]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/Utils/LoopUnrollPeel.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / Utils / LoopUnrollPeel.cpp
1 //===- UnrollLoopPeel.cpp - Loop peeling utilities ------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements some loop unrolling utilities for peeling loops
11 // with dynamically inferred (from PGO) trip counts. See LoopUnroll.cpp for
12 // unrolling loops with compile-time constant trip counts.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/LoopIterator.h"
22 #include "llvm/Analysis/ScalarEvolution.h"
23 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
24 #include "llvm/Analysis/TargetTransformInfo.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/Dominators.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/IR/MDBuilder.h"
33 #include "llvm/IR/Metadata.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/Support/Casting.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
40 #include "llvm/Transforms/Utils/Cloning.h"
41 #include "llvm/Transforms/Utils/LoopSimplify.h"
42 #include "llvm/Transforms/Utils/LoopUtils.h"
43 #include "llvm/Transforms/Utils/UnrollLoop.h"
44 #include "llvm/Transforms/Utils/ValueMapper.h"
45 #include <algorithm>
46 #include <cassert>
47 #include <cstdint>
48 #include <limits>
49
50 using namespace llvm;
51 using namespace llvm::PatternMatch;
52
53 #define DEBUG_TYPE "loop-unroll"
54
55 STATISTIC(NumPeeled, "Number of loops peeled");
56
57 static cl::opt<unsigned> UnrollPeelMaxCount(
58     "unroll-peel-max-count", cl::init(7), cl::Hidden,
59     cl::desc("Max average trip count which will cause loop peeling."));
60
61 static cl::opt<unsigned> UnrollForcePeelCount(
62     "unroll-force-peel-count", cl::init(0), cl::Hidden,
63     cl::desc("Force a peel count regardless of profiling information."));
64
65 // Designates that a Phi is estimated to become invariant after an "infinite"
66 // number of loop iterations (i.e. only may become an invariant if the loop is
67 // fully unrolled).
68 static const unsigned InfiniteIterationsToInvariance =
69     std::numeric_limits<unsigned>::max();
70
71 // Check whether we are capable of peeling this loop.
72 bool llvm::canPeel(Loop *L) {
73   // Make sure the loop is in simplified form
74   if (!L->isLoopSimplifyForm())
75     return false;
76
77   // Only peel loops that contain a single exit
78   if (!L->getExitingBlock() || !L->getUniqueExitBlock())
79     return false;
80
81   // Don't try to peel loops where the latch is not the exiting block.
82   // This can be an indication of two different things:
83   // 1) The loop is not rotated.
84   // 2) The loop contains irreducible control flow that involves the latch.
85   if (L->getLoopLatch() != L->getExitingBlock())
86     return false;
87
88   return true;
89 }
90
91 // This function calculates the number of iterations after which the given Phi
92 // becomes an invariant. The pre-calculated values are memorized in the map. The
93 // function (shortcut is I) is calculated according to the following definition:
94 // Given %x = phi <Inputs from above the loop>, ..., [%y, %back.edge].
95 //   If %y is a loop invariant, then I(%x) = 1.
96 //   If %y is a Phi from the loop header, I(%x) = I(%y) + 1.
97 //   Otherwise, I(%x) is infinite.
98 // TODO: Actually if %y is an expression that depends only on Phi %z and some
99 //       loop invariants, we can estimate I(%x) = I(%z) + 1. The example
100 //       looks like:
101 //         %x = phi(0, %a),  <-- becomes invariant starting from 3rd iteration.
102 //         %y = phi(0, 5),
103 //         %a = %y + 1.
104 static unsigned calculateIterationsToInvariance(
105     PHINode *Phi, Loop *L, BasicBlock *BackEdge,
106     SmallDenseMap<PHINode *, unsigned> &IterationsToInvariance) {
107   assert(Phi->getParent() == L->getHeader() &&
108          "Non-loop Phi should not be checked for turning into invariant.");
109   assert(BackEdge == L->getLoopLatch() && "Wrong latch?");
110   // If we already know the answer, take it from the map.
111   auto I = IterationsToInvariance.find(Phi);
112   if (I != IterationsToInvariance.end())
113     return I->second;
114
115   // Otherwise we need to analyze the input from the back edge.
