]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/Utils/SimplifyCFG.cpp
Merge llvm, clang, lld and lldb trunk r300890, and update build glue.
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / Utils / SimplifyCFG.cpp
1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Peephole optimize the CFG.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SetOperations.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/ConstantFolding.h"
27 #include "llvm/Analysis/EHPersonalities.h"
28 #include "llvm/Analysis/InstructionSimplify.h"
29 #include "llvm/Analysis/TargetTransformInfo.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/CallSite.h"
33 #include "llvm/IR/CFG.h"
34 #include "llvm/IR/Constant.h"
35 #include "llvm/IR/ConstantRange.h"
36 #include "llvm/IR/Constants.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/DebugInfo.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/GlobalValue.h"
41 #include "llvm/IR/GlobalVariable.h"
42 #include "llvm/IR/IRBuilder.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/IR/Instruction.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/MDBuilder.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/NoFolder.h"
53 #include "llvm/IR/Operator.h"
54 #include "llvm/IR/PatternMatch.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/User.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/IR/DebugInfo.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Debug.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include "llvm/Support/MathExtras.h"
64 #include "llvm/Support/raw_ostream.h"
65 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
66 #include "llvm/Transforms/Utils/Local.h"
67 #include "llvm/Transforms/Utils/ValueMapper.h"
68 #include <algorithm>
69 #include <cassert>
70 #include <climits>
71 #include <cstddef>
72 #include <cstdint>
73 #include <iterator>
74 #include <map>
75 #include <set>
76 #include <utility>
77 #include <vector>
78
79 using namespace llvm;
80 using namespace PatternMatch;
81
82 #define DEBUG_TYPE "simplifycfg"
83
84 // Chosen as 2 so as to be cheap, but still to have enough power to fold
85 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
86 // To catch this, we need to fold a compare and a select, hence '2' being the
87 // minimum reasonable default.
88 static cl::opt<unsigned> PHINodeFoldingThreshold(
89     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
90     cl::desc(
91         "Control the amount of phi node folding to perform (default = 2)"));
92
93 static cl::opt<bool> DupRet(
94     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
95     cl::desc("Duplicate return instructions into unconditional branches"));
96
97 static cl::opt<bool>
98     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
99                cl::desc("Sink common instructions down to the end block"));
100
101 static cl::opt<bool> HoistCondStores(
102     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
103     cl::desc("Hoist conditional stores if an unconditional store precedes"));
104
105 static cl::opt<bool> MergeCondStores(
106     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
107     cl::desc("Hoist conditional stores even if an unconditional store does not "
108              "precede - hoist multiple conditional stores into a single "
109              "predicated store"));
110
111 static cl::opt<bool> MergeCondStoresAggressively(
112     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
113     cl::desc("When merging conditional stores, do so even if the resultant "
114              "basic blocks are unlikely to be if-converted as a result"));
115
116 static cl::opt<bool> SpeculateOneExpensiveInst(
117     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
118     cl::desc("Allow exactly one expensive instruction to be speculatively "
119              "executed"));
120
121 static cl::opt<unsigned> MaxSpeculationDepth(
122     "max-speculation-depth", cl::Hidden, cl::init(10),
123     cl::desc("Limit maximum recursion depth when calculating costs of "
124              "speculatively executed instructions"));
125
126 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
127 STATISTIC(NumLinearMaps,
128           "Number of switch instructions turned into linear mapping");
129 STATISTIC(NumLookupTables,
130           "Number of switch instructions turned into lookup tables");
131 STATISTIC(
132     NumLookupTablesHoles,
133     "Number of switch instructions turned into lookup tables (holes checked)");
134 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
135 STATISTIC(NumSinkCommons,
136           "Number of common instructions sunk down to the end block");
137 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
138
139 namespace {
140
141 // The first field contains the value that the switch produces when a certain
142 // case group is selected, and the second field is a vector containing the
143 // cases composing the case group.
144 typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>
145     SwitchCaseResultVectorTy;
146 // The first field contains the phi node that generates a result of the switch
147 // and the second field contains the value generated for a certain case in the
148 // switch for that PHI.
149 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy;
150
151 /// ValueEqualityComparisonCase - Represents a case of a switch.
152 struct ValueEqualityComparisonCase {
153   ConstantInt *Value;
154   BasicBlock *Dest;
155
156   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
157       : Value(Value), Dest(Dest) {}
158
159   bool operator<(ValueEqualityComparisonCase RHS) const {
160     // Comparing pointers is ok as we only rely on the order for uniquing.
161     return Value < RHS.Value;
162   }
163
164   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
165 };
166
167 class SimplifyCFGOpt {
168   const TargetTransformInfo &TTI;
169   const DataLayout &DL;
170   unsigned BonusInstThreshold;
171   AssumptionCache *AC;
172   SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
173   // See comments in SimplifyCFGOpt::SimplifySwitch.
174   bool LateSimplifyCFG;
175   Value *isValueEqualityComparison(TerminatorInst *TI);
176   BasicBlock *GetValueEqualityComparisonCases(
177       TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases);
178   bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
179                                                      BasicBlock *Pred,
180                                                      IRBuilder<> &Builder);
181   bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
182                                            IRBuilder<> &Builder);
183
184   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
185   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
186   bool SimplifySingleResume(ResumeInst *RI);
187   bool SimplifyCommonResume(ResumeInst *RI);
188   bool SimplifyCleanupReturn(CleanupReturnInst *RI);
189   bool SimplifyUnreachable(UnreachableInst *UI);
190   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
191   bool SimplifyIndirectBr(IndirectBrInst *IBI);
192   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
193   bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
194
195 public:
196   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
197                  unsigned BonusInstThreshold, AssumptionCache *AC,
198                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders,
199                  bool LateSimplifyCFG)
200       : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC),
201         LoopHeaders(LoopHeaders), LateSimplifyCFG(LateSimplifyCFG) {}
202
203   bool run(BasicBlock *BB);
204 };
205
206 } // end anonymous namespace
207
208 /// Return true if it is safe to merge these two
209 /// terminator instructions together.
210 static bool
211 SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2,
212                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
213   if (SI1 == SI2)
214     return false; // Can't merge with self!
215
216   // It is not safe to merge these two switch instructions if they have a common
217   // successor, and if that successor has a PHI node, and if *that* PHI node has
218   // conflicting incoming values from the two switch blocks.
219   BasicBlock *SI1BB = SI1->getParent();
220   BasicBlock *SI2BB = SI2->getParent();
221
222   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
223   bool Fail = false;
224   for (BasicBlock *Succ : successors(SI2BB))
225     if (SI1Succs.count(Succ))
226       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
227         PHINode *PN = cast<PHINode>(BBI);
228         if (PN->getIncomingValueForBlock(SI1BB) !=
229             PN->getIncomingValueForBlock(SI2BB)) {
230           if (FailBlocks)
231             FailBlocks->insert(Succ);
232           Fail = true;
233         }
234       }
235
236   return !Fail;
237 }
238
239 /// Return true if it is safe and profitable to merge these two terminator
240 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
241 /// store all PHI nodes in common successors.
242 static bool
243 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
244                                 Instruction *Cond,
245                                 SmallVectorImpl<PHINode *> &PhiNodes) {
246   if (SI1 == SI2)
247     return false; // Can't merge with self!
248   assert(SI1->isUnconditional() && SI2->isConditional());
249
250   // We fold the unconditional branch if we can easily update all PHI nodes in
251   // common successors:
252   // 1> We have a constant incoming value for the conditional branch;
253   // 2> We have "Cond" as the incoming value for the unconditional branch;
254   // 3> SI2->getCondition() and Cond have same operands.
255   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
256   if (!Ci2)
257     return false;
258   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
259         Cond->getOperand(1) == Ci2->getOperand(1)) &&
260       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
261         Cond->getOperand(1) == Ci2->getOperand(0)))
262     return false;
263
264   BasicBlock *SI1BB = SI1->getParent();
265   BasicBlock *SI2BB = SI2->getParent();
266   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
267   for (BasicBlock *Succ : successors(SI2BB))
268     if (SI1Succs.count(Succ))
269       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
270         PHINode *PN = cast<PHINode>(BBI);
271         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
272             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
273           return false;
274         PhiNodes.push_back(PN);
275       }
276   return true;
277 }
278
279 /// Update PHI nodes in Succ to indicate that there will now be entries in it
280 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
281 /// will be the same as those coming in from ExistPred, an existing predecessor
282 /// of Succ.
283 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
284                                   BasicBlock *ExistPred) {
285   if (!isa<PHINode>(Succ->begin()))
286     return; // Quick exit if nothing to do
287
288   PHINode *PN;
289   for (BasicBlock::iterator I = Succ->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
290     PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
291 }
292
293 /// Compute an abstract "cost" of speculating the given instruction,
294 /// which is assumed to be safe to speculate. TCC_Free means cheap,
295 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
296 /// expensive.
297 static unsigned ComputeSpeculationCost(const User *I,
298                                        const TargetTransformInfo &TTI) {
299   assert(isSafeToSpeculativelyExecute(I) &&
300          "Instruction is not safe to speculatively execute!");
301   return TTI.getUserCost(I);
302 }
303
304 /// If we have a merge point of an "if condition" as accepted above,
305 /// return true if the specified value dominates the block.  We
306 /// don't handle the true generality of domination here, just a special case
307 /// which works well enough for us.
308 ///
309 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
310 /// see if V (which must be an instruction) and its recursive operands
311 /// that do not dominate BB have a combined cost lower than CostRemaining and
312 /// are non-trapping.  If both are true, the instruction is inserted into the
313 /// set and true is returned.
314 ///
315 /// The cost for most non-trapping instructions is defined as 1 except for
316 /// Select whose cost is 2.
317 ///
318 /// After this function returns, CostRemaining is decreased by the cost of
319 /// V plus its non-dominating operands.  If that cost is greater than
320 /// CostRemaining, false is returned and CostRemaining is undefined.
321 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
322                                 SmallPtrSetImpl<Instruction *> *AggressiveInsts,
323                                 unsigned &CostRemaining,
324                                 const TargetTransformInfo &TTI,
325                                 unsigned Depth = 0) {
326   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
327   // so limit the recursion depth.
328   // TODO: While this recursion limit does prevent pathological behavior, it
329   // would be better to track visited instructions to avoid cycles.
330   if (Depth == MaxSpeculationDepth)
331     return false;
332
333   Instruction *I = dyn_cast<Instruction>(V);
334   if (!I) {
335     // Non-instructions all dominate instructions, but not all constantexprs
336     // can be executed unconditionally.
337     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
338       if (C->canTrap())
339         return false;
340     return true;
341   }
342   BasicBlock *PBB = I->getParent();
343
344   // We don't want to allow weird loops that might have the "if condition" in
345   // the bottom of this block.
346   if (PBB == BB)
347     return false;
348
349   // If this instruction is defined in a block that contains an unconditional
350   // branch to BB, then it must be in the 'conditional' part of the "if
351   // statement".  If not, it definitely dominates the region.
352   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
353   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
354     return true;
355
356   // If we aren't allowing aggressive promotion anymore, then don't consider
357   // instructions in the 'if region'.
358   if (!AggressiveInsts)
359     return false;
360
361   // If we have seen this instruction before, don't count it again.
362   if (AggressiveInsts->count(I))
363     return true;
364
365   // Okay, it looks like the instruction IS in the "condition".  Check to
366   // see if it's a cheap instruction to unconditionally compute, and if it
367   // only uses stuff defined outside of the condition.  If so, hoist it out.
368   if (!isSafeToSpeculativelyExecute(I))
369     return false;
370
371   unsigned Cost = ComputeSpeculationCost(I, TTI);
372
373   // Allow exactly one instruction to be speculated regardless of its cost
374   // (as long as it is safe to do so).
375   // This is intended to flatten the CFG even if the instruction is a division
376   // or other expensive operation. The speculation of an expensive instruction
377   // is expected to be undone in CodeGenPrepare if the speculation has not
378   // enabled further IR optimizations.
379   if (Cost > CostRemaining &&
380       (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0))
381     return false;
382
383   // Avoid unsigned wrap.
384   CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost;
385
386   // Okay, we can only really hoist these out if their operands do
387   // not take us over the cost threshold.
388   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
389     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI,
390                              Depth + 1))
391       return false;
392   // Okay, it's safe to do this!  Remember this instruction.
393   AggressiveInsts->insert(I);
394   return true;
395 }
396
397 /// Extract ConstantInt from value, looking through IntToPtr
398 /// and PointerNullValue. Return NULL if value is not a constant int.
399 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
400   // Normal constant int.
401   ConstantInt *CI = dyn_cast<ConstantInt>(V);
402   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
403     return CI;
404
405   // This is some kind of pointer constant. Turn it into a pointer-sized
406   // ConstantInt if possible.
407   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
408
409   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
410   if (isa<ConstantPointerNull>(V))
411     return ConstantInt::get(PtrTy, 0);
412
413   // IntToPtr const int.
414   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
415     if (CE->getOpcode() == Instruction::IntToPtr)
416       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
417         // The constant is very likely to have the right type already.
418         if (CI->getType() == PtrTy)
419           return CI;
420         else
421           return cast<ConstantInt>(
422               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
423       }
424   return nullptr;
425 }
426
427 namespace {
428
429 /// Given a chain of or (||) or and (&&) comparison of a value against a
430 /// constant, this will try to recover the information required for a switch
431 /// structure.
432 /// It will depth-first traverse the chain of comparison, seeking for patterns
433 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
434 /// representing the different cases for the switch.
435 /// Note that if the chain is composed of '||' it will build the set of elements
436 /// that matches the comparisons (i.e. any of this value validate the chain)
437 /// while for a chain of '&&' it will build the set elements that make the test
438 /// fail.
439 struct ConstantComparesGatherer {
440   const DataLayout &DL;
441   Value *CompValue; /// Value found for the switch comparison
442   Value *Extra;     /// Extra clause to be checked before the switch
443   SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch
444   unsigned UsedICmps; /// Number of comparisons matched in the and/or chain
445
446   /// Construct and compute the result for the comparison instruction Cond
447   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL)
448       : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) {
449     gather(Cond);
450   }
451
452   /// Prevent copy
453   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
454   ConstantComparesGatherer &
455   operator=(const ConstantComparesGatherer &) = delete;
456
457 private:
458   /// Try to set the current value used for the comparison, it succeeds only if
459   /// it wasn't set before or if the new value is the same as the old one
460   bool setValueOnce(Value *NewVal) {
461     if (CompValue && CompValue != NewVal)
462       return false;
463     CompValue = NewVal;
464     return (CompValue != nullptr);
465   }
466
467   /// Try to match Instruction "I" as a comparison against a constant and
468   /// populates the array Vals with the set of values that match (or do not
469   /// match depending on isEQ).
470   /// Return false on failure. On success, the Value the comparison matched
471   /// against is placed in CompValue.
472   /// If CompValue is already set, the function is expected to fail if a match
473   /// is found but the value compared to is different.
474   bool matchInstruction(Instruction *I, bool isEQ) {
475     // If this is an icmp against a constant, handle this as one of the cases.
476     ICmpInst *ICI;
477     ConstantInt *C;
478     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
479           (C = GetConstantInt(I->getOperand(1), DL)))) {
480       return false;
481     }
482
483     Value *RHSVal;
484     const APInt *RHSC;
485
486     // Pattern match a special case
487     // (x & ~2^z) == y --> x == y || x == y|2^z
488     // This undoes a transformation done by instcombine to fuse 2 compares.
489     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
490
491       // It's a little bit hard to see why the following transformations are
492       // correct. Here is a CVC3 program to verify them for 64-bit values:
493
494       /*
495          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
496          x    : BITVECTOR(64);
497          y    : BITVECTOR(64);
498          z    : BITVECTOR(64);
499          mask : BITVECTOR(64) = BVSHL(ONE, z);
500          QUERY( (y & ~mask = y) =>
501                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
502          );
503          QUERY( (y |  mask = y) =>
504                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
505          );
506       */
507
508       // Please note that each pattern must be a dual implication (<--> or
509       // iff). One directional implication can create spurious matches. If the
510       // implication is only one-way, an unsatisfiable condition on the left
511       // side can imply a satisfiable condition on the right side. Dual
512       // implication ensures that satisfiable conditions are transformed to
513       // other satisfiable conditions and unsatisfiable conditions are
514       // transformed to other unsatisfiable conditions.
515
516       // Here is a concrete example of a unsatisfiable condition on the left
517       // implying a satisfiable condition on the right:
518       //
519       // mask = (1 << z)
520       // (x & ~mask) == y  --> (x == y || x == (y | mask))
521       //
522       // Substituting y = 3, z = 0 yields:
523       // (x & -2) == 3 --> (x == 3 || x == 2)
524
525       // Pattern match a special case:
526       /*
527         QUERY( (y & ~mask = y) =>
528                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
529         );
530       */
531       if (match(ICI->getOperand(0),
532                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
533         APInt Mask = ~*RHSC;
534         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
535           // If we already have a value for the switch, it has to match!
536           if (!setValueOnce(RHSVal))
537             return false;
538
539           Vals.push_back(C);
540           Vals.push_back(
541               ConstantInt::get(C->getContext(),
542                                C->getValue() | Mask));
543           UsedICmps++;
544           return true;
545         }
546       }
547
548       // Pattern match a special case:
549       /*
550         QUERY( (y |  mask = y) =>
551                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
552         );
553       */
554       if (match(ICI->getOperand(0),
555                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
556         APInt Mask = *RHSC;
557         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
558           // If we already have a value for the switch, it has to match!
559           if (!setValueOnce(RHSVal))
560             return false;
561
562           Vals.push_back(C);
563           Vals.push_back(ConstantInt::get(C->getContext(),
564                                           C->getValue() & ~Mask));
565           UsedICmps++;
566           return true;
567         }
568       }
569
570       // If we already have a value for the switch, it has to match!
571       if (!setValueOnce(ICI->getOperand(0)))
572         return false;
573
574       UsedICmps++;
575       Vals.push_back(C);
576       return ICI->getOperand(0);
577     }
578
579     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
580     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
581         ICI->getPredicate(), C->getValue());
582
583     // Shift the range if the compare is fed by an add. This is the range
584     // compare idiom as emitted by instcombine.
585     Value *CandidateVal = I->getOperand(0);
586     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
587       Span = Span.subtract(*RHSC);
588       CandidateVal = RHSVal;
589     }
590
591     // If this is an and/!= check, then we are looking to build the set of
592     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
593     // x != 0 && x != 1.
594     if (!isEQ)
595       Span = Span.inverse();
596
597     // If there are a ton of values, we don't want to make a ginormous switch.
598     if (Span.getSetSize().ugt(8) || Span.isEmptySet()) {
599       return false;
600     }
601
602     // If we already have a value for the switch, it has to match!
603     if (!setValueOnce(CandidateVal))
604       return false;
605
606     // Add all values from the range to the set
607     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
608       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
609
610     UsedICmps++;
611     return true;
612   }
613
614   /// Given a potentially 'or'd or 'and'd together collection of icmp
615   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
616   /// the value being compared, and stick the list constants into the Vals
617   /// vector.
618   /// One "Extra" case is allowed to differ from the other.
619   void gather(Value *V) {
620     Instruction *I = dyn_cast<Instruction>(V);
621     bool isEQ = (I->getOpcode() == Instruction::Or);
622
623     // Keep a stack (SmallVector for efficiency) for depth-first traversal
624     SmallVector<Value *, 8> DFT;
625     SmallPtrSet<Value *, 8> Visited;
626
627     // Initialize
628     Visited.insert(V);
629     DFT.push_back(V);
630
631     while (!DFT.empty()) {
632       V = DFT.pop_back_val();
633
634       if (Instruction *I = dyn_cast<Instruction>(V)) {
635         // If it is a || (or && depending on isEQ), process the operands.
636         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
637           if (Visited.insert(I->getOperand(1)).second)
638             DFT.push_back(I->getOperand(1));
639           if (Visited.insert(I->getOperand(0)).second)
640             DFT.push_back(I->getOperand(0));
641           continue;
642         }
643
644         // Try to match the current instruction
645         if (matchInstruction(I, isEQ))
646           // Match succeed, continue the loop
647           continue;
648       }
649
650       // One element of the sequence of || (or &&) could not be match as a
651       // comparison against the same value as the others.
652       // We allow only one "Extra" case to be checked before the switch
653       if (!Extra) {
654         Extra = V;
655         continue;
656       }
657       // Failed to parse a proper sequence, abort now
658       CompValue = nullptr;
659       break;
660     }
661   }
662 };
663
664 } // end anonymous namespace
665
666 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
667   Instruction *Cond = nullptr;
668   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
669     Cond = dyn_cast<Instruction>(SI->getCondition());
670   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
671     if (BI->isConditional())
672       Cond = dyn_cast<Instruction>(BI->getCondition());
673   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
674     Cond = dyn_cast<Instruction>(IBI->getAddress());
675   }
676
677   TI->eraseFromParent();
678   if (Cond)
679     RecursivelyDeleteTriviallyDeadInstructions(Cond);
680 }
681
682 /// Return true if the specified terminator checks
683 /// to see if a value is equal to constant integer value.
684 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
685   Value *CV = nullptr;
686   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
687     // Do not permit merging of large switch instructions into their
688     // predecessors unless there is only one predecessor.
689     if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
690                                                pred_end(SI->getParent())) <=
691         128)
692       CV = SI->getCondition();
693   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
694     if (BI->isConditional() && BI->getCondition()->hasOneUse())
695       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
696         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
697           CV = ICI->getOperand(0);
698       }
699
700   // Unwrap any lossless ptrtoint cast.
701   if (CV) {
702     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
703       Value *Ptr = PTII->getPointerOperand();
704       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
705         CV = Ptr;
706     }
707   }
708   return CV;
709 }
710
711 /// Given a value comparison instruction,
712 /// decode all of the 'cases' that it represents and return the 'default' block.
713 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
714     TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
715   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
716     Cases.reserve(SI->getNumCases());
717     for (auto Case : SI->cases())
718       Cases.push_back(ValueEqualityComparisonCase(Case.getCaseValue(),
719                                                   Case.getCaseSuccessor()));
720     return SI->getDefaultDest();
721   }
722
723   BranchInst *BI = cast<BranchInst>(TI);
724   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
725   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
726   Cases.push_back(ValueEqualityComparisonCase(
727       GetConstantInt(ICI->getOperand(1), DL), Succ));
728   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
729 }
730
731 /// Given a vector of bb/value pairs, remove any entries
732 /// in the list that match the specified block.
733 static void
734 EliminateBlockCases(BasicBlock *BB,
735                     std::vector<ValueEqualityComparisonCase> &Cases) {
736   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
737 }
738
739 /// Return true if there are any keys in C1 that exist in C2 as well.
740 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
741                           std::vector<ValueEqualityComparisonCase> &C2) {
742   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
743
744   // Make V1 be smaller than V2.
745   if (V1->size() > V2->size())
746     std::swap(V1, V2);
747
748   if (V1->empty())
749     return false;
750   if (V1->size() == 1) {
751     // Just scan V2.
752     ConstantInt *TheVal = (*V1)[0].Value;
753     for (unsigned i = 0, e = V2->size(); i != e; ++i)
754       if (TheVal == (*V2)[i].Value)
755         return true;
756   }
757
758   // Otherwise, just sort both lists and compare element by element.
759   array_pod_sort(V1->begin(), V1->end());
760   array_pod_sort(V2->begin(), V2->end());
761   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
762   while (i1 != e1 && i2 != e2) {
763     if ((*V1)[i1].Value == (*V2)[i2].Value)
764       return true;
765     if ((*V1)[i1].Value < (*V2)[i2].Value)
766       ++i1;
767     else
768       ++i2;
769   }
770   return false;
771 }
772
773 /// If TI is known to be a terminator instruction and its block is known to
774 /// only have a single predecessor block, check to see if that predecessor is
775 /// also a value comparison with the same value, and if that comparison
776 /// determines the outcome of this comparison. If so, simplify TI. This does a
777 /// very limited form of jump threading.
778 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
779     TerminatorInst *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
780   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
781   if (!PredVal)
782     return false; // Not a value comparison in predecessor.
783
784   Value *ThisVal = isValueEqualityComparison(TI);
785   assert(ThisVal && "This isn't a value comparison!!");
786   if (ThisVal != PredVal)
787     return false; // Different predicates.
788
789   // TODO: Preserve branch weight metadata, similarly to how
790   // FoldValueComparisonIntoPredecessors preserves it.
791
792   // Find out information about when control will move from Pred to TI's block.
793   std::vector<ValueEqualityComparisonCase> PredCases;
794   BasicBlock *PredDef =
795       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
796   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
797
798   // Find information about how control leaves this block.
799   std::vector<ValueEqualityComparisonCase> ThisCases;
800   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
801   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
802
803   // If TI's block is the default block from Pred's comparison, potentially
804   // simplify TI based on this knowledge.
805   if (PredDef == TI->getParent()) {
806     // If we are here, we know that the value is none of those cases listed in
807     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
808     // can simplify TI.
809     if (!ValuesOverlap(PredCases, ThisCases))
810       return false;
811
812     if (isa<BranchInst>(TI)) {
813       // Okay, one of the successors of this condbr is dead.  Convert it to a
814       // uncond br.
815       assert(ThisCases.size() == 1 && "Branch can only have one case!");
816       // Insert the new branch.
817       Instruction *NI = Builder.CreateBr(ThisDef);
818       (void)NI;
819
820       // Remove PHI node entries for the dead edge.
