]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/Utils/PredicateInfo.cpp
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / Utils / PredicateInfo.cpp
1 //===-- PredicateInfo.cpp - PredicateInfo Builder--------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------===//
9 //
10 // This file implements the PredicateInfo class.
11 //
12 //===----------------------------------------------------------------===//
13
14 #include "llvm/Transforms/Utils/PredicateInfo.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DepthFirstIterator.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/Analysis/AssumptionCache.h"
22 #include "llvm/Analysis/CFG.h"
23 #include "llvm/IR/AssemblyAnnotationWriter.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/Dominators.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/InstIterator.h"
29 #include "llvm/IR/IntrinsicInst.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Metadata.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/PatternMatch.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/DebugCounter.h"
36 #include "llvm/Support/FormattedStream.h"
37 #include "llvm/Transforms/Utils.h"
38 #include "llvm/Transforms/Utils/OrderedInstructions.h"
39 #include <algorithm>
40 #define DEBUG_TYPE "predicateinfo"
41 using namespace llvm;
42 using namespace PatternMatch;
43 using namespace llvm::PredicateInfoClasses;
44
45 INITIALIZE_PASS_BEGIN(PredicateInfoPrinterLegacyPass, "print-predicateinfo",
46                       "PredicateInfo Printer", false, false)
47 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
48 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
49 INITIALIZE_PASS_END(PredicateInfoPrinterLegacyPass, "print-predicateinfo",
50                     "PredicateInfo Printer", false, false)
51 static cl::opt<bool> VerifyPredicateInfo(
52     "verify-predicateinfo", cl::init(false), cl::Hidden,
53     cl::desc("Verify PredicateInfo in legacy printer pass."));
54 DEBUG_COUNTER(RenameCounter, "predicateinfo-rename",
55               "Controls which variables are renamed with predicateinfo");
56
57 namespace {
58 // Given a predicate info that is a type of branching terminator, get the
59 // branching block.
60 const BasicBlock *getBranchBlock(const PredicateBase *PB) {
61   assert(isa<PredicateWithEdge>(PB) &&
62          "Only branches and switches should have PHIOnly defs that "
63          "require branch blocks.");
64   return cast<PredicateWithEdge>(PB)->From;
65 }
66
67 // Given a predicate info that is a type of branching terminator, get the
68 // branching terminator.
69 static Instruction *getBranchTerminator(const PredicateBase *PB) {
70   assert(isa<PredicateWithEdge>(PB) &&
71          "Not a predicate info type we know how to get a terminator from.");
72   return cast<PredicateWithEdge>(PB)->From->getTerminator();
73 }
74
75 // Given a predicate info that is a type of branching terminator, get the
76 // edge this predicate info represents
77 const std::pair<BasicBlock *, BasicBlock *>
78 getBlockEdge(const PredicateBase *PB) {
79   assert(isa<PredicateWithEdge>(PB) &&
80          "Not a predicate info type we know how to get an edge from.");
81   const auto *PEdge = cast<PredicateWithEdge>(PB);
82   return std::make_pair(PEdge->From, PEdge->To);
83 }
84 }
85
86 namespace llvm {
87 namespace PredicateInfoClasses {
88 enum LocalNum {
89   // Operations that must appear first in the block.
90   LN_First,
91   // Operations that are somewhere in the middle of the block, and are sorted on
92   // demand.
93   LN_Middle,
94   // Operations that must appear last in a block, like successor phi node uses.
95   LN_Last
96 };
97
98 // Associate global and local DFS info with defs and uses, so we can sort them
99 // into a global domination ordering.
100 struct ValueDFS {
101   int DFSIn = 0;
102   int DFSOut = 0;
103   unsigned int LocalNum = LN_Middle;
104   // Only one of Def or Use will be set.
105   Value *Def = nullptr;
106   Use *U = nullptr;
107   // Neither PInfo nor EdgeOnly participate in the ordering
108   PredicateBase *PInfo = nullptr;
109   bool EdgeOnly = false;
110 };
111
112 // Perform a strict weak ordering on instructions and arguments.
113 static bool valueComesBefore(OrderedInstructions &OI, const Value *A,
114                              const Value *B) {
115   auto *ArgA = dyn_cast_or_null<Argument>(A);
116   auto *ArgB = dyn_cast_or_null<Argument>(B);
117   if (ArgA && !ArgB)
118     return true;
119   if (ArgB && !ArgA)
120     return false;
121   if (ArgA && ArgB)
122     return ArgA->getArgNo() < ArgB->getArgNo();
123   return OI.dfsBefore(cast<Instruction>(A), cast<Instruction>(B));
124 }
125
126 // This compares ValueDFS structures, creating OrderedBasicBlocks where
127 // necessary to compare uses/defs in the same block.  Doing so allows us to walk
128 // the minimum number of instructions necessary to compute our def/use ordering.
