]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/Utils/PromoteMemoryToRegister.cpp
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / Utils / PromoteMemoryToRegister.cpp
1 //===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file promotes memory references to be register references.  It promotes
11 // alloca instructions which only have loads and stores as uses.  An alloca is
12 // transformed by using iterated dominator frontiers to place PHI nodes, then
13 // traversing the function in depth-first order to rewrite loads and stores as
14 // appropriate.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/TinyPtrVector.h"
25 #include "llvm/ADT/Twine.h"
26 #include "llvm/Analysis/AssumptionCache.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/IteratedDominanceFrontier.h"
29 #include "llvm/Transforms/Utils/Local.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/CFG.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DIBuilder.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/InstrTypes.h"
40 #include "llvm/IR/Instruction.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/IR/IntrinsicInst.h"
43 #include "llvm/IR/Intrinsics.h"
44 #include "llvm/IR/LLVMContext.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/IR/Type.h"
47 #include "llvm/IR/User.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <iterator>
53 #include <utility>
54 #include <vector>
55
56 using namespace llvm;
57
58 #define DEBUG_TYPE "mem2reg"
59
60 STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
61 STATISTIC(NumSingleStore,   "Number of alloca's promoted with a single store");
62 STATISTIC(NumDeadAlloca,    "Number of dead alloca's removed");
63 STATISTIC(NumPHIInsert,     "Number of PHI nodes inserted");
64
65 bool llvm::isAllocaPromotable(const AllocaInst *AI) {
66   // FIXME: If the memory unit is of pointer or integer type, we can permit
67   // assignments to subsections of the memory unit.
68   unsigned AS = AI->getType()->getAddressSpace();
69
70   // Only allow direct and non-volatile loads and stores...
71   for (const User *U : AI->users()) {
72     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
73       // Note that atomic loads can be transformed; atomic semantics do
74       // not have any meaning for a local alloca.
75       if (LI->isVolatile())
76         return false;
77     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
78       if (SI->getOperand(0) == AI)
79         return false; // Don't allow a store OF the AI, only INTO the AI.
80       // Note that atomic stores can be transformed; atomic semantics do
81       // not have any meaning for a local alloca.
82       if (SI->isVolatile())
83         return false;
84     } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
85       if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
86           II->getIntrinsicID() != Intrinsic::lifetime_end)
87         return false;
88     } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
89       if (BCI->getType() != Type::getInt8PtrTy(U->getContext(), AS))
90         return false;
91       if (!onlyUsedByLifetimeMarkers(BCI))
92         return false;
93     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
94       if (GEPI->getType() != Type::getInt8PtrTy(U->getContext(), AS))
95         return false;
96       if (!GEPI->hasAllZeroIndices())
97         return false;
98       if (!onlyUsedByLifetimeMarkers(GEPI))
99         return false;
100     } else {
101       return false;
102     }
103   }
104
105   return true;
106 }
107
108 namespace {
109
110 struct AllocaInfo {
111   SmallVector<BasicBlock *, 32> DefiningBlocks;
112   SmallVector<BasicBlock *, 32> UsingBlocks;
113
114   StoreInst *OnlyStore;
115   BasicBlock *OnlyBlock;
116   bool OnlyUsedInOneBlock;
117
118   Value *AllocaPointerVal;
119   TinyPtrVector<DbgInfoIntrinsic *> DbgDeclares;
120
121   void clear() {
122     DefiningBlocks.clear();
123     UsingBlocks.clear();
124     OnlyStore = nullptr;
125     OnlyBlock = nullptr;
126     OnlyUsedInOneBlock = true;
127     AllocaPointerVal = nullptr;
128     DbgDeclares.clear();
129   }
130
131   /// Scan the uses of the specified alloca, filling in the AllocaInfo used
132   /// by the rest of the pass to reason about the uses of this alloca.
133   void AnalyzeAlloca(AllocaInst *AI) {
134     clear();
135
136     // As we scan the uses of the alloca instruction, keep track of stores,
137     // and decide whether all of the loads and stores to the alloca are within
138     // the same basic block.
139     for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
140       Instruction *User = cast<Instruction>(*UI++);
141
142       if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
143         // Remember the basic blocks which define new values for the alloca
144         DefiningBlocks.push_back(SI->getParent());
145         AllocaPointerVal = SI->getOperand(0);
146         OnlyStore = SI;
147       } else {
148         LoadInst *LI = cast<LoadInst>(User);
149         // Otherwise it must be a load instruction, keep track of variable
150         // reads.
151         UsingBlocks.push_back(LI->getParent());
152         AllocaPointerVal = LI;
153       }
154
155       if (OnlyUsedInOneBlock) {
156         if (!OnlyBlock)
157           OnlyBlock = User->getParent();
158         else if (OnlyBlock != User->getParent())
159           OnlyUsedInOneBlock = false;
160       }
161     }
162
163     DbgDeclares = FindDbgAddrUses(AI);
164   }
165 };
166
167 /// Data package used by RenamePass().