821       ThisCases[0].Dest->removePredecessor(TI->getParent());
822
823       DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
824                    << "Through successor TI: " << *TI << "Leaving: " << *NI
825                    << "\n");
826
827       EraseTerminatorInstAndDCECond(TI);
828       return true;
829     }
830
831     SwitchInst *SI = cast<SwitchInst>(TI);
832     // Okay, TI has cases that are statically dead, prune them away.
833     SmallPtrSet<Constant *, 16> DeadCases;
834     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
835       DeadCases.insert(PredCases[i].Value);
836
837     DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
838                  << "Through successor TI: " << *TI);
839
840     // Collect branch weights into a vector.
841     SmallVector<uint32_t, 8> Weights;
842     MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
843     bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
844     if (HasWeight)
845       for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
846            ++MD_i) {
847         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
848         Weights.push_back(CI->getValue().getZExtValue());
849       }
850     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
851       --i;
852       if (DeadCases.count(i->getCaseValue())) {
853         if (HasWeight) {
854           std::swap(Weights[i->getCaseIndex() + 1], Weights.back());
855           Weights.pop_back();
856         }
857         i->getCaseSuccessor()->removePredecessor(TI->getParent());
858         SI->removeCase(i);
859       }
860     }
861     if (HasWeight && Weights.size() >= 2)
862       SI->setMetadata(LLVMContext::MD_prof,
863                       MDBuilder(SI->getParent()->getContext())
864                           .createBranchWeights(Weights));
865
866     DEBUG(dbgs() << "Leaving: " << *TI << "\n");
867     return true;
868   }
869
870   // Otherwise, TI's block must correspond to some matched value.  Find out
871   // which value (or set of values) this is.
872   ConstantInt *TIV = nullptr;
873   BasicBlock *TIBB = TI->getParent();
874   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
875     if (PredCases[i].Dest == TIBB) {
876       if (TIV)
877         return false; // Cannot handle multiple values coming to this block.
878       TIV = PredCases[i].Value;
879     }
880   assert(TIV && "No edge from pred to succ?");
881
882   // Okay, we found the one constant that our value can be if we get into TI's
883   // BB.  Find out which successor will unconditionally be branched to.
884   BasicBlock *TheRealDest = nullptr;
885   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
886     if (ThisCases[i].Value == TIV) {
887       TheRealDest = ThisCases[i].Dest;
888       break;
889     }
890
891   // If not handled by any explicit cases, it is handled by the default case.
892   if (!TheRealDest)
893     TheRealDest = ThisDef;
894
895   // Remove PHI node entries for dead edges.
896   BasicBlock *CheckEdge = TheRealDest;
897   for (BasicBlock *Succ : successors(TIBB))
898     if (Succ != CheckEdge)
899       Succ->removePredecessor(TIBB);
900     else
901       CheckEdge = nullptr;
902
903   // Insert the new branch.
904   Instruction *NI = Builder.CreateBr(TheRealDest);
905   (void)NI;
906
907   DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
908                << "Through successor TI: " << *TI << "Leaving: " << *NI
909                << "\n");
910
911   EraseTerminatorInstAndDCECond(TI);
912   return true;
913 }
914
915 namespace {
916
917 /// This class implements a stable ordering of constant
918 /// integers that does not depend on their address.  This is important for
919 /// applications that sort ConstantInt's to ensure uniqueness.
920 struct ConstantIntOrdering {
921   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
922     return LHS->getValue().ult(RHS->getValue());
923   }
924 };
925
926 } // end anonymous namespace
927
928 static int ConstantIntSortPredicate(ConstantInt *const *P1,
929                                     ConstantInt *const *P2) {
930   const ConstantInt *LHS = *P1;
931   const ConstantInt *RHS = *P2;
932   if (LHS == RHS)
933     return 0;
934   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
935 }
936
937 static inline bool HasBranchWeights(const Instruction *I) {
938   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
939   if (ProfMD && ProfMD->getOperand(0))
940     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
941       return MDS->getString().equals("branch_weights");
942
943   return false;
944 }
945
946 /// Get Weights of a given TerminatorInst, the default weight is at the front
947 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
948 /// metadata.
949 static void GetBranchWeights(TerminatorInst *TI,
950                              SmallVectorImpl<uint64_t> &Weights) {
951   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
952   assert(MD);
953   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
954     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
955     Weights.push_back(CI->getValue().getZExtValue());
956   }
957
958   // If TI is a conditional eq, the default case is the false case,
959   // and the corresponding branch-weight data is at index 2. We swap the
960   // default weight to be the first entry.
961   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
962     assert(Weights.size() == 2);
963     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
964     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
965       std::swap(Weights.front(), Weights.back());
966   }
967 }
968
969 /// Keep halving the weights until all can fit in uint32_t.
970 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
971   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
972   if (Max > UINT_MAX) {
973     unsigned Offset = 32 - countLeadingZeros(Max);
974     for (uint64_t &I : Weights)
975       I >>= Offset;
976   }
977 }
978
979 /// The specified terminator is a value equality comparison instruction
980 /// (either a switch or a branch on "X == c").
981 /// See if any of the predecessors of the terminator block are value comparisons
982 /// on the same value.  If so, and if safe to do so, fold them together.
983 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
984                                                          IRBuilder<> &Builder) {
985   BasicBlock *BB = TI->getParent();
986   Value *CV = isValueEqualityComparison(TI); // CondVal
987   assert(CV && "Not a comparison?");
988   bool Changed = false;
989
990   SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
991   while (!Preds.empty()) {
992     BasicBlock *Pred = Preds.pop_back_val();
993
994     // See if the predecessor is a comparison with the same value.
995     TerminatorInst *PTI = Pred->getTerminator();
996     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
997
998     if (PCV == CV && TI != PTI) {
999       SmallSetVector<BasicBlock*, 4> FailBlocks;
1000       if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
1001         for (auto *Succ : FailBlocks) {
1002           if (!SplitBlockPredecessors(Succ, TI->getParent(), ".fold.split"))
1003             return false;
1004         }
1005       }
1006
1007       // Figure out which 'cases' to copy from SI to PSI.
1008       std::vector<ValueEqualityComparisonCase> BBCases;
1009       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1010
1011       std::vector<ValueEqualityComparisonCase> PredCases;
1012       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1013
1014       // Based on whether the default edge from PTI goes to BB or not, fill in
1015       // PredCases and PredDefault with the new switch cases we would like to
1016       // build.
1017       SmallVector<BasicBlock *, 8> NewSuccessors;
1018
1019       // Update the branch weight metadata along the way
1020       SmallVector<uint64_t, 8> Weights;
1021       bool PredHasWeights = HasBranchWeights(PTI);
1022       bool SuccHasWeights = HasBranchWeights(TI);
1023
1024       if (PredHasWeights) {
1025         GetBranchWeights(PTI, Weights);
1026         // branch-weight metadata is inconsistent here.
1027         if (Weights.size() != 1 + PredCases.size())
1028           PredHasWeights = SuccHasWeights = false;
1029       } else if (SuccHasWeights)
1030         // If there are no predecessor weights but there are successor weights,
1031         // populate Weights with 1, which will later be scaled to the sum of
1032         // successor's weights
1033         Weights.assign(1 + PredCases.size(), 1);
1034
1035       SmallVector<uint64_t, 8> SuccWeights;
1036       if (SuccHasWeights) {
1037         GetBranchWeights(TI, SuccWeights);
1038         // branch-weight metadata is inconsistent here.
1039         if (SuccWeights.size() != 1 + BBCases.size())
1040           PredHasWeights = SuccHasWeights = false;
1041       } else if (PredHasWeights)
1042         SuccWeights.assign(1 + BBCases.size(), 1);
1043
1044       if (PredDefault == BB) {
1045         // If this is the default destination from PTI, only the edges in TI
1046         // that don't occur in PTI, or that branch to BB will be activated.
1047         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1048         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1049           if (PredCases[i].Dest != BB)
1050             PTIHandled.insert(PredCases[i].Value);
1051           else {
1052             // The default destination is BB, we don't need explicit targets.
1053             std::swap(PredCases[i], PredCases.back());
1054
1055             if (PredHasWeights || SuccHasWeights) {
1056               // Increase weight for the default case.
1057               Weights[0] += Weights[i + 1];
1058               std::swap(Weights[i + 1], Weights.back());
1059               Weights.pop_back();
1060             }
1061
1062             PredCases.pop_back();
1063             --i;
1064             --e;
1065           }
1066
1067         // Reconstruct the new switch statement we will be building.
1068         if (PredDefault != BBDefault) {
1069           PredDefault->removePredecessor(Pred);
1070           PredDefault = BBDefault;
1071           NewSuccessors.push_back(BBDefault);
1072         }
1073
1074         unsigned CasesFromPred = Weights.size();
1075         uint64_t ValidTotalSuccWeight = 0;
1076         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1077           if (!PTIHandled.count(BBCases[i].Value) &&
1078               BBCases[i].Dest != BBDefault) {
1079             PredCases.push_back(BBCases[i]);
1080             NewSuccessors.push_back(BBCases[i].Dest);
1081             if (SuccHasWeights || PredHasWeights) {
1082               // The default weight is at index 0, so weight for the ith case
1083               // should be at index i+1. Scale the cases from successor by
1084               // PredDefaultWeight (Weights[0]).
1085               Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1086               ValidTotalSuccWeight += SuccWeights[i + 1];
1087             }
1088           }
1089
1090         if (SuccHasWeights || PredHasWeights) {
1091           ValidTotalSuccWeight += SuccWeights[0];
1092           // Scale the cases from predecessor by ValidTotalSuccWeight.
1093           for (unsigned i = 1; i < CasesFromPred; ++i)
1094             Weights[i] *= ValidTotalSuccWeight;
1095           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1096           Weights[0] *= SuccWeights[0];
1097         }
1098       } else {
1099         // If this is not the default destination from PSI, only the edges
1100         // in SI that occur in PSI with a destination of BB will be
1101         // activated.
1102         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1103         std::map<ConstantInt *, uint64_t> WeightsForHandled;
1104         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1105           if (PredCases[i].Dest == BB) {
1106             PTIHandled.insert(PredCases[i].Value);
1107
1108             if (PredHasWeights || SuccHasWeights) {
1109               WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1110               std::swap(Weights[i + 1], Weights.back());
1111               Weights.pop_back();
1112             }
1113
1114             std::swap(PredCases[i], PredCases.back());
1115             PredCases.pop_back();
1116             --i;
1117             --e;
1118           }
1119
1120         // Okay, now we know which constants were sent to BB from the
1121         // predecessor.  Figure out where they will all go now.
1122         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1123           if (PTIHandled.count(BBCases[i].Value)) {
1124             // If this is one we are capable of getting...
1125             if (PredHasWeights || SuccHasWeights)
1126               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1127             PredCases.push_back(BBCases[i]);
1128             NewSuccessors.push_back(BBCases[i].Dest);
1129             PTIHandled.erase(
1130                 BBCases[i].Value); // This constant is taken care of
1131           }
1132
1133         // If there are any constants vectored to BB that TI doesn't handle,
1134         // they must go to the default destination of TI.
1135         for (ConstantInt *I : PTIHandled) {
1136           if (PredHasWeights || SuccHasWeights)
1137             Weights.push_back(WeightsForHandled[I]);
1138           PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1139           NewSuccessors.push_back(BBDefault);
1140         }
1141       }
1142
1143       // Okay, at this point, we know which new successor Pred will get.  Make
1144       // sure we update the number of entries in the PHI nodes for these
1145       // successors.
1146       for (BasicBlock *NewSuccessor : NewSuccessors)
1147         AddPredecessorToBlock(NewSuccessor, Pred, BB);
1148
1149       Builder.SetInsertPoint(PTI);
1150       // Convert pointer to int before we switch.
1151       if (CV->getType()->isPointerTy()) {
1152         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1153                                     "magicptr");
1154       }
1155
1156       // Now that the successors are updated, create the new Switch instruction.
1157       SwitchInst *NewSI =
1158           Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1159       NewSI->setDebugLoc(PTI->getDebugLoc());
1160       for (ValueEqualityComparisonCase &V : PredCases)
1161         NewSI->addCase(V.Value, V.Dest);
1162
1163       if (PredHasWeights || SuccHasWeights) {
1164         // Halve the weights if any of them cannot fit in an uint32_t
1165         FitWeights(Weights);
1166
1167         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1168
1169         NewSI->setMetadata(
1170             LLVMContext::MD_prof,
1171             MDBuilder(BB->getContext()).createBranchWeights(MDWeights));
1172       }
1173
1174       EraseTerminatorInstAndDCECond(PTI);
1175
1176       // Okay, last check.  If BB is still a successor of PSI, then we must
1177       // have an infinite loop case.  If so, add an infinitely looping block
1178       // to handle the case to preserve the behavior of the code.
1179       BasicBlock *InfLoopBlock = nullptr;
1180       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1181         if (NewSI->getSuccessor(i) == BB) {
1182           if (!InfLoopBlock) {
1183             // Insert it at the end of the function, because it's either code,
1184             // or it won't matter if it's hot. :)
1185             InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
1186                                               BB->getParent());
1187             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1188           }
1189           NewSI->setSuccessor(i, InfLoopBlock);
1190         }
1191
1192       Changed = true;
1193     }
1194   }
1195   return Changed;
1196 }
1197
1198 // If we would need to insert a select that uses the value of this invoke
1199 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1200 // can't hoist the invoke, as there is nowhere to put the select in this case.
1201 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1202                                 Instruction *I1, Instruction *I2) {
1203   for (BasicBlock *Succ : successors(BB1)) {
1204     PHINode *PN;
1205     for (BasicBlock::iterator BBI = Succ->begin();
1206          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1207       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1208       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1209       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1210         return false;
1211       }
1212     }
1213   }
1214   return true;
1215 }
1216
1217 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1218
1219 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1220 /// in the two blocks up into the branch block. The caller of this function
1221 /// guarantees that BI's block dominates BB1 and BB2.
1222 static bool HoistThenElseCodeToIf(BranchInst *BI,
1223                                   const TargetTransformInfo &TTI) {
1224   // This does very trivial matching, with limited scanning, to find identical
1225   // instructions in the two blocks.  In particular, we don't want to get into
1226   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1227   // such, we currently just scan for obviously identical instructions in an
1228   // identical order.
1229   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1230   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1231
1232   BasicBlock::iterator BB1_Itr = BB1->begin();
1233   BasicBlock::iterator BB2_Itr = BB2->begin();
1234
1235   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1236   // Skip debug info if it is not identical.
1237   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1238   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1239   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1240     while (isa<DbgInfoIntrinsic>(I1))
1241       I1 = &*BB1_Itr++;
1242     while (isa<DbgInfoIntrinsic>(I2))
1243       I2 = &*BB2_Itr++;
1244   }
1245   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1246       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1247     return false;
1248
1249   BasicBlock *BIParent = BI->getParent();
1250
1251   bool Changed = false;
1252   do {
1253     // If we are hoisting the terminator instruction, don't move one (making a
1254     // broken BB), instead clone it, and remove BI.
1255     if (isa<TerminatorInst>(I1))
1256       goto HoistTerminator;
1257
1258     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1259       return Changed;
1260
1261     // For a normal instruction, we just move one to right before the branch,
1262     // then replace all uses of the other with the first.  Finally, we remove
1263     // the now redundant second instruction.
1264     BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1);
1265     if (!I2->use_empty())
1266       I2->replaceAllUsesWith(I1);
1267     I1->andIRFlags(I2);
1268     unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1269                            LLVMContext::MD_range,
1270                            LLVMContext::MD_fpmath,
1271                            LLVMContext::MD_invariant_load,
1272                            LLVMContext::MD_nonnull,
1273                            LLVMContext::MD_invariant_group,
1274                            LLVMContext::MD_align,
1275                            LLVMContext::MD_dereferenceable,
1276                            LLVMContext::MD_dereferenceable_or_null,
1277                            LLVMContext::MD_mem_parallel_loop_access};
1278     combineMetadata(I1, I2, KnownIDs);
1279
1280     // I1 and I2 are being combined into a single instruction.  Its debug
1281     // location is the merged locations of the original instructions.
1282     if (!isa<CallInst>(I1))
1283       I1->setDebugLoc(
1284           DILocation::getMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()));
1285
1286     I2->eraseFromParent();
1287     Changed = true;
1288
1289     I1 = &*BB1_Itr++;
1290     I2 = &*BB2_Itr++;
1291     // Skip debug info if it is not identical.
1292     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1293     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1294     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1295       while (isa<DbgInfoIntrinsic>(I1))
1296         I1 = &*BB1_Itr++;
1297       while (isa<DbgInfoIntrinsic>(I2))
1298         I2 = &*BB2_Itr++;
1299     }
1300   } while (I1->isIdenticalToWhenDefined(I2));
1301
1302   return true;
1303
1304 HoistTerminator:
1305   // It may not be possible to hoist an invoke.
1306   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1307     return Changed;
1308
1309   for (BasicBlock *Succ : successors(BB1)) {
1310     PHINode *PN;
1311     for (BasicBlock::iterator BBI = Succ->begin();
1312          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1313       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1314       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1315       if (BB1V == BB2V)
1316         continue;
1317
1318       // Check for passingValueIsAlwaysUndefined here because we would rather
1319       // eliminate undefined control flow then converting it to a select.
1320       if (passingValueIsAlwaysUndefined(BB1V, PN) ||
1321           passingValueIsAlwaysUndefined(BB2V, PN))
1322         return Changed;
1323
1324       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1325         return Changed;
1326       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1327         return Changed;
1328     }
1329   }
1330
1331   // Okay, it is safe to hoist the terminator.
1332   Instruction *NT = I1->clone();
1333   BIParent->getInstList().insert(BI->getIterator(), NT);
1334   if (!NT->getType()->isVoidTy()) {
1335     I1->replaceAllUsesWith(NT);
1336     I2->replaceAllUsesWith(NT);
1337     NT->takeName(I1);
1338   }
1339
1340   IRBuilder<NoFolder> Builder(NT);
1341   // Hoisting one of the terminators from our successor is a great thing.
1342   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1343   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1344   // nodes, so we insert select instruction to compute the final result.
1345   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1346   for (BasicBlock *Succ : successors(BB1)) {
1347     PHINode *PN;
1348     for (BasicBlock::iterator BBI = Succ->begin();
1349          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1350       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1351       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1352       if (BB1V == BB2V)
1353         continue;
1354
1355       // These values do not agree.  Insert a select instruction before NT
1356       // that determines the right value.
1357       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1358       if (!SI)
1359         SI = cast<SelectInst>(
1360             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1361                                  BB1V->getName() + "." + BB2V->getName(), BI));
1362
1363       // Make the PHI node use the select for all incoming values for BB1/BB2
1364       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1365         if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
1366           PN->setIncomingValue(i, SI);
1367     }
1368   }
1369
1370   // Update any PHI nodes in our new successors.
1371   for (BasicBlock *Succ : successors(BB1))
1372     AddPredecessorToBlock(Succ, BIParent, BB1);
1373
1374   EraseTerminatorInstAndDCECond(BI);
1375   return true;
1376 }
1377
1378 // Is it legal to place a variable in operand \c OpIdx of \c I?
1379 // FIXME: This should be promoted to Instruction.
1380 static bool canReplaceOperandWithVariable(const Instruction *I,
1381                                           unsigned OpIdx) {
1382   // We can't have a PHI with a metadata type.
1383   if (I->getOperand(OpIdx)->getType()->isMetadataTy())
1384     return false;
1385
1386   // Early exit.
1387   if (!isa<Constant>(I->getOperand(OpIdx)))
1388     return true;
1389
1390   switch (I->getOpcode()) {
1391   default:
1392     return true;
1393   case Instruction::Call:
1394   case Instruction::Invoke:
1395     // FIXME: many arithmetic intrinsics have no issue taking a
1396     // variable, however it's hard to distingish these from
1397     // specials such as @llvm.frameaddress that require a constant.
1398     if (isa<IntrinsicInst>(I))
1399       return false;
1400
1401     // Constant bundle operands may need to retain their constant-ness for
1402     // correctness.
1403     if (ImmutableCallSite(I).isBundleOperand(OpIdx))
1404       return false;
1405
1406     return true;
1407
1408   case Instruction::ShuffleVector:
1409     // Shufflevector masks are constant.
1410     return OpIdx != 2;
1411   case Instruction::ExtractValue:
1412   case Instruction::InsertValue:
1413     // All operands apart from the first are constant.
1414     return OpIdx == 0;
1415   case Instruction::Alloca:
1416     return false;
1417   case Instruction::GetElementPtr:
1418     if (OpIdx == 0)
1419       return true;
1420     gep_type_iterator It = std::next(gep_type_begin(I), OpIdx - 1);
1421     return It.isSequential();
1422   }
1423 }
1424
1425 // All instructions in Insts belong to different blocks that all unconditionally
1426 // branch to a common successor. Analyze each instruction and return true if it
1427 // would be possible to sink them into their successor, creating one common
1428 // instruction instead. For every value that would be required to be provided by
1429 // PHI node (because an operand varies in each input block), add to PHIOperands.
1430 static bool canSinkInstructions(
1431     ArrayRef<Instruction *> Insts,
1432     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1433   // Prune out obviously bad instructions to move. Any non-store instruction
1434   // must have exactly one use, and we check later that use is by a single,
1435   // common PHI instruction in the successor.
1436   for (auto *I : Insts) {
1437     // These instructions may change or break semantics if moved.
1438     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1439         I->getType()->isTokenTy())
1440       return false;
1441
1442     // Conservatively return false if I is an inline-asm instruction. Sinking
1443     // and merging inline-asm instructions can potentially create arguments
1444     // that cannot satisfy the inline-asm constraints.
1445     if (const auto *C = dyn_cast<CallInst>(I))
1446       if (C->isInlineAsm())
1447         return false;
1448
1449     // Everything must have only one use too, apart from stores which
1450     // have no uses.
1451     if (!isa<StoreInst>(I) && !I->hasOneUse())
1452       return false;
1453   }
1454
1455   const Instruction *I0 = Insts.front();
1456   for (auto *I : Insts)
1457     if (!I->isSameOperationAs(I0))
1458       return false;
1459
1460   // All instructions in Insts are known to be the same opcode. If they aren't
1461   // stores, check the only user of each is a PHI or in the same block as the
1462   // instruction, because if a user is in the same block as an instruction
1463   // we're contemplating sinking, it must already be determined to be sinkable.
1464   if (!isa<StoreInst>(I0)) {
1465     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1466     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1467     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1468           auto *U = cast<Instruction>(*I->user_begin());
1469           return (PNUse &&
1470                   PNUse->getParent() == Succ &&
1471                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1472                  U->getParent() == I->getParent();
1473         }))
1474       return false;
1475   }
1476
1477   // Because SROA can't handle speculating stores of selects, try not
1478   // to sink loads or stores of allocas when we'd have to create a PHI for
1479   // the address operand. Also, because it is likely that loads or stores
1480   // of allocas will disappear when Mem2Reg/SROA is run, don't sink them.
1481   // This can cause code churn which can have unintended consequences down
1482   // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1483   // FIXME: This is a workaround for a deficiency in SROA - see
1484   // https://llvm.org/bugs/show_bug.cgi?id=30188
1485   if (isa<StoreInst>(I0) && any_of(Insts, [](const Instruction *I) {
1486         return isa<AllocaInst>(I->getOperand(1));
1487       }))
1488     return false;
1489   if (isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1490         return isa<AllocaInst>(I->getOperand(0));
1491       }))
1492     return false;
1493
1494   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1495     if (I0->getOperand(OI)->getType()->isTokenTy())
1496       // Don't touch any operand of token type.
1497       return false;
1498
1499     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1500       assert(I->getNumOperands() == I0->getNumOperands());
1501       return I->getOperand(OI) == I0->getOperand(OI);
1502     };
1503     if (!all_of(Insts, SameAsI0)) {
1504       if (!canReplaceOperandWithVariable(I0, OI))
1505         // We can't create a PHI from this GEP.
1506         return false;
1507       // Don't create indirect calls! The called value is the final operand.
1508       if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI == OE - 1) {
1509         // FIXME: if the call was *already* indirect, we should do this.
1510         return false;
1511       }
1512       for (auto *I : Insts)
1513         PHIOperands[I].push_back(I->getOperand(OI));
1514     }
1515   }
1516   return true;
1517 }
1518
1519 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1520 // instruction of every block in Blocks to their common successor, commoning
1521 // into one instruction.
1522 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1523   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1524
1525   // canSinkLastInstruction returning true guarantees that every block has at
1526   // least one non-terminator instruction.
1527   SmallVector<Instruction*,4> Insts;
1528   for (auto *BB : Blocks) {
1529     Instruction *I = BB->getTerminator();
1530     do {
1531       I = I->getPrevNode();
1532     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1533     if (!isa<DbgInfoIntrinsic>(I))
1534       Insts.push_back(I);
1535   }
1536
1537   // The only checking we need to do now is that all users of all instructions
1538   // are the same PHI node. canSinkLastInstruction should have checked this but
1539   // it is slightly over-aggressive - it gets confused by commutative instructions
1540   // so double-check it here.
1541   Instruction *I0 = Insts.front();
1542   if (!isa<StoreInst>(I0)) {
1543     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1544     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1545           auto *U = cast<Instruction>(*I->user_begin());
1546           return U == PNUse;
1547         }))
1548       return false;
1549   }
1550
1551   // We don't need to do any more checking here; canSinkLastInstruction should
1552   // have done it all for us.