129 struct ValueDFS_Compare {
130   OrderedInstructions &OI;
131   ValueDFS_Compare(OrderedInstructions &OI) : OI(OI) {}
132
133   bool operator()(const ValueDFS &A, const ValueDFS &B) const {
134     if (&A == &B)
135       return false;
136     // The only case we can't directly compare them is when they in the same
137     // block, and both have localnum == middle.  In that case, we have to use
138     // comesbefore to see what the real ordering is, because they are in the
139     // same basic block.
140
141     bool SameBlock = std::tie(A.DFSIn, A.DFSOut) == std::tie(B.DFSIn, B.DFSOut);
142
143     // We want to put the def that will get used for a given set of phi uses,
144     // before those phi uses.
145     // So we sort by edge, then by def.
146     // Note that only phi nodes uses and defs can come last.
147     if (SameBlock && A.LocalNum == LN_Last && B.LocalNum == LN_Last)
148       return comparePHIRelated(A, B);
149
150     if (!SameBlock || A.LocalNum != LN_Middle || B.LocalNum != LN_Middle)
151       return std::tie(A.DFSIn, A.DFSOut, A.LocalNum, A.Def, A.U) <
152              std::tie(B.DFSIn, B.DFSOut, B.LocalNum, B.Def, B.U);
153     return localComesBefore(A, B);
154   }
155
156   // For a phi use, or a non-materialized def, return the edge it represents.
157   const std::pair<BasicBlock *, BasicBlock *>
158   getBlockEdge(const ValueDFS &VD) const {
159     if (!VD.Def && VD.U) {
160       auto *PHI = cast<PHINode>(VD.U->getUser());
161       return std::make_pair(PHI->getIncomingBlock(*VD.U), PHI->getParent());
162     }
163     // This is really a non-materialized def.
164     return ::getBlockEdge(VD.PInfo);
165   }
166
167   // For two phi related values, return the ordering.
168   bool comparePHIRelated(const ValueDFS &A, const ValueDFS &B) const {
169     auto &ABlockEdge = getBlockEdge(A);
170     auto &BBlockEdge = getBlockEdge(B);
171     // Now sort by block edge and then defs before uses.
172     return std::tie(ABlockEdge, A.Def, A.U) < std::tie(BBlockEdge, B.Def, B.U);
173   }
174
175   // Get the definition of an instruction that occurs in the middle of a block.
176   Value *getMiddleDef(const ValueDFS &VD) const {
177     if (VD.Def)
178       return VD.Def;
179     // It's possible for the defs and uses to be null.  For branches, the local
180     // numbering will say the placed predicaeinfos should go first (IE
181     // LN_beginning), so we won't be in this function. For assumes, we will end
182     // up here, beause we need to order the def we will place relative to the
183     // assume.  So for the purpose of ordering, we pretend the def is the assume
184     // because that is where we will insert the info.
185     if (!VD.U) {
186       assert(VD.PInfo &&
187              "No def, no use, and no predicateinfo should not occur");
188       assert(isa<PredicateAssume>(VD.PInfo) &&
189              "Middle of block should only occur for assumes");
190       return cast<PredicateAssume>(VD.PInfo)->AssumeInst;
191     }
192     return nullptr;
193   }
194
195   // Return either the Def, if it's not null, or the user of the Use, if the def
196   // is null.
197   const Instruction *getDefOrUser(const Value *Def, const Use *U) const {
198     if (Def)
199       return cast<Instruction>(Def);
200     return cast<Instruction>(U->getUser());
201   }
202
203   // This performs the necessary local basic block ordering checks to tell
204   // whether A comes before B, where both are in the same basic block.
205   bool localComesBefore(const ValueDFS &A, const ValueDFS &B) const {
206     auto *ADef = getMiddleDef(A);
207     auto *BDef = getMiddleDef(B);
208
209     // See if we have real values or uses. If we have real values, we are
210     // guaranteed they are instructions or arguments. No matter what, we are
211     // guaranteed they are in the same block if they are instructions.
212     auto *ArgA = dyn_cast_or_null<Argument>(ADef);
213     auto *ArgB = dyn_cast_or_null<Argument>(BDef);
214
215     if (ArgA || ArgB)
216       return valueComesBefore(OI, ArgA, ArgB);
217
218     auto *AInst = getDefOrUser(ADef, A.U);
219     auto *BInst = getDefOrUser(BDef, B.U);
220     return valueComesBefore(OI, AInst, BInst);
221   }
222 };
223
224 } // namespace PredicateInfoClasses
225
226 bool PredicateInfo::stackIsInScope(const ValueDFSStack &Stack,
227                                    const ValueDFS &VDUse) const {
228   if (Stack.empty())
229     return false;
230   // If it's a phi only use, make sure it's for this phi node edge, and that the
231   // use is in a phi node.  If it's anything else, and the top of the stack is
232   // EdgeOnly, we need to pop the stack.  We deliberately sort phi uses next to
233   // the defs they must go with so that we can know it's time to pop the stack
234   // when we hit the end of the phi uses for a given def.
