isArray(AllocaInst *AI) {
1179   return AI->isArrayAllocation() ||
1180     AI->getType()->getElementType()->isArrayTy();
1181 }
1182
1183 /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set
1184 /// of llvm.dbg.value intrinsics.
1185 bool llvm::LowerDbgDeclare(Function &F) {
1186   DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false);
1187   SmallVector<DbgDeclareInst *, 4> Dbgs;
1188   for (auto &FI : F)
1189     for (Instruction &BI : FI)
1190       if (auto DDI = dyn_cast<DbgDeclareInst>(&BI))
1191         Dbgs.push_back(DDI);
1192
1193   if (Dbgs.empty())
1194     return false;
1195
1196   for (auto &I : Dbgs) {
1197     DbgDeclareInst *DDI = I;
1198     AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress());
1199     // If this is an alloca for a scalar variable, insert a dbg.value
1200     // at each load and store to the alloca and erase the dbg.declare.
1201     // The dbg.values allow tracking a variable even if it is not
1202     // stored on the stack, while the dbg.declare can only describe
1203     // the stack slot (and at a lexical-scope granularity). Later
1204     // passes will attempt to elide the stack slot.
1205     if (AI && !isArray(AI)) {
1206       for (auto &AIUse : AI->uses()) {
1207         User *U = AIUse.getUser();
1208         if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1209           if (AIUse.getOperandNo() == 1)
1210             ConvertDebugDeclareToDebugValue(DDI, SI, DIB);
1211         } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1212           ConvertDebugDeclareToDebugValue(DDI, LI, DIB);
1213         } else if (CallInst *CI = dyn_cast<CallInst>(U)) {
1214           // This is a call by-value or some other instruction that
1215           // takes a pointer to the variable. Insert a *value*
1216           // intrinsic that describes the alloca.
1217           SmallVector<uint64_t, 1> NewDIExpr;
1218           auto *DIExpr = DDI->getExpression();
1219           NewDIExpr.push_back(dwarf::DW_OP_deref);
1220           NewDIExpr.append(DIExpr->elements_begin(), DIExpr->elements_end());
1221           DIB.insertDbgValueIntrinsic(AI, 0, DDI->getVariable(),
1222                                       DIB.createExpression(NewDIExpr),
1223                                       DDI->getDebugLoc(), CI);
1224         }
1225       }
1226       DDI->eraseFromParent();
1227     }
1228   }
1229   return true;
1230 }
1231
1232 /// FindAllocaDbgDeclare - Finds the llvm.dbg.declare intrinsic describing the
1233 /// alloca 'V', if any.
1234 DbgDeclareInst *llvm::FindAllocaDbgDeclare(Value *V) {
1235   if (auto *L = LocalAsMetadata::getIfExists(V))
1236     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1237       for (User *U : MDV->users())
1238         if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(U))
1239           return DDI;
1240
1241   return nullptr;
1242 }
1243
1244 /// FindAllocaDbgValues - Finds the llvm.dbg.value intrinsics describing the
1245 /// alloca 'V', if any.
1246 void llvm::FindAllocaDbgValues(DbgValueList &DbgValues, Value *V) {
1247   if (auto *L = LocalAsMetadata::getIfExists(V))
1248     if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L))
1249       for (User *U : MDV->users())
1250         if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U))
1251           DbgValues.push_back(DVI);
1252 }
1253
1254 static void DIExprAddDeref(SmallVectorImpl<uint64_t> &Expr) {
1255   Expr.push_back(dwarf::DW_OP_deref);
1256 }
1257
1258 static void DIExprAddOffset(SmallVectorImpl<uint64_t> &Expr, int Offset) {
1259   if (Offset > 0) {
1260     Expr.push_back(dwarf::DW_OP_plus);
1261     Expr.push_back(Offset);
1262   } else if (Offset < 0) {
1263     Expr.push_back(dwarf::DW_OP_minus);
1264     Expr.push_back(-Offset);
1265   }
1266 }
1267
1268 static DIExpression *BuildReplacementDIExpr(DIBuilder &Builder,
1269                                             DIExpression *DIExpr, bool Deref,
1270                                             int Offset) {
1271   if (!Deref && !Offset)
1272     return DIExpr;
1273   // Create a copy of the original DIDescriptor for user variable, prepending
1274   // "deref" operation to a list of address elements, as new llvm.dbg.declare
1275   // will take a value storing address of the memory for variable, not
1276   // alloca itself.