1553   SmallVector<Value*, 4> NewOperands;
1554   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1555     // This check is different to that in canSinkLastInstruction. There, we
1556     // cared about the global view once simplifycfg (and instcombine) have
1557     // completed - it takes into account PHIs that become trivially
1558     // simplifiable.  However here we need a more local view; if an operand
1559     // differs we create a PHI and rely on instcombine to clean up the very
1560     // small mess we may make.
1561     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1562       return I->getOperand(O) != I0->getOperand(O);
1563     });
1564     if (!NeedPHI) {
1565       NewOperands.push_back(I0->getOperand(O));
1566       continue;
1567     }
1568
1569     // Create a new PHI in the successor block and populate it.
1570     auto *Op = I0->getOperand(O);
1571     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1572     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1573                                Op->getName() + ".sink", &BBEnd->front());
1574     for (auto *I : Insts)
1575       PN->addIncoming(I->getOperand(O), I->getParent());
1576     NewOperands.push_back(PN);
1577   }
1578
1579   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1580   // and move it to the start of the successor block.
1581   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1582     I0->getOperandUse(O).set(NewOperands[O]);
1583   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1584
1585   // The debug location for the "common" instruction is the merged locations of
1586   // all the commoned instructions.  We start with the original location of the
1587   // "common" instruction and iteratively merge each location in the loop below.
1588   const DILocation *Loc = I0->getDebugLoc();
1589
1590   // Update metadata and IR flags, and merge debug locations.
1591   for (auto *I : Insts)
1592     if (I != I0) {
1593       Loc = DILocation::getMergedLocation(Loc, I->getDebugLoc());
1594       combineMetadataForCSE(I0, I);
1595       I0->andIRFlags(I);
1596     }
1597   if (!isa<CallInst>(I0))
1598     I0->setDebugLoc(Loc);
1599
1600   if (!isa<StoreInst>(I0)) {
1601     // canSinkLastInstruction checked that all instructions were used by
1602     // one and only one PHI node. Find that now, RAUW it to our common
1603     // instruction and nuke it.
1604     assert(I0->hasOneUse());
1605     auto *PN = cast<PHINode>(*I0->user_begin());
1606     PN->replaceAllUsesWith(I0);
1607     PN->eraseFromParent();
1608   }
1609
1610   // Finally nuke all instructions apart from the common instruction.
1611   for (auto *I : Insts)
1612     if (I != I0)
1613       I->eraseFromParent();
1614
1615   return true;
1616 }
1617
1618 namespace {
1619
1620   // LockstepReverseIterator - Iterates through instructions
1621   // in a set of blocks in reverse order from the first non-terminator.
1622   // For example (assume all blocks have size n):
1623   //   LockstepReverseIterator I([B1, B2, B3]);
1624   //   *I-- = [B1[n], B2[n], B3[n]];
1625   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1626   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1627   //   ...
1628   class LockstepReverseIterator {
1629     ArrayRef<BasicBlock*> Blocks;
1630     SmallVector<Instruction*,4> Insts;
1631     bool Fail;
1632   public:
1633     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) :
1634       Blocks(Blocks) {
1635       reset();
1636     }
1637
1638     void reset() {
1639       Fail = false;
1640       Insts.clear();
1641       for (auto *BB : Blocks) {
1642         Instruction *Inst = BB->getTerminator();
1643         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1644           Inst = Inst->getPrevNode();
1645         if (!Inst) {
1646           // Block wasn't big enough.
1647           Fail = true;
1648           return;
1649         }
1650         Insts.push_back(Inst);
1651       }
1652     }
1653
1654     bool isValid() const {
1655       return !Fail;
1656     }
1657
1658     void operator -- () {
1659       if (Fail)
1660         return;
1661       for (auto *&Inst : Insts) {
1662         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1663           Inst = Inst->getPrevNode();
1664         // Already at beginning of block.
1665         if (!Inst) {
1666           Fail = true;
1667           return;
1668         }
1669       }
1670     }
1671
1672     ArrayRef<Instruction*> operator * () const {
1673       return Insts;
1674     }
1675   };
1676
1677 } // end anonymous namespace
1678
1679 /// Given an unconditional branch that goes to BBEnd,
1680 /// check whether BBEnd has only two predecessors and the other predecessor
1681 /// ends with an unconditional branch. If it is true, sink any common code
1682 /// in the two predecessors to BBEnd.
1683 static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
1684   assert(BI1->isUnconditional());
1685   BasicBlock *BBEnd = BI1->getSuccessor(0);
1686
1687   // We support two situations:
1688   //   (1) all incoming arcs are unconditional
1689   //   (2) one incoming arc is conditional
1690   //
1691   // (2) is very common in switch defaults and
1692   // else-if patterns;
1693   //
1694   //   if (a) f(1);
1695   //   else if (b) f(2);
1696   //
1697   // produces:
1698   //
1699   //       [if]
1700   //      /    \
1701   //    [f(1)] [if]
1702   //      |     | \
1703   //      |     |  |
1704   //      |  [f(2)]|
1705   //       \    | /
1706   //        [ end ]
1707   //
1708   // [end] has two unconditional predecessor arcs and one conditional. The
1709   // conditional refers to the implicit empty 'else' arc. This conditional
1710   // arc can also be caused by an empty default block in a switch.
1711   //
1712   // In this case, we attempt to sink code from all *unconditional* arcs.
1713   // If we can sink instructions from these arcs (determined during the scan
1714   // phase below) we insert a common successor for all unconditional arcs and
1715   // connect that to [end], to enable sinking:
1716   //
1717   //       [if]
1718   //      /    \
1719   //    [x(1)] [if]
1720   //      |     | \
1721   //      |     |  \
1722   //      |  [x(2)] |
1723   //       \   /    |
1724   //   [sink.split] |
1725   //         \     /
1726   //         [ end ]
1727   //
1728   SmallVector<BasicBlock*,4> UnconditionalPreds;
1729   Instruction *Cond = nullptr;
1730   for (auto *B : predecessors(BBEnd)) {
1731     auto *T = B->getTerminator();
1732     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1733       UnconditionalPreds.push_back(B);
1734     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1735       Cond = T;
1736     else
1737       return false;
1738   }
1739   if (UnconditionalPreds.size() < 2)
1740     return false;
1741
1742   bool Changed = false;
1743   // We take a two-step approach to tail sinking. First we scan from the end of
1744   // each block upwards in lockstep. If the n'th instruction from the end of each
1745   // block can be sunk, those instructions are added to ValuesToSink and we
1746   // carry on. If we can sink an instruction but need to PHI-merge some operands
1747   // (because they're not identical in each instruction) we add these to
1748   // PHIOperands.
1749   unsigned ScanIdx = 0;
1750   SmallPtrSet<Value*,4> InstructionsToSink;
1751   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1752   LockstepReverseIterator LRI(UnconditionalPreds);
1753   while (LRI.isValid() &&
1754          canSinkInstructions(*LRI, PHIOperands)) {
1755     DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] << "\n");
1756     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1757     ++ScanIdx;
1758     --LRI;
1759   }
1760
1761   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
1762     unsigned NumPHIdValues = 0;
1763     for (auto *I : *LRI)
1764       for (auto *V : PHIOperands[I])
1765         if (InstructionsToSink.count(V) == 0)
1766           ++NumPHIdValues;
1767     DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1768     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1769     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1770         NumPHIInsts++;
1771
1772     return NumPHIInsts <= 1;
1773   };
1774
1775   if (ScanIdx > 0 && Cond) {
1776     // Check if we would actually sink anything first! This mutates the CFG and
1777     // adds an extra block. The goal in doing this is to allow instructions that
1778     // couldn't be sunk before to be sunk - obviously, speculatable instructions
1779     // (such as trunc, add) can be sunk and predicated already. So we check that
1780     // we're going to sink at least one non-speculatable instruction.
1781     LRI.reset();
1782     unsigned Idx = 0;
1783     bool Profitable = false;
1784     while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
1785       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
1786         Profitable = true;
1787         break;
1788       }
1789       --LRI;
1790       ++Idx;
1791     }
1792     if (!Profitable)
1793       return false;
1794
1795     DEBUG(dbgs() << "SINK: Splitting edge\n");
1796     // We have a conditional edge and we're going to sink some instructions.
1797     // Insert a new block postdominating all blocks we're going to sink from.
1798     if (!SplitBlockPredecessors(BI1->getSuccessor(0), UnconditionalPreds,
1799                                 ".sink.split"))
1800       // Edges couldn't be split.
1801       return false;
1802     Changed = true;
1803   }
1804
1805   // Now that we've analyzed all potential sinking candidates, perform the
1806   // actual sink. We iteratively sink the last non-terminator of the source
1807   // blocks into their common successor unless doing so would require too
1808   // many PHI instructions to be generated (currently only one PHI is allowed
1809   // per sunk instruction).
1810   //
1811   // We can use InstructionsToSink to discount values needing PHI-merging that will
1812   // actually be sunk in a later iteration. This allows us to be more
1813   // aggressive in what we sink. This does allow a false positive where we
1814   // sink presuming a later value will also be sunk, but stop half way through
1815   // and never actually sink it which means we produce more PHIs than intended.
1816   // This is unlikely in practice though.
1817   for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) {
1818     DEBUG(dbgs() << "SINK: Sink: "
1819                  << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
1820                  << "\n");
1821
1822     // Because we've sunk every instruction in turn, the current instruction to
1823     // sink is always at index 0.
1824     LRI.reset();
1825     if (!ProfitableToSinkInstruction(LRI)) {
1826       // Too many PHIs would be created.
1827       DEBUG(dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
1828       break;
1829     }
1830
1831     if (!sinkLastInstruction(UnconditionalPreds))
1832       return Changed;
1833     NumSinkCommons++;
1834     Changed = true;
1835   }
1836   return Changed;
1837 }
1838
1839 /// \brief Determine if we can hoist sink a sole store instruction out of a
1840 /// conditional block.
1841 ///
1842 /// We are looking for code like the following:
1843 ///   BrBB:
1844 ///     store i32 %add, i32* %arrayidx2
1845 ///     ... // No other stores or function calls (we could be calling a memory
1846 ///     ... // function).
1847 ///     %cmp = icmp ult %x, %y
1848 ///     br i1 %cmp, label %EndBB, label %ThenBB
1849 ///   ThenBB:
1850 ///     store i32 %add5, i32* %arrayidx2
1851 ///     br label EndBB
1852 ///   EndBB:
1853 ///     ...
1854 ///   We are going to transform this into:
1855 ///   BrBB:
1856 ///     store i32 %add, i32* %arrayidx2
1857 ///     ... //
1858 ///     %cmp = icmp ult %x, %y
1859 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
1860 ///     store i32 %add.add5, i32* %arrayidx2
1861 ///     ...
1862 ///
1863 /// \return The pointer to the value of the previous store if the store can be
1864 ///         hoisted into the predecessor block. 0 otherwise.
1865 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1866                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
1867   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1868   if (!StoreToHoist)
1869     return nullptr;
1870
1871   // Volatile or atomic.
1872   if (!StoreToHoist->isSimple())
1873     return nullptr;
1874
1875   Value *StorePtr = StoreToHoist->getPointerOperand();
1876
1877   // Look for a store to the same pointer in BrBB.
1878   unsigned MaxNumInstToLookAt = 9;
1879   for (Instruction &CurI : reverse(*BrBB)) {
1880     if (!MaxNumInstToLookAt)
1881       break;
1882     // Skip debug info.
1883     if (isa<DbgInfoIntrinsic>(CurI))
1884       continue;
1885     --MaxNumInstToLookAt;
1886
1887     // Could be calling an instruction that affects memory like free().
1888     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
1889       return nullptr;
1890
1891     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
1892       // Found the previous store make sure it stores to the same location.
1893       if (SI->getPointerOperand() == StorePtr)
1894         // Found the previous store, return its value operand.
1895         return SI->getValueOperand();
1896       return nullptr; // Unknown store.
1897     }
1898   }
1899
1900   return nullptr;
1901 }
1902
1903 /// \brief Speculate a conditional basic block flattening the CFG.
1904 ///
1905 /// Note that this is a very risky transform currently. Speculating
1906 /// instructions like this is most often not desirable. Instead, there is an MI
1907 /// pass which can do it with full awareness of the resource constraints.
1908 /// However, some cases are "obvious" and we should do directly. An example of
1909 /// this is speculating a single, reasonably cheap instruction.
1910 ///
1911 /// There is only one distinct advantage to flattening the CFG at the IR level:
1912 /// it makes very common but simplistic optimizations such as are common in
1913 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1914 /// modeling their effects with easier to reason about SSA value graphs.
1915 ///
1916 ///
1917 /// An illustration of this transform is turning this IR:
1918 /// \code
1919 ///   BB:
1920 ///     %cmp = icmp ult %x, %y
1921 ///     br i1 %cmp, label %EndBB, label %ThenBB
1922 ///   ThenBB:
1923 ///     %sub = sub %x, %y
1924 ///     br label BB2
1925 ///   EndBB:
1926 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1927 ///     ...
1928 /// \endcode
1929 ///
1930 /// Into this IR:
1931 /// \code
1932 ///   BB:
1933 ///     %cmp = icmp ult %x, %y
1934 ///     %sub = sub %x, %y
1935 ///     %cond = select i1 %cmp, 0, %sub
1936 ///     ...
1937 /// \endcode
1938 ///
1939 /// \returns true if the conditional block is removed.
1940 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1941                                    const TargetTransformInfo &TTI) {
1942   // Be conservative for now. FP select instruction can often be expensive.
1943   Value *BrCond = BI->getCondition();
1944   if (isa<FCmpInst>(BrCond))
1945     return false;
1946
1947   BasicBlock *BB = BI->getParent();
1948   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1949
1950   // If ThenBB is actually on the false edge of the conditional branch, remember
1951   // to swap the select operands later.
1952   bool Invert = false;
1953   if (ThenBB != BI->getSuccessor(0)) {
1954     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1955     Invert = true;
1956   }
1957   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1958
1959   // Keep a count of how many times instructions are used within CondBB when
1960   // they are candidates for sinking into CondBB. Specifically:
1961   // - They are defined in BB, and
1962   // - They have no side effects, and
1963   // - All of their uses are in CondBB.
1964   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1965
1966   unsigned SpeculationCost = 0;
1967   Value *SpeculatedStoreValue = nullptr;
1968   StoreInst *SpeculatedStore = nullptr;
1969   for (BasicBlock::iterator BBI = ThenBB->begin(),
1970                             BBE = std::prev(ThenBB->end());
1971        BBI != BBE; ++BBI) {
1972     Instruction *I = &*BBI;
1973     // Skip debug info.
1974     if (isa<DbgInfoIntrinsic>(I))
1975       continue;
1976
1977     // Only speculatively execute a single instruction (not counting the
1978     // terminator) for now.
1979     ++SpeculationCost;
1980     if (SpeculationCost > 1)
1981       return false;
1982
1983     // Don't hoist the instruction if it's unsafe or expensive.
1984     if (!isSafeToSpeculativelyExecute(I) &&
1985         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
1986                                   I, BB, ThenBB, EndBB))))
1987       return false;
1988     if (!SpeculatedStoreValue &&
1989         ComputeSpeculationCost(I, TTI) >
1990             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
1991       return false;
1992
1993     // Store the store speculation candidate.
1994     if (SpeculatedStoreValue)
1995       SpeculatedStore = cast<StoreInst>(I);
1996
1997     // Do not hoist the instruction if any of its operands are defined but not
1998     // used in BB. The transformation will prevent the operand from
1999     // being sunk into the use block.
2000     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
2001       Instruction *OpI = dyn_cast<Instruction>(*i);
2002       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2003         continue; // Not a candidate for sinking.
2004
2005       ++SinkCandidateUseCounts[OpI];
2006     }
2007   }
2008
2009   // Consider any sink candidates which are only used in CondBB as costs for
2010   // speculation. Note, while we iterate over a DenseMap here, we are summing
2011   // and so iteration order isn't significant.
2012   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2013            I = SinkCandidateUseCounts.begin(),
2014            E = SinkCandidateUseCounts.end();
2015        I != E; ++I)
2016     if (I->first->getNumUses() == I->second) {
2017       ++SpeculationCost;
2018       if (SpeculationCost > 1)
2019         return false;
2020     }
2021
2022   // Check that the PHI nodes can be converted to selects.
2023   bool HaveRewritablePHIs = false;
2024   for (BasicBlock::iterator I = EndBB->begin();
2025        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2026     Value *OrigV = PN->getIncomingValueForBlock(BB);
2027     Value *ThenV = PN->getIncomingValueForBlock(ThenBB);
2028
2029     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2030     // Skip PHIs which are trivial.
2031     if (ThenV == OrigV)
2032       continue;
2033
2034     // Don't convert to selects if we could remove undefined behavior instead.
2035     if (passingValueIsAlwaysUndefined(OrigV, PN) ||
2036         passingValueIsAlwaysUndefined(ThenV, PN))
2037       return false;
2038
2039     HaveRewritablePHIs = true;
2040     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2041     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2042     if (!OrigCE && !ThenCE)
2043       continue; // Known safe and cheap.
2044
2045     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2046         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2047       return false;
2048     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
2049     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
2050     unsigned MaxCost =
2051         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2052     if (OrigCost + ThenCost > MaxCost)
2053       return false;
2054
2055     // Account for the cost of an unfolded ConstantExpr which could end up
2056     // getting expanded into Instructions.
2057     // FIXME: This doesn't account for how many operations are combined in the
2058     // constant expression.
2059     ++SpeculationCost;
2060     if (SpeculationCost > 1)
2061       return false;
2062   }
2063
2064   // If there are no PHIs to process, bail early. This helps ensure idempotence
2065   // as well.
2066   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
2067     return false;
2068
2069   // If we get here, we can hoist the instruction and if-convert.
2070   DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2071
2072   // Insert a select of the value of the speculated store.
2073   if (SpeculatedStoreValue) {
2074     IRBuilder<NoFolder> Builder(BI);
2075     Value *TrueV = SpeculatedStore->getValueOperand();
2076     Value *FalseV = SpeculatedStoreValue;
2077     if (Invert)
2078       std::swap(TrueV, FalseV);
2079     Value *S = Builder.CreateSelect(
2080         BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI);
2081     SpeculatedStore->setOperand(0, S);
2082     SpeculatedStore->setDebugLoc(
2083         DILocation::getMergedLocation(
2084           BI->getDebugLoc(), SpeculatedStore->getDebugLoc()));
2085   }
2086
2087   // Metadata can be dependent on the condition we are hoisting above.
2088   // Conservatively strip all metadata on the instruction.
2089   for (auto &I : *ThenBB)
2090     I.dropUnknownNonDebugMetadata();
2091
2092   // Hoist the instructions.
2093   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2094                            ThenBB->begin(), std::prev(ThenBB->end()));
2095
2096   // Insert selects and rewrite the PHI operands.
2097   IRBuilder<NoFolder> Builder(BI);
2098   for (BasicBlock::iterator I = EndBB->begin();
2099        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2100     unsigned OrigI = PN->getBasicBlockIndex(BB);
2101     unsigned ThenI = PN->getBasicBlockIndex(ThenBB);
2102     Value *OrigV = PN->getIncomingValue(OrigI);
2103     Value *ThenV = PN->getIncomingValue(ThenI);
2104
2105     // Skip PHIs which are trivial.
2106     if (OrigV == ThenV)
2107       continue;
2108
2109     // Create a select whose true value is the speculatively executed value and
2110     // false value is the preexisting value. Swap them if the branch
2111     // destinations were inverted.
2112     Value *TrueV = ThenV, *FalseV = OrigV;
2113     if (Invert)
2114       std::swap(TrueV, FalseV);
2115     Value *V = Builder.CreateSelect(
2116         BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI);
2117     PN->setIncomingValue(OrigI, V);
2118     PN->setIncomingValue(ThenI, V);
2119   }
2120
2121   ++NumSpeculations;
2122   return true;
2123 }
2124
2125 /// Return true if we can thread a branch across this block.
2126 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2127   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
2128   unsigned Size = 0;
2129
2130   for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2131     if (isa<DbgInfoIntrinsic>(BBI))
2132       continue;
2133     if (Size > 10)
2134       return false; // Don't clone large BB's.
2135     ++Size;
2136
2137     // We can only support instructions that do not define values that are
2138     // live outside of the current basic block.
2139     for (User *U : BBI->users()) {
2140       Instruction *UI = cast<Instruction>(U);
2141       if (UI->getParent() != BB || isa<PHINode>(UI))
2142         return false;
2143     }
2144
2145     // Looks ok, continue checking.
2146   }
2147
2148   return true;
2149 }
2150
2151 /// If we have a conditional branch on a PHI node value that is defined in the
2152 /// same block as the branch and if any PHI entries are constants, thread edges
2153 /// corresponding to that entry to be branches to their ultimate destination.
2154 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL,
2155                                 AssumptionCache *AC) {
2156   BasicBlock *BB = BI->getParent();
2157   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2158   // NOTE: we currently cannot transform this case if the PHI node is used
2159   // outside of the block.
2160   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2161     return false;
2162
2163   // Degenerate case of a single entry PHI.
2164   if (PN->getNumIncomingValues() == 1) {
2165     FoldSingleEntryPHINodes(PN->getParent());
2166     return true;
2167   }
2168
2169   // Now we know that this block has multiple preds and two succs.
2170   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2171     return false;
2172
2173   // Can't fold blocks that contain noduplicate or convergent calls.
2174   if (any_of(*BB, [](const Instruction &I) {
2175         const CallInst *CI = dyn_cast<CallInst>(&I);
2176         return CI && (CI->cannotDuplicate() || CI->isConvergent());
2177       }))
2178     return false;
2179
2180   // Okay, this is a simple enough basic block.  See if any phi values are
2181   // constants.
2182   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2183     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2184     if (!CB || !CB->getType()->isIntegerTy(1))
2185       continue;
2186
2187     // Okay, we now know that all edges from PredBB should be revectored to
2188     // branch to RealDest.
2189     BasicBlock *PredBB = PN->getIncomingBlock(i);
2190     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2191
2192     if (RealDest == BB)
2193       continue; // Skip self loops.
2194     // Skip if the predecessor's terminator is an indirect branch.
2195     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2196       continue;
2197
2198     // The dest block might have PHI nodes, other predecessors and other
2199     // difficult cases.  Instead of being smart about this, just insert a new
2200     // block that jumps to the destination block, effectively splitting
2201     // the edge we are about to create.
2202     BasicBlock *EdgeBB =
2203         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2204                            RealDest->getParent(), RealDest);
2205     BranchInst::Create(RealDest, EdgeBB);
2206
2207     // Update PHI nodes.
2208     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2209
2210     // BB may have instructions that are being threaded over.  Clone these
2211     // instructions into EdgeBB.  We know that there will be no uses of the
2212     // cloned instructions outside of EdgeBB.
2213     BasicBlock::iterator InsertPt = EdgeBB->begin();
2214     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2215     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2216       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2217         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2218         continue;
2219       }
2220       // Clone the instruction.
2221       Instruction *N = BBI->clone();
2222       if (BBI->hasName())
2223         N->setName(BBI->getName() + ".c");
2224
2225       // Update operands due to translation.
2226       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
2227         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
2228         if (PI != TranslateMap.end())
2229           *i = PI->second;
2230       }
2231
2232       // Check for trivial simplification.
2233       if (Value *V = SimplifyInstruction(N, DL)) {
2234         if (!BBI->use_empty())
2235           TranslateMap[&*BBI] = V;
2236         if (!N->mayHaveSideEffects()) {
2237           delete N; // Instruction folded away, don't need actual inst
2238           N = nullptr;
2239         }
2240       } else {
2241         if (!BBI->use_empty())
2242           TranslateMap[&*BBI] = N;
2243       }
2244       // Insert the new instruction into its new home.
2245       if (N)
2246         EdgeBB->getInstList().insert(InsertPt, N);
2247
2248       // Register the new instruction with the assumption cache if necessary.
2249       if (auto *II = dyn_cast_or_null<IntrinsicInst>(N))
2250         if (II->getIntrinsicID() == Intrinsic::assume)
2251           AC->registerAssumption(II);
2252     }
2253
2254     // Loop over all of the edges from PredBB to BB, changing them to branch
2255     // to EdgeBB instead.
2256     TerminatorInst *PredBBTI = PredBB->getTerminator();
2257     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2258       if (PredBBTI->getSuccessor(i) == BB) {
2259         BB->removePredecessor(PredBB);
2260         PredBBTI->setSuccessor(i, EdgeBB);
2261       }
2262
2263     // Recurse, simplifying any other constants.
2264     return FoldCondBranchOnPHI(BI, DL, AC) | true;
2265   }
2266
2267   return false;
2268 }
2269
2270 /// Given a BB that starts with the specified two-entry PHI node,
2271 /// see if we can eliminate it.
2272 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2273                                 const DataLayout &DL) {
2274   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2275   // statement", which has a very simple dominance structure.  Basically, we
2276   // are trying to find the condition that is being branched on, which
2277   // subsequently causes this merge to happen.  We really want control
2278   // dependence information for this check, but simplifycfg can't keep it up
2279   // to date, and this catches most of the cases we care about anyway.
2280   BasicBlock *BB = PN->getParent();
2281   BasicBlock *IfTrue, *IfFalse;
2282   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2283   if (!IfCond ||
2284       // Don't bother if the branch will be constant folded trivially.
2285       isa<ConstantInt>(IfCond))
2286     return false;
2287
2288   // Okay, we found that we can merge this two-entry phi node into a select.