168 struct RenamePassData {
169   using ValVector = std::vector<Value *>;
170   using LocationVector = std::vector<DebugLoc>;
171
172   RenamePassData(BasicBlock *B, BasicBlock *P, ValVector V, LocationVector L)
173       : BB(B), Pred(P), Values(std::move(V)), Locations(std::move(L)) {}
174
175   BasicBlock *BB;
176   BasicBlock *Pred;
177   ValVector Values;
178   LocationVector Locations;
179 };
180
181 /// This assigns and keeps a per-bb relative ordering of load/store
182 /// instructions in the block that directly load or store an alloca.
183 ///
184 /// This functionality is important because it avoids scanning large basic
185 /// blocks multiple times when promoting many allocas in the same block.
186 class LargeBlockInfo {
187   /// For each instruction that we track, keep the index of the
188   /// instruction.
189   ///
190   /// The index starts out as the number of the instruction from the start of
191   /// the block.
192   DenseMap<const Instruction *, unsigned> InstNumbers;
193
194 public:
195
196   /// This code only looks at accesses to allocas.
197   static bool isInterestingInstruction(const Instruction *I) {
198     return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
199            (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
200   }
201
202   /// Get or calculate the index of the specified instruction.
203   unsigned getInstructionIndex(const Instruction *I) {
204     assert(isInterestingInstruction(I) &&
205            "Not a load/store to/from an alloca?");
206
207     // If we already have this instruction number, return it.
208     DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
209     if (It != InstNumbers.end())
210       return It->second;
211
212     // Scan the whole block to get the instruction.  This accumulates
213     // information for every interesting instruction in the block, in order to
214     // avoid gratuitus rescans.
215     const BasicBlock *BB = I->getParent();
216     unsigned InstNo = 0;
217     for (const Instruction &BBI : *BB)
218       if (isInterestingInstruction(&BBI))
219         InstNumbers[&BBI] = InstNo++;
220     It = InstNumbers.find(I);
221
222     assert(It != InstNumbers.end() && "Didn't insert instruction?");
223     return It->second;
224   }
225
226   void deleteValue(const Instruction *I) { InstNumbers.erase(I); }
227
228   void clear() { InstNumbers.clear(); }
229 };
230
231 struct PromoteMem2Reg {
232   /// The alloca instructions being promoted.
233   std::vector<AllocaInst *> Allocas;
234
235   DominatorTree &DT;
236   DIBuilder DIB;
237
238   /// A cache of @llvm.assume intrinsics used by SimplifyInstruction.
239   AssumptionCache *AC;
240
241   const SimplifyQuery SQ;
242
243   /// Reverse mapping of Allocas.
244   DenseMap<AllocaInst *, unsigned> AllocaLookup;
245
246   /// The PhiNodes we're adding.
247   ///
248   /// That map is used to simplify some Phi nodes as we iterate over it, so
249   /// it should have deterministic iterators.  We could use a MapVector, but
250   /// since we already maintain a map from BasicBlock* to a stable numbering
251   /// (BBNumbers), the DenseMap is more efficient (also supports removal).
252   DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes;
253
254   /// For each PHI node, keep track of which entry in Allocas it corresponds
255   /// to.
256   DenseMap<PHINode *, unsigned> PhiToAllocaMap;
257
258   /// If we are updating an AliasSetTracker, then for each alloca that is of
259   /// pointer type, we keep track of what to copyValue to the inserted PHI
260   /// nodes here.
261   std::vector<Value *> PointerAllocaValues;
262
263   /// For each alloca, we keep track of the dbg.declare intrinsic that
264   /// describes it, if any, so that we can convert it to a dbg.value
265   /// intrinsic if the alloca gets promoted.
266   SmallVector<TinyPtrVector<DbgInfoIntrinsic *>, 8> AllocaDbgDeclares;
267
268   /// The set of basic blocks the renamer has already visited.
269   SmallPtrSet<BasicBlock *, 16> Visited;
270
271   /// Contains a stable numbering of basic blocks to avoid non-determinstic
272   /// behavior.
273   DenseMap<BasicBlock *, unsigned> BBNumbers;
274
275   /// Lazily compute the number of predecessors a block has.