1277   SmallVector<uint64_t, 4> NewDIExpr;
1278   if (Deref)
1279     DIExprAddDeref(NewDIExpr);
1280   DIExprAddOffset(NewDIExpr, Offset);
1281   if (DIExpr)
1282     NewDIExpr.append(DIExpr->elements_begin(), DIExpr->elements_end());
1283   return Builder.createExpression(NewDIExpr);
1284 }
1285
1286 bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress,
1287                              Instruction *InsertBefore, DIBuilder &Builder,
1288                              bool Deref, int Offset) {
1289   DbgDeclareInst *DDI = FindAllocaDbgDeclare(Address);
1290   if (!DDI)
1291     return false;
1292   DebugLoc Loc = DDI->getDebugLoc();
1293   auto *DIVar = DDI->getVariable();
1294   auto *DIExpr = DDI->getExpression();
1295   assert(DIVar && "Missing variable");
1296
1297   DIExpr = BuildReplacementDIExpr(Builder, DIExpr, Deref, Offset);
1298
1299   // Insert llvm.dbg.declare immediately after the original alloca, and remove
1300   // old llvm.dbg.declare.
1301   Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore);
1302   DDI->eraseFromParent();
1303   return true;
1304 }
1305
1306 bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1307                                       DIBuilder &Builder, bool Deref, int Offset) {
1308   return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder,
1309                            Deref, Offset);
1310 }
1311
1312 static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress,
1313                                         DIBuilder &Builder, int Offset) {
1314   DebugLoc Loc = DVI->getDebugLoc();
1315   auto *DIVar = DVI->getVariable();
1316   auto *DIExpr = DVI->getExpression();
1317   assert(DIVar && "Missing variable");
1318
1319   // This is an alloca-based llvm.dbg.value. The first thing it should do with
1320   // the alloca pointer is dereference it. Otherwise we don't know how to handle
1321   // it and give up.
1322   if (!DIExpr || DIExpr->getNumElements() < 1 ||
1323       DIExpr->getElement(0) != dwarf::DW_OP_deref)
1324     return;
1325
1326   // Insert the offset immediately after the first deref.
1327   // We could just change the offset argument of dbg.value, but it's unsigned...
1328   if (Offset) {
1329     SmallVector<uint64_t, 4> NewDIExpr;
1330     DIExprAddDeref(NewDIExpr);
1331     DIExprAddOffset(NewDIExpr, Offset);
1332     NewDIExpr.append(DIExpr->elements_begin() + 1, DIExpr->elements_end());
1333     DIExpr = Builder.createExpression(NewDIExpr);
1334   }
1335
1336   Builder.insertDbgValueIntrinsic(NewAddress, DVI->getOffset(), DIVar, DIExpr,
1337                                   Loc, DVI);
1338   DVI->eraseFromParent();
1339 }
1340
1341 void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress,
1342                                     DIBuilder &Builder, int Offset) {
1343   if (auto *L = LocalAsMetadata::getIfExists(AI))
1344     if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L))
1345       for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) {
1346         Use &U = *UI++;
1347         if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser()))
1348           replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset);
1349       }
1350 }
1351
1352 unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) {
1353   unsigned NumDeadInst = 0;
1354   // Delete the instructions backwards, as it has a reduced likelihood of
1355   // having to update as many def-use and use-def chains.
1356   Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
1357   while (EndInst != &BB->front()) {
1358     // Delete the next to last instruction.
1359     Instruction *Inst = &*--EndInst->getIterator();
1360     if (!Inst->use_empty() && !Inst->getType()->isTokenTy())
1361       Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
1362     if (Inst->isEHPad() || Inst->getType()->isTokenTy()) {
1363       EndInst = Inst;
1364       continue;
1365     }
1366     if (!isa<DbgInfoIntrinsic>(Inst))
1367       ++NumDeadInst;
1368     Inst->eraseFromParent();
1369   }
1370   return NumDeadInst;
1371 }
1372
1373 unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap,
1374                                    bool PreserveLCSSA) {
1375   BasicBlock *BB = I->getParent();
1376   // Loop over all of the successors, removing BB's entry from any PHI
1377   // nodes.
1378   for (BasicBlock *Successor : successors(BB))
1379     Successor->removePredecessor(BB, PreserveLCSSA);
1380
1381   // Insert a call to llvm.trap right before this.  This turns the undefined
1382   // behavior into a hard fail instead of falling through into random code.
1383   if (UseLLVMTrap) {
1384     Function *TrapFn =
1385       Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap);
1386     CallInst *CallTrap = CallInst::Create(TrapFn, "", I);
1387     CallTrap->setDebugLoc(I->getDebugLoc());
1388   }
1389   new UnreachableInst(I->getContext(), I);
1390
1391   // All instructions after this are dead.