2289   // Doing so would require us to fold *all* two entry phi nodes in this block.
2290   // At some point this becomes non-profitable (particularly if the target
2291   // doesn't support cmov's).  Only do this transformation if there are two or
2292   // fewer PHI nodes in this block.
2293   unsigned NumPhis = 0;
2294   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2295     if (NumPhis > 2)
2296       return false;
2297
2298   // Loop over the PHI's seeing if we can promote them all to select
2299   // instructions.  While we are at it, keep track of the instructions
2300   // that need to be moved to the dominating block.
2301   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2302   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
2303            MaxCostVal1 = PHINodeFoldingThreshold;
2304   MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
2305   MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
2306
2307   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2308     PHINode *PN = cast<PHINode>(II++);
2309     if (Value *V = SimplifyInstruction(PN, DL)) {
2310       PN->replaceAllUsesWith(V);
2311       PN->eraseFromParent();
2312       continue;
2313     }
2314
2315     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
2316                              MaxCostVal0, TTI) ||
2317         !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
2318                              MaxCostVal1, TTI))
2319       return false;
2320   }
2321
2322   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2323   // we ran out of PHIs then we simplified them all.
2324   PN = dyn_cast<PHINode>(BB->begin());
2325   if (!PN)
2326     return true;
2327
2328   // Don't fold i1 branches on PHIs which contain binary operators.  These can
2329   // often be turned into switches and other things.
2330   if (PN->getType()->isIntegerTy(1) &&
2331       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
2332        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
2333        isa<BinaryOperator>(IfCond)))
2334     return false;
2335
2336   // If all PHI nodes are promotable, check to make sure that all instructions
2337   // in the predecessor blocks can be promoted as well. If not, we won't be able
2338   // to get rid of the control flow, so it's not worth promoting to select
2339   // instructions.
2340   BasicBlock *DomBlock = nullptr;
2341   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2342   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2343   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2344     IfBlock1 = nullptr;
2345   } else {
2346     DomBlock = *pred_begin(IfBlock1);
2347     for (BasicBlock::iterator I = IfBlock1->begin(); !isa<TerminatorInst>(I);
2348          ++I)
2349       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2350         // This is not an aggressive instruction that we can promote.
2351         // Because of this, we won't be able to get rid of the control flow, so
2352         // the xform is not worth it.
2353         return false;
2354       }
2355   }
2356
2357   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2358     IfBlock2 = nullptr;
2359   } else {
2360     DomBlock = *pred_begin(IfBlock2);
2361     for (BasicBlock::iterator I = IfBlock2->begin(); !isa<TerminatorInst>(I);
2362          ++I)
2363       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2364         // This is not an aggressive instruction that we can promote.
2365         // Because of this, we won't be able to get rid of the control flow, so
2366         // the xform is not worth it.
2367         return false;
2368       }
2369   }
2370
2371   DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
2372                << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
2373
2374   // If we can still promote the PHI nodes after this gauntlet of tests,
2375   // do all of the PHI's now.
2376   Instruction *InsertPt = DomBlock->getTerminator();
2377   IRBuilder<NoFolder> Builder(InsertPt);
2378
2379   // Move all 'aggressive' instructions, which are defined in the
2380   // conditional parts of the if's up to the dominating block.
2381   if (IfBlock1) {
2382     for (auto &I : *IfBlock1)
2383       I.dropUnknownNonDebugMetadata();
2384     DomBlock->getInstList().splice(InsertPt->getIterator(),
2385                                    IfBlock1->getInstList(), IfBlock1->begin(),
2386                                    IfBlock1->getTerminator()->getIterator());
2387   }
2388   if (IfBlock2) {
2389     for (auto &I : *IfBlock2)
2390       I.dropUnknownNonDebugMetadata();
2391     DomBlock->getInstList().splice(InsertPt->getIterator(),
2392                                    IfBlock2->getInstList(), IfBlock2->begin(),
2393                                    IfBlock2->getTerminator()->getIterator());
2394   }
2395
2396   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2397     // Change the PHI node into a select instruction.
2398     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2399     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2400
2401     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2402     PN->replaceAllUsesWith(Sel);
2403     Sel->takeName(PN);
2404     PN->eraseFromParent();
2405   }
2406
2407   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2408   // has been flattened.  Change DomBlock to jump directly to our new block to
2409   // avoid other simplifycfg's kicking in on the diamond.
2410   TerminatorInst *OldTI = DomBlock->getTerminator();
2411   Builder.SetInsertPoint(OldTI);
2412   Builder.CreateBr(BB);
2413   OldTI->eraseFromParent();
2414   return true;
2415 }
2416
2417 /// If we found a conditional branch that goes to two returning blocks,
2418 /// try to merge them together into one return,
2419 /// introducing a select if the return values disagree.
2420 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
2421                                            IRBuilder<> &Builder) {
2422   assert(BI->isConditional() && "Must be a conditional branch");
2423   BasicBlock *TrueSucc = BI->getSuccessor(0);
2424   BasicBlock *FalseSucc = BI->getSuccessor(1);
2425   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2426   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2427
2428   // Check to ensure both blocks are empty (just a return) or optionally empty
2429   // with PHI nodes.  If there are other instructions, merging would cause extra
2430   // computation on one path or the other.
2431   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2432     return false;
2433   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2434     return false;
2435
2436   Builder.SetInsertPoint(BI);
2437   // Okay, we found a branch that is going to two return nodes.  If
2438   // there is no return value for this function, just change the
2439   // branch into a return.
2440   if (FalseRet->getNumOperands() == 0) {
2441     TrueSucc->removePredecessor(BI->getParent());
2442     FalseSucc->removePredecessor(BI->getParent());
2443     Builder.CreateRetVoid();
2444     EraseTerminatorInstAndDCECond(BI);
2445     return true;
2446   }
2447
2448   // Otherwise, figure out what the true and false return values are
2449   // so we can insert a new select instruction.
2450   Value *TrueValue = TrueRet->getReturnValue();
2451   Value *FalseValue = FalseRet->getReturnValue();
2452
2453   // Unwrap any PHI nodes in the return blocks.
2454   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2455     if (TVPN->getParent() == TrueSucc)
2456       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
2457   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2458     if (FVPN->getParent() == FalseSucc)
2459       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
2460
2461   // In order for this transformation to be safe, we must be able to
2462   // unconditionally execute both operands to the return.  This is
2463   // normally the case, but we could have a potentially-trapping
2464   // constant expression that prevents this transformation from being
2465   // safe.
2466   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2467     if (TCV->canTrap())
2468       return false;
2469   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2470     if (FCV->canTrap())
2471       return false;
2472
2473   // Okay, we collected all the mapped values and checked them for sanity, and
2474   // defined to really do this transformation.  First, update the CFG.
2475   TrueSucc->removePredecessor(BI->getParent());
2476   FalseSucc->removePredecessor(BI->getParent());
2477
2478   // Insert select instructions where needed.
2479   Value *BrCond = BI->getCondition();
2480   if (TrueValue) {
2481     // Insert a select if the results differ.
2482     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2483     } else if (isa<UndefValue>(TrueValue)) {
2484       TrueValue = FalseValue;
2485     } else {
2486       TrueValue =
2487           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2488     }
2489   }
2490
2491   Value *RI =
2492       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2493
2494   (void)RI;
2495
2496   DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2497                << "\n  " << *BI << "NewRet = " << *RI
2498                << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: " << *FalseSucc);
2499
2500   EraseTerminatorInstAndDCECond(BI);
2501
2502   return true;
2503 }
2504
2505 /// Return true if the given instruction is available
2506 /// in its predecessor block. If yes, the instruction will be removed.
2507 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
2508   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2509     return false;
2510   for (Instruction &I : *PB) {
2511     Instruction *PBI = &I;
2512     // Check whether Inst and PBI generate the same value.
2513     if (Inst->isIdenticalTo(PBI)) {
2514       Inst->replaceAllUsesWith(PBI);
2515       Inst->eraseFromParent();
2516       return true;
2517     }
2518   }
2519   return false;
2520 }
2521
2522 /// Return true if either PBI or BI has branch weight available, and store
2523 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2524 /// not have branch weight, use 1:1 as its weight.
2525 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2526                                    uint64_t &PredTrueWeight,
2527                                    uint64_t &PredFalseWeight,
2528                                    uint64_t &SuccTrueWeight,
2529                                    uint64_t &SuccFalseWeight) {
2530   bool PredHasWeights =
2531       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2532   bool SuccHasWeights =
2533       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2534   if (PredHasWeights || SuccHasWeights) {
2535     if (!PredHasWeights)
2536       PredTrueWeight = PredFalseWeight = 1;
2537     if (!SuccHasWeights)
2538       SuccTrueWeight = SuccFalseWeight = 1;
2539     return true;
2540   } else {
2541     return false;
2542   }
2543 }
2544
2545 /// If this basic block is simple enough, and if a predecessor branches to us
2546 /// and one of our successors, fold the block into the predecessor and use
2547 /// logical operations to pick the right destination.
2548 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
2549   BasicBlock *BB = BI->getParent();
2550
2551   Instruction *Cond = nullptr;
2552   if (BI->isConditional())
2553     Cond = dyn_cast<Instruction>(BI->getCondition());
2554   else {
2555     // For unconditional branch, check for a simple CFG pattern, where
2556     // BB has a single predecessor and BB's successor is also its predecessor's
2557     // successor. If such pattern exisits, check for CSE between BB and its
2558     // predecessor.
2559     if (BasicBlock *PB = BB->getSinglePredecessor())
2560       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2561         if (PBI->isConditional() &&
2562             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2563              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2564           for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
2565             Instruction *Curr = &*I++;
2566             if (isa<CmpInst>(Curr)) {
2567               Cond = Curr;
2568               break;
2569             }
2570             // Quit if we can't remove this instruction.
2571             if (!checkCSEInPredecessor(Curr, PB))
2572               return false;
2573           }
2574         }
2575
2576     if (!Cond)
2577       return false;
2578   }
2579
2580   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2581       Cond->getParent() != BB || !Cond->hasOneUse())
2582     return false;
2583
2584   // Make sure the instruction after the condition is the cond branch.
2585   BasicBlock::iterator CondIt = ++Cond->getIterator();
2586
2587   // Ignore dbg intrinsics.
2588   while (isa<DbgInfoIntrinsic>(CondIt))
2589     ++CondIt;
2590
2591   if (&*CondIt != BI)
2592     return false;
2593
2594   // Only allow this transformation if computing the condition doesn't involve
2595   // too many instructions and these involved instructions can be executed
2596   // unconditionally. We denote all involved instructions except the condition
2597   // as "bonus instructions", and only allow this transformation when the
2598   // number of the bonus instructions does not exceed a certain threshold.
2599   unsigned NumBonusInsts = 0;
2600   for (auto I = BB->begin(); Cond != &*I; ++I) {
2601     // Ignore dbg intrinsics.
2602     if (isa<DbgInfoIntrinsic>(I))
2603       continue;
2604     if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
2605       return false;
2606     // I has only one use and can be executed unconditionally.
2607     Instruction *User = dyn_cast<Instruction>(I->user_back());
2608     if (User == nullptr || User->getParent() != BB)
2609       return false;
2610     // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2611     // to use any other instruction, User must be an instruction between next(I)
2612     // and Cond.
2613     ++NumBonusInsts;
2614     // Early exits once we reach the limit.
2615     if (NumBonusInsts > BonusInstThreshold)
2616       return false;
2617   }
2618
2619   // Cond is known to be a compare or binary operator.  Check to make sure that
2620   // neither operand is a potentially-trapping constant expression.
2621   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2622     if (CE->canTrap())
2623       return false;
2624   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2625     if (CE->canTrap())
2626       return false;
2627
2628   // Finally, don't infinitely unroll conditional loops.
2629   BasicBlock *TrueDest = BI->getSuccessor(0);
2630   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2631   if (TrueDest == BB || FalseDest == BB)
2632     return false;
2633
2634   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2635     BasicBlock *PredBlock = *PI;
2636     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2637
2638     // Check that we have two conditional branches.  If there is a PHI node in
2639     // the common successor, verify that the same value flows in from both
2640     // blocks.
2641     SmallVector<PHINode *, 4> PHIs;
2642     if (!PBI || PBI->isUnconditional() ||
2643         (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
2644         (!BI->isConditional() &&
2645          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2646       continue;
2647
2648     // Determine if the two branches share a common destination.
2649     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2650     bool InvertPredCond = false;
2651
2652     if (BI->isConditional()) {
2653       if (PBI->getSuccessor(0) == TrueDest) {
2654         Opc = Instruction::Or;
2655       } else if (PBI->getSuccessor(1) == FalseDest) {
2656         Opc = Instruction::And;
2657       } else if (PBI->getSuccessor(0) == FalseDest) {
2658         Opc = Instruction::And;
2659         InvertPredCond = true;
2660       } else if (PBI->getSuccessor(1) == TrueDest) {
2661         Opc = Instruction::Or;
2662         InvertPredCond = true;
2663       } else {
2664         continue;
2665       }
2666     } else {
2667       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2668         continue;
2669     }
2670
2671     DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2672     IRBuilder<> Builder(PBI);
2673
2674     // If we need to invert the condition in the pred block to match, do so now.
2675     if (InvertPredCond) {
2676       Value *NewCond = PBI->getCondition();
2677
2678       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2679         CmpInst *CI = cast<CmpInst>(NewCond);
2680         CI->setPredicate(CI->getInversePredicate());
2681       } else {
2682         NewCond =
2683             Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2684       }
2685
2686       PBI->setCondition(NewCond);
2687       PBI->swapSuccessors();
2688     }
2689
2690     // If we have bonus instructions, clone them into the predecessor block.
2691     // Note that there may be multiple predecessor blocks, so we cannot move
2692     // bonus instructions to a predecessor block.
2693     ValueToValueMapTy VMap; // maps original values to cloned values
2694     // We already make sure Cond is the last instruction before BI. Therefore,
2695     // all instructions before Cond other than DbgInfoIntrinsic are bonus
2696     // instructions.
2697     for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
2698       if (isa<DbgInfoIntrinsic>(BonusInst))
2699         continue;
2700       Instruction *NewBonusInst = BonusInst->clone();
2701       RemapInstruction(NewBonusInst, VMap,
2702                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2703       VMap[&*BonusInst] = NewBonusInst;
2704
2705       // If we moved a load, we cannot any longer claim any knowledge about
2706       // its potential value. The previous information might have been valid
2707       // only given the branch precondition.
2708       // For an analogous reason, we must also drop all the metadata whose
2709       // semantics we don't understand.
2710       NewBonusInst->dropUnknownNonDebugMetadata();
2711
2712       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2713       NewBonusInst->takeName(&*BonusInst);
2714       BonusInst->setName(BonusInst->getName() + ".old");
2715     }
2716
2717     // Clone Cond into the predecessor basic block, and or/and the
2718     // two conditions together.
2719     Instruction *New = Cond->clone();
2720     RemapInstruction(New, VMap,
2721                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2722     PredBlock->getInstList().insert(PBI->getIterator(), New);
2723     New->takeName(Cond);
2724     Cond->setName(New->getName() + ".old");
2725
2726     if (BI->isConditional()) {
2727       Instruction *NewCond = cast<Instruction>(
2728           Builder.CreateBinOp(Opc, PBI->getCondition(), New, "or.cond"));
2729       PBI->setCondition(NewCond);
2730
2731       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2732       bool HasWeights =
2733           extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2734                                  SuccTrueWeight, SuccFalseWeight);
2735       SmallVector<uint64_t, 8> NewWeights;
2736
2737       if (PBI->getSuccessor(0) == BB) {
2738         if (HasWeights) {
2739           // PBI: br i1 %x, BB, FalseDest
2740           // BI:  br i1 %y, TrueDest, FalseDest
2741           // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2742           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2743           // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2744           //               TrueWeight for PBI * FalseWeight for BI.
2745           // We assume that total weights of a BranchInst can fit into 32 bits.
2746           // Therefore, we will not have overflow using 64-bit arithmetic.
2747           NewWeights.push_back(PredFalseWeight *
2748                                    (SuccFalseWeight + SuccTrueWeight) +
2749                                PredTrueWeight * SuccFalseWeight);
2750         }
2751         AddPredecessorToBlock(TrueDest, PredBlock, BB);
2752         PBI->setSuccessor(0, TrueDest);
2753       }
2754       if (PBI->getSuccessor(1) == BB) {
2755         if (HasWeights) {
2756           // PBI: br i1 %x, TrueDest, BB
2757           // BI:  br i1 %y, TrueDest, FalseDest
2758           // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2759           //              FalseWeight for PBI * TrueWeight for BI.
2760           NewWeights.push_back(PredTrueWeight *
2761                                    (SuccFalseWeight + SuccTrueWeight) +
2762                                PredFalseWeight * SuccTrueWeight);
2763           // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2764           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2765         }
2766         AddPredecessorToBlock(FalseDest, PredBlock, BB);
2767         PBI->setSuccessor(1, FalseDest);
2768       }
2769       if (NewWeights.size() == 2) {
2770         // Halve the weights if any of them cannot fit in an uint32_t
2771         FitWeights(NewWeights);
2772
2773         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
2774                                            NewWeights.end());
2775         PBI->setMetadata(
2776             LLVMContext::MD_prof,
2777             MDBuilder(BI->getContext()).createBranchWeights(MDWeights));
2778       } else
2779         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2780     } else {
2781       // Update PHI nodes in the common successors.
2782       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2783         ConstantInt *PBI_C = cast<ConstantInt>(
2784             PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2785         assert(PBI_C->getType()->isIntegerTy(1));
2786         Instruction *MergedCond = nullptr;
2787         if (PBI->getSuccessor(0) == TrueDest) {
2788           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2789           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2790           //       is false: !PBI_Cond and BI_Value
2791           Instruction *NotCond = cast<Instruction>(
2792               Builder.CreateNot(PBI->getCondition(), "not.cond"));
2793           MergedCond = cast<Instruction>(
2794               Builder.CreateBinOp(Instruction::And, NotCond, New, "and.cond"));
2795           if (PBI_C->isOne())
2796             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2797                 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
2798         } else {
2799           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2800           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2801           //       is false: PBI_Cond and BI_Value
2802           MergedCond = cast<Instruction>(Builder.CreateBinOp(
2803               Instruction::And, PBI->getCondition(), New, "and.cond"));
2804           if (PBI_C->isOne()) {
2805             Instruction *NotCond = cast<Instruction>(
2806                 Builder.CreateNot(PBI->getCondition(), "not.cond"));
2807             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2808                 Instruction::Or, NotCond, MergedCond, "or.cond"));
2809           }
2810         }
2811         // Update PHI Node.
2812         PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2813                                   MergedCond);
2814       }
2815       // Change PBI from Conditional to Unconditional.
2816       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2817       EraseTerminatorInstAndDCECond(PBI);
2818       PBI = New_PBI;
2819     }
2820
2821     // If BI was a loop latch, it may have had associated loop metadata.
2822     // We need to copy it to the new latch, that is, PBI.
2823     if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
2824       PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
2825
2826     // TODO: If BB is reachable from all paths through PredBlock, then we
2827     // could replace PBI's branch probabilities with BI's.
2828
2829     // Copy any debug value intrinsics into the end of PredBlock.
2830     for (Instruction &I : *BB)
2831       if (isa<DbgInfoIntrinsic>(I))
2832         I.clone()->insertBefore(PBI);
2833
2834     return true;
2835   }
2836   return false;
2837 }
2838
2839 // If there is only one store in BB1 and BB2, return it, otherwise return
2840 // nullptr.
2841 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
2842   StoreInst *S = nullptr;
2843   for (auto *BB : {BB1, BB2}) {
2844     if (!BB)
2845       continue;
2846     for (auto &I : *BB)
2847       if (auto *SI = dyn_cast<StoreInst>(&I)) {
2848         if (S)
2849           // Multiple stores seen.
2850           return nullptr;
2851         else
2852           S = SI;
2853       }
2854   }
2855   return S;
2856 }
2857
2858 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
2859                                               Value *AlternativeV = nullptr) {
2860   // PHI is going to be a PHI node that allows the value V that is defined in
2861   // BB to be referenced in BB's only successor.
2862   //
2863   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2864   // doesn't matter to us what the other operand is (it'll never get used). We
2865   // could just create a new PHI with an undef incoming value, but that could
2866   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2867   // other PHI. So here we directly look for some PHI in BB's successor with V
2868   // as an incoming operand. If we find one, we use it, else we create a new
2869   // one.
2870   //
2871   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2872   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2873   // where OtherBB is the single other predecessor of BB's only successor.
2874   PHINode *PHI = nullptr;
2875   BasicBlock *Succ = BB->getSingleSuccessor();
2876
2877   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
2878     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
2879       PHI = cast<PHINode>(I);
2880       if (!AlternativeV)
2881         break;
2882
2883       assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2);
2884       auto PredI = pred_begin(Succ);
2885       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
2886       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
2887         break;
2888       PHI = nullptr;
2889     }
2890   if (PHI)
2891     return PHI;
2892
2893   // If V is not an instruction defined in BB, just return it.
2894   if (!AlternativeV &&
2895       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
2896     return V;
2897
2898   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
2899   PHI->addIncoming(V, BB);
2900   for (BasicBlock *PredBB : predecessors(Succ))
2901     if (PredBB != BB)
2902       PHI->addIncoming(
2903           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
2904   return PHI;
2905 }
2906
2907 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
2908                                            BasicBlock *QTB, BasicBlock *QFB,
2909                                            BasicBlock *PostBB, Value *Address,
2910                                            bool InvertPCond, bool InvertQCond) {
2911   auto IsaBitcastOfPointerType = [](const Instruction &I) {
2912     return Operator::getOpcode(&I) == Instruction::BitCast &&
2913            I.getType()->isPointerTy();
2914   };
2915
2916   // If we're not in aggressive mode, we only optimize if we have some
2917   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
2918   auto IsWorthwhile = [&](BasicBlock *BB) {
2919     if (!BB)
2920       return true;
2921     // Heuristic: if the block can be if-converted/phi-folded and the
2922     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
2923     // thread this store.
2924     unsigned N = 0;
2925     for (auto &I : *BB) {
2926       // Cheap instructions viable for folding.
2927       if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) ||
2928           isa<StoreInst>(I))
2929         ++N;
2930       // Free instructions.
2931       else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
2932                IsaBitcastOfPointerType(I))
2933         continue;
2934       else
2935         return false;
2936     }
2937     return N <= PHINodeFoldingThreshold;
2938   };
2939
2940   if (!MergeCondStoresAggressively &&
2941       (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) ||
2942        !IsWorthwhile(QFB)))
2943     return false;
2944
2945   // For every pointer, there must be exactly two stores, one coming from
2946   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
2947   // store (to any address) in PTB,PFB or QTB,QFB.
2948   // FIXME: We could relax this restriction with a bit more work and performance
2949   // testing.
2950   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
2951   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
2952   if (!PStore || !QStore)
2953     return false;
2954
2955   // Now check the stores are compatible.
2956   if (!QStore->isUnordered() || !PStore->isUnordered())
2957     return false;
2958
2959   // Check that sinking the store won't cause program behavior changes. Sinking
2960   // the store out of the Q blocks won't change any behavior as we're sinking
2961   // from a block to its unconditional successor. But we're moving a store from
2962   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
2963   // So we need to check that there are no aliasing loads or stores in
2964   // QBI, QTB and QFB. We also need to check there are no conflicting memory
2965   // operations between PStore and the end of its parent block.
2966   //
2967   // The ideal way to do this is to query AliasAnalysis, but we don't
2968   // preserve AA currently so that is dangerous. Be super safe and just
2969   // check there are no other memory operations at all.
2970   for (auto &I : *QFB->getSinglePredecessor())
2971     if (I.mayReadOrWriteMemory())
2972       return false;
2973   for (auto &I : *QFB)
2974     if (&I != QStore && I.mayReadOrWriteMemory())
2975       return false;
2976   if (QTB)
2977     for (auto &I : *QTB)
2978       if (&I != QStore && I.mayReadOrWriteMemory())
2979         return false;
2980   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
2981        I != E; ++I)
2982     if (&*I != PStore && I->mayReadOrWriteMemory())
2983       return false;
2984
2985   // OK, we're going to sink the stores to PostBB. The store has to be
2986   // conditional though, so first create the predicate.
2987   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
2988                      ->getCondition();
2989   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
2990                      ->getCondition();
2991
2992   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
2993                                                 PStore->getParent());
2994   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
2995                                                 QStore->getParent(), PPHI);
2996
2997   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
2998
2999   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
3000   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
3001
3002   if (InvertPCond)
3003     PPred = QB.CreateNot(PPred);
3004   if (InvertQCond)
3005     QPred = QB.CreateNot(QPred);
3006   Value *CombinedPred = QB.CreateOr(PPred, QPred);
3007
3008   auto *T =
3009       SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
3010   QB.SetInsertPoint(T);
3011   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3012   AAMDNodes AAMD;
3013   PStore->getAAMetadata(AAMD, /*Merge=*/false);
3014   PStore->getAAMetadata(AAMD, /*Merge=*/true);
3015   SI->setAAMetadata(AAMD);
3016
3017   QStore->eraseFromParent();
3018   PStore->eraseFromParent();
3019
3020   return true;
3021 }
3022
3023 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI) {
3024   // The intention here is to find diamonds or triangles (see below) where each
3025   // conditional block contains a store to the same address. Both of these
3026   // stores are conditional, so they can't be unconditionally sunk. But it may
3027   // be profitable to speculatively sink the stores into one merged store at the
3028   // end, and predicate the merged store on the union of the two conditions of
3029   // PBI and QBI.
