]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/Utils/SimplifyCFG.cpp
Merge ^/head r313896 through r314128.
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / Utils / SimplifyCFG.cpp
1 //===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Peephole optimize the CFG.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SetOperations.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/EHPersonalities.h"
27 #include "llvm/Analysis/InstructionSimplify.h"
28 #include "llvm/Analysis/TargetTransformInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallSite.h"
32 #include "llvm/IR/CFG.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/ConstantRange.h"
35 #include "llvm/IR/Constants.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/DebugInfo.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/GlobalValue.h"
40 #include "llvm/IR/GlobalVariable.h"
41 #include "llvm/IR/IRBuilder.h"
42 #include "llvm/IR/InstrTypes.h"
43 #include "llvm/IR/Instruction.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/LLVMContext.h"
48 #include "llvm/IR/MDBuilder.h"
49 #include "llvm/IR/Metadata.h"
50 #include "llvm/IR/Module.h"
51 #include "llvm/IR/NoFolder.h"
52 #include "llvm/IR/Operator.h"
53 #include "llvm/IR/PatternMatch.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/User.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/IR/DebugInfo.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
65 #include "llvm/Transforms/Utils/Local.h"
66 #include "llvm/Transforms/Utils/ValueMapper.h"
67 #include <algorithm>
68 #include <cassert>
69 #include <climits>
70 #include <cstddef>
71 #include <cstdint>
72 #include <iterator>
73 #include <map>
74 #include <set>
75 #include <utility>
76 #include <vector>
77
78 using namespace llvm;
79 using namespace PatternMatch;
80
81 #define DEBUG_TYPE "simplifycfg"
82
83 // Chosen as 2 so as to be cheap, but still to have enough power to fold
84 // a select, so the "clamp" idiom (of a min followed by a max) will be caught.
85 // To catch this, we need to fold a compare and a select, hence '2' being the
86 // minimum reasonable default.
87 static cl::opt<unsigned> PHINodeFoldingThreshold(
88     "phi-node-folding-threshold", cl::Hidden, cl::init(2),
89     cl::desc(
90         "Control the amount of phi node folding to perform (default = 2)"));
91
92 static cl::opt<bool> DupRet(
93     "simplifycfg-dup-ret", cl::Hidden, cl::init(false),
94     cl::desc("Duplicate return instructions into unconditional branches"));
95
96 static cl::opt<bool>
97     SinkCommon("simplifycfg-sink-common", cl::Hidden, cl::init(true),
98                cl::desc("Sink common instructions down to the end block"));
99
100 static cl::opt<bool> HoistCondStores(
101     "simplifycfg-hoist-cond-stores", cl::Hidden, cl::init(true),
102     cl::desc("Hoist conditional stores if an unconditional store precedes"));
103
104 static cl::opt<bool> MergeCondStores(
105     "simplifycfg-merge-cond-stores", cl::Hidden, cl::init(true),
106     cl::desc("Hoist conditional stores even if an unconditional store does not "
107              "precede - hoist multiple conditional stores into a single "
108              "predicated store"));
109
110 static cl::opt<bool> MergeCondStoresAggressively(
111     "simplifycfg-merge-cond-stores-aggressively", cl::Hidden, cl::init(false),
112     cl::desc("When merging conditional stores, do so even if the resultant "
113              "basic blocks are unlikely to be if-converted as a result"));
114
115 static cl::opt<bool> SpeculateOneExpensiveInst(
116     "speculate-one-expensive-inst", cl::Hidden, cl::init(true),
117     cl::desc("Allow exactly one expensive instruction to be speculatively "
118              "executed"));
119
120 static cl::opt<unsigned> MaxSpeculationDepth(
121     "max-speculation-depth", cl::Hidden, cl::init(10),
122     cl::desc("Limit maximum recursion depth when calculating costs of "
123              "speculatively executed instructions"));
124
125 STATISTIC(NumBitMaps, "Number of switch instructions turned into bitmaps");
126 STATISTIC(NumLinearMaps,
127           "Number of switch instructions turned into linear mapping");
128 STATISTIC(NumLookupTables,
129           "Number of switch instructions turned into lookup tables");
130 STATISTIC(
131     NumLookupTablesHoles,
132     "Number of switch instructions turned into lookup tables (holes checked)");
133 STATISTIC(NumTableCmpReuses, "Number of reused switch table lookup compares");
134 STATISTIC(NumSinkCommons,
135           "Number of common instructions sunk down to the end block");
136 STATISTIC(NumSpeculations, "Number of speculative executed instructions");
137
138 namespace {
139
140 // The first field contains the value that the switch produces when a certain
141 // case group is selected, and the second field is a vector containing the
142 // cases composing the case group.
143 typedef SmallVector<std::pair<Constant *, SmallVector<ConstantInt *, 4>>, 2>
144     SwitchCaseResultVectorTy;
145 // The first field contains the phi node that generates a result of the switch
146 // and the second field contains the value generated for a certain case in the
147 // switch for that PHI.
148 typedef SmallVector<std::pair<PHINode *, Constant *>, 4> SwitchCaseResultsTy;
149
150 /// ValueEqualityComparisonCase - Represents a case of a switch.
151 struct ValueEqualityComparisonCase {
152   ConstantInt *Value;
153   BasicBlock *Dest;
154
155   ValueEqualityComparisonCase(ConstantInt *Value, BasicBlock *Dest)
156       : Value(Value), Dest(Dest) {}
157
158   bool operator<(ValueEqualityComparisonCase RHS) const {
159     // Comparing pointers is ok as we only rely on the order for uniquing.
160     return Value < RHS.Value;
161   }
162
163   bool operator==(BasicBlock *RHSDest) const { return Dest == RHSDest; }
164 };
165
166 class SimplifyCFGOpt {
167   const TargetTransformInfo &TTI;
168   const DataLayout &DL;
169   unsigned BonusInstThreshold;
170   AssumptionCache *AC;
171   SmallPtrSetImpl<BasicBlock *> *LoopHeaders;
172   Value *isValueEqualityComparison(TerminatorInst *TI);
173   BasicBlock *GetValueEqualityComparisonCases(
174       TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases);
175   bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
176                                                      BasicBlock *Pred,
177                                                      IRBuilder<> &Builder);
178   bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
179                                            IRBuilder<> &Builder);
180
181   bool SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder);
182   bool SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder);
183   bool SimplifySingleResume(ResumeInst *RI);
184   bool SimplifyCommonResume(ResumeInst *RI);
185   bool SimplifyCleanupReturn(CleanupReturnInst *RI);
186   bool SimplifyUnreachable(UnreachableInst *UI);
187   bool SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder);
188   bool SimplifyIndirectBr(IndirectBrInst *IBI);
189   bool SimplifyUncondBranch(BranchInst *BI, IRBuilder<> &Builder);
190   bool SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder);
191
192 public:
193   SimplifyCFGOpt(const TargetTransformInfo &TTI, const DataLayout &DL,
194                  unsigned BonusInstThreshold, AssumptionCache *AC,
195                  SmallPtrSetImpl<BasicBlock *> *LoopHeaders)
196       : TTI(TTI), DL(DL), BonusInstThreshold(BonusInstThreshold), AC(AC),
197         LoopHeaders(LoopHeaders) {}
198
199   bool run(BasicBlock *BB);
200 };
201
202 } // end anonymous namespace
203
204 /// Return true if it is safe to merge these two
205 /// terminator instructions together.
206 static bool
207 SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2,
208                        SmallSetVector<BasicBlock *, 4> *FailBlocks = nullptr) {
209   if (SI1 == SI2)
210     return false; // Can't merge with self!
211
212   // It is not safe to merge these two switch instructions if they have a common
213   // successor, and if that successor has a PHI node, and if *that* PHI node has
214   // conflicting incoming values from the two switch blocks.
215   BasicBlock *SI1BB = SI1->getParent();
216   BasicBlock *SI2BB = SI2->getParent();
217
218   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
219   bool Fail = false;
220   for (BasicBlock *Succ : successors(SI2BB))
221     if (SI1Succs.count(Succ))
222       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
223         PHINode *PN = cast<PHINode>(BBI);
224         if (PN->getIncomingValueForBlock(SI1BB) !=
225             PN->getIncomingValueForBlock(SI2BB)) {
226           if (FailBlocks)
227             FailBlocks->insert(Succ);
228           Fail = true;
229         }
230       }
231
232   return !Fail;
233 }
234
235 /// Return true if it is safe and profitable to merge these two terminator
236 /// instructions together, where SI1 is an unconditional branch. PhiNodes will
237 /// store all PHI nodes in common successors.
238 static bool
239 isProfitableToFoldUnconditional(BranchInst *SI1, BranchInst *SI2,
240                                 Instruction *Cond,
241                                 SmallVectorImpl<PHINode *> &PhiNodes) {
242   if (SI1 == SI2)
243     return false; // Can't merge with self!
244   assert(SI1->isUnconditional() && SI2->isConditional());
245
246   // We fold the unconditional branch if we can easily update all PHI nodes in
247   // common successors:
248   // 1> We have a constant incoming value for the conditional branch;
249   // 2> We have "Cond" as the incoming value for the unconditional branch;
250   // 3> SI2->getCondition() and Cond have same operands.
251   CmpInst *Ci2 = dyn_cast<CmpInst>(SI2->getCondition());
252   if (!Ci2)
253     return false;
254   if (!(Cond->getOperand(0) == Ci2->getOperand(0) &&
255         Cond->getOperand(1) == Ci2->getOperand(1)) &&
256       !(Cond->getOperand(0) == Ci2->getOperand(1) &&
257         Cond->getOperand(1) == Ci2->getOperand(0)))
258     return false;
259
260   BasicBlock *SI1BB = SI1->getParent();
261   BasicBlock *SI2BB = SI2->getParent();
262   SmallPtrSet<BasicBlock *, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
263   for (BasicBlock *Succ : successors(SI2BB))
264     if (SI1Succs.count(Succ))
265       for (BasicBlock::iterator BBI = Succ->begin(); isa<PHINode>(BBI); ++BBI) {
266         PHINode *PN = cast<PHINode>(BBI);
267         if (PN->getIncomingValueForBlock(SI1BB) != Cond ||
268             !isa<ConstantInt>(PN->getIncomingValueForBlock(SI2BB)))
269           return false;
270         PhiNodes.push_back(PN);
271       }
272   return true;
273 }
274
275 /// Update PHI nodes in Succ to indicate that there will now be entries in it
276 /// from the 'NewPred' block. The values that will be flowing into the PHI nodes
277 /// will be the same as those coming in from ExistPred, an existing predecessor
278 /// of Succ.
279 static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
280                                   BasicBlock *ExistPred) {
281   if (!isa<PHINode>(Succ->begin()))
282     return; // Quick exit if nothing to do
283
284   PHINode *PN;
285   for (BasicBlock::iterator I = Succ->begin(); (PN = dyn_cast<PHINode>(I)); ++I)
286     PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
287 }
288
289 /// Compute an abstract "cost" of speculating the given instruction,
290 /// which is assumed to be safe to speculate. TCC_Free means cheap,
291 /// TCC_Basic means less cheap, and TCC_Expensive means prohibitively
292 /// expensive.
293 static unsigned ComputeSpeculationCost(const User *I,
294                                        const TargetTransformInfo &TTI) {
295   assert(isSafeToSpeculativelyExecute(I) &&
296          "Instruction is not safe to speculatively execute!");
297   return TTI.getUserCost(I);
298 }
299
300 /// If we have a merge point of an "if condition" as accepted above,
301 /// return true if the specified value dominates the block.  We
302 /// don't handle the true generality of domination here, just a special case
303 /// which works well enough for us.
304 ///
305 /// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
306 /// see if V (which must be an instruction) and its recursive operands
307 /// that do not dominate BB have a combined cost lower than CostRemaining and
308 /// are non-trapping.  If both are true, the instruction is inserted into the
309 /// set and true is returned.
310 ///
311 /// The cost for most non-trapping instructions is defined as 1 except for
312 /// Select whose cost is 2.
313 ///
314 /// After this function returns, CostRemaining is decreased by the cost of
315 /// V plus its non-dominating operands.  If that cost is greater than
316 /// CostRemaining, false is returned and CostRemaining is undefined.
317 static bool DominatesMergePoint(Value *V, BasicBlock *BB,
318                                 SmallPtrSetImpl<Instruction *> *AggressiveInsts,
319                                 unsigned &CostRemaining,
320                                 const TargetTransformInfo &TTI,
321                                 unsigned Depth = 0) {
322   // It is possible to hit a zero-cost cycle (phi/gep instructions for example),
323   // so limit the recursion depth.
324   // TODO: While this recursion limit does prevent pathological behavior, it
325   // would be better to track visited instructions to avoid cycles.
326   if (Depth == MaxSpeculationDepth)
327     return false;
328
329   Instruction *I = dyn_cast<Instruction>(V);
330   if (!I) {
331     // Non-instructions all dominate instructions, but not all constantexprs
332     // can be executed unconditionally.
333     if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
334       if (C->canTrap())
335         return false;
336     return true;
337   }
338   BasicBlock *PBB = I->getParent();
339
340   // We don't want to allow weird loops that might have the "if condition" in
341   // the bottom of this block.
342   if (PBB == BB)
343     return false;
344
345   // If this instruction is defined in a block that contains an unconditional
346   // branch to BB, then it must be in the 'conditional' part of the "if
347   // statement".  If not, it definitely dominates the region.
348   BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator());
349   if (!BI || BI->isConditional() || BI->getSuccessor(0) != BB)
350     return true;
351
352   // If we aren't allowing aggressive promotion anymore, then don't consider
353   // instructions in the 'if region'.
354   if (!AggressiveInsts)
355     return false;
356
357   // If we have seen this instruction before, don't count it again.
358   if (AggressiveInsts->count(I))
359     return true;
360
361   // Okay, it looks like the instruction IS in the "condition".  Check to
362   // see if it's a cheap instruction to unconditionally compute, and if it
363   // only uses stuff defined outside of the condition.  If so, hoist it out.
364   if (!isSafeToSpeculativelyExecute(I))
365     return false;
366
367   unsigned Cost = ComputeSpeculationCost(I, TTI);
368
369   // Allow exactly one instruction to be speculated regardless of its cost
370   // (as long as it is safe to do so).
371   // This is intended to flatten the CFG even if the instruction is a division
372   // or other expensive operation. The speculation of an expensive instruction
373   // is expected to be undone in CodeGenPrepare if the speculation has not
374   // enabled further IR optimizations.
375   if (Cost > CostRemaining &&
376       (!SpeculateOneExpensiveInst || !AggressiveInsts->empty() || Depth > 0))
377     return false;
378
379   // Avoid unsigned wrap.
380   CostRemaining = (Cost > CostRemaining) ? 0 : CostRemaining - Cost;
381
382   // Okay, we can only really hoist these out if their operands do
383   // not take us over the cost threshold.
384   for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
385     if (!DominatesMergePoint(*i, BB, AggressiveInsts, CostRemaining, TTI,
386                              Depth + 1))
387       return false;
388   // Okay, it's safe to do this!  Remember this instruction.
389   AggressiveInsts->insert(I);
390   return true;
391 }
392
393 /// Extract ConstantInt from value, looking through IntToPtr
394 /// and PointerNullValue. Return NULL if value is not a constant int.
395 static ConstantInt *GetConstantInt(Value *V, const DataLayout &DL) {
396   // Normal constant int.
397   ConstantInt *CI = dyn_cast<ConstantInt>(V);
398   if (CI || !isa<Constant>(V) || !V->getType()->isPointerTy())
399     return CI;
400
401   // This is some kind of pointer constant. Turn it into a pointer-sized
402   // ConstantInt if possible.
403   IntegerType *PtrTy = cast<IntegerType>(DL.getIntPtrType(V->getType()));
404
405   // Null pointer means 0, see SelectionDAGBuilder::getValue(const Value*).
406   if (isa<ConstantPointerNull>(V))
407     return ConstantInt::get(PtrTy, 0);
408
409   // IntToPtr const int.
410   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
411     if (CE->getOpcode() == Instruction::IntToPtr)
412       if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(0))) {
413         // The constant is very likely to have the right type already.
414         if (CI->getType() == PtrTy)
415           return CI;
416         else
417           return cast<ConstantInt>(
418               ConstantExpr::getIntegerCast(CI, PtrTy, /*isSigned=*/false));
419       }
420   return nullptr;
421 }
422
423 namespace {
424
425 /// Given a chain of or (||) or and (&&) comparison of a value against a
426 /// constant, this will try to recover the information required for a switch
427 /// structure.
428 /// It will depth-first traverse the chain of comparison, seeking for patterns
429 /// like %a == 12 or %a < 4 and combine them to produce a set of integer
430 /// representing the different cases for the switch.
431 /// Note that if the chain is composed of '||' it will build the set of elements
432 /// that matches the comparisons (i.e. any of this value validate the chain)
433 /// while for a chain of '&&' it will build the set elements that make the test
434 /// fail.
435 struct ConstantComparesGatherer {
436   const DataLayout &DL;
437   Value *CompValue; /// Value found for the switch comparison
438   Value *Extra;     /// Extra clause to be checked before the switch
439   SmallVector<ConstantInt *, 8> Vals; /// Set of integers to match in switch
440   unsigned UsedICmps; /// Number of comparisons matched in the and/or chain
441
442   /// Construct and compute the result for the comparison instruction Cond
443   ConstantComparesGatherer(Instruction *Cond, const DataLayout &DL)
444       : DL(DL), CompValue(nullptr), Extra(nullptr), UsedICmps(0) {
445     gather(Cond);
446   }
447
448   /// Prevent copy
449   ConstantComparesGatherer(const ConstantComparesGatherer &) = delete;
450   ConstantComparesGatherer &
451   operator=(const ConstantComparesGatherer &) = delete;
452
453 private:
454   /// Try to set the current value used for the comparison, it succeeds only if
455   /// it wasn't set before or if the new value is the same as the old one
456   bool setValueOnce(Value *NewVal) {
457     if (CompValue && CompValue != NewVal)
458       return false;
459     CompValue = NewVal;
460     return (CompValue != nullptr);
461   }
462
463   /// Try to match Instruction "I" as a comparison against a constant and
464   /// populates the array Vals with the set of values that match (or do not
465   /// match depending on isEQ).
466   /// Return false on failure. On success, the Value the comparison matched
467   /// against is placed in CompValue.
468   /// If CompValue is already set, the function is expected to fail if a match
469   /// is found but the value compared to is different.
470   bool matchInstruction(Instruction *I, bool isEQ) {
471     // If this is an icmp against a constant, handle this as one of the cases.
472     ICmpInst *ICI;
473     ConstantInt *C;
474     if (!((ICI = dyn_cast<ICmpInst>(I)) &&
475           (C = GetConstantInt(I->getOperand(1), DL)))) {
476       return false;
477     }
478
479     Value *RHSVal;
480     const APInt *RHSC;
481
482     // Pattern match a special case
483     // (x & ~2^z) == y --> x == y || x == y|2^z
484     // This undoes a transformation done by instcombine to fuse 2 compares.
485     if (ICI->getPredicate() == (isEQ ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
486
487       // It's a little bit hard to see why the following transformations are
488       // correct. Here is a CVC3 program to verify them for 64-bit values:
489
490       /*
491          ONE  : BITVECTOR(64) = BVZEROEXTEND(0bin1, 63);
492          x    : BITVECTOR(64);
493          y    : BITVECTOR(64);
494          z    : BITVECTOR(64);
495          mask : BITVECTOR(64) = BVSHL(ONE, z);
496          QUERY( (y & ~mask = y) =>
497                 ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
498          );
499          QUERY( (y |  mask = y) =>
500                 ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
501          );
502       */
503
504       // Please note that each pattern must be a dual implication (<--> or
505       // iff). One directional implication can create spurious matches. If the
506       // implication is only one-way, an unsatisfiable condition on the left
507       // side can imply a satisfiable condition on the right side. Dual
508       // implication ensures that satisfiable conditions are transformed to
509       // other satisfiable conditions and unsatisfiable conditions are
510       // transformed to other unsatisfiable conditions.
511
512       // Here is a concrete example of a unsatisfiable condition on the left
513       // implying a satisfiable condition on the right:
514       //
515       // mask = (1 << z)
516       // (x & ~mask) == y  --> (x == y || x == (y | mask))
517       //
518       // Substituting y = 3, z = 0 yields:
519       // (x & -2) == 3 --> (x == 3 || x == 2)
520
521       // Pattern match a special case:
522       /*
523         QUERY( (y & ~mask = y) =>
524                ((x & ~mask = y) <=> (x = y OR x = (y |  mask)))
525         );
526       */
527       if (match(ICI->getOperand(0),
528                 m_And(m_Value(RHSVal), m_APInt(RHSC)))) {
529         APInt Mask = ~*RHSC;
530         if (Mask.isPowerOf2() && (C->getValue() & ~Mask) == C->getValue()) {
531           // If we already have a value for the switch, it has to match!
532           if (!setValueOnce(RHSVal))
533             return false;
534
535           Vals.push_back(C);
536           Vals.push_back(
537               ConstantInt::get(C->getContext(),
538                                C->getValue() | Mask));
539           UsedICmps++;
540           return true;
541         }
542       }
543
544       // Pattern match a special case:
545       /*
546         QUERY( (y |  mask = y) =>
547                ((x |  mask = y) <=> (x = y OR x = (y & ~mask)))
548         );
549       */
550       if (match(ICI->getOperand(0),
551                 m_Or(m_Value(RHSVal), m_APInt(RHSC)))) {
552         APInt Mask = *RHSC;
553         if (Mask.isPowerOf2() && (C->getValue() | Mask) == C->getValue()) {
554           // If we already have a value for the switch, it has to match!
555           if (!setValueOnce(RHSVal))
556             return false;
557
558           Vals.push_back(C);
559           Vals.push_back(ConstantInt::get(C->getContext(),
560                                           C->getValue() & ~Mask));
561           UsedICmps++;
562           return true;
563         }
564       }
565
566       // If we already have a value for the switch, it has to match!
567       if (!setValueOnce(ICI->getOperand(0)))
568         return false;
569
570       UsedICmps++;
571       Vals.push_back(C);
572       return ICI->getOperand(0);
573     }
574
575     // If we have "x ult 3", for example, then we can add 0,1,2 to the set.
576     ConstantRange Span = ConstantRange::makeAllowedICmpRegion(
577         ICI->getPredicate(), C->getValue());
578
579     // Shift the range if the compare is fed by an add. This is the range
580     // compare idiom as emitted by instcombine.
581     Value *CandidateVal = I->getOperand(0);
582     if (match(I->getOperand(0), m_Add(m_Value(RHSVal), m_APInt(RHSC)))) {
583       Span = Span.subtract(*RHSC);
584       CandidateVal = RHSVal;
585     }
586
587     // If this is an and/!= check, then we are looking to build the set of
588     // value that *don't* pass the and chain. I.e. to turn "x ugt 2" into
589     // x != 0 && x != 1.
590     if (!isEQ)
591       Span = Span.inverse();
592
593     // If there are a ton of values, we don't want to make a ginormous switch.
594     if (Span.getSetSize().ugt(8) || Span.isEmptySet()) {
595       return false;
596     }
597
598     // If we already have a value for the switch, it has to match!
599     if (!setValueOnce(CandidateVal))
600       return false;
601
602     // Add all values from the range to the set
603     for (APInt Tmp = Span.getLower(); Tmp != Span.getUpper(); ++Tmp)
604       Vals.push_back(ConstantInt::get(I->getContext(), Tmp));
605
606     UsedICmps++;
607     return true;
608   }
609
610   /// Given a potentially 'or'd or 'and'd together collection of icmp
611   /// eq/ne/lt/gt instructions that compare a value against a constant, extract
612   /// the value being compared, and stick the list constants into the Vals
613   /// vector.
614   /// One "Extra" case is allowed to differ from the other.
615   void gather(Value *V) {
616     Instruction *I = dyn_cast<Instruction>(V);
617     bool isEQ = (I->getOpcode() == Instruction::Or);
618
619     // Keep a stack (SmallVector for efficiency) for depth-first traversal
620     SmallVector<Value *, 8> DFT;
621     SmallPtrSet<Value *, 8> Visited;
622
623     // Initialize
624     Visited.insert(V);
625     DFT.push_back(V);
626
627     while (!DFT.empty()) {
628       V = DFT.pop_back_val();
629
630       if (Instruction *I = dyn_cast<Instruction>(V)) {
631         // If it is a || (or && depending on isEQ), process the operands.
632         if (I->getOpcode() == (isEQ ? Instruction::Or : Instruction::And)) {
633           if (Visited.insert(I->getOperand(1)).second)
634             DFT.push_back(I->getOperand(1));
635           if (Visited.insert(I->getOperand(0)).second)
636             DFT.push_back(I->getOperand(0));
637           continue;
638         }
639
640         // Try to match the current instruction
641         if (matchInstruction(I, isEQ))
642           // Match succeed, continue the loop
643           continue;
644       }
645
646       // One element of the sequence of || (or &&) could not be match as a
647       // comparison against the same value as the others.
648       // We allow only one "Extra" case to be checked before the switch
649       if (!Extra) {
650         Extra = V;
651         continue;
652       }
653       // Failed to parse a proper sequence, abort now
654       CompValue = nullptr;
655       break;
656     }
657   }
658 };
659
660 } // end anonymous namespace
661
662 static void EraseTerminatorInstAndDCECond(TerminatorInst *TI) {
663   Instruction *Cond = nullptr;
664   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
665     Cond = dyn_cast<Instruction>(SI->getCondition());
666   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
667     if (BI->isConditional())
668       Cond = dyn_cast<Instruction>(BI->getCondition());
669   } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(TI)) {
670     Cond = dyn_cast<Instruction>(IBI->getAddress());
671   }
672
673   TI->eraseFromParent();
674   if (Cond)
675     RecursivelyDeleteTriviallyDeadInstructions(Cond);
676 }
677
678 /// Return true if the specified terminator checks
679 /// to see if a value is equal to constant integer value.
680 Value *SimplifyCFGOpt::isValueEqualityComparison(TerminatorInst *TI) {
681   Value *CV = nullptr;
682   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
683     // Do not permit merging of large switch instructions into their
684     // predecessors unless there is only one predecessor.
685     if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
686                                                pred_end(SI->getParent())) <=
687         128)
688       CV = SI->getCondition();
689   } else if (BranchInst *BI = dyn_cast<BranchInst>(TI))
690     if (BI->isConditional() && BI->getCondition()->hasOneUse())
691       if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition())) {
692         if (ICI->isEquality() && GetConstantInt(ICI->getOperand(1), DL))
693           CV = ICI->getOperand(0);
694       }
695
696   // Unwrap any lossless ptrtoint cast.
697   if (CV) {
698     if (PtrToIntInst *PTII = dyn_cast<PtrToIntInst>(CV)) {
699       Value *Ptr = PTII->getPointerOperand();
700       if (PTII->getType() == DL.getIntPtrType(Ptr->getType()))
701         CV = Ptr;
702     }
703   }
704   return CV;
705 }
706
707 /// Given a value comparison instruction,
708 /// decode all of the 'cases' that it represents and return the 'default' block.
709 BasicBlock *SimplifyCFGOpt::GetValueEqualityComparisonCases(
710     TerminatorInst *TI, std::vector<ValueEqualityComparisonCase> &Cases) {
711   if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
712     Cases.reserve(SI->getNumCases());
713     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e;
714          ++i)
715       Cases.push_back(
716           ValueEqualityComparisonCase(i.getCaseValue(), i.getCaseSuccessor()));
717     return SI->getDefaultDest();
718   }
719
720   BranchInst *BI = cast<BranchInst>(TI);
721   ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
722   BasicBlock *Succ = BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_NE);
723   Cases.push_back(ValueEqualityComparisonCase(
724       GetConstantInt(ICI->getOperand(1), DL), Succ));
725   return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
726 }
727
728 /// Given a vector of bb/value pairs, remove any entries
729 /// in the list that match the specified block.
730 static void
731 EliminateBlockCases(BasicBlock *BB,
732                     std::vector<ValueEqualityComparisonCase> &Cases) {
733   Cases.erase(std::remove(Cases.begin(), Cases.end(), BB), Cases.end());
734 }
735
736 /// Return true if there are any keys in C1 that exist in C2 as well.
737 static bool ValuesOverlap(std::vector<ValueEqualityComparisonCase> &C1,
738                           std::vector<ValueEqualityComparisonCase> &C2) {
739   std::vector<ValueEqualityComparisonCase> *V1 = &C1, *V2 = &C2;
740
741   // Make V1 be smaller than V2.
742   if (V1->size() > V2->size())
743     std::swap(V1, V2);
744
745   if (V1->empty())
746     return false;
747   if (V1->size() == 1) {
748     // Just scan V2.
749     ConstantInt *TheVal = (*V1)[0].Value;
750     for (unsigned i = 0, e = V2->size(); i != e; ++i)
751       if (TheVal == (*V2)[i].Value)
752         return true;
753   }
754
755   // Otherwise, just sort both lists and compare element by element.
756   array_pod_sort(V1->begin(), V1->end());
757   array_pod_sort(V2->begin(), V2->end());
758   unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
759   while (i1 != e1 && i2 != e2) {
760     if ((*V1)[i1].Value == (*V2)[i2].Value)
761       return true;
762     if ((*V1)[i1].Value < (*V2)[i2].Value)
763       ++i1;
764     else
765       ++i2;
766   }
767   return false;
768 }
769
770 /// If TI is known to be a terminator instruction and its block is known to
771 /// only have a single predecessor block, check to see if that predecessor is
772 /// also a value comparison with the same value, and if that comparison
773 /// determines the outcome of this comparison. If so, simplify TI. This does a
774 /// very limited form of jump threading.
775 bool SimplifyCFGOpt::SimplifyEqualityComparisonWithOnlyPredecessor(
776     TerminatorInst *TI, BasicBlock *Pred, IRBuilder<> &Builder) {
777   Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
778   if (!PredVal)
779     return false; // Not a value comparison in predecessor.
780
781   Value *ThisVal = isValueEqualityComparison(TI);
782   assert(ThisVal && "This isn't a value comparison!!");
783   if (ThisVal != PredVal)
784     return false; // Different predicates.
785
786   // TODO: Preserve branch weight metadata, similarly to how
787   // FoldValueComparisonIntoPredecessors preserves it.
788
789   // Find out information about when control will move from Pred to TI's block.
790   std::vector<ValueEqualityComparisonCase> PredCases;
791   BasicBlock *PredDef =
792       GetValueEqualityComparisonCases(Pred->getTerminator(), PredCases);
793   EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
794
795   // Find information about how control leaves this block.
796   std::vector<ValueEqualityComparisonCase> ThisCases;
797   BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
798   EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
799
800   // If TI's block is the default block from Pred's comparison, potentially
801   // simplify TI based on this knowledge.
802   if (PredDef == TI->getParent()) {
803     // If we are here, we know that the value is none of those cases listed in
804     // PredCases.  If there are any cases in ThisCases that are in PredCases, we
805     // can simplify TI.
806     if (!ValuesOverlap(PredCases, ThisCases))
807       return false;
808
809     if (isa<BranchInst>(TI)) {
810       // Okay, one of the successors of this condbr is dead.  Convert it to a
811       // uncond br.
812       assert(ThisCases.size() == 1 && "Branch can only have one case!");
813       // Insert the new branch.
814       Instruction *NI = Builder.CreateBr(ThisDef);
815       (void)NI;
816
817       // Remove PHI node entries for the dead edge.
818       ThisCases[0].Dest->removePredecessor(TI->getParent());
819
820       DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
821                    << "Through successor TI: " << *TI << "Leaving: " << *NI
822                    << "\n");
823
824       EraseTerminatorInstAndDCECond(TI);
825       return true;
826     }
827
828     SwitchInst *SI = cast<SwitchInst>(TI);
829     // Okay, TI has cases that are statically dead, prune them away.
830     SmallPtrSet<Constant *, 16> DeadCases;
831     for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
832       DeadCases.insert(PredCases[i].Value);
833
834     DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
835                  << "Through successor TI: " << *TI);
836
837     // Collect branch weights into a vector.
