]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp
Merge llvm, clang, lld and lldb release_40 branch r292009. Also update
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / Utils / LoopUnrollRuntime.cpp
1 //===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements some loop unrolling utilities for loops with run-time
11 // trip counts.  See LoopUnroll.cpp for unrolling loops with compile-time
12 // trip counts.
13 //
14 // The functions in this file are used to generate extra code when the
15 // run-time trip count modulo the unroll factor is not 0.  When this is the
16 // case, we need to generate code to execute these 'left over' iterations.
17 //
18 // The current strategy generates an if-then-else sequence prior to the
19 // unrolled loop to execute the 'left over' iterations before or after the
20 // unrolled loop.
21 //
22 //===----------------------------------------------------------------------===//
23
24 #include "llvm/Transforms/Utils/UnrollLoop.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/Analysis/LoopIterator.h"
28 #include "llvm/Analysis/LoopPass.h"
29 #include "llvm/Analysis/ScalarEvolution.h"
30 #include "llvm/Analysis/ScalarEvolutionExpander.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/Metadata.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include "llvm/Transforms/Scalar.h"
38 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
39 #include "llvm/Transforms/Utils/Cloning.h"
40 #include <algorithm>
41
42 using namespace llvm;
43
44 #define DEBUG_TYPE "loop-unroll"
45
46 STATISTIC(NumRuntimeUnrolled,
47           "Number of loops unrolled with run-time trip counts");
48
49 /// Connect the unrolling prolog code to the original loop.
50 /// The unrolling prolog code contains code to execute the
51 /// 'extra' iterations if the run-time trip count modulo the
52 /// unroll count is non-zero.
53 ///
54 /// This function performs the following:
55 /// - Create PHI nodes at prolog end block to combine values
56 ///   that exit the prolog code and jump around the prolog.
57 /// - Add a PHI operand to a PHI node at the loop exit block
58 ///   for values that exit the prolog and go around the loop.
59 /// - Branch around the original loop if the trip count is less
60 ///   than the unroll factor.
61 ///
62 static void ConnectProlog(Loop *L, Value *BECount, unsigned Count,
63                           BasicBlock *PrologExit, BasicBlock *PreHeader,
64                           BasicBlock *NewPreHeader, ValueToValueMapTy &VMap,
65                           DominatorTree *DT, LoopInfo *LI, bool PreserveLCSSA) {
66   BasicBlock *Latch = L->getLoopLatch();
67   assert(Latch && "Loop must have a latch");
68   BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]);
69
70   // Create a PHI node for each outgoing value from the original loop
71   // (which means it is an outgoing value from the prolog code too).
72   // The new PHI node is inserted in the prolog end basic block.
73   // The new PHI node value is added as an operand of a PHI node in either
74   // the loop header or the loop exit block.
75   for (BasicBlock *Succ : successors(Latch)) {
76     for (Instruction &BBI : *Succ) {
77       PHINode *PN = dyn_cast<PHINode>(&BBI);
78       // Exit when we passed all PHI nodes.
79       if (!PN)
80         break;
81       // Add a new PHI node to the prolog end block and add the
82       // appropriate incoming values.
83       PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName() + ".unr",
84                                        PrologExit->getFirstNonPHI());
85       // Adding a value to the new PHI node from the original loop preheader.
86       // This is the value that skips all the prolog code.
87       if (L->contains(PN)) {
88         NewPN->addIncoming(PN->getIncomingValueForBlock(NewPreHeader),
89                            PreHeader);
90       } else {
91         NewPN->addIncoming(UndefValue::get(PN->getType()), PreHeader);
92       }
93
94       Value *V = PN->getIncomingValueForBlock(Latch);
95       if (Instruction *I = dyn_cast<Instruction>(V)) {
96         if (L->contains(I)) {
97           V = VMap.lookup(I);
98         }
99       }
100       // Adding a value to the new PHI node from the last prolog block
101       // that was created.
102       NewPN->addIncoming(V, PrologLatch);
103
104       // Update the existing PHI node operand with the value from the
105       // new PHI node.  How this is done depends on if the existing
106       // PHI node is in the original loop block, or the exit block.