3030   //
3031   // This can reduce the number of stores executed if both of the conditions are
3032   // true, and can allow the blocks to become small enough to be if-converted.
3033   // This optimization will also chain, so that ladders of test-and-set
3034   // sequences can be if-converted away.
3035   //
3036   // We only deal with simple diamonds or triangles:
3037   //
3038   //     PBI       or      PBI        or a combination of the two
3039   //    /   \               | \
3040   //   PTB  PFB             |  PFB
3041   //    \   /               | /
3042   //     QBI                QBI
3043   //    /  \                | \
3044   //   QTB  QFB             |  QFB
3045   //    \  /                | /
3046   //    PostBB            PostBB
3047   //
3048   // We model triangles as a type of diamond with a nullptr "true" block.
3049   // Triangles are canonicalized so that the fallthrough edge is represented by
3050   // a true condition, as in the diagram above.
3051   //
3052   BasicBlock *PTB = PBI->getSuccessor(0);
3053   BasicBlock *PFB = PBI->getSuccessor(1);
3054   BasicBlock *QTB = QBI->getSuccessor(0);
3055   BasicBlock *QFB = QBI->getSuccessor(1);
3056   BasicBlock *PostBB = QFB->getSingleSuccessor();
3057
3058   bool InvertPCond = false, InvertQCond = false;
3059   // Canonicalize fallthroughs to the true branches.
3060   if (PFB == QBI->getParent()) {
3061     std::swap(PFB, PTB);
3062     InvertPCond = true;
3063   }
3064   if (QFB == PostBB) {
3065     std::swap(QFB, QTB);
3066     InvertQCond = true;
3067   }
3068
3069   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3070   // and QFB may not. Model fallthroughs as a nullptr block.
3071   if (PTB == QBI->getParent())
3072     PTB = nullptr;
3073   if (QTB == PostBB)
3074     QTB = nullptr;
3075
3076   // Legality bailouts. We must have at least the non-fallthrough blocks and
3077   // the post-dominating block, and the non-fallthroughs must only have one
3078   // predecessor.
3079   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3080     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3081   };
3082   if (!PostBB ||
3083       !HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3084       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3085     return false;
3086   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3087       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3088     return false;
3089   if (!PostBB->hasNUses(2) || !QBI->getParent()->hasNUses(2))
3090     return false;
3091
3092   // OK, this is a sequence of two diamonds or triangles.
3093   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3094   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3095   for (auto *BB : {PTB, PFB}) {
3096     if (!BB)
3097       continue;
3098     for (auto &I : *BB)
3099       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3100         PStoreAddresses.insert(SI->getPointerOperand());
3101   }
3102   for (auto *BB : {QTB, QFB}) {
3103     if (!BB)
3104       continue;
3105     for (auto &I : *BB)
3106       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3107         QStoreAddresses.insert(SI->getPointerOperand());
3108   }
3109
3110   set_intersect(PStoreAddresses, QStoreAddresses);
3111   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3112   // clear what it contains.
3113   auto &CommonAddresses = PStoreAddresses;
3114
3115   bool Changed = false;
3116   for (auto *Address : CommonAddresses)
3117     Changed |= mergeConditionalStoreToAddress(
3118         PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond);
3119   return Changed;
3120 }
3121
3122 /// If we have a conditional branch as a predecessor of another block,
3123 /// this function tries to simplify it.  We know
3124 /// that PBI and BI are both conditional branches, and BI is in one of the
3125 /// successor blocks of PBI - PBI branches to BI.
3126 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3127                                            const DataLayout &DL) {
3128   assert(PBI->isConditional() && BI->isConditional());
3129   BasicBlock *BB = BI->getParent();
3130
3131   // If this block ends with a branch instruction, and if there is a
3132   // predecessor that ends on a branch of the same condition, make
3133   // this conditional branch redundant.
3134   if (PBI->getCondition() == BI->getCondition() &&
3135       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3136     // Okay, the outcome of this conditional branch is statically
3137     // knowable.  If this block had a single pred, handle specially.
3138     if (BB->getSinglePredecessor()) {
3139       // Turn this into a branch on constant.
3140       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3141       BI->setCondition(
3142           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3143       return true; // Nuke the branch on constant.
3144     }
3145
3146     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3147     // in the constant and simplify the block result.  Subsequent passes of
3148     // simplifycfg will thread the block.
3149     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3150       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3151       PHINode *NewPN = PHINode::Create(
3152           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3153           BI->getCondition()->getName() + ".pr", &BB->front());
3154       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3155       // predecessor, compute the PHI'd conditional value for all of the preds.
3156       // Any predecessor where the condition is not computable we keep symbolic.
3157       for (pred_iterator PI = PB; PI != PE; ++PI) {
3158         BasicBlock *P = *PI;
3159         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3160             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3161             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3162           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3163           NewPN->addIncoming(
3164               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3165               P);
3166         } else {
3167           NewPN->addIncoming(BI->getCondition(), P);
3168         }
3169       }
3170
3171       BI->setCondition(NewPN);
3172       return true;
3173     }
3174   }
3175
3176   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3177     if (CE->canTrap())
3178       return false;
3179
3180   // If both branches are conditional and both contain stores to the same
3181   // address, remove the stores from the conditionals and create a conditional
3182   // merged store at the end.
3183   if (MergeCondStores && mergeConditionalStores(PBI, BI))
3184     return true;
3185
3186   // If this is a conditional branch in an empty block, and if any
3187   // predecessors are a conditional branch to one of our destinations,
3188   // fold the conditions into logical ops and one cond br.
3189   BasicBlock::iterator BBI = BB->begin();
3190   // Ignore dbg intrinsics.
3191   while (isa<DbgInfoIntrinsic>(BBI))
3192     ++BBI;
3193   if (&*BBI != BI)
3194     return false;
3195
3196   int PBIOp, BIOp;
3197   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3198     PBIOp = 0;
3199     BIOp = 0;
3200   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3201     PBIOp = 0;
3202     BIOp = 1;
3203   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3204     PBIOp = 1;
3205     BIOp = 0;
3206   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3207     PBIOp = 1;
3208     BIOp = 1;
3209   } else {
3210     return false;
3211   }
3212
3213   // Check to make sure that the other destination of this branch
3214   // isn't BB itself.  If so, this is an infinite loop that will
3215   // keep getting unwound.
3216   if (PBI->getSuccessor(PBIOp) == BB)
3217     return false;
3218
3219   // Do not perform this transformation if it would require
3220   // insertion of a large number of select instructions. For targets
3221   // without predication/cmovs, this is a big pessimization.
3222
3223   // Also do not perform this transformation if any phi node in the common
3224   // destination block can trap when reached by BB or PBB (PR17073). In that
3225   // case, it would be unsafe to hoist the operation into a select instruction.
3226
3227   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3228   unsigned NumPhis = 0;
3229   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3230        ++II, ++NumPhis) {
3231     if (NumPhis > 2) // Disable this xform.
3232       return false;
3233
3234     PHINode *PN = cast<PHINode>(II);
3235     Value *BIV = PN->getIncomingValueForBlock(BB);
3236     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3237       if (CE->canTrap())
3238         return false;
3239
3240     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3241     Value *PBIV = PN->getIncomingValue(PBBIdx);
3242     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3243       if (CE->canTrap())
3244         return false;
3245   }
3246
3247   // Finally, if everything is ok, fold the branches to logical ops.
3248   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3249
3250   DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3251                << "AND: " << *BI->getParent());
3252
3253   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3254   // branch in it, where one edge (OtherDest) goes back to itself but the other
3255   // exits.  We don't *know* that the program avoids the infinite loop
3256   // (even though that seems likely).  If we do this xform naively, we'll end up
3257   // recursively unpeeling the loop.  Since we know that (after the xform is
3258   // done) that the block *is* infinite if reached, we just make it an obviously
3259   // infinite loop with no cond branch.
3260   if (OtherDest == BB) {
3261     // Insert it at the end of the function, because it's either code,
3262     // or it won't matter if it's hot. :)
3263     BasicBlock *InfLoopBlock =
3264         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3265     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3266     OtherDest = InfLoopBlock;
3267   }
3268
3269   DEBUG(dbgs() << *PBI->getParent()->getParent());
3270
3271   // BI may have other predecessors.  Because of this, we leave
3272   // it alone, but modify PBI.
3273
3274   // Make sure we get to CommonDest on True&True directions.
3275   Value *PBICond = PBI->getCondition();
3276   IRBuilder<NoFolder> Builder(PBI);
3277   if (PBIOp)
3278     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3279
3280   Value *BICond = BI->getCondition();
3281   if (BIOp)
3282     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3283
3284   // Merge the conditions.
3285   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3286
3287   // Modify PBI to branch on the new condition to the new dests.
3288   PBI->setCondition(Cond);
3289   PBI->setSuccessor(0, CommonDest);
3290   PBI->setSuccessor(1, OtherDest);
3291
3292   // Update branch weight for PBI.
3293   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3294   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3295   bool HasWeights =
3296       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3297                              SuccTrueWeight, SuccFalseWeight);
3298   if (HasWeights) {
3299     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3300     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3301     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3302     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3303     // The weight to CommonDest should be PredCommon * SuccTotal +
3304     //                                    PredOther * SuccCommon.
3305     // The weight to OtherDest should be PredOther * SuccOther.
3306     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3307                                   PredOther * SuccCommon,
3308                               PredOther * SuccOther};
3309     // Halve the weights if any of them cannot fit in an uint32_t
3310     FitWeights(NewWeights);
3311
3312     PBI->setMetadata(LLVMContext::MD_prof,
3313                      MDBuilder(BI->getContext())
3314                          .createBranchWeights(NewWeights[0], NewWeights[1]));
3315   }
3316
3317   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3318   // block that are identical to the entries for BI's block.
3319   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3320
3321   // We know that the CommonDest already had an edge from PBI to
3322   // it.  If it has PHIs though, the PHIs may have different
3323   // entries for BB and PBI's BB.  If so, insert a select to make
3324   // them agree.
3325   PHINode *PN;
3326   for (BasicBlock::iterator II = CommonDest->begin();
3327        (PN = dyn_cast<PHINode>(II)); ++II) {
3328     Value *BIV = PN->getIncomingValueForBlock(BB);
3329     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3330     Value *PBIV = PN->getIncomingValue(PBBIdx);
3331     if (BIV != PBIV) {
3332       // Insert a select in PBI to pick the right value.
3333       SelectInst *NV = cast<SelectInst>(
3334           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3335       PN->setIncomingValue(PBBIdx, NV);
3336       // Although the select has the same condition as PBI, the original branch
3337       // weights for PBI do not apply to the new select because the select's
3338       // 'logical' edges are incoming edges of the phi that is eliminated, not
3339       // the outgoing edges of PBI.
3340       if (HasWeights) {
3341         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3342         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3343         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3344         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3345         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3346         // The weight to PredOtherDest should be PredOther * SuccCommon.
3347         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3348                                   PredOther * SuccCommon};
3349
3350         FitWeights(NewWeights);
3351
3352         NV->setMetadata(LLVMContext::MD_prof,
3353                         MDBuilder(BI->getContext())
3354                             .createBranchWeights(NewWeights[0], NewWeights[1]));
3355       }
3356     }
3357   }
3358
3359   DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3360   DEBUG(dbgs() << *PBI->getParent()->getParent());
3361
3362   // This basic block is probably dead.  We know it has at least
3363   // one fewer predecessor.
3364   return true;
3365 }
3366
3367 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3368 // true or to FalseBB if Cond is false.
3369 // Takes care of updating the successors and removing the old terminator.
3370 // Also makes sure not to introduce new successors by assuming that edges to
3371 // non-successor TrueBBs and FalseBBs aren't reachable.
3372 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
3373                                        BasicBlock *TrueBB, BasicBlock *FalseBB,
3374                                        uint32_t TrueWeight,
3375                                        uint32_t FalseWeight) {
3376   // Remove any superfluous successor edges from the CFG.
3377   // First, figure out which successors to preserve.
3378   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3379   // successor.
3380   BasicBlock *KeepEdge1 = TrueBB;
3381   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3382
3383   // Then remove the rest.
3384   for (BasicBlock *Succ : OldTerm->successors()) {
3385     // Make sure only to keep exactly one copy of each edge.
3386     if (Succ == KeepEdge1)
3387       KeepEdge1 = nullptr;
3388     else if (Succ == KeepEdge2)
3389       KeepEdge2 = nullptr;
3390     else
3391       Succ->removePredecessor(OldTerm->getParent(),
3392                               /*DontDeleteUselessPHIs=*/true);
3393   }
3394
3395   IRBuilder<> Builder(OldTerm);
3396   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3397
3398   // Insert an appropriate new terminator.
3399   if (!KeepEdge1 && !KeepEdge2) {
3400     if (TrueBB == FalseBB)
3401       // We were only looking for one successor, and it was present.
3402       // Create an unconditional branch to it.
3403       Builder.CreateBr(TrueBB);
3404     else {
3405       // We found both of the successors we were looking for.
3406       // Create a conditional branch sharing the condition of the select.
3407       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3408       if (TrueWeight != FalseWeight)
3409         NewBI->setMetadata(LLVMContext::MD_prof,
3410                            MDBuilder(OldTerm->getContext())
3411                                .createBranchWeights(TrueWeight, FalseWeight));
3412     }
3413   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3414     // Neither of the selected blocks were successors, so this
3415     // terminator must be unreachable.
3416     new UnreachableInst(OldTerm->getContext(), OldTerm);
3417   } else {
3418     // One of the selected values was a successor, but the other wasn't.
3419     // Insert an unconditional branch to the one that was found;
3420     // the edge to the one that wasn't must be unreachable.
3421     if (!KeepEdge1)
3422       // Only TrueBB was found.
3423       Builder.CreateBr(TrueBB);
3424     else
3425       // Only FalseBB was found.
3426       Builder.CreateBr(FalseBB);
3427   }
3428
3429   EraseTerminatorInstAndDCECond(OldTerm);
3430   return true;
3431 }
3432
3433 // Replaces
3434 //   (switch (select cond, X, Y)) on constant X, Y
3435 // with a branch - conditional if X and Y lead to distinct BBs,
3436 // unconditional otherwise.
3437 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
3438   // Check for constant integer values in the select.
3439   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3440   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3441   if (!TrueVal || !FalseVal)
3442     return false;
3443
3444   // Find the relevant condition and destinations.
3445   Value *Condition = Select->getCondition();
3446   BasicBlock *TrueBB = SI->findCaseValue(TrueVal)->getCaseSuccessor();
3447   BasicBlock *FalseBB = SI->findCaseValue(FalseVal)->getCaseSuccessor();
3448
3449   // Get weight for TrueBB and FalseBB.
3450   uint32_t TrueWeight = 0, FalseWeight = 0;
3451   SmallVector<uint64_t, 8> Weights;
3452   bool HasWeights = HasBranchWeights(SI);
3453   if (HasWeights) {
3454     GetBranchWeights(SI, Weights);
3455     if (Weights.size() == 1 + SI->getNumCases()) {
3456       TrueWeight =
3457           (uint32_t)Weights[SI->findCaseValue(TrueVal)->getSuccessorIndex()];
3458       FalseWeight =
3459           (uint32_t)Weights[SI->findCaseValue(FalseVal)->getSuccessorIndex()];
3460     }
3461   }
3462
3463   // Perform the actual simplification.
3464   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3465                                     FalseWeight);
3466 }
3467
3468 // Replaces
3469 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3470 //                             blockaddress(@fn, BlockB)))
3471 // with
3472 //   (br cond, BlockA, BlockB).
3473 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
3474   // Check that both operands of the select are block addresses.
3475   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3476   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3477   if (!TBA || !FBA)
3478     return false;
3479
3480   // Extract the actual blocks.
3481   BasicBlock *TrueBB = TBA->getBasicBlock();
3482   BasicBlock *FalseBB = FBA->getBasicBlock();
3483
3484   // Perform the actual simplification.
3485   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3486                                     0);
3487 }
3488
3489 /// This is called when we find an icmp instruction
3490 /// (a seteq/setne with a constant) as the only instruction in a
3491 /// block that ends with an uncond branch.  We are looking for a very specific
3492 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3493 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3494 /// default value goes to an uncond block with a seteq in it, we get something
3495 /// like:
3496 ///
3497 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3498 /// DEFAULT:
3499 ///   %tmp = icmp eq i8 %A, 92
3500 ///   br label %end
3501 /// end:
3502 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3503 ///
3504 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3505 /// the PHI, merging the third icmp into the switch.
3506 static bool TryToSimplifyUncondBranchWithICmpInIt(
3507     ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL,
3508     const TargetTransformInfo &TTI, unsigned BonusInstThreshold,
3509     AssumptionCache *AC) {
3510   BasicBlock *BB = ICI->getParent();
3511
3512   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3513   // complex.
3514   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3515     return false;
3516
3517   Value *V = ICI->getOperand(0);
3518   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3519
3520   // The pattern we're looking for is where our only predecessor is a switch on
3521   // 'V' and this block is the default case for the switch.  In this case we can
3522   // fold the compared value into the switch to simplify things.
3523   BasicBlock *Pred = BB->getSinglePredecessor();
3524   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3525     return false;
3526
3527   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3528   if (SI->getCondition() != V)
3529     return false;
3530
3531   // If BB is reachable on a non-default case, then we simply know the value of
3532   // V in this block.  Substitute it and constant fold the icmp instruction
3533   // away.
3534   if (SI->getDefaultDest() != BB) {
3535     ConstantInt *VVal = SI->findCaseDest(BB);
3536     assert(VVal && "Should have a unique destination value");
3537     ICI->setOperand(0, VVal);
3538
3539     if (Value *V = SimplifyInstruction(ICI, DL)) {
3540       ICI->replaceAllUsesWith(V);
3541       ICI->eraseFromParent();
3542     }
3543     // BB is now empty, so it is likely to simplify away.
3544     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
3545   }
3546
3547   // Ok, the block is reachable from the default dest.  If the constant we're
3548   // comparing exists in one of the other edges, then we can constant fold ICI
3549   // and zap it.
3550   if (SI->findCaseValue(Cst) != SI->case_default()) {
3551     Value *V;
3552     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3553       V = ConstantInt::getFalse(BB->getContext());
3554     else
3555       V = ConstantInt::getTrue(BB->getContext());
3556
3557     ICI->replaceAllUsesWith(V);
3558     ICI->eraseFromParent();
3559     // BB is now empty, so it is likely to simplify away.
3560     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
3561   }
3562
3563   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3564   // the block.
3565   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3566   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3567   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3568       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3569     return false;
3570
3571   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3572   // true in the PHI.
3573   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3574   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3575
3576   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3577     std::swap(DefaultCst, NewCst);
3578
3579   // Replace ICI (which is used by the PHI for the default value) with true or
3580   // false depending on if it is EQ or NE.
3581   ICI->replaceAllUsesWith(DefaultCst);
3582   ICI->eraseFromParent();
3583
3584   // Okay, the switch goes to this block on a default value.  Add an edge from
3585   // the switch to the merge point on the compared value.
3586   BasicBlock *NewBB =
3587       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3588   SmallVector<uint64_t, 8> Weights;
3589   bool HasWeights = HasBranchWeights(SI);
3590   if (HasWeights) {
3591     GetBranchWeights(SI, Weights);
3592     if (Weights.size() == 1 + SI->getNumCases()) {
3593       // Split weight for default case to case for "Cst".
3594       Weights[0] = (Weights[0] + 1) >> 1;
3595       Weights.push_back(Weights[0]);
3596
3597       SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3598       SI->setMetadata(
3599           LLVMContext::MD_prof,
3600           MDBuilder(SI->getContext()).createBranchWeights(MDWeights));
3601     }
3602   }
3603   SI->addCase(Cst, NewBB);
3604
3605   // NewBB branches to the phi block, add the uncond branch and the phi entry.
3606   Builder.SetInsertPoint(NewBB);
3607   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3608   Builder.CreateBr(SuccBlock);
3609   PHIUse->addIncoming(NewCst, NewBB);
3610   return true;
3611 }
3612
3613 /// The specified branch is a conditional branch.
3614 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3615 /// fold it into a switch instruction if so.
3616 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
3617                                       const DataLayout &DL) {
3618   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3619   if (!Cond)
3620     return false;
3621
3622   // Change br (X == 0 | X == 1), T, F into a switch instruction.
3623   // If this is a bunch of seteq's or'd together, or if it's a bunch of
3624   // 'setne's and'ed together, collect them.
3625
3626   // Try to gather values from a chain of and/or to be turned into a switch
3627   ConstantComparesGatherer ConstantCompare(Cond, DL);
3628   // Unpack the result
3629   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
3630   Value *CompVal = ConstantCompare.CompValue;
3631   unsigned UsedICmps = ConstantCompare.UsedICmps;
3632   Value *ExtraCase = ConstantCompare.Extra;
3633
3634   // If we didn't have a multiply compared value, fail.
3635   if (!CompVal)
3636     return false;
3637
3638   // Avoid turning single icmps into a switch.
3639   if (UsedICmps <= 1)
3640     return false;
3641
3642   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
3643
3644   // There might be duplicate constants in the list, which the switch
3645   // instruction can't handle, remove them now.
3646   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3647   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3648
3649   // If Extra was used, we require at least two switch values to do the
3650   // transformation.  A switch with one value is just a conditional branch.
3651   if (ExtraCase && Values.size() < 2)
3652     return false;
3653
3654   // TODO: Preserve branch weight metadata, similarly to how
3655   // FoldValueComparisonIntoPredecessors preserves it.
3656
3657   // Figure out which block is which destination.
3658   BasicBlock *DefaultBB = BI->getSuccessor(1);
3659   BasicBlock *EdgeBB = BI->getSuccessor(0);
3660   if (!TrueWhenEqual)
3661     std::swap(DefaultBB, EdgeBB);
3662
3663   BasicBlock *BB = BI->getParent();
3664
3665   DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
3666                << " cases into SWITCH.  BB is:\n"
3667                << *BB);
3668
3669   // If there are any extra values that couldn't be folded into the switch
3670   // then we evaluate them with an explicit branch first.  Split the block
3671   // right before the condbr to handle it.
3672   if (ExtraCase) {
3673     BasicBlock *NewBB =
3674         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
3675     // Remove the uncond branch added to the old block.
3676     TerminatorInst *OldTI = BB->getTerminator();
3677     Builder.SetInsertPoint(OldTI);
3678
3679     if (TrueWhenEqual)
3680       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
3681     else
3682       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
3683
3684     OldTI->eraseFromParent();
3685
3686     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3687     // for the edge we just added.
3688     AddPredecessorToBlock(EdgeBB, BB, NewBB);
3689
3690     DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
3691                  << "\nEXTRABB = " << *BB);
3692     BB = NewBB;
3693   }
3694
3695   Builder.SetInsertPoint(BI);
3696   // Convert pointer to int before we switch.
3697   if (CompVal->getType()->isPointerTy()) {
3698     CompVal = Builder.CreatePtrToInt(
3699         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
3700   }
3701
3702   // Create the new switch instruction now.
3703   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
3704
3705   // Add all of the 'cases' to the switch instruction.
3706   for (unsigned i = 0, e = Values.size(); i != e; ++i)
3707     New->addCase(Values[i], EdgeBB);
3708
3709   // We added edges from PI to the EdgeBB.  As such, if there were any
3710   // PHI nodes in EdgeBB, they need entries to be added corresponding to
3711   // the number of edges added.
3712   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
3713     PHINode *PN = cast<PHINode>(BBI);
3714     Value *InVal = PN->getIncomingValueForBlock(BB);
3715     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
3716       PN->addIncoming(InVal, BB);
3717   }
3718
3719   // Erase the old branch instruction.
3720   EraseTerminatorInstAndDCECond(BI);
3721
3722   DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
3723   return true;
3724 }
3725
3726 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
3727   if (isa<PHINode>(RI->getValue()))
3728     return SimplifyCommonResume(RI);
3729   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
3730            RI->getValue() == RI->getParent()->getFirstNonPHI())
3731     // The resume must unwind the exception that caused control to branch here.
3732     return SimplifySingleResume(RI);
3733
3734   return false;
3735 }
3736
3737 // Simplify resume that is shared by several landing pads (phi of landing pad).
3738 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) {
3739   BasicBlock *BB = RI->getParent();
3740
3741   // Check that there are no other instructions except for debug intrinsics
3742   // between the phi of landing pads (RI->getValue()) and resume instruction.
3743   BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
3744                        E = RI->getIterator();
3745   while (++I != E)
3746     if (!isa<DbgInfoIntrinsic>(I))
3747       return false;
3748
3749   SmallSet<BasicBlock *, 4> TrivialUnwindBlocks;
3750   auto *PhiLPInst = cast<PHINode>(RI->getValue());
3751
3752   // Check incoming blocks to see if any of them are trivial.
3753   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
3754        Idx++) {
3755     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
3756     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
3757
3758     // If the block has other successors, we can not delete it because
3759     // it has other dependents.
3760     if (IncomingBB->getUniqueSuccessor() != BB)
3761       continue;
3762
3763     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
3764     // Not the landing pad that caused the control to branch here.