116   Value *Input = Phi->getIncomingValueForBlock(BackEdge);
117   // Place infinity to map to avoid infinite recursion for cycled Phis. Such
118   // cycles can never stop on an invariant.
119   IterationsToInvariance[Phi] = InfiniteIterationsToInvariance;
120   unsigned ToInvariance = InfiniteIterationsToInvariance;
121
122   if (L->isLoopInvariant(Input))
123     ToInvariance = 1u;
124   else if (PHINode *IncPhi = dyn_cast<PHINode>(Input)) {
125     // Only consider Phis in header block.
126     if (IncPhi->getParent() != L->getHeader())
127       return InfiniteIterationsToInvariance;
128     // If the input becomes an invariant after X iterations, then our Phi
129     // becomes an invariant after X + 1 iterations.
130     unsigned InputToInvariance = calculateIterationsToInvariance(
131         IncPhi, L, BackEdge, IterationsToInvariance);
132     if (InputToInvariance != InfiniteIterationsToInvariance)
133       ToInvariance = InputToInvariance + 1u;
134   }
135
136   // If we found that this Phi lies in an invariant chain, update the map.
137   if (ToInvariance != InfiniteIterationsToInvariance)
138     IterationsToInvariance[Phi] = ToInvariance;
139   return ToInvariance;
140 }
141
142 // Return the number of iterations to peel off that make conditions in the
143 // body true/false. For example, if we peel 2 iterations off the loop below,
144 // the condition i < 2 can be evaluated at compile time.
145 //  for (i = 0; i < n; i++)
146 //    if (i < 2)
147 //      ..
148 //    else
149 //      ..
150 //   }
151 static unsigned countToEliminateCompares(Loop &L, unsigned MaxPeelCount,
152                                          ScalarEvolution &SE) {
153   assert(L.isLoopSimplifyForm() && "Loop needs to be in loop simplify form");
154   unsigned DesiredPeelCount = 0;
155
156   for (auto *BB : L.blocks()) {
157     auto *BI = dyn_cast<BranchInst>(BB->getTerminator());
158     if (!BI || BI->isUnconditional())
159       continue;
160
161     // Ignore loop exit condition.
162     if (L.getLoopLatch() == BB)
163       continue;
164
165     Value *Condition = BI->getCondition();
166     Value *LeftVal, *RightVal;
167     CmpInst::Predicate Pred;
168     if (!match(Condition, m_ICmp(Pred, m_Value(LeftVal), m_Value(RightVal))))
169       continue;
170
171     const SCEV *LeftSCEV = SE.getSCEV(LeftVal);
172     const SCEV *RightSCEV = SE.getSCEV(RightVal);
173
174     // Do not consider predicates that are known to be true or false
175     // independently of the loop iteration.
176     if (SE.isKnownPredicate(Pred, LeftSCEV, RightSCEV) ||
177         SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), LeftSCEV,
178                             RightSCEV))
179       continue;
180
181     // Check if we have a condition with one AddRec and one non AddRec
182     // expression. Normalize LeftSCEV to be the AddRec.
183     if (!isa<SCEVAddRecExpr>(LeftSCEV)) {
184       if (isa<SCEVAddRecExpr>(RightSCEV)) {
185         std::swap(LeftSCEV, RightSCEV);
186         Pred = ICmpInst::getSwappedPredicate(Pred);
187       } else
188         continue;
189     }
190
191     const SCEVAddRecExpr *LeftAR = cast<SCEVAddRecExpr>(LeftSCEV);
192
193     // Avoid huge SCEV computations in the loop below, make sure we only
194     // consider AddRecs of the loop we are trying to peel and avoid
195     // non-monotonic predicates, as we will not be able to simplify the loop
196     // body.
197     // FIXME: For the non-monotonic predicates ICMP_EQ and ICMP_NE we can
198     //        simplify the loop, if we peel 1 additional iteration, if there
199     //        is no wrapping.
200     bool Increasing;
201     if (!LeftAR->isAffine() || LeftAR->getLoop() != &L ||
202         !SE.isMonotonicPredicate(LeftAR, Pred, Increasing))
203       continue;
204     (void)Increasing;
205
206     // Check if extending the current DesiredPeelCount lets us evaluate Pred
207     // or !Pred in the loop body statically.