107       if (L->contains(PN)) {
108         PN->setIncomingValue(PN->getBasicBlockIndex(NewPreHeader), NewPN);
109       } else {
110         PN->addIncoming(NewPN, PrologExit);
111       }
112     }
113   }
114
115   // Make sure that created prolog loop is in simplified form
116   SmallVector<BasicBlock *, 4> PrologExitPreds;
117   Loop *PrologLoop = LI->getLoopFor(PrologLatch);
118   if (PrologLoop) {
119     for (BasicBlock *PredBB : predecessors(PrologExit))
120       if (PrologLoop->contains(PredBB))
121         PrologExitPreds.push_back(PredBB);
122
123     SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI,
124                            PreserveLCSSA);
125   }
126
127   // Create a branch around the original loop, which is taken if there are no
128   // iterations remaining to be executed after running the prologue.
129   Instruction *InsertPt = PrologExit->getTerminator();
130   IRBuilder<> B(InsertPt);
131
132   assert(Count != 0 && "nonsensical Count!");
133
134   // If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1)
135   // This means %xtraiter is (BECount + 1) and all of the iterations of this
136   // loop were executed by the prologue.  Note that if BECount <u (Count - 1)
137   // then (BECount + 1) cannot unsigned-overflow.
138   Value *BrLoopExit =
139       B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1));
140   BasicBlock *Exit = L->getUniqueExitBlock();
141   assert(Exit && "Loop must have a single exit block only");
142   // Split the exit to maintain loop canonicalization guarantees
143   SmallVector<BasicBlock*, 4> Preds(predecessors(Exit));
144   SplitBlockPredecessors(Exit, Preds, ".unr-lcssa", DT, LI,
145                          PreserveLCSSA);
146   // Add the branch to the exit block (around the unrolled loop)
147   B.CreateCondBr(BrLoopExit, Exit, NewPreHeader);
148   InsertPt->eraseFromParent();
149 }
150
151 /// Connect the unrolling epilog code to the original loop.
152 /// The unrolling epilog code contains code to execute the
153 /// 'extra' iterations if the run-time trip count modulo the
154 /// unroll count is non-zero.
155 ///
156 /// This function performs the following:
157 /// - Update PHI nodes at the unrolling loop exit and epilog loop exit
158 /// - Create PHI nodes at the unrolling loop exit to combine
159 ///   values that exit the unrolling loop code and jump around it.
160 /// - Update PHI operands in the epilog loop by the new PHI nodes
161 /// - Branch around the epilog loop if extra iters (ModVal) is zero.
162 ///
163 static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit,
164                           BasicBlock *Exit, BasicBlock *PreHeader,
165                           BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader,
166                           ValueToValueMapTy &VMap, DominatorTree *DT,
167                           LoopInfo *LI, bool PreserveLCSSA)  {
168   BasicBlock *Latch = L->getLoopLatch();
169   assert(Latch && "Loop must have a latch");
170   BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]);
171
172   // Loop structure should be the following:
173   //
174   // PreHeader
175   // NewPreHeader
176   //   Header
177   //   ...
178   //   Latch
179   // NewExit (PN)
180   // EpilogPreHeader
181   //   EpilogHeader
182   //   ...
183   //   EpilogLatch
184   // Exit (EpilogPN)
185
186   // Update PHI nodes at NewExit and Exit.
187   for (Instruction &BBI : *NewExit) {
188     PHINode *PN = dyn_cast<PHINode>(&BBI);
189     // Exit when we passed all PHI nodes.
190     if (!PN)
191       break;
192     // PN should be used in another PHI located in Exit block as
193     // Exit was split by SplitBlockPredecessors into Exit and NewExit
194     // Basicaly it should look like:
195     // NewExit:
196     //   PN = PHI [I, Latch]
197     // ...
198     // Exit:
199     //   EpilogPN = PHI [PN, EpilogPreHeader]
200     //
201     // There is EpilogPreHeader incoming block instead of NewExit as
202     // NewExit was spilt 1 more time to get EpilogPreHeader.