838     SmallVector<uint32_t, 8> Weights;
839     MDNode *MD = SI->getMetadata(LLVMContext::MD_prof);
840     bool HasWeight = MD && (MD->getNumOperands() == 2 + SI->getNumCases());
841     if (HasWeight)
842       for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e;
843            ++MD_i) {
844         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i));
845         Weights.push_back(CI->getValue().getZExtValue());
846       }
847     for (SwitchInst::CaseIt i = SI->case_end(), e = SI->case_begin(); i != e;) {
848       --i;
849       if (DeadCases.count(i.getCaseValue())) {
850         if (HasWeight) {
851           std::swap(Weights[i.getCaseIndex() + 1], Weights.back());
852           Weights.pop_back();
853         }
854         i.getCaseSuccessor()->removePredecessor(TI->getParent());
855         SI->removeCase(i);
856       }
857     }
858     if (HasWeight && Weights.size() >= 2)
859       SI->setMetadata(LLVMContext::MD_prof,
860                       MDBuilder(SI->getParent()->getContext())
861                           .createBranchWeights(Weights));
862
863     DEBUG(dbgs() << "Leaving: " << *TI << "\n");
864     return true;
865   }
866
867   // Otherwise, TI's block must correspond to some matched value.  Find out
868   // which value (or set of values) this is.
869   ConstantInt *TIV = nullptr;
870   BasicBlock *TIBB = TI->getParent();
871   for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
872     if (PredCases[i].Dest == TIBB) {
873       if (TIV)
874         return false; // Cannot handle multiple values coming to this block.
875       TIV = PredCases[i].Value;
876     }
877   assert(TIV && "No edge from pred to succ?");
878
879   // Okay, we found the one constant that our value can be if we get into TI's
880   // BB.  Find out which successor will unconditionally be branched to.
881   BasicBlock *TheRealDest = nullptr;
882   for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
883     if (ThisCases[i].Value == TIV) {
884       TheRealDest = ThisCases[i].Dest;
885       break;
886     }
887
888   // If not handled by any explicit cases, it is handled by the default case.
889   if (!TheRealDest)
890     TheRealDest = ThisDef;
891
892   // Remove PHI node entries for dead edges.
893   BasicBlock *CheckEdge = TheRealDest;
894   for (BasicBlock *Succ : successors(TIBB))
895     if (Succ != CheckEdge)
896       Succ->removePredecessor(TIBB);
897     else
898       CheckEdge = nullptr;
899
900   // Insert the new branch.
901   Instruction *NI = Builder.CreateBr(TheRealDest);
902   (void)NI;
903
904   DEBUG(dbgs() << "Threading pred instr: " << *Pred->getTerminator()
905                << "Through successor TI: " << *TI << "Leaving: " << *NI
906                << "\n");
907
908   EraseTerminatorInstAndDCECond(TI);
909   return true;
910 }
911
912 namespace {
913
914 /// This class implements a stable ordering of constant
915 /// integers that does not depend on their address.  This is important for
916 /// applications that sort ConstantInt's to ensure uniqueness.
917 struct ConstantIntOrdering {
918   bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
919     return LHS->getValue().ult(RHS->getValue());
920   }
921 };
922
923 } // end anonymous namespace
924
925 static int ConstantIntSortPredicate(ConstantInt *const *P1,
926                                     ConstantInt *const *P2) {
927   const ConstantInt *LHS = *P1;
928   const ConstantInt *RHS = *P2;
929   if (LHS == RHS)
930     return 0;
931   return LHS->getValue().ult(RHS->getValue()) ? 1 : -1;
932 }
933
934 static inline bool HasBranchWeights(const Instruction *I) {
935   MDNode *ProfMD = I->getMetadata(LLVMContext::MD_prof);
936   if (ProfMD && ProfMD->getOperand(0))
937     if (MDString *MDS = dyn_cast<MDString>(ProfMD->getOperand(0)))
938       return MDS->getString().equals("branch_weights");
939
940   return false;
941 }
942
943 /// Get Weights of a given TerminatorInst, the default weight is at the front
944 /// of the vector. If TI is a conditional eq, we need to swap the branch-weight
945 /// metadata.
946 static void GetBranchWeights(TerminatorInst *TI,
947                              SmallVectorImpl<uint64_t> &Weights) {
948   MDNode *MD = TI->getMetadata(LLVMContext::MD_prof);
949   assert(MD);
950   for (unsigned i = 1, e = MD->getNumOperands(); i < e; ++i) {
951     ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(i));
952     Weights.push_back(CI->getValue().getZExtValue());
953   }
954
955   // If TI is a conditional eq, the default case is the false case,
956   // and the corresponding branch-weight data is at index 2. We swap the
957   // default weight to be the first entry.
958   if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
959     assert(Weights.size() == 2);
960     ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
961     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
962       std::swap(Weights.front(), Weights.back());
963   }
964 }
965
966 /// Keep halving the weights until all can fit in uint32_t.
967 static void FitWeights(MutableArrayRef<uint64_t> Weights) {
968   uint64_t Max = *std::max_element(Weights.begin(), Weights.end());
969   if (Max > UINT_MAX) {
970     unsigned Offset = 32 - countLeadingZeros(Max);
971     for (uint64_t &I : Weights)
972       I >>= Offset;
973   }
974 }
975
976 /// The specified terminator is a value equality comparison instruction
977 /// (either a switch or a branch on "X == c").
978 /// See if any of the predecessors of the terminator block are value comparisons
979 /// on the same value.  If so, and if safe to do so, fold them together.
980 bool SimplifyCFGOpt::FoldValueComparisonIntoPredecessors(TerminatorInst *TI,
981                                                          IRBuilder<> &Builder) {
982   BasicBlock *BB = TI->getParent();
983   Value *CV = isValueEqualityComparison(TI); // CondVal
984   assert(CV && "Not a comparison?");
985   bool Changed = false;
986
987   SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));
988   while (!Preds.empty()) {
989     BasicBlock *Pred = Preds.pop_back_val();
990
991     // See if the predecessor is a comparison with the same value.
992     TerminatorInst *PTI = Pred->getTerminator();
993     Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
994
995     if (PCV == CV && TI != PTI) {
996       SmallSetVector<BasicBlock*, 4> FailBlocks;
997       if (!SafeToMergeTerminators(TI, PTI, &FailBlocks)) {
998         for (auto *Succ : FailBlocks) {
999           std::vector<BasicBlock*> Blocks = { TI->getParent() };
1000           if (!SplitBlockPredecessors(Succ, Blocks, ".fold.split"))
1001             return false;
1002         }
1003       }
1004
1005       // Figure out which 'cases' to copy from SI to PSI.
1006       std::vector<ValueEqualityComparisonCase> BBCases;
1007       BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
1008
1009       std::vector<ValueEqualityComparisonCase> PredCases;
1010       BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
1011
1012       // Based on whether the default edge from PTI goes to BB or not, fill in
1013       // PredCases and PredDefault with the new switch cases we would like to
1014       // build.
1015       SmallVector<BasicBlock *, 8> NewSuccessors;
1016
1017       // Update the branch weight metadata along the way
1018       SmallVector<uint64_t, 8> Weights;
1019       bool PredHasWeights = HasBranchWeights(PTI);
1020       bool SuccHasWeights = HasBranchWeights(TI);
1021
1022       if (PredHasWeights) {
1023         GetBranchWeights(PTI, Weights);
1024         // branch-weight metadata is inconsistent here.
1025         if (Weights.size() != 1 + PredCases.size())
1026           PredHasWeights = SuccHasWeights = false;
1027       } else if (SuccHasWeights)
1028         // If there are no predecessor weights but there are successor weights,
1029         // populate Weights with 1, which will later be scaled to the sum of
1030         // successor's weights
1031         Weights.assign(1 + PredCases.size(), 1);
1032
1033       SmallVector<uint64_t, 8> SuccWeights;
1034       if (SuccHasWeights) {
1035         GetBranchWeights(TI, SuccWeights);
1036         // branch-weight metadata is inconsistent here.
1037         if (SuccWeights.size() != 1 + BBCases.size())
1038           PredHasWeights = SuccHasWeights = false;
1039       } else if (PredHasWeights)
1040         SuccWeights.assign(1 + BBCases.size(), 1);
1041
1042       if (PredDefault == BB) {
1043         // If this is the default destination from PTI, only the edges in TI
1044         // that don't occur in PTI, or that branch to BB will be activated.
1045         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1046         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1047           if (PredCases[i].Dest != BB)
1048             PTIHandled.insert(PredCases[i].Value);
1049           else {
1050             // The default destination is BB, we don't need explicit targets.
1051             std::swap(PredCases[i], PredCases.back());
1052
1053             if (PredHasWeights || SuccHasWeights) {
1054               // Increase weight for the default case.
1055               Weights[0] += Weights[i + 1];
1056               std::swap(Weights[i + 1], Weights.back());
1057               Weights.pop_back();
1058             }
1059
1060             PredCases.pop_back();
1061             --i;
1062             --e;
1063           }
1064
1065         // Reconstruct the new switch statement we will be building.
1066         if (PredDefault != BBDefault) {
1067           PredDefault->removePredecessor(Pred);
1068           PredDefault = BBDefault;
1069           NewSuccessors.push_back(BBDefault);
1070         }
1071
1072         unsigned CasesFromPred = Weights.size();
1073         uint64_t ValidTotalSuccWeight = 0;
1074         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1075           if (!PTIHandled.count(BBCases[i].Value) &&
1076               BBCases[i].Dest != BBDefault) {
1077             PredCases.push_back(BBCases[i]);
1078             NewSuccessors.push_back(BBCases[i].Dest);
1079             if (SuccHasWeights || PredHasWeights) {
1080               // The default weight is at index 0, so weight for the ith case
1081               // should be at index i+1. Scale the cases from successor by
1082               // PredDefaultWeight (Weights[0]).
1083               Weights.push_back(Weights[0] * SuccWeights[i + 1]);
1084               ValidTotalSuccWeight += SuccWeights[i + 1];
1085             }
1086           }
1087
1088         if (SuccHasWeights || PredHasWeights) {
1089           ValidTotalSuccWeight += SuccWeights[0];
1090           // Scale the cases from predecessor by ValidTotalSuccWeight.
1091           for (unsigned i = 1; i < CasesFromPred; ++i)
1092             Weights[i] *= ValidTotalSuccWeight;
1093           // Scale the default weight by SuccDefaultWeight (SuccWeights[0]).
1094           Weights[0] *= SuccWeights[0];
1095         }
1096       } else {
1097         // If this is not the default destination from PSI, only the edges
1098         // in SI that occur in PSI with a destination of BB will be
1099         // activated.
1100         std::set<ConstantInt *, ConstantIntOrdering> PTIHandled;
1101         std::map<ConstantInt *, uint64_t> WeightsForHandled;
1102         for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
1103           if (PredCases[i].Dest == BB) {
1104             PTIHandled.insert(PredCases[i].Value);
1105
1106             if (PredHasWeights || SuccHasWeights) {
1107               WeightsForHandled[PredCases[i].Value] = Weights[i + 1];
1108               std::swap(Weights[i + 1], Weights.back());
1109               Weights.pop_back();
1110             }
1111
1112             std::swap(PredCases[i], PredCases.back());
1113             PredCases.pop_back();
1114             --i;
1115             --e;
1116           }
1117
1118         // Okay, now we know which constants were sent to BB from the
1119         // predecessor.  Figure out where they will all go now.
1120         for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
1121           if (PTIHandled.count(BBCases[i].Value)) {
1122             // If this is one we are capable of getting...
1123             if (PredHasWeights || SuccHasWeights)
1124               Weights.push_back(WeightsForHandled[BBCases[i].Value]);
1125             PredCases.push_back(BBCases[i]);
1126             NewSuccessors.push_back(BBCases[i].Dest);
1127             PTIHandled.erase(
1128                 BBCases[i].Value); // This constant is taken care of
1129           }
1130
1131         // If there are any constants vectored to BB that TI doesn't handle,
1132         // they must go to the default destination of TI.
1133         for (ConstantInt *I : PTIHandled) {
1134           if (PredHasWeights || SuccHasWeights)
1135             Weights.push_back(WeightsForHandled[I]);
1136           PredCases.push_back(ValueEqualityComparisonCase(I, BBDefault));
1137           NewSuccessors.push_back(BBDefault);
1138         }
1139       }
1140
1141       // Okay, at this point, we know which new successor Pred will get.  Make
1142       // sure we update the number of entries in the PHI nodes for these
1143       // successors.
1144       for (BasicBlock *NewSuccessor : NewSuccessors)
1145         AddPredecessorToBlock(NewSuccessor, Pred, BB);
1146
1147       Builder.SetInsertPoint(PTI);
1148       // Convert pointer to int before we switch.
1149       if (CV->getType()->isPointerTy()) {
1150         CV = Builder.CreatePtrToInt(CV, DL.getIntPtrType(CV->getType()),
1151                                     "magicptr");
1152       }
1153
1154       // Now that the successors are updated, create the new Switch instruction.
1155       SwitchInst *NewSI =
1156           Builder.CreateSwitch(CV, PredDefault, PredCases.size());
1157       NewSI->setDebugLoc(PTI->getDebugLoc());
1158       for (ValueEqualityComparisonCase &V : PredCases)
1159         NewSI->addCase(V.Value, V.Dest);
1160
1161       if (PredHasWeights || SuccHasWeights) {
1162         // Halve the weights if any of them cannot fit in an uint32_t
1163         FitWeights(Weights);
1164
1165         SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
1166
1167         NewSI->setMetadata(
1168             LLVMContext::MD_prof,
1169             MDBuilder(BB->getContext()).createBranchWeights(MDWeights));
1170       }
1171
1172       EraseTerminatorInstAndDCECond(PTI);
1173
1174       // Okay, last check.  If BB is still a successor of PSI, then we must
1175       // have an infinite loop case.  If so, add an infinitely looping block
1176       // to handle the case to preserve the behavior of the code.
1177       BasicBlock *InfLoopBlock = nullptr;
1178       for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
1179         if (NewSI->getSuccessor(i) == BB) {
1180           if (!InfLoopBlock) {
1181             // Insert it at the end of the function, because it's either code,
1182             // or it won't matter if it's hot. :)
1183             InfLoopBlock = BasicBlock::Create(BB->getContext(), "infloop",
1184                                               BB->getParent());
1185             BranchInst::Create(InfLoopBlock, InfLoopBlock);
1186           }
1187           NewSI->setSuccessor(i, InfLoopBlock);
1188         }
1189
1190       Changed = true;
1191     }
1192   }
1193   return Changed;
1194 }
1195
1196 // If we would need to insert a select that uses the value of this invoke
1197 // (comments in HoistThenElseCodeToIf explain why we would need to do this), we
1198 // can't hoist the invoke, as there is nowhere to put the select in this case.
1199 static bool isSafeToHoistInvoke(BasicBlock *BB1, BasicBlock *BB2,
1200                                 Instruction *I1, Instruction *I2) {
1201   for (BasicBlock *Succ : successors(BB1)) {
1202     PHINode *PN;
1203     for (BasicBlock::iterator BBI = Succ->begin();
1204          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1205       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1206       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1207       if (BB1V != BB2V && (BB1V == I1 || BB2V == I2)) {
1208         return false;
1209       }
1210     }
1211   }
1212   return true;
1213 }
1214
1215 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I);
1216
1217 /// Given a conditional branch that goes to BB1 and BB2, hoist any common code
1218 /// in the two blocks up into the branch block. The caller of this function
1219 /// guarantees that BI's block dominates BB1 and BB2.
1220 static bool HoistThenElseCodeToIf(BranchInst *BI,
1221                                   const TargetTransformInfo &TTI) {
1222   // This does very trivial matching, with limited scanning, to find identical
1223   // instructions in the two blocks.  In particular, we don't want to get into
1224   // O(M*N) situations here where M and N are the sizes of BB1 and BB2.  As
1225   // such, we currently just scan for obviously identical instructions in an
1226   // identical order.
1227   BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
1228   BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
1229
1230   BasicBlock::iterator BB1_Itr = BB1->begin();
1231   BasicBlock::iterator BB2_Itr = BB2->begin();
1232
1233   Instruction *I1 = &*BB1_Itr++, *I2 = &*BB2_Itr++;
1234   // Skip debug info if it is not identical.
1235   DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1236   DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1237   if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1238     while (isa<DbgInfoIntrinsic>(I1))
1239       I1 = &*BB1_Itr++;
1240     while (isa<DbgInfoIntrinsic>(I2))
1241       I2 = &*BB2_Itr++;
1242   }
1243   if (isa<PHINode>(I1) || !I1->isIdenticalToWhenDefined(I2) ||
1244       (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2)))
1245     return false;
1246
1247   BasicBlock *BIParent = BI->getParent();
1248
1249   bool Changed = false;
1250   do {
1251     // If we are hoisting the terminator instruction, don't move one (making a
1252     // broken BB), instead clone it, and remove BI.
1253     if (isa<TerminatorInst>(I1))
1254       goto HoistTerminator;
1255
1256     if (!TTI.isProfitableToHoist(I1) || !TTI.isProfitableToHoist(I2))
1257       return Changed;
1258
1259     // For a normal instruction, we just move one to right before the branch,
1260     // then replace all uses of the other with the first.  Finally, we remove
1261     // the now redundant second instruction.
1262     BIParent->getInstList().splice(BI->getIterator(), BB1->getInstList(), I1);
1263     if (!I2->use_empty())
1264       I2->replaceAllUsesWith(I1);
1265     I1->andIRFlags(I2);
1266     unsigned KnownIDs[] = {LLVMContext::MD_tbaa,
1267                            LLVMContext::MD_range,
1268                            LLVMContext::MD_fpmath,
1269                            LLVMContext::MD_invariant_load,
1270                            LLVMContext::MD_nonnull,
1271                            LLVMContext::MD_invariant_group,
1272                            LLVMContext::MD_align,
1273                            LLVMContext::MD_dereferenceable,
1274                            LLVMContext::MD_dereferenceable_or_null,
1275                            LLVMContext::MD_mem_parallel_loop_access};
1276     combineMetadata(I1, I2, KnownIDs);
1277
1278     // I1 and I2 are being combined into a single instruction.  Its debug
1279     // location is the merged locations of the original instructions.
1280     if (!isa<CallInst>(I1))
1281       I1->setDebugLoc(
1282           DILocation::getMergedLocation(I1->getDebugLoc(), I2->getDebugLoc()));
1283  
1284     I2->eraseFromParent();
1285     Changed = true;
1286
1287     I1 = &*BB1_Itr++;
1288     I2 = &*BB2_Itr++;
1289     // Skip debug info if it is not identical.
1290     DbgInfoIntrinsic *DBI1 = dyn_cast<DbgInfoIntrinsic>(I1);
1291     DbgInfoIntrinsic *DBI2 = dyn_cast<DbgInfoIntrinsic>(I2);
1292     if (!DBI1 || !DBI2 || !DBI1->isIdenticalToWhenDefined(DBI2)) {
1293       while (isa<DbgInfoIntrinsic>(I1))
1294         I1 = &*BB1_Itr++;
1295       while (isa<DbgInfoIntrinsic>(I2))
1296         I2 = &*BB2_Itr++;
1297     }
1298   } while (I1->isIdenticalToWhenDefined(I2));
1299
1300   return true;
1301
1302 HoistTerminator:
1303   // It may not be possible to hoist an invoke.
1304   if (isa<InvokeInst>(I1) && !isSafeToHoistInvoke(BB1, BB2, I1, I2))
1305     return Changed;
1306
1307   for (BasicBlock *Succ : successors(BB1)) {
1308     PHINode *PN;
1309     for (BasicBlock::iterator BBI = Succ->begin();
1310          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1311       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1312       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1313       if (BB1V == BB2V)
1314         continue;
1315
1316       // Check for passingValueIsAlwaysUndefined here because we would rather
1317       // eliminate undefined control flow then converting it to a select.
1318       if (passingValueIsAlwaysUndefined(BB1V, PN) ||
1319           passingValueIsAlwaysUndefined(BB2V, PN))
1320         return Changed;
1321
1322       if (isa<ConstantExpr>(BB1V) && !isSafeToSpeculativelyExecute(BB1V))
1323         return Changed;
1324       if (isa<ConstantExpr>(BB2V) && !isSafeToSpeculativelyExecute(BB2V))
1325         return Changed;
1326     }
1327   }
1328
1329   // Okay, it is safe to hoist the terminator.
1330   Instruction *NT = I1->clone();
1331   BIParent->getInstList().insert(BI->getIterator(), NT);
1332   if (!NT->getType()->isVoidTy()) {
1333     I1->replaceAllUsesWith(NT);
1334     I2->replaceAllUsesWith(NT);
1335     NT->takeName(I1);
1336   }
1337
1338   IRBuilder<NoFolder> Builder(NT);
1339   // Hoisting one of the terminators from our successor is a great thing.
1340   // Unfortunately, the successors of the if/else blocks may have PHI nodes in
1341   // them.  If they do, all PHI entries for BB1/BB2 must agree for all PHI
1342   // nodes, so we insert select instruction to compute the final result.
1343   std::map<std::pair<Value *, Value *>, SelectInst *> InsertedSelects;
1344   for (BasicBlock *Succ : successors(BB1)) {
1345     PHINode *PN;
1346     for (BasicBlock::iterator BBI = Succ->begin();
1347          (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1348       Value *BB1V = PN->getIncomingValueForBlock(BB1);
1349       Value *BB2V = PN->getIncomingValueForBlock(BB2);
1350       if (BB1V == BB2V)
1351         continue;
1352
1353       // These values do not agree.  Insert a select instruction before NT
1354       // that determines the right value.
1355       SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
1356       if (!SI)
1357         SI = cast<SelectInst>(
1358             Builder.CreateSelect(BI->getCondition(), BB1V, BB2V,
1359                                  BB1V->getName() + "." + BB2V->getName(), BI));
1360
1361       // Make the PHI node use the select for all incoming values for BB1/BB2
1362       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1363         if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
1364           PN->setIncomingValue(i, SI);
1365     }
1366   }
1367
1368   // Update any PHI nodes in our new successors.
1369   for (BasicBlock *Succ : successors(BB1))
1370     AddPredecessorToBlock(Succ, BIParent, BB1);
1371
1372   EraseTerminatorInstAndDCECond(BI);
1373   return true;
1374 }
1375
1376 // Is it legal to place a variable in operand \c OpIdx of \c I?
1377 // FIXME: This should be promoted to Instruction.
1378 static bool canReplaceOperandWithVariable(const Instruction *I,
1379                                           unsigned OpIdx) {
1380   // We can't have a PHI with a metadata type.
1381   if (I->getOperand(OpIdx)->getType()->isMetadataTy())
1382     return false;
1383
1384   // Early exit.
1385   if (!isa<Constant>(I->getOperand(OpIdx)))
1386     return true;
1387
1388   switch (I->getOpcode()) {
1389   default:
1390     return true;
1391   case Instruction::Call:
1392   case Instruction::Invoke:
1393     // FIXME: many arithmetic intrinsics have no issue taking a
1394     // variable, however it's hard to distingish these from
1395     // specials such as @llvm.frameaddress that require a constant.
1396     if (isa<IntrinsicInst>(I))
1397       return false;
1398
1399     // Constant bundle operands may need to retain their constant-ness for
1400     // correctness.
1401     if (ImmutableCallSite(I).isBundleOperand(OpIdx))
1402       return false;
1403
1404     return true;
1405
1406   case Instruction::ShuffleVector:
1407     // Shufflevector masks are constant.
1408     return OpIdx != 2;
1409   case Instruction::ExtractValue:
1410   case Instruction::InsertValue:
1411     // All operands apart from the first are constant.
1412     return OpIdx == 0;
1413   case Instruction::Alloca:
1414     return false;
1415   case Instruction::GetElementPtr:
1416     if (OpIdx == 0)
1417       return true;
1418     gep_type_iterator It = std::next(gep_type_begin(I), OpIdx - 1);
1419     return It.isSequential();
1420   }
1421 }
1422
1423 // All instructions in Insts belong to different blocks that all unconditionally
1424 // branch to a common successor. Analyze each instruction and return true if it
1425 // would be possible to sink them into their successor, creating one common
1426 // instruction instead. For every value that would be required to be provided by
1427 // PHI node (because an operand varies in each input block), add to PHIOperands.
1428 static bool canSinkInstructions(
1429     ArrayRef<Instruction *> Insts,
1430     DenseMap<Instruction *, SmallVector<Value *, 4>> &PHIOperands) {
1431   // Prune out obviously bad instructions to move. Any non-store instruction
1432   // must have exactly one use, and we check later that use is by a single,
1433   // common PHI instruction in the successor.
1434   for (auto *I : Insts) {
1435     // These instructions may change or break semantics if moved.
1436     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
1437         I->getType()->isTokenTy())
1438       return false;
1439
1440     // Conservatively return false if I is an inline-asm instruction. Sinking
1441     // and merging inline-asm instructions can potentially create arguments
1442     // that cannot satisfy the inline-asm constraints.
1443     if (const auto *C = dyn_cast<CallInst>(I))
1444       if (C->isInlineAsm())
1445         return false;
1446
1447     // Everything must have only one use too, apart from stores which
1448     // have no uses.
1449     if (!isa<StoreInst>(I) && !I->hasOneUse())
1450       return false;
1451   }
1452
1453   const Instruction *I0 = Insts.front();
1454   for (auto *I : Insts)
1455     if (!I->isSameOperationAs(I0))
1456       return false;
1457
1458   // All instructions in Insts are known to be the same opcode. If they aren't
1459   // stores, check the only user of each is a PHI or in the same block as the
1460   // instruction, because if a user is in the same block as an instruction
1461   // we're contemplating sinking, it must already be determined to be sinkable.
1462   if (!isa<StoreInst>(I0)) {
1463     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1464     auto *Succ = I0->getParent()->getTerminator()->getSuccessor(0);
1465     if (!all_of(Insts, [&PNUse,&Succ](const Instruction *I) -> bool {
1466           auto *U = cast<Instruction>(*I->user_begin());
1467           return (PNUse &&
1468                   PNUse->getParent() == Succ &&
1469                   PNUse->getIncomingValueForBlock(I->getParent()) == I) ||
1470                  U->getParent() == I->getParent();
1471         }))
1472       return false;
1473   }
1474
1475   for (unsigned OI = 0, OE = I0->getNumOperands(); OI != OE; ++OI) {
1476     if (I0->getOperand(OI)->getType()->isTokenTy())
1477       // Don't touch any operand of token type.
1478       return false;
1479
1480     // Because SROA can't handle speculating stores of selects, try not
1481     // to sink loads or stores of allocas when we'd have to create a PHI for
1482     // the address operand. Also, because it is likely that loads or stores
1483     // of allocas will disappear when Mem2Reg/SROA is run, don't sink them.
1484     // This can cause code churn which can have unintended consequences down
1485     // the line - see https://llvm.org/bugs/show_bug.cgi?id=30244.
1486     // FIXME: This is a workaround for a deficiency in SROA - see
1487     // https://llvm.org/bugs/show_bug.cgi?id=30188
1488     if (OI == 1 && isa<StoreInst>(I0) &&
1489         any_of(Insts, [](const Instruction *I) {
1490           return isa<AllocaInst>(I->getOperand(1));
1491         }))
1492       return false;
1493     if (OI == 0 && isa<LoadInst>(I0) && any_of(Insts, [](const Instruction *I) {
1494           return isa<AllocaInst>(I->getOperand(0));
1495         }))
1496       return false;
1497
1498     auto SameAsI0 = [&I0, OI](const Instruction *I) {
1499       assert(I->getNumOperands() == I0->getNumOperands());
1500       return I->getOperand(OI) == I0->getOperand(OI);
1501     };
1502     if (!all_of(Insts, SameAsI0)) {
1503       if (!canReplaceOperandWithVariable(I0, OI))
1504         // We can't create a PHI from this GEP.
1505         return false;
1506       // Don't create indirect calls! The called value is the final operand.
1507       if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OI == OE - 1) {
1508         // FIXME: if the call was *already* indirect, we should do this.
1509         return false;
1510       }
1511       for (auto *I : Insts)
1512         PHIOperands[I].push_back(I->getOperand(OI));
1513     }
1514   }
1515   return true;
1516 }
1517
1518 // Assuming canSinkLastInstruction(Blocks) has returned true, sink the last
1519 // instruction of every block in Blocks to their common successor, commoning
1520 // into one instruction.
1521 static bool sinkLastInstruction(ArrayRef<BasicBlock*> Blocks) {
1522   auto *BBEnd = Blocks[0]->getTerminator()->getSuccessor(0);
1523
1524   // canSinkLastInstruction returning true guarantees that every block has at
1525   // least one non-terminator instruction.
1526   SmallVector<Instruction*,4> Insts;
1527   for (auto *BB : Blocks) {
1528     Instruction *I = BB->getTerminator();
1529     do {
1530       I = I->getPrevNode();
1531     } while (isa<DbgInfoIntrinsic>(I) && I != &BB->front());
1532     if (!isa<DbgInfoIntrinsic>(I))
1533       Insts.push_back(I);
1534   }
1535
1536   // The only checking we need to do now is that all users of all instructions
1537   // are the same PHI node. canSinkLastInstruction should have checked this but
1538   // it is slightly over-aggressive - it gets confused by commutative instructions
1539   // so double-check it here.
1540   Instruction *I0 = Insts.front();
1541   if (!isa<StoreInst>(I0)) {
1542     auto *PNUse = dyn_cast<PHINode>(*I0->user_begin());
1543     if (!all_of(Insts, [&PNUse](const Instruction *I) -> bool {
1544           auto *U = cast<Instruction>(*I->user_begin());
1545           return U == PNUse;
1546         }))
1547       return false;
1548   }
1549   
1550   // We don't need to do any more checking here; canSinkLastInstruction should
1551   // have done it all for us.
1552   SmallVector<Value*, 4> NewOperands;
1553   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
1554     // This check is different to that in canSinkLastInstruction. There, we
1555     // cared about the global view once simplifycfg (and instcombine) have
1556     // completed - it takes into account PHIs that become trivially
1557     // simplifiable.  However here we need a more local view; if an operand
1558     // differs we create a PHI and rely on instcombine to clean up the very
1559     // small mess we may make.
1560     bool NeedPHI = any_of(Insts, [&I0, O](const Instruction *I) {
1561       return I->getOperand(O) != I0->getOperand(O);
1562     });
1563     if (!NeedPHI) {
1564       NewOperands.push_back(I0->getOperand(O));
1565       continue;
1566     }
1567
1568     // Create a new PHI in the successor block and populate it.
1569     auto *Op = I0->getOperand(O);
1570     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
1571     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
1572                                Op->getName() + ".sink", &BBEnd->front());
1573     for (auto *I : Insts)
1574       PN->addIncoming(I->getOperand(O), I->getParent());
1575     NewOperands.push_back(PN);
1576   }
1577
1578   // Arbitrarily use I0 as the new "common" instruction; remap its operands
1579   // and move it to the start of the successor block.
1580   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
1581     I0->getOperandUse(O).set(NewOperands[O]);
1582   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
1583
1584   // The debug location for the "common" instruction is the merged locations of
1585   // all the commoned instructions.  We start with the original location of the
1586   // "common" instruction and iteratively merge each location in the loop below.
1587   const DILocation *Loc = I0->getDebugLoc();
1588
1589   // Update metadata and IR flags, and merge debug locations.
1590   for (auto *I : Insts)
1591     if (I != I0) {
1592       Loc = DILocation::getMergedLocation(Loc, I->getDebugLoc());
1593       combineMetadataForCSE(I0, I);
1594       I0->andIRFlags(I);
1595     }
1596   if (!isa<CallInst>(I0))
1597     I0->setDebugLoc(Loc);
1598
1599   if (!isa<StoreInst>(I0)) {
1600     // canSinkLastInstruction checked that all instructions were used by
1601     // one and only one PHI node. Find that now, RAUW it to our common
1602     // instruction and nuke it.
1603     assert(I0->hasOneUse());
1604     auto *PN = cast<PHINode>(*I0->user_begin());
1605     PN->replaceAllUsesWith(I0);
1606     PN->eraseFromParent();
1607   }
1608
1609   // Finally nuke all instructions apart from the common instruction.