208     unsigned NewPeelCount = DesiredPeelCount;
209
210     const SCEV *IterVal = LeftAR->evaluateAtIteration(
211         SE.getConstant(LeftSCEV->getType(), NewPeelCount), SE);
212
213     // If the original condition is not known, get the negated predicate
214     // (which holds on the else branch) and check if it is known. This allows
215     // us to peel of iterations that make the original condition false.
216     if (!SE.isKnownPredicate(Pred, IterVal, RightSCEV))
217       Pred = ICmpInst::getInversePredicate(Pred);
218
219     const SCEV *Step = LeftAR->getStepRecurrence(SE);
220     while (NewPeelCount < MaxPeelCount &&
221            SE.isKnownPredicate(Pred, IterVal, RightSCEV)) {
222       IterVal = SE.getAddExpr(IterVal, Step);
223       NewPeelCount++;
224     }
225
226     // Only peel the loop if the monotonic predicate !Pred becomes known in the
227     // first iteration of the loop body after peeling.
228     if (NewPeelCount > DesiredPeelCount &&
229         SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), IterVal,
230                             RightSCEV))
231       DesiredPeelCount = NewPeelCount;
232   }
233
234   return DesiredPeelCount;
235 }
236
237 // Return the number of iterations we want to peel off.
238 void llvm::computePeelCount(Loop *L, unsigned LoopSize,
239                             TargetTransformInfo::UnrollingPreferences &UP,
240                             unsigned &TripCount, ScalarEvolution &SE) {
241   assert(LoopSize > 0 && "Zero loop size is not allowed!");
242   // Save the UP.PeelCount value set by the target in
243   // TTI.getUnrollingPreferences or by the flag -unroll-peel-count.
244   unsigned TargetPeelCount = UP.PeelCount;
245   UP.PeelCount = 0;
246   if (!canPeel(L))
247     return;
248
249   // Only try to peel innermost loops.
250   if (!L->empty())
251     return;
252
253   // If the user provided a peel count, use that.
254   bool UserPeelCount = UnrollForcePeelCount.getNumOccurrences() > 0;
255   if (UserPeelCount) {
256     LLVM_DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount
257                       << " iterations.\n");
258     UP.PeelCount = UnrollForcePeelCount;
259     return;
260   }
261
262   // Skip peeling if it's disabled.
263   if (!UP.AllowPeeling)
264     return;
265
266   // Here we try to get rid of Phis which become invariants after 1, 2, ..., N
267   // iterations of the loop. For this we compute the number for iterations after
268   // which every Phi is guaranteed to become an invariant, and try to peel the
269   // maximum number of iterations among these values, thus turning all those
270   // Phis into invariants.
271   // First, check that we can peel at least one iteration.
272   if (2 * LoopSize <= UP.Threshold && UnrollPeelMaxCount > 0) {
273     // Store the pre-calculated values here.
274     SmallDenseMap<PHINode *, unsigned> IterationsToInvariance;
275     // Now go through all Phis to calculate their the number of iterations they
276     // need to become invariants.
277     // Start the max computation with the UP.PeelCount value set by the target
278     // in TTI.getUnrollingPreferences or by the flag -unroll-peel-count.
279     unsigned DesiredPeelCount = TargetPeelCount;
280     BasicBlock *BackEdge = L->getLoopLatch();
281     assert(BackEdge && "Loop is not in simplified form?");
282     for (auto BI = L->getHeader()->begin(); isa<PHINode>(&*BI); ++BI) {
283       PHINode *Phi = cast<PHINode>(&*BI);
284       unsigned ToInvariance = calculateIterationsToInvariance(
285           Phi, L, BackEdge, IterationsToInvariance);
286       if (ToInvariance != InfiniteIterationsToInvariance)
287         DesiredPeelCount = std::max(DesiredPeelCount, ToInvariance);
288     }
289
290     // Pay respect to limitations implied by loop size and the max peel count.
291     unsigned MaxPeelCount = UnrollPeelMaxCount;
292     MaxPeelCount = std::min(MaxPeelCount, UP.Threshold / LoopSize - 1);
293
294     DesiredPeelCount = std::max(DesiredPeelCount,
295                                 countToEliminateCompares(*L, MaxPeelCount, SE));
296
297     if (DesiredPeelCount > 0) {
298       DesiredPeelCount = std::min(DesiredPeelCount, MaxPeelCount);
299       // Consider max peel count limitation.