276   DenseMap<const BasicBlock *, unsigned> BBNumPreds;
277
278 public:
279   PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
280                  AssumptionCache *AC)
281       : Allocas(Allocas.begin(), Allocas.end()), DT(DT),
282         DIB(*DT.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false),
283         AC(AC), SQ(DT.getRoot()->getParent()->getParent()->getDataLayout(),
284                    nullptr, &DT, AC) {}
285
286   void run();
287
288 private:
289   void RemoveFromAllocasList(unsigned &AllocaIdx) {
290     Allocas[AllocaIdx] = Allocas.back();
291     Allocas.pop_back();
292     --AllocaIdx;
293   }
294
295   unsigned getNumPreds(const BasicBlock *BB) {
296     unsigned &NP = BBNumPreds[BB];
297     if (NP == 0)
298       NP = pred_size(BB) + 1;
299     return NP - 1;
300   }
301
302   void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
303                            const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
304                            SmallPtrSetImpl<BasicBlock *> &LiveInBlocks);
305   void RenamePass(BasicBlock *BB, BasicBlock *Pred,
306                   RenamePassData::ValVector &IncVals,
307                   RenamePassData::LocationVector &IncLocs,
308                   std::vector<RenamePassData> &Worklist);
309   bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version);
310 };
311
312 } // end anonymous namespace
313
314 /// Given a LoadInst LI this adds assume(LI != null) after it.
315 static void addAssumeNonNull(AssumptionCache *AC, LoadInst *LI) {
316   Function *AssumeIntrinsic =
317       Intrinsic::getDeclaration(LI->getModule(), Intrinsic::assume);
318   ICmpInst *LoadNotNull = new ICmpInst(ICmpInst::ICMP_NE, LI,
319                                        Constant::getNullValue(LI->getType()));
320   LoadNotNull->insertAfter(LI);
321   CallInst *CI = CallInst::Create(AssumeIntrinsic, {LoadNotNull});
322   CI->insertAfter(LoadNotNull);
323   AC->registerAssumption(CI);
324 }
325
326 static void removeLifetimeIntrinsicUsers(AllocaInst *AI) {
327   // Knowing that this alloca is promotable, we know that it's safe to kill all
328   // instructions except for load and store.
329
330   for (auto UI = AI->user_begin(), UE = AI->user_end(); UI != UE;) {
331     Instruction *I = cast<Instruction>(*UI);
332     ++UI;
333     if (isa<LoadInst>(I) || isa<StoreInst>(I))
334       continue;
335
336     if (!I->getType()->isVoidTy()) {
337       // The only users of this bitcast/GEP instruction are lifetime intrinsics.
338       // Follow the use/def chain to erase them now instead of leaving it for
339       // dead code elimination later.
340       for (auto UUI = I->user_begin(), UUE = I->user_end(); UUI != UUE;) {
341         Instruction *Inst = cast<Instruction>(*UUI);
342         ++UUI;
343         Inst->eraseFromParent();
344       }
345     }
346     I->eraseFromParent();
347   }
348 }
349
350 /// Rewrite as many loads as possible given a single store.
351 ///
352 /// When there is only a single store, we can use the domtree to trivially
353 /// replace all of the dominated loads with the stored value. Do so, and return
354 /// true if this has successfully promoted the alloca entirely. If this returns
355 /// false there were some loads which were not dominated by the single store
356 /// and thus must be phi-ed with undef. We fall back to the standard alloca
357 /// promotion algorithm in that case.
358 static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
359                                      LargeBlockInfo &LBI, const DataLayout &DL,
360                                      DominatorTree &DT, AssumptionCache *AC) {
361   StoreInst *OnlyStore = Info.OnlyStore;
362   bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
363   BasicBlock *StoreBB = OnlyStore->getParent();
364   int StoreIndex = -1;
365
366   // Clear out UsingBlocks.  We will reconstruct it here if needed.
367   Info.UsingBlocks.clear();
368
369   for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
370     Instruction *UserInst = cast<Instruction>(*UI++);
371     if (!isa<LoadInst>(UserInst)) {
372       assert(UserInst == OnlyStore && "Should only have load/stores");
373       continue;
374     }
375     LoadInst *LI = cast<LoadInst>(UserInst);
376
377     // Okay, if we have a load from the alloca, we want to replace it with the
378     // only value stored to the alloca.  We can do this if the value is
379     // dominated by the store.  If not, we use the rest of the mem2reg machinery
380     // to insert the phi nodes as needed.
381     if (!StoringGlobalVal) { // Non-instructions are always dominated.
382       if (LI->getParent() == StoreBB) {
383         // If we have a use that is in the same block as the store, compare the
384         // indices of the two instructions to see which one came first.  If the
385         // load came before the store, we can't handle it.
386         if (StoreIndex == -1)
387           StoreIndex = LBI.getInstructionIndex(OnlyStore);
388
389         if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
390           // Can't handle this load, bail out.
391           Info.UsingBlocks.push_back(StoreBB);
392           continue;
393         }
394       } else if (LI->getParent() != StoreBB &&
395                  !DT.dominates(StoreBB, LI->getParent())) {
396         // If the load and store are in different blocks, use BB dominance to
397         // check their relationships.  If the store doesn't dom the use, bail
398         // out.
399         Info.UsingBlocks.push_back(LI->getParent());
400         continue;
401       }
402     }
403
404     // Otherwise, we *can* safely rewrite this load.