1610   for (auto *I : Insts)
1611     if (I != I0)
1612       I->eraseFromParent();
1613
1614   return true;
1615 }
1616
1617 namespace {
1618
1619   // LockstepReverseIterator - Iterates through instructions
1620   // in a set of blocks in reverse order from the first non-terminator.
1621   // For example (assume all blocks have size n):
1622   //   LockstepReverseIterator I([B1, B2, B3]);
1623   //   *I-- = [B1[n], B2[n], B3[n]];
1624   //   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
1625   //   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
1626   //   ...
1627   class LockstepReverseIterator {
1628     ArrayRef<BasicBlock*> Blocks;
1629     SmallVector<Instruction*,4> Insts;
1630     bool Fail;
1631   public:
1632     LockstepReverseIterator(ArrayRef<BasicBlock*> Blocks) :
1633       Blocks(Blocks) {
1634       reset();
1635     }
1636
1637     void reset() {
1638       Fail = false;
1639       Insts.clear();
1640       for (auto *BB : Blocks) {
1641         Instruction *Inst = BB->getTerminator();
1642         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1643           Inst = Inst->getPrevNode();
1644         if (!Inst) {
1645           // Block wasn't big enough.
1646           Fail = true;
1647           return;
1648         }
1649         Insts.push_back(Inst);
1650       }
1651     }
1652
1653     bool isValid() const {
1654       return !Fail;
1655     }
1656     
1657     void operator -- () {
1658       if (Fail)
1659         return;
1660       for (auto *&Inst : Insts) {
1661         for (Inst = Inst->getPrevNode(); Inst && isa<DbgInfoIntrinsic>(Inst);)
1662           Inst = Inst->getPrevNode();
1663         // Already at beginning of block.
1664         if (!Inst) {
1665           Fail = true;
1666           return;
1667         }
1668       }
1669     }
1670
1671     ArrayRef<Instruction*> operator * () const {
1672       return Insts;
1673     }
1674   };
1675
1676 } // end anonymous namespace
1677
1678 /// Given an unconditional branch that goes to BBEnd,
1679 /// check whether BBEnd has only two predecessors and the other predecessor
1680 /// ends with an unconditional branch. If it is true, sink any common code
1681 /// in the two predecessors to BBEnd.
1682 static bool SinkThenElseCodeToEnd(BranchInst *BI1) {
1683   assert(BI1->isUnconditional());
1684   BasicBlock *BBEnd = BI1->getSuccessor(0);
1685
1686   // We support two situations:
1687   //   (1) all incoming arcs are unconditional
1688   //   (2) one incoming arc is conditional
1689   //
1690   // (2) is very common in switch defaults and
1691   // else-if patterns;
1692   //
1693   //   if (a) f(1);
1694   //   else if (b) f(2);
1695   //
1696   // produces:
1697   //
1698   //       [if]
1699   //      /    \
1700   //    [f(1)] [if]
1701   //      |     | \
1702   //      |     |  \
1703   //      |  [f(2)]|
1704   //       \    | /
1705   //        [ end ]
1706   //
1707   // [end] has two unconditional predecessor arcs and one conditional. The
1708   // conditional refers to the implicit empty 'else' arc. This conditional
1709   // arc can also be caused by an empty default block in a switch.
1710   //
1711   // In this case, we attempt to sink code from all *unconditional* arcs.
1712   // If we can sink instructions from these arcs (determined during the scan
1713   // phase below) we insert a common successor for all unconditional arcs and
1714   // connect that to [end], to enable sinking:
1715   //
1716   //       [if]
1717   //      /    \
1718   //    [x(1)] [if]
1719   //      |     | \
1720   //      |     |  \
1721   //      |  [x(2)] |
1722   //       \   /    |
1723   //   [sink.split] |
1724   //         \     /
1725   //         [ end ]
1726   //
1727   SmallVector<BasicBlock*,4> UnconditionalPreds;
1728   Instruction *Cond = nullptr;
1729   for (auto *B : predecessors(BBEnd)) {
1730     auto *T = B->getTerminator();
1731     if (isa<BranchInst>(T) && cast<BranchInst>(T)->isUnconditional())
1732       UnconditionalPreds.push_back(B);
1733     else if ((isa<BranchInst>(T) || isa<SwitchInst>(T)) && !Cond)
1734       Cond = T;
1735     else
1736       return false;
1737   }
1738   if (UnconditionalPreds.size() < 2)
1739     return false;
1740   
1741   bool Changed = false;
1742   // We take a two-step approach to tail sinking. First we scan from the end of
1743   // each block upwards in lockstep. If the n'th instruction from the end of each
1744   // block can be sunk, those instructions are added to ValuesToSink and we
1745   // carry on. If we can sink an instruction but need to PHI-merge some operands
1746   // (because they're not identical in each instruction) we add these to
1747   // PHIOperands.
1748   unsigned ScanIdx = 0;
1749   SmallPtrSet<Value*,4> InstructionsToSink;
1750   DenseMap<Instruction*, SmallVector<Value*,4>> PHIOperands;
1751   LockstepReverseIterator LRI(UnconditionalPreds);
1752   while (LRI.isValid() &&
1753          canSinkInstructions(*LRI, PHIOperands)) {
1754     DEBUG(dbgs() << "SINK: instruction can be sunk: " << *(*LRI)[0] << "\n");
1755     InstructionsToSink.insert((*LRI).begin(), (*LRI).end());
1756     ++ScanIdx;
1757     --LRI;
1758   }
1759
1760   auto ProfitableToSinkInstruction = [&](LockstepReverseIterator &LRI) {
1761     unsigned NumPHIdValues = 0;
1762     for (auto *I : *LRI)
1763       for (auto *V : PHIOperands[I])
1764         if (InstructionsToSink.count(V) == 0)
1765           ++NumPHIdValues;
1766     DEBUG(dbgs() << "SINK: #phid values: " << NumPHIdValues << "\n");
1767     unsigned NumPHIInsts = NumPHIdValues / UnconditionalPreds.size();
1768     if ((NumPHIdValues % UnconditionalPreds.size()) != 0)
1769         NumPHIInsts++;
1770     
1771     return NumPHIInsts <= 1;
1772   };
1773
1774   if (ScanIdx > 0 && Cond) {
1775     // Check if we would actually sink anything first! This mutates the CFG and
1776     // adds an extra block. The goal in doing this is to allow instructions that
1777     // couldn't be sunk before to be sunk - obviously, speculatable instructions
1778     // (such as trunc, add) can be sunk and predicated already. So we check that
1779     // we're going to sink at least one non-speculatable instruction.
1780     LRI.reset();
1781     unsigned Idx = 0;
1782     bool Profitable = false;
1783     while (ProfitableToSinkInstruction(LRI) && Idx < ScanIdx) {
1784       if (!isSafeToSpeculativelyExecute((*LRI)[0])) {
1785         Profitable = true;
1786         break;
1787       }
1788       --LRI;
1789       ++Idx;
1790     }
1791     if (!Profitable)
1792       return false;
1793     
1794     DEBUG(dbgs() << "SINK: Splitting edge\n");
1795     // We have a conditional edge and we're going to sink some instructions.
1796     // Insert a new block postdominating all blocks we're going to sink from.
1797     if (!SplitBlockPredecessors(BI1->getSuccessor(0), UnconditionalPreds,
1798                                 ".sink.split"))
1799       // Edges couldn't be split.
1800       return false;
1801     Changed = true;
1802   }
1803   
1804   // Now that we've analyzed all potential sinking candidates, perform the
1805   // actual sink. We iteratively sink the last non-terminator of the source
1806   // blocks into their common successor unless doing so would require too
1807   // many PHI instructions to be generated (currently only one PHI is allowed
1808   // per sunk instruction).
1809   //
1810   // We can use InstructionsToSink to discount values needing PHI-merging that will
1811   // actually be sunk in a later iteration. This allows us to be more
1812   // aggressive in what we sink. This does allow a false positive where we
1813   // sink presuming a later value will also be sunk, but stop half way through
1814   // and never actually sink it which means we produce more PHIs than intended.
1815   // This is unlikely in practice though.
1816   for (unsigned SinkIdx = 0; SinkIdx != ScanIdx; ++SinkIdx) {
1817     DEBUG(dbgs() << "SINK: Sink: "
1818                  << *UnconditionalPreds[0]->getTerminator()->getPrevNode()
1819                  << "\n");
1820
1821     // Because we've sunk every instruction in turn, the current instruction to
1822     // sink is always at index 0.
1823     LRI.reset();
1824     if (!ProfitableToSinkInstruction(LRI)) {
1825       // Too many PHIs would be created.
1826       DEBUG(dbgs() << "SINK: stopping here, too many PHIs would be created!\n");
1827       break;
1828     }
1829     
1830     if (!sinkLastInstruction(UnconditionalPreds))
1831       return Changed;
1832     NumSinkCommons++;
1833     Changed = true;
1834   }
1835   return Changed;
1836 }
1837
1838 /// \brief Determine if we can hoist sink a sole store instruction out of a
1839 /// conditional block.
1840 ///
1841 /// We are looking for code like the following:
1842 ///   BrBB:
1843 ///     store i32 %add, i32* %arrayidx2
1844 ///     ... // No other stores or function calls (we could be calling a memory
1845 ///     ... // function).
1846 ///     %cmp = icmp ult %x, %y
1847 ///     br i1 %cmp, label %EndBB, label %ThenBB
1848 ///   ThenBB:
1849 ///     store i32 %add5, i32* %arrayidx2
1850 ///     br label EndBB
1851 ///   EndBB:
1852 ///     ...
1853 ///   We are going to transform this into:
1854 ///   BrBB:
1855 ///     store i32 %add, i32* %arrayidx2
1856 ///     ... //
1857 ///     %cmp = icmp ult %x, %y
1858 ///     %add.add5 = select i1 %cmp, i32 %add, %add5
1859 ///     store i32 %add.add5, i32* %arrayidx2
1860 ///     ...
1861 ///
1862 /// \return The pointer to the value of the previous store if the store can be
1863 ///         hoisted into the predecessor block. 0 otherwise.
1864 static Value *isSafeToSpeculateStore(Instruction *I, BasicBlock *BrBB,
1865                                      BasicBlock *StoreBB, BasicBlock *EndBB) {
1866   StoreInst *StoreToHoist = dyn_cast<StoreInst>(I);
1867   if (!StoreToHoist)
1868     return nullptr;
1869
1870   // Volatile or atomic.
1871   if (!StoreToHoist->isSimple())
1872     return nullptr;
1873
1874   Value *StorePtr = StoreToHoist->getPointerOperand();
1875
1876   // Look for a store to the same pointer in BrBB.
1877   unsigned MaxNumInstToLookAt = 9;
1878   for (Instruction &CurI : reverse(*BrBB)) {
1879     if (!MaxNumInstToLookAt)
1880       break;
1881     // Skip debug info.
1882     if (isa<DbgInfoIntrinsic>(CurI))
1883       continue;
1884     --MaxNumInstToLookAt;
1885
1886     // Could be calling an instruction that affects memory like free().
1887     if (CurI.mayHaveSideEffects() && !isa<StoreInst>(CurI))
1888       return nullptr;
1889
1890     if (auto *SI = dyn_cast<StoreInst>(&CurI)) {
1891       // Found the previous store make sure it stores to the same location.
1892       if (SI->getPointerOperand() == StorePtr)
1893         // Found the previous store, return its value operand.
1894         return SI->getValueOperand();
1895       return nullptr; // Unknown store.
1896     }
1897   }
1898
1899   return nullptr;
1900 }
1901
1902 /// \brief Speculate a conditional basic block flattening the CFG.
1903 ///
1904 /// Note that this is a very risky transform currently. Speculating
1905 /// instructions like this is most often not desirable. Instead, there is an MI
1906 /// pass which can do it with full awareness of the resource constraints.
1907 /// However, some cases are "obvious" and we should do directly. An example of
1908 /// this is speculating a single, reasonably cheap instruction.
1909 ///
1910 /// There is only one distinct advantage to flattening the CFG at the IR level:
1911 /// it makes very common but simplistic optimizations such as are common in
1912 /// instcombine and the DAG combiner more powerful by removing CFG edges and
1913 /// modeling their effects with easier to reason about SSA value graphs.
1914 ///
1915 ///
1916 /// An illustration of this transform is turning this IR:
1917 /// \code
1918 ///   BB:
1919 ///     %cmp = icmp ult %x, %y
1920 ///     br i1 %cmp, label %EndBB, label %ThenBB
1921 ///   ThenBB:
1922 ///     %sub = sub %x, %y
1923 ///     br label BB2
1924 ///   EndBB:
1925 ///     %phi = phi [ %sub, %ThenBB ], [ 0, %EndBB ]
1926 ///     ...
1927 /// \endcode
1928 ///
1929 /// Into this IR:
1930 /// \code
1931 ///   BB:
1932 ///     %cmp = icmp ult %x, %y
1933 ///     %sub = sub %x, %y
1934 ///     %cond = select i1 %cmp, 0, %sub
1935 ///     ...
1936 /// \endcode
1937 ///
1938 /// \returns true if the conditional block is removed.
1939 static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *ThenBB,
1940                                    const TargetTransformInfo &TTI) {
1941   // Be conservative for now. FP select instruction can often be expensive.
1942   Value *BrCond = BI->getCondition();
1943   if (isa<FCmpInst>(BrCond))
1944     return false;
1945
1946   BasicBlock *BB = BI->getParent();
1947   BasicBlock *EndBB = ThenBB->getTerminator()->getSuccessor(0);
1948
1949   // If ThenBB is actually on the false edge of the conditional branch, remember
1950   // to swap the select operands later.
1951   bool Invert = false;
1952   if (ThenBB != BI->getSuccessor(0)) {
1953     assert(ThenBB == BI->getSuccessor(1) && "No edge from 'if' block?");
1954     Invert = true;
1955   }
1956   assert(EndBB == BI->getSuccessor(!Invert) && "No edge from to end block");
1957
1958   // Keep a count of how many times instructions are used within CondBB when
1959   // they are candidates for sinking into CondBB. Specifically:
1960   // - They are defined in BB, and
1961   // - They have no side effects, and
1962   // - All of their uses are in CondBB.
1963   SmallDenseMap<Instruction *, unsigned, 4> SinkCandidateUseCounts;
1964
1965   unsigned SpeculationCost = 0;
1966   Value *SpeculatedStoreValue = nullptr;
1967   StoreInst *SpeculatedStore = nullptr;
1968   for (BasicBlock::iterator BBI = ThenBB->begin(),
1969                             BBE = std::prev(ThenBB->end());
1970        BBI != BBE; ++BBI) {
1971     Instruction *I = &*BBI;
1972     // Skip debug info.
1973     if (isa<DbgInfoIntrinsic>(I))
1974       continue;
1975
1976     // Only speculatively execute a single instruction (not counting the
1977     // terminator) for now.
1978     ++SpeculationCost;
1979     if (SpeculationCost > 1)
1980       return false;
1981
1982     // Don't hoist the instruction if it's unsafe or expensive.
1983     if (!isSafeToSpeculativelyExecute(I) &&
1984         !(HoistCondStores && (SpeculatedStoreValue = isSafeToSpeculateStore(
1985                                   I, BB, ThenBB, EndBB))))
1986       return false;
1987     if (!SpeculatedStoreValue &&
1988         ComputeSpeculationCost(I, TTI) >
1989             PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic)
1990       return false;
1991
1992     // Store the store speculation candidate.
1993     if (SpeculatedStoreValue)
1994       SpeculatedStore = cast<StoreInst>(I);
1995
1996     // Do not hoist the instruction if any of its operands are defined but not
1997     // used in BB. The transformation will prevent the operand from
1998     // being sunk into the use block.
1999     for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
2000       Instruction *OpI = dyn_cast<Instruction>(*i);
2001       if (!OpI || OpI->getParent() != BB || OpI->mayHaveSideEffects())
2002         continue; // Not a candidate for sinking.
2003
2004       ++SinkCandidateUseCounts[OpI];
2005     }
2006   }
2007
2008   // Consider any sink candidates which are only used in CondBB as costs for
2009   // speculation. Note, while we iterate over a DenseMap here, we are summing
2010   // and so iteration order isn't significant.
2011   for (SmallDenseMap<Instruction *, unsigned, 4>::iterator
2012            I = SinkCandidateUseCounts.begin(),
2013            E = SinkCandidateUseCounts.end();
2014        I != E; ++I)
2015     if (I->first->getNumUses() == I->second) {
2016       ++SpeculationCost;
2017       if (SpeculationCost > 1)
2018         return false;
2019     }
2020
2021   // Check that the PHI nodes can be converted to selects.
2022   bool HaveRewritablePHIs = false;
2023   for (BasicBlock::iterator I = EndBB->begin();
2024        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2025     Value *OrigV = PN->getIncomingValueForBlock(BB);
2026     Value *ThenV = PN->getIncomingValueForBlock(ThenBB);
2027
2028     // FIXME: Try to remove some of the duplication with HoistThenElseCodeToIf.
2029     // Skip PHIs which are trivial.
2030     if (ThenV == OrigV)
2031       continue;
2032
2033     // Don't convert to selects if we could remove undefined behavior instead.
2034     if (passingValueIsAlwaysUndefined(OrigV, PN) ||
2035         passingValueIsAlwaysUndefined(ThenV, PN))
2036       return false;
2037
2038     HaveRewritablePHIs = true;
2039     ConstantExpr *OrigCE = dyn_cast<ConstantExpr>(OrigV);
2040     ConstantExpr *ThenCE = dyn_cast<ConstantExpr>(ThenV);
2041     if (!OrigCE && !ThenCE)
2042       continue; // Known safe and cheap.
2043
2044     if ((ThenCE && !isSafeToSpeculativelyExecute(ThenCE)) ||
2045         (OrigCE && !isSafeToSpeculativelyExecute(OrigCE)))
2046       return false;
2047     unsigned OrigCost = OrigCE ? ComputeSpeculationCost(OrigCE, TTI) : 0;
2048     unsigned ThenCost = ThenCE ? ComputeSpeculationCost(ThenCE, TTI) : 0;
2049     unsigned MaxCost =
2050         2 * PHINodeFoldingThreshold * TargetTransformInfo::TCC_Basic;
2051     if (OrigCost + ThenCost > MaxCost)
2052       return false;
2053
2054     // Account for the cost of an unfolded ConstantExpr which could end up
2055     // getting expanded into Instructions.
2056     // FIXME: This doesn't account for how many operations are combined in the
2057     // constant expression.
2058     ++SpeculationCost;
2059     if (SpeculationCost > 1)
2060       return false;
2061   }
2062
2063   // If there are no PHIs to process, bail early. This helps ensure idempotence
2064   // as well.
2065   if (!HaveRewritablePHIs && !(HoistCondStores && SpeculatedStoreValue))
2066     return false;
2067
2068   // If we get here, we can hoist the instruction and if-convert.
2069   DEBUG(dbgs() << "SPECULATIVELY EXECUTING BB" << *ThenBB << "\n";);
2070
2071   // Insert a select of the value of the speculated store.
2072   if (SpeculatedStoreValue) {
2073     IRBuilder<NoFolder> Builder(BI);
2074     Value *TrueV = SpeculatedStore->getValueOperand();
2075     Value *FalseV = SpeculatedStoreValue;
2076     if (Invert)
2077       std::swap(TrueV, FalseV);
2078     Value *S = Builder.CreateSelect(
2079         BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI);
2080     SpeculatedStore->setOperand(0, S);
2081   }
2082
2083   // Metadata can be dependent on the condition we are hoisting above.
2084   // Conservatively strip all metadata on the instruction.
2085   for (auto &I : *ThenBB)
2086     I.dropUnknownNonDebugMetadata();
2087
2088   // Hoist the instructions.
2089   BB->getInstList().splice(BI->getIterator(), ThenBB->getInstList(),
2090                            ThenBB->begin(), std::prev(ThenBB->end()));
2091
2092   // Insert selects and rewrite the PHI operands.
2093   IRBuilder<NoFolder> Builder(BI);
2094   for (BasicBlock::iterator I = EndBB->begin();
2095        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
2096     unsigned OrigI = PN->getBasicBlockIndex(BB);
2097     unsigned ThenI = PN->getBasicBlockIndex(ThenBB);
2098     Value *OrigV = PN->getIncomingValue(OrigI);
2099     Value *ThenV = PN->getIncomingValue(ThenI);
2100
2101     // Skip PHIs which are trivial.
2102     if (OrigV == ThenV)
2103       continue;
2104
2105     // Create a select whose true value is the speculatively executed value and
2106     // false value is the preexisting value. Swap them if the branch
2107     // destinations were inverted.
2108     Value *TrueV = ThenV, *FalseV = OrigV;
2109     if (Invert)
2110       std::swap(TrueV, FalseV);
2111     Value *V = Builder.CreateSelect(
2112         BrCond, TrueV, FalseV, TrueV->getName() + "." + FalseV->getName(), BI);
2113     PN->setIncomingValue(OrigI, V);
2114     PN->setIncomingValue(ThenI, V);
2115   }
2116
2117   ++NumSpeculations;
2118   return true;
2119 }
2120
2121 /// Return true if we can thread a branch across this block.
2122 static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
2123   BranchInst *BI = cast<BranchInst>(BB->getTerminator());
2124   unsigned Size = 0;
2125
2126   for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2127     if (isa<DbgInfoIntrinsic>(BBI))
2128       continue;
2129     if (Size > 10)
2130       return false; // Don't clone large BB's.
2131     ++Size;
2132
2133     // We can only support instructions that do not define values that are
2134     // live outside of the current basic block.
2135     for (User *U : BBI->users()) {
2136       Instruction *UI = cast<Instruction>(U);
2137       if (UI->getParent() != BB || isa<PHINode>(UI))
2138         return false;
2139     }
2140
2141     // Looks ok, continue checking.
2142   }
2143
2144   return true;
2145 }
2146
2147 /// If we have a conditional branch on a PHI node value that is defined in the
2148 /// same block as the branch and if any PHI entries are constants, thread edges
2149 /// corresponding to that entry to be branches to their ultimate destination.
2150 static bool FoldCondBranchOnPHI(BranchInst *BI, const DataLayout &DL) {
2151   BasicBlock *BB = BI->getParent();
2152   PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
2153   // NOTE: we currently cannot transform this case if the PHI node is used
2154   // outside of the block.
2155   if (!PN || PN->getParent() != BB || !PN->hasOneUse())
2156     return false;
2157
2158   // Degenerate case of a single entry PHI.
2159   if (PN->getNumIncomingValues() == 1) {
2160     FoldSingleEntryPHINodes(PN->getParent());
2161     return true;
2162   }
2163
2164   // Now we know that this block has multiple preds and two succs.
2165   if (!BlockIsSimpleEnoughToThreadThrough(BB))
2166     return false;
2167
2168   // Can't fold blocks that contain noduplicate or convergent calls.
2169   if (any_of(*BB, [](const Instruction &I) {
2170         const CallInst *CI = dyn_cast<CallInst>(&I);
2171         return CI && (CI->cannotDuplicate() || CI->isConvergent());
2172       }))
2173     return false;
2174
2175   // Okay, this is a simple enough basic block.  See if any phi values are
2176   // constants.
2177   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2178     ConstantInt *CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i));
2179     if (!CB || !CB->getType()->isIntegerTy(1))
2180       continue;
2181
2182     // Okay, we now know that all edges from PredBB should be revectored to
2183     // branch to RealDest.
2184     BasicBlock *PredBB = PN->getIncomingBlock(i);
2185     BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
2186
2187     if (RealDest == BB)
2188       continue; // Skip self loops.
2189     // Skip if the predecessor's terminator is an indirect branch.
2190     if (isa<IndirectBrInst>(PredBB->getTerminator()))
2191       continue;
2192
2193     // The dest block might have PHI nodes, other predecessors and other
2194     // difficult cases.  Instead of being smart about this, just insert a new
2195     // block that jumps to the destination block, effectively splitting
2196     // the edge we are about to create.
2197     BasicBlock *EdgeBB =
2198         BasicBlock::Create(BB->getContext(), RealDest->getName() + ".critedge",
2199                            RealDest->getParent(), RealDest);
2200     BranchInst::Create(RealDest, EdgeBB);
2201
2202     // Update PHI nodes.
2203     AddPredecessorToBlock(RealDest, EdgeBB, BB);
2204
2205     // BB may have instructions that are being threaded over.  Clone these
2206     // instructions into EdgeBB.  We know that there will be no uses of the
2207     // cloned instructions outside of EdgeBB.
2208     BasicBlock::iterator InsertPt = EdgeBB->begin();
2209     DenseMap<Value *, Value *> TranslateMap; // Track translated values.
2210     for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
2211       if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
2212         TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
2213         continue;
2214       }
2215       // Clone the instruction.
2216       Instruction *N = BBI->clone();
2217       if (BBI->hasName())
2218         N->setName(BBI->getName() + ".c");
2219
2220       // Update operands due to translation.
2221       for (User::op_iterator i = N->op_begin(), e = N->op_end(); i != e; ++i) {
2222         DenseMap<Value *, Value *>::iterator PI = TranslateMap.find(*i);
2223         if (PI != TranslateMap.end())
2224           *i = PI->second;
2225       }
2226
2227       // Check for trivial simplification.
2228       if (Value *V = SimplifyInstruction(N, DL)) {
2229         if (!BBI->use_empty())
2230           TranslateMap[&*BBI] = V;
2231         if (!N->mayHaveSideEffects()) {
2232           delete N; // Instruction folded away, don't need actual inst
2233           N = nullptr;
2234         }
2235       } else {
2236         if (!BBI->use_empty())
2237           TranslateMap[&*BBI] = N;
2238       }
2239       // Insert the new instruction into its new home.
2240       if (N)
2241         EdgeBB->getInstList().insert(InsertPt, N);
2242     }
2243
2244     // Loop over all of the edges from PredBB to BB, changing them to branch
2245     // to EdgeBB instead.
2246     TerminatorInst *PredBBTI = PredBB->getTerminator();
2247     for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
2248       if (PredBBTI->getSuccessor(i) == BB) {
2249         BB->removePredecessor(PredBB);
2250         PredBBTI->setSuccessor(i, EdgeBB);
2251       }
2252
2253     // Recurse, simplifying any other constants.
2254     return FoldCondBranchOnPHI(BI, DL) | true;
2255   }
2256
2257   return false;
2258 }
2259
2260 /// Given a BB that starts with the specified two-entry PHI node,
2261 /// see if we can eliminate it.
2262 static bool FoldTwoEntryPHINode(PHINode *PN, const TargetTransformInfo &TTI,
2263                                 const DataLayout &DL) {
2264   // Ok, this is a two entry PHI node.  Check to see if this is a simple "if
2265   // statement", which has a very simple dominance structure.  Basically, we
2266   // are trying to find the condition that is being branched on, which
2267   // subsequently causes this merge to happen.  We really want control
2268   // dependence information for this check, but simplifycfg can't keep it up
2269   // to date, and this catches most of the cases we care about anyway.
2270   BasicBlock *BB = PN->getParent();
2271   BasicBlock *IfTrue, *IfFalse;
2272   Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
2273   if (!IfCond ||
2274       // Don't bother if the branch will be constant folded trivially.
2275       isa<ConstantInt>(IfCond))
2276     return false;
2277
2278   // Okay, we found that we can merge this two-entry phi node into a select.
2279   // Doing so would require us to fold *all* two entry phi nodes in this block.
2280   // At some point this becomes non-profitable (particularly if the target
2281   // doesn't support cmov's).  Only do this transformation if there are two or
2282   // fewer PHI nodes in this block.
2283   unsigned NumPhis = 0;
2284   for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
2285     if (NumPhis > 2)
2286       return false;
2287
2288   // Loop over the PHI's seeing if we can promote them all to select
2289   // instructions.  While we are at it, keep track of the instructions
2290   // that need to be moved to the dominating block.
2291   SmallPtrSet<Instruction *, 4> AggressiveInsts;
2292   unsigned MaxCostVal0 = PHINodeFoldingThreshold,
2293            MaxCostVal1 = PHINodeFoldingThreshold;
2294   MaxCostVal0 *= TargetTransformInfo::TCC_Basic;
2295   MaxCostVal1 *= TargetTransformInfo::TCC_Basic;
2296
2297   for (BasicBlock::iterator II = BB->begin(); isa<PHINode>(II);) {
2298     PHINode *PN = cast<PHINode>(II++);
2299     if (Value *V = SimplifyInstruction(PN, DL)) {
2300       PN->replaceAllUsesWith(V);
2301       PN->eraseFromParent();
2302       continue;
2303     }
2304
2305     if (!DominatesMergePoint(PN->getIncomingValue(0), BB, &AggressiveInsts,
2306                              MaxCostVal0, TTI) ||
2307         !DominatesMergePoint(PN->getIncomingValue(1), BB, &AggressiveInsts,
2308                              MaxCostVal1, TTI))
2309       return false;
2310   }
2311
2312   // If we folded the first phi, PN dangles at this point.  Refresh it.  If
2313   // we ran out of PHIs then we simplified them all.
2314   PN = dyn_cast<PHINode>(BB->begin());
2315   if (!PN)
2316     return true;
2317
2318   // Don't fold i1 branches on PHIs which contain binary operators.  These can
2319   // often be turned into switches and other things.
2320   if (PN->getType()->isIntegerTy(1) &&
2321       (isa<BinaryOperator>(PN->getIncomingValue(0)) ||
2322        isa<BinaryOperator>(PN->getIncomingValue(1)) ||
2323        isa<BinaryOperator>(IfCond)))
2324     return false;
2325
2326   // If all PHI nodes are promotable, check to make sure that all instructions
2327   // in the predecessor blocks can be promoted as well. If not, we won't be able
2328   // to get rid of the control flow, so it's not worth promoting to select
2329   // instructions.
2330   BasicBlock *DomBlock = nullptr;
2331   BasicBlock *IfBlock1 = PN->getIncomingBlock(0);
2332   BasicBlock *IfBlock2 = PN->getIncomingBlock(1);
2333   if (cast<BranchInst>(IfBlock1->getTerminator())->isConditional()) {
2334     IfBlock1 = nullptr;
2335   } else {
2336     DomBlock = *pred_begin(IfBlock1);
2337     for (BasicBlock::iterator I = IfBlock1->begin(); !isa<TerminatorInst>(I);
2338          ++I)
2339       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2340         // This is not an aggressive instruction that we can promote.
2341         // Because of this, we won't be able to get rid of the control flow, so
2342         // the xform is not worth it.
2343         return false;
2344       }
2345   }
2346
2347   if (cast<BranchInst>(IfBlock2->getTerminator())->isConditional()) {
2348     IfBlock2 = nullptr;
2349   } else {
2350     DomBlock = *pred_begin(IfBlock2);
2351     for (BasicBlock::iterator I = IfBlock2->begin(); !isa<TerminatorInst>(I);
2352          ++I)
2353       if (!AggressiveInsts.count(&*I) && !isa<DbgInfoIntrinsic>(I)) {
2354         // This is not an aggressive instruction that we can promote.
2355         // Because of this, we won't be able to get rid of the control flow, so
2356         // the xform is not worth it.
2357         return false;
2358       }
2359   }
2360
2361   DEBUG(dbgs() << "FOUND IF CONDITION!  " << *IfCond << "  T: "
2362                << IfTrue->getName() << "  F: " << IfFalse->getName() << "\n");
2363
2364   // If we can still promote the PHI nodes after this gauntlet of tests,
2365   // do all of the PHI's now.
2366   Instruction *InsertPt = DomBlock->getTerminator();
2367   IRBuilder<NoFolder> Builder(InsertPt);
2368
2369   // Move all 'aggressive' instructions, which are defined in the
2370   // conditional parts of the if's up to the dominating block.
2371   if (IfBlock1) {
2372     for (auto &I : *IfBlock1)
2373       I.dropUnknownNonDebugMetadata();
2374     DomBlock->getInstList().splice(InsertPt->getIterator(),
2375                                    IfBlock1->getInstList(), IfBlock1->begin(),
2376                                    IfBlock1->getTerminator()->getIterator());
2377   }
2378   if (IfBlock2) {
2379     for (auto &I : *IfBlock2)
2380       I.dropUnknownNonDebugMetadata();
2381     DomBlock->getInstList().splice(InsertPt->getIterator(),
2382                                    IfBlock2->getInstList(), IfBlock2->begin(),
2383                                    IfBlock2->getTerminator()->getIterator());
2384   }
2385
2386   while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
2387     // Change the PHI node into a select instruction.