300       assert(DesiredPeelCount > 0 && "Wrong loop size estimation?");
301       LLVM_DEBUG(dbgs() << "Peel " << DesiredPeelCount
302                         << " iteration(s) to turn"
303                         << " some Phis into invariants.\n");
304       UP.PeelCount = DesiredPeelCount;
305       return;
306     }
307   }
308
309   // Bail if we know the statically calculated trip count.
310   // In this case we rather prefer partial unrolling.
311   if (TripCount)
312     return;
313
314   // If we don't know the trip count, but have reason to believe the average
315   // trip count is low, peeling should be beneficial, since we will usually
316   // hit the peeled section.
317   // We only do this in the presence of profile information, since otherwise
318   // our estimates of the trip count are not reliable enough.
319   if (L->getHeader()->getParent()->hasProfileData()) {
320     Optional<unsigned> PeelCount = getLoopEstimatedTripCount(L);
321     if (!PeelCount)
322       return;
323
324     LLVM_DEBUG(dbgs() << "Profile-based estimated trip count is " << *PeelCount
325                       << "\n");
326
327     if (*PeelCount) {
328       if ((*PeelCount <= UnrollPeelMaxCount) &&
329           (LoopSize * (*PeelCount + 1) <= UP.Threshold)) {
330         LLVM_DEBUG(dbgs() << "Peeling first " << *PeelCount
331                           << " iterations.\n");
332         UP.PeelCount = *PeelCount;
333         return;
334       }
335       LLVM_DEBUG(dbgs() << "Requested peel count: " << *PeelCount << "\n");
336       LLVM_DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount << "\n");
337       LLVM_DEBUG(dbgs() << "Peel cost: " << LoopSize * (*PeelCount + 1)
338                         << "\n");
339       LLVM_DEBUG(dbgs() << "Max peel cost: " << UP.Threshold << "\n");
340     }
341   }
342 }
343
344 /// Update the branch weights of the latch of a peeled-off loop
345 /// iteration.
346 /// This sets the branch weights for the latch of the recently peeled off loop
347 /// iteration correctly.
348 /// Our goal is to make sure that:
349 /// a) The total weight of all the copies of the loop body is preserved.
350 /// b) The total weight of the loop exit is preserved.
351 /// c) The body weight is reasonably distributed between the peeled iterations.
352 ///
353 /// \param Header The copy of the header block that belongs to next iteration.
354 /// \param LatchBR The copy of the latch branch that belongs to this iteration.
355 /// \param IterNumber The serial number of the iteration that was just
356 /// peeled off.
357 /// \param AvgIters The average number of iterations we expect the loop to have.
358 /// \param[in,out] PeeledHeaderWeight The total number of dynamic loop
359 /// iterations that are unaccounted for. As an input, it represents the number
360 /// of times we expect to enter the header of the iteration currently being
361 /// peeled off. The output is the number of times we expect to enter the
362 /// header of the next iteration.
363 static void updateBranchWeights(BasicBlock *Header, BranchInst *LatchBR,
364                                 unsigned IterNumber, unsigned AvgIters,
365                                 uint64_t &PeeledHeaderWeight) {
366   // FIXME: Pick a more realistic distribution.
367   // Currently the proportion of weight we assign to the fall-through
368   // side of the branch drops linearly with the iteration number, and we use
369   // a 0.9 fudge factor to make the drop-off less sharp...
370   if (PeeledHeaderWeight) {
371     uint64_t FallThruWeight =
372         PeeledHeaderWeight * ((float)(AvgIters - IterNumber) / AvgIters * 0.9);
373     uint64_t ExitWeight = PeeledHeaderWeight - FallThruWeight;
374     PeeledHeaderWeight -= ExitWeight;
375
376     unsigned HeaderIdx = (LatchBR->getSuccessor(0) == Header ? 0 : 1);
377     MDBuilder MDB(LatchBR->getContext());
378     MDNode *WeightNode =
379         HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThruWeight)
380                   : MDB.createBranchWeights(FallThruWeight, ExitWeight);
381     LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode);
382   }
383 }
384
385 /// Clones the body of the loop L, putting it between \p InsertTop and \p
386 /// InsertBot.
387 /// \param IterNumber The serial number of the iteration currently being
388 /// peeled off.