1392   unsigned NumInstrsRemoved = 0;
1393   BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end();
1394   while (BBI != BBE) {
1395     if (!BBI->use_empty())
1396       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
1397     BB->getInstList().erase(BBI++);
1398     ++NumInstrsRemoved;
1399   }
1400   return NumInstrsRemoved;
1401 }
1402
1403 /// changeToCall - Convert the specified invoke into a normal call.
1404 static void changeToCall(InvokeInst *II) {
1405   SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end());
1406   SmallVector<OperandBundleDef, 1> OpBundles;
1407   II->getOperandBundlesAsDefs(OpBundles);
1408   CallInst *NewCall = CallInst::Create(II->getCalledValue(), Args, OpBundles,
1409                                        "", II);
1410   NewCall->takeName(II);
1411   NewCall->setCallingConv(II->getCallingConv());
1412   NewCall->setAttributes(II->getAttributes());
1413   NewCall->setDebugLoc(II->getDebugLoc());
1414   II->replaceAllUsesWith(NewCall);
1415
1416   // Follow the call by a branch to the normal destination.
1417   BranchInst::Create(II->getNormalDest(), II);
1418
1419   // Update PHI nodes in the unwind destination
1420   II->getUnwindDest()->removePredecessor(II->getParent());
1421   II->eraseFromParent();
1422 }
1423
1424 BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI,
1425                                                    BasicBlock *UnwindEdge) {
1426   BasicBlock *BB = CI->getParent();
1427
1428   // Convert this function call into an invoke instruction.  First, split the
1429   // basic block.
1430   BasicBlock *Split =
1431       BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc");
1432
1433   // Delete the unconditional branch inserted by splitBasicBlock
1434   BB->getInstList().pop_back();
1435
1436   // Create the new invoke instruction.
1437   SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end());
1438   SmallVector<OperandBundleDef, 1> OpBundles;
1439
1440   CI->getOperandBundlesAsDefs(OpBundles);
1441
1442   // Note: we're round tripping operand bundles through memory here, and that
1443   // can potentially be avoided with a cleverer API design that we do not have
1444   // as of this time.
1445
1446   InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, UnwindEdge,
1447                                       InvokeArgs, OpBundles, CI->getName(), BB);
1448   II->setDebugLoc(CI->getDebugLoc());
1449   II->setCallingConv(CI->getCallingConv());
1450   II->setAttributes(CI->getAttributes());
1451
1452   // Make sure that anything using the call now uses the invoke!  This also
1453   // updates the CallGraph if present, because it uses a WeakVH.
1454   CI->replaceAllUsesWith(II);
1455
1456   // Delete the original call
1457   Split->getInstList().pop_front();
1458   return Split;
1459 }
1460
1461 static bool markAliveBlocks(Function &F,
1462                             SmallPtrSetImpl<BasicBlock*> &Reachable) {
1463
1464   SmallVector<BasicBlock*, 128> Worklist;
1465   BasicBlock *BB = &F.front();
1466   Worklist.push_back(BB);
1467   Reachable.insert(BB);
1468   bool Changed = false;
1469   do {
1470     BB = Worklist.pop_back_val();
1471
1472     // Do a quick scan of the basic block, turning any obviously unreachable
1473     // instructions into LLVM unreachable insts.  The instruction combining pass
1474     // canonicalizes unreachable insts into stores to null or undef.
1475     for (Instruction &I : *BB) {
1476       // Assumptions that are known to be false are equivalent to unreachable.
1477       // Also, if the condition is undefined, then we make the choice most
1478       // beneficial to the optimizer, and choose that to also be unreachable.
1479       if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
1480         if (II->getIntrinsicID() == Intrinsic::assume) {
1481           if (match(II->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) {
1482             // Don't insert a call to llvm.trap right before the unreachable.
1483             changeToUnreachable(II, false);
1484             Changed = true;
1485             break;
1486           }
1487         }
1488
1489         if (II->getIntrinsicID() == Intrinsic::experimental_guard) {
1490           // A call to the guard intrinsic bails out of the current compilation
1491           // unit if the predicate passed to it is false.  If the predicate is a
1492           // constant false, then we know the guard will bail out of the current
1493           // compile unconditionally, so all code following it is dead.
1494           //
1495           // Note: unlike in llvm.assume, it is not "obviously profitable" for
1496           // guards to treat `undef` as `false` since a guard on `undef` can
1497           // still be useful for widening.