235   if (Stack.back().EdgeOnly) {
236     if (!VDUse.U)
237       return false;
238     auto *PHI = dyn_cast<PHINode>(VDUse.U->getUser());
239     if (!PHI)
240       return false;
241     // Check edge
242     BasicBlock *EdgePred = PHI->getIncomingBlock(*VDUse.U);
243     if (EdgePred != getBranchBlock(Stack.back().PInfo))
244       return false;
245
246     // Use dominates, which knows how to handle edge dominance.
247     return DT.dominates(getBlockEdge(Stack.back().PInfo), *VDUse.U);
248   }
249
250   return (VDUse.DFSIn >= Stack.back().DFSIn &&
251           VDUse.DFSOut <= Stack.back().DFSOut);
252 }
253
254 void PredicateInfo::popStackUntilDFSScope(ValueDFSStack &Stack,
255                                           const ValueDFS &VD) {
256   while (!Stack.empty() && !stackIsInScope(Stack, VD))
257     Stack.pop_back();
258 }
259
260 // Convert the uses of Op into a vector of uses, associating global and local
261 // DFS info with each one.
262 void PredicateInfo::convertUsesToDFSOrdered(
263     Value *Op, SmallVectorImpl<ValueDFS> &DFSOrderedSet) {
264   for (auto &U : Op->uses()) {
265     if (auto *I = dyn_cast<Instruction>(U.getUser())) {
266       ValueDFS VD;
267       // Put the phi node uses in the incoming block.
268       BasicBlock *IBlock;
269       if (auto *PN = dyn_cast<PHINode>(I)) {
270         IBlock = PN->getIncomingBlock(U);
271         // Make phi node users appear last in the incoming block
272         // they are from.
273         VD.LocalNum = LN_Last;
274       } else {
275         // If it's not a phi node use, it is somewhere in the middle of the
276         // block.
277         IBlock = I->getParent();
278         VD.LocalNum = LN_Middle;
279       }
280       DomTreeNode *DomNode = DT.getNode(IBlock);
281       // It's possible our use is in an unreachable block. Skip it if so.
282       if (!DomNode)
283         continue;
284       VD.DFSIn = DomNode->getDFSNumIn();
285       VD.DFSOut = DomNode->getDFSNumOut();
286       VD.U = &U;
287       DFSOrderedSet.push_back(VD);
288     }
289   }
290 }
291
292 // Collect relevant operations from Comparison that we may want to insert copies
293 // for.
294 void collectCmpOps(CmpInst *Comparison, SmallVectorImpl<Value *> &CmpOperands) {
295   auto *Op0 = Comparison->getOperand(0);
296   auto *Op1 = Comparison->getOperand(1);
297   if (Op0 == Op1)
298     return;
299   CmpOperands.push_back(Comparison);
300   // Only want real values, not constants.  Additionally, operands with one use
301   // are only being used in the comparison, which means they will not be useful
302   // for us to consider for predicateinfo.
303   //
304   if ((isa<Instruction>(Op0) || isa<Argument>(Op0)) && !Op0->hasOneUse())
305     CmpOperands.push_back(Op0);
306   if ((isa<Instruction>(Op1) || isa<Argument>(Op1)) && !Op1->hasOneUse())
307     CmpOperands.push_back(Op1);
308 }
309
310 // Add Op, PB to the list of value infos for Op, and mark Op to be renamed.
311 void PredicateInfo::addInfoFor(SmallPtrSetImpl<Value *> &OpsToRename, Value *Op,
312                                PredicateBase *PB) {
313   OpsToRename.insert(Op);
314   auto &OperandInfo = getOrCreateValueInfo(Op);
315   AllInfos.push_back(PB);
316   OperandInfo.Infos.push_back(PB);
317 }
318
319 // Process an assume instruction and place relevant operations we want to rename
320 // into OpsToRename.
321 void PredicateInfo::processAssume(IntrinsicInst *II, BasicBlock *AssumeBB,
322                                   SmallPtrSetImpl<Value *> &OpsToRename) {
323   // See if we have a comparison we support
324   SmallVector<Value *, 8> CmpOperands;
325   SmallVector<Value *, 2> ConditionsToProcess;
326   CmpInst::Predicate Pred;
327   Value *Operand = II->getOperand(0);
328   if (m_c_And(m_Cmp(Pred, m_Value(), m_Value()),
329               m_Cmp(Pred, m_Value(), m_Value()))
330           .match(II->getOperand(0))) {
331     ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(0));
332     ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(1));
333     ConditionsToProcess.push_back(Operand);
334   } else if (isa<CmpInst>(Operand)) {
335
336     ConditionsToProcess.push_back(Operand);
337   }
338   for (auto Cond : ConditionsToProcess) {
339     if (auto *Cmp = dyn_cast<CmpInst>(Cond)) {
340       collectCmpOps(Cmp, CmpOperands);
341       // Now add our copy infos for our operands
342       for (auto *Op : CmpOperands) {
343         auto *PA = new PredicateAssume(Op, II, Cmp);
344         addInfoFor(OpsToRename, Op, PA);
345       }
346       CmpOperands.clear();
347     } else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) {
348       // Otherwise, it should be an AND.