2388     Value *TrueVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
2389     Value *FalseVal = PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
2390
2391     Value *Sel = Builder.CreateSelect(IfCond, TrueVal, FalseVal, "", InsertPt);
2392     PN->replaceAllUsesWith(Sel);
2393     Sel->takeName(PN);
2394     PN->eraseFromParent();
2395   }
2396
2397   // At this point, IfBlock1 and IfBlock2 are both empty, so our if statement
2398   // has been flattened.  Change DomBlock to jump directly to our new block to
2399   // avoid other simplifycfg's kicking in on the diamond.
2400   TerminatorInst *OldTI = DomBlock->getTerminator();
2401   Builder.SetInsertPoint(OldTI);
2402   Builder.CreateBr(BB);
2403   OldTI->eraseFromParent();
2404   return true;
2405 }
2406
2407 /// If we found a conditional branch that goes to two returning blocks,
2408 /// try to merge them together into one return,
2409 /// introducing a select if the return values disagree.
2410 static bool SimplifyCondBranchToTwoReturns(BranchInst *BI,
2411                                            IRBuilder<> &Builder) {
2412   assert(BI->isConditional() && "Must be a conditional branch");
2413   BasicBlock *TrueSucc = BI->getSuccessor(0);
2414   BasicBlock *FalseSucc = BI->getSuccessor(1);
2415   ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
2416   ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
2417
2418   // Check to ensure both blocks are empty (just a return) or optionally empty
2419   // with PHI nodes.  If there are other instructions, merging would cause extra
2420   // computation on one path or the other.
2421   if (!TrueSucc->getFirstNonPHIOrDbg()->isTerminator())
2422     return false;
2423   if (!FalseSucc->getFirstNonPHIOrDbg()->isTerminator())
2424     return false;
2425
2426   Builder.SetInsertPoint(BI);
2427   // Okay, we found a branch that is going to two return nodes.  If
2428   // there is no return value for this function, just change the
2429   // branch into a return.
2430   if (FalseRet->getNumOperands() == 0) {
2431     TrueSucc->removePredecessor(BI->getParent());
2432     FalseSucc->removePredecessor(BI->getParent());
2433     Builder.CreateRetVoid();
2434     EraseTerminatorInstAndDCECond(BI);
2435     return true;
2436   }
2437
2438   // Otherwise, figure out what the true and false return values are
2439   // so we can insert a new select instruction.
2440   Value *TrueValue = TrueRet->getReturnValue();
2441   Value *FalseValue = FalseRet->getReturnValue();
2442
2443   // Unwrap any PHI nodes in the return blocks.
2444   if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
2445     if (TVPN->getParent() == TrueSucc)
2446       TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
2447   if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
2448     if (FVPN->getParent() == FalseSucc)
2449       FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
2450
2451   // In order for this transformation to be safe, we must be able to
2452   // unconditionally execute both operands to the return.  This is
2453   // normally the case, but we could have a potentially-trapping
2454   // constant expression that prevents this transformation from being
2455   // safe.
2456   if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
2457     if (TCV->canTrap())
2458       return false;
2459   if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
2460     if (FCV->canTrap())
2461       return false;
2462
2463   // Okay, we collected all the mapped values and checked them for sanity, and
2464   // defined to really do this transformation.  First, update the CFG.
2465   TrueSucc->removePredecessor(BI->getParent());
2466   FalseSucc->removePredecessor(BI->getParent());
2467
2468   // Insert select instructions where needed.
2469   Value *BrCond = BI->getCondition();
2470   if (TrueValue) {
2471     // Insert a select if the results differ.
2472     if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
2473     } else if (isa<UndefValue>(TrueValue)) {
2474       TrueValue = FalseValue;
2475     } else {
2476       TrueValue =
2477           Builder.CreateSelect(BrCond, TrueValue, FalseValue, "retval", BI);
2478     }
2479   }
2480
2481   Value *RI =
2482       !TrueValue ? Builder.CreateRetVoid() : Builder.CreateRet(TrueValue);
2483
2484   (void)RI;
2485
2486   DEBUG(dbgs() << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
2487                << "\n  " << *BI << "NewRet = " << *RI
2488                << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: " << *FalseSucc);
2489
2490   EraseTerminatorInstAndDCECond(BI);
2491
2492   return true;
2493 }
2494
2495 /// Return true if the given instruction is available
2496 /// in its predecessor block. If yes, the instruction will be removed.
2497 static bool checkCSEInPredecessor(Instruction *Inst, BasicBlock *PB) {
2498   if (!isa<BinaryOperator>(Inst) && !isa<CmpInst>(Inst))
2499     return false;
2500   for (Instruction &I : *PB) {
2501     Instruction *PBI = &I;
2502     // Check whether Inst and PBI generate the same value.
2503     if (Inst->isIdenticalTo(PBI)) {
2504       Inst->replaceAllUsesWith(PBI);
2505       Inst->eraseFromParent();
2506       return true;
2507     }
2508   }
2509   return false;
2510 }
2511
2512 /// Return true if either PBI or BI has branch weight available, and store
2513 /// the weights in {Pred|Succ}{True|False}Weight. If one of PBI and BI does
2514 /// not have branch weight, use 1:1 as its weight.
2515 static bool extractPredSuccWeights(BranchInst *PBI, BranchInst *BI,
2516                                    uint64_t &PredTrueWeight,
2517                                    uint64_t &PredFalseWeight,
2518                                    uint64_t &SuccTrueWeight,
2519                                    uint64_t &SuccFalseWeight) {
2520   bool PredHasWeights =
2521       PBI->extractProfMetadata(PredTrueWeight, PredFalseWeight);
2522   bool SuccHasWeights =
2523       BI->extractProfMetadata(SuccTrueWeight, SuccFalseWeight);
2524   if (PredHasWeights || SuccHasWeights) {
2525     if (!PredHasWeights)
2526       PredTrueWeight = PredFalseWeight = 1;
2527     if (!SuccHasWeights)
2528       SuccTrueWeight = SuccFalseWeight = 1;
2529     return true;
2530   } else {
2531     return false;
2532   }
2533 }
2534
2535 /// If this basic block is simple enough, and if a predecessor branches to us
2536 /// and one of our successors, fold the block into the predecessor and use
2537 /// logical operations to pick the right destination.
2538 bool llvm::FoldBranchToCommonDest(BranchInst *BI, unsigned BonusInstThreshold) {
2539   BasicBlock *BB = BI->getParent();
2540
2541   Instruction *Cond = nullptr;
2542   if (BI->isConditional())
2543     Cond = dyn_cast<Instruction>(BI->getCondition());
2544   else {
2545     // For unconditional branch, check for a simple CFG pattern, where
2546     // BB has a single predecessor and BB's successor is also its predecessor's
2547     // successor. If such pattern exisits, check for CSE between BB and its
2548     // predecessor.
2549     if (BasicBlock *PB = BB->getSinglePredecessor())
2550       if (BranchInst *PBI = dyn_cast<BranchInst>(PB->getTerminator()))
2551         if (PBI->isConditional() &&
2552             (BI->getSuccessor(0) == PBI->getSuccessor(0) ||
2553              BI->getSuccessor(0) == PBI->getSuccessor(1))) {
2554           for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
2555             Instruction *Curr = &*I++;
2556             if (isa<CmpInst>(Curr)) {
2557               Cond = Curr;
2558               break;
2559             }
2560             // Quit if we can't remove this instruction.
2561             if (!checkCSEInPredecessor(Curr, PB))
2562               return false;
2563           }
2564         }
2565
2566     if (!Cond)
2567       return false;
2568   }
2569
2570   if (!Cond || (!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
2571       Cond->getParent() != BB || !Cond->hasOneUse())
2572     return false;
2573
2574   // Make sure the instruction after the condition is the cond branch.
2575   BasicBlock::iterator CondIt = ++Cond->getIterator();
2576
2577   // Ignore dbg intrinsics.
2578   while (isa<DbgInfoIntrinsic>(CondIt))
2579     ++CondIt;
2580
2581   if (&*CondIt != BI)
2582     return false;
2583
2584   // Only allow this transformation if computing the condition doesn't involve
2585   // too many instructions and these involved instructions can be executed
2586   // unconditionally. We denote all involved instructions except the condition
2587   // as "bonus instructions", and only allow this transformation when the
2588   // number of the bonus instructions does not exceed a certain threshold.
2589   unsigned NumBonusInsts = 0;
2590   for (auto I = BB->begin(); Cond != &*I; ++I) {
2591     // Ignore dbg intrinsics.
2592     if (isa<DbgInfoIntrinsic>(I))
2593       continue;
2594     if (!I->hasOneUse() || !isSafeToSpeculativelyExecute(&*I))
2595       return false;
2596     // I has only one use and can be executed unconditionally.
2597     Instruction *User = dyn_cast<Instruction>(I->user_back());
2598     if (User == nullptr || User->getParent() != BB)
2599       return false;
2600     // I is used in the same BB. Since BI uses Cond and doesn't have more slots
2601     // to use any other instruction, User must be an instruction between next(I)
2602     // and Cond.
2603     ++NumBonusInsts;
2604     // Early exits once we reach the limit.
2605     if (NumBonusInsts > BonusInstThreshold)
2606       return false;
2607   }
2608
2609   // Cond is known to be a compare or binary operator.  Check to make sure that
2610   // neither operand is a potentially-trapping constant expression.
2611   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(0)))
2612     if (CE->canTrap())
2613       return false;
2614   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Cond->getOperand(1)))
2615     if (CE->canTrap())
2616       return false;
2617
2618   // Finally, don't infinitely unroll conditional loops.
2619   BasicBlock *TrueDest = BI->getSuccessor(0);
2620   BasicBlock *FalseDest = (BI->isConditional()) ? BI->getSuccessor(1) : nullptr;
2621   if (TrueDest == BB || FalseDest == BB)
2622     return false;
2623
2624   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2625     BasicBlock *PredBlock = *PI;
2626     BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
2627
2628     // Check that we have two conditional branches.  If there is a PHI node in
2629     // the common successor, verify that the same value flows in from both
2630     // blocks.
2631     SmallVector<PHINode *, 4> PHIs;
2632     if (!PBI || PBI->isUnconditional() ||
2633         (BI->isConditional() && !SafeToMergeTerminators(BI, PBI)) ||
2634         (!BI->isConditional() &&
2635          !isProfitableToFoldUnconditional(BI, PBI, Cond, PHIs)))
2636       continue;
2637
2638     // Determine if the two branches share a common destination.
2639     Instruction::BinaryOps Opc = Instruction::BinaryOpsEnd;
2640     bool InvertPredCond = false;
2641
2642     if (BI->isConditional()) {
2643       if (PBI->getSuccessor(0) == TrueDest) {
2644         Opc = Instruction::Or;
2645       } else if (PBI->getSuccessor(1) == FalseDest) {
2646         Opc = Instruction::And;
2647       } else if (PBI->getSuccessor(0) == FalseDest) {
2648         Opc = Instruction::And;
2649         InvertPredCond = true;
2650       } else if (PBI->getSuccessor(1) == TrueDest) {
2651         Opc = Instruction::Or;
2652         InvertPredCond = true;
2653       } else {
2654         continue;
2655       }
2656     } else {
2657       if (PBI->getSuccessor(0) != TrueDest && PBI->getSuccessor(1) != TrueDest)
2658         continue;
2659     }
2660
2661     DEBUG(dbgs() << "FOLDING BRANCH TO COMMON DEST:\n" << *PBI << *BB);
2662     IRBuilder<> Builder(PBI);
2663
2664     // If we need to invert the condition in the pred block to match, do so now.
2665     if (InvertPredCond) {
2666       Value *NewCond = PBI->getCondition();
2667
2668       if (NewCond->hasOneUse() && isa<CmpInst>(NewCond)) {
2669         CmpInst *CI = cast<CmpInst>(NewCond);
2670         CI->setPredicate(CI->getInversePredicate());
2671       } else {
2672         NewCond =
2673             Builder.CreateNot(NewCond, PBI->getCondition()->getName() + ".not");
2674       }
2675
2676       PBI->setCondition(NewCond);
2677       PBI->swapSuccessors();
2678     }
2679
2680     // If we have bonus instructions, clone them into the predecessor block.
2681     // Note that there may be multiple predecessor blocks, so we cannot move
2682     // bonus instructions to a predecessor block.
2683     ValueToValueMapTy VMap; // maps original values to cloned values
2684     // We already make sure Cond is the last instruction before BI. Therefore,
2685     // all instructions before Cond other than DbgInfoIntrinsic are bonus
2686     // instructions.
2687     for (auto BonusInst = BB->begin(); Cond != &*BonusInst; ++BonusInst) {
2688       if (isa<DbgInfoIntrinsic>(BonusInst))
2689         continue;
2690       Instruction *NewBonusInst = BonusInst->clone();
2691       RemapInstruction(NewBonusInst, VMap,
2692                        RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2693       VMap[&*BonusInst] = NewBonusInst;
2694
2695       // If we moved a load, we cannot any longer claim any knowledge about
2696       // its potential value. The previous information might have been valid
2697       // only given the branch precondition.
2698       // For an analogous reason, we must also drop all the metadata whose
2699       // semantics we don't understand.
2700       NewBonusInst->dropUnknownNonDebugMetadata();
2701
2702       PredBlock->getInstList().insert(PBI->getIterator(), NewBonusInst);
2703       NewBonusInst->takeName(&*BonusInst);
2704       BonusInst->setName(BonusInst->getName() + ".old");
2705     }
2706
2707     // Clone Cond into the predecessor basic block, and or/and the
2708     // two conditions together.
2709     Instruction *New = Cond->clone();
2710     RemapInstruction(New, VMap,
2711                      RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
2712     PredBlock->getInstList().insert(PBI->getIterator(), New);
2713     New->takeName(Cond);
2714     Cond->setName(New->getName() + ".old");
2715
2716     if (BI->isConditional()) {
2717       Instruction *NewCond = cast<Instruction>(
2718           Builder.CreateBinOp(Opc, PBI->getCondition(), New, "or.cond"));
2719       PBI->setCondition(NewCond);
2720
2721       uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
2722       bool HasWeights =
2723           extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
2724                                  SuccTrueWeight, SuccFalseWeight);
2725       SmallVector<uint64_t, 8> NewWeights;
2726
2727       if (PBI->getSuccessor(0) == BB) {
2728         if (HasWeights) {
2729           // PBI: br i1 %x, BB, FalseDest
2730           // BI:  br i1 %y, TrueDest, FalseDest
2731           // TrueWeight is TrueWeight for PBI * TrueWeight for BI.
2732           NewWeights.push_back(PredTrueWeight * SuccTrueWeight);
2733           // FalseWeight is FalseWeight for PBI * TotalWeight for BI +
2734           //               TrueWeight for PBI * FalseWeight for BI.
2735           // We assume that total weights of a BranchInst can fit into 32 bits.
2736           // Therefore, we will not have overflow using 64-bit arithmetic.
2737           NewWeights.push_back(PredFalseWeight *
2738                                    (SuccFalseWeight + SuccTrueWeight) +
2739                                PredTrueWeight * SuccFalseWeight);
2740         }
2741         AddPredecessorToBlock(TrueDest, PredBlock, BB);
2742         PBI->setSuccessor(0, TrueDest);
2743       }
2744       if (PBI->getSuccessor(1) == BB) {
2745         if (HasWeights) {
2746           // PBI: br i1 %x, TrueDest, BB
2747           // BI:  br i1 %y, TrueDest, FalseDest
2748           // TrueWeight is TrueWeight for PBI * TotalWeight for BI +
2749           //              FalseWeight for PBI * TrueWeight for BI.
2750           NewWeights.push_back(PredTrueWeight *
2751                                    (SuccFalseWeight + SuccTrueWeight) +
2752                                PredFalseWeight * SuccTrueWeight);
2753           // FalseWeight is FalseWeight for PBI * FalseWeight for BI.
2754           NewWeights.push_back(PredFalseWeight * SuccFalseWeight);
2755         }
2756         AddPredecessorToBlock(FalseDest, PredBlock, BB);
2757         PBI->setSuccessor(1, FalseDest);
2758       }
2759       if (NewWeights.size() == 2) {
2760         // Halve the weights if any of them cannot fit in an uint32_t
2761         FitWeights(NewWeights);
2762
2763         SmallVector<uint32_t, 8> MDWeights(NewWeights.begin(),
2764                                            NewWeights.end());
2765         PBI->setMetadata(
2766             LLVMContext::MD_prof,
2767             MDBuilder(BI->getContext()).createBranchWeights(MDWeights));
2768       } else
2769         PBI->setMetadata(LLVMContext::MD_prof, nullptr);
2770     } else {
2771       // Update PHI nodes in the common successors.
2772       for (unsigned i = 0, e = PHIs.size(); i != e; ++i) {
2773         ConstantInt *PBI_C = cast<ConstantInt>(
2774             PHIs[i]->getIncomingValueForBlock(PBI->getParent()));
2775         assert(PBI_C->getType()->isIntegerTy(1));
2776         Instruction *MergedCond = nullptr;
2777         if (PBI->getSuccessor(0) == TrueDest) {
2778           // Create (PBI_Cond and PBI_C) or (!PBI_Cond and BI_Value)
2779           // PBI_C is true: PBI_Cond or (!PBI_Cond and BI_Value)
2780           //       is false: !PBI_Cond and BI_Value
2781           Instruction *NotCond = cast<Instruction>(
2782               Builder.CreateNot(PBI->getCondition(), "not.cond"));
2783           MergedCond = cast<Instruction>(
2784               Builder.CreateBinOp(Instruction::And, NotCond, New, "and.cond"));
2785           if (PBI_C->isOne())
2786             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2787                 Instruction::Or, PBI->getCondition(), MergedCond, "or.cond"));
2788         } else {
2789           // Create (PBI_Cond and BI_Value) or (!PBI_Cond and PBI_C)
2790           // PBI_C is true: (PBI_Cond and BI_Value) or (!PBI_Cond)
2791           //       is false: PBI_Cond and BI_Value
2792           MergedCond = cast<Instruction>(Builder.CreateBinOp(
2793               Instruction::And, PBI->getCondition(), New, "and.cond"));
2794           if (PBI_C->isOne()) {
2795             Instruction *NotCond = cast<Instruction>(
2796                 Builder.CreateNot(PBI->getCondition(), "not.cond"));
2797             MergedCond = cast<Instruction>(Builder.CreateBinOp(
2798                 Instruction::Or, NotCond, MergedCond, "or.cond"));
2799           }
2800         }
2801         // Update PHI Node.
2802         PHIs[i]->setIncomingValue(PHIs[i]->getBasicBlockIndex(PBI->getParent()),
2803                                   MergedCond);
2804       }
2805       // Change PBI from Conditional to Unconditional.
2806       BranchInst *New_PBI = BranchInst::Create(TrueDest, PBI);
2807       EraseTerminatorInstAndDCECond(PBI);
2808       PBI = New_PBI;
2809     }
2810
2811     // If BI was a loop latch, it may have had associated loop metadata.
2812     // We need to copy it to the new latch, that is, PBI.
2813     if (MDNode *LoopMD = BI->getMetadata(LLVMContext::MD_loop))
2814       PBI->setMetadata(LLVMContext::MD_loop, LoopMD);
2815
2816     // TODO: If BB is reachable from all paths through PredBlock, then we
2817     // could replace PBI's branch probabilities with BI's.
2818
2819     // Copy any debug value intrinsics into the end of PredBlock.
2820     for (Instruction &I : *BB)
2821       if (isa<DbgInfoIntrinsic>(I))
2822         I.clone()->insertBefore(PBI);
2823
2824     return true;
2825   }
2826   return false;
2827 }
2828
2829 // If there is only one store in BB1 and BB2, return it, otherwise return
2830 // nullptr.
2831 static StoreInst *findUniqueStoreInBlocks(BasicBlock *BB1, BasicBlock *BB2) {
2832   StoreInst *S = nullptr;
2833   for (auto *BB : {BB1, BB2}) {
2834     if (!BB)
2835       continue;
2836     for (auto &I : *BB)
2837       if (auto *SI = dyn_cast<StoreInst>(&I)) {
2838         if (S)
2839           // Multiple stores seen.
2840           return nullptr;
2841         else
2842           S = SI;
2843       }
2844   }
2845   return S;
2846 }
2847
2848 static Value *ensureValueAvailableInSuccessor(Value *V, BasicBlock *BB,
2849                                               Value *AlternativeV = nullptr) {
2850   // PHI is going to be a PHI node that allows the value V that is defined in
2851   // BB to be referenced in BB's only successor.
2852   //
2853   // If AlternativeV is nullptr, the only value we care about in PHI is V. It
2854   // doesn't matter to us what the other operand is (it'll never get used). We
2855   // could just create a new PHI with an undef incoming value, but that could
2856   // increase register pressure if EarlyCSE/InstCombine can't fold it with some
2857   // other PHI. So here we directly look for some PHI in BB's successor with V
2858   // as an incoming operand. If we find one, we use it, else we create a new
2859   // one.
2860   //
2861   // If AlternativeV is not nullptr, we care about both incoming values in PHI.
2862   // PHI must be exactly: phi <ty> [ %BB, %V ], [ %OtherBB, %AlternativeV]
2863   // where OtherBB is the single other predecessor of BB's only successor.
2864   PHINode *PHI = nullptr;
2865   BasicBlock *Succ = BB->getSingleSuccessor();
2866
2867   for (auto I = Succ->begin(); isa<PHINode>(I); ++I)
2868     if (cast<PHINode>(I)->getIncomingValueForBlock(BB) == V) {
2869       PHI = cast<PHINode>(I);
2870       if (!AlternativeV)
2871         break;
2872
2873       assert(std::distance(pred_begin(Succ), pred_end(Succ)) == 2);
2874       auto PredI = pred_begin(Succ);
2875       BasicBlock *OtherPredBB = *PredI == BB ? *++PredI : *PredI;
2876       if (PHI->getIncomingValueForBlock(OtherPredBB) == AlternativeV)
2877         break;
2878       PHI = nullptr;
2879     }
2880   if (PHI)
2881     return PHI;
2882
2883   // If V is not an instruction defined in BB, just return it.
2884   if (!AlternativeV &&
2885       (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB))
2886     return V;
2887
2888   PHI = PHINode::Create(V->getType(), 2, "simplifycfg.merge", &Succ->front());
2889   PHI->addIncoming(V, BB);
2890   for (BasicBlock *PredBB : predecessors(Succ))
2891     if (PredBB != BB)
2892       PHI->addIncoming(
2893           AlternativeV ? AlternativeV : UndefValue::get(V->getType()), PredBB);
2894   return PHI;
2895 }
2896
2897 static bool mergeConditionalStoreToAddress(BasicBlock *PTB, BasicBlock *PFB,
2898                                            BasicBlock *QTB, BasicBlock *QFB,
2899                                            BasicBlock *PostBB, Value *Address,
2900                                            bool InvertPCond, bool InvertQCond) {
2901   auto IsaBitcastOfPointerType = [](const Instruction &I) {
2902     return Operator::getOpcode(&I) == Instruction::BitCast &&
2903            I.getType()->isPointerTy();
2904   };
2905
2906   // If we're not in aggressive mode, we only optimize if we have some
2907   // confidence that by optimizing we'll allow P and/or Q to be if-converted.
2908   auto IsWorthwhile = [&](BasicBlock *BB) {
2909     if (!BB)
2910       return true;
2911     // Heuristic: if the block can be if-converted/phi-folded and the
2912     // instructions inside are all cheap (arithmetic/GEPs), it's worthwhile to
2913     // thread this store.
2914     unsigned N = 0;
2915     for (auto &I : *BB) {
2916       // Cheap instructions viable for folding.
2917       if (isa<BinaryOperator>(I) || isa<GetElementPtrInst>(I) ||
2918           isa<StoreInst>(I))
2919         ++N;
2920       // Free instructions.
2921       else if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
2922                IsaBitcastOfPointerType(I))
2923         continue;
2924       else
2925         return false;
2926     }
2927     return N <= PHINodeFoldingThreshold;
2928   };
2929
2930   if (!MergeCondStoresAggressively &&
2931       (!IsWorthwhile(PTB) || !IsWorthwhile(PFB) || !IsWorthwhile(QTB) ||
2932        !IsWorthwhile(QFB)))
2933     return false;
2934
2935   // For every pointer, there must be exactly two stores, one coming from
2936   // PTB or PFB, and the other from QTB or QFB. We don't support more than one
2937   // store (to any address) in PTB,PFB or QTB,QFB.
2938   // FIXME: We could relax this restriction with a bit more work and performance
2939   // testing.
2940   StoreInst *PStore = findUniqueStoreInBlocks(PTB, PFB);
2941   StoreInst *QStore = findUniqueStoreInBlocks(QTB, QFB);
2942   if (!PStore || !QStore)
2943     return false;
2944
2945   // Now check the stores are compatible.
2946   if (!QStore->isUnordered() || !PStore->isUnordered())
2947     return false;
2948
2949   // Check that sinking the store won't cause program behavior changes. Sinking
2950   // the store out of the Q blocks won't change any behavior as we're sinking
2951   // from a block to its unconditional successor. But we're moving a store from
2952   // the P blocks down through the middle block (QBI) and past both QFB and QTB.
2953   // So we need to check that there are no aliasing loads or stores in
2954   // QBI, QTB and QFB. We also need to check there are no conflicting memory
2955   // operations between PStore and the end of its parent block.
2956   //
2957   // The ideal way to do this is to query AliasAnalysis, but we don't
2958   // preserve AA currently so that is dangerous. Be super safe and just
2959   // check there are no other memory operations at all.
2960   for (auto &I : *QFB->getSinglePredecessor())
2961     if (I.mayReadOrWriteMemory())
2962       return false;
2963   for (auto &I : *QFB)
2964     if (&I != QStore && I.mayReadOrWriteMemory())
2965       return false;
2966   if (QTB)
2967     for (auto &I : *QTB)
2968       if (&I != QStore && I.mayReadOrWriteMemory())
2969         return false;
2970   for (auto I = BasicBlock::iterator(PStore), E = PStore->getParent()->end();
2971        I != E; ++I)
2972     if (&*I != PStore && I->mayReadOrWriteMemory())
2973       return false;
2974
2975   // OK, we're going to sink the stores to PostBB. The store has to be
2976   // conditional though, so first create the predicate.
2977   Value *PCond = cast<BranchInst>(PFB->getSinglePredecessor()->getTerminator())
2978                      ->getCondition();
2979   Value *QCond = cast<BranchInst>(QFB->getSinglePredecessor()->getTerminator())
2980                      ->getCondition();
2981
2982   Value *PPHI = ensureValueAvailableInSuccessor(PStore->getValueOperand(),
2983                                                 PStore->getParent());
2984   Value *QPHI = ensureValueAvailableInSuccessor(QStore->getValueOperand(),
2985                                                 QStore->getParent(), PPHI);
2986
2987   IRBuilder<> QB(&*PostBB->getFirstInsertionPt());
2988
2989   Value *PPred = PStore->getParent() == PTB ? PCond : QB.CreateNot(PCond);
2990   Value *QPred = QStore->getParent() == QTB ? QCond : QB.CreateNot(QCond);
2991
2992   if (InvertPCond)
2993     PPred = QB.CreateNot(PPred);
2994   if (InvertQCond)
2995     QPred = QB.CreateNot(QPred);
2996   Value *CombinedPred = QB.CreateOr(PPred, QPred);
2997
2998   auto *T =
2999       SplitBlockAndInsertIfThen(CombinedPred, &*QB.GetInsertPoint(), false);
3000   QB.SetInsertPoint(T);
3001   StoreInst *SI = cast<StoreInst>(QB.CreateStore(QPHI, Address));
3002   AAMDNodes AAMD;
3003   PStore->getAAMetadata(AAMD, /*Merge=*/false);
3004   PStore->getAAMetadata(AAMD, /*Merge=*/true);
3005   SI->setAAMetadata(AAMD);
3006
3007   QStore->eraseFromParent();
3008   PStore->eraseFromParent();
3009
3010   return true;
3011 }
3012
3013 static bool mergeConditionalStores(BranchInst *PBI, BranchInst *QBI) {
3014   // The intention here is to find diamonds or triangles (see below) where each
3015   // conditional block contains a store to the same address. Both of these
3016   // stores are conditional, so they can't be unconditionally sunk. But it may
3017   // be profitable to speculatively sink the stores into one merged store at the
3018   // end, and predicate the merged store on the union of the two conditions of
3019   // PBI and QBI.
3020   //
3021   // This can reduce the number of stores executed if both of the conditions are
3022   // true, and can allow the blocks to become small enough to be if-converted.
3023   // This optimization will also chain, so that ladders of test-and-set
3024   // sequences can be if-converted away.
3025   //
3026   // We only deal with simple diamonds or triangles:
3027   //
3028   //     PBI       or      PBI        or a combination of the two
3029   //    /   \               | \
3030   //   PTB  PFB             |  PFB
3031   //    \   /               | /
3032   //     QBI                QBI
3033   //    /  \                | \
3034   //   QTB  QFB             |  QFB
3035   //    \  /                | /
3036   //    PostBB            PostBB
3037   //
3038   // We model triangles as a type of diamond with a nullptr "true" block.
3039   // Triangles are canonicalized so that the fallthrough edge is represented by
3040   // a true condition, as in the diagram above.
3041   //
3042   BasicBlock *PTB = PBI->getSuccessor(0);
3043   BasicBlock *PFB = PBI->getSuccessor(1);
3044   BasicBlock *QTB = QBI->getSuccessor(0);
3045   BasicBlock *QFB = QBI->getSuccessor(1);
3046   BasicBlock *PostBB = QFB->getSingleSuccessor();
3047
3048   bool InvertPCond = false, InvertQCond = false;
3049   // Canonicalize fallthroughs to the true branches.
3050   if (PFB == QBI->getParent()) {
3051     std::swap(PFB, PTB);
3052     InvertPCond = true;
3053   }
3054   if (QFB == PostBB) {
3055     std::swap(QFB, QTB);
3056     InvertQCond = true;
3057   }
3058
3059   // From this point on we can assume PTB or QTB may be fallthroughs but PFB
3060   // and QFB may not. Model fallthroughs as a nullptr block.
3061   if (PTB == QBI->getParent())
3062     PTB = nullptr;
3063   if (QTB == PostBB)
3064     QTB = nullptr;
3065
3066   // Legality bailouts. We must have at least the non-fallthrough blocks and
3067   // the post-dominating block, and the non-fallthroughs must only have one
3068   // predecessor.
3069   auto HasOnePredAndOneSucc = [](BasicBlock *BB, BasicBlock *P, BasicBlock *S) {
3070     return BB->getSinglePredecessor() == P && BB->getSingleSuccessor() == S;
3071   };
3072   if (!PostBB ||
3073       !HasOnePredAndOneSucc(PFB, PBI->getParent(), QBI->getParent()) ||
3074       !HasOnePredAndOneSucc(QFB, QBI->getParent(), PostBB))
3075     return false;
3076   if ((PTB && !HasOnePredAndOneSucc(PTB, PBI->getParent(), QBI->getParent())) ||
3077       (QTB && !HasOnePredAndOneSucc(QTB, QBI->getParent(), PostBB)))
3078     return false;
3079   if (PostBB->getNumUses() != 2 || QBI->getParent()->getNumUses() != 2)
3080     return false;
3081
3082   // OK, this is a sequence of two diamonds or triangles.
3083   // Check if there are stores in PTB or PFB that are repeated in QTB or QFB.
3084   SmallPtrSet<Value *, 4> PStoreAddresses, QStoreAddresses;
3085   for (auto *BB : {PTB, PFB}) {
3086     if (!BB)
3087       continue;
3088     for (auto &I : *BB)
3089       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3090         PStoreAddresses.insert(SI->getPointerOperand());
3091   }
3092   for (auto *BB : {QTB, QFB}) {
3093     if (!BB)
3094       continue;
3095     for (auto &I : *BB)
3096       if (StoreInst *SI = dyn_cast<StoreInst>(&I))
3097         QStoreAddresses.insert(SI->getPointerOperand());
3098   }
3099
3100   set_intersect(PStoreAddresses, QStoreAddresses);
3101   // set_intersect mutates PStoreAddresses in place. Rename it here to make it
3102   // clear what it contains.