1498           if (match(II->getArgOperand(0), m_Zero()))
1499             if (!isa<UnreachableInst>(II->getNextNode())) {
1500               changeToUnreachable(II->getNextNode(), /*UseLLVMTrap=*/ false);
1501               Changed = true;
1502               break;
1503             }
1504         }
1505       }
1506
1507       if (auto *CI = dyn_cast<CallInst>(&I)) {
1508         Value *Callee = CI->getCalledValue();
1509         if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
1510           changeToUnreachable(CI, /*UseLLVMTrap=*/false);
1511           Changed = true;
1512           break;
1513         }
1514         if (CI->doesNotReturn()) {
1515           // If we found a call to a no-return function, insert an unreachable
1516           // instruction after it.  Make sure there isn't *already* one there
1517           // though.
1518           if (!isa<UnreachableInst>(CI->getNextNode())) {
1519             // Don't insert a call to llvm.trap right before the unreachable.
1520             changeToUnreachable(CI->getNextNode(), false);
1521             Changed = true;
1522           }
1523           break;
1524         }
1525       }
1526
1527       // Store to undef and store to null are undefined and used to signal that
1528       // they should be changed to unreachable by passes that can't modify the
1529       // CFG.
1530       if (auto *SI = dyn_cast<StoreInst>(&I)) {
1531         // Don't touch volatile stores.
1532         if (SI->isVolatile()) continue;
1533
1534         Value *Ptr = SI->getOperand(1);
1535
1536         if (isa<UndefValue>(Ptr) ||
1537             (isa<ConstantPointerNull>(Ptr) &&
1538              SI->getPointerAddressSpace() == 0)) {
1539           changeToUnreachable(SI, true);
1540           Changed = true;
1541           break;
1542         }
1543       }
1544     }
1545
1546     TerminatorInst *Terminator = BB->getTerminator();
1547     if (auto *II = dyn_cast<InvokeInst>(Terminator)) {
1548       // Turn invokes that call 'nounwind' functions into ordinary calls.
1549       Value *Callee = II->getCalledValue();
1550       if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
1551         changeToUnreachable(II, true);
1552         Changed = true;
1553       } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) {
1554         if (II->use_empty() && II->onlyReadsMemory()) {
1555           // jump to the normal destination branch.
1556           BranchInst::Create(II->getNormalDest(), II);
1557           II->getUnwindDest()->removePredecessor(II->getParent());
1558           II->eraseFromParent();
1559         } else
1560           changeToCall(II);
1561         Changed = true;
1562       }
1563     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) {
1564       // Remove catchpads which cannot be reached.
1565       struct CatchPadDenseMapInfo {
1566         static CatchPadInst *getEmptyKey() {
1567           return DenseMapInfo<CatchPadInst *>::getEmptyKey();
1568         }
1569         static CatchPadInst *getTombstoneKey() {
1570           return DenseMapInfo<CatchPadInst *>::getTombstoneKey();
1571         }
1572         static unsigned getHashValue(CatchPadInst *CatchPad) {
1573           return static_cast<unsigned>(hash_combine_range(
1574               CatchPad->value_op_begin(), CatchPad->value_op_end()));
1575         }
1576         static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) {
1577           if (LHS == getEmptyKey() || LHS == getTombstoneKey() ||
1578               RHS == getEmptyKey() || RHS == getTombstoneKey())
1579             return LHS == RHS;
1580           return LHS->isIdenticalTo(RHS);
1581         }
1582       };
1583
1584       // Set of unique CatchPads.
1585       SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4,
1586                     CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>>
1587           HandlerSet;
1588       detail::DenseSetEmpty Empty;
1589       for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(),
1590                                              E = CatchSwitch->handler_end();
1591            I != E; ++I) {
1592         BasicBlock *HandlerBB = *I;
1593         auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI());
1594         if (!HandlerSet.insert({CatchPad, Empty}).second) {
1595           CatchSwitch->removeHandler(I);
1596           --I;
1597           --E;
1598           Changed = true;
1599         }
1600       }
1601     }
1602
1603     Changed |= ConstantFoldTerminator(BB, true);
1604     for (BasicBlock *Successor : successors(BB))
1605       if (Reachable.insert(Successor).second)
1606         Worklist.push_back(Successor);
1607   } while (!Worklist.empty());
1608   return Changed;
1609 }
1610
1611 void llvm::removeUnwindEdge(BasicBlock *BB) {
1612   TerminatorInst *TI = BB->getTerminator();
1613
1614   if (auto *II = dyn_cast<InvokeInst>(TI)) {
1615     changeToCall(II);
1616     return;
1617   }
1618
1619   TerminatorInst *NewTI;
1620   BasicBlock *UnwindDest;
1621
1622   if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
1623     NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI);
1624     UnwindDest = CRI->getUnwindDest();
1625   } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
1626     auto *NewCatchSwitch = CatchSwitchInst::Create(
1627         CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(),
1628         CatchSwitch->getName(), CatchSwitch);
1629     for (BasicBlock *PadBB : CatchSwitch->handlers())
1630       NewCatchSwitch->addHandler(PadBB);
1631
1632     NewTI = NewCatchSwitch;
1633     UnwindDest = CatchSwitch->getUnwindDest();
1634   } else {
1635     llvm_unreachable("Could not find unwind successor");
1636   }
1637
1638   NewTI->takeName(TI);
1639   NewTI->setDebugLoc(TI->getDebugLoc());
1640   UnwindDest->removePredecessor(BB);
1641   TI->replaceAllUsesWith(NewTI);
1642   TI->eraseFromParent();
1643 }
1644
1645 /// removeUnreachableBlocksFromFn - Remove blocks that are not reachable, even
1646 /// if they are in a dead cycle.  Return true if a change was made, false
1647 /// otherwise.