349       assert(BinOp->getOpcode() == Instruction::And &&
350              "Should have been an AND");
351       auto *PA = new PredicateAssume(BinOp, II, BinOp);
352       addInfoFor(OpsToRename, BinOp, PA);
353     } else {
354       llvm_unreachable("Unknown type of condition");
355     }
356   }
357 }
358
359 // Process a block terminating branch, and place relevant operations to be
360 // renamed into OpsToRename.
361 void PredicateInfo::processBranch(BranchInst *BI, BasicBlock *BranchBB,
362                                   SmallPtrSetImpl<Value *> &OpsToRename) {
363   BasicBlock *FirstBB = BI->getSuccessor(0);
364   BasicBlock *SecondBB = BI->getSuccessor(1);
365   SmallVector<BasicBlock *, 2> SuccsToProcess;
366   SuccsToProcess.push_back(FirstBB);
367   SuccsToProcess.push_back(SecondBB);
368   SmallVector<Value *, 2> ConditionsToProcess;
369
370   auto InsertHelper = [&](Value *Op, bool isAnd, bool isOr, Value *Cond) {
371     for (auto *Succ : SuccsToProcess) {
372       // Don't try to insert on a self-edge. This is mainly because we will
373       // eliminate during renaming anyway.
374       if (Succ == BranchBB)
375         continue;
376       bool TakenEdge = (Succ == FirstBB);
377       // For and, only insert on the true edge
378       // For or, only insert on the false edge
379       if ((isAnd && !TakenEdge) || (isOr && TakenEdge))
380         continue;
381       PredicateBase *PB =
382           new PredicateBranch(Op, BranchBB, Succ, Cond, TakenEdge);
383       addInfoFor(OpsToRename, Op, PB);
384       if (!Succ->getSinglePredecessor())
385         EdgeUsesOnly.insert({BranchBB, Succ});
386     }
387   };
388
389   // Match combinations of conditions.
390   CmpInst::Predicate Pred;
391   bool isAnd = false;
392   bool isOr = false;
393   SmallVector<Value *, 8> CmpOperands;
394   if (match(BI->getCondition(), m_And(m_Cmp(Pred, m_Value(), m_Value()),
395                                       m_Cmp(Pred, m_Value(), m_Value()))) ||
396       match(BI->getCondition(), m_Or(m_Cmp(Pred, m_Value(), m_Value()),
397                                      m_Cmp(Pred, m_Value(), m_Value())))) {
398     auto *BinOp = cast<BinaryOperator>(BI->getCondition());
399     if (BinOp->getOpcode() == Instruction::And)
400       isAnd = true;
401     else if (BinOp->getOpcode() == Instruction::Or)
402       isOr = true;
403     ConditionsToProcess.push_back(BinOp->getOperand(0));
404     ConditionsToProcess.push_back(BinOp->getOperand(1));
405     ConditionsToProcess.push_back(BI->getCondition());
406   } else if (isa<CmpInst>(BI->getCondition())) {
407     ConditionsToProcess.push_back(BI->getCondition());
408   }
409   for (auto Cond : ConditionsToProcess) {
410     if (auto *Cmp = dyn_cast<CmpInst>(Cond)) {
411       collectCmpOps(Cmp, CmpOperands);
412       // Now add our copy infos for our operands
413       for (auto *Op : CmpOperands)
414         InsertHelper(Op, isAnd, isOr, Cmp);
415     } else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) {
416       // This must be an AND or an OR.
417       assert((BinOp->getOpcode() == Instruction::And ||
418               BinOp->getOpcode() == Instruction::Or) &&
419              "Should have been an AND or an OR");
420       // The actual value of the binop is not subject to the same restrictions
421       // as the comparison. It's either true or false on the true/false branch.
422       InsertHelper(BinOp, false, false, BinOp);
423     } else {
424       llvm_unreachable("Unknown type of condition");
425     }
426     CmpOperands.clear();
427   }
428 }
429 // Process a block terminating switch, and place relevant operations to be
430 // renamed into OpsToRename.
431 void PredicateInfo::processSwitch(SwitchInst *SI, BasicBlock *BranchBB,
432                                   SmallPtrSetImpl<Value *> &OpsToRename) {
433   Value *Op = SI->getCondition();
434   if ((!isa<Instruction>(Op) && !isa<Argument>(Op)) || Op->hasOneUse())
435     return;
436
437   // Remember how many outgoing edges there are to every successor.