3103   auto &CommonAddresses = PStoreAddresses;
3104
3105   bool Changed = false;
3106   for (auto *Address : CommonAddresses)
3107     Changed |= mergeConditionalStoreToAddress(
3108         PTB, PFB, QTB, QFB, PostBB, Address, InvertPCond, InvertQCond);
3109   return Changed;
3110 }
3111
3112 /// If we have a conditional branch as a predecessor of another block,
3113 /// this function tries to simplify it.  We know
3114 /// that PBI and BI are both conditional branches, and BI is in one of the
3115 /// successor blocks of PBI - PBI branches to BI.
3116 static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI,
3117                                            const DataLayout &DL) {
3118   assert(PBI->isConditional() && BI->isConditional());
3119   BasicBlock *BB = BI->getParent();
3120
3121   // If this block ends with a branch instruction, and if there is a
3122   // predecessor that ends on a branch of the same condition, make
3123   // this conditional branch redundant.
3124   if (PBI->getCondition() == BI->getCondition() &&
3125       PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3126     // Okay, the outcome of this conditional branch is statically
3127     // knowable.  If this block had a single pred, handle specially.
3128     if (BB->getSinglePredecessor()) {
3129       // Turn this into a branch on constant.
3130       bool CondIsTrue = PBI->getSuccessor(0) == BB;
3131       BI->setCondition(
3132           ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue));
3133       return true; // Nuke the branch on constant.
3134     }
3135
3136     // Otherwise, if there are multiple predecessors, insert a PHI that merges
3137     // in the constant and simplify the block result.  Subsequent passes of
3138     // simplifycfg will thread the block.
3139     if (BlockIsSimpleEnoughToThreadThrough(BB)) {
3140       pred_iterator PB = pred_begin(BB), PE = pred_end(BB);
3141       PHINode *NewPN = PHINode::Create(
3142           Type::getInt1Ty(BB->getContext()), std::distance(PB, PE),
3143           BI->getCondition()->getName() + ".pr", &BB->front());
3144       // Okay, we're going to insert the PHI node.  Since PBI is not the only
3145       // predecessor, compute the PHI'd conditional value for all of the preds.
3146       // Any predecessor where the condition is not computable we keep symbolic.
3147       for (pred_iterator PI = PB; PI != PE; ++PI) {
3148         BasicBlock *P = *PI;
3149         if ((PBI = dyn_cast<BranchInst>(P->getTerminator())) && PBI != BI &&
3150             PBI->isConditional() && PBI->getCondition() == BI->getCondition() &&
3151             PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
3152           bool CondIsTrue = PBI->getSuccessor(0) == BB;
3153           NewPN->addIncoming(
3154               ConstantInt::get(Type::getInt1Ty(BB->getContext()), CondIsTrue),
3155               P);
3156         } else {
3157           NewPN->addIncoming(BI->getCondition(), P);
3158         }
3159       }
3160
3161       BI->setCondition(NewPN);
3162       return true;
3163     }
3164   }
3165
3166   if (auto *CE = dyn_cast<ConstantExpr>(BI->getCondition()))
3167     if (CE->canTrap())
3168       return false;
3169
3170   // If both branches are conditional and both contain stores to the same
3171   // address, remove the stores from the conditionals and create a conditional
3172   // merged store at the end.
3173   if (MergeCondStores && mergeConditionalStores(PBI, BI))
3174     return true;
3175
3176   // If this is a conditional branch in an empty block, and if any
3177   // predecessors are a conditional branch to one of our destinations,
3178   // fold the conditions into logical ops and one cond br.
3179   BasicBlock::iterator BBI = BB->begin();
3180   // Ignore dbg intrinsics.
3181   while (isa<DbgInfoIntrinsic>(BBI))
3182     ++BBI;
3183   if (&*BBI != BI)
3184     return false;
3185
3186   int PBIOp, BIOp;
3187   if (PBI->getSuccessor(0) == BI->getSuccessor(0)) {
3188     PBIOp = 0;
3189     BIOp = 0;
3190   } else if (PBI->getSuccessor(0) == BI->getSuccessor(1)) {
3191     PBIOp = 0;
3192     BIOp = 1;
3193   } else if (PBI->getSuccessor(1) == BI->getSuccessor(0)) {
3194     PBIOp = 1;
3195     BIOp = 0;
3196   } else if (PBI->getSuccessor(1) == BI->getSuccessor(1)) {
3197     PBIOp = 1;
3198     BIOp = 1;
3199   } else {
3200     return false;
3201   }
3202
3203   // Check to make sure that the other destination of this branch
3204   // isn't BB itself.  If so, this is an infinite loop that will
3205   // keep getting unwound.
3206   if (PBI->getSuccessor(PBIOp) == BB)
3207     return false;
3208
3209   // Do not perform this transformation if it would require
3210   // insertion of a large number of select instructions. For targets
3211   // without predication/cmovs, this is a big pessimization.
3212
3213   // Also do not perform this transformation if any phi node in the common
3214   // destination block can trap when reached by BB or PBB (PR17073). In that
3215   // case, it would be unsafe to hoist the operation into a select instruction.
3216
3217   BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
3218   unsigned NumPhis = 0;
3219   for (BasicBlock::iterator II = CommonDest->begin(); isa<PHINode>(II);
3220        ++II, ++NumPhis) {
3221     if (NumPhis > 2) // Disable this xform.
3222       return false;
3223
3224     PHINode *PN = cast<PHINode>(II);
3225     Value *BIV = PN->getIncomingValueForBlock(BB);
3226     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(BIV))
3227       if (CE->canTrap())
3228         return false;
3229
3230     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3231     Value *PBIV = PN->getIncomingValue(PBBIdx);
3232     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(PBIV))
3233       if (CE->canTrap())
3234         return false;
3235   }
3236
3237   // Finally, if everything is ok, fold the branches to logical ops.
3238   BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
3239
3240   DEBUG(dbgs() << "FOLDING BRs:" << *PBI->getParent()
3241                << "AND: " << *BI->getParent());
3242
3243   // If OtherDest *is* BB, then BB is a basic block with a single conditional
3244   // branch in it, where one edge (OtherDest) goes back to itself but the other
3245   // exits.  We don't *know* that the program avoids the infinite loop
3246   // (even though that seems likely).  If we do this xform naively, we'll end up
3247   // recursively unpeeling the loop.  Since we know that (after the xform is
3248   // done) that the block *is* infinite if reached, we just make it an obviously
3249   // infinite loop with no cond branch.
3250   if (OtherDest == BB) {
3251     // Insert it at the end of the function, because it's either code,
3252     // or it won't matter if it's hot. :)
3253     BasicBlock *InfLoopBlock =
3254         BasicBlock::Create(BB->getContext(), "infloop", BB->getParent());
3255     BranchInst::Create(InfLoopBlock, InfLoopBlock);
3256     OtherDest = InfLoopBlock;
3257   }
3258
3259   DEBUG(dbgs() << *PBI->getParent()->getParent());
3260
3261   // BI may have other predecessors.  Because of this, we leave
3262   // it alone, but modify PBI.
3263
3264   // Make sure we get to CommonDest on True&True directions.
3265   Value *PBICond = PBI->getCondition();
3266   IRBuilder<NoFolder> Builder(PBI);
3267   if (PBIOp)
3268     PBICond = Builder.CreateNot(PBICond, PBICond->getName() + ".not");
3269
3270   Value *BICond = BI->getCondition();
3271   if (BIOp)
3272     BICond = Builder.CreateNot(BICond, BICond->getName() + ".not");
3273
3274   // Merge the conditions.
3275   Value *Cond = Builder.CreateOr(PBICond, BICond, "brmerge");
3276
3277   // Modify PBI to branch on the new condition to the new dests.
3278   PBI->setCondition(Cond);
3279   PBI->setSuccessor(0, CommonDest);
3280   PBI->setSuccessor(1, OtherDest);
3281
3282   // Update branch weight for PBI.
3283   uint64_t PredTrueWeight, PredFalseWeight, SuccTrueWeight, SuccFalseWeight;
3284   uint64_t PredCommon, PredOther, SuccCommon, SuccOther;
3285   bool HasWeights =
3286       extractPredSuccWeights(PBI, BI, PredTrueWeight, PredFalseWeight,
3287                              SuccTrueWeight, SuccFalseWeight);
3288   if (HasWeights) {
3289     PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3290     PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3291     SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3292     SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3293     // The weight to CommonDest should be PredCommon * SuccTotal +
3294     //                                    PredOther * SuccCommon.
3295     // The weight to OtherDest should be PredOther * SuccOther.
3296     uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther) +
3297                                   PredOther * SuccCommon,
3298                               PredOther * SuccOther};
3299     // Halve the weights if any of them cannot fit in an uint32_t
3300     FitWeights(NewWeights);
3301
3302     PBI->setMetadata(LLVMContext::MD_prof,
3303                      MDBuilder(BI->getContext())
3304                          .createBranchWeights(NewWeights[0], NewWeights[1]));
3305   }
3306
3307   // OtherDest may have phi nodes.  If so, add an entry from PBI's
3308   // block that are identical to the entries for BI's block.
3309   AddPredecessorToBlock(OtherDest, PBI->getParent(), BB);
3310
3311   // We know that the CommonDest already had an edge from PBI to
3312   // it.  If it has PHIs though, the PHIs may have different
3313   // entries for BB and PBI's BB.  If so, insert a select to make
3314   // them agree.
3315   PHINode *PN;
3316   for (BasicBlock::iterator II = CommonDest->begin();
3317        (PN = dyn_cast<PHINode>(II)); ++II) {
3318     Value *BIV = PN->getIncomingValueForBlock(BB);
3319     unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
3320     Value *PBIV = PN->getIncomingValue(PBBIdx);
3321     if (BIV != PBIV) {
3322       // Insert a select in PBI to pick the right value.
3323       SelectInst *NV = cast<SelectInst>(
3324           Builder.CreateSelect(PBICond, PBIV, BIV, PBIV->getName() + ".mux"));
3325       PN->setIncomingValue(PBBIdx, NV);
3326       // Although the select has the same condition as PBI, the original branch
3327       // weights for PBI do not apply to the new select because the select's
3328       // 'logical' edges are incoming edges of the phi that is eliminated, not
3329       // the outgoing edges of PBI.
3330       if (HasWeights) {
3331         uint64_t PredCommon = PBIOp ? PredFalseWeight : PredTrueWeight;
3332         uint64_t PredOther = PBIOp ? PredTrueWeight : PredFalseWeight;
3333         uint64_t SuccCommon = BIOp ? SuccFalseWeight : SuccTrueWeight;
3334         uint64_t SuccOther = BIOp ? SuccTrueWeight : SuccFalseWeight;
3335         // The weight to PredCommonDest should be PredCommon * SuccTotal.
3336         // The weight to PredOtherDest should be PredOther * SuccCommon.
3337         uint64_t NewWeights[2] = {PredCommon * (SuccCommon + SuccOther),
3338                                   PredOther * SuccCommon};
3339
3340         FitWeights(NewWeights);
3341
3342         NV->setMetadata(LLVMContext::MD_prof,
3343                         MDBuilder(BI->getContext())
3344                             .createBranchWeights(NewWeights[0], NewWeights[1]));
3345       }
3346     }
3347   }
3348
3349   DEBUG(dbgs() << "INTO: " << *PBI->getParent());
3350   DEBUG(dbgs() << *PBI->getParent()->getParent());
3351
3352   // This basic block is probably dead.  We know it has at least
3353   // one fewer predecessor.
3354   return true;
3355 }
3356
3357 // Simplifies a terminator by replacing it with a branch to TrueBB if Cond is
3358 // true or to FalseBB if Cond is false.
3359 // Takes care of updating the successors and removing the old terminator.
3360 // Also makes sure not to introduce new successors by assuming that edges to
3361 // non-successor TrueBBs and FalseBBs aren't reachable.
3362 static bool SimplifyTerminatorOnSelect(TerminatorInst *OldTerm, Value *Cond,
3363                                        BasicBlock *TrueBB, BasicBlock *FalseBB,
3364                                        uint32_t TrueWeight,
3365                                        uint32_t FalseWeight) {
3366   // Remove any superfluous successor edges from the CFG.
3367   // First, figure out which successors to preserve.
3368   // If TrueBB and FalseBB are equal, only try to preserve one copy of that
3369   // successor.
3370   BasicBlock *KeepEdge1 = TrueBB;
3371   BasicBlock *KeepEdge2 = TrueBB != FalseBB ? FalseBB : nullptr;
3372
3373   // Then remove the rest.
3374   for (BasicBlock *Succ : OldTerm->successors()) {
3375     // Make sure only to keep exactly one copy of each edge.
3376     if (Succ == KeepEdge1)
3377       KeepEdge1 = nullptr;
3378     else if (Succ == KeepEdge2)
3379       KeepEdge2 = nullptr;
3380     else
3381       Succ->removePredecessor(OldTerm->getParent(),
3382                               /*DontDeleteUselessPHIs=*/true);
3383   }
3384
3385   IRBuilder<> Builder(OldTerm);
3386   Builder.SetCurrentDebugLocation(OldTerm->getDebugLoc());
3387
3388   // Insert an appropriate new terminator.
3389   if (!KeepEdge1 && !KeepEdge2) {
3390     if (TrueBB == FalseBB)
3391       // We were only looking for one successor, and it was present.
3392       // Create an unconditional branch to it.
3393       Builder.CreateBr(TrueBB);
3394     else {
3395       // We found both of the successors we were looking for.
3396       // Create a conditional branch sharing the condition of the select.
3397       BranchInst *NewBI = Builder.CreateCondBr(Cond, TrueBB, FalseBB);
3398       if (TrueWeight != FalseWeight)
3399         NewBI->setMetadata(LLVMContext::MD_prof,
3400                            MDBuilder(OldTerm->getContext())
3401                                .createBranchWeights(TrueWeight, FalseWeight));
3402     }
3403   } else if (KeepEdge1 && (KeepEdge2 || TrueBB == FalseBB)) {
3404     // Neither of the selected blocks were successors, so this
3405     // terminator must be unreachable.
3406     new UnreachableInst(OldTerm->getContext(), OldTerm);
3407   } else {
3408     // One of the selected values was a successor, but the other wasn't.
3409     // Insert an unconditional branch to the one that was found;
3410     // the edge to the one that wasn't must be unreachable.
3411     if (!KeepEdge1)
3412       // Only TrueBB was found.
3413       Builder.CreateBr(TrueBB);
3414     else
3415       // Only FalseBB was found.
3416       Builder.CreateBr(FalseBB);
3417   }
3418
3419   EraseTerminatorInstAndDCECond(OldTerm);
3420   return true;
3421 }
3422
3423 // Replaces
3424 //   (switch (select cond, X, Y)) on constant X, Y
3425 // with a branch - conditional if X and Y lead to distinct BBs,
3426 // unconditional otherwise.
3427 static bool SimplifySwitchOnSelect(SwitchInst *SI, SelectInst *Select) {
3428   // Check for constant integer values in the select.
3429   ConstantInt *TrueVal = dyn_cast<ConstantInt>(Select->getTrueValue());
3430   ConstantInt *FalseVal = dyn_cast<ConstantInt>(Select->getFalseValue());
3431   if (!TrueVal || !FalseVal)
3432     return false;
3433
3434   // Find the relevant condition and destinations.
3435   Value *Condition = Select->getCondition();
3436   BasicBlock *TrueBB = SI->findCaseValue(TrueVal).getCaseSuccessor();
3437   BasicBlock *FalseBB = SI->findCaseValue(FalseVal).getCaseSuccessor();
3438
3439   // Get weight for TrueBB and FalseBB.
3440   uint32_t TrueWeight = 0, FalseWeight = 0;
3441   SmallVector<uint64_t, 8> Weights;
3442   bool HasWeights = HasBranchWeights(SI);
3443   if (HasWeights) {
3444     GetBranchWeights(SI, Weights);
3445     if (Weights.size() == 1 + SI->getNumCases()) {
3446       TrueWeight =
3447           (uint32_t)Weights[SI->findCaseValue(TrueVal).getSuccessorIndex()];
3448       FalseWeight =
3449           (uint32_t)Weights[SI->findCaseValue(FalseVal).getSuccessorIndex()];
3450     }
3451   }
3452
3453   // Perform the actual simplification.
3454   return SimplifyTerminatorOnSelect(SI, Condition, TrueBB, FalseBB, TrueWeight,
3455                                     FalseWeight);
3456 }
3457
3458 // Replaces
3459 //   (indirectbr (select cond, blockaddress(@fn, BlockA),
3460 //                             blockaddress(@fn, BlockB)))
3461 // with
3462 //   (br cond, BlockA, BlockB).
3463 static bool SimplifyIndirectBrOnSelect(IndirectBrInst *IBI, SelectInst *SI) {
3464   // Check that both operands of the select are block addresses.
3465   BlockAddress *TBA = dyn_cast<BlockAddress>(SI->getTrueValue());
3466   BlockAddress *FBA = dyn_cast<BlockAddress>(SI->getFalseValue());
3467   if (!TBA || !FBA)
3468     return false;
3469
3470   // Extract the actual blocks.
3471   BasicBlock *TrueBB = TBA->getBasicBlock();
3472   BasicBlock *FalseBB = FBA->getBasicBlock();
3473
3474   // Perform the actual simplification.
3475   return SimplifyTerminatorOnSelect(IBI, SI->getCondition(), TrueBB, FalseBB, 0,
3476                                     0);
3477 }
3478
3479 /// This is called when we find an icmp instruction
3480 /// (a seteq/setne with a constant) as the only instruction in a
3481 /// block that ends with an uncond branch.  We are looking for a very specific
3482 /// pattern that occurs when "A == 1 || A == 2 || A == 3" gets simplified.  In
3483 /// this case, we merge the first two "or's of icmp" into a switch, but then the
3484 /// default value goes to an uncond block with a seteq in it, we get something
3485 /// like:
3486 ///
3487 ///   switch i8 %A, label %DEFAULT [ i8 1, label %end    i8 2, label %end ]
3488 /// DEFAULT:
3489 ///   %tmp = icmp eq i8 %A, 92
3490 ///   br label %end
3491 /// end:
3492 ///   ... = phi i1 [ true, %entry ], [ %tmp, %DEFAULT ], [ true, %entry ]
3493 ///
3494 /// We prefer to split the edge to 'end' so that there is a true/false entry to
3495 /// the PHI, merging the third icmp into the switch.
3496 static bool TryToSimplifyUncondBranchWithICmpInIt(
3497     ICmpInst *ICI, IRBuilder<> &Builder, const DataLayout &DL,
3498     const TargetTransformInfo &TTI, unsigned BonusInstThreshold,
3499     AssumptionCache *AC) {
3500   BasicBlock *BB = ICI->getParent();
3501
3502   // If the block has any PHIs in it or the icmp has multiple uses, it is too
3503   // complex.
3504   if (isa<PHINode>(BB->begin()) || !ICI->hasOneUse())
3505     return false;
3506
3507   Value *V = ICI->getOperand(0);
3508   ConstantInt *Cst = cast<ConstantInt>(ICI->getOperand(1));
3509
3510   // The pattern we're looking for is where our only predecessor is a switch on
3511   // 'V' and this block is the default case for the switch.  In this case we can
3512   // fold the compared value into the switch to simplify things.
3513   BasicBlock *Pred = BB->getSinglePredecessor();
3514   if (!Pred || !isa<SwitchInst>(Pred->getTerminator()))
3515     return false;
3516
3517   SwitchInst *SI = cast<SwitchInst>(Pred->getTerminator());
3518   if (SI->getCondition() != V)
3519     return false;
3520
3521   // If BB is reachable on a non-default case, then we simply know the value of
3522   // V in this block.  Substitute it and constant fold the icmp instruction
3523   // away.
3524   if (SI->getDefaultDest() != BB) {
3525     ConstantInt *VVal = SI->findCaseDest(BB);
3526     assert(VVal && "Should have a unique destination value");
3527     ICI->setOperand(0, VVal);
3528
3529     if (Value *V = SimplifyInstruction(ICI, DL)) {
3530       ICI->replaceAllUsesWith(V);
3531       ICI->eraseFromParent();
3532     }
3533     // BB is now empty, so it is likely to simplify away.
3534     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
3535   }
3536
3537   // Ok, the block is reachable from the default dest.  If the constant we're
3538   // comparing exists in one of the other edges, then we can constant fold ICI
3539   // and zap it.
3540   if (SI->findCaseValue(Cst) != SI->case_default()) {
3541     Value *V;
3542     if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3543       V = ConstantInt::getFalse(BB->getContext());
3544     else
3545       V = ConstantInt::getTrue(BB->getContext());
3546
3547     ICI->replaceAllUsesWith(V);
3548     ICI->eraseFromParent();
3549     // BB is now empty, so it is likely to simplify away.
3550     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
3551   }
3552
3553   // The use of the icmp has to be in the 'end' block, by the only PHI node in
3554   // the block.
3555   BasicBlock *SuccBlock = BB->getTerminator()->getSuccessor(0);
3556   PHINode *PHIUse = dyn_cast<PHINode>(ICI->user_back());
3557   if (PHIUse == nullptr || PHIUse != &SuccBlock->front() ||
3558       isa<PHINode>(++BasicBlock::iterator(PHIUse)))
3559     return false;
3560
3561   // If the icmp is a SETEQ, then the default dest gets false, the new edge gets
3562   // true in the PHI.
3563   Constant *DefaultCst = ConstantInt::getTrue(BB->getContext());
3564   Constant *NewCst = ConstantInt::getFalse(BB->getContext());
3565
3566   if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
3567     std::swap(DefaultCst, NewCst);
3568
3569   // Replace ICI (which is used by the PHI for the default value) with true or
3570   // false depending on if it is EQ or NE.
3571   ICI->replaceAllUsesWith(DefaultCst);
3572   ICI->eraseFromParent();
3573
3574   // Okay, the switch goes to this block on a default value.  Add an edge from
3575   // the switch to the merge point on the compared value.
3576   BasicBlock *NewBB =
3577       BasicBlock::Create(BB->getContext(), "switch.edge", BB->getParent(), BB);
3578   SmallVector<uint64_t, 8> Weights;
3579   bool HasWeights = HasBranchWeights(SI);
3580   if (HasWeights) {
3581     GetBranchWeights(SI, Weights);
3582     if (Weights.size() == 1 + SI->getNumCases()) {
3583       // Split weight for default case to case for "Cst".
3584       Weights[0] = (Weights[0] + 1) >> 1;
3585       Weights.push_back(Weights[0]);
3586
3587       SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
3588       SI->setMetadata(
3589           LLVMContext::MD_prof,
3590           MDBuilder(SI->getContext()).createBranchWeights(MDWeights));
3591     }
3592   }
3593   SI->addCase(Cst, NewBB);
3594
3595   // NewBB branches to the phi block, add the uncond branch and the phi entry.
3596   Builder.SetInsertPoint(NewBB);
3597   Builder.SetCurrentDebugLocation(SI->getDebugLoc());
3598   Builder.CreateBr(SuccBlock);
3599   PHIUse->addIncoming(NewCst, NewBB);
3600   return true;
3601 }
3602
3603 /// The specified branch is a conditional branch.
3604 /// Check to see if it is branching on an or/and chain of icmp instructions, and
3605 /// fold it into a switch instruction if so.
3606 static bool SimplifyBranchOnICmpChain(BranchInst *BI, IRBuilder<> &Builder,
3607                                       const DataLayout &DL) {
3608   Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
3609   if (!Cond)
3610     return false;
3611
3612   // Change br (X == 0 | X == 1), T, F into a switch instruction.
3613   // If this is a bunch of seteq's or'd together, or if it's a bunch of
3614   // 'setne's and'ed together, collect them.
3615
3616   // Try to gather values from a chain of and/or to be turned into a switch
3617   ConstantComparesGatherer ConstantCompare(Cond, DL);
3618   // Unpack the result
3619   SmallVectorImpl<ConstantInt *> &Values = ConstantCompare.Vals;
3620   Value *CompVal = ConstantCompare.CompValue;
3621   unsigned UsedICmps = ConstantCompare.UsedICmps;
3622   Value *ExtraCase = ConstantCompare.Extra;
3623
3624   // If we didn't have a multiply compared value, fail.
3625   if (!CompVal)
3626     return false;
3627
3628   // Avoid turning single icmps into a switch.
3629   if (UsedICmps <= 1)
3630     return false;
3631
3632   bool TrueWhenEqual = (Cond->getOpcode() == Instruction::Or);
3633
3634   // There might be duplicate constants in the list, which the switch
3635   // instruction can't handle, remove them now.
3636   array_pod_sort(Values.begin(), Values.end(), ConstantIntSortPredicate);
3637   Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
3638
3639   // If Extra was used, we require at least two switch values to do the
3640   // transformation.  A switch with one value is just a conditional branch.
3641   if (ExtraCase && Values.size() < 2)
3642     return false;
3643
3644   // TODO: Preserve branch weight metadata, similarly to how
3645   // FoldValueComparisonIntoPredecessors preserves it.
3646
3647   // Figure out which block is which destination.
3648   BasicBlock *DefaultBB = BI->getSuccessor(1);
3649   BasicBlock *EdgeBB = BI->getSuccessor(0);
3650   if (!TrueWhenEqual)
3651     std::swap(DefaultBB, EdgeBB);
3652
3653   BasicBlock *BB = BI->getParent();
3654
3655   DEBUG(dbgs() << "Converting 'icmp' chain with " << Values.size()
3656                << " cases into SWITCH.  BB is:\n"
3657                << *BB);
3658
3659   // If there are any extra values that couldn't be folded into the switch
3660   // then we evaluate them with an explicit branch first.  Split the block
3661   // right before the condbr to handle it.
3662   if (ExtraCase) {
3663     BasicBlock *NewBB =
3664         BB->splitBasicBlock(BI->getIterator(), "switch.early.test");
3665     // Remove the uncond branch added to the old block.
3666     TerminatorInst *OldTI = BB->getTerminator();
3667     Builder.SetInsertPoint(OldTI);
3668
3669     if (TrueWhenEqual)
3670       Builder.CreateCondBr(ExtraCase, EdgeBB, NewBB);
3671     else
3672       Builder.CreateCondBr(ExtraCase, NewBB, EdgeBB);
3673
3674     OldTI->eraseFromParent();
3675
3676     // If there are PHI nodes in EdgeBB, then we need to add a new entry to them
3677     // for the edge we just added.
3678     AddPredecessorToBlock(EdgeBB, BB, NewBB);
3679
3680     DEBUG(dbgs() << "  ** 'icmp' chain unhandled condition: " << *ExtraCase
3681                  << "\nEXTRABB = " << *BB);
3682     BB = NewBB;
3683   }
3684
3685   Builder.SetInsertPoint(BI);
3686   // Convert pointer to int before we switch.
3687   if (CompVal->getType()->isPointerTy()) {
3688     CompVal = Builder.CreatePtrToInt(
3689         CompVal, DL.getIntPtrType(CompVal->getType()), "magicptr");
3690   }
3691
3692   // Create the new switch instruction now.
3693   SwitchInst *New = Builder.CreateSwitch(CompVal, DefaultBB, Values.size());
3694
3695   // Add all of the 'cases' to the switch instruction.
3696   for (unsigned i = 0, e = Values.size(); i != e; ++i)
3697     New->addCase(Values[i], EdgeBB);
3698
3699   // We added edges from PI to the EdgeBB.  As such, if there were any
3700   // PHI nodes in EdgeBB, they need entries to be added corresponding to
3701   // the number of edges added.
3702   for (BasicBlock::iterator BBI = EdgeBB->begin(); isa<PHINode>(BBI); ++BBI) {
3703     PHINode *PN = cast<PHINode>(BBI);
3704     Value *InVal = PN->getIncomingValueForBlock(BB);
3705     for (unsigned i = 0, e = Values.size() - 1; i != e; ++i)
3706       PN->addIncoming(InVal, BB);
3707   }
3708
3709   // Erase the old branch instruction.
3710   EraseTerminatorInstAndDCECond(BI);
3711
3712   DEBUG(dbgs() << "  ** 'icmp' chain result is:\n" << *BB << '\n');
3713   return true;
3714 }
3715
3716 bool SimplifyCFGOpt::SimplifyResume(ResumeInst *RI, IRBuilder<> &Builder) {
3717   if (isa<PHINode>(RI->getValue()))
3718     return SimplifyCommonResume(RI);
3719   else if (isa<LandingPadInst>(RI->getParent()->getFirstNonPHI()) &&
3720            RI->getValue() == RI->getParent()->getFirstNonPHI())
3721     // The resume must unwind the exception that caused control to branch here.
3722     return SimplifySingleResume(RI);
3723
3724   return false;
3725 }
3726
3727 // Simplify resume that is shared by several landing pads (phi of landing pad).
3728 bool SimplifyCFGOpt::SimplifyCommonResume(ResumeInst *RI) {
3729   BasicBlock *BB = RI->getParent();
3730
3731   // Check that there are no other instructions except for debug intrinsics
3732   // between the phi of landing pads (RI->getValue()) and resume instruction.
3733   BasicBlock::iterator I = cast<Instruction>(RI->getValue())->getIterator(),
3734                        E = RI->getIterator();
3735   while (++I != E)
3736     if (!isa<DbgInfoIntrinsic>(I))
3737       return false;
3738
3739   SmallSet<BasicBlock *, 4> TrivialUnwindBlocks;
3740   auto *PhiLPInst = cast<PHINode>(RI->getValue());
3741
3742   // Check incoming blocks to see if any of them are trivial.
3743   for (unsigned Idx = 0, End = PhiLPInst->getNumIncomingValues(); Idx != End;
3744        Idx++) {
3745     auto *IncomingBB = PhiLPInst->getIncomingBlock(Idx);
3746     auto *IncomingValue = PhiLPInst->getIncomingValue(Idx);
3747
3748     // If the block has other successors, we can not delete it because
3749     // it has other dependents.
3750     if (IncomingBB->getUniqueSuccessor() != BB)
3751       continue;
3752
3753     auto *LandingPad = dyn_cast<LandingPadInst>(IncomingBB->getFirstNonPHI());
3754     // Not the landing pad that caused the control to branch here.
3755     if (IncomingValue != LandingPad)
3756       continue;
3757
3758     bool isTrivial = true;
3759
3760     I = IncomingBB->getFirstNonPHI()->getIterator();
3761     E = IncomingBB->getTerminator()->getIterator();
3762     while (++I != E)
3763       if (!isa<DbgInfoIntrinsic>(I)) {
3764         isTrivial = false;
3765         break;
3766       }
3767
3768     if (isTrivial)
3769       TrivialUnwindBlocks.insert(IncomingBB);
3770   }
3771
3772   // If no trivial unwind blocks, don't do any simplifications.
3773   if (TrivialUnwindBlocks.empty())
3774     return false;
3775
3776   // Turn all invokes that unwind here into calls.
3777   for (auto *TrivialBB : TrivialUnwindBlocks) {
3778     // Blocks that will be simplified should be removed from the phi node.
3779     // Note there could be multiple edges to the resume block, and we need
3780     // to remove them all.
3781     while (PhiLPInst->getBasicBlockIndex(TrivialBB) != -1)
3782       BB->removePredecessor(TrivialBB, true);
3783
3784     for (pred_iterator PI = pred_begin(TrivialBB), PE = pred_end(TrivialBB);
3785          PI != PE;) {
3786       BasicBlock *Pred = *PI++;
3787       removeUnwindEdge(Pred);
3788     }
3789
3790     // In each SimplifyCFG run, only the current processed block can be erased.
3791     // Otherwise, it will break the iteration of SimplifyCFG pass. So instead
3792     // of erasing TrivialBB, we only remove the branch to the common resume
3793     // block so that we can later erase the resume block since it has no
3794     // predecessors.
3795     TrivialBB->getTerminator()->eraseFromParent();
3796     new UnreachableInst(RI->getContext(), TrivialBB);
3797   }
3798
3799   // Delete the resume block if all its predecessors have been removed.
3800   if (pred_empty(BB))
3801     BB->eraseFromParent();
3802
3803   return !TrivialUnwindBlocks.empty();
3804 }
3805
3806 // Simplify resume that is only used by a single (non-phi) landing pad.