3765     if (IncomingValue != LandingPad)
3766       continue;
3767
3768     bool isTrivial = true;
3769
3770     I = IncomingBB->getFirstNonPHI()->getIterator();
3771     E = IncomingBB->getTerminator()->getIterator();
3772     while (++I != E)
3773       if (!isa<DbgInfoIntrinsic>(I)) {
3774         isTrivial = false;
3775         break;
3776       }
3777
3778     if (isTrivial)
3779       TrivialUnwindBlocks.insert(IncomingBB);
3780   }
3781
3782   // If no trivial unwind blocks, don't do any simplifications.
3783   if (TrivialUnwindBlocks.empty())
3784     return false;
3785
3786   // Turn all invokes that unwind here into calls.
3787   for (auto *TrivialBB : TrivialUnwindBlocks) {
3788     // Blocks that will be simplified should be removed from the phi node.
3789     // Note there could be multiple edges to the resume block, and we need
3790     // to remove them all.
3791     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
3792       BB->removePredecessor(TrivialBB, true);
3793
3794     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
3795          PI != PE;) {
3796       BasicBlock *Pred = *PI++;
3797       removeUnwindEdge(Pred);
3798     }
3799
3800     // In each SimplifyCFG run, only the current processed block can be erased.
3801     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
3802     // of erasing TrivialBB, we only remove the branch to the common resume
3803     // block so that we can later erase the resume block since it has no
3804     // predecessors.
3805     TrivialBB->getTerminator()->eraseFromParent();
3806     new UnreachableInst(RI->getContext(), TrivialBB);
3807   }
3808
3809   // Delete the resume block if all its predecessors have been removed.
3810   if (pred_empty(BB))
3811     BB->eraseFromParent();
3812
3813   return !TrivialUnwindBlocks.empty();
3814 }
3815
3816 // Simplify resume that is only used by a single (non-phi) landing pad.
3817 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) {
3818   BasicBlock *BB = RI->getParent();
3819   LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
3820   assert(RI->getValue() == LPInst &&
3821          "Resume must unwind the exception that caused control to here");
3822
3823   // Check that there are no other instructions except for debug intrinsics.
3824   BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
3825   while (++I != E)
3826     if (!isa<DbgInfoIntrinsic>(I))
3827       return false;
3828
3829   // Turn all invokes that unwind here into calls and delete the basic block.
3830   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3831     BasicBlock *Pred = *PI++;
3832     removeUnwindEdge(Pred);
3833   }
3834
3835   // The landingpad is now unreachable.  Zap it.
3836   BB->eraseFromParent();
3837   if (LoopHeaders)
3838     LoopHeaders->erase(BB);
3839   return true;
3840 }
3841
3842 static bool removeEmptyCleanup(CleanupReturnInst *RI) {
3843   // If this is a trivial cleanup pad that executes no instructions, it can be
3844   // eliminated.  If the cleanup pad continues to the caller, any predecessor
3845   // that is an EH pad will be updated to continue to the caller and any
3846   // predecessor that terminates with an invoke instruction will have its invoke
3847   // instruction converted to a call instruction.  If the cleanup pad being
3848   // simplified does not continue to the caller, each predecessor will be
3849   // updated to continue to the unwind destination of the cleanup pad being
3850   // simplified.
3851   BasicBlock *BB = RI->getParent();
3852   CleanupPadInst *CPInst = RI->getCleanupPad();
3853   if (CPInst->getParent() != BB)
3854     // This isn't an empty cleanup.
3855     return false;
3856
3857   // We cannot kill the pad if it has multiple uses.  This typically arises
3858   // from unreachable basic blocks.
3859   if (!CPInst->hasOneUse())
3860     return false;
3861
3862   // Check that there are no other instructions except for benign intrinsics.
3863   BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
3864   while (++I != E) {
3865     auto *II = dyn_cast<IntrinsicInst>(I);
3866     if (!II)
3867       return false;
3868
3869     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
3870     switch (IntrinsicID) {
3871     case Intrinsic::dbg_declare:
3872     case Intrinsic::dbg_value:
3873     case Intrinsic::lifetime_end:
3874       break;
3875     default:
3876       return false;
3877     }
3878   }
3879
3880   // If the cleanup return we are simplifying unwinds to the caller, this will
3881   // set UnwindDest to nullptr.
3882   BasicBlock *UnwindDest = RI->getUnwindDest();
3883   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
3884
3885   // We're about to remove BB from the control flow.  Before we do, sink any
3886   // PHINodes into the unwind destination.  Doing this before changing the
3887   // control flow avoids some potentially slow checks, since we can currently
3888   // be certain that UnwindDest and BB have no common predecessors (since they
3889   // are both EH pads).
3890   if (UnwindDest) {
3891     // First, go through the PHI nodes in UnwindDest and update any nodes that
3892     // reference the block we are removing
3893     for (BasicBlock::iterator I = UnwindDest->begin(),
3894                               IE = DestEHPad->getIterator();
3895          I != IE; ++I) {
3896       PHINode *DestPN = cast<PHINode>(I);
3897
3898       int Idx = DestPN->getBasicBlockIndex(BB);
3899       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
3900       assert(Idx != -1);
3901       // This PHI node has an incoming value that corresponds to a control
3902       // path through the cleanup pad we are removing.  If the incoming
3903       // value is in the cleanup pad, it must be a PHINode (because we
3904       // verified above that the block is otherwise empty).  Otherwise, the
3905       // value is either a constant or a value that dominates the cleanup
3906       // pad being removed.
3907       //
3908       // Because BB and UnwindDest are both EH pads, all of their
3909       // predecessors must unwind to these blocks, and since no instruction
3910       // can have multiple unwind destinations, there will be no overlap in
3911       // incoming blocks between SrcPN and DestPN.
3912       Value *SrcVal = DestPN->getIncomingValue(Idx);
3913       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
3914
3915       // Remove the entry for the block we are deleting.
3916       DestPN->removeIncomingValue(Idx, false);
3917
3918       if (SrcPN && SrcPN->getParent() == BB) {
3919         // If the incoming value was a PHI node in the cleanup pad we are
3920         // removing, we need to merge that PHI node's incoming values into
3921         // DestPN.
3922         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
3923              SrcIdx != SrcE; ++SrcIdx) {
3924           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
3925                               SrcPN->getIncomingBlock(SrcIdx));
3926         }
3927       } else {
3928         // Otherwise, the incoming value came from above BB and
3929         // so we can just reuse it.  We must associate all of BB's
3930         // predecessors with this value.
3931         for (auto *pred : predecessors(BB)) {
3932           DestPN->addIncoming(SrcVal, pred);
3933         }
3934       }
3935     }
3936
3937     // Sink any remaining PHI nodes directly into UnwindDest.
3938     Instruction *InsertPt = DestEHPad;
3939     for (BasicBlock::iterator I = BB->begin(),
3940                               IE = BB->getFirstNonPHI()->getIterator();
3941          I != IE;) {
3942       // The iterator must be incremented here because the instructions are
3943       // being moved to another block.
3944       PHINode *PN = cast<PHINode>(I++);
3945       if (PN->use_empty())
3946         // If the PHI node has no uses, just leave it.  It will be erased
3947         // when we erase BB below.
3948         continue;
3949
3950       // Otherwise, sink this PHI node into UnwindDest.
3951       // Any predecessors to UnwindDest which are not already represented
3952       // must be back edges which inherit the value from the path through
3953       // BB.  In this case, the PHI value must reference itself.
3954       for (auto *pred : predecessors(UnwindDest))
3955         if (pred != BB)
3956           PN->addIncoming(PN, pred);
3957       PN->moveBefore(InsertPt);
3958     }
3959   }
3960
3961   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3962     // The iterator must be updated here because we are removing this pred.
3963     BasicBlock *PredBB = *PI++;
3964     if (UnwindDest == nullptr) {
3965       removeUnwindEdge(PredBB);
3966     } else {
3967       TerminatorInst *TI = PredBB->getTerminator();
3968       TI->replaceUsesOfWith(BB, UnwindDest);
3969     }
3970   }
3971
3972   // The cleanup pad is now unreachable.  Zap it.
3973   BB->eraseFromParent();
3974   return true;
3975 }
3976
3977 // Try to merge two cleanuppads together.
3978 static bool mergeCleanupPad(CleanupReturnInst *RI) {
3979   // Skip any cleanuprets which unwind to caller, there is nothing to merge
3980   // with.
3981   BasicBlock *UnwindDest = RI->getUnwindDest();
3982   if (!UnwindDest)
3983     return false;
3984
3985   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
3986   // be safe to merge without code duplication.
3987   if (UnwindDest->getSinglePredecessor() != RI->getParent())
3988     return false;
3989
3990   // Verify that our cleanuppad's unwind destination is another cleanuppad.
3991   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
3992   if (!SuccessorCleanupPad)
3993     return false;
3994
3995   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
3996   // Replace any uses of the successor cleanupad with the predecessor pad
3997   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
3998   // funclet bundle operands.
3999   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
4000   // Remove the old cleanuppad.
4001   SuccessorCleanupPad->eraseFromParent();
4002   // Now, we simply replace the cleanupret with a branch to the unwind
4003   // destination.
4004   BranchInst::Create(UnwindDest, RI->getParent());
4005   RI->eraseFromParent();
4006
4007   return true;
4008 }
4009
4010 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
4011   // It is possible to transiantly have an undef cleanuppad operand because we
4012   // have deleted some, but not all, dead blocks.
4013   // Eventually, this block will be deleted.
4014   if (isa<UndefValue>(RI->getOperand(0)))
4015     return false;
4016
4017   if (mergeCleanupPad(RI))
4018     return true;
4019
4020   if (removeEmptyCleanup(RI))
4021     return true;
4022
4023   return false;
4024 }
4025
4026 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4027   BasicBlock *BB = RI->getParent();
4028   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4029     return false;
4030
4031   // Find predecessors that end with branches.
4032   SmallVector<BasicBlock *, 8> UncondBranchPreds;
4033   SmallVector<BranchInst *, 8> CondBranchPreds;
4034   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
4035     BasicBlock *P = *PI;
4036     TerminatorInst *PTI = P->getTerminator();
4037     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4038       if (BI->isUnconditional())
4039         UncondBranchPreds.push_back(P);
4040       else
4041         CondBranchPreds.push_back(BI);
4042     }
4043   }
4044
4045   // If we found some, do the transformation!
4046   if (!UncondBranchPreds.empty() && DupRet) {
4047     while (!UncondBranchPreds.empty()) {
4048       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4049       DEBUG(dbgs() << "FOLDING: " << *BB
4050                    << "INTO UNCOND BRANCH PRED: " << *Pred);
4051       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
4052     }
4053
4054     // If we eliminated all predecessors of the block, delete the block now.
4055     if (pred_empty(BB)) {
4056       // We know there are no successors, so just nuke the block.
4057       BB->eraseFromParent();
4058       if (LoopHeaders)
4059         LoopHeaders->erase(BB);
4060     }
4061
4062     return true;
4063   }
4064
4065   // Check out all of the conditional branches going to this return
4066   // instruction.  If any of them just select between returns, change the
4067   // branch itself into a select/return pair.
4068   while (!CondBranchPreds.empty()) {
4069     BranchInst *BI = CondBranchPreds.pop_back_val();
4070
4071     // Check to see if the non-BB successor is also a return block.
4072     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4073         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4074         SimplifyCondBranchToTwoReturns(BI, Builder))
4075       return true;
4076   }
4077   return false;
4078 }
4079
4080 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
4081   BasicBlock *BB = UI->getParent();
4082
4083   bool Changed = false;
4084
4085   // If there are any instructions immediately before the unreachable that can
4086   // be removed, do so.
4087   while (UI->getIterator() != BB->begin()) {
4088     BasicBlock::iterator BBI = UI->getIterator();
4089     --BBI;
4090     // Do not delete instructions that can have side effects which might cause
4091     // the unreachable to not be reachable; specifically, calls and volatile
4092     // operations may have this effect.
4093     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4094       break;
4095
4096     if (BBI->mayHaveSideEffects()) {
4097       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4098         if (SI->isVolatile())
4099           break;
4100       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4101         if (LI->isVolatile())
4102           break;
4103       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4104         if (RMWI->isVolatile())
4105           break;
4106       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4107         if (CXI->isVolatile())
4108           break;
4109       } else if (isa<CatchPadInst>(BBI)) {
4110         // A catchpad may invoke exception object constructors and such, which
4111         // in some languages can be arbitrary code, so be conservative by
4112         // default.
4113         // For CoreCLR, it just involves a type test, so can be removed.
4114         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4115             EHPersonality::CoreCLR)
4116           break;
4117       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4118                  !isa<LandingPadInst>(BBI)) {
4119         break;
4120       }
4121       // Note that deleting LandingPad's here is in fact okay, although it
4122       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4123       // all the predecessors of this block will be the unwind edges of Invokes,
4124       // and we can therefore guarantee this block will be erased.
4125     }
4126
4127     // Delete this instruction (any uses are guaranteed to be dead)
4128     if (!BBI->use_empty())
4129       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4130     BBI->eraseFromParent();
4131     Changed = true;
4132   }
4133
4134   // If the unreachable instruction is the first in the block, take a gander
4135   // at all of the predecessors of this instruction, and simplify them.
4136   if (&BB->front() != UI)
4137     return Changed;
4138
4139   SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4140   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4141     TerminatorInst *TI = Preds[i]->getTerminator();
4142     IRBuilder<> Builder(TI);
4143     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4144       if (BI->isUnconditional()) {
4145         if (BI->getSuccessor(0) == BB) {
4146           new UnreachableInst(TI->getContext(), TI);
4147           TI->eraseFromParent();
4148           Changed = true;
4149         }
4150       } else {
4151         if (BI->getSuccessor(0) == BB) {
4152           Builder.CreateBr(BI->getSuccessor(1));
4153           EraseTerminatorInstAndDCECond(BI);
4154         } else if (BI->getSuccessor(1) == BB) {
4155           Builder.CreateBr(BI->getSuccessor(0));
4156           EraseTerminatorInstAndDCECond(BI);
4157           Changed = true;
4158         }
4159       }
4160     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4161       for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) {
4162         if (i->getCaseSuccessor() != BB) {
4163           ++i;
4164           continue;
4165         }
4166         BB->removePredecessor(SI->getParent());
4167         i = SI->removeCase(i);
4168         e = SI->case_end();
4169         Changed = true;
4170       }
4171     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4172       if (II->getUnwindDest() == BB) {
4173         removeUnwindEdge(TI->getParent());
4174         Changed = true;
4175       }
4176     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4177       if (CSI->getUnwindDest() == BB) {
4178         removeUnwindEdge(TI->getParent());
4179         Changed = true;
4180         continue;
4181       }
4182
4183       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4184                                              E = CSI->handler_end();
4185            I != E; ++I) {
4186         if (*I == BB) {
4187           CSI->removeHandler(I);
4188           --I;
4189           --E;
4190           Changed = true;
4191         }
4192       }
4193       if (CSI->getNumHandlers() == 0) {
4194         BasicBlock *CatchSwitchBB = CSI->getParent();
4195         if (CSI->hasUnwindDest()) {
4196           // Redirect preds to the unwind dest
4197           CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
4198         } else {
4199           // Rewrite all preds to unwind to caller (or from invoke to call).
4200           SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
4201           for (BasicBlock *EHPred : EHPreds)
4202             removeUnwindEdge(EHPred);
4203         }
4204         // The catchswitch is no longer reachable.
4205         new UnreachableInst(CSI->getContext(), CSI);
4206         CSI->eraseFromParent();
4207         Changed = true;
4208       }
4209     } else if (isa<CleanupReturnInst>(TI)) {
4210       new UnreachableInst(TI->getContext(), TI);
4211       TI->eraseFromParent();
4212       Changed = true;
4213     }
4214   }
4215
4216   // If this block is now dead, remove it.
4217   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4218     // We know there are no successors, so just nuke the block.
4219     BB->eraseFromParent();
4220     if (LoopHeaders)
4221       LoopHeaders->erase(BB);
4222     return true;
4223   }
4224
4225   return Changed;
4226 }
4227
4228 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4229   assert(Cases.size() >= 1);
4230
4231   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4232   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4233     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4234       return false;
4235   }
4236   return true;
4237 }
4238
4239 /// Turn a switch with two reachable destinations into an integer range
4240 /// comparison and branch.
4241 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
4242   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4243
4244   bool HasDefault =
4245       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4246
4247   // Partition the cases into two sets with different destinations.
4248   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4249   BasicBlock *DestB = nullptr;
4250   SmallVector<ConstantInt *, 16> CasesA;
4251   SmallVector<ConstantInt *, 16> CasesB;
4252
4253   for (auto Case : SI->cases()) {
4254     BasicBlock *Dest = Case.getCaseSuccessor();
4255     if (!DestA)
4256       DestA = Dest;
4257     if (Dest == DestA) {
4258       CasesA.push_back(Case.getCaseValue());
4259       continue;
4260     }
4261     if (!DestB)
4262       DestB = Dest;
4263     if (Dest == DestB) {
4264       CasesB.push_back(Case.getCaseValue());
4265       continue;
4266     }
4267     return false; // More than two destinations.
4268   }
4269
4270   assert(DestA && DestB &&
4271          "Single-destination switch should have been folded.");
4272   assert(DestA != DestB);
4273   assert(DestB != SI->getDefaultDest());
4274   assert(!CasesB.empty() && "There must be non-default cases.");
4275   assert(!CasesA.empty() || HasDefault);
4276
4277   // Figure out if one of the sets of cases form a contiguous range.
4278   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4279   BasicBlock *ContiguousDest = nullptr;
4280   BasicBlock *OtherDest = nullptr;
4281   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4282     ContiguousCases = &CasesA;
4283     ContiguousDest = DestA;
4284     OtherDest = DestB;
4285   } else if (CasesAreContiguous(CasesB)) {
4286     ContiguousCases = &CasesB;
4287     ContiguousDest = DestB;
4288     OtherDest = DestA;
4289   } else
4290     return false;
4291
4292   // Start building the compare and branch.
4293
4294   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4295   Constant *NumCases =
4296       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4297
4298   Value *Sub = SI->getCondition();
4299   if (!Offset->isNullValue())
4300     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4301
4302   Value *Cmp;
4303   // If NumCases overflowed, then all possible values jump to the successor.
4304   if (NumCases->isNullValue() && !ContiguousCases->empty())
4305     Cmp = ConstantInt::getTrue(SI->getContext());
4306   else
4307     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4308   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4309
4310   // Update weight for the newly-created conditional branch.
4311   if (HasBranchWeights(SI)) {
4312     SmallVector<uint64_t, 8> Weights;
4313     GetBranchWeights(SI, Weights);
4314     if (Weights.size() == 1 + SI->getNumCases()) {
4315       uint64_t TrueWeight = 0;
4316       uint64_t FalseWeight = 0;
4317       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4318         if (SI->getSuccessor(I) == ContiguousDest)
4319           TrueWeight += Weights[I];
4320         else
4321           FalseWeight += Weights[I];
4322       }
4323       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4324         TrueWeight /= 2;
4325         FalseWeight /= 2;
4326       }
4327       NewBI->setMetadata(LLVMContext::MD_prof,
4328                          MDBuilder(SI->getContext())
4329                              .createBranchWeights((uint32_t)TrueWeight,
4330                                                   (uint32_t)FalseWeight));
4331     }
4332   }
4333
4334   // Prune obsolete incoming values off the successors' PHI nodes.
4335   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4336     unsigned PreviousEdges = ContiguousCases->size();
4337     if (ContiguousDest == SI->getDefaultDest())
4338       ++PreviousEdges;
4339     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4340       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4341   }
4342   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4343     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4344     if (OtherDest == SI->getDefaultDest())
4345       ++PreviousEdges;
4346     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4347       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4348   }
4349
4350   // Drop the switch.
4351   SI->eraseFromParent();
4352
4353   return true;
4354 }
4355
4356 /// Compute masked bits for the condition of a switch
4357 /// and use it to remove dead cases.
4358 static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
4359                                      const DataLayout &DL) {
4360   Value *Cond = SI->getCondition();
4361   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4362   APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
4363   computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI);
4364
4365   // We can also eliminate cases by determining that their values are outside of
4366   // the limited range of the condition based on how many significant (non-sign)
4367   // bits are in the condition value.
4368   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4369   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4370
4371   // Gather dead cases.
4372   SmallVector<ConstantInt *, 8> DeadCases;
4373   for (auto &Case : SI->cases()) {
4374     APInt CaseVal = Case.getCaseValue()->getValue();
4375     if ((CaseVal & KnownZero) != 0 || (CaseVal & KnownOne) != KnownOne ||
4376         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4377       DeadCases.push_back(Case.getCaseValue());
4378       DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal << " is dead.\n");
4379     }
4380   }
4381
4382   // If we can prove that the cases must cover all possible values, the
4383   // default destination becomes dead and we can remove it.  If we know some
4384   // of the bits in the value, we can use that to more precisely compute the
4385   // number of possible unique case values.
4386   bool HasDefault =
4387       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4388   const unsigned NumUnknownBits =
4389       Bits - (KnownZero | KnownOne).countPopulation();
4390   assert(NumUnknownBits <= Bits);
4391   if (HasDefault && DeadCases.empty() &&
4392       NumUnknownBits < 64 /* avoid overflow */ &&
4393       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4394     DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4395     BasicBlock *NewDefault =
4396         SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), "");
4397     SI->setDefaultDest(&*NewDefault);
4398     SplitBlock(&*NewDefault, &NewDefault->front());
4399     auto *OldTI = NewDefault->getTerminator();
4400     new UnreachableInst(SI->getContext(), OldTI);
4401     EraseTerminatorInstAndDCECond(OldTI);
4402     return true;
4403   }
4404
4405   SmallVector<uint64_t, 8> Weights;
4406   bool HasWeight = HasBranchWeights(SI);
4407   if (HasWeight) {
4408     GetBranchWeights(SI, Weights);
4409     HasWeight = (Weights.size() == 1 + SI->getNumCases());
4410   }
4411
4412   // Remove dead cases from the switch.
4413   for (ConstantInt *DeadCase : DeadCases) {
4414     SwitchInst::CaseIt CaseI = SI->findCaseValue(DeadCase);
4415     assert(CaseI != SI->case_default() &&
4416            "Case was not found. Probably mistake in DeadCases forming.");
4417     if (HasWeight) {
4418       std::swap(Weights[CaseI->getCaseIndex() + 1], Weights.back());
4419       Weights.pop_back();
4420     }
4421
4422     // Prune unused values from PHI nodes.
4423     CaseI->getCaseSuccessor()->removePredecessor(SI->getParent());
4424     SI->removeCase(CaseI);
4425   }
4426   if (HasWeight && Weights.size() >= 2) {
4427     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
4428     SI->setMetadata(LLVMContext::MD_prof,
4429                     MDBuilder(SI->getParent()->getContext())
4430                         .createBranchWeights(MDWeights));
4431   }
4432
4433   return !DeadCases.empty();
4434 }
4435
4436 /// If BB would be eligible for simplification by
4437 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4438 /// by an unconditional branch), look at the phi node for BB in the successor
4439 /// block and see if the incoming value is equal to CaseValue. If so, return
4440 /// the phi node, and set PhiIndex to BB's index in the phi node.
4441 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4442                                               BasicBlock *BB, int *PhiIndex) {
4443   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4444     return nullptr; // BB must be empty to be a candidate for simplification.
4445   if (!BB->getSinglePredecessor())
4446     return nullptr; // BB must be dominated by the switch.
4447
4448   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4449   if (!Branch || !Branch->isUnconditional())
4450     return nullptr; // Terminator must be unconditional branch.
4451
4452   BasicBlock *Succ = Branch->getSuccessor(0);
4453
4454   BasicBlock::iterator I = Succ->begin();
4455   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
4456     int Idx = PHI->getBasicBlockIndex(BB);
4457     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4458
4459     Value *InValue = PHI->getIncomingValue(Idx);
4460     if (InValue != CaseValue)
4461       continue;
4462
4463     *PhiIndex = Idx;
4464     return PHI;
4465   }
4466
4467   return nullptr;
4468 }
4469
4470 /// Try to forward the condition of a switch instruction to a phi node
4471 /// dominated by the switch, if that would mean that some of the destination
4472 /// blocks of the switch can be folded away.
4473 /// Returns true if a change is made.
4474 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4475   typedef DenseMap<PHINode *, SmallVector<int, 4>> ForwardingNodesMap;
4476   ForwardingNodesMap ForwardingNodes;
4477
4478   for (auto Case : SI->cases()) {
4479     ConstantInt *CaseValue = Case.getCaseValue();
4480     BasicBlock *CaseDest = Case.getCaseSuccessor();
4481
4482     int PhiIndex;
4483     PHINode *PHI =
4484         FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIndex);
4485     if (!PHI)
4486       continue;
4487
4488     ForwardingNodes[PHI].push_back(PhiIndex);
4489   }
4490
4491   bool Changed = false;
4492
4493   for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
4494                                     E = ForwardingNodes.end();
4495        I != E; ++I) {
4496     PHINode *Phi = I->first;
4497     SmallVectorImpl<int> &Indexes = I->second;
4498
4499     if (Indexes.size() < 2)
4500       continue;
4501
4502     for (size_t I = 0, E = Indexes.size(); I != E; ++I)
4503       Phi->setIncomingValue(Indexes[I], SI->getCondition());
4504     Changed = true;
4505   }
4506
4507   return Changed;
4508 }
4509
4510 /// Return true if the backend will be able to handle
4511 /// initializing an array of constants like C.