438   SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
439   for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
440     BasicBlock *TargetBlock = SI->getSuccessor(i);
441     ++SwitchEdges[TargetBlock];
442   }
443
444   // Now propagate info for each case value
445   for (auto C : SI->cases()) {
446     BasicBlock *TargetBlock = C.getCaseSuccessor();
447     if (SwitchEdges.lookup(TargetBlock) == 1) {
448       PredicateSwitch *PS = new PredicateSwitch(
449           Op, SI->getParent(), TargetBlock, C.getCaseValue(), SI);
450       addInfoFor(OpsToRename, Op, PS);
451       if (!TargetBlock->getSinglePredecessor())
452         EdgeUsesOnly.insert({BranchBB, TargetBlock});
453     }
454   }
455 }
456
457 // Build predicate info for our function
458 void PredicateInfo::buildPredicateInfo() {
459   DT.updateDFSNumbers();
460   // Collect operands to rename from all conditional branch terminators, as well
461   // as assume statements.
462   SmallPtrSet<Value *, 8> OpsToRename;
463   for (auto DTN : depth_first(DT.getRootNode())) {
464     BasicBlock *BranchBB = DTN->getBlock();
465     if (auto *BI = dyn_cast<BranchInst>(BranchBB->getTerminator())) {
466       if (!BI->isConditional())
467         continue;
468       // Can't insert conditional information if they all go to the same place.
469       if (BI->getSuccessor(0) == BI->getSuccessor(1))
470         continue;
471       processBranch(BI, BranchBB, OpsToRename);
472     } else if (auto *SI = dyn_cast<SwitchInst>(BranchBB->getTerminator())) {
473       processSwitch(SI, BranchBB, OpsToRename);
474     }
475   }
476   for (auto &Assume : AC.assumptions()) {
477     if (auto *II = dyn_cast_or_null<IntrinsicInst>(Assume))
478       processAssume(II, II->getParent(), OpsToRename);
479   }
480   // Now rename all our operations.
481   renameUses(OpsToRename);
482 }
483
484 // Create a ssa_copy declaration with custom mangling, because
485 // Intrinsic::getDeclaration does not handle overloaded unnamed types properly:
486 // all unnamed types get mangled to the same string. We use the pointer
487 // to the type as name here, as it guarantees unique names for different
488 // types and we remove the declarations when destroying PredicateInfo.
489 // It is a workaround for PR38117, because solving it in a fully general way is
490 // tricky (FIXME).
491 static Function *getCopyDeclaration(Module *M, Type *Ty) {
492   std::string Name = "llvm.ssa.copy." + utostr((uintptr_t) Ty);
493   return cast<Function>(M->getOrInsertFunction(
494       Name, getType(M->getContext(), Intrinsic::ssa_copy, Ty)));
495 }
496
497 // Given the renaming stack, make all the operands currently on the stack real
498 // by inserting them into the IR.  Return the last operation's value.
499 Value *PredicateInfo::materializeStack(unsigned int &Counter,
500                                        ValueDFSStack &RenameStack,
501                                        Value *OrigOp) {
502   // Find the first thing we have to materialize
503   auto RevIter = RenameStack.rbegin();
504   for (; RevIter != RenameStack.rend(); ++RevIter)
505     if (RevIter->Def)
506       break;
507
508   size_t Start = RevIter - RenameStack.rbegin();
509   // The maximum number of things we should be trying to materialize at once
510   // right now is 4, depending on if we had an assume, a branch, and both used
511   // and of conditions.
512   for (auto RenameIter = RenameStack.end() - Start;
513        RenameIter != RenameStack.end(); ++RenameIter) {
514     auto *Op =
515         RenameIter == RenameStack.begin() ? OrigOp : (RenameIter - 1)->Def;
516     ValueDFS &Result = *RenameIter;
517     auto *ValInfo = Result.PInfo;
518     // For edge predicates, we can just place the operand in the block before
519     // the terminator.  For assume, we have to place it right before the assume
520     // to ensure we dominate all of our uses.  Always insert right before the
521     // relevant instruction (terminator, assume), so that we insert in proper
522     // order in the case of multiple predicateinfo in the same block.