3807 bool SimplifyCFGOpt::SimplifySingleResume(ResumeInst *RI) {
3808   BasicBlock *BB = RI->getParent();
3809   LandingPadInst *LPInst = dyn_cast<LandingPadInst>(BB->getFirstNonPHI());
3810   assert(RI->getValue() == LPInst &&
3811          "Resume must unwind the exception that caused control to here");
3812
3813   // Check that there are no other instructions except for debug intrinsics.
3814   BasicBlock::iterator I = LPInst->getIterator(), E = RI->getIterator();
3815   while (++I != E)
3816     if (!isa<DbgInfoIntrinsic>(I))
3817       return false;
3818
3819   // Turn all invokes that unwind here into calls and delete the basic block.
3820   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3821     BasicBlock *Pred = *PI++;
3822     removeUnwindEdge(Pred);
3823   }
3824
3825   // The landingpad is now unreachable.  Zap it.
3826   BB->eraseFromParent();
3827   if (LoopHeaders)
3828     LoopHeaders->erase(BB);
3829   return true;
3830 }
3831
3832 static bool removeEmptyCleanup(CleanupReturnInst *RI) {
3833   // If this is a trivial cleanup pad that executes no instructions, it can be
3834   // eliminated.  If the cleanup pad continues to the caller, any predecessor
3835   // that is an EH pad will be updated to continue to the caller and any
3836   // predecessor that terminates with an invoke instruction will have its invoke
3837   // instruction converted to a call instruction.  If the cleanup pad being
3838   // simplified does not continue to the caller, each predecessor will be
3839   // updated to continue to the unwind destination of the cleanup pad being
3840   // simplified.
3841   BasicBlock *BB = RI->getParent();
3842   CleanupPadInst *CPInst = RI->getCleanupPad();
3843   if (CPInst->getParent() != BB)
3844     // This isn't an empty cleanup.
3845     return false;
3846
3847   // We cannot kill the pad if it has multiple uses.  This typically arises
3848   // from unreachable basic blocks.
3849   if (!CPInst->hasOneUse())
3850     return false;
3851
3852   // Check that there are no other instructions except for benign intrinsics.
3853   BasicBlock::iterator I = CPInst->getIterator(), E = RI->getIterator();
3854   while (++I != E) {
3855     auto *II = dyn_cast<IntrinsicInst>(I);
3856     if (!II)
3857       return false;
3858
3859     Intrinsic::ID IntrinsicID = II->getIntrinsicID();
3860     switch (IntrinsicID) {
3861     case Intrinsic::dbg_declare:
3862     case Intrinsic::dbg_value:
3863     case Intrinsic::lifetime_end:
3864       break;
3865     default:
3866       return false;
3867     }
3868   }
3869
3870   // If the cleanup return we are simplifying unwinds to the caller, this will
3871   // set UnwindDest to nullptr.
3872   BasicBlock *UnwindDest = RI->getUnwindDest();
3873   Instruction *DestEHPad = UnwindDest ? UnwindDest->getFirstNonPHI() : nullptr;
3874
3875   // We're about to remove BB from the control flow.  Before we do, sink any
3876   // PHINodes into the unwind destination.  Doing this before changing the
3877   // control flow avoids some potentially slow checks, since we can currently
3878   // be certain that UnwindDest and BB have no common predecessors (since they
3879   // are both EH pads).
3880   if (UnwindDest) {
3881     // First, go through the PHI nodes in UnwindDest and update any nodes that
3882     // reference the block we are removing
3883     for (BasicBlock::iterator I = UnwindDest->begin(),
3884                               IE = DestEHPad->getIterator();
3885          I != IE; ++I) {
3886       PHINode *DestPN = cast<PHINode>(I);
3887
3888       int Idx = DestPN->getBasicBlockIndex(BB);
3889       // Since BB unwinds to UnwindDest, it has to be in the PHI node.
3890       assert(Idx != -1);
3891       // This PHI node has an incoming value that corresponds to a control
3892       // path through the cleanup pad we are removing.  If the incoming
3893       // value is in the cleanup pad, it must be a PHINode (because we
3894       // verified above that the block is otherwise empty).  Otherwise, the
3895       // value is either a constant or a value that dominates the cleanup
3896       // pad being removed.
3897       //
3898       // Because BB and UnwindDest are both EH pads, all of their
3899       // predecessors must unwind to these blocks, and since no instruction
3900       // can have multiple unwind destinations, there will be no overlap in
3901       // incoming blocks between SrcPN and DestPN.
3902       Value *SrcVal = DestPN->getIncomingValue(Idx);
3903       PHINode *SrcPN = dyn_cast<PHINode>(SrcVal);
3904
3905       // Remove the entry for the block we are deleting.
3906       DestPN->removeIncomingValue(Idx, false);
3907
3908       if (SrcPN && SrcPN->getParent() == BB) {
3909         // If the incoming value was a PHI node in the cleanup pad we are
3910         // removing, we need to merge that PHI node's incoming values into
3911         // DestPN.
3912         for (unsigned SrcIdx = 0, SrcE = SrcPN->getNumIncomingValues();
3913              SrcIdx != SrcE; ++SrcIdx) {
3914           DestPN->addIncoming(SrcPN->getIncomingValue(SrcIdx),
3915                               SrcPN->getIncomingBlock(SrcIdx));
3916         }
3917       } else {
3918         // Otherwise, the incoming value came from above BB and
3919         // so we can just reuse it.  We must associate all of BB's
3920         // predecessors with this value.
3921         for (auto *pred : predecessors(BB)) {
3922           DestPN->addIncoming(SrcVal, pred);
3923         }
3924       }
3925     }
3926
3927     // Sink any remaining PHI nodes directly into UnwindDest.
3928     Instruction *InsertPt = DestEHPad;
3929     for (BasicBlock::iterator I = BB->begin(),
3930                               IE = BB->getFirstNonPHI()->getIterator();
3931          I != IE;) {
3932       // The iterator must be incremented here because the instructions are
3933       // being moved to another block.
3934       PHINode *PN = cast<PHINode>(I++);
3935       if (PN->use_empty())
3936         // If the PHI node has no uses, just leave it.  It will be erased
3937         // when we erase BB below.
3938         continue;
3939
3940       // Otherwise, sink this PHI node into UnwindDest.
3941       // Any predecessors to UnwindDest which are not already represented
3942       // must be back edges which inherit the value from the path through
3943       // BB.  In this case, the PHI value must reference itself.
3944       for (auto *pred : predecessors(UnwindDest))
3945         if (pred != BB)
3946           PN->addIncoming(PN, pred);
3947       PN->moveBefore(InsertPt);
3948     }
3949   }
3950
3951   for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE;) {
3952     // The iterator must be updated here because we are removing this pred.
3953     BasicBlock *PredBB = *PI++;
3954     if (UnwindDest == nullptr) {
3955       removeUnwindEdge(PredBB);
3956     } else {
3957       TerminatorInst *TI = PredBB->getTerminator();
3958       TI->replaceUsesOfWith(BB, UnwindDest);
3959     }
3960   }
3961
3962   // The cleanup pad is now unreachable.  Zap it.
3963   BB->eraseFromParent();
3964   return true;
3965 }
3966
3967 // Try to merge two cleanuppads together.
3968 static bool mergeCleanupPad(CleanupReturnInst *RI) {
3969   // Skip any cleanuprets which unwind to caller, there is nothing to merge
3970   // with.
3971   BasicBlock *UnwindDest = RI->getUnwindDest();
3972   if (!UnwindDest)
3973     return false;
3974
3975   // This cleanupret isn't the only predecessor of this cleanuppad, it wouldn't
3976   // be safe to merge without code duplication.
3977   if (UnwindDest->getSinglePredecessor() != RI->getParent())
3978     return false;
3979
3980   // Verify that our cleanuppad's unwind destination is another cleanuppad.
3981   auto *SuccessorCleanupPad = dyn_cast<CleanupPadInst>(&UnwindDest->front());
3982   if (!SuccessorCleanupPad)
3983     return false;
3984
3985   CleanupPadInst *PredecessorCleanupPad = RI->getCleanupPad();
3986   // Replace any uses of the successor cleanupad with the predecessor pad
3987   // The only cleanuppad uses should be this cleanupret, it's cleanupret and
3988   // funclet bundle operands.
3989   SuccessorCleanupPad->replaceAllUsesWith(PredecessorCleanupPad);
3990   // Remove the old cleanuppad.
3991   SuccessorCleanupPad->eraseFromParent();
3992   // Now, we simply replace the cleanupret with a branch to the unwind
3993   // destination.
3994   BranchInst::Create(UnwindDest, RI->getParent());
3995   RI->eraseFromParent();
3996
3997   return true;
3998 }
3999
4000 bool SimplifyCFGOpt::SimplifyCleanupReturn(CleanupReturnInst *RI) {
4001   // It is possible to transiantly have an undef cleanuppad operand because we
4002   // have deleted some, but not all, dead blocks.
4003   // Eventually, this block will be deleted.
4004   if (isa<UndefValue>(RI->getOperand(0)))
4005     return false;
4006
4007   if (mergeCleanupPad(RI))
4008     return true;
4009
4010   if (removeEmptyCleanup(RI))
4011     return true;
4012
4013   return false;
4014 }
4015
4016 bool SimplifyCFGOpt::SimplifyReturn(ReturnInst *RI, IRBuilder<> &Builder) {
4017   BasicBlock *BB = RI->getParent();
4018   if (!BB->getFirstNonPHIOrDbg()->isTerminator())
4019     return false;
4020
4021   // Find predecessors that end with branches.
4022   SmallVector<BasicBlock *, 8> UncondBranchPreds;
4023   SmallVector<BranchInst *, 8> CondBranchPreds;
4024   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
4025     BasicBlock *P = *PI;
4026     TerminatorInst *PTI = P->getTerminator();
4027     if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
4028       if (BI->isUnconditional())
4029         UncondBranchPreds.push_back(P);
4030       else
4031         CondBranchPreds.push_back(BI);
4032     }
4033   }
4034
4035   // If we found some, do the transformation!
4036   if (!UncondBranchPreds.empty() && DupRet) {
4037     while (!UncondBranchPreds.empty()) {
4038       BasicBlock *Pred = UncondBranchPreds.pop_back_val();
4039       DEBUG(dbgs() << "FOLDING: " << *BB
4040                    << "INTO UNCOND BRANCH PRED: " << *Pred);
4041       (void)FoldReturnIntoUncondBranch(RI, BB, Pred);
4042     }
4043
4044     // If we eliminated all predecessors of the block, delete the block now.
4045     if (pred_empty(BB)) {
4046       // We know there are no successors, so just nuke the block.
4047       BB->eraseFromParent();
4048       if (LoopHeaders)
4049         LoopHeaders->erase(BB);
4050     }
4051
4052     return true;
4053   }
4054
4055   // Check out all of the conditional branches going to this return
4056   // instruction.  If any of them just select between returns, change the
4057   // branch itself into a select/return pair.
4058   while (!CondBranchPreds.empty()) {
4059     BranchInst *BI = CondBranchPreds.pop_back_val();
4060
4061     // Check to see if the non-BB successor is also a return block.
4062     if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
4063         isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
4064         SimplifyCondBranchToTwoReturns(BI, Builder))
4065       return true;
4066   }
4067   return false;
4068 }
4069
4070 bool SimplifyCFGOpt::SimplifyUnreachable(UnreachableInst *UI) {
4071   BasicBlock *BB = UI->getParent();
4072
4073   bool Changed = false;
4074
4075   // If there are any instructions immediately before the unreachable that can
4076   // be removed, do so.
4077   while (UI->getIterator() != BB->begin()) {
4078     BasicBlock::iterator BBI = UI->getIterator();
4079     --BBI;
4080     // Do not delete instructions that can have side effects which might cause
4081     // the unreachable to not be reachable; specifically, calls and volatile
4082     // operations may have this effect.
4083     if (isa<CallInst>(BBI) && !isa<DbgInfoIntrinsic>(BBI))
4084       break;
4085
4086     if (BBI->mayHaveSideEffects()) {
4087       if (auto *SI = dyn_cast<StoreInst>(BBI)) {
4088         if (SI->isVolatile())
4089           break;
4090       } else if (auto *LI = dyn_cast<LoadInst>(BBI)) {
4091         if (LI->isVolatile())
4092           break;
4093       } else if (auto *RMWI = dyn_cast<AtomicRMWInst>(BBI)) {
4094         if (RMWI->isVolatile())
4095           break;
4096       } else if (auto *CXI = dyn_cast<AtomicCmpXchgInst>(BBI)) {
4097         if (CXI->isVolatile())
4098           break;
4099       } else if (isa<CatchPadInst>(BBI)) {
4100         // A catchpad may invoke exception object constructors and such, which
4101         // in some languages can be arbitrary code, so be conservative by
4102         // default.
4103         // For CoreCLR, it just involves a type test, so can be removed.
4104         if (classifyEHPersonality(BB->getParent()->getPersonalityFn()) !=
4105             EHPersonality::CoreCLR)
4106           break;
4107       } else if (!isa<FenceInst>(BBI) && !isa<VAArgInst>(BBI) &&
4108                  !isa<LandingPadInst>(BBI)) {
4109         break;
4110       }
4111       // Note that deleting LandingPad's here is in fact okay, although it
4112       // involves a bit of subtle reasoning. If this inst is a LandingPad,
4113       // all the predecessors of this block will be the unwind edges of Invokes,
4114       // and we can therefore guarantee this block will be erased.
4115     }
4116
4117     // Delete this instruction (any uses are guaranteed to be dead)
4118     if (!BBI->use_empty())
4119       BBI->replaceAllUsesWith(UndefValue::get(BBI->getType()));
4120     BBI->eraseFromParent();
4121     Changed = true;
4122   }
4123
4124   // If the unreachable instruction is the first in the block, take a gander
4125   // at all of the predecessors of this instruction, and simplify them.
4126   if (&BB->front() != UI)
4127     return Changed;
4128
4129   SmallVector<BasicBlock *, 8> Preds(pred_begin(BB), pred_end(BB));
4130   for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
4131     TerminatorInst *TI = Preds[i]->getTerminator();
4132     IRBuilder<> Builder(TI);
4133     if (auto *BI = dyn_cast<BranchInst>(TI)) {
4134       if (BI->isUnconditional()) {
4135         if (BI->getSuccessor(0) == BB) {
4136           new UnreachableInst(TI->getContext(), TI);
4137           TI->eraseFromParent();
4138           Changed = true;
4139         }
4140       } else {
4141         if (BI->getSuccessor(0) == BB) {
4142           Builder.CreateBr(BI->getSuccessor(1));
4143           EraseTerminatorInstAndDCECond(BI);
4144         } else if (BI->getSuccessor(1) == BB) {
4145           Builder.CreateBr(BI->getSuccessor(0));
4146           EraseTerminatorInstAndDCECond(BI);
4147           Changed = true;
4148         }
4149       }
4150     } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
4151       for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e;
4152            ++i)
4153         if (i.getCaseSuccessor() == BB) {
4154           BB->removePredecessor(SI->getParent());
4155           SI->removeCase(i);
4156           --i;
4157           --e;
4158           Changed = true;
4159         }
4160     } else if (auto *II = dyn_cast<InvokeInst>(TI)) {
4161       if (II->getUnwindDest() == BB) {
4162         removeUnwindEdge(TI->getParent());
4163         Changed = true;
4164       }
4165     } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
4166       if (CSI->getUnwindDest() == BB) {
4167         removeUnwindEdge(TI->getParent());
4168         Changed = true;
4169         continue;
4170       }
4171
4172       for (CatchSwitchInst::handler_iterator I = CSI->handler_begin(),
4173                                              E = CSI->handler_end();
4174            I != E; ++I) {
4175         if (*I == BB) {
4176           CSI->removeHandler(I);
4177           --I;
4178           --E;
4179           Changed = true;
4180         }
4181       }
4182       if (CSI->getNumHandlers() == 0) {
4183         BasicBlock *CatchSwitchBB = CSI->getParent();
4184         if (CSI->hasUnwindDest()) {
4185           // Redirect preds to the unwind dest
4186           CatchSwitchBB->replaceAllUsesWith(CSI->getUnwindDest());
4187         } else {
4188           // Rewrite all preds to unwind to caller (or from invoke to call).
4189           SmallVector<BasicBlock *, 8> EHPreds(predecessors(CatchSwitchBB));
4190           for (BasicBlock *EHPred : EHPreds)
4191             removeUnwindEdge(EHPred);
4192         }
4193         // The catchswitch is no longer reachable.
4194         new UnreachableInst(CSI->getContext(), CSI);
4195         CSI->eraseFromParent();
4196         Changed = true;
4197       }
4198     } else if (isa<CleanupReturnInst>(TI)) {
4199       new UnreachableInst(TI->getContext(), TI);
4200       TI->eraseFromParent();
4201       Changed = true;
4202     }
4203   }
4204
4205   // If this block is now dead, remove it.
4206   if (pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) {
4207     // We know there are no successors, so just nuke the block.
4208     BB->eraseFromParent();
4209     if (LoopHeaders)
4210       LoopHeaders->erase(BB);
4211     return true;
4212   }
4213
4214   return Changed;
4215 }
4216
4217 static bool CasesAreContiguous(SmallVectorImpl<ConstantInt *> &Cases) {
4218   assert(Cases.size() >= 1);
4219
4220   array_pod_sort(Cases.begin(), Cases.end(), ConstantIntSortPredicate);
4221   for (size_t I = 1, E = Cases.size(); I != E; ++I) {
4222     if (Cases[I - 1]->getValue() != Cases[I]->getValue() + 1)
4223       return false;
4224   }
4225   return true;
4226 }
4227
4228 /// Turn a switch with two reachable destinations into an integer range
4229 /// comparison and branch.
4230 static bool TurnSwitchRangeIntoICmp(SwitchInst *SI, IRBuilder<> &Builder) {
4231   assert(SI->getNumCases() > 1 && "Degenerate switch?");
4232
4233   bool HasDefault =
4234       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4235
4236   // Partition the cases into two sets with different destinations.
4237   BasicBlock *DestA = HasDefault ? SI->getDefaultDest() : nullptr;
4238   BasicBlock *DestB = nullptr;
4239   SmallVector<ConstantInt *, 16> CasesA;
4240   SmallVector<ConstantInt *, 16> CasesB;
4241
4242   for (SwitchInst::CaseIt I : SI->cases()) {
4243     BasicBlock *Dest = I.getCaseSuccessor();
4244     if (!DestA)
4245       DestA = Dest;
4246     if (Dest == DestA) {
4247       CasesA.push_back(I.getCaseValue());
4248       continue;
4249     }
4250     if (!DestB)
4251       DestB = Dest;
4252     if (Dest == DestB) {
4253       CasesB.push_back(I.getCaseValue());
4254       continue;
4255     }
4256     return false; // More than two destinations.
4257   }
4258
4259   assert(DestA && DestB &&
4260          "Single-destination switch should have been folded.");
4261   assert(DestA != DestB);
4262   assert(DestB != SI->getDefaultDest());
4263   assert(!CasesB.empty() && "There must be non-default cases.");
4264   assert(!CasesA.empty() || HasDefault);
4265
4266   // Figure out if one of the sets of cases form a contiguous range.
4267   SmallVectorImpl<ConstantInt *> *ContiguousCases = nullptr;
4268   BasicBlock *ContiguousDest = nullptr;
4269   BasicBlock *OtherDest = nullptr;
4270   if (!CasesA.empty() && CasesAreContiguous(CasesA)) {
4271     ContiguousCases = &CasesA;
4272     ContiguousDest = DestA;
4273     OtherDest = DestB;
4274   } else if (CasesAreContiguous(CasesB)) {
4275     ContiguousCases = &CasesB;
4276     ContiguousDest = DestB;
4277     OtherDest = DestA;
4278   } else
4279     return false;
4280
4281   // Start building the compare and branch.
4282
4283   Constant *Offset = ConstantExpr::getNeg(ContiguousCases->back());
4284   Constant *NumCases =
4285       ConstantInt::get(Offset->getType(), ContiguousCases->size());
4286
4287   Value *Sub = SI->getCondition();
4288   if (!Offset->isNullValue())
4289     Sub = Builder.CreateAdd(Sub, Offset, Sub->getName() + ".off");
4290
4291   Value *Cmp;
4292   // If NumCases overflowed, then all possible values jump to the successor.
4293   if (NumCases->isNullValue() && !ContiguousCases->empty())
4294     Cmp = ConstantInt::getTrue(SI->getContext());
4295   else
4296     Cmp = Builder.CreateICmpULT(Sub, NumCases, "switch");
4297   BranchInst *NewBI = Builder.CreateCondBr(Cmp, ContiguousDest, OtherDest);
4298
4299   // Update weight for the newly-created conditional branch.
4300   if (HasBranchWeights(SI)) {
4301     SmallVector<uint64_t, 8> Weights;
4302     GetBranchWeights(SI, Weights);
4303     if (Weights.size() == 1 + SI->getNumCases()) {
4304       uint64_t TrueWeight = 0;
4305       uint64_t FalseWeight = 0;
4306       for (size_t I = 0, E = Weights.size(); I != E; ++I) {
4307         if (SI->getSuccessor(I) == ContiguousDest)
4308           TrueWeight += Weights[I];
4309         else
4310           FalseWeight += Weights[I];
4311       }
4312       while (TrueWeight > UINT32_MAX || FalseWeight > UINT32_MAX) {
4313         TrueWeight /= 2;
4314         FalseWeight /= 2;
4315       }
4316       NewBI->setMetadata(LLVMContext::MD_prof,
4317                          MDBuilder(SI->getContext())
4318                              .createBranchWeights((uint32_t)TrueWeight,
4319                                                   (uint32_t)FalseWeight));
4320     }
4321   }
4322
4323   // Prune obsolete incoming values off the successors' PHI nodes.
4324   for (auto BBI = ContiguousDest->begin(); isa<PHINode>(BBI); ++BBI) {
4325     unsigned PreviousEdges = ContiguousCases->size();
4326     if (ContiguousDest == SI->getDefaultDest())
4327       ++PreviousEdges;
4328     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4329       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4330   }
4331   for (auto BBI = OtherDest->begin(); isa<PHINode>(BBI); ++BBI) {
4332     unsigned PreviousEdges = SI->getNumCases() - ContiguousCases->size();
4333     if (OtherDest == SI->getDefaultDest())
4334       ++PreviousEdges;
4335     for (unsigned I = 0, E = PreviousEdges - 1; I != E; ++I)
4336       cast<PHINode>(BBI)->removeIncomingValue(SI->getParent());
4337   }
4338
4339   // Drop the switch.
4340   SI->eraseFromParent();
4341
4342   return true;
4343 }
4344
4345 /// Compute masked bits for the condition of a switch
4346 /// and use it to remove dead cases.
4347 static bool EliminateDeadSwitchCases(SwitchInst *SI, AssumptionCache *AC,
4348                                      const DataLayout &DL) {
4349   Value *Cond = SI->getCondition();
4350   unsigned Bits = Cond->getType()->getIntegerBitWidth();
4351   APInt KnownZero(Bits, 0), KnownOne(Bits, 0);
4352   computeKnownBits(Cond, KnownZero, KnownOne, DL, 0, AC, SI);
4353
4354   // We can also eliminate cases by determining that their values are outside of
4355   // the limited range of the condition based on how many significant (non-sign)
4356   // bits are in the condition value.
4357   unsigned ExtraSignBits = ComputeNumSignBits(Cond, DL, 0, AC, SI) - 1;
4358   unsigned MaxSignificantBitsInCond = Bits - ExtraSignBits;
4359
4360   // Gather dead cases.
4361   SmallVector<ConstantInt *, 8> DeadCases;
4362   for (auto &Case : SI->cases()) {
4363     APInt CaseVal = Case.getCaseValue()->getValue();
4364     if ((CaseVal & KnownZero) != 0 || (CaseVal & KnownOne) != KnownOne ||
4365         (CaseVal.getMinSignedBits() > MaxSignificantBitsInCond)) {
4366       DeadCases.push_back(Case.getCaseValue());
4367       DEBUG(dbgs() << "SimplifyCFG: switch case " << CaseVal << " is dead.\n");
4368     }
4369   }
4370
4371   // If we can prove that the cases must cover all possible values, the
4372   // default destination becomes dead and we can remove it.  If we know some
4373   // of the bits in the value, we can use that to more precisely compute the
4374   // number of possible unique case values.
4375   bool HasDefault =
4376       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
4377   const unsigned NumUnknownBits =
4378       Bits - (KnownZero.Or(KnownOne)).countPopulation();
4379   assert(NumUnknownBits <= Bits);
4380   if (HasDefault && DeadCases.empty() &&
4381       NumUnknownBits < 64 /* avoid overflow */ &&
4382       SI->getNumCases() == (1ULL << NumUnknownBits)) {
4383     DEBUG(dbgs() << "SimplifyCFG: switch default is dead.\n");
4384     BasicBlock *NewDefault =
4385         SplitBlockPredecessors(SI->getDefaultDest(), SI->getParent(), "");
4386     SI->setDefaultDest(&*NewDefault);
4387     SplitBlock(&*NewDefault, &NewDefault->front());
4388     auto *OldTI = NewDefault->getTerminator();
4389     new UnreachableInst(SI->getContext(), OldTI);
4390     EraseTerminatorInstAndDCECond(OldTI);
4391     return true;
4392   }
4393
4394   SmallVector<uint64_t, 8> Weights;
4395   bool HasWeight = HasBranchWeights(SI);
4396   if (HasWeight) {
4397     GetBranchWeights(SI, Weights);
4398     HasWeight = (Weights.size() == 1 + SI->getNumCases());
4399   }
4400
4401   // Remove dead cases from the switch.
4402   for (ConstantInt *DeadCase : DeadCases) {
4403     SwitchInst::CaseIt Case = SI->findCaseValue(DeadCase);
4404     assert(Case != SI->case_default() &&
4405            "Case was not found. Probably mistake in DeadCases forming.");
4406     if (HasWeight) {
4407       std::swap(Weights[Case.getCaseIndex() + 1], Weights.back());
4408       Weights.pop_back();
4409     }
4410
4411     // Prune unused values from PHI nodes.
4412     Case.getCaseSuccessor()->removePredecessor(SI->getParent());
4413     SI->removeCase(Case);
4414   }
4415   if (HasWeight && Weights.size() >= 2) {
4416     SmallVector<uint32_t, 8> MDWeights(Weights.begin(), Weights.end());
4417     SI->setMetadata(LLVMContext::MD_prof,
4418                     MDBuilder(SI->getParent()->getContext())
4419                         .createBranchWeights(MDWeights));
4420   }
4421
4422   return !DeadCases.empty();
4423 }
4424
4425 /// If BB would be eligible for simplification by
4426 /// TryToSimplifyUncondBranchFromEmptyBlock (i.e. it is empty and terminated
4427 /// by an unconditional branch), look at the phi node for BB in the successor
4428 /// block and see if the incoming value is equal to CaseValue. If so, return
4429 /// the phi node, and set PhiIndex to BB's index in the phi node.
4430 static PHINode *FindPHIForConditionForwarding(ConstantInt *CaseValue,
4431                                               BasicBlock *BB, int *PhiIndex) {
4432   if (BB->getFirstNonPHIOrDbg() != BB->getTerminator())
4433     return nullptr; // BB must be empty to be a candidate for simplification.
4434   if (!BB->getSinglePredecessor())
4435     return nullptr; // BB must be dominated by the switch.
4436
4437   BranchInst *Branch = dyn_cast<BranchInst>(BB->getTerminator());
4438   if (!Branch || !Branch->isUnconditional())
4439     return nullptr; // Terminator must be unconditional branch.
4440
4441   BasicBlock *Succ = Branch->getSuccessor(0);
4442
4443   BasicBlock::iterator I = Succ->begin();
4444   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
4445     int Idx = PHI->getBasicBlockIndex(BB);
4446     assert(Idx >= 0 && "PHI has no entry for predecessor?");
4447
4448     Value *InValue = PHI->getIncomingValue(Idx);
4449     if (InValue != CaseValue)
4450       continue;
4451
4452     *PhiIndex = Idx;
4453     return PHI;
4454   }
4455
4456   return nullptr;
4457 }
4458
4459 /// Try to forward the condition of a switch instruction to a phi node
4460 /// dominated by the switch, if that would mean that some of the destination
4461 /// blocks of the switch can be folded away.
4462 /// Returns true if a change is made.
4463 static bool ForwardSwitchConditionToPHI(SwitchInst *SI) {
4464   typedef DenseMap<PHINode *, SmallVector<int, 4>> ForwardingNodesMap;
4465   ForwardingNodesMap ForwardingNodes;
4466
4467   for (SwitchInst::CaseIt I = SI->case_begin(), E = SI->case_end(); I != E;
4468        ++I) {
4469     ConstantInt *CaseValue = I.getCaseValue();
4470     BasicBlock *CaseDest = I.getCaseSuccessor();
4471
4472     int PhiIndex;
4473     PHINode *PHI =
4474         FindPHIForConditionForwarding(CaseValue, CaseDest, &PhiIndex);
4475     if (!PHI)
4476       continue;
4477
4478     ForwardingNodes[PHI].push_back(PhiIndex);
4479   }
4480
4481   bool Changed = false;
4482
4483   for (ForwardingNodesMap::iterator I = ForwardingNodes.begin(),
4484                                     E = ForwardingNodes.end();
4485        I != E; ++I) {
4486     PHINode *Phi = I->first;
4487     SmallVectorImpl<int> &Indexes = I->second;
4488
4489     if (Indexes.size() < 2)
4490       continue;
4491
4492     for (size_t I = 0, E = Indexes.size(); I != E; ++I)
4493       Phi->setIncomingValue(Indexes[I], SI->getCondition());
4494     Changed = true;
4495   }
4496
4497   return Changed;
4498 }
4499
4500 /// Return true if the backend will be able to handle
4501 /// initializing an array of constants like C.
4502 static bool ValidLookupTableConstant(Constant *C, const TargetTransformInfo &TTI) {
4503   if (C->isThreadDependent())
4504     return false;
4505   if (C->isDLLImportDependent())
4506     return false;
4507
4508   if (!isa<ConstantFP>(C) && !isa<ConstantInt>(C) &&
4509       !isa<ConstantPointerNull>(C) && !isa<GlobalValue>(C) &&
4510       !isa<UndefValue>(C) && !isa<ConstantExpr>(C))
4511     return false;
4512
4513   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
4514     if (!CE->isGEPWithNoNotionalOverIndexing())
4515       return false;
4516     if (!ValidLookupTableConstant(CE->getOperand(0), TTI))
4517       return false;
4518   }
4519
4520   if (!TTI.shouldBuildLookupTablesForConstant(C))
4521     return false;
4522
4523   return true;
4524 }
4525
4526 /// If V is a Constant, return it. Otherwise, try to look up
4527 /// its constant value in ConstantPool, returning 0 if it's not there.
4528 static Constant *
4529 LookupConstant(Value *V,
4530                const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4531   if (Constant *C = dyn_cast<Constant>(V))
4532     return C;
4533   return ConstantPool.lookup(V);
4534 }
4535
4536 /// Try to fold instruction I into a constant. This works for
4537 /// simple instructions such as binary operations where both operands are
4538 /// constant or can be replaced by constants from the ConstantPool. Returns the
4539 /// resulting constant on success, 0 otherwise.
4540 static Constant *
4541 ConstantFold(Instruction *I, const DataLayout &DL,
4542              const SmallDenseMap<Value *, Constant *> &ConstantPool) {
4543   if (SelectInst *Select = dyn_cast<SelectInst>(I)) {
4544     Constant *A = LookupConstant(Select->getCondition(), ConstantPool);
4545     if (!A)
4546       return nullptr;
4547     if (A->isAllOnesValue())
4548       return LookupConstant(Select->getTrueValue(), ConstantPool);
4549     if (A->isNullValue())
4550       return LookupConstant(Select->getFalseValue(), ConstantPool);
4551     return nullptr;
4552   }
4553
4554   SmallVector<Constant *, 4> COps;
4555   for (unsigned N = 0, E = I->getNumOperands(); N != E; ++N) {
4556     if (Constant *A = LookupConstant(I->getOperand(N), ConstantPool))
4557       COps.push_back(A);
4558     else
4559       return nullptr;
4560   }
4561
4562   if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
4563     return ConstantFoldCompareInstOperands(Cmp->getPredicate(), COps[0],
4564                                            COps[1], DL);
4565   }
4566
4567   return ConstantFoldInstOperands(I, COps, DL);
4568 }
4569
4570 /// Try to determine the resulting constant values in phi nodes
4571 /// at the common destination basic block, *CommonDest, for one of the case
4572 /// destionations CaseDest corresponding to value CaseVal (0 for the default
4573 /// case), of a switch instruction SI.