203     assert(PN->hasOneUse() && "The phi should have 1 use");
204     PHINode *EpilogPN = cast<PHINode> (PN->use_begin()->getUser());
205     assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block");
206
207     // Add incoming PreHeader from branch around the Loop
208     PN->addIncoming(UndefValue::get(PN->getType()), PreHeader);
209
210     Value *V = PN->getIncomingValueForBlock(Latch);
211     Instruction *I = dyn_cast<Instruction>(V);
212     if (I && L->contains(I))
213       // If value comes from an instruction in the loop add VMap value.
214       V = VMap.lookup(I);
215     // For the instruction out of the loop, constant or undefined value
216     // insert value itself.
217     EpilogPN->addIncoming(V, EpilogLatch);
218
219     assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 &&
220           "EpilogPN should have EpilogPreHeader incoming block");
221     // Change EpilogPreHeader incoming block to NewExit.
222     EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader),
223                                NewExit);
224     // Now PHIs should look like:
225     // NewExit:
226     //   PN = PHI [I, Latch], [undef, PreHeader]
227     // ...
228     // Exit:
229     //   EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch]
230   }
231
232   // Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader).
233   // Update corresponding PHI nodes in epilog loop.
234   for (BasicBlock *Succ : successors(Latch)) {
235     // Skip this as we already updated phis in exit blocks.
236     if (!L->contains(Succ))
237       continue;
238     for (Instruction &BBI : *Succ) {
239       PHINode *PN = dyn_cast<PHINode>(&BBI);
240       // Exit when we passed all PHI nodes.
241       if (!PN)
242         break;
243       // Add new PHI nodes to the loop exit block and update epilog
244       // PHIs with the new PHI values.
245       PHINode *NewPN = PHINode::Create(PN->getType(), 2, PN->getName() + ".unr",
246                                        NewExit->getFirstNonPHI());
247       // Adding a value to the new PHI node from the unrolling loop preheader.
248       NewPN->addIncoming(PN->getIncomingValueForBlock(NewPreHeader), PreHeader);
249       // Adding a value to the new PHI node from the unrolling loop latch.
250       NewPN->addIncoming(PN->getIncomingValueForBlock(Latch), Latch);
251
252       // Update the existing PHI node operand with the value from the new PHI
253       // node.  Corresponding instruction in epilog loop should be PHI.
254       PHINode *VPN = cast<PHINode>(VMap[&BBI]);
255       VPN->setIncomingValue(VPN->getBasicBlockIndex(EpilogPreHeader), NewPN);
256     }
257   }
258
259   Instruction *InsertPt = NewExit->getTerminator();
260   IRBuilder<> B(InsertPt);
261   Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod");
262   assert(Exit && "Loop must have a single exit block only");
263   // Split the exit to maintain loop canonicalization guarantees
264   SmallVector<BasicBlock*, 4> Preds(predecessors(Exit));
265   SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI,
266                          PreserveLCSSA);
267   // Add the branch to the exit block (around the unrolling loop)
268   B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit);
269   InsertPt->eraseFromParent();
270 }
271
272 /// Create a clone of the blocks in a loop and connect them together.
273 /// If CreateRemainderLoop is false, loop structure will not be cloned,
274 /// otherwise a new loop will be created including all cloned blocks, and the
275 /// iterator of it switches to count NewIter down to 0.
276 /// The cloned blocks should be inserted between InsertTop and InsertBot.
277 /// If loop structure is cloned InsertTop should be new preheader, InsertBot
278 /// new loop exit.
279 ///
280 static void CloneLoopBlocks(Loop *L, Value *NewIter,
281                             const bool CreateRemainderLoop,
282                             const bool UseEpilogRemainder,
283                             BasicBlock *InsertTop, BasicBlock *InsertBot,
284                             BasicBlock *Preheader,
285                             std::vector<BasicBlock *> &NewBlocks,
286                             LoopBlocksDFS &LoopBlocks, ValueToValueMapTy &VMap,
287                             LoopInfo *LI) {
288   StringRef suffix = UseEpilogRemainder ? "epil" : "prol";
289   BasicBlock *Header = L->getHeader();
290   BasicBlock *Latch = L->getLoopLatch();
291   Function *F = Header->getParent();
292   LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
293   LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
294   Loop *NewLoop = nullptr;
295   Loop *ParentLoop = L->getParentLoop();
296   if (CreateRemainderLoop) {
297     NewLoop = new Loop();
298     if (ParentLoop)
299       ParentLoop->addChildLoop(NewLoop);
300     else
301       LI->addTopLevelLoop(NewLoop);
302   }
303
304   NewLoopsMap NewLoops;
305   NewLoops[L] = NewLoop;
306   // For each block in the original loop, create a new copy,
307   // and update the value map with the newly created values.