389 /// \param Exit The exit block of the original loop.
390 /// \param[out] NewBlocks A list of the blocks in the newly created clone
391 /// \param[out] VMap The value map between the loop and the new clone.
392 /// \param LoopBlocks A helper for DFS-traversal of the loop.
393 /// \param LVMap A value-map that maps instructions from the original loop to
394 /// instructions in the last peeled-off iteration.
395 static void cloneLoopBlocks(Loop *L, unsigned IterNumber, BasicBlock *InsertTop,
396                             BasicBlock *InsertBot, BasicBlock *Exit,
397                             SmallVectorImpl<BasicBlock *> &NewBlocks,
398                             LoopBlocksDFS &LoopBlocks, ValueToValueMapTy &VMap,
399                             ValueToValueMapTy &LVMap, DominatorTree *DT,
400                             LoopInfo *LI) {
401   BasicBlock *Header = L->getHeader();
402   BasicBlock *Latch = L->getLoopLatch();
403   BasicBlock *PreHeader = L->getLoopPreheader();
404
405   Function *F = Header->getParent();
406   LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
407   LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
408   Loop *ParentLoop = L->getParentLoop();
409
410   // For each block in the original loop, create a new copy,
411   // and update the value map with the newly created values.
412   for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
413     BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".peel", F);
414     NewBlocks.push_back(NewBB);
415
416     if (ParentLoop)
417       ParentLoop->addBasicBlockToLoop(NewBB, *LI);
418
419     VMap[*BB] = NewBB;
420
421     // If dominator tree is available, insert nodes to represent cloned blocks.
422     if (DT) {
423       if (Header == *BB)
424         DT->addNewBlock(NewBB, InsertTop);
425       else {
426         DomTreeNode *IDom = DT->getNode(*BB)->getIDom();
427         // VMap must contain entry for IDom, as the iteration order is RPO.
428         DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDom->getBlock()]));
429       }
430     }
431   }
432
433   // Hook-up the control flow for the newly inserted blocks.
434   // The new header is hooked up directly to the "top", which is either
435   // the original loop preheader (for the first iteration) or the previous
436   // iteration's exiting block (for every other iteration)
437   InsertTop->getTerminator()->setSuccessor(0, cast<BasicBlock>(VMap[Header]));
438
439   // Similarly, for the latch:
440   // The original exiting edge is still hooked up to the loop exit.
441   // The backedge now goes to the "bottom", which is either the loop's real
442   // header (for the last peeled iteration) or the copied header of the next
443   // iteration (for every other iteration)
444   BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
445   BranchInst *LatchBR = cast<BranchInst>(NewLatch->getTerminator());
446   unsigned HeaderIdx = (LatchBR->getSuccessor(0) == Header ? 0 : 1);
447   LatchBR->setSuccessor(HeaderIdx, InsertBot);
448   LatchBR->setSuccessor(1 - HeaderIdx, Exit);
449   if (DT)
450     DT->changeImmediateDominator(InsertBot, NewLatch);
451
452   // The new copy of the loop body starts with a bunch of PHI nodes
453   // that pick an incoming value from either the preheader, or the previous
454   // loop iteration. Since this copy is no longer part of the loop, we
455   // resolve this statically:
456   // For the first iteration, we use the value from the preheader directly.
457   // For any other iteration, we replace the phi with the value generated by
458   // the immediately preceding clone of the loop body (which represents
459   // the previous iteration).
460   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
461     PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
462     if (IterNumber == 0) {
463       VMap[&*I] = NewPHI->getIncomingValueForBlock(PreHeader);
464     } else {
465       Value *LatchVal = NewPHI->getIncomingValueForBlock(Latch);
466       Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
467       if (LatchInst && L->contains(LatchInst))
468         VMap[&*I] = LVMap[LatchInst];
469       else
470         VMap[&*I] = LatchVal;
471     }
472     cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
473   }
474
475   // Fix up the outgoing values - we need to add a value for the iteration
476   // we've just created. Note that this must happen *after* the incoming
477   // values are adjusted, since the value going out of the latch may also be
478   // a value coming into the header.