523     if (isa<PredicateWithEdge>(ValInfo)) {
524       IRBuilder<> B(getBranchTerminator(ValInfo));
525       Function *IF = getCopyDeclaration(F.getParent(), Op->getType());
526       if (IF->user_begin() == IF->user_end())
527         CreatedDeclarations.insert(IF);
528       CallInst *PIC =
529           B.CreateCall(IF, Op, Op->getName() + "." + Twine(Counter++));
530       PredicateMap.insert({PIC, ValInfo});
531       Result.Def = PIC;
532     } else {
533       auto *PAssume = dyn_cast<PredicateAssume>(ValInfo);
534       assert(PAssume &&
535              "Should not have gotten here without it being an assume");
536       IRBuilder<> B(PAssume->AssumeInst);
537       Function *IF = getCopyDeclaration(F.getParent(), Op->getType());
538       if (IF->user_begin() == IF->user_end())
539         CreatedDeclarations.insert(IF);
540       CallInst *PIC = B.CreateCall(IF, Op);
541       PredicateMap.insert({PIC, ValInfo});
542       Result.Def = PIC;
543     }
544   }
545   return RenameStack.back().Def;
546 }
547
548 // Instead of the standard SSA renaming algorithm, which is O(Number of
549 // instructions), and walks the entire dominator tree, we walk only the defs +
550 // uses.  The standard SSA renaming algorithm does not really rely on the
551 // dominator tree except to order the stack push/pops of the renaming stacks, so
552 // that defs end up getting pushed before hitting the correct uses.  This does
553 // not require the dominator tree, only the *order* of the dominator tree. The
554 // complete and correct ordering of the defs and uses, in dominator tree is
555 // contained in the DFS numbering of the dominator tree. So we sort the defs and
556 // uses into the DFS ordering, and then just use the renaming stack as per
557 // normal, pushing when we hit a def (which is a predicateinfo instruction),
558 // popping when we are out of the dfs scope for that def, and replacing any uses
559 // with top of stack if it exists.  In order to handle liveness without
560 // propagating liveness info, we don't actually insert the predicateinfo
561 // instruction def until we see a use that it would dominate.  Once we see such
562 // a use, we materialize the predicateinfo instruction in the right place and
563 // use it.
564 //
565 // TODO: Use this algorithm to perform fast single-variable renaming in
566 // promotememtoreg and memoryssa.
567 void PredicateInfo::renameUses(SmallPtrSetImpl<Value *> &OpSet) {
568   // Sort OpsToRename since we are going to iterate it.
569   SmallVector<Value *, 8> OpsToRename(OpSet.begin(), OpSet.end());
570   auto Comparator = [&](const Value *A, const Value *B) {
571     return valueComesBefore(OI, A, B);
572   };
573   llvm::sort(OpsToRename.begin(), OpsToRename.end(), Comparator);
574   ValueDFS_Compare Compare(OI);
575   // Compute liveness, and rename in O(uses) per Op.
576   for (auto *Op : OpsToRename) {
577     LLVM_DEBUG(dbgs() << "Visiting " << *Op << "\n");
578     unsigned Counter = 0;
579     SmallVector<ValueDFS, 16> OrderedUses;
580     const auto &ValueInfo = getValueInfo(Op);
581     // Insert the possible copies into the def/use list.
582     // They will become real copies if we find a real use for them, and never
583     // created otherwise.
584     for (auto &PossibleCopy : ValueInfo.Infos) {
585       ValueDFS VD;
586       // Determine where we are going to place the copy by the copy type.
587       // The predicate info for branches always come first, they will get
588       // materialized in the split block at the top of the block.
589       // The predicate info for assumes will be somewhere in the middle,
590       // it will get materialized in front of the assume.
591       if (const auto *PAssume = dyn_cast<PredicateAssume>(PossibleCopy)) {
592         VD.LocalNum = LN_Middle;
593         DomTreeNode *DomNode = DT.getNode(PAssume->AssumeInst->getParent());
594         if (!DomNode)
595           continue;
596         VD.DFSIn = DomNode->getDFSNumIn();
597         VD.DFSOut = DomNode->getDFSNumOut();
598         VD.PInfo = PossibleCopy;
599         OrderedUses.push_back(VD);
600       } else if (isa<PredicateWithEdge>(PossibleCopy)) {
601         // If we can only do phi uses, we treat it like it's in the branch
602         // block, and handle it specially. We know that it goes last, and only
603         // dominate phi uses.
604         auto BlockEdge = getBlockEdge(PossibleCopy);
605         if (EdgeUsesOnly.count(BlockEdge)) {
606           VD.LocalNum = LN_Last;
607           auto *DomNode = DT.getNode(BlockEdge.first);
608           if (DomNode) {
609             VD.DFSIn = DomNode->getDFSNumIn();
610             VD.DFSOut = DomNode->getDFSNumOut();
611             VD.PInfo = PossibleCopy;
612             VD.EdgeOnly = true;
613             OrderedUses.push_back(VD);
614           }
615         } else {
616           // Otherwise, we are in the split block (even though we perform
617           // insertion in the branch block).
618           // Insert a possible copy at the split block and before the branch.