1648 bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI) {
1649   SmallPtrSet<BasicBlock*, 16> Reachable;
1650   bool Changed = markAliveBlocks(F, Reachable);
1651
1652   // If there are unreachable blocks in the CFG...
1653   if (Reachable.size() == F.size())
1654     return Changed;
1655
1656   assert(Reachable.size() < F.size());
1657   NumRemoved += F.size()-Reachable.size();
1658
1659   // Loop over all of the basic blocks that are not reachable, dropping all of
1660   // their internal references...
1661   for (Function::iterator BB = ++F.begin(), E = F.end(); BB != E; ++BB) {
1662     if (Reachable.count(&*BB))
1663       continue;
1664
1665     for (BasicBlock *Successor : successors(&*BB))
1666       if (Reachable.count(Successor))
1667         Successor->removePredecessor(&*BB);
1668     if (LVI)
1669       LVI->eraseBlock(&*BB);
1670     BB->dropAllReferences();
1671   }
1672
1673   for (Function::iterator I = ++F.begin(); I != F.end();)
1674     if (!Reachable.count(&*I))
1675       I = F.getBasicBlockList().erase(I);
1676     else
1677       ++I;
1678
1679   return true;
1680 }
1681
1682 void llvm::combineMetadata(Instruction *K, const Instruction *J,
1683                            ArrayRef<unsigned> KnownIDs) {
1684   SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
1685   K->dropUnknownNonDebugMetadata(KnownIDs);
1686   K->getAllMetadataOtherThanDebugLoc(Metadata);
1687   for (const auto &MD : Metadata) {
1688     unsigned Kind = MD.first;
1689     MDNode *JMD = J->getMetadata(Kind);
1690     MDNode *KMD = MD.second;
1691
1692     switch (Kind) {
1693       default:
1694         K->setMetadata(Kind, nullptr); // Remove unknown metadata
1695         break;
1696       case LLVMContext::MD_dbg:
1697         llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg");
1698       case LLVMContext::MD_tbaa:
1699         K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
1700         break;
1701       case LLVMContext::MD_alias_scope:
1702         K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD));
1703         break;
1704       case LLVMContext::MD_noalias:
1705       case LLVMContext::MD_mem_parallel_loop_access:
1706         K->setMetadata(Kind, MDNode::intersect(JMD, KMD));
1707         break;
1708       case LLVMContext::MD_range:
1709         K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD));
1710         break;
1711       case LLVMContext::MD_fpmath:
1712         K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD));
1713         break;
1714       case LLVMContext::MD_invariant_load:
1715         // Only set the !invariant.load if it is present in both instructions.
1716         K->setMetadata(Kind, JMD);
1717         break;
1718       case LLVMContext::MD_nonnull:
1719         // Only set the !nonnull if it is present in both instructions.
1720         K->setMetadata(Kind, JMD);
1721         break;
1722       case LLVMContext::MD_invariant_group:
1723         // Preserve !invariant.group in K.
1724         break;
1725       case LLVMContext::MD_align:
1726         K->setMetadata(Kind, 
1727           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
1728         break;
1729       case LLVMContext::MD_dereferenceable:
1730       case LLVMContext::MD_dereferenceable_or_null:
1731         K->setMetadata(Kind, 
1732           MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD));
1733         break;
1734     }
1735   }
1736   // Set !invariant.group from J if J has it. If both instructions have it
1737   // then we will just pick it from J - even when they are different.
1738   // Also make sure that K is load or store - f.e. combining bitcast with load
1739   // could produce bitcast with invariant.group metadata, which is invalid.
1740   // FIXME: we should try to preserve both invariant.group md if they are
1741   // different, but right now instruction can only have one invariant.group.