308   for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
309     BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F);
310     NewBlocks.push_back(NewBB);
311
312     if (NewLoop) {
313       addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops);
314     } else if (ParentLoop)
315       ParentLoop->addBasicBlockToLoop(NewBB, *LI);
316
317     VMap[*BB] = NewBB;
318     if (Header == *BB) {
319       // For the first block, add a CFG connection to this newly
320       // created block.
321       InsertTop->getTerminator()->setSuccessor(0, NewBB);
322     }
323
324     if (Latch == *BB) {
325       // For the last block, if CreateRemainderLoop is false, create a direct
326       // jump to InsertBot. If not, create a loop back to cloned head.
327       VMap.erase((*BB)->getTerminator());
328       BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]);
329       BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator());
330       IRBuilder<> Builder(LatchBR);
331       if (!CreateRemainderLoop) {
332         Builder.CreateBr(InsertBot);
333       } else {
334         PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2,
335                                           suffix + ".iter",
336                                           FirstLoopBB->getFirstNonPHI());
337         Value *IdxSub =
338             Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
339                               NewIdx->getName() + ".sub");
340         Value *IdxCmp =
341             Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp");
342         Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot);
343         NewIdx->addIncoming(NewIter, InsertTop);
344         NewIdx->addIncoming(IdxSub, NewBB);
345       }
346       LatchBR->eraseFromParent();
347     }
348   }
349
350   // Change the incoming values to the ones defined in the preheader or
351   // cloned loop.
352   for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
353     PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
354     if (!CreateRemainderLoop) {
355       if (UseEpilogRemainder) {
356         unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
357         NewPHI->setIncomingBlock(idx, InsertTop);
358         NewPHI->removeIncomingValue(Latch, false);
359       } else {
360         VMap[&*I] = NewPHI->getIncomingValueForBlock(Preheader);
361         cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
362       }
363     } else {
364       unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
365       NewPHI->setIncomingBlock(idx, InsertTop);
366       BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
367       idx = NewPHI->getBasicBlockIndex(Latch);
368       Value *InVal = NewPHI->getIncomingValue(idx);
369       NewPHI->setIncomingBlock(idx, NewLatch);
370       if (Value *V = VMap.lookup(InVal))
371         NewPHI->setIncomingValue(idx, V);
372     }
373   }
374   if (NewLoop) {
375     // Add unroll disable metadata to disable future unrolling for this loop.
376     SmallVector<Metadata *, 4> MDs;
377     // Reserve first location for self reference to the LoopID metadata node.
378     MDs.push_back(nullptr);
379     MDNode *LoopID = NewLoop->getLoopID();
380     if (LoopID) {
381       // First remove any existing loop unrolling metadata.
382       for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
383         bool IsUnrollMetadata = false;
384         MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
385         if (MD) {
386           const MDString *S = dyn_cast<MDString>(MD->getOperand(0));
387           IsUnrollMetadata = S && S->getString().startswith("llvm.loop.unroll.");
388         }
389         if (!IsUnrollMetadata)
390           MDs.push_back(LoopID->getOperand(i));
391       }
392     }
393
394     LLVMContext &Context = NewLoop->getHeader()->getContext();
395     SmallVector<Metadata *, 1> DisableOperands;
396     DisableOperands.push_back(MDString::get(Context, "llvm.loop.unroll.disable"));
397     MDNode *DisableNode = MDNode::get(Context, DisableOperands);
398     MDs.push_back(DisableNode);
399
400     MDNode *NewLoopID = MDNode::get(Context, MDs);
401     // Set operand 0 to refer to the loop id itself.