405     Value *ReplVal = OnlyStore->getOperand(0);
406     // If the replacement value is the load, this must occur in unreachable
407     // code.
408     if (ReplVal == LI)
409       ReplVal = UndefValue::get(LI->getType());
410
411     // If the load was marked as nonnull we don't want to lose
412     // that information when we erase this Load. So we preserve
413     // it with an assume.
414     if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
415         !isKnownNonZero(ReplVal, DL, 0, AC, LI, &DT))
416       addAssumeNonNull(AC, LI);
417
418     LI->replaceAllUsesWith(ReplVal);
419     LI->eraseFromParent();
420     LBI.deleteValue(LI);
421   }
422
423   // Finally, after the scan, check to see if the store is all that is left.
424   if (!Info.UsingBlocks.empty())
425     return false; // If not, we'll have to fall back for the remainder.
426
427   // Record debuginfo for the store and remove the declaration's
428   // debuginfo.
429   for (DbgInfoIntrinsic *DII : Info.DbgDeclares) {
430     DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false);
431     ConvertDebugDeclareToDebugValue(DII, Info.OnlyStore, DIB);
432     DII->eraseFromParent();
433     LBI.deleteValue(DII);
434   }
435   // Remove the (now dead) store and alloca.
436   Info.OnlyStore->eraseFromParent();
437   LBI.deleteValue(Info.OnlyStore);
438
439   AI->eraseFromParent();
440   LBI.deleteValue(AI);
441   return true;
442 }
443
444 /// Many allocas are only used within a single basic block.  If this is the
445 /// case, avoid traversing the CFG and inserting a lot of potentially useless
446 /// PHI nodes by just performing a single linear pass over the basic block
447 /// using the Alloca.
448 ///
449 /// If we cannot promote this alloca (because it is read before it is written),
450 /// return false.  This is necessary in cases where, due to control flow, the
451 /// alloca is undefined only on some control flow paths.  e.g. code like
452 /// this is correct in LLVM IR:
453 ///  // A is an alloca with no stores so far
454 ///  for (...) {
455 ///    int t = *A;
456 ///    if (!first_iteration)
457 ///      use(t);
458 ///    *A = 42;
459 ///  }
460 static bool promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info,
461                                      LargeBlockInfo &LBI,
462                                      const DataLayout &DL,
463                                      DominatorTree &DT,
464                                      AssumptionCache *AC) {
465   // The trickiest case to handle is when we have large blocks. Because of this,
466   // this code is optimized assuming that large blocks happen.  This does not
467   // significantly pessimize the small block case.  This uses LargeBlockInfo to
468   // make it efficient to get the index of various operations in the block.
469
470   // Walk the use-def list of the alloca, getting the locations of all stores.
471   using StoresByIndexTy = SmallVector<std::pair<unsigned, StoreInst *>, 64>;
472   StoresByIndexTy StoresByIndex;
473
474   for (User *U : AI->users())
475     if (StoreInst *SI = dyn_cast<StoreInst>(U))
476       StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));
477
478   // Sort the stores by their index, making it efficient to do a lookup with a
479   // binary search.
480   llvm::sort(StoresByIndex.begin(), StoresByIndex.end(), less_first());
481
482   // Walk all of the loads from this alloca, replacing them with the nearest
483   // store above them, if any.
484   for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
485     LoadInst *LI = dyn_cast<LoadInst>(*UI++);
486     if (!LI)
487       continue;
488
489     unsigned LoadIdx = LBI.getInstructionIndex(LI);
490
491     // Find the nearest store that has a lower index than this load.
492     StoresByIndexTy::iterator I =
493         std::lower_bound(StoresByIndex.begin(), StoresByIndex.end(),
494                          std::make_pair(LoadIdx,
495                                         static_cast<StoreInst *>(nullptr)),
496                          less_first());
497     if (I == StoresByIndex.begin()) {
498       if (StoresByIndex.empty())
499         // If there are no stores, the load takes the undef value.
500         LI->replaceAllUsesWith(UndefValue::get(LI->getType()));
501       else
502         // There is no store before this load, bail out (load may be affected
503         // by the following stores - see main comment).
504         return false;
505     } else {
506       // Otherwise, there was a store before this load, the load takes its value.
507       // Note, if the load was marked as nonnull we don't want to lose that
508       // information when we erase it. So we preserve it with an assume.
509       Value *ReplVal = std::prev(I)->second->getOperand(0);
510       if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
511           !isKnownNonZero(ReplVal, DL, 0, AC, LI, &DT))
512         addAssumeNonNull(AC, LI);
513
514       // If the replacement value is the load, this must occur in unreachable
515       // code.
516       if (ReplVal == LI)
517         ReplVal = UndefValue::get(LI->getType());
518
519       LI->replaceAllUsesWith(ReplVal);
520     }
521
522     LI->eraseFromParent();
523     LBI.deleteValue(LI);
524   }
525
526   // Remove the (now dead) stores and alloca.