4574 static bool
4575 GetCaseResults(SwitchInst *SI, ConstantInt *CaseVal, BasicBlock *CaseDest,
4576                BasicBlock **CommonDest,
4577                SmallVectorImpl<std::pair<PHINode *, Constant *>> &Res,
4578                const DataLayout &DL, const TargetTransformInfo &TTI) {
4579   // The block from which we enter the common destination.
4580   BasicBlock *Pred = SI->getParent();
4581
4582   // If CaseDest is empty except for some side-effect free instructions through
4583   // which we can constant-propagate the CaseVal, continue to its successor.
4584   SmallDenseMap<Value *, Constant *> ConstantPool;
4585   ConstantPool.insert(std::make_pair(SI->getCondition(), CaseVal));
4586   for (BasicBlock::iterator I = CaseDest->begin(), E = CaseDest->end(); I != E;
4587        ++I) {
4588     if (TerminatorInst *T = dyn_cast<TerminatorInst>(I)) {
4589       // If the terminator is a simple branch, continue to the next block.
4590       if (T->getNumSuccessors() != 1 || T->isExceptional())
4591         return false;
4592       Pred = CaseDest;
4593       CaseDest = T->getSuccessor(0);
4594     } else if (isa<DbgInfoIntrinsic>(I)) {
4595       // Skip debug intrinsic.
4596       continue;
4597     } else if (Constant *C = ConstantFold(&*I, DL, ConstantPool)) {
4598       // Instruction is side-effect free and constant.
4599
4600       // If the instruction has uses outside this block or a phi node slot for
4601       // the block, it is not safe to bypass the instruction since it would then
4602       // no longer dominate all its uses.
4603       for (auto &Use : I->uses()) {
4604         User *User = Use.getUser();
4605         if (Instruction *I = dyn_cast<Instruction>(User))
4606           if (I->getParent() == CaseDest)
4607             continue;
4608         if (PHINode *Phi = dyn_cast<PHINode>(User))
4609           if (Phi->getIncomingBlock(Use) == CaseDest)
4610             continue;
4611         return false;
4612       }
4613
4614       ConstantPool.insert(std::make_pair(&*I, C));
4615     } else {
4616       break;
4617     }
4618   }
4619
4620   // If we did not have a CommonDest before, use the current one.
4621   if (!*CommonDest)
4622     *CommonDest = CaseDest;
4623   // If the destination isn't the common one, abort.
4624   if (CaseDest != *CommonDest)
4625     return false;
4626
4627   // Get the values for this case from phi nodes in the destination block.
4628   BasicBlock::iterator I = (*CommonDest)->begin();
4629   while (PHINode *PHI = dyn_cast<PHINode>(I++)) {
4630     int Idx = PHI->getBasicBlockIndex(Pred);
4631     if (Idx == -1)
4632       continue;
4633
4634     Constant *ConstVal =
4635         LookupConstant(PHI->getIncomingValue(Idx), ConstantPool);
4636     if (!ConstVal)
4637       return false;
4638
4639     // Be conservative about which kinds of constants we support.
4640     if (!ValidLookupTableConstant(ConstVal, TTI))
4641       return false;
4642
4643     Res.push_back(std::make_pair(PHI, ConstVal));
4644   }
4645
4646   return Res.size() > 0;
4647 }
4648
4649 // Helper function used to add CaseVal to the list of cases that generate
4650 // Result.
4651 static void MapCaseToResult(ConstantInt *CaseVal,
4652                             SwitchCaseResultVectorTy &UniqueResults,
4653                             Constant *Result) {
4654   for (auto &I : UniqueResults) {
4655     if (I.first == Result) {
4656       I.second.push_back(CaseVal);
4657       return;
4658     }
4659   }
4660   UniqueResults.push_back(
4661       std::make_pair(Result, SmallVector<ConstantInt *, 4>(1, CaseVal)));
4662 }
4663
4664 // Helper function that initializes a map containing
4665 // results for the PHI node of the common destination block for a switch
4666 // instruction. Returns false if multiple PHI nodes have been found or if
4667 // there is not a common destination block for the switch.
4668 static bool InitializeUniqueCases(SwitchInst *SI, PHINode *&PHI,
4669                                   BasicBlock *&CommonDest,
4670                                   SwitchCaseResultVectorTy &UniqueResults,
4671                                   Constant *&DefaultResult,
4672                                   const DataLayout &DL,
4673                                   const TargetTransformInfo &TTI) {
4674   for (auto &I : SI->cases()) {
4675     ConstantInt *CaseVal = I.getCaseValue();
4676
4677     // Resulting value at phi nodes for this case value.
4678     SwitchCaseResultsTy Results;
4679     if (!GetCaseResults(SI, CaseVal, I.getCaseSuccessor(), &CommonDest, Results,
4680                         DL, TTI))
4681       return false;
4682
4683     // Only one value per case is permitted
4684     if (Results.size() > 1)
4685       return false;
4686     MapCaseToResult(CaseVal, UniqueResults, Results.begin()->second);
4687
4688     // Check the PHI consistency.
4689     if (!PHI)
4690       PHI = Results[0].first;
4691     else if (PHI != Results[0].first)
4692       return false;
4693   }
4694   // Find the default result value.
4695   SmallVector<std::pair<PHINode *, Constant *>, 1> DefaultResults;
4696   BasicBlock *DefaultDest = SI->getDefaultDest();
4697   GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest, DefaultResults,
4698                  DL, TTI);
4699   // If the default value is not found abort unless the default destination
4700   // is unreachable.
4701   DefaultResult =
4702       DefaultResults.size() == 1 ? DefaultResults.begin()->second : nullptr;
4703   if ((!DefaultResult &&
4704        !isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg())))
4705     return false;
4706
4707   return true;
4708 }
4709
4710 // Helper function that checks if it is possible to transform a switch with only
4711 // two cases (or two cases + default) that produces a result into a select.
4712 // Example:
4713 // switch (a) {
4714 //   case 10:                %0 = icmp eq i32 %a, 10
4715 //     return 10;            %1 = select i1 %0, i32 10, i32 4
4716 //   case 20:        ---->   %2 = icmp eq i32 %a, 20
4717 //     return 2;             %3 = select i1 %2, i32 2, i32 %1
4718 //   default:
4719 //     return 4;
4720 // }
4721 static Value *ConvertTwoCaseSwitch(const SwitchCaseResultVectorTy &ResultVector,
4722                                    Constant *DefaultResult, Value *Condition,
4723                                    IRBuilder<> &Builder) {
4724   assert(ResultVector.size() == 2 &&
4725          "We should have exactly two unique results at this point");
4726   // If we are selecting between only two cases transform into a simple
4727   // select or a two-way select if default is possible.
4728   if (ResultVector[0].second.size() == 1 &&
4729       ResultVector[1].second.size() == 1) {
4730     ConstantInt *const FirstCase = ResultVector[0].second[0];
4731     ConstantInt *const SecondCase = ResultVector[1].second[0];
4732
4733     bool DefaultCanTrigger = DefaultResult;
4734     Value *SelectValue = ResultVector[1].first;
4735     if (DefaultCanTrigger) {
4736       Value *const ValueCompare =
4737           Builder.CreateICmpEQ(Condition, SecondCase, "switch.selectcmp");
4738       SelectValue = Builder.CreateSelect(ValueCompare, ResultVector[1].first,
4739                                          DefaultResult, "switch.select");
4740     }
4741     Value *const ValueCompare =
4742         Builder.CreateICmpEQ(Condition, FirstCase, "switch.selectcmp");
4743     return Builder.CreateSelect(ValueCompare, ResultVector[0].first,
4744                                 SelectValue, "switch.select");
4745   }
4746
4747   return nullptr;
4748 }
4749
4750 // Helper function to cleanup a switch instruction that has been converted into
4751 // a select, fixing up PHI nodes and basic blocks.
4752 static void RemoveSwitchAfterSelectConversion(SwitchInst *SI, PHINode *PHI,
4753                                               Value *SelectValue,
4754                                               IRBuilder<> &Builder) {
4755   BasicBlock *SelectBB = SI->getParent();
4756   while (PHI->getBasicBlockIndex(SelectBB) >= 0)
4757     PHI->removeIncomingValue(SelectBB);
4758   PHI->addIncoming(SelectValue, SelectBB);
4759
4760   Builder.CreateBr(PHI->getParent());
4761
4762   // Remove the switch.
4763   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
4764     BasicBlock *Succ = SI->getSuccessor(i);
4765
4766     if (Succ == PHI->getParent())
4767       continue;
4768     Succ->removePredecessor(SelectBB);
4769   }
4770   SI->eraseFromParent();
4771 }
4772
4773 /// If the switch is only used to initialize one or more
4774 /// phi nodes in a common successor block with only two different
4775 /// constant values, replace the switch with select.
4776 static bool SwitchToSelect(SwitchInst *SI, IRBuilder<> &Builder,
4777                            AssumptionCache *AC, const DataLayout &DL,
4778                            const TargetTransformInfo &TTI) {
4779   Value *const Cond = SI->getCondition();
4780   PHINode *PHI = nullptr;
4781   BasicBlock *CommonDest = nullptr;
4782   Constant *DefaultResult;
4783   SwitchCaseResultVectorTy UniqueResults;
4784   // Collect all the cases that will deliver the same value from the switch.
4785   if (!InitializeUniqueCases(SI, PHI, CommonDest, UniqueResults, DefaultResult,
4786                              DL, TTI))
4787     return false;
4788   // Selects choose between maximum two values.
4789   if (UniqueResults.size() != 2)
4790     return false;
4791   assert(PHI != nullptr && "PHI for value select not found");
4792
4793   Builder.SetInsertPoint(SI);
4794   Value *SelectValue =
4795       ConvertTwoCaseSwitch(UniqueResults, DefaultResult, Cond, Builder);
4796   if (SelectValue) {
4797     RemoveSwitchAfterSelectConversion(SI, PHI, SelectValue, Builder);
4798     return true;
4799   }
4800   // The switch couldn't be converted into a select.
4801   return false;
4802 }
4803
4804 namespace {
4805
4806 /// This class represents a lookup table that can be used to replace a switch.
4807 class SwitchLookupTable {
4808 public:
4809   /// Create a lookup table to use as a switch replacement with the contents
4810   /// of Values, using DefaultValue to fill any holes in the table.
4811   SwitchLookupTable(
4812       Module &M, uint64_t TableSize, ConstantInt *Offset,
4813       const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4814       Constant *DefaultValue, const DataLayout &DL);
4815
4816   /// Build instructions with Builder to retrieve the value at
4817   /// the position given by Index in the lookup table.
4818   Value *BuildLookup(Value *Index, IRBuilder<> &Builder);
4819
4820   /// Return true if a table with TableSize elements of
4821   /// type ElementType would fit in a target-legal register.
4822   static bool WouldFitInRegister(const DataLayout &DL, uint64_t TableSize,
4823                                  Type *ElementType);
4824
4825 private:
4826   // Depending on the contents of the table, it can be represented in
4827   // different ways.
4828   enum {
4829     // For tables where each element contains the same value, we just have to
4830     // store that single value and return it for each lookup.
4831     SingleValueKind,
4832
4833     // For tables where there is a linear relationship between table index
4834     // and values. We calculate the result with a simple multiplication
4835     // and addition instead of a table lookup.
4836     LinearMapKind,
4837
4838     // For small tables with integer elements, we can pack them into a bitmap
4839     // that fits into a target-legal register. Values are retrieved by
4840     // shift and mask operations.
4841     BitMapKind,
4842
4843     // The table is stored as an array of values. Values are retrieved by load
4844     // instructions from the table.
4845     ArrayKind
4846   } Kind;
4847
4848   // For SingleValueKind, this is the single value.
4849   Constant *SingleValue;
4850
4851   // For BitMapKind, this is the bitmap.
4852   ConstantInt *BitMap;
4853   IntegerType *BitMapElementTy;
4854
4855   // For LinearMapKind, these are the constants used to derive the value.
4856   ConstantInt *LinearOffset;
4857   ConstantInt *LinearMultiplier;
4858
4859   // For ArrayKind, this is the array.
4860   GlobalVariable *Array;
4861 };
4862
4863 } // end anonymous namespace
4864
4865 SwitchLookupTable::SwitchLookupTable(
4866     Module &M, uint64_t TableSize, ConstantInt *Offset,
4867     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values,
4868     Constant *DefaultValue, const DataLayout &DL)
4869     : SingleValue(nullptr), BitMap(nullptr), BitMapElementTy(nullptr),
4870       LinearOffset(nullptr), LinearMultiplier(nullptr), Array(nullptr) {
4871   assert(Values.size() && "Can't build lookup table without values!");
4872   assert(TableSize >= Values.size() && "Can't fit values in table!");
4873
4874   // If all values in the table are equal, this is that value.
4875   SingleValue = Values.begin()->second;
4876
4877   Type *ValueType = Values.begin()->second->getType();
4878
4879   // Build up the table contents.
4880   SmallVector<Constant *, 64> TableContents(TableSize);
4881   for (size_t I = 0, E = Values.size(); I != E; ++I) {
4882     ConstantInt *CaseVal = Values[I].first;
4883     Constant *CaseRes = Values[I].second;
4884     assert(CaseRes->getType() == ValueType);
4885
4886     uint64_t Idx = (CaseVal->getValue() - Offset->getValue()).getLimitedValue();
4887     TableContents[Idx] = CaseRes;
4888
4889     if (CaseRes != SingleValue)
4890       SingleValue = nullptr;
4891   }
4892
4893   // Fill in any holes in the table with the default result.
4894   if (Values.size() < TableSize) {
4895     assert(DefaultValue &&
4896            "Need a default value to fill the lookup table holes.");
4897     assert(DefaultValue->getType() == ValueType);
4898     for (uint64_t I = 0; I < TableSize; ++I) {
4899       if (!TableContents[I])
4900         TableContents[I] = DefaultValue;
4901     }
4902
4903     if (DefaultValue != SingleValue)
4904       SingleValue = nullptr;
4905   }
4906
4907   // If each element in the table contains the same value, we only need to store
4908   // that single value.
4909   if (SingleValue) {
4910     Kind = SingleValueKind;
4911     return;
4912   }
4913
4914   // Check if we can derive the value with a linear transformation from the
4915   // table index.
4916   if (isa<IntegerType>(ValueType)) {
4917     bool LinearMappingPossible = true;
4918     APInt PrevVal;
4919     APInt DistToPrev;
4920     assert(TableSize >= 2 && "Should be a SingleValue table.");
4921     // Check if there is the same distance between two consecutive values.
4922     for (uint64_t I = 0; I < TableSize; ++I) {
4923       ConstantInt *ConstVal = dyn_cast<ConstantInt>(TableContents[I]);
4924       if (!ConstVal) {
4925         // This is an undef. We could deal with it, but undefs in lookup tables
4926         // are very seldom. It's probably not worth the additional complexity.
4927         LinearMappingPossible = false;
4928         break;
4929       }
4930       APInt Val = ConstVal->getValue();
4931       if (I != 0) {
4932         APInt Dist = Val - PrevVal;
4933         if (I == 1) {
4934           DistToPrev = Dist;
4935         } else if (Dist != DistToPrev) {
4936           LinearMappingPossible = false;
4937           break;
4938         }
4939       }
4940       PrevVal = Val;
4941     }
4942     if (LinearMappingPossible) {
4943       LinearOffset = cast<ConstantInt>(TableContents[0]);
4944       LinearMultiplier = ConstantInt::get(M.getContext(), DistToPrev);
4945       Kind = LinearMapKind;
4946       ++NumLinearMaps;
4947       return;
4948     }
4949   }
4950
4951   // If the type is integer and the table fits in a register, build a bitmap.
4952   if (WouldFitInRegister(DL, TableSize, ValueType)) {
4953     IntegerType *IT = cast<IntegerType>(ValueType);
4954     APInt TableInt(TableSize * IT->getBitWidth(), 0);
4955     for (uint64_t I = TableSize; I > 0; --I) {
4956       TableInt <<= IT->getBitWidth();
4957       // Insert values into the bitmap. Undef values are set to zero.
4958       if (!isa<UndefValue>(TableContents[I - 1])) {
4959         ConstantInt *Val = cast<ConstantInt>(TableContents[I - 1]);
4960         TableInt |= Val->getValue().zext(TableInt.getBitWidth());
4961       }
4962     }
4963     BitMap = ConstantInt::get(M.getContext(), TableInt);
4964     BitMapElementTy = IT;
4965     Kind = BitMapKind;
4966     ++NumBitMaps;
4967     return;
4968   }
4969
4970   // Store the table in an array.
4971   ArrayType *ArrayTy = ArrayType::get(ValueType, TableSize);
4972   Constant *Initializer = ConstantArray::get(ArrayTy, TableContents);
4973
4974   Array = new GlobalVariable(M, ArrayTy, /*constant=*/true,
4975                              GlobalVariable::PrivateLinkage, Initializer,
4976                              "switch.table");
4977   Array->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
4978   Kind = ArrayKind;
4979 }
4980
4981 Value *SwitchLookupTable::BuildLookup(Value *Index, IRBuilder<> &Builder) {
4982   switch (Kind) {
4983   case SingleValueKind:
4984     return SingleValue;
4985   case LinearMapKind: {
4986     // Derive the result value from the input value.
4987     Value *Result = Builder.CreateIntCast(Index, LinearMultiplier->getType(),
4988                                           false, "switch.idx.cast");
4989     if (!LinearMultiplier->isOne())
4990       Result = Builder.CreateMul(Result, LinearMultiplier, "switch.idx.mult");
4991     if (!LinearOffset->isZero())
4992       Result = Builder.CreateAdd(Result, LinearOffset, "switch.offset");
4993     return Result;
4994   }
4995   case BitMapKind: {
4996     // Type of the bitmap (e.g. i59).
4997     IntegerType *MapTy = BitMap->getType();
4998
4999     // Cast Index to the same type as the bitmap.
5000     // Note: The Index is <= the number of elements in the table, so
5001     // truncating it to the width of the bitmask is safe.
5002     Value *ShiftAmt = Builder.CreateZExtOrTrunc(Index, MapTy, "switch.cast");
5003
5004     // Multiply the shift amount by the element width.
5005     ShiftAmt = Builder.CreateMul(
5006         ShiftAmt, ConstantInt::get(MapTy, BitMapElementTy->getBitWidth()),
5007         "switch.shiftamt");
5008
5009     // Shift down.
5010     Value *DownShifted =
5011         Builder.CreateLShr(BitMap, ShiftAmt, "switch.downshift");
5012     // Mask off.
5013     return Builder.CreateTrunc(DownShifted, BitMapElementTy, "switch.masked");
5014   }
5015   case ArrayKind: {
5016     // Make sure the table index will not overflow when treated as signed.
5017     IntegerType *IT = cast<IntegerType>(Index->getType());
5018     uint64_t TableSize =
5019         Array->getInitializer()->getType()->getArrayNumElements();
5020     if (TableSize > (1ULL << (IT->getBitWidth() - 1)))
5021       Index = Builder.CreateZExt(
5022           Index, IntegerType::get(IT->getContext(), IT->getBitWidth() + 1),
5023           "switch.tableidx.zext");
5024
5025     Value *GEPIndices[] = {Builder.getInt32(0), Index};
5026     Value *GEP = Builder.CreateInBoundsGEP(Array->getValueType(), Array,
5027                                            GEPIndices, "switch.gep");
5028     return Builder.CreateLoad(GEP, "switch.load");
5029   }
5030   }
5031   llvm_unreachable("Unknown lookup table kind!");
5032 }
5033
5034 bool SwitchLookupTable::WouldFitInRegister(const DataLayout &DL,
5035                                            uint64_t TableSize,
5036                                            Type *ElementType) {
5037   auto *IT = dyn_cast<IntegerType>(ElementType);
5038   if (!IT)
5039     return false;
5040   // FIXME: If the type is wider than it needs to be, e.g. i8 but all values
5041   // are <= 15, we could try to narrow the type.
5042
5043   // Avoid overflow, fitsInLegalInteger uses unsigned int for the width.
5044   if (TableSize >= UINT_MAX / IT->getBitWidth())
5045     return false;
5046   return DL.fitsInLegalInteger(TableSize * IT->getBitWidth());
5047 }
5048
5049 /// Determine whether a lookup table should be built for this switch, based on
5050 /// the number of cases, size of the table, and the types of the results.
5051 static bool
5052 ShouldBuildLookupTable(SwitchInst *SI, uint64_t TableSize,
5053                        const TargetTransformInfo &TTI, const DataLayout &DL,
5054                        const SmallDenseMap<PHINode *, Type *> &ResultTypes) {
5055   if (SI->getNumCases() > TableSize || TableSize >= UINT64_MAX / 10)
5056     return false; // TableSize overflowed, or mul below might overflow.
5057
5058   bool AllTablesFitInRegister = true;
5059   bool HasIllegalType = false;
5060   for (const auto &I : ResultTypes) {
5061     Type *Ty = I.second;
5062
5063     // Saturate this flag to true.
5064     HasIllegalType = HasIllegalType || !TTI.isTypeLegal(Ty);
5065
5066     // Saturate this flag to false.
5067     AllTablesFitInRegister =
5068         AllTablesFitInRegister &&
5069         SwitchLookupTable::WouldFitInRegister(DL, TableSize, Ty);
5070
5071     // If both flags saturate, we're done. NOTE: This *only* works with
5072     // saturating flags, and all flags have to saturate first due to the
5073     // non-deterministic behavior of iterating over a dense map.
5074     if (HasIllegalType && !AllTablesFitInRegister)
5075       break;
5076   }
5077
5078   // If each table would fit in a register, we should build it anyway.
5079   if (AllTablesFitInRegister)
5080     return true;
5081
5082   // Don't build a table that doesn't fit in-register if it has illegal types.
5083   if (HasIllegalType)
5084     return false;
5085
5086   // The table density should be at least 40%. This is the same criterion as for
5087   // jump tables, see SelectionDAGBuilder::handleJTSwitchCase.
5088   // FIXME: Find the best cut-off.
5089   return SI->getNumCases() * 10 >= TableSize * 4;
5090 }
5091
5092 /// Try to reuse the switch table index compare. Following pattern:
5093 /// \code
5094 ///     if (idx < tablesize)
5095 ///        r = table[idx]; // table does not contain default_value
5096 ///     else
5097 ///        r = default_value;
5098 ///     if (r != default_value)
5099 ///        ...
5100 /// \endcode
5101 /// Is optimized to:
5102 /// \code
5103 ///     cond = idx < tablesize;
5104 ///     if (cond)
5105 ///        r = table[idx];
5106 ///     else
5107 ///        r = default_value;
5108 ///     if (cond)
5109 ///        ...
5110 /// \endcode
5111 /// Jump threading will then eliminate the second if(cond).
5112 static void reuseTableCompare(
5113     User *PhiUser, BasicBlock *PhiBlock, BranchInst *RangeCheckBranch,
5114     Constant *DefaultValue,
5115     const SmallVectorImpl<std::pair<ConstantInt *, Constant *>> &Values) {
5116
5117   ICmpInst *CmpInst = dyn_cast<ICmpInst>(PhiUser);
5118   if (!CmpInst)
5119     return;
5120
5121   // We require that the compare is in the same block as the phi so that jump
5122   // threading can do its work afterwards.
5123   if (CmpInst->getParent() != PhiBlock)
5124     return;
5125
5126   Constant *CmpOp1 = dyn_cast<Constant>(CmpInst->getOperand(1));
5127   if (!CmpOp1)
5128     return;
5129
5130   Value *RangeCmp = RangeCheckBranch->getCondition();
5131   Constant *TrueConst = ConstantInt::getTrue(RangeCmp->getType());
5132   Constant *FalseConst = ConstantInt::getFalse(RangeCmp->getType());
5133
5134   // Check if the compare with the default value is constant true or false.
5135   Constant *DefaultConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5136                                                  DefaultValue, CmpOp1, true);
5137   if (DefaultConst != TrueConst && DefaultConst != FalseConst)
5138     return;
5139
5140   // Check if the compare with the case values is distinct from the default
5141   // compare result.
5142   for (auto ValuePair : Values) {
5143     Constant *CaseConst = ConstantExpr::getICmp(CmpInst->getPredicate(),
5144                                                 ValuePair.second, CmpOp1, true);
5145     if (!CaseConst || CaseConst == DefaultConst)
5146       return;
5147     assert((CaseConst == TrueConst || CaseConst == FalseConst) &&
5148            "Expect true or false as compare result.");
5149   }
5150
5151   // Check if the branch instruction dominates the phi node. It's a simple
5152   // dominance check, but sufficient for our needs.
5153   // Although this check is invariant in the calling loops, it's better to do it
5154   // at this late stage. Practically we do it at most once for a switch.
5155   BasicBlock *BranchBlock = RangeCheckBranch->getParent();
5156   for (auto PI = pred_begin(PhiBlock), E = pred_end(PhiBlock); PI != E; ++PI) {
5157     BasicBlock *Pred = *PI;
5158     if (Pred != BranchBlock && Pred->getUniquePredecessor() != BranchBlock)
5159       return;
5160   }
5161
5162   if (DefaultConst == FalseConst) {
5163     // The compare yields the same result. We can replace it.
5164     CmpInst->replaceAllUsesWith(RangeCmp);
5165     ++NumTableCmpReuses;
5166   } else {
5167     // The compare yields the same result, just inverted. We can replace it.
5168     Value *InvertedTableCmp = BinaryOperator::CreateXor(
5169         RangeCmp, ConstantInt::get(RangeCmp->getType(), 1), "inverted.cmp",
5170         RangeCheckBranch);
5171     CmpInst->replaceAllUsesWith(InvertedTableCmp);
5172     ++NumTableCmpReuses;
5173   }
5174 }
5175
5176 /// If the switch is only used to initialize one or more phi nodes in a common
5177 /// successor block with different constant values, replace the switch with
5178 /// lookup tables.
5179 static bool SwitchToLookupTable(SwitchInst *SI, IRBuilder<> &Builder,
5180                                 const DataLayout &DL,
5181                                 const TargetTransformInfo &TTI) {
5182   assert(SI->getNumCases() > 1 && "Degenerate switch?");
5183
5184   // Only build lookup table when we have a target that supports it.
5185   if (!TTI.shouldBuildLookupTables())
5186     return false;
5187
5188   // FIXME: If the switch is too sparse for a lookup table, perhaps we could
5189   // split off a dense part and build a lookup table for that.
5190
5191   // FIXME: This creates arrays of GEPs to constant strings, which means each
5192   // GEP needs a runtime relocation in PIC code. We should just build one big
5193   // string and lookup indices into that.
5194
5195   // Ignore switches with less than three cases. Lookup tables will not make
5196   // them
5197   // faster, so we don't analyze them.
5198   if (SI->getNumCases() < 3)
5199     return false;
5200
5201   // Figure out the corresponding result for each case value and phi node in the
5202   // common destination, as well as the min and max case values.
5203   assert(SI->case_begin() != SI->case_end());
5204   SwitchInst::CaseIt CI = SI->case_begin();
5205   ConstantInt *MinCaseVal = CI.getCaseValue();
5206   ConstantInt *MaxCaseVal = CI.getCaseValue();
5207
5208   BasicBlock *CommonDest = nullptr;
5209   typedef SmallVector<std::pair<ConstantInt *, Constant *>, 4> ResultListTy;
5210   SmallDenseMap<PHINode *, ResultListTy> ResultLists;
5211   SmallDenseMap<PHINode *, Constant *> DefaultResults;
5212   SmallDenseMap<PHINode *, Type *> ResultTypes;
5213   SmallVector<PHINode *, 4> PHIs;
5214
5215   for (SwitchInst::CaseIt E = SI->case_end(); CI != E; ++CI) {
5216     ConstantInt *CaseVal = CI.getCaseValue();
5217     if (CaseVal->getValue().slt(MinCaseVal->getValue()))
5218       MinCaseVal = CaseVal;
5219     if (CaseVal->getValue().sgt(MaxCaseVal->getValue()))
5220       MaxCaseVal = CaseVal;
5221
5222     // Resulting value at phi nodes for this case value.
5223     typedef SmallVector<std::pair<PHINode *, Constant *>, 4> ResultsTy;
5224     ResultsTy Results;
5225     if (!GetCaseResults(SI, CaseVal, CI.getCaseSuccessor(), &CommonDest,
5226                         Results, DL, TTI))
5227       return false;
5228
5229     // Append the result from this case to the list for each phi.
5230     for (const auto &I : Results) {
5231       PHINode *PHI = I.first;
5232       Constant *Value = I.second;
5233       if (!ResultLists.count(PHI))
5234         PHIs.push_back(PHI);
5235       ResultLists[PHI].push_back(std::make_pair(CaseVal, Value));
5236     }
5237   }
5238
5239   // Keep track of the result types.
5240   for (PHINode *PHI : PHIs) {
5241     ResultTypes[PHI] = ResultLists[PHI][0].second->getType();
5242   }
5243
5244   uint64_t NumResults = ResultLists[PHIs[0]].size();
5245   APInt RangeSpread = MaxCaseVal->getValue() - MinCaseVal->getValue();
5246   uint64_t TableSize = RangeSpread.getLimitedValue() + 1;
5247   bool TableHasHoles = (NumResults < TableSize);
5248
5249   // If the table has holes, we need a constant result for the default case
5250   // or a bitmask that fits in a register.
5251   SmallVector<std::pair<PHINode *, Constant *>, 4> DefaultResultsList;
5252   bool HasDefaultResults =
5253       GetCaseResults(SI, nullptr, SI->getDefaultDest(), &CommonDest,
5254                      DefaultResultsList, DL, TTI);
5255
5256   bool NeedMask = (TableHasHoles && !HasDefaultResults);
5257   if (NeedMask) {
5258     // As an extra penalty for the validity test we require more cases.
5259     if (SI->getNumCases() < 4) // FIXME: Find best threshold value (benchmark).
5260       return false;
5261     if (!DL.fitsInLegalInteger(TableSize))
5262       return false;
5263   }
5264
5265   for (const auto &I : DefaultResultsList) {
5266     PHINode *PHI = I.first;
5267     Constant *Result = I.second;
5268     DefaultResults[PHI] = Result;
5269   }
5270
5271   if (!ShouldBuildLookupTable(SI, TableSize, TTI, DL, ResultTypes))
5272     return false;
5273
5274   // Create the BB that does the lookups.
5275   Module &Mod = *CommonDest->getParent()->getParent();
5276   BasicBlock *LookupBB = BasicBlock::Create(
5277       Mod.getContext(), "switch.lookup", CommonDest->getParent(), CommonDest);
5278
5279   // Compute the table index value.
5280   Builder.SetInsertPoint(SI);
5281   Value *TableIndex =
5282       Builder.CreateSub(SI->getCondition(), MinCaseVal, "switch.tableidx");
5283
5284   // Compute the maximum table size representable by the integer type we are
5285   // switching upon.
5286   unsigned CaseSize = MinCaseVal->getType()->getPrimitiveSizeInBits();
5287   uint64_t MaxTableSize = CaseSize > 63 ? UINT64_MAX : 1ULL << CaseSize;
5288   assert(MaxTableSize >= TableSize &&
5289          "It is impossible for a switch to have more entries than the max "
5290          "representable value of its input integer type's size.");
5291
5292   // If the default destination is unreachable, or if the lookup table covers
5293   // all values of the conditional variable, branch directly to the lookup table
5294   // BB. Otherwise, check that the condition is within the case range.