402     NewLoopID->replaceOperandWith(0, NewLoopID);
403     NewLoop->setLoopID(NewLoopID);
404   }
405 }
406
407 /// Insert code in the prolog/epilog code when unrolling a loop with a
408 /// run-time trip-count.
409 ///
410 /// This method assumes that the loop unroll factor is total number
411 /// of loop bodies in the loop after unrolling. (Some folks refer
412 /// to the unroll factor as the number of *extra* copies added).
413 /// We assume also that the loop unroll factor is a power-of-two. So, after
414 /// unrolling the loop, the number of loop bodies executed is 2,
415 /// 4, 8, etc.  Note - LLVM converts the if-then-sequence to a switch
416 /// instruction in SimplifyCFG.cpp.  Then, the backend decides how code for
417 /// the switch instruction is generated.
418 ///
419 /// ***Prolog case***
420 ///        extraiters = tripcount % loopfactor
421 ///        if (extraiters == 0) jump Loop:
422 ///        else jump Prol:
423 /// Prol:  LoopBody;
424 ///        extraiters -= 1                 // Omitted if unroll factor is 2.
425 ///        if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
426 ///        if (tripcount < loopfactor) jump End:
427 /// Loop:
428 /// ...
429 /// End:
430 ///
431 /// ***Epilog case***
432 ///        extraiters = tripcount % loopfactor
433 ///        if (tripcount < loopfactor) jump LoopExit:
434 ///        unroll_iters = tripcount - extraiters
435 /// Loop:  LoopBody; (executes unroll_iter times);
436 ///        unroll_iter -= 1
437 ///        if (unroll_iter != 0) jump Loop:
438 /// LoopExit:
439 ///        if (extraiters == 0) jump EpilExit:
440 /// Epil:  LoopBody; (executes extraiters times)
441 ///        extraiters -= 1                 // Omitted if unroll factor is 2.
442 ///        if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2.
443 /// EpilExit:
444
445 bool llvm::UnrollRuntimeLoopRemainder(Loop *L, unsigned Count,
446                                       bool AllowExpensiveTripCount,
447                                       bool UseEpilogRemainder,
448                                       LoopInfo *LI, ScalarEvolution *SE,
449                                       DominatorTree *DT, bool PreserveLCSSA) {
450   // for now, only unroll loops that contain a single exit
451   if (!L->getExitingBlock())
452     return false;
453
454   // Make sure the loop is in canonical form, and there is a single
455   // exit block only.
456   if (!L->isLoopSimplifyForm())
457     return false;
458   BasicBlock *Exit = L->getUniqueExitBlock(); // successor out of loop
459   if (!Exit)
460     return false;
461
462   // Use Scalar Evolution to compute the trip count. This allows more loops to
463   // be unrolled than relying on induction var simplification.
464   if (!SE)
465     return false;
466
467   // Only unroll loops with a computable trip count, and the trip count needs
468   // to be an int value (allowing a pointer type is a TODO item).
469   const SCEV *BECountSC = SE->getBackedgeTakenCount(L);
470   if (isa<SCEVCouldNotCompute>(BECountSC) ||
471       !BECountSC->getType()->isIntegerTy())
472     return false;
473
474   unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth();
475
476   // Add 1 since the backedge count doesn't include the first loop iteration.
477   const SCEV *TripCountSC =
478       SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1));
479   if (isa<SCEVCouldNotCompute>(TripCountSC))
480     return false;
481
482   BasicBlock *Header = L->getHeader();
483   BasicBlock *PreHeader = L->getLoopPreheader();
484   BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
485   const DataLayout &DL = Header->getModule()->getDataLayout();
486   SCEVExpander Expander(*SE, DL, "loop-unroll");
487   if (!AllowExpensiveTripCount &&
488       Expander.isHighCostExpansion(TripCountSC, L, PreHeaderBR))
489     return false;
490
491   // This constraint lets us deal with an overflowing trip count easily; see the
492   // comment on ModVal below.
493   if (Log2_32(Count) > BEWidth)
494     return false;
495
496   BasicBlock *Latch = L->getLoopLatch();
497
498   // Loop structure is the following:
499   //
500   // PreHeader
501   //   Header
502   //   ...