527   while (!AI->use_empty()) {
528     StoreInst *SI = cast<StoreInst>(AI->user_back());
529     // Record debuginfo for the store before removing it.
530     for (DbgInfoIntrinsic *DII : Info.DbgDeclares) {
531       DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false);
532       ConvertDebugDeclareToDebugValue(DII, SI, DIB);
533     }
534     SI->eraseFromParent();
535     LBI.deleteValue(SI);
536   }
537
538   AI->eraseFromParent();
539   LBI.deleteValue(AI);
540
541   // The alloca's debuginfo can be removed as well.
542   for (DbgInfoIntrinsic *DII : Info.DbgDeclares) {
543     DII->eraseFromParent();
544     LBI.deleteValue(DII);
545   }
546
547   ++NumLocalPromoted;
548   return true;
549 }
550
551 void PromoteMem2Reg::run() {
552   Function &F = *DT.getRoot()->getParent();
553
554   AllocaDbgDeclares.resize(Allocas.size());
555
556   AllocaInfo Info;
557   LargeBlockInfo LBI;
558   ForwardIDFCalculator IDF(DT);
559
560   for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
561     AllocaInst *AI = Allocas[AllocaNum];
562
563     assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!");
564     assert(AI->getParent()->getParent() == &F &&
565            "All allocas should be in the same function, which is same as DF!");
566
567     removeLifetimeIntrinsicUsers(AI);
568
569     if (AI->use_empty()) {
570       // If there are no uses of the alloca, just delete it now.
571       AI->eraseFromParent();
572
573       // Remove the alloca from the Allocas list, since it has been processed
574       RemoveFromAllocasList(AllocaNum);
575       ++NumDeadAlloca;
576       continue;
577     }
578
579     // Calculate the set of read and write-locations for each alloca.  This is
580     // analogous to finding the 'uses' and 'definitions' of each variable.
581     Info.AnalyzeAlloca(AI);
582
583     // If there is only a single store to this value, replace any loads of
584     // it that are directly dominated by the definition with the value stored.
585     if (Info.DefiningBlocks.size() == 1) {
586       if (rewriteSingleStoreAlloca(AI, Info, LBI, SQ.DL, DT, AC)) {
587         // The alloca has been processed, move on.
588         RemoveFromAllocasList(AllocaNum);
589         ++NumSingleStore;
590         continue;
591       }
592     }
593
594     // If the alloca is only read and written in one basic block, just perform a
595     // linear sweep over the block to eliminate it.
596     if (Info.OnlyUsedInOneBlock &&
597         promoteSingleBlockAlloca(AI, Info, LBI, SQ.DL, DT, AC)) {
598       // The alloca has been processed, move on.
599       RemoveFromAllocasList(AllocaNum);
600       continue;
601     }
602
603     // If we haven't computed a numbering for the BB's in the function, do so
604     // now.
605     if (BBNumbers.empty()) {
606       unsigned ID = 0;
607       for (auto &BB : F)
608         BBNumbers[&BB] = ID++;
609     }
610
611     // Remember the dbg.declare intrinsic describing this alloca, if any.
612     if (!Info.DbgDeclares.empty())
613       AllocaDbgDeclares[AllocaNum] = Info.DbgDeclares;
614
615     // Keep the reverse mapping of the 'Allocas' array for the rename pass.
616     AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
617
618     // At this point, we're committed to promoting the alloca using IDF's, and
619     // the standard SSA construction algorithm.  Determine which blocks need PHI
620     // nodes and see if we can optimize out some work by avoiding insertion of
621     // dead phi nodes.
622
623     // Unique the set of defining blocks for efficient lookup.
624     SmallPtrSet<BasicBlock *, 32> DefBlocks;
625     DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end());
626
627     // Determine which blocks the value is live in.  These are blocks which lead
628     // to uses.
629     SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
630     ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
631
632     // At this point, we're committed to promoting the alloca using IDF's, and
633     // the standard SSA construction algorithm.  Determine which blocks need phi
634     // nodes and see if we can optimize out some work by avoiding insertion of
635     // dead phi nodes.
636     IDF.setLiveInBlocks(LiveInBlocks);
637     IDF.setDefiningBlocks(DefBlocks);
638     SmallVector<BasicBlock *, 32> PHIBlocks;
639     IDF.calculate(PHIBlocks);
640     if (PHIBlocks.size() > 1)
641       llvm::sort(PHIBlocks.begin(), PHIBlocks.end(),
642                  [this](BasicBlock *A, BasicBlock *B) {
643                    return BBNumbers.lookup(A) < BBNumbers.lookup(B);
644                  });
645
646     unsigned CurrentVersion = 0;
647     for (BasicBlock *BB : PHIBlocks)
648       QueuePhiNode(BB, AllocaNum, CurrentVersion);
649   }
650
651   if (Allocas.empty())
652     return; // All of the allocas must have been trivial!