479   for (BasicBlock::iterator I = Exit->begin(); isa<PHINode>(I); ++I) {
480     PHINode *PHI = cast<PHINode>(I);
481     Value *LatchVal = PHI->getIncomingValueForBlock(Latch);
482     Instruction *LatchInst = dyn_cast<Instruction>(LatchVal);
483     if (LatchInst && L->contains(LatchInst))
484       LatchVal = VMap[LatchVal];
485     PHI->addIncoming(LatchVal, cast<BasicBlock>(VMap[Latch]));
486   }
487
488   // LastValueMap is updated with the values for the current loop
489   // which are used the next time this function is called.
490   for (const auto &KV : VMap)
491     LVMap[KV.first] = KV.second;
492 }
493
494 /// Peel off the first \p PeelCount iterations of loop \p L.
495 ///
496 /// Note that this does not peel them off as a single straight-line block.
497 /// Rather, each iteration is peeled off separately, and needs to check the
498 /// exit condition.
499 /// For loops that dynamically execute \p PeelCount iterations or less
500 /// this provides a benefit, since the peeled off iterations, which account
501 /// for the bulk of dynamic execution, can be further simplified by scalar
502 /// optimizations.
503 bool llvm::peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI,
504                     ScalarEvolution *SE, DominatorTree *DT,
505                     AssumptionCache *AC, bool PreserveLCSSA) {
506   assert(PeelCount > 0 && "Attempt to peel out zero iterations?");
507   assert(canPeel(L) && "Attempt to peel a loop which is not peelable?");
508
509   LoopBlocksDFS LoopBlocks(L);
510   LoopBlocks.perform(LI);
511
512   BasicBlock *Header = L->getHeader();
513   BasicBlock *PreHeader = L->getLoopPreheader();
514   BasicBlock *Latch = L->getLoopLatch();
515   BasicBlock *Exit = L->getUniqueExitBlock();
516
517   Function *F = Header->getParent();
518
519   // Set up all the necessary basic blocks. It is convenient to split the
520   // preheader into 3 parts - two blocks to anchor the peeled copy of the loop
521   // body, and a new preheader for the "real" loop.
522
523   // Peeling the first iteration transforms.
524   //
525   // PreHeader:
526   // ...
527   // Header:
528   //   LoopBody
529   //   If (cond) goto Header
530   // Exit:
531   //
532   // into
533   //
534   // InsertTop:
535   //   LoopBody
536   //   If (!cond) goto Exit
537   // InsertBot:
538   // NewPreHeader:
539   // ...
540   // Header:
541   //  LoopBody
542   //  If (cond) goto Header
543   // Exit:
544   //
545   // Each following iteration will split the current bottom anchor in two,
546   // and put the new copy of the loop body between these two blocks. That is,
547   // after peeling another iteration from the example above, we'll split
548   // InsertBot, and get:
549   //
550   // InsertTop:
551   //   LoopBody
552   //   If (!cond) goto Exit
553   // InsertBot:
554   //   LoopBody
555   //   If (!cond) goto Exit
556   // InsertBot.next:
557   // NewPreHeader:
558   // ...
559   // Header:
560   //  LoopBody
561   //  If (cond) goto Header
562   // Exit:
563
564   BasicBlock *InsertTop = SplitEdge(PreHeader, Header, DT, LI);
565   BasicBlock *InsertBot =
566       SplitBlock(InsertTop, InsertTop->getTerminator(), DT, LI);
567   BasicBlock *NewPreHeader =
568       SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI);
569
570   InsertTop->setName(Header->getName() + ".peel.begin");
571   InsertBot->setName(Header->getName() + ".peel.next");
572   NewPreHeader->setName(PreHeader->getName() + ".peel.newph");
573
574   ValueToValueMapTy LVMap;
575
576   // If we have branch weight information, we'll want to update it for the
577   // newly created branches.
578   BranchInst *LatchBR =
579       cast<BranchInst>(cast<BasicBlock>(Latch)->getTerminator());
580   unsigned HeaderIdx = (LatchBR->getSuccessor(0) == Header ? 0 : 1);
581
582   uint64_t TrueWeight, FalseWeight;
583   uint64_t ExitWeight = 0, CurHeaderWeight = 0;
584   if (LatchBR->extractProfMetadata(TrueWeight, FalseWeight)) {
585     ExitWeight = HeaderIdx ? TrueWeight : FalseWeight;
586     // The # of times the loop body executes is the sum of the exit block
587     // weight and the # of times the backedges are taken.