503   //   Latch
504   // Exit
505
506   BasicBlock *NewPreHeader;
507   BasicBlock *NewExit = nullptr;
508   BasicBlock *PrologExit = nullptr;
509   BasicBlock *EpilogPreHeader = nullptr;
510   BasicBlock *PrologPreHeader = nullptr;
511
512   if (UseEpilogRemainder) {
513     // If epilog remainder
514     // Split PreHeader to insert a branch around loop for unrolling.
515     NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI);
516     NewPreHeader->setName(PreHeader->getName() + ".new");
517     // Split Exit to create phi nodes from branch above.
518     SmallVector<BasicBlock*, 4> Preds(predecessors(Exit));
519     NewExit = SplitBlockPredecessors(Exit, Preds, ".unr-lcssa",
520                                      DT, LI, PreserveLCSSA);
521     // Split NewExit to insert epilog remainder loop.
522     EpilogPreHeader = SplitBlock(NewExit, NewExit->getTerminator(), DT, LI);
523     EpilogPreHeader->setName(Header->getName() + ".epil.preheader");
524   } else {
525     // If prolog remainder
526     // Split the original preheader twice to insert prolog remainder loop
527     PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI);
528     PrologPreHeader->setName(Header->getName() + ".prol.preheader");
529     PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(),
530                             DT, LI);
531     PrologExit->setName(Header->getName() + ".prol.loopexit");
532     // Split PrologExit to get NewPreHeader.
533     NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI);
534     NewPreHeader->setName(PreHeader->getName() + ".new");
535   }
536   // Loop structure should be the following:
537   //  Epilog             Prolog
538   //
539   // PreHeader         PreHeader
540   // *NewPreHeader     *PrologPreHeader
541   //   Header          *PrologExit
542   //   ...             *NewPreHeader
543   //   Latch             Header
544   // *NewExit            ...
545   // *EpilogPreHeader    Latch
546   // Exit              Exit
547
548   // Calculate conditions for branch around loop for unrolling
549   // in epilog case and around prolog remainder loop in prolog case.
550   // Compute the number of extra iterations required, which is:
551   //  extra iterations = run-time trip count % loop unroll factor
552   PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
553   Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
554                                             PreHeaderBR);
555   Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(),
556                                           PreHeaderBR);
557   IRBuilder<> B(PreHeaderBR);
558   Value *ModVal;
559   // Calculate ModVal = (BECount + 1) % Count.
560   // Note that TripCount is BECount + 1.
561   if (isPowerOf2_32(Count)) {
562     // When Count is power of 2 we don't BECount for epilog case, however we'll
563     // need it for a branch around unrolling loop for prolog case.
564     ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter");
565     //  1. There are no iterations to be run in the prolog/epilog loop.
566     // OR
567     //  2. The addition computing TripCount overflowed.
568     //
569     // If (2) is true, we know that TripCount really is (1 << BEWidth) and so
570     // the number of iterations that remain to be run in the original loop is a
571     // multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we
572     // explicitly check this above).
573   } else {
574     // As (BECount + 1) can potentially unsigned overflow we count
575     // (BECount % Count) + 1 which is overflow safe as BECount % Count < Count.
576     Value *ModValTmp = B.CreateURem(BECount,
577                                     ConstantInt::get(BECount->getType(),
578                                                      Count));
579     Value *ModValAdd = B.CreateAdd(ModValTmp,
580                                    ConstantInt::get(ModValTmp->getType(), 1));
581     // At that point (BECount % Count) + 1 could be equal to Count.
582     // To handle this case we need to take mod by Count one more time.
583     ModVal = B.CreateURem(ModValAdd,
584                           ConstantInt::get(BECount->getType(), Count),
585                           "xtraiter");
586   }
587   Value *BranchVal =
588       UseEpilogRemainder ? B.CreateICmpULT(BECount,
589                                            ConstantInt::get(BECount->getType(),
590                                                             Count - 1)) :
591                            B.CreateIsNotNull(ModVal, "lcmp.mod");
592   BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader;
593   BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit;
594   // Branch to either remainder (extra iterations) loop or unrolling loop.