1742   if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group))
1743     if (isa<LoadInst>(K) || isa<StoreInst>(K))
1744       K->setMetadata(LLVMContext::MD_invariant_group, JMD);
1745 }
1746
1747 void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J) {
1748   unsigned KnownIDs[] = {
1749       LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
1750       LLVMContext::MD_noalias,         LLVMContext::MD_range,
1751       LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
1752       LLVMContext::MD_invariant_group, LLVMContext::MD_align,
1753       LLVMContext::MD_dereferenceable,
1754       LLVMContext::MD_dereferenceable_or_null};
1755   combineMetadata(K, J, KnownIDs);
1756 }
1757
1758 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
1759                                         DominatorTree &DT,
1760                                         const BasicBlockEdge &Root) {
1761   assert(From->getType() == To->getType());
1762   
1763   unsigned Count = 0;
1764   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
1765        UI != UE; ) {
1766     Use &U = *UI++;
1767     if (DT.dominates(Root, U)) {
1768       U.set(To);
1769       DEBUG(dbgs() << "Replace dominated use of '"
1770             << From->getName() << "' as "
1771             << *To << " in " << *U << "\n");
1772       ++Count;
1773     }
1774   }
1775   return Count;
1776 }
1777
1778 unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To,
1779                                         DominatorTree &DT,
1780                                         const BasicBlock *BB) {
1781   assert(From->getType() == To->getType());
1782
1783   unsigned Count = 0;
1784   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
1785        UI != UE;) {
1786     Use &U = *UI++;
1787     auto *I = cast<Instruction>(U.getUser());
1788     if (DT.properlyDominates(BB, I->getParent())) {
1789       U.set(To);
1790       DEBUG(dbgs() << "Replace dominated use of '" << From->getName() << "' as "
1791                    << *To << " in " << *U << "\n");
1792       ++Count;
1793     }
1794   }
1795   return Count;
1796 }
1797
1798 bool llvm::callsGCLeafFunction(ImmutableCallSite CS) {
1799   // Check if the function is specifically marked as a gc leaf function.
1800   if (CS.hasFnAttr("gc-leaf-function"))
1801     return true;
1802   if (const Function *F = CS.getCalledFunction()) {
1803     if (F->hasFnAttribute("gc-leaf-function"))
1804       return true;
1805
1806     if (auto IID = F->getIntrinsicID())
1807       // Most LLVM intrinsics do not take safepoints.
1808       return IID != Intrinsic::experimental_gc_statepoint &&
1809              IID != Intrinsic::experimental_deoptimize;
1810   }
1811
1812   return false;
1813 }
1814
1815 namespace {
1816 /// A potential constituent of a bitreverse or bswap expression. See
1817 /// collectBitParts for a fuller explanation.
1818 struct BitPart {
1819   BitPart(Value *P, unsigned BW) : Provider(P) {
1820     Provenance.resize(BW);
1821   }
1822
1823   /// The Value that this is a bitreverse/bswap of.
1824   Value *Provider;
1825   /// The "provenance" of each bit. Provenance[A] = B means that bit A
1826   /// in Provider becomes bit B in the result of this expression.
1827   SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128.
1828
1829   enum { Unset = -1 };
1830 };
1831 } // end anonymous namespace
1832
1833 /// Analyze the specified subexpression and see if it is capable of providing
1834 /// pieces of a bswap or bitreverse. The subexpression provides a potential
1835 /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in
1836 /// the output of the expression came from a corresponding bit in some other
1837 /// value. This function is recursive, and the end result is a mapping of
1838 /// bitnumber to bitnumber. It is the caller's responsibility to validate that
1839 /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse.
1840 ///
1841 /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know
1842 /// that the expression deposits the low byte of %X into the high byte of the
1843 /// result and that all other bits are zero. This expression is accepted and a
1844 /// BitPart is returned with Provider set to %X and Provenance[24-31] set to
1845 /// [0-7].
1846 ///
1847 /// To avoid revisiting values, the BitPart results are memoized into the
1848 /// provided map. To avoid unnecessary copying of BitParts, BitParts are
1849 /// constructed in-place in the \c BPS map. Because of this \c BPS needs to
1850 /// store BitParts objects, not pointers. As we need the concept of a nullptr
1851 /// BitParts (Value has been analyzed and the analysis failed), we an Optional
1852 /// type instead to provide the same functionality.
1853 ///
1854 /// Because we pass around references into \c BPS, we must use a container that
1855 /// does not invalidate internal references (std::map instead of DenseMap).
1856 ///
1857 static const Optional<BitPart> &
1858 collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals,
1859                 std::map<Value *, Optional<BitPart>> &BPS) {
1860   auto I = BPS.find(V);
1861   if (I != BPS.end())
1862     return I->second;
1863
1864   auto &Result = BPS[V] = None;
1865   auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
1866
1867   if (Instruction *I = dyn_cast<Instruction>(V)) {
1868     // If this is an or instruction, it may be an inner node of the bswap.