588     CurHeaderWeight = TrueWeight + FalseWeight;
589   }
590
591   // For each peeled-off iteration, make a copy of the loop.
592   for (unsigned Iter = 0; Iter < PeelCount; ++Iter) {
593     SmallVector<BasicBlock *, 8> NewBlocks;
594     ValueToValueMapTy VMap;
595
596     // Subtract the exit weight from the current header weight -- the exit
597     // weight is exactly the weight of the previous iteration's header.
598     // FIXME: due to the way the distribution is constructed, we need a
599     // guard here to make sure we don't end up with non-positive weights.
600     if (ExitWeight < CurHeaderWeight)
601       CurHeaderWeight -= ExitWeight;
602     else
603       CurHeaderWeight = 1;
604
605     cloneLoopBlocks(L, Iter, InsertTop, InsertBot, Exit,
606                     NewBlocks, LoopBlocks, VMap, LVMap, DT, LI);
607
608     // Remap to use values from the current iteration instead of the
609     // previous one.
610     remapInstructionsInBlocks(NewBlocks, VMap);
611
612     if (DT) {
613       // Latches of the cloned loops dominate over the loop exit, so idom of the
614       // latter is the first cloned loop body, as original PreHeader dominates
615       // the original loop body.
616       if (Iter == 0)
617         DT->changeImmediateDominator(Exit, cast<BasicBlock>(LVMap[Latch]));
618 #ifdef EXPENSIVE_CHECKS
619       assert(DT->verify(DominatorTree::VerificationLevel::Fast));
620 #endif
621     }
622
623     auto *LatchBRCopy = cast<BranchInst>(VMap[LatchBR]);
624     updateBranchWeights(InsertBot, LatchBRCopy, Iter,
625                         PeelCount, ExitWeight);
626     // Remove Loop metadata from the latch branch instruction
627     // because it is not the Loop's latch branch anymore.
628     LatchBRCopy->setMetadata(LLVMContext::MD_loop, nullptr);
629
630     InsertTop = InsertBot;
631     InsertBot = SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI);
632     InsertBot->setName(Header->getName() + ".peel.next");
633
634     F->getBasicBlockList().splice(InsertTop->getIterator(),
635                                   F->getBasicBlockList(),
636                                   NewBlocks[0]->getIterator(), F->end());
637   }
638
639   // Now adjust the phi nodes in the loop header to get their initial values
640   // from the last peeled-off iteration instead of the preheader.
641   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
642     PHINode *PHI = cast<PHINode>(I);
643     Value *NewVal = PHI->getIncomingValueForBlock(Latch);
644     Instruction *LatchInst = dyn_cast<Instruction>(NewVal);
645     if (LatchInst && L->contains(LatchInst))
646       NewVal = LVMap[LatchInst];
647
648     PHI->setIncomingValue(PHI->getBasicBlockIndex(NewPreHeader), NewVal);
649   }
650
651   // Adjust the branch weights on the loop exit.
652   if (ExitWeight) {
653     // The backedge count is the difference of current header weight and
654     // current loop exit weight. If the current header weight is smaller than
655     // the current loop exit weight, we mark the loop backedge weight as 1.
656     uint64_t BackEdgeWeight = 0;
657     if (ExitWeight < CurHeaderWeight)
658       BackEdgeWeight = CurHeaderWeight - ExitWeight;
659     else
660       BackEdgeWeight = 1;
661     MDBuilder MDB(LatchBR->getContext());
662     MDNode *WeightNode =
663         HeaderIdx ? MDB.createBranchWeights(ExitWeight, BackEdgeWeight)
664                   : MDB.createBranchWeights(BackEdgeWeight, ExitWeight);
665     LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode);
666   }
667
668   // If the loop is nested, we changed the parent loop, update SE.
669   if (Loop *ParentLoop = L->getParentLoop()) {
670     SE->forgetLoop(ParentLoop);
671
672     // FIXME: Incrementally update loop-simplify
673     simplifyLoop(ParentLoop, DT, LI, SE, AC, PreserveLCSSA);
674   } else {
675     // FIXME: Incrementally update loop-simplify
676     simplifyLoop(L, DT, LI, SE, AC, PreserveLCSSA);
677   }
678
679   NumPeeled++;
680
681   return true;
682 }