595   B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop);
596   PreHeaderBR->eraseFromParent();
597   Function *F = Header->getParent();
598   // Get an ordered list of blocks in the loop to help with the ordering of the
599   // cloned blocks in the prolog/epilog code
600   LoopBlocksDFS LoopBlocks(L);
601   LoopBlocks.perform(LI);
602
603   //
604   // For each extra loop iteration, create a copy of the loop's basic blocks
605   // and generate a condition that branches to the copy depending on the
606   // number of 'left over' iterations.
607   //
608   std::vector<BasicBlock *> NewBlocks;
609   ValueToValueMapTy VMap;
610
611   // For unroll factor 2 remainder loop will have 1 iterations.
612   // Do not create 1 iteration loop.
613   bool CreateRemainderLoop = (Count != 2);
614
615   // Clone all the basic blocks in the loop. If Count is 2, we don't clone
616   // the loop, otherwise we create a cloned loop to execute the extra
617   // iterations. This function adds the appropriate CFG connections.
618   BasicBlock *InsertBot = UseEpilogRemainder ? Exit : PrologExit;
619   BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader;
620   CloneLoopBlocks(L, ModVal, CreateRemainderLoop, UseEpilogRemainder, InsertTop,
621                   InsertBot, NewPreHeader, NewBlocks, LoopBlocks, VMap, LI);
622
623   // Insert the cloned blocks into the function.
624   F->getBasicBlockList().splice(InsertBot->getIterator(),
625                                 F->getBasicBlockList(),
626                                 NewBlocks[0]->getIterator(),
627                                 F->end());
628
629   // Loop structure should be the following:
630   //  Epilog             Prolog
631   //
632   // PreHeader         PreHeader
633   // NewPreHeader      PrologPreHeader
634   //   Header            PrologHeader
635   //   ...               ...
636   //   Latch             PrologLatch
637   // NewExit           PrologExit
638   // EpilogPreHeader   NewPreHeader
639   //   EpilogHeader      Header
640   //   ...               ...
641   //   EpilogLatch       Latch
642   // Exit              Exit
643
644   // Rewrite the cloned instruction operands to use the values created when the
645   // clone is created.
646   for (BasicBlock *BB : NewBlocks) {
647     for (Instruction &I : *BB) {
648       RemapInstruction(&I, VMap,
649                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
650     }
651   }
652
653   if (UseEpilogRemainder) {
654     // Connect the epilog code to the original loop and update the
655     // PHI functions.
656     ConnectEpilog(L, ModVal, NewExit, Exit, PreHeader,
657                   EpilogPreHeader, NewPreHeader, VMap, DT, LI,
658                   PreserveLCSSA);
659
660     // Update counter in loop for unrolling.
661     // I should be multiply of Count.
662     IRBuilder<> B2(NewPreHeader->getTerminator());
663     Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter");
664     BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
665     B2.SetInsertPoint(LatchBR);
666     PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter",
667                                       Header->getFirstNonPHI());
668     Value *IdxSub =
669         B2.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
670                      NewIdx->getName() + ".nsub");
671     Value *IdxCmp;
672     if (LatchBR->getSuccessor(0) == Header)
673       IdxCmp = B2.CreateIsNotNull(IdxSub, NewIdx->getName() + ".ncmp");
674     else
675       IdxCmp = B2.CreateIsNull(IdxSub, NewIdx->getName() + ".ncmp");
676     NewIdx->addIncoming(TestVal, NewPreHeader);
677     NewIdx->addIncoming(IdxSub, Latch);
678     LatchBR->setCondition(IdxCmp);
679   } else {
680     // Connect the prolog code to the original loop and update the
681     // PHI functions.
682     ConnectProlog(L, BECount, Count, PrologExit, PreHeader, NewPreHeader,
683                   VMap, DT, LI, PreserveLCSSA);
684   }
685
686   // If this loop is nested, then the loop unroller changes the code in the
687   // parent loop, so the Scalar Evolution pass needs to be run again.
688   if (Loop *ParentLoop = L->getParentLoop())
689     SE->forgetLoop(ParentLoop);
690
691   NumRuntimeUnrolled++;
692   return true;
693 }