653
654   LBI.clear();
655
656   // Set the incoming values for the basic block to be null values for all of
657   // the alloca's.  We do this in case there is a load of a value that has not
658   // been stored yet.  In this case, it will get this null value.
659   RenamePassData::ValVector Values(Allocas.size());
660   for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
661     Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());
662
663   // When handling debug info, treat all incoming values as if they have unknown
664   // locations until proven otherwise.
665   RenamePassData::LocationVector Locations(Allocas.size());
666
667   // Walks all basic blocks in the function performing the SSA rename algorithm
668   // and inserting the phi nodes we marked as necessary
669   std::vector<RenamePassData> RenamePassWorkList;
670   RenamePassWorkList.emplace_back(&F.front(), nullptr, std::move(Values),
671                                   std::move(Locations));
672   do {
673     RenamePassData RPD = std::move(RenamePassWorkList.back());
674     RenamePassWorkList.pop_back();
675     // RenamePass may add new worklist entries.
676     RenamePass(RPD.BB, RPD.Pred, RPD.Values, RPD.Locations, RenamePassWorkList);
677   } while (!RenamePassWorkList.empty());
678
679   // The renamer uses the Visited set to avoid infinite loops.  Clear it now.
680   Visited.clear();
681
682   // Remove the allocas themselves from the function.
683   for (Instruction *A : Allocas) {
684     // If there are any uses of the alloca instructions left, they must be in
685     // unreachable basic blocks that were not processed by walking the dominator
686     // tree. Just delete the users now.
687     if (!A->use_empty())
688       A->replaceAllUsesWith(UndefValue::get(A->getType()));
689     A->eraseFromParent();
690   }
691
692   // Remove alloca's dbg.declare instrinsics from the function.
693   for (auto &Declares : AllocaDbgDeclares)
694     for (auto *DII : Declares)
695       DII->eraseFromParent();
696
697   // Loop over all of the PHI nodes and see if there are any that we can get
698   // rid of because they merge all of the same incoming values.  This can
699   // happen due to undef values coming into the PHI nodes.  This process is
700   // iterative, because eliminating one PHI node can cause others to be removed.
701   bool EliminatedAPHI = true;
702   while (EliminatedAPHI) {
703     EliminatedAPHI = false;
704
705     // Iterating over NewPhiNodes is deterministic, so it is safe to try to
706     // simplify and RAUW them as we go.  If it was not, we could add uses to
707     // the values we replace with in a non-deterministic order, thus creating
708     // non-deterministic def->use chains.
709     for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
710              I = NewPhiNodes.begin(),
711              E = NewPhiNodes.end();
712          I != E;) {
713       PHINode *PN = I->second;
714
715       // If this PHI node merges one value and/or undefs, get the value.
716       if (Value *V = SimplifyInstruction(PN, SQ)) {
717         PN->replaceAllUsesWith(V);
718         PN->eraseFromParent();
719         NewPhiNodes.erase(I++);
720         EliminatedAPHI = true;
721         continue;
722       }
723       ++I;
724     }
725   }
726
727   // At this point, the renamer has added entries to PHI nodes for all reachable
728   // code.  Unfortunately, there may be unreachable blocks which the renamer
729   // hasn't traversed.  If this is the case, the PHI nodes may not
730   // have incoming values for all predecessors.  Loop over all PHI nodes we have
731   // created, inserting undef values if they are missing any incoming values.
732   for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
733            I = NewPhiNodes.begin(),
734            E = NewPhiNodes.end();
735        I != E; ++I) {
736     // We want to do this once per basic block.  As such, only process a block
737     // when we find the PHI that is the first entry in the block.
738     PHINode *SomePHI = I->second;
739     BasicBlock *BB = SomePHI->getParent();
740     if (&BB->front() != SomePHI)
741       continue;
742
743     // Only do work here if there the PHI nodes are missing incoming values.  We
744     // know that all PHI nodes that were inserted in a block will have the same
745     // number of incoming values, so we can just check any of them.
746     if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
747       continue;
748
749     // Get the preds for BB.
750     SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
751
752     // Ok, now we know that all of the PHI nodes are missing entries for some
753     // basic blocks.  Start by sorting the incoming predecessors for efficient
754     // access.
755     llvm::sort(Preds.begin(), Preds.end());
756
757     // Now we loop through all BB's which have entries in SomePHI and remove
758     // them from the Preds list.
759     for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
760       // Do a log(n) search of the Preds list for the entry we want.