619           VD.LocalNum = LN_First;
620           auto *DomNode = DT.getNode(BlockEdge.second);
621           if (DomNode) {
622             VD.DFSIn = DomNode->getDFSNumIn();
623             VD.DFSOut = DomNode->getDFSNumOut();
624             VD.PInfo = PossibleCopy;
625             OrderedUses.push_back(VD);
626           }
627         }
628       }
629     }
630
631     convertUsesToDFSOrdered(Op, OrderedUses);
632     // Here we require a stable sort because we do not bother to try to
633     // assign an order to the operands the uses represent. Thus, two
634     // uses in the same instruction do not have a strict sort order
635     // currently and will be considered equal. We could get rid of the
636     // stable sort by creating one if we wanted.
637     std::stable_sort(OrderedUses.begin(), OrderedUses.end(), Compare);
638     SmallVector<ValueDFS, 8> RenameStack;
639     // For each use, sorted into dfs order, push values and replaces uses with
640     // top of stack, which will represent the reaching def.
641     for (auto &VD : OrderedUses) {
642       // We currently do not materialize copy over copy, but we should decide if
643       // we want to.
644       bool PossibleCopy = VD.PInfo != nullptr;
645       if (RenameStack.empty()) {
646         LLVM_DEBUG(dbgs() << "Rename Stack is empty\n");
647       } else {
648         LLVM_DEBUG(dbgs() << "Rename Stack Top DFS numbers are ("
649                           << RenameStack.back().DFSIn << ","
650                           << RenameStack.back().DFSOut << ")\n");
651       }
652
653       LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << VD.DFSIn << ","
654                         << VD.DFSOut << ")\n");
655
656       bool ShouldPush = (VD.Def || PossibleCopy);
657       bool OutOfScope = !stackIsInScope(RenameStack, VD);
658       if (OutOfScope || ShouldPush) {
659         // Sync to our current scope.
660         popStackUntilDFSScope(RenameStack, VD);
661         if (ShouldPush) {
662           RenameStack.push_back(VD);
663         }
664       }
665       // If we get to this point, and the stack is empty we must have a use
666       // with no renaming needed, just skip it.
667       if (RenameStack.empty())
668         continue;
669       // Skip values, only want to rename the uses
670       if (VD.Def || PossibleCopy)
671         continue;
672       if (!DebugCounter::shouldExecute(RenameCounter)) {
673         LLVM_DEBUG(dbgs() << "Skipping execution due to debug counter\n");
674         continue;
675       }
676       ValueDFS &Result = RenameStack.back();
677
678       // If the possible copy dominates something, materialize our stack up to
679       // this point. This ensures every comparison that affects our operation
680       // ends up with predicateinfo.
681       if (!Result.Def)
682         Result.Def = materializeStack(Counter, RenameStack, Op);
683
684       LLVM_DEBUG(dbgs() << "Found replacement " << *Result.Def << " for "
685                         << *VD.U->get() << " in " << *(VD.U->getUser())
686                         << "\n");
687       assert(DT.dominates(cast<Instruction>(Result.Def), *VD.U) &&
688              "Predicateinfo def should have dominated this use");
689       VD.U->set(Result.Def);
690     }
691   }
692 }
693
694 PredicateInfo::ValueInfo &PredicateInfo::getOrCreateValueInfo(Value *Operand) {
695   auto OIN = ValueInfoNums.find(Operand);
696   if (OIN == ValueInfoNums.end()) {
697     // This will grow it
698     ValueInfos.resize(ValueInfos.size() + 1);
699     // This will use the new size and give us a 0 based number of the info
700     auto InsertResult = ValueInfoNums.insert({Operand, ValueInfos.size() - 1});
701     assert(InsertResult.second && "Value info number already existed?");
702     return ValueInfos[InsertResult.first->second];
703   }
704   return ValueInfos[OIN->second];
705 }
706
707 const PredicateInfo::ValueInfo &
708 PredicateInfo::getValueInfo(Value *Operand) const {
709   auto OINI = ValueInfoNums.lookup(Operand);
710   assert(OINI != 0 && "Operand was not really in the Value Info Numbers");
711   assert(OINI < ValueInfos.size() &&
712          "Value Info Number greater than size of Value Info Table");
713   return ValueInfos[OINI];
714 }
715
716 PredicateInfo::PredicateInfo(Function &F, DominatorTree &DT,
717                              AssumptionCache &AC)
718     : F(F), DT(DT), AC(AC), OI(&DT) {
719   // Push an empty operand info so that we can detect 0 as not finding one
720   ValueInfos.resize(1);
721   buildPredicateInfo();
722 }
723
724 // Remove all declarations we created . The PredicateInfo consumers are
725 // responsible for remove the ssa_copy calls created.
726 PredicateInfo::~PredicateInfo() {
727   // Collect function pointers in set first, as SmallSet uses a SmallVector
728   // internally and we have to remove the asserting value handles first.