5295   const bool DefaultIsReachable =
5296       !isa<UnreachableInst>(SI->getDefaultDest()->getFirstNonPHIOrDbg());
5297   const bool GeneratingCoveredLookupTable = (MaxTableSize == TableSize);
5298   BranchInst *RangeCheckBranch = nullptr;
5299
5300   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5301     Builder.CreateBr(LookupBB);
5302     // Note: We call removeProdecessor later since we need to be able to get the
5303     // PHI value for the default case in case we're using a bit mask.
5304   } else {
5305     Value *Cmp = Builder.CreateICmpULT(
5306         TableIndex, ConstantInt::get(MinCaseVal->getType(), TableSize));
5307     RangeCheckBranch =
5308         Builder.CreateCondBr(Cmp, LookupBB, SI->getDefaultDest());
5309   }
5310
5311   // Populate the BB that does the lookups.
5312   Builder.SetInsertPoint(LookupBB);
5313
5314   if (NeedMask) {
5315     // Before doing the lookup we do the hole check.
5316     // The LookupBB is therefore re-purposed to do the hole check
5317     // and we create a new LookupBB.
5318     BasicBlock *MaskBB = LookupBB;
5319     MaskBB->setName("switch.hole_check");
5320     LookupBB = BasicBlock::Create(Mod.getContext(), "switch.lookup",
5321                                   CommonDest->getParent(), CommonDest);
5322
5323     // Make the mask's bitwidth at least 8bit and a power-of-2 to avoid
5324     // unnecessary illegal types.
5325     uint64_t TableSizePowOf2 = NextPowerOf2(std::max(7ULL, TableSize - 1ULL));
5326     APInt MaskInt(TableSizePowOf2, 0);
5327     APInt One(TableSizePowOf2, 1);
5328     // Build bitmask; fill in a 1 bit for every case.
5329     const ResultListTy &ResultList = ResultLists[PHIs[0]];
5330     for (size_t I = 0, E = ResultList.size(); I != E; ++I) {
5331       uint64_t Idx = (ResultList[I].first->getValue() - MinCaseVal->getValue())
5332                          .getLimitedValue();
5333       MaskInt |= One << Idx;
5334     }
5335     ConstantInt *TableMask = ConstantInt::get(Mod.getContext(), MaskInt);
5336
5337     // Get the TableIndex'th bit of the bitmask.
5338     // If this bit is 0 (meaning hole) jump to the default destination,
5339     // else continue with table lookup.
5340     IntegerType *MapTy = TableMask->getType();
5341     Value *MaskIndex =
5342         Builder.CreateZExtOrTrunc(TableIndex, MapTy, "switch.maskindex");
5343     Value *Shifted = Builder.CreateLShr(TableMask, MaskIndex, "switch.shifted");
5344     Value *LoBit = Builder.CreateTrunc(
5345         Shifted, Type::getInt1Ty(Mod.getContext()), "switch.lobit");
5346     Builder.CreateCondBr(LoBit, LookupBB, SI->getDefaultDest());
5347
5348     Builder.SetInsertPoint(LookupBB);
5349     AddPredecessorToBlock(SI->getDefaultDest(), MaskBB, SI->getParent());
5350   }
5351
5352   if (!DefaultIsReachable || GeneratingCoveredLookupTable) {
5353     // We cached PHINodes in PHIs, to avoid accessing deleted PHINodes later,
5354     // do not delete PHINodes here.
5355     SI->getDefaultDest()->removePredecessor(SI->getParent(),
5356                                             /*DontDeleteUselessPHIs=*/true);
5357   }
5358
5359   bool ReturnedEarly = false;
5360   for (size_t I = 0, E = PHIs.size(); I != E; ++I) {
5361     PHINode *PHI = PHIs[I];
5362     const ResultListTy &ResultList = ResultLists[PHI];
5363
5364     // If using a bitmask, use any value to fill the lookup table holes.
5365     Constant *DV = NeedMask ? ResultLists[PHI][0].second : DefaultResults[PHI];
5366     SwitchLookupTable Table(Mod, TableSize, MinCaseVal, ResultList, DV, DL);
5367
5368     Value *Result = Table.BuildLookup(TableIndex, Builder);
5369
5370     // If the result is used to return immediately from the function, we want to
5371     // do that right here.
5372     if (PHI->hasOneUse() && isa<ReturnInst>(*PHI->user_begin()) &&
5373         PHI->user_back() == CommonDest->getFirstNonPHIOrDbg()) {
5374       Builder.CreateRet(Result);
5375       ReturnedEarly = true;
5376       break;
5377     }
5378
5379     // Do a small peephole optimization: re-use the switch table compare if
5380     // possible.
5381     if (!TableHasHoles && HasDefaultResults && RangeCheckBranch) {
5382       BasicBlock *PhiBlock = PHI->getParent();
5383       // Search for compare instructions which use the phi.
5384       for (auto *User : PHI->users()) {
5385         reuseTableCompare(User, PhiBlock, RangeCheckBranch, DV, ResultList);
5386       }
5387     }
5388
5389     PHI->addIncoming(Result, LookupBB);
5390   }
5391
5392   if (!ReturnedEarly)
5393     Builder.CreateBr(CommonDest);
5394
5395   // Remove the switch.
5396   for (unsigned i = 0, e = SI->getNumSuccessors(); i < e; ++i) {
5397     BasicBlock *Succ = SI->getSuccessor(i);
5398
5399     if (Succ == SI->getDefaultDest())
5400       continue;
5401     Succ->removePredecessor(SI->getParent());
5402   }
5403   SI->eraseFromParent();
5404
5405   ++NumLookupTables;
5406   if (NeedMask)
5407     ++NumLookupTablesHoles;
5408   return true;
5409 }
5410
5411 static bool isSwitchDense(ArrayRef<int64_t> Values) {
5412   // See also SelectionDAGBuilder::isDense(), which this function was based on.
5413   uint64_t Diff = (uint64_t)Values.back() - (uint64_t)Values.front();
5414   uint64_t Range = Diff + 1;
5415   uint64_t NumCases = Values.size();
5416   // 40% is the default density for building a jump table in optsize/minsize mode.
5417   uint64_t MinDensity = 40;
5418
5419   return NumCases * 100 >= Range * MinDensity;
5420 }
5421
5422 // Try and transform a switch that has "holes" in it to a contiguous sequence
5423 // of cases.
5424 //
5425 // A switch such as: switch(i) {case 5: case 9: case 13: case 17:} can be
5426 // range-reduced to: switch ((i-5) / 4) {case 0: case 1: case 2: case 3:}.
5427 //
5428 // This converts a sparse switch into a dense switch which allows better
5429 // lowering and could also allow transforming into a lookup table.
5430 static bool ReduceSwitchRange(SwitchInst *SI, IRBuilder<> &Builder,
5431                               const DataLayout &DL,
5432                               const TargetTransformInfo &TTI) {
5433   auto *CondTy = cast<IntegerType>(SI->getCondition()->getType());
5434   if (CondTy->getIntegerBitWidth() > 64 ||
5435       !DL.fitsInLegalInteger(CondTy->getIntegerBitWidth()))
5436     return false;
5437   // Only bother with this optimization if there are more than 3 switch cases;
5438   // SDAG will only bother creating jump tables for 4 or more cases.
5439   if (SI->getNumCases() < 4)
5440     return false;
5441
5442   // This transform is agnostic to the signedness of the input or case values. We
5443   // can treat the case values as signed or unsigned. We can optimize more common
5444   // cases such as a sequence crossing zero {-4,0,4,8} if we interpret case values
5445   // as signed.
5446   SmallVector<int64_t,4> Values;
5447   for (auto &C : SI->cases())
5448     Values.push_back(C.getCaseValue()->getValue().getSExtValue());
5449   std::sort(Values.begin(), Values.end());
5450
5451   // If the switch is already dense, there's nothing useful to do here.
5452   if (isSwitchDense(Values))
5453     return false;
5454
5455   // First, transform the values such that they start at zero and ascend.
5456   int64_t Base = Values[0];
5457   for (auto &V : Values)
5458     V -= Base;
5459
5460   // Now we have signed numbers that have been shifted so that, given enough
5461   // precision, there are no negative values. Since the rest of the transform
5462   // is bitwise only, we switch now to an unsigned representation.
5463   uint64_t GCD = 0;
5464   for (auto &V : Values)
5465     GCD = GreatestCommonDivisor64(GCD, (uint64_t)V);
5466
5467   // This transform can be done speculatively because it is so cheap - it results
5468   // in a single rotate operation being inserted. This can only happen if the
5469   // factor extracted is a power of 2.
5470   // FIXME: If the GCD is an odd number we can multiply by the multiplicative
5471   // inverse of GCD and then perform this transform.
5472   // FIXME: It's possible that optimizing a switch on powers of two might also
5473   // be beneficial - flag values are often powers of two and we could use a CLZ
5474   // as the key function.
5475   if (GCD <= 1 || !isPowerOf2_64(GCD))
5476     // No common divisor found or too expensive to compute key function.
5477     return false;
5478
5479   unsigned Shift = Log2_64(GCD);
5480   for (auto &V : Values)
5481     V = (int64_t)((uint64_t)V >> Shift);
5482
5483   if (!isSwitchDense(Values))
5484     // Transform didn't create a dense switch.
5485     return false;
5486
5487   // The obvious transform is to shift the switch condition right and emit a
5488   // check that the condition actually cleanly divided by GCD, i.e.
5489   //   C & (1 << Shift - 1) == 0
5490   // inserting a new CFG edge to handle the case where it didn't divide cleanly.
5491   //
5492   // A cheaper way of doing this is a simple ROTR(C, Shift). This performs the
5493   // shift and puts the shifted-off bits in the uppermost bits. If any of these
5494   // are nonzero then the switch condition will be very large and will hit the
5495   // default case.
5496
5497   auto *Ty = cast<IntegerType>(SI->getCondition()->getType());
5498   Builder.SetInsertPoint(SI);
5499   auto *ShiftC = ConstantInt::get(Ty, Shift);
5500   auto *Sub = Builder.CreateSub(SI->getCondition(), ConstantInt::get(Ty, Base));
5501   auto *LShr = Builder.CreateLShr(Sub, ShiftC);
5502   auto *Shl = Builder.CreateShl(Sub, Ty->getBitWidth() - Shift);
5503   auto *Rot = Builder.CreateOr(LShr, Shl);
5504   SI->replaceUsesOfWith(SI->getCondition(), Rot);
5505
5506   for (SwitchInst::CaseIt C = SI->case_begin(), E = SI->case_end(); C != E;
5507        ++C) {
5508     auto *Orig = C.getCaseValue();
5509     auto Sub = Orig->getValue() - APInt(Ty->getBitWidth(), Base);
5510     C.setValue(
5511         cast<ConstantInt>(ConstantInt::get(Ty, Sub.lshr(ShiftC->getValue()))));
5512   }
5513   return true;
5514 }
5515
5516 bool SimplifyCFGOpt::SimplifySwitch(SwitchInst *SI, IRBuilder<> &Builder) {
5517   BasicBlock *BB = SI->getParent();
5518
5519   if (isValueEqualityComparison(SI)) {
5520     // If we only have one predecessor, and if it is a branch on this value,
5521     // see if that predecessor totally determines the outcome of this switch.
5522     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5523       if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred, Builder))
5524         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5525
5526     Value *Cond = SI->getCondition();
5527     if (SelectInst *Select = dyn_cast<SelectInst>(Cond))
5528       if (SimplifySwitchOnSelect(SI, Select))
5529         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5530
5531     // If the block only contains the switch, see if we can fold the block
5532     // away into any preds.
5533     BasicBlock::iterator BBI = BB->begin();
5534     // Ignore dbg intrinsics.
5535     while (isa<DbgInfoIntrinsic>(BBI))
5536       ++BBI;
5537     if (SI == &*BBI)
5538       if (FoldValueComparisonIntoPredecessors(SI, Builder))
5539         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5540   }
5541
5542   // Try to transform the switch into an icmp and a branch.
5543   if (TurnSwitchRangeIntoICmp(SI, Builder))
5544     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5545
5546   // Remove unreachable cases.
5547   if (EliminateDeadSwitchCases(SI, AC, DL))
5548     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5549
5550   if (SwitchToSelect(SI, Builder, AC, DL, TTI))
5551     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5552
5553   if (ForwardSwitchConditionToPHI(SI))
5554     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5555
5556   if (SwitchToLookupTable(SI, Builder, DL, TTI))
5557     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5558
5559   if (ReduceSwitchRange(SI, Builder, DL, TTI))
5560     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5561
5562   return false;
5563 }
5564
5565 bool SimplifyCFGOpt::SimplifyIndirectBr(IndirectBrInst *IBI) {
5566   BasicBlock *BB = IBI->getParent();
5567   bool Changed = false;
5568
5569   // Eliminate redundant destinations.
5570   SmallPtrSet<Value *, 8> Succs;
5571   for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) {
5572     BasicBlock *Dest = IBI->getDestination(i);
5573     if (!Dest->hasAddressTaken() || !Succs.insert(Dest).second) {
5574       Dest->removePredecessor(BB);
5575       IBI->removeDestination(i);
5576       --i;
5577       --e;
5578       Changed = true;
5579     }
5580   }
5581
5582   if (IBI->getNumDestinations() == 0) {
5583     // If the indirectbr has no successors, change it to unreachable.
5584     new UnreachableInst(IBI->getContext(), IBI);
5585     EraseTerminatorInstAndDCECond(IBI);
5586     return true;
5587   }
5588
5589   if (IBI->getNumDestinations() == 1) {
5590     // If the indirectbr has one successor, change it to a direct branch.
5591     BranchInst::Create(IBI->getDestination(0), IBI);
5592     EraseTerminatorInstAndDCECond(IBI);
5593     return true;
5594   }
5595
5596   if (SelectInst *SI = dyn_cast<SelectInst>(IBI->getAddress())) {
5597     if (SimplifyIndirectBrOnSelect(IBI, SI))
5598       return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5599   }
5600   return Changed;
5601 }
5602
5603 /// Given an block with only a single landing pad and a unconditional branch
5604 /// try to find another basic block which this one can be merged with.  This
5605 /// handles cases where we have multiple invokes with unique landing pads, but
5606 /// a shared handler.
5607 ///
5608 /// We specifically choose to not worry about merging non-empty blocks
5609 /// here.  That is a PRE/scheduling problem and is best solved elsewhere.  In
5610 /// practice, the optimizer produces empty landing pad blocks quite frequently
5611 /// when dealing with exception dense code.  (see: instcombine, gvn, if-else
5612 /// sinking in this file)
5613 ///
5614 /// This is primarily a code size optimization.  We need to avoid performing
5615 /// any transform which might inhibit optimization (such as our ability to
5616 /// specialize a particular handler via tail commoning).  We do this by not
5617 /// merging any blocks which require us to introduce a phi.  Since the same
5618 /// values are flowing through both blocks, we don't loose any ability to
5619 /// specialize.  If anything, we make such specialization more likely.
5620 ///
5621 /// TODO - This transformation could remove entries from a phi in the target
5622 /// block when the inputs in the phi are the same for the two blocks being
5623 /// merged.  In some cases, this could result in removal of the PHI entirely.
5624 static bool TryToMergeLandingPad(LandingPadInst *LPad, BranchInst *BI,
5625                                  BasicBlock *BB) {
5626   auto Succ = BB->getUniqueSuccessor();
5627   assert(Succ);
5628   // If there's a phi in the successor block, we'd likely have to introduce
5629   // a phi into the merged landing pad block.
5630   if (isa<PHINode>(*Succ->begin()))
5631     return false;
5632
5633   for (BasicBlock *OtherPred : predecessors(Succ)) {
5634     if (BB == OtherPred)
5635       continue;
5636     BasicBlock::iterator I = OtherPred->begin();
5637     LandingPadInst *LPad2 = dyn_cast<LandingPadInst>(I);
5638     if (!LPad2 || !LPad2->isIdenticalTo(LPad))
5639       continue;
5640     for (++I; isa<DbgInfoIntrinsic>(I); ++I) {
5641     }
5642     BranchInst *BI2 = dyn_cast<BranchInst>(I);
5643     if (!BI2 || !BI2->isIdenticalTo(BI))
5644       continue;
5645
5646     // We've found an identical block.  Update our predecessors to take that
5647     // path instead and make ourselves dead.
5648     SmallSet<BasicBlock *, 16> Preds;
5649     Preds.insert(pred_begin(BB), pred_end(BB));
5650     for (BasicBlock *Pred : Preds) {
5651       InvokeInst *II = cast<InvokeInst>(Pred->getTerminator());
5652       assert(II->getNormalDest() != BB && II->getUnwindDest() == BB &&
5653              "unexpected successor");
5654       II->setUnwindDest(OtherPred);
5655     }
5656
5657     // The debug info in OtherPred doesn't cover the merged control flow that
5658     // used to go through BB.  We need to delete it or update it.
5659     for (auto I = OtherPred->begin(), E = OtherPred->end(); I != E;) {
5660       Instruction &Inst = *I;
5661       I++;
5662       if (isa<DbgInfoIntrinsic>(Inst))
5663         Inst.eraseFromParent();
5664     }
5665
5666     SmallSet<BasicBlock *, 16> Succs;
5667     Succs.insert(succ_begin(BB), succ_end(BB));
5668     for (BasicBlock *Succ : Succs) {
5669       Succ->removePredecessor(BB);
5670     }
5671
5672     IRBuilder<> Builder(BI);
5673     Builder.CreateUnreachable();
5674     BI->eraseFromParent();
5675     return true;
5676   }
5677   return false;
5678 }
5679
5680 bool SimplifyCFGOpt::SimplifyUncondBranch(BranchInst *BI,
5681                                           IRBuilder<> &Builder) {
5682   BasicBlock *BB = BI->getParent();
5683
5684   if (SinkCommon && SinkThenElseCodeToEnd(BI))
5685     return true;
5686
5687   // If the Terminator is the only non-phi instruction, simplify the block.
5688   // if LoopHeader is provided, check if the block is a loop header
5689   // (This is for early invocations before loop simplify and vectorization
5690   // to keep canonical loop forms for nested loops.
5691   // These blocks can be eliminated when the pass is invoked later
5692   // in the back-end.)
5693   BasicBlock::iterator I = BB->getFirstNonPHIOrDbg()->getIterator();
5694   if (I->isTerminator() && BB != &BB->getParent()->getEntryBlock() &&
5695       (!LoopHeaders || !LoopHeaders->count(BB)) &&
5696       TryToSimplifyUncondBranchFromEmptyBlock(BB))
5697     return true;
5698
5699   // If the only instruction in the block is a seteq/setne comparison
5700   // against a constant, try to simplify the block.
5701   if (ICmpInst *ICI = dyn_cast<ICmpInst>(I))
5702     if (ICI->isEquality() && isa<ConstantInt>(ICI->getOperand(1))) {
5703       for (++I; isa<DbgInfoIntrinsic>(I); ++I)
5704         ;
5705       if (I->isTerminator() &&
5706           TryToSimplifyUncondBranchWithICmpInIt(ICI, Builder, DL, TTI,
5707                                                 BonusInstThreshold, AC))
5708         return true;
5709     }
5710
5711   // See if we can merge an empty landing pad block with another which is
5712   // equivalent.
5713   if (LandingPadInst *LPad = dyn_cast<LandingPadInst>(I)) {
5714     for (++I; isa<DbgInfoIntrinsic>(I); ++I) {
5715     }
5716     if (I->isTerminator() && TryToMergeLandingPad(LPad, BI, BB))
5717       return true;
5718   }
5719
5720   // If this basic block is ONLY a compare and a branch, and if a predecessor
5721   // branches to us and our successor, fold the comparison into the
5722   // predecessor and use logical operations to update the incoming value
5723   // for PHI nodes in common successor.
5724   if (FoldBranchToCommonDest(BI, BonusInstThreshold))
5725     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5726   return false;
5727 }
5728
5729 static BasicBlock *allPredecessorsComeFromSameSource(BasicBlock *BB) {
5730   BasicBlock *PredPred = nullptr;
5731   for (auto *P : predecessors(BB)) {
5732     BasicBlock *PPred = P->getSinglePredecessor();
5733     if (!PPred || (PredPred && PredPred != PPred))
5734       return nullptr;
5735     PredPred = PPred;
5736   }
5737   return PredPred;
5738 }
5739
5740 bool SimplifyCFGOpt::SimplifyCondBranch(BranchInst *BI, IRBuilder<> &Builder) {
5741   BasicBlock *BB = BI->getParent();
5742
5743   // Conditional branch
5744   if (isValueEqualityComparison(BI)) {
5745     // If we only have one predecessor, and if it is a branch on this value,
5746     // see if that predecessor totally determines the outcome of this
5747     // switch.
5748     if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
5749       if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred, Builder))
5750         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5751
5752     // This block must be empty, except for the setcond inst, if it exists.
5753     // Ignore dbg intrinsics.
5754     BasicBlock::iterator I = BB->begin();
5755     // Ignore dbg intrinsics.
5756     while (isa<DbgInfoIntrinsic>(I))
5757       ++I;
5758     if (&*I == BI) {
5759       if (FoldValueComparisonIntoPredecessors(BI, Builder))
5760         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5761     } else if (&*I == cast<Instruction>(BI->getCondition())) {
5762       ++I;
5763       // Ignore dbg intrinsics.
5764       while (isa<DbgInfoIntrinsic>(I))
5765         ++I;
5766       if (&*I == BI && FoldValueComparisonIntoPredecessors(BI, Builder))
5767         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5768     }
5769   }
5770
5771   // Try to turn "br (X == 0 | X == 1), T, F" into a switch instruction.
5772   if (SimplifyBranchOnICmpChain(BI, Builder, DL))
5773     return true;
5774
5775   // If this basic block has a single dominating predecessor block and the
5776   // dominating block's condition implies BI's condition, we know the direction
5777   // of the BI branch.
5778   if (BasicBlock *Dom = BB->getSinglePredecessor()) {
5779     auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator());
5780     if (PBI && PBI->isConditional() &&
5781         PBI->getSuccessor(0) != PBI->getSuccessor(1) &&
5782         (PBI->getSuccessor(0) == BB || PBI->getSuccessor(1) == BB)) {
5783       bool CondIsFalse = PBI->getSuccessor(1) == BB;
5784       Optional<bool> Implication = isImpliedCondition(
5785           PBI->getCondition(), BI->getCondition(), DL, CondIsFalse);
5786       if (Implication) {
5787         // Turn this into a branch on constant.
5788         auto *OldCond = BI->getCondition();
5789         ConstantInt *CI = *Implication
5790                               ? ConstantInt::getTrue(BB->getContext())
5791                               : ConstantInt::getFalse(BB->getContext());
5792         BI->setCondition(CI);
5793         RecursivelyDeleteTriviallyDeadInstructions(OldCond);
5794         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5795       }
5796     }
5797   }
5798
5799   // If this basic block is ONLY a compare and a branch, and if a predecessor
5800   // branches to us and one of our successors, fold the comparison into the
5801   // predecessor and use logical operations to pick the right destination.
5802   if (FoldBranchToCommonDest(BI, BonusInstThreshold))
5803     return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5804
5805   // We have a conditional branch to two blocks that are only reachable
5806   // from BI.  We know that the condbr dominates the two blocks, so see if
5807   // there is any identical code in the "then" and "else" blocks.  If so, we
5808   // can hoist it up to the branching block.
5809   if (BI->getSuccessor(0)->getSinglePredecessor()) {
5810     if (BI->getSuccessor(1)->getSinglePredecessor()) {
5811       if (HoistThenElseCodeToIf(BI, TTI))
5812         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5813     } else {
5814       // If Successor #1 has multiple preds, we may be able to conditionally
5815       // execute Successor #0 if it branches to Successor #1.
5816       TerminatorInst *Succ0TI = BI->getSuccessor(0)->getTerminator();
5817       if (Succ0TI->getNumSuccessors() == 1 &&
5818           Succ0TI->getSuccessor(0) == BI->getSuccessor(1))
5819         if (SpeculativelyExecuteBB(BI, BI->getSuccessor(0), TTI))
5820           return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5821     }
5822   } else if (BI->getSuccessor(1)->getSinglePredecessor()) {
5823     // If Successor #0 has multiple preds, we may be able to conditionally
5824     // execute Successor #1 if it branches to Successor #0.
5825     TerminatorInst *Succ1TI = BI->getSuccessor(1)->getTerminator();
5826     if (Succ1TI->getNumSuccessors() == 1 &&
5827         Succ1TI->getSuccessor(0) == BI->getSuccessor(0))
5828       if (SpeculativelyExecuteBB(BI, BI->getSuccessor(1), TTI))
5829         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5830   }
5831
5832   // If this is a branch on a phi node in the current block, thread control
5833   // through this block if any PHI node entries are constants.
5834   if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
5835     if (PN->getParent() == BI->getParent())
5836       if (FoldCondBranchOnPHI(BI, DL))
5837         return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5838
5839   // Scan predecessor blocks for conditional branches.
5840   for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
5841     if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
5842       if (PBI != BI && PBI->isConditional())
5843         if (SimplifyCondBranchToCondBranch(PBI, BI, DL))
5844           return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5845
5846   // Look for diamond patterns.
5847   if (MergeCondStores)
5848     if (BasicBlock *PrevBB = allPredecessorsComeFromSameSource(BB))
5849       if (BranchInst *PBI = dyn_cast<BranchInst>(PrevBB->getTerminator()))
5850         if (PBI != BI && PBI->isConditional())
5851           if (mergeConditionalStores(PBI, BI))
5852             return SimplifyCFG(BB, TTI, BonusInstThreshold, AC) | true;
5853
5854   return false;
5855 }
5856
5857 /// Check if passing a value to an instruction will cause undefined behavior.
5858 static bool passingValueIsAlwaysUndefined(Value *V, Instruction *I) {
5859   Constant *C = dyn_cast<Constant>(V);
5860   if (!C)
5861     return false;
5862
5863   if (I->use_empty())
5864     return false;
5865
5866   if (C->isNullValue() || isa<UndefValue>(C)) {
5867     // Only look at the first use, avoid hurting compile time with long uselists
5868     User *Use = *I->user_begin();
5869
5870     // Now make sure that there are no instructions in between that can alter
5871     // control flow (eg. calls)
5872     for (BasicBlock::iterator
5873              i = ++BasicBlock::iterator(I),
5874              UI = BasicBlock::iterator(dyn_cast<Instruction>(Use));
5875          i != UI; ++i)
5876       if (i == I->getParent()->end() || i->mayHaveSideEffects())
5877         return false;
5878
5879     // Look through GEPs. A load from a GEP derived from NULL is still undefined
5880     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Use))
5881       if (GEP->getPointerOperand() == I)
5882         return passingValueIsAlwaysUndefined(V, GEP);
5883
5884     // Look through bitcasts.
5885     if (BitCastInst *BC = dyn_cast<BitCastInst>(Use))
5886       return passingValueIsAlwaysUndefined(V, BC);
5887
5888     // Load from null is undefined.
5889     if (LoadInst *LI = dyn_cast<LoadInst>(Use))
5890       if (!LI->isVolatile())
5891         return LI->getPointerAddressSpace() == 0;
5892
5893     // Store to null is undefined.
5894     if (StoreInst *SI = dyn_cast<StoreInst>(Use))
5895       if (!SI->isVolatile())
5896         return SI->getPointerAddressSpace() == 0 &&
5897                SI->getPointerOperand() == I;
5898
5899     // A call to null is undefined.
5900     if (auto CS = CallSite(Use))
5901       return CS.getCalledValue() == I;
5902   }
5903   return false;
5904 }
5905
5906 /// If BB has an incoming value that will always trigger undefined behavior
5907 /// (eg. null pointer dereference), remove the branch leading here.
5908 static bool removeUndefIntroducingPredecessor(BasicBlock *BB) {
5909   for (BasicBlock::iterator i = BB->begin();
5910        PHINode *PHI = dyn_cast<PHINode>(i); ++i)
5911     for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
5912       if (passingValueIsAlwaysUndefined(PHI->getIncomingValue(i), PHI)) {
5913         TerminatorInst *T = PHI->getIncomingBlock(i)->getTerminator();
5914         IRBuilder<> Builder(T);
5915         if (BranchInst *BI = dyn_cast<BranchInst>(T)) {
5916           BB->removePredecessor(PHI->getIncomingBlock(i));
5917           // Turn uncoditional branches into unreachables and remove the dead
5918           // destination from conditional branches.
5919           if (BI->isUnconditional())
5920             Builder.CreateUnreachable();
5921           else
5922             Builder.CreateBr(BI->getSuccessor(0) == BB ? BI->getSuccessor(1)
5923                                                        : BI->getSuccessor(0));
5924           BI->eraseFromParent();
5925           return true;
5926         }
5927         // TODO: SwitchInst.
5928       }
5929
5930   return false;
5931 }
5932
5933 bool SimplifyCFGOpt::run(BasicBlock *BB) {
5934   bool Changed = false;
5935
5936   assert(BB && BB->getParent() && "Block not embedded in function!");
5937   assert(BB->getTerminator() && "Degenerate basic block encountered!");
5938
5939   // Remove basic blocks that have no predecessors (except the entry block)...
5940   // or that just have themself as a predecessor.  These are unreachable.
5941   if ((pred_empty(BB) && BB != &BB->getParent()->getEntryBlock()) ||
5942       BB->getSinglePredecessor() == BB) {
5943     DEBUG(dbgs() << "Removing BB: \n" << *BB);
5944     DeleteDeadBlock(BB);
5945     return true;
5946   }
5947
5948   // Check to see if we can constant propagate this terminator instruction
5949   // away...
5950   Changed |= ConstantFoldTerminator(BB, true);
5951
5952   // Check for and eliminate duplicate PHI nodes in this block.
5953   Changed |= EliminateDuplicatePHINodes(BB);
5954
5955   // Check for and remove branches that will always cause undefined behavior.
5956   Changed |= removeUndefIntroducingPredecessor(BB);
5957
5958   // Merge basic blocks into their predecessor if there is only one distinct
5959   // pred, and if there is only one distinct successor of the predecessor, and
5960   // if there are no PHI nodes.
5961   //
5962   if (MergeBlockIntoPredecessor(BB))
5963     return true;
5964
5965   IRBuilder<> Builder(BB);
5966
5967   // If there is a trivial two-entry PHI node in this basic block, and we can
5968   // eliminate it, do so now.
5969   if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
5970     if (PN->getNumIncomingValues() == 2)
5971       Changed |= FoldTwoEntryPHINode(PN, TTI, DL);
5972
5973   Builder.SetInsertPoint(BB->getTerminator());
5974   if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
5975     if (BI->isUnconditional()) {
5976       if (SimplifyUncondBranch(BI, Builder))
5977         return true;
5978     } else {
5979       if (SimplifyCondBranch(BI, Builder))
5980         return true;
5981     }
5982   } else if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
5983     if (SimplifyReturn(RI, Builder))
5984       return true;
5985   } else if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
5986     if (SimplifyResume(RI, Builder))
5987       return true;
5988   } else if (CleanupReturnInst *RI =
5989                  dyn_cast<CleanupReturnInst>(BB->getTerminator())) {
5990     if (SimplifyCleanupReturn(RI))
5991       return true;
5992   } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
5993     if (SimplifySwitch(SI, Builder))
5994       return true;
5995   } else if (UnreachableInst *UI =
5996                  dyn_cast<UnreachableInst>(BB->getTerminator())) {
5997     if (SimplifyUnreachable(UI))
5998       return true;
5999   } else if (IndirectBrInst *IBI =
6000                  dyn_cast<IndirectBrInst>(BB->getTerminator())) {
6001     if (SimplifyIndirectBr(IBI))
6002       return true;
6003   }
6004
6005   return Changed;
6006 }
6007
6008 /// This function is used to do simplification of a CFG.
6009 /// For example, it adjusts branches to branches to eliminate the extra hop,
6010 /// eliminates unreachable basic blocks, and does other "peephole" optimization
6011 /// of the CFG.  It returns true if a modification was made.
6012 ///
6013 bool llvm::SimplifyCFG(BasicBlock *BB, const TargetTransformInfo &TTI,
6014                        unsigned BonusInstThreshold, AssumptionCache *AC,
6015                        SmallPtrSetImpl<BasicBlock *> *LoopHeaders) {
6016   return SimplifyCFGOpt(TTI, BB->getModule()->getDataLayout(),
6017                         BonusInstThreshold, AC, LoopHeaders)
6018       .run(BB);
6019 }