761       SmallVectorImpl<BasicBlock *>::iterator EntIt = std::lower_bound(
762           Preds.begin(), Preds.end(), SomePHI->getIncomingBlock(i));
763       assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) &&
764              "PHI node has entry for a block which is not a predecessor!");
765
766       // Remove the entry
767       Preds.erase(EntIt);
768     }
769
770     // At this point, the blocks left in the preds list must have dummy
771     // entries inserted into every PHI nodes for the block.  Update all the phi
772     // nodes in this block that we are inserting (there could be phis before
773     // mem2reg runs).
774     unsigned NumBadPreds = SomePHI->getNumIncomingValues();
775     BasicBlock::iterator BBI = BB->begin();
776     while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
777            SomePHI->getNumIncomingValues() == NumBadPreds) {
778       Value *UndefVal = UndefValue::get(SomePHI->getType());
779       for (BasicBlock *Pred : Preds)
780         SomePHI->addIncoming(UndefVal, Pred);
781     }
782   }
783
784   NewPhiNodes.clear();
785 }
786
787 /// Determine which blocks the value is live in.
788 ///
789 /// These are blocks which lead to uses.  Knowing this allows us to avoid
790 /// inserting PHI nodes into blocks which don't lead to uses (thus, the
791 /// inserted phi nodes would be dead).
792 void PromoteMem2Reg::ComputeLiveInBlocks(
793     AllocaInst *AI, AllocaInfo &Info,
794     const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
795     SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) {
796   // To determine liveness, we must iterate through the predecessors of blocks
797   // where the def is live.  Blocks are added to the worklist if we need to
798   // check their predecessors.  Start with all the using blocks.
799   SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(),
800                                                     Info.UsingBlocks.end());
801
802   // If any of the using blocks is also a definition block, check to see if the
803   // definition occurs before or after the use.  If it happens before the use,
804   // the value isn't really live-in.
805   for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
806     BasicBlock *BB = LiveInBlockWorklist[i];
807     if (!DefBlocks.count(BB))
808       continue;
809
810     // Okay, this is a block that both uses and defines the value.  If the first
811     // reference to the alloca is a def (store), then we know it isn't live-in.
812     for (BasicBlock::iterator I = BB->begin();; ++I) {
813       if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
814         if (SI->getOperand(1) != AI)
815           continue;
816
817         // We found a store to the alloca before a load.  The alloca is not
818         // actually live-in here.
819         LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
820         LiveInBlockWorklist.pop_back();
821         --i;
822         --e;
823         break;
824       }
825
826       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
827         if (LI->getOperand(0) != AI)
828           continue;
829
830         // Okay, we found a load before a store to the alloca.  It is actually
831         // live into this block.
832         break;
833       }
834     }
835   }
836
837   // Now that we have a set of blocks where the phi is live-in, recursively add
838   // their predecessors until we find the full region the value is live.
839   while (!LiveInBlockWorklist.empty()) {
840     BasicBlock *BB = LiveInBlockWorklist.pop_back_val();
841
842     // The block really is live in here, insert it into the set.  If already in
843     // the set, then it has already been processed.
844     if (!LiveInBlocks.insert(BB).second)
845       continue;
846
847     // Since the value is live into BB, it is either defined in a predecessor or
848     // live into it to.  Add the preds to the worklist unless they are a
849     // defining block.
850     for (BasicBlock *P : predecessors(BB)) {
851       // The value is not live into a predecessor if it defines the value.
852       if (DefBlocks.count(P))
853         continue;
854
855       // Otherwise it is, add to the worklist.
856       LiveInBlockWorklist.push_back(P);
857     }
858   }
859 }
860
861 /// Queue a phi-node to be added to a basic-block for a specific Alloca.
862 ///
863 /// Returns true if there wasn't already a phi-node for that variable
864 bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
865                                   unsigned &Version) {
866   // Look up the basic-block in question.
867   PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)];
868
869   // If the BB already has a phi node added for the i'th alloca then we're done!
870   if (PN)
871     return false;
872
873   // Create a PhiNode using the dereferenced type... and add the phi-node to the
874   // BasicBlock.
875   PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB),
876                        Allocas[AllocaNo]->getName() + "." + Twine(Version++),
877                        &BB->front());
878   ++NumPHIInsert;
879   PhiToAllocaMap[PN] = AllocaNo;
880   return true;
881 }
882
883 /// Update the debug location of a phi. \p ApplyMergedLoc indicates whether to
884 /// create a merged location incorporating \p DL, or to set \p DL directly.
885 static void updateForIncomingValueLocation(PHINode *PN, DebugLoc DL,
886                                            bool ApplyMergedLoc) {
887   if (ApplyMergedLoc)
888     PN->applyMergedLocation(PN->getDebugLoc(), DL);
889   else
890     PN->setDebugLoc(DL);
891 }
892
893 /// Recursively traverse the CFG of the function, renaming loads and
894 /// stores to the allocas which we are promoting.
895 ///
896 /// IncomingVals indicates what value each Alloca contains on exit from the
897 /// predecessor block Pred.