1869     if (I->getOpcode() == Instruction::Or) {
1870       auto &A = collectBitParts(I->getOperand(0), MatchBSwaps,
1871                                 MatchBitReversals, BPS);
1872       auto &B = collectBitParts(I->getOperand(1), MatchBSwaps,
1873                                 MatchBitReversals, BPS);
1874       if (!A || !B)
1875         return Result;
1876
1877       // Try and merge the two together.
1878       if (!A->Provider || A->Provider != B->Provider)
1879         return Result;
1880
1881       Result = BitPart(A->Provider, BitWidth);
1882       for (unsigned i = 0; i < A->Provenance.size(); ++i) {
1883         if (A->Provenance[i] != BitPart::Unset &&
1884             B->Provenance[i] != BitPart::Unset &&
1885             A->Provenance[i] != B->Provenance[i])
1886           return Result = None;
1887
1888         if (A->Provenance[i] == BitPart::Unset)
1889           Result->Provenance[i] = B->Provenance[i];
1890         else
1891           Result->Provenance[i] = A->Provenance[i];
1892       }
1893
1894       return Result;
1895     }
1896
1897     // If this is a logical shift by a constant, recurse then shift the result.
1898     if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) {
1899       unsigned BitShift =
1900           cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U);
1901       // Ensure the shift amount is defined.
1902       if (BitShift > BitWidth)
1903         return Result;
1904
1905       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
1906                                   MatchBitReversals, BPS);
1907       if (!Res)
1908         return Result;
1909       Result = Res;
1910
1911       // Perform the "shift" on BitProvenance.
1912       auto &P = Result->Provenance;
1913       if (I->getOpcode() == Instruction::Shl) {
1914         P.erase(std::prev(P.end(), BitShift), P.end());
1915         P.insert(P.begin(), BitShift, BitPart::Unset);
1916       } else {
1917         P.erase(P.begin(), std::next(P.begin(), BitShift));
1918         P.insert(P.end(), BitShift, BitPart::Unset);
1919       }
1920
1921       return Result;
1922     }
1923
1924     // If this is a logical 'and' with a mask that clears bits, recurse then
1925     // unset the appropriate bits.
1926     if (I->getOpcode() == Instruction::And &&
1927         isa<ConstantInt>(I->getOperand(1))) {
1928       APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1);
1929       const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue();
1930
1931       // Check that the mask allows a multiple of 8 bits for a bswap, for an
1932       // early exit.
1933       unsigned NumMaskedBits = AndMask.countPopulation();
1934       if (!MatchBitReversals && NumMaskedBits % 8 != 0)
1935         return Result;
1936       
1937       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
1938                                   MatchBitReversals, BPS);
1939       if (!Res)
1940         return Result;
1941       Result = Res;
1942
1943       for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1)
1944         // If the AndMask is zero for this bit, clear the bit.
1945         if ((AndMask & Bit) == 0)
1946           Result->Provenance[i] = BitPart::Unset;
1947       return Result;
1948     }
1949
1950     // If this is a zext instruction zero extend the result.
1951     if (I->getOpcode() == Instruction::ZExt) {
1952       auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps,
1953                                   MatchBitReversals, BPS);
1954       if (!Res)
1955         return Result;
1956
1957       Result = BitPart(Res->Provider, BitWidth);
1958       auto NarrowBitWidth =
1959           cast<IntegerType>(cast<ZExtInst>(I)->getSrcTy())->getBitWidth();
1960       for (unsigned i = 0; i < NarrowBitWidth; ++i)
1961         Result->Provenance[i] = Res->Provenance[i];
1962       for (unsigned i = NarrowBitWidth; i < BitWidth; ++i)
1963         Result->Provenance[i] = BitPart::Unset;
1964       return Result;
1965     }
1966   }
1967
1968   // Okay, we got to something that isn't a shift, 'or' or 'and'.  This must be
1969   // the input value to the bswap/bitreverse.
1970   Result = BitPart(V, BitWidth);
1971   for (unsigned i = 0; i < BitWidth; ++i)
1972     Result->Provenance[i] = i;
1973   return Result;
1974 }
1975
1976 static bool bitTransformIsCorrectForBSwap(unsigned From, unsigned To,
1977                                           unsigned BitWidth) {
1978   if (From % 8 != To % 8)
1979     return false;
1980   // Convert from bit indices to byte indices and check for a byte reversal.