4512 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
4513   if (C->isThreadDependent())
4514     return false;
4515   if (C->isDLLImportDependent())
4516     return false;
4517
4518   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
4519       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
4520       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
4521     return false;
4522
4523   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
4524     if (!CE->isGEPWithNoNotionalOverIndexing())
4525       return false;
4526     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
4527       return false;
4528   }
4529
4530   if (!TTI.shouldBuildLookupTablesForConstant(C))
4531     return false;
4532
4533   return true;
4534 }
4535
4536 /// If V is a Constant, return it. Otherwise, try to look up
4537 /// its constant value in ConstantPool, returning 0 if it's not there.
4538 static Constant *
4539 LookupConstant(Value *V,
4540                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4541   if (Constant *C = dyn_cast<Constant>(V))
4542     return C;
4543   return ConstantPool.lookup(V);
4544 }
4545
4546 /// Try to fold instruction I into a constant. This works for
4547 /// simple instructions such as binary operations where both operands are
4548 /// constant or can be replaced by constants from the ConstantPool. Returns the
4549 /// resulting constant on success, 0 otherwise.
4550 static Constant *
4551 ConstantFold(Instruction *I, const DataLayout &DL,
4552              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4553   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
4554     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
4555     if (!A)
4556       return nullptr;
4557     if (A->isAllOnesValue())
4558       return LookupConstant(Select->getTrueValue(), ConstantPool);
4559     if (A->isNullValue())
4560       return LookupConstant(Select->getFalseValue(), ConstantPool);
4561     return nullptr;
4562   }
4563
4564   SmallVector<Constant *, 4> COps;
4565   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
4566     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
4567       COps.push_back(A);
4568     else
4569       return nullptr;
4570   }
4571
4572   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
4573     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
4574                                            COps[1], DL);
4575   }
4576
4577   return ConstantFoldInstOperands(I, COps, DL);
4578 }
4579
4580 /// Try to determine the resulting constant values in phi nodes
4581 /// at the common destination basic block, *CommonDest, for one of the case
4582 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4583 /// case), of a switch instruction SI.
4584 static bool
4585 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
4586                BasicBlock **CommonDest,
4587                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
4588                const DataLayout &DL, const TargetTransformInfo &TTI) {
4589   // The block from which we enter the common destination.
4590   BasicBlock *Pred = SI->getParent();
4591
4592   // If CaseDest is empty except for some side-effect free instructions through
4593   // which we can constant-propagate the CaseVal, continue to its successor.
4594   SmallDenseMap<Value *, Constant *> ConstantPool;
4595   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
4596   for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
4597        ++I) {
4598     if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
4599       // If the terminator is a simple branch, continue to the next block.
4600       if (T->getNumSuccessors() != 1 || T->isExceptional())
4601         return false;
4602       Pred = CaseDest;
4603       CaseDest = T->getSuccessor(0);
4604     } else if (isa<DbgInfoIntrinsic>(I)) {
4605       // Skip debug intrinsic.
4606       continue;
4607     } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) {
4608       // Instruction is side-effect free and constant.
4609
4610       // If the instruction has uses outside this block or a phi node slot for
4611       // the block, it is not safe to bypass the instruction since it would then
4612       // no longer dominate all its uses.
4613       for (auto &Use : I->uses()) {
4614         User *User = Use.getUser();
4615         if (Instruction *I = dyn_cast<Instruction>(User))
4616           if (I->getParent() == CaseDest)
4617             continue;
4618         if (PHINode *Phi = dyn_cast<PHINode>(User))
4619           if (Phi->getIncomingBlock(Use) == CaseDest)
4620             continue;
4621         return false;
4622       }
4623
4624       ConstantPool.insert(std::make_pair(&*I, C));
4625     } else {
4626       break;
4627     }
4628   }
4629
4630   // If we did not have a CommonDest before, use the current one.
4631   if (!*CommonDest)
4632     *CommonDest = CaseDest;
4633   // If the destination isn't the common one, abort.
4634   if (CaseDest != *CommonDest)
4635     return false;
4636
4637   // Get the values for this case from phi nodes in the destination block.
4638   BasicBlock::iterator I = (*CommonDest)->begin();
4639   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
4640     int Idx = PHI->getBasicBlockIndex(Pred);
4641     if (Idx == -1)
4642       continue;
4643
4644     Constant *ConstVal =
4645         LookupConstant(PHI->getIncomingValue(Idx), ConstantPool);
4646     if (!ConstVal)
4647       return false;
4648
4649     // Be conservative about which kinds of constants we support.
4650     if (!ValidLookupTableConstant(ConstVal, TTI))
4651       return false;
4652
4653     Res.push_back(std::make_pair(PHI, ConstVal));
4654   }
4655
4656   return Res.size() > 0;
4657 }
4658
4659 // Helper function used to add CaseVal to the list of cases that generate
4660 // Result.
4661 static void MapCaseToResult(ConstantInt *CaseVal,
4662                             SwitchCaseResultVectorTy &UniqueResults,
4663                             Constant *Result) {
4664   for (auto &I : UniqueResults) {
4665     if (I.first == Result) {
4666       I.second.push_back(CaseVal);
4667       return;
4668     }
4669   }
4670   UniqueResults.push_back(
4671       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
4672 }
4673
4674 // Helper function that initializes a map containing
4675 // results for the PHI node of the common destination block for a switch
4676 // instruction. Returns false if multiple PHI nodes have been found or if
4677 // there is not a common destination block for the switch.
4678 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
4679                                   BasicBlock *&CommonDest,
4680                                   SwitchCaseResultVectorTy &UniqueResults,
4681                                   Constant *&DefaultResult,
4682                                   const DataLayout &DL,
4683                                   const TargetTransformInfo &TTI) {
4684   for (auto &I : SI->cases()) {
4685     ConstantInt *CaseVal = I.getCaseValue();
4686
4687     // Resulting value at phi nodes for this case value.
4688     SwitchCaseResultsTy Results;
4689     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
4690                         DL, TTI))
4691       return false;
4692
4693     // Only one value per case is permitted
4694     if (Results.size() > 1)
4695       return false;
4696     MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
4697
4698     // Check the PHI consistency.
4699     if (!PHI)
4700       PHI = Results[0].first;
4701     else if (PHI != Results[0].first)
4702       return false;
4703   }
4704   // Find the default result value.
4705   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
4706   BasicBlock *DefaultDest = SI->getDefaultDest();
4707   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
4708                  DL, TTI);
4709   // If the default value is not found abort unless the default destination
4710   // is unreachable.
4711   DefaultResult =
4712       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
4713   if ((!DefaultResult &&
4714        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
4715     return false;
4716
4717   return true;
4718 }
4719
4720 // Helper function that checks if it is possible to transform a switch with only
4721 // two cases (or two cases + default) that produces a result into a select.
4722 // Example:
4723 // switch (a) {
4724 //   case 10:                %0 = icmp eq i32 %a, 10
4725 //     return 10;            %1 = select i1 %0, i32 10, i32 4
4726 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
4727 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
4728 //   default:
4729 //     return 4;
4730 // }
4731 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
4732                                    Constant *DefaultResult, Value *Condition,
4733                                    IRBuilder<> &Builder) {
4734   assert(ResultVector.size() == 2 &&
4735          "We should have exactly two unique results at this point");
4736   // If we are selecting between only two cases transform into a simple
4737   // select or a two-way select if default is possible.
4738   if (ResultVector[0].second.size() == 1 &&
4739       ResultVector[1].second.size() == 1) {
4740     ConstantInt *const FirstCase = ResultVector[0].second[0];
4741     ConstantInt *const SecondCase = ResultVector[1].second[0];
4742
4743     bool DefaultCanTrigger = DefaultResult;
4744     Value *SelectValue = ResultVector[1].first;
4745     if (DefaultCanTrigger) {
4746       Value *const ValueCompare =
4747           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
4748       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
4749                                          DefaultResult, "switch.select");
4750     }
4751     Value *const ValueCompare =
4752         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
4753     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
4754                                 SelectValue, "switch.select");
4755   }
4756
4757   return nullptr;
4758 }
4759
4760 // Helper function to cleanup a switch instruction that has been converted into
4761 // a select, fixing up PHI nodes and basic blocks.
4762 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
4763                                               Value *SelectValue,
4764                                               IRBuilder<> &Builder) {
4765   BasicBlock *SelectBB = SI->getParent();
4766   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
4767     PHI->removeIncomingValue(SelectBB);
4768   PHI->addIncoming(SelectValue, SelectBB);
4769
4770   Builder.CreateBr(PHI->getParent());
4771
4772   // Remove the switch.
4773   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4774     BasicBlock *Succ = SI->getSuccessor(i);
4775
4776     if (Succ == PHI->getParent())
4777       continue;
4778     Succ->removePredecessor(SelectBB);
4779   }
4780   SI->eraseFromParent();
4781 }
4782
4783 /// If the switch is only used to initialize one or more
4784 /// phi nodes in a common successor block with only two different
4785 /// constant values, replace the switch with select.
4786 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
4787                            AssumptionCache *AC, const DataLayout &DL,
4788                            const TargetTransformInfo &TTI) {
4789   Value *const Cond = SI->getCondition();
4790   PHINode *PHI = nullptr;
4791   BasicBlock *CommonDest = nullptr;
4792   Constant *DefaultResult;
4793   SwitchCaseResultVectorTy UniqueResults;
4794   // Collect all the cases that will deliver the same value from the switch.
4795   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
4796                              DL, TTI))
4797     return false;
4798   // Selects choose between maximum two values.
4799   if (UniqueResults.size() != 2)
4800     return false;
4801   assert(PHI != nullptr && "PHI for value select not found");
4802
4803   Builder.SetInsertPoint(SI);
4804   Value *SelectValue =
4805       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
4806   if (SelectValue) {
4807     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
4808     return true;
4809   }
4810   // The switch couldn't be converted into a select.
4811   return false;
4812 }
4813
4814 namespace {
4815
4816 /// This class represents a lookup table that can be used to replace a switch.
4817 class SwitchLookupTable {
4818 public:
4819   /// Create a lookup table to use as a switch replacement with the contents
4820   /// of Values, using DefaultValue to fill any holes in the table.
4821   SwitchLookupTable(
4822       Module &M, uint64_t TableSize, ConstantInt *Offset,
4823       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4824       Constant *DefaultValue, const DataLayout &DL);
4825
4826   /// Build instructions with Builder to retrieve the value at
4827   /// the position given by Index in the lookup table.
4828   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
4829
4830   /// Return true if a table with TableSize elements of
4831   /// type ElementType would fit in a target-legal register.
4832   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
4833                                  Type *ElementType);
4834
4835 private:
4836   // Depending on the contents of the table, it can be represented in
4837   // different ways.
4838   enum {
4839     // For tables where each element contains the same value, we just have to
4840     // store that single value and return it for each lookup.
4841     SingleValueKind,
4842
4843     // For tables where there is a linear relationship between table index
4844     // and values. We calculate the result with a simple multiplication
4845     // and addition instead of a table lookup.
4846     LinearMapKind,
4847
4848     // For small tables with integer elements, we can pack them into a bitmap
4849     // that fits into a target-legal register. Values are retrieved by
4850     // shift and mask operations.
4851     BitMapKind,
4852
4853     // The table is stored as an array of values. Values are retrieved by load
4854     // instructions from the table.
4855     ArrayKind
4856   } Kind;
4857
4858   // For SingleValueKind, this is the single value.
4859   Constant *SingleValue;
4860
4861   // For BitMapKind, this is the bitmap.
4862   ConstantInt *BitMap;
4863   IntegerType *BitMapElementTy;
4864
4865   // For LinearMapKind, these are the constants used to derive the value.
4866   ConstantInt *LinearOffset;
4867   ConstantInt *LinearMultiplier;
4868
4869   // For ArrayKind, this is the array.
4870   GlobalVariable *Array;
4871 };
4872
4873 } // end anonymous namespace
4874
4875 SwitchLookupTable::SwitchLookupTable(
4876     Module &M, uint64_t TableSize, ConstantInt *Offset,
4877     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4878     Constant *DefaultValue, const DataLayout &DL)
4879     : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr),
4880       LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) {
4881   assert(Values.size() && "Can't build lookup table without values!");
4882   assert(TableSize >= Values.size() && "Can't fit values in table!");
4883
4884   // If all values in the table are equal, this is that value.
4885   SingleValue = Values.begin()->second;
4886
4887   Type *ValueType = Values.begin()->second->getType();
4888
4889   // Build up the table contents.
4890   SmallVector<Constant *, 64> TableContents(TableSize);
4891   for (size_t I = 0, E = Values.size(); I != E; ++I) {
4892     ConstantInt *CaseVal = Values[I].first;
4893     Constant *CaseRes = Values[I].second;
4894     assert(CaseRes->getType() == ValueType);
4895
4896     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
4897     TableContents[Idx] = CaseRes;
4898
4899     if (CaseRes != SingleValue)
4900       SingleValue = nullptr;
4901   }
4902
4903   // Fill in any holes in the table with the default result.
4904   if (Values.size() < TableSize) {
4905     assert(DefaultValue &&
4906            "Need a default value to fill the lookup table holes.");
4907     assert(DefaultValue->getType() == ValueType);
4908     for (uint64_t I = 0; I < TableSize; ++I) {
4909       if (!TableContents[I])
4910         TableContents[I] = DefaultValue;
4911     }
4912
4913     if (DefaultValue != SingleValue)
4914       SingleValue = nullptr;
4915   }
4916
4917   // If each element in the table contains the same value, we only need to store
4918   // that single value.
4919   if (SingleValue) {
4920     Kind = SingleValueKind;
4921     return;
4922   }
4923
4924   // Check if we can derive the value with a linear transformation from the
4925   // table index.
4926   if (isa<IntegerType>(ValueType)) {
4927     bool LinearMappingPossible = true;
4928     APInt PrevVal;
4929     APInt DistToPrev;
4930     assert(TableSize >= 2 && "Should be a SingleValue table.");
4931     // Check if there is the same distance between two consecutive values.
4932     for (uint64_t I = 0; I < TableSize; ++I) {
4933       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
4934       if (!ConstVal) {
4935         // This is an undef. We could deal with it, but undefs in lookup tables
4936         // are very seldom. It's probably not worth the additional complexity.
4937         LinearMappingPossible = false;
4938         break;
4939       }
4940       APInt Val = ConstVal->getValue();
4941       if (I != 0) {
4942         APInt Dist = Val - PrevVal;
4943         if (I == 1) {
4944           DistToPrev = Dist;
4945         } else if (Dist != DistToPrev) {
4946           LinearMappingPossible = false;
4947           break;
4948         }
4949       }
4950       PrevVal = Val;
4951     }
4952     if (LinearMappingPossible) {
4953       LinearOffset = cast<ConstantInt>(TableContents[0]);
4954       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
4955       Kind = LinearMapKind;
4956       ++NumLinearMaps;
4957       return;
4958     }
4959   }
4960
4961   // If the type is integer and the table fits in a register, build a bitmap.
4962   if (WouldFitInRegister(DL, TableSize, ValueType)) {
4963     IntegerType *IT = cast<IntegerType>(ValueType);
4964     APInt TableInt(TableSize * IT->getBitWidth(), 0);
4965     for (uint64_t I = TableSize; I > 0; --I) {
4966       TableInt <<= IT->getBitWidth();
4967       // Insert values into the bitmap. Undef values are set to zero.
4968       if (!isa<UndefValue>(TableContents[I - 1])) {
4969         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
4970         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
4971       }
4972     }
4973     BitMap = ConstantInt::get(M.getContext(), TableInt);
4974     BitMapElementTy = IT;
4975     Kind = BitMapKind;
4976     ++NumBitMaps;
4977     return;
4978   }
4979
4980   // Store the table in an array.
4981   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
4982   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
4983
4984   Array = new GlobalVariable(M, ArrayTy, /*constant=*/true,
4985                              GlobalVariable::PrivateLinkage, Initializer,
4986                              "switch.table");
4987   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
4988   Kind = ArrayKind;
4989 }
4990
4991 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
4992   switch (Kind) {
4993   case SingleValueKind:
4994     return SingleValue;
4995   case LinearMapKind: {
4996     // Derive the result value from the input value.
4997     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
4998                                           false, "switch.idx.cast");
4999     if (!LinearMultiplier->isOne())
5000       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
5001     if (!LinearOffset->isZero())
5002       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
5003     return Result;
5004   }
5005   case BitMapKind: {
5006     // Type of the bitmap (e.g. i59).
5007     IntegerType *MapTy = BitMap->getType();
5008
5009     // Cast Index to the same type as the bitmap.
5010     // Note: The Index is <= the number of elements in the table, so
5011     // truncating it to the width of the bitmask is safe.
5012     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5013
5014     // Multiply the shift amount by the element width.
5015     ShiftAmt = Builder.CreateMul(
5016         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5017         "switch.shiftamt");
5018
5019     // Shift down.
5020     Value *DownShifted =
5021         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5022     // Mask off.
5023     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5024   }
5025   case ArrayKind: {
5026     // Make sure the table index will not overflow when treated as signed.
5027     IntegerType *IT = cast<IntegerType>(Index->getType());
5028     uint64_t TableSize =
5029         Array->getInitializer()->getType()->getArrayNumElements();
5030     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5031       Index = Builder.CreateZExt(
5032           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5033           "switch.tableidx.zext");
5034
5035     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5036     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5037                                            GEPIndices, "switch.gep");
5038     return Builder.CreateLoad(GEP, "switch.load");
5039   }
5040   }
5041   llvm_unreachable("Unknown lookup table kind!");
5042 }
5043
5044 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5045                                            uint64_t TableSize,
5046                                            Type *ElementType) {
5047   auto *IT = dyn_cast<IntegerType>(ElementType);
5048   if (!IT)
5049     return false;
5050   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5051   // are <= 15, we could try to narrow the type.
5052
5053   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5054   if (TableSize >= UINT_MAX / IT->getBitWidth())
5055     return false;
5056   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5057 }
5058
5059 /// Determine whether a lookup table should be built for this switch, based on
5060 /// the number of cases, size of the table, and the types of the results.
5061 static bool
5062 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5063                        const TargetTransformInfo &TTI, const DataLayout &DL,
5064                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5065   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5066     return false; // TableSize overflowed, or mul below might overflow.
5067
5068   bool AllTablesFitInRegister = true;
5069   bool HasIllegalType = false;
5070   for (const auto &I : ResultTypes) {
5071     Type *Ty = I.second;
5072
5073     // Saturate this flag to true.
5074     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5075
5076     // Saturate this flag to false.
5077     AllTablesFitInRegister =
5078         AllTablesFitInRegister &&
5079         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5080
5081     // If both flags saturate, we're done. NOTE: This *only* works with
5082     // saturating flags, and all flags have to saturate first due to the
5083     // non-deterministic behavior of iterating over a dense map.
5084     if (HasIllegalType && !AllTablesFitInRegister)
5085       break;
5086   }
5087
5088   // If each table would fit in a register, we should build it anyway.
5089   if (AllTablesFitInRegister)
5090     return true;
5091
5092   // Don't build a table that doesn't fit in-register if it has illegal types.
5093   if (HasIllegalType)
5094     return false;
5095
5096   // The table density should be at least 40%. This is the same criterion as for
5097   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5098   // FIXME: Find the best cut-off.
5099   return SI->getNumCases() * 10 >= TableSize * 4;
5100 }
5101
5102 /// Try to reuse the switch table index compare. Following pattern:
5103 /// \code
5104 ///     if (idx < tablesize)
5105 ///        r = table[idx]; // table does not contain default_value
5106 ///     else
5107 ///        r = default_value;
5108 ///     if (r != default_value)
5109 ///        ...
5110 /// \endcode
5111 /// Is optimized to:
5112 /// \code
5113 ///     cond = idx < tablesize;
5114 ///     if (cond)
5115 ///        r = table[idx];
5116 ///     else
5117 ///        r = default_value;
5118 ///     if (cond)
5119 ///        ...
5120 /// \endcode
5121 /// Jump threading will then eliminate the second if(cond).
5122 static void reuseTableCompare(
5123     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5124     Constant *DefaultValue,
5125     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5126
5127   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5128   if (!CmpInst)
5129     return;
5130
5131   // We require that the compare is in the same block as the phi so that jump
5132   // threading can do its work afterwards.
5133   if (CmpInst->getParent() != PhiBlock)
5134     return;
5135
5136   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5137   if (!CmpOp1)
5138     return;
5139
5140   Value *RangeCmp = RangeCheckBranch->getCondition();
5141   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5142   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5143
5144   // Check if the compare with the default value is constant true or false.
5145   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5146                                                  DefaultValue, CmpOp1, true);
5147   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5148     return;
5149
5150   // Check if the compare with the case values is distinct from the default
5151   // compare result.
5152   for (auto ValuePair : Values) {
5153     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5154                                                 ValuePair.second, CmpOp1, true);
5155     if (!CaseConst || CaseConst == DefaultConst)
5156       return;
5157     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5158            "Expect true or false as compare result.");
5159   }
5160
5161   // Check if the branch instruction dominates the phi node. It's a simple
5162   // dominance check, but sufficient for our needs.
5163   // Although this check is invariant in the calling loops, it's better to do it
5164   // at this late stage. Practically we do it at most once for a switch.
5165   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5166   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
5167     BasicBlock *Pred = *PI;
5168     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5169       return;
5170   }
5171
5172   if (DefaultConst == FalseConst) {
5173     // The compare yields the same result. We can replace it.
5174     CmpInst->replaceAllUsesWith(RangeCmp);
5175     ++NumTableCmpReuses;
5176   } else {
5177     // The compare yields the same result, just inverted. We can replace it.
5178     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5179         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5180         RangeCheckBranch);
5181     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5182     ++NumTableCmpReuses;
5183   }
5184 }
5185
5186 /// If the switch is only used to initialize one or more phi nodes in a common
5187 /// successor block with different constant values, replace the switch with
5188 /// lookup tables.
5189 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5190                                 const DataLayout &DL,
5191                                 const TargetTransformInfo &TTI) {
5192   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5193
5194   // Only build lookup table when we have a target that supports it.
5195   if (!TTI.shouldBuildLookupTables())
5196     return false;
5197
5198   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5199   // split off a dense part and build a lookup table for that.
5200
5201   // FIXME: This creates arrays of GEPs to constant strings, which means each
5202   // GEP needs a runtime relocation in PIC code. We should just build one big
5203   // string and lookup indices into that.
5204
5205   // Ignore switches with less than three cases. Lookup tables will not make
5206   // them
5207   // faster, so we don't analyze them.
5208   if (SI->getNumCases() < 3)
5209     return false;
5210
5211   // Figure out the corresponding result for each case value and phi node in the
5212   // common destination, as well as the min and max case values.
5213   assert(SI->case_begin() != SI->case_end());
5214   SwitchInst::CaseIt CI = SI->case_begin();
5215   ConstantInt *MinCaseVal = CI->getCaseValue();
5216   ConstantInt *MaxCaseVal = CI->getCaseValue();
5217
5218   BasicBlock *CommonDest = nullptr;
5219   typedef SmallVector<std::pair<ConstantInt *, Constant *>, 4> ResultListTy;
5220   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5221   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5222   SmallDenseMap<PHINode *, Type *> ResultTypes;
5223   SmallVector<PHINode *, 4> PHIs;
5224
5225   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5226     ConstantInt *CaseVal = CI->getCaseValue();
5227     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5228       MinCaseVal = CaseVal;
5229     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5230       MaxCaseVal = CaseVal;
5231
5232     // Resulting value at phi nodes for this case value.
5233     typedef SmallVector<std::pair<PHINode *, Constant *>, 4> ResultsTy;
5234     ResultsTy Results;
5235     if (!GetCaseResults(SI, CaseVal, CI->getCaseSuccessor(), &CommonDest,
5236                         Results, DL, TTI))
5237       return false;
5238
5239     // Append the result from this case to the list for each phi.
5240     for (const auto &I : Results) {
5241       PHINode *PHI = I.first;
5242       Constant *Value = I.second;
5243       if (!ResultLists.count(PHI))
5244         PHIs.push_back(PHI);
5245       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5246     }
5247   }
5248
5249   // Keep track of the result types.
5250   for (PHINode *PHI : PHIs) {
5251     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5252   }
5253
5254   uint64_t NumResults = ResultLists[PHIs[0]].size();
5255   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5256   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5257   bool TableHasHoles = (NumResults < TableSize);
5258
5259   // If the table has holes, we need a constant result for the default case
5260   // or a bitmask that fits in a register.
5261   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5262   bool HasDefaultResults =
5263       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5264                      DefaultResultsList, DL, TTI);
5265
5266   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5267   if (NeedMask) {
5268     // As an extra penalty for the validity test we require more cases.
5269     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5270       return false;
5271     if (!DL.fitsInLegalInteger(TableSize))
5272       return false;
5273   }
5274
5275   for (const auto &I : DefaultResultsList) {
5276     PHINode *PHI = I.first;
5277     Constant *Result = I.second;
5278     DefaultResults[PHI] = Result;
5279   }
5280
5281   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5282     return false;
5283
5284   // Create the BB that does the lookups.
5285   Module &Mod = *CommonDest->getParent()->getParent();
5286   BasicBlock *LookupBB = BasicBlock::Create(
5287       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5288
5289   // Compute the table index value.
5290   Builder.SetInsertPoint(SI);
5291   Value *TableIndex =
5292       Builder.CreateSub(SI->getCondition(), MinCaseVal, "switch.tableidx");
5293
5294   // Compute the maximum table size representable by the integer type we are
5295   // switching upon.