898 void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
899                                 RenamePassData::ValVector &IncomingVals,
900                                 RenamePassData::LocationVector &IncomingLocs,
901                                 std::vector<RenamePassData> &Worklist) {
902 NextIteration:
903   // If we are inserting any phi nodes into this BB, they will already be in the
904   // block.
905   if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
906     // If we have PHI nodes to update, compute the number of edges from Pred to
907     // BB.
908     if (PhiToAllocaMap.count(APN)) {
909       // We want to be able to distinguish between PHI nodes being inserted by
910       // this invocation of mem2reg from those phi nodes that already existed in
911       // the IR before mem2reg was run.  We determine that APN is being inserted
912       // because it is missing incoming edges.  All other PHI nodes being
913       // inserted by this pass of mem2reg will have the same number of incoming
914       // operands so far.  Remember this count.
915       unsigned NewPHINumOperands = APN->getNumOperands();
916
917       unsigned NumEdges = std::count(succ_begin(Pred), succ_end(Pred), BB);
918       assert(NumEdges && "Must be at least one edge from Pred to BB!");
919
920       // Add entries for all the phis.
921       BasicBlock::iterator PNI = BB->begin();
922       do {
923         unsigned AllocaNo = PhiToAllocaMap[APN];
924
925         // Update the location of the phi node.
926         updateForIncomingValueLocation(APN, IncomingLocs[AllocaNo],
927                                        APN->getNumIncomingValues() > 0);
928
929         // Add N incoming values to the PHI node.
930         for (unsigned i = 0; i != NumEdges; ++i)
931           APN->addIncoming(IncomingVals[AllocaNo], Pred);
932
933         // The currently active variable for this block is now the PHI.
934         IncomingVals[AllocaNo] = APN;
935         for (DbgInfoIntrinsic *DII : AllocaDbgDeclares[AllocaNo])
936           ConvertDebugDeclareToDebugValue(DII, APN, DIB);
937
938         // Get the next phi node.
939         ++PNI;
940         APN = dyn_cast<PHINode>(PNI);
941         if (!APN)
942           break;
943
944         // Verify that it is missing entries.  If not, it is not being inserted
945         // by this mem2reg invocation so we want to ignore it.
946       } while (APN->getNumOperands() == NewPHINumOperands);
947     }
948   }
949
950   // Don't revisit blocks.
951   if (!Visited.insert(BB).second)
952     return;
953
954   for (BasicBlock::iterator II = BB->begin(); !isa<TerminatorInst>(II);) {
955     Instruction *I = &*II++; // get the instruction, increment iterator
956
957     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
958       AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
959       if (!Src)
960         continue;
961
962       DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src);
963       if (AI == AllocaLookup.end())
964         continue;
965
966       Value *V = IncomingVals[AI->second];
967
968       // If the load was marked as nonnull we don't want to lose
969       // that information when we erase this Load. So we preserve
970       // it with an assume.
971       if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
972           !isKnownNonZero(V, SQ.DL, 0, AC, LI, &DT))
973         addAssumeNonNull(AC, LI);
974
975       // Anything using the load now uses the current value.
976       LI->replaceAllUsesWith(V);
977       BB->getInstList().erase(LI);
978     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
979       // Delete this instruction and mark the name as the current holder of the
980       // value
981       AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
982       if (!Dest)
983         continue;
984
985       DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
986       if (ai == AllocaLookup.end())
987         continue;
988
989       // what value were we writing?
990       unsigned AllocaNo = ai->second;
991       IncomingVals[AllocaNo] = SI->getOperand(0);
992
993       // Record debuginfo for the store before removing it.
994       IncomingLocs[AllocaNo] = SI->getDebugLoc();
995       for (DbgInfoIntrinsic *DII : AllocaDbgDeclares[ai->second])
996         ConvertDebugDeclareToDebugValue(DII, SI, DIB);
997       BB->getInstList().erase(SI);
998     }
999   }
1000
1001   // 'Recurse' to our successors.
1002   succ_iterator I = succ_begin(BB), E = succ_end(BB);
1003   if (I == E)
1004     return;
1005
1006   // Keep track of the successors so we don't visit the same successor twice
1007   SmallPtrSet<BasicBlock *, 8> VisitedSuccs;
1008
1009   // Handle the first successor without using the worklist.
1010   VisitedSuccs.insert(*I);
1011   Pred = BB;
1012   BB = *I;
1013   ++I;
1014
1015   for (; I != E; ++I)
1016     if (VisitedSuccs.insert(*I).second)
1017       Worklist.emplace_back(*I, Pred, IncomingVals, IncomingLocs);
1018
1019   goto NextIteration;
1020 }
1021
1022 void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
1023                            AssumptionCache *AC) {
1024   // If there is nothing to do, bail out...
1025   if (Allocas.empty())
1026     return;
1027
1028   PromoteMem2Reg(Allocas, DT, AC).run();
1029 }