1981   From >>= 3;
1982   To >>= 3;
1983   BitWidth >>= 3;
1984   return From == BitWidth - To - 1;
1985 }
1986
1987 static bool bitTransformIsCorrectForBitReverse(unsigned From, unsigned To,
1988                                                unsigned BitWidth) {
1989   return From == BitWidth - To - 1;
1990 }
1991
1992 /// Given an OR instruction, check to see if this is a bitreverse
1993 /// idiom. If so, insert the new intrinsic and return true.
1994 bool llvm::recognizeBSwapOrBitReverseIdiom(
1995     Instruction *I, bool MatchBSwaps, bool MatchBitReversals,
1996     SmallVectorImpl<Instruction *> &InsertedInsts) {
1997   if (Operator::getOpcode(I) != Instruction::Or)
1998     return false;
1999   if (!MatchBSwaps && !MatchBitReversals)
2000     return false;
2001   IntegerType *ITy = dyn_cast<IntegerType>(I->getType());
2002   if (!ITy || ITy->getBitWidth() > 128)
2003     return false;   // Can't do vectors or integers > 128 bits.
2004   unsigned BW = ITy->getBitWidth();
2005
2006   unsigned DemandedBW = BW;
2007   IntegerType *DemandedTy = ITy;
2008   if (I->hasOneUse()) {
2009     if (TruncInst *Trunc = dyn_cast<TruncInst>(I->user_back())) {
2010       DemandedTy = cast<IntegerType>(Trunc->getType());
2011       DemandedBW = DemandedTy->getBitWidth();
2012     }
2013   }
2014
2015   // Try to find all the pieces corresponding to the bswap.
2016   std::map<Value *, Optional<BitPart>> BPS;
2017   auto Res = collectBitParts(I, MatchBSwaps, MatchBitReversals, BPS);
2018   if (!Res)
2019     return false;
2020   auto &BitProvenance = Res->Provenance;
2021
2022   // Now, is the bit permutation correct for a bswap or a bitreverse? We can
2023   // only byteswap values with an even number of bytes.
2024   bool OKForBSwap = DemandedBW % 16 == 0, OKForBitReverse = true;
2025   for (unsigned i = 0; i < DemandedBW; ++i) {
2026     OKForBSwap &=
2027         bitTransformIsCorrectForBSwap(BitProvenance[i], i, DemandedBW);
2028     OKForBitReverse &=
2029         bitTransformIsCorrectForBitReverse(BitProvenance[i], i, DemandedBW);
2030   }
2031
2032   Intrinsic::ID Intrin;
2033   if (OKForBSwap && MatchBSwaps)
2034     Intrin = Intrinsic::bswap;
2035   else if (OKForBitReverse && MatchBitReversals)
2036     Intrin = Intrinsic::bitreverse;
2037   else
2038     return false;
2039
2040   if (ITy != DemandedTy) {
2041     Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, DemandedTy);
2042     Value *Provider = Res->Provider;
2043     IntegerType *ProviderTy = cast<IntegerType>(Provider->getType());
2044     // We may need to truncate the provider.
2045     if (DemandedTy != ProviderTy) {
2046       auto *Trunc = CastInst::Create(Instruction::Trunc, Provider, DemandedTy,
2047                                      "trunc", I);
2048       InsertedInsts.push_back(Trunc);
2049       Provider = Trunc;
2050     }
2051     auto *CI = CallInst::Create(F, Provider, "rev", I);
2052     InsertedInsts.push_back(CI);
2053     auto *ExtInst = CastInst::Create(Instruction::ZExt, CI, ITy, "zext", I);
2054     InsertedInsts.push_back(ExtInst);
2055     return true;
2056   }
2057
2058   Function *F = Intrinsic::getDeclaration(I->getModule(), Intrin, ITy);
2059   InsertedInsts.push_back(CallInst::Create(F, Res->Provider, "rev", I));
2060   return true;
2061 }
2062
2063 // CodeGen has special handling for some string functions that may replace
2064 // them with target-specific intrinsics.  Since that'd skip our interceptors
2065 // in ASan/MSan/TSan/DFSan, and thus make us miss some memory accesses,
2066 // we mark affected calls as NoBuiltin, which will disable optimization
2067 // in CodeGen.
2068 void llvm::maybeMarkSanitizerLibraryCallNoBuiltin(
2069     CallInst *CI, const TargetLibraryInfo *TLI) {
2070   Function *F = CI->getCalledFunction();
2071   LibFunc::Func Func;
2072   if (F && !F->hasLocalLinkage() && F->hasName() &&
2073       TLI->getLibFunc(F->getName(), Func) && TLI->hasOptimizedCodeGen(Func) &&
2074       !F->doesNotAccessMemory())
2075     CI->addAttribute(AttributeSet::FunctionIndex, Attribute::NoBuiltin);
2076 }