729   SmallPtrSet<Function *, 20> FunctionPtrs;
730   for (auto &F : CreatedDeclarations)
731     FunctionPtrs.insert(&*F);
732   CreatedDeclarations.clear();
733
734   for (Function *F : FunctionPtrs) {
735     assert(F->user_begin() == F->user_end() &&
736            "PredicateInfo consumer did not remove all SSA copies.");
737     F->eraseFromParent();
738   }
739 }
740
741 void PredicateInfo::verifyPredicateInfo() const {}
742
743 char PredicateInfoPrinterLegacyPass::ID = 0;
744
745 PredicateInfoPrinterLegacyPass::PredicateInfoPrinterLegacyPass()
746     : FunctionPass(ID) {
747   initializePredicateInfoPrinterLegacyPassPass(
748       *PassRegistry::getPassRegistry());
749 }
750
751 void PredicateInfoPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
752   AU.setPreservesAll();
753   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
754   AU.addRequired<AssumptionCacheTracker>();
755 }
756
757 // Replace ssa_copy calls created by PredicateInfo with their operand.
758 static void replaceCreatedSSACopys(PredicateInfo &PredInfo, Function &F) {
759   for (auto I = inst_begin(F), E = inst_end(F); I != E;) {
760     Instruction *Inst = &*I++;
761     const auto *PI = PredInfo.getPredicateInfoFor(Inst);
762     auto *II = dyn_cast<IntrinsicInst>(Inst);
763     if (!PI || !II || II->getIntrinsicID() != Intrinsic::ssa_copy)
764       continue;
765
766     Inst->replaceAllUsesWith(II->getOperand(0));
767     Inst->eraseFromParent();
768   }
769 }
770
771 bool PredicateInfoPrinterLegacyPass::runOnFunction(Function &F) {
772   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
773   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
774   auto PredInfo = make_unique<PredicateInfo>(F, DT, AC);
775   PredInfo->print(dbgs());
776   if (VerifyPredicateInfo)
777     PredInfo->verifyPredicateInfo();
778
779   replaceCreatedSSACopys(*PredInfo, F);
780   return false;
781 }
782
783 PreservedAnalyses PredicateInfoPrinterPass::run(Function &F,
784                                                 FunctionAnalysisManager &AM) {
785   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
786   auto &AC = AM.getResult<AssumptionAnalysis>(F);
787   OS << "PredicateInfo for function: " << F.getName() << "\n";
788   auto PredInfo = make_unique<PredicateInfo>(F, DT, AC);
789   PredInfo->print(OS);
790
791   replaceCreatedSSACopys(*PredInfo, F);
792   return PreservedAnalyses::all();
793 }
794
795 /// An assembly annotator class to print PredicateInfo information in
796 /// comments.
797 class PredicateInfoAnnotatedWriter : public AssemblyAnnotationWriter {
798   friend class PredicateInfo;
799   const PredicateInfo *PredInfo;
800
801 public:
802   PredicateInfoAnnotatedWriter(const PredicateInfo *M) : PredInfo(M) {}
803
804   virtual void emitBasicBlockStartAnnot(const BasicBlock *BB,
805                                         formatted_raw_ostream &OS) {}
806
807   virtual void emitInstructionAnnot(const Instruction *I,
808                                     formatted_raw_ostream &OS) {
809     if (const auto *PI = PredInfo->getPredicateInfoFor(I)) {
810       OS << "; Has predicate info\n";
811       if (const auto *PB = dyn_cast<PredicateBranch>(PI)) {
812         OS << "; branch predicate info { TrueEdge: " << PB->TrueEdge
813            << " Comparison:" << *PB->Condition << " Edge: [";
814         PB->From->printAsOperand(OS);
815         OS << ",";
816         PB->To->printAsOperand(OS);
817         OS << "] }\n";
818       } else if (const auto *PS = dyn_cast<PredicateSwitch>(PI)) {
819         OS << "; switch predicate info { CaseValue: " << *PS->CaseValue
820            << " Switch:" << *PS->Switch << " Edge: [";
821         PS->From->printAsOperand(OS);
822         OS << ",";
823         PS->To->printAsOperand(OS);
824         OS << "] }\n";
825       } else if (const auto *PA = dyn_cast<PredicateAssume>(PI)) {
826         OS << "; assume predicate info {"
827            << " Comparison:" << *PA->Condition << " }\n";
828       }
829     }
830   }
831 };
832
833 void PredicateInfo::print(raw_ostream &OS) const {
834   PredicateInfoAnnotatedWriter Writer(this);
835   F.print(OS, &Writer);
836 }
837
838 void PredicateInfo::dump() const {
839   PredicateInfoAnnotatedWriter Writer(this);
840   F.print(dbgs(), &Writer);
841 }
842
843 PreservedAnalyses PredicateInfoVerifierPass::run(Function &F,
844                                                  FunctionAnalysisManager &AM) {
845   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
846   auto &AC = AM.getResult<AssumptionAnalysis>(F);
847   make_unique<PredicateInfo>(F, DT, AC)->verifyPredicateInfo();
848
849   return PreservedAnalyses::all();
850 }
851 }