5296   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5297   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5298   assert(MaxTableSize >= TableSize &&
5299          "It is impossible for a switch to have more entries than the max "
5300          "representable value of its input integer type's size.");
5301
5302   // If the default destination is unreachable, or if the lookup table covers
5303   // all values of the conditional variable, branch directly to the lookup table
5304   // BB. Otherwise, check that the condition is within the case range.
5305   const bool DefaultIsReachable =
5306       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5307   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5308   BranchInst *RangeCheckBranch = nullptr;
5309
5310   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5311     Builder.CreateBr(LookupBB);
5312     // Note: We call removeProdecessor later since we need to be able to get the
5313     // PHI value for the default case in case we're using a bit mask.
5314   } else {
5315     Value *Cmp = Builder.CreateICmpULT(
5316         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5317     RangeCheckBranch =
5318         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5319   }
5320
5321   // Populate the BB that does the lookups.
5322   Builder.SetInsertPoint(LookupBB);
5323
5324   if (NeedMask) {
5325     // Before doing the lookup we do the hole check.
5326     // The LookupBB is therefore re-purposed to do the hole check
5327     // and we create a new LookupBB.
5328     BasicBlock *MaskBB = LookupBB;
5329     MaskBB->setName("switch.hole_check");
5330     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5331                                   CommonDest->getParent(), CommonDest);
5332
5333     // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid
5334     // unnecessary illegal types.
5335     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5336     APInt MaskInt(TableSizePowOf2, 0);
5337     APInt One(TableSizePowOf2, 1);
5338     // Build bitmask; fill in a 1 bit for every case.
5339     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5340     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5341       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5342                          .getLimitedValue();
5343       MaskInt |= One << Idx;
5344     }
5345     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5346
5347     // Get the TableIndex'th bit of the bitmask.
5348     // If this bit is 0 (meaning hole) jump to the default destination,
5349     // else continue with table lookup.
5350     IntegerType *MapTy = TableMask->getType();
5351     Value *MaskIndex =
5352         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5353     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5354     Value *LoBit = Builder.CreateTrunc(
5355         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5356     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5357
5358     Builder.SetInsertPoint(LookupBB);
5359     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
5360   }
5361
5362   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5363     // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later,
5364     // do not delete PHINodes here.
5365     SI->getDefaultDest()->removePredecessor(SI->getParent(),
5366                                             /*DontDeleteUselessPHIs=*/true);
5367   }
5368
5369   bool ReturnedEarly = false;
5370   for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
5371     PHINode *PHI = PHIs[I];
5372     const ResultListTy &ResultList = ResultLists[PHI];
5373
5374     // If using a bitmask, use any value to fill the lookup table holes.
5375     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5376     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL);
5377
5378     Value *Result = Table.BuildLookup(TableIndex, Builder);
5379
5380     // If the result is used to return immediately from the function, we want to
5381     // do that right here.
5382     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5383         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5384       Builder.CreateRet(Result);
5385       ReturnedEarly = true;
5386       break;
5387     }
5388
5389     // Do a small peephole optimization: re-use the switch table compare if
5390     // possible.
5391     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5392       BasicBlock *PhiBlock = PHI->getParent();
5393       // Search for compare instructions which use the phi.
5394       for (auto *User : PHI->users()) {
5395         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5396       }
5397     }
5398
5399     PHI->addIncoming(Result, LookupBB);
5400   }
5401
5402   if (!ReturnedEarly)
5403     Builder.CreateBr(CommonDest);
5404
5405   // Remove the switch.
5406   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5407     BasicBlock *Succ = SI->getSuccessor(i);
5408
5409     if (Succ == SI->getDefaultDest())
5410       continue;
5411     Succ->removePredecessor(SI->getParent());
5412   }
5413   SI->eraseFromParent();
5414
5415   ++NumLookupTables;
5416   if (NeedMask)
5417     ++NumLookupTablesHoles;
5418   return true;
5419 }
5420
5421 static bool isSwitchDense(ArrayRef<int64_t> Values) {
5422   // See also SelectionDAGBuilder::isDense(), which this function was based on.
5423   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
5424   uint64_t Range = Diff + 1;
5425   uint64_t NumCases = Values.size();
5426   // 40% is the default density for building a jump table in optsize/minsize mode.
5427   uint64_t MinDensity = 40;
5428
5429   return NumCases * 100 >= Range * MinDensity;
5430 }
5431
5432 // Try and transform a switch that has "holes" in it to a contiguous sequence
5433 // of cases.
5434 //
5435 // A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5436 // range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5437 //
5438 // This converts a sparse switch into a dense switch which allows better
5439 // lowering and could also allow transforming into a lookup table.
5440 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
5441                               const DataLayout &DL,
5442                               const TargetTransformInfo &TTI) {
5443   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
5444   if (CondTy->getIntegerBitWidth() > 64 ||
5445       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5446     return false;
5447   // Only bother with this optimization if there are more than 3 switch cases;
5448   // SDAG will only bother creating jump tables for 4 or more cases.
5449   if (SI->getNumCases() < 4)
5450     return false;
5451
5452   // This transform is agnostic to the signedness of the input or case values. We
5453   // can treat the case values as signed or unsigned. We can optimize more common
5454   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5455   // as signed.
5456   SmallVector<int64_t,4> Values;
5457   for (auto &C : SI->cases())
5458     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
5459   std::sort(Values.begin(), Values.end());
5460
5461   // If the switch is already dense, there's nothing useful to do here.
5462   if (isSwitchDense(Values))
5463     return false;
5464
5465   // First, transform the values such that they start at zero and ascend.
5466   int64_t Base = Values[0];
5467   for (auto &V : Values)
5468     V -= Base;
5469
5470   // Now we have signed numbers that have been shifted so that, given enough
5471   // precision, there are no negative values. Since the rest of the transform
5472   // is bitwise only, we switch now to an unsigned representation.
5473   uint64_t GCD = 0;
5474   for (auto &V : Values)
5475     GCD = GreatestCommonDivisor64(GCD, (uint64_t)V);
5476
5477   // This transform can be done speculatively because it is so cheap - it results
5478   // in a single rotate operation being inserted. This can only happen if the
5479   // factor extracted is a power of 2.
5480   // FIXME: If the GCD is an odd number we can multiply by the multiplicative
5481   // inverse of GCD and then perform this transform.
5482   // FIXME: It's possible that optimizing a switch on powers of two might also
5483   // be beneficial - flag values are often powers of two and we could use a CLZ
5484   // as the key function.
5485   if (GCD <= 1 || !isPowerOf2_64(GCD))
5486     // No common divisor found or too expensive to compute key function.
5487     return false;
5488
5489   unsigned Shift = Log2_64(GCD);
5490   for (auto &V : Values)
5491     V = (int64_t)((uint64_t)V >> Shift);
5492
5493   if (!isSwitchDense(Values))
5494     // Transform didn't create a dense switch.
5495     return false;
5496
5497   // The obvious transform is to shift the switch condition right and emit a
5498   // check that the condition actually cleanly divided by GCD, i.e.
5499   //   C & (1 << Shift - 1) == 0
5500   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
5501   //
5502   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
5503   // shift and puts the shifted-off bits in the uppermost bits. If any of these
5504   // are nonzero then the switch condition will be very large and will hit the
5505   // default case.
5506
5507   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
5508   Builder.SetInsertPoint(SI);
5509   auto *ShiftC = ConstantInt::get(Ty, Shift);
5510   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
5511   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
5512   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
5513   auto *Rot = Builder.CreateOr(LShr, Shl);
5514   SI->replaceUsesOfWith(SI->getCondition(), Rot);
5515
5516   for (auto Case : SI->cases()) {
5517     auto *Orig = Case.getCaseValue();
5518     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
5519     Case.setValue(
5520         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
5521   }
5522   return true;
5523 }
5524
5525 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
5526   BasicBlock *BB = SI->getParent();
5527
5528   if (isValueEqualityComparison(SI)) {
5529     // If we only have one predecessor, and if it is a branch on this value,
5530     // see if that predecessor totally determines the outcome of this switch.
5531     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5532       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
5533         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5534
5535     Value *Cond = SI->getCondition();
5536     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
5537       if (SimplifySwitchOnSelect(SI, Select))
5538         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5539
5540     // If the block only contains the switch, see if we can fold the block
5541     // away into any preds.
5542     BasicBlock::iterator BBI = BB->begin();
5543     // Ignore dbg intrinsics.
5544     while (isa<DbgInfoIntrinsic>(BBI))
5545       ++BBI;
5546     if (SI == &*BBI)
5547       if (FoldValueComparisonIntoPredecessors(SI, Builder))
5548         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5549   }
5550
5551   // Try to transform the switch into an icmp and a branch.
5552   if (TurnSwitchRangeIntoICmp(SI, Builder))
5553     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5554
5555   // Remove unreachable cases.
5556   if (EliminateDeadSwitchCases(SI, AC, DL))
5557     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5558
5559   if (SwitchToSelect(SI, Builder, AC, DL, TTI))
5560     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5561
5562   if (ForwardSwitchConditionToPHI(SI))
5563     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5564
5565   // The conversion from switch to lookup tables results in difficult
5566   // to analyze code and makes pruning branches much harder.
5567   // This is a problem of the switch expression itself can still be
5568   // restricted as a result of inlining or CVP. There only apply this
5569   // transformation during late steps of the optimisation chain.
5570   if (LateSimplifyCFG && SwitchToLookupTable(SI, Builder, DL, TTI))
5571     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5572
5573   if (ReduceSwitchRange(SI, Builder, DL, TTI))
5574     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5575
5576   return false;
5577 }
5578
5579 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
5580   BasicBlock *BB = IBI->getParent();
5581   bool Changed = false;
5582
5583   // Eliminate redundant destinations.
5584   SmallPtrSet<Value *, 8> Succs;
5585   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
5586     BasicBlock *Dest = IBI->getDestination(i);
5587     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
5588       Dest->removePredecessor(BB);
5589       IBI->removeDestination(i);
5590       --i;
5591       --e;
5592       Changed = true;
5593     }
5594   }
5595
5596   if (IBI->getNumDestinations() == 0) {
5597     // If the indirectbr has no successors, change it to unreachable.
5598     new UnreachableInst(IBI->getContext(), IBI);
5599     EraseTerminatorInstAndDCECond(IBI);
5600     return true;
5601   }
5602
5603   if (IBI->getNumDestinations() == 1) {
5604     // If the indirectbr has one successor, change it to a direct branch.
5605     BranchInst::Create(IBI->getDestination(0), IBI);
5606     EraseTerminatorInstAndDCECond(IBI);
5607     return true;
5608   }
5609
5610   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
5611     if (SimplifyIndirectBrOnSelect(IBI, SI))
5612       return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5613   }
5614   return Changed;
5615 }
5616
5617 /// Given an block with only a single landing pad and a unconditional branch
5618 /// try to find another basic block which this one can be merged with.  This
5619 /// handles cases where we have multiple invokes with unique landing pads, but
5620 /// a shared handler.
5621 ///
5622 /// We specifically choose to not worry about merging non-empty blocks
5623 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
5624 /// practice, the optimizer produces empty landing pad blocks quite frequently
5625 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
5626 /// sinking in this file)
5627 ///
5628 /// This is primarily a code size optimization.  We need to avoid performing
5629 /// any transform which might inhibit optimization (such as our ability to
5630 /// specialize a particular handler via tail commoning).  We do this by not
5631 /// merging any blocks which require us to introduce a phi.  Since the same
5632 /// values are flowing through both blocks, we don't loose any ability to
5633 /// specialize.  If anything, we make such specialization more likely.
5634 ///
5635 /// TODO - This transformation could remove entries from a phi in the target
5636 /// block when the inputs in the phi are the same for the two blocks being
5637 /// merged.  In some cases, this could result in removal of the PHI entirely.
5638 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
5639                                  BasicBlock *BB) {
5640   auto Succ = BB->getUniqueSuccessor();
5641   assert(Succ);
5642   // If there's a phi in the successor block, we'd likely have to introduce
5643   // a phi into the merged landing pad block.
5644   if (isa<PHINode>(*Succ->begin()))
5645     return false;
5646
5647   for (BasicBlock *OtherPred : predecessors(Succ)) {
5648     if (BB == OtherPred)
5649       continue;
5650     BasicBlock::iterator I = OtherPred->begin();
5651     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
5652     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
5653       continue;
5654     for (++I; isa<DbgInfoIntrinsic>(I); ++I) {
5655     }
5656     BranchInst *BI2 = dyn_cast<BranchInst>(I);
5657     if (!BI2 || !BI2->isIdenticalTo(BI))
5658       continue;
5659
5660     // We've found an identical block.  Update our predecessors to take that
5661     // path instead and make ourselves dead.
5662     SmallSet<BasicBlock *, 16> Preds;
5663     Preds.insert(pred_begin(BB), pred_end(BB));
5664     for (BasicBlock *Pred : Preds) {
5665       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
5666       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
5667              "unexpected successor");
5668       II->setUnwindDest(OtherPred);
5669     }
5670
5671     // The debug info in OtherPred doesn't cover the merged control flow that
5672     // used to go through BB.  We need to delete it or update it.
5673     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
5674       Instruction &Inst = *I;
5675       I++;
5676       if (isa<DbgInfoIntrinsic>(Inst))
5677         Inst.eraseFromParent();
5678     }
5679
5680     SmallSet<BasicBlock *, 16> Succs;
5681     Succs.insert(succ_begin(BB), succ_end(BB));
5682     for (BasicBlock *Succ : Succs) {
5683       Succ->removePredecessor(BB);
5684     }
5685
5686     IRBuilder<> Builder(BI);
5687     Builder.CreateUnreachable();
5688     BI->eraseFromParent();
5689     return true;
5690   }
5691   return false;
5692 }
5693
5694 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI,
5695                                           IRBuilder<> &Builder) {
5696   BasicBlock *BB = BI->getParent();
5697
5698   if (SinkCommon && SinkThenElseCodeToEnd(BI))
5699     return true;
5700
5701   // If the Terminator is the only non-phi instruction, simplify the block.
5702   // if LoopHeader is provided, check if the block is a loop header
5703   // (This is for early invocations before loop simplify and vectorization
5704   // to keep canonical loop forms for nested loops.
5705   // These blocks can be eliminated when the pass is invoked later
5706   // in the back-end.)
5707   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
5708   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
5709       (!LoopHeaders || !LoopHeaders->count(BB)) &&
5710       TryToSimplifyUncondBranchFromEmptyBlock(BB))
5711     return true;
5712
5713   // If the only instruction in the block is a seteq/setne comparison
5714   // against a constant, try to simplify the block.
5715   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
5716     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
5717       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5718         ;
5719       if (I->isTerminator() &&
5720           TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI,
5721                                                 BonusInstThreshold, AC))
5722         return true;
5723     }
5724
5725   // See if we can merge an empty landing pad block with another which is
5726   // equivalent.
5727   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
5728     for (++I; isa<DbgInfoIntrinsic>(I); ++I) {
5729     }
5730     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
5731       return true;
5732   }
5733
5734   // If this basic block is ONLY a compare and a branch, and if a predecessor
5735   // branches to us and our successor, fold the comparison into the
5736   // predecessor and use logical operations to update the incoming value
5737   // for PHI nodes in common successor.
5738   if (FoldBranchToCommonDest(BI, BonusInstThreshold))
5739     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5740   return false;
5741 }
5742
5743 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
5744   BasicBlock *PredPred = nullptr;
5745   for (auto *P : predecessors(BB)) {
5746     BasicBlock *PPred = P->getSinglePredecessor();
5747     if (!PPred || (PredPred && PredPred != PPred))
5748       return nullptr;
5749     PredPred = PPred;
5750   }
5751   return PredPred;
5752 }
5753
5754 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
5755   BasicBlock *BB = BI->getParent();
5756
5757   // Conditional branch
5758   if (isValueEqualityComparison(BI)) {
5759     // If we only have one predecessor, and if it is a branch on this value,
5760     // see if that predecessor totally determines the outcome of this
5761     // switch.
5762     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5763       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
5764         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5765
5766     // This block must be empty, except for the setcond inst, if it exists.
5767     // Ignore dbg intrinsics.
5768     BasicBlock::iterator I = BB->begin();
5769     // Ignore dbg intrinsics.
5770     while (isa<DbgInfoIntrinsic>(I))
5771       ++I;
5772     if (&*I == BI) {
5773       if (FoldValueComparisonIntoPredecessors(BI, Builder))
5774         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5775     } else if (&*I == cast<Instruction>(BI->getCondition())) {
5776       ++I;
5777       // Ignore dbg intrinsics.
5778       while (isa<DbgInfoIntrinsic>(I))
5779         ++I;
5780       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
5781         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5782     }
5783   }
5784
5785   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
5786   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
5787     return true;
5788
5789   // If this basic block has a single dominating predecessor block and the
5790   // dominating block's condition implies BI's condition, we know the direction
5791   // of the BI branch.
5792   if (BasicBlock *Dom = BB->getSinglePredecessor()) {
5793     auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator());
5794     if (PBI && PBI->isConditional() &&
5795         PBI->getSuccessor(0) != PBI->getSuccessor(1) &&
5796         (PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB)) {
5797       bool CondIsFalse = PBI->getSuccessor(1) == BB;
5798       Optional<bool> Implication = isImpliedCondition(
5799           PBI->getCondition(), BI->getCondition(), DL, CondIsFalse);
5800       if (Implication) {
5801         // Turn this into a branch on constant.
5802         auto *OldCond = BI->getCondition();
5803         ConstantInt *CI = *Implication
5804                               ? ConstantInt::getTrue(BB->getContext())
5805                               : ConstantInt::getFalse(BB->getContext());
5806         BI->setCondition(CI);
5807         RecursivelyDeleteTriviallyDeadInstructions(OldCond);
5808         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5809       }
5810     }
5811   }
5812
5813   // If this basic block is ONLY a compare and a branch, and if a predecessor
5814   // branches to us and one of our successors, fold the comparison into the
5815   // predecessor and use logical operations to pick the right destination.
5816   if (FoldBranchToCommonDest(BI, BonusInstThreshold))
5817     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5818
5819   // We have a conditional branch to two blocks that are only reachable
5820   // from BI.  We know that the condbr dominates the two blocks, so see if
5821   // there is any identical code in the "then" and "else" blocks.  If so, we
5822   // can hoist it up to the branching block.
5823   if (BI->getSuccessor(0)->getSinglePredecessor()) {
5824     if (BI->getSuccessor(1)->getSinglePredecessor()) {
5825       if (HoistThenElseCodeToIf(BI, TTI))
5826         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5827     } else {
5828       // If Successor #1 has multiple preds, we may be able to conditionally
5829       // execute Successor #0 if it branches to Successor #1.
5830       TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
5831       if (Succ0TI->getNumSuccessors() == 1 &&
5832           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
5833         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
5834           return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5835     }
5836   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
5837     // If Successor #0 has multiple preds, we may be able to conditionally
5838     // execute Successor #1 if it branches to Successor #0.
5839     TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
5840     if (Succ1TI->getNumSuccessors() == 1 &&
5841         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
5842       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
5843         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5844   }
5845
5846   // If this is a branch on a phi node in the current block, thread control
5847   // through this block if any PHI node entries are constants.
5848   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
5849     if (PN->getParent() == BI->getParent())
5850       if (FoldCondBranchOnPHI(BI, DL, AC))
5851         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5852
5853   // Scan predecessor blocks for conditional branches.
5854   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
5855     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
5856       if (PBI != BI && PBI->isConditional())
5857         if (SimplifyCondBranchToCondBranch(PBI, BI, DL))
5858           return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5859
5860   // Look for diamond patterns.
5861   if (MergeCondStores)
5862     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
5863       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
5864         if (PBI != BI && PBI->isConditional())
5865           if (mergeConditionalStores(PBI, BI))
5866             return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5867
5868   return false;
5869 }
5870
5871 /// Check if passing a value to an instruction will cause undefined behavior.
5872 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
5873   Constant *C = dyn_cast<Constant>(V);
5874   if (!C)
5875     return false;
5876
5877   if (I->use_empty())
5878     return false;
5879
5880   if (C->isNullValue() || isa<UndefValue>(C)) {
5881     // Only look at the first use, avoid hurting compile time with long uselists
5882     User *Use = *I->user_begin();
5883
5884     // Now make sure that there are no instructions in between that can alter
5885     // control flow (eg. calls)
5886     for (BasicBlock::iterator
5887              i = ++BasicBlock::iterator(I),
5888              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
5889          i != UI; ++i)
5890       if (i == I->getParent()->end() || i->mayHaveSideEffects())
5891         return false;
5892
5893     // Look through GEPs. A load from a GEP derived from NULL is still undefined
5894     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
5895       if (GEP->getPointerOperand() == I)
5896         return passingValueIsAlwaysUndefined(V, GEP);
5897
5898     // Look through bitcasts.
5899     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
5900       return passingValueIsAlwaysUndefined(V, BC);
5901
5902     // Load from null is undefined.
5903     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
5904       if (!LI->isVolatile())
5905         return LI->getPointerAddressSpace() == 0;
5906
5907     // Store to null is undefined.
5908     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
5909       if (!SI->isVolatile())
5910         return SI->getPointerAddressSpace() == 0 &&
5911                SI->getPointerOperand() == I;
5912
5913     // A call to null is undefined.
5914     if (auto CS = CallSite(Use))
5915       return CS.getCalledValue() == I;
5916   }
5917   return false;
5918 }
5919
5920 /// If BB has an incoming value that will always trigger undefined behavior
5921 /// (eg. null pointer dereference), remove the branch leading here.
5922 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
5923   for (BasicBlock::iterator i = BB->begin();
5924        PHINode *PHI = dyn_cast<PHINode>(i); ++i)
5925     for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
5926       if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
5927         TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
5928         IRBuilder<> Builder(T);
5929         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
5930           BB->removePredecessor(PHI->getIncomingBlock(i));
5931           // Turn uncoditional branches into unreachables and remove the dead
5932           // destination from conditional branches.
5933           if (BI->isUnconditional())
5934             Builder.CreateUnreachable();
5935           else
5936             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
5937                                                        : BI->getSuccessor(0));
5938           BI->eraseFromParent();
5939           return true;
5940         }
5941         // TODO: SwitchInst.
5942       }
5943
5944   return false;
5945 }
5946
5947 bool SimplifyCFGOpt::run(BasicBlock *BB) {
5948   bool Changed = false;
5949
5950   assert(BB && BB->getParent() && "Block not embedded in function!");
5951   assert(BB->getTerminator() && "Degenerate basic block encountered!");
5952
5953   // Remove basic blocks that have no predecessors (except the entry block)...
5954   // or that just have themself as a predecessor.  These are unreachable.
5955   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
5956       BB->getSinglePredecessor() == BB) {
5957     DEBUG(dbgs() << "Removing BB: \n" << *BB);
5958     DeleteDeadBlock(BB);
5959     return true;
5960   }
5961
5962   // Check to see if we can constant propagate this terminator instruction
5963   // away...
5964   Changed |= ConstantFoldTerminator(BB, true);
5965
5966   // Check for and eliminate duplicate PHI nodes in this block.
5967   Changed |= EliminateDuplicatePHINodes(BB);
5968
5969   // Check for and remove branches that will always cause undefined behavior.
5970   Changed |= removeUndefIntroducingPredecessor(BB);
5971
5972   // Merge basic blocks into their predecessor if there is only one distinct
5973   // pred, and if there is only one distinct successor of the predecessor, and
5974   // if there are no PHI nodes.
5975   //
5976   if (MergeBlockIntoPredecessor(BB))
5977     return true;
5978
5979   IRBuilder<> Builder(BB);
5980
5981   // If there is a trivial two-entry PHI node in this basic block, and we can
5982   // eliminate it, do so now.
5983   if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
5984     if (PN->getNumIncomingValues() == 2)
5985       Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
5986
5987   Builder.SetInsertPoint(BB->getTerminator());
5988   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
5989     if (BI->isUnconditional()) {
5990       if (SimplifyUncondBranch(BI, Builder))
5991         return true;
5992     } else {
5993       if (SimplifyCondBranch(BI, Builder))
5994         return true;
5995     }
5996   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
5997     if (SimplifyReturn(RI, Builder))
5998       return true;
5999   } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
6000     if (SimplifyResume(RI, Builder))
6001       return true;
6002   } else if (CleanupReturnInst *RI =
6003                  dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
6004     if (SimplifyCleanupReturn(RI))
6005       return true;
6006   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
6007     if (SimplifySwitch(SI, Builder))
6008       return true;
6009   } else if (UnreachableInst *UI =
6010                  dyn_cast<UnreachableInst>(BB->getTerminator())) {
6011     if (SimplifyUnreachable(UI))
6012       return true;
6013   } else if (IndirectBrInst *IBI =
6014                  dyn_cast<IndirectBrInst>(BB->getTerminator())) {
6015     if (SimplifyIndirectBr(IBI))
6016       return true;
6017   }
6018
6019   return Changed;
6020 }
6021
6022 /// This function is used to do simplification of a CFG.
6023 /// For example, it adjusts branches to branches to eliminate the extra hop,
6024 /// eliminates unreachable basic blocks, and does other "peephole" optimization
6025 /// of the CFG.  It returns true if a modification was made.
6026 ///
6027 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6028                        unsigned BonusInstThreshold, AssumptionCache *AC,
6029                        SmallPtrSetImpl<BasicBlock *> *LoopHeaders,
6030                        bool LateSimplifyCFG) {
6031   return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(),
6032                         BonusInstThreshold, AC, LoopHeaders, LateSimplifyCFG)
6033       .run(BB);
6034 }