]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/Utils/SimplifyIndVar.cpp
Bring lld (release_39 branch, r279477) to contrib
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / Utils / SimplifyIndVar.cpp
1 //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements induction variable simplification. It does
11 // not define any actual pass or policy, but provides a single function to
12 // simplify a loop's induction variables based on ScalarEvolution.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/Dominators.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/raw_ostream.h"
30
31 using namespace llvm;
32
33 #define DEBUG_TYPE "indvars"
34
35 STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
36 STATISTIC(NumElimOperand,  "Number of IV operands folded into a use");
37 STATISTIC(NumElimRem     , "Number of IV remainder operations eliminated");
38 STATISTIC(NumElimCmp     , "Number of IV comparisons eliminated");
39
40 namespace {
41   /// This is a utility for simplifying induction variables
42   /// based on ScalarEvolution. It is the primary instrument of the
43   /// IndvarSimplify pass, but it may also be directly invoked to cleanup after
44   /// other loop passes that preserve SCEV.
45   class SimplifyIndvar {
46     Loop             *L;
47     LoopInfo         *LI;
48     ScalarEvolution  *SE;
49     DominatorTree    *DT;
50
51     SmallVectorImpl<WeakVH> &DeadInsts;
52
53     bool Changed;
54
55   public:
56     SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT,
57                    LoopInfo *LI,SmallVectorImpl<WeakVH> &Dead)
58         : L(Loop), LI(LI), SE(SE), DT(DT), DeadInsts(Dead), Changed(false) {
59       assert(LI && "IV simplification requires LoopInfo");
60     }
61
62     bool hasChanged() const { return Changed; }
63
64     /// Iteratively perform simplification on a worklist of users of the
65     /// specified induction variable. This is the top-level driver that applies
66     /// all simplifications to users of an IV.
67     void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr);
68
69     Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand);
70
71     bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand);
72
73     bool eliminateOverflowIntrinsic(CallInst *CI);
74     bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
75     void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
76     void eliminateIVRemainder(BinaryOperator *Rem, Value *IVOperand,
77                               bool IsSigned);
78     bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand);
79   };
80 }
81
82 /// Fold an IV operand into its use.  This removes increments of an
83 /// aligned IV when used by a instruction that ignores the low bits.
84 ///
85 /// IVOperand is guaranteed SCEVable, but UseInst may not be.
86 ///
87 /// Return the operand of IVOperand for this induction variable if IVOperand can
88 /// be folded (in case more folding opportunities have been exposed).
89 /// Otherwise return null.
90 Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) {
91   Value *IVSrc = nullptr;
92   unsigned OperIdx = 0;
93   const SCEV *FoldedExpr = nullptr;
94   switch (UseInst->getOpcode()) {
95   default:
96     return nullptr;
97   case Instruction::UDiv:
98   case Instruction::LShr:
99     // We're only interested in the case where we know something about
100     // the numerator and have a constant denominator.
101     if (IVOperand != UseInst->getOperand(OperIdx) ||
102         !isa<ConstantInt>(UseInst->getOperand(1)))
103       return nullptr;
104
105     // Attempt to fold a binary operator with constant operand.
106     // e.g. ((I + 1) >> 2) => I >> 2
107     if (!isa<BinaryOperator>(IVOperand)
108         || !isa<ConstantInt>(IVOperand->getOperand(1)))
109       return nullptr;
110
111     IVSrc = IVOperand->getOperand(0);
112     // IVSrc must be the (SCEVable) IV, since the other operand is const.
113     assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand");
114
115     ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1));
116     if (UseInst->getOpcode() == Instruction::LShr) {
117       // Get a constant for the divisor. See createSCEV.
118       uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth();
119       if (D->getValue().uge(BitWidth))
120         return nullptr;
121
122       D = ConstantInt::get(UseInst->getContext(),
123                            APInt::getOneBitSet(BitWidth, D->getZExtValue()));
124     }
125     FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D));
126   }
127   // We have something that might fold it's operand. Compare SCEVs.
128   if (!SE->isSCEVable(UseInst->getType()))
129     return nullptr;
130
131   // Bypass the operand if SCEV can prove it has no effect.
132   if (SE->getSCEV(UseInst) != FoldedExpr)
133     return nullptr;
134
135   DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand
136         << " -> " << *UseInst << '\n');
137
138   UseInst->setOperand(OperIdx, IVSrc);
139   assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper");
140
141   ++NumElimOperand;
142   Changed = true;
143   if (IVOperand->use_empty())
144     DeadInsts.emplace_back(IVOperand);
145   return IVSrc;
146 }
147
148 /// SimplifyIVUsers helper for eliminating useless
149 /// comparisons against an induction variable.
150 void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
151   unsigned IVOperIdx = 0;
152   ICmpInst::Predicate Pred = ICmp->getPredicate();
153   if (IVOperand != ICmp->getOperand(0)) {
154     // Swapped
155     assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
156     IVOperIdx = 1;
157     Pred = ICmpInst::getSwappedPredicate(Pred);
158   }
159
160   // Get the SCEVs for the ICmp operands.
161   const SCEV *S = SE->getSCEV(ICmp->getOperand(IVOperIdx));
162   const SCEV *X = SE->getSCEV(ICmp->getOperand(1 - IVOperIdx));
163
164   // Simplify unnecessary loops away.
165   const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
166   S = SE->getSCEVAtScope(S, ICmpLoop);
167   X = SE->getSCEVAtScope(X, ICmpLoop);
168
169   ICmpInst::Predicate InvariantPredicate;
170   const SCEV *InvariantLHS, *InvariantRHS;
171
172   // If the condition is always true or always false, replace it with
173   // a constant value.
174   if (SE->isKnownPredicate(Pred, S, X)) {
175     ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext()));
176     DeadInsts.emplace_back(ICmp);
177     DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
178   } else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X)) {
179     ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext()));
180     DeadInsts.emplace_back(ICmp);
181     DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
182   } else if (isa<PHINode>(IVOperand) &&
183              SE->isLoopInvariantPredicate(Pred, S, X, L, InvariantPredicate,
184                                           InvariantLHS, InvariantRHS)) {
185
186     // Rewrite the comparison to a loop invariant comparison if it can be done
187     // cheaply, where cheaply means "we don't need to emit any new
188     // instructions".
189
190     Value *NewLHS = nullptr, *NewRHS = nullptr;
191
192     if (S == InvariantLHS || X == InvariantLHS)
193       NewLHS =
194           ICmp->getOperand(S == InvariantLHS ? IVOperIdx : (1 - IVOperIdx));
195
196     if (S == InvariantRHS || X == InvariantRHS)
197       NewRHS =
198           ICmp->getOperand(S == InvariantRHS ? IVOperIdx : (1 - IVOperIdx));
199
200     auto *PN = cast<PHINode>(IVOperand);
201     for (unsigned i = 0, e = PN->getNumIncomingValues();
202          i != e && (!NewLHS || !NewRHS);
203          ++i) {
204
205       // If this is a value incoming from the backedge, then it cannot be a loop
206       // invariant value (since we know that IVOperand is an induction variable).
207       if (L->contains(PN->getIncomingBlock(i)))
208         continue;
209
210       // NB! This following assert does not fundamentally have to be true, but
211       // it is true today given how SCEV analyzes induction variables.
212       // Specifically, today SCEV will *not* recognize %iv as an induction
213       // variable in the following case:
214       //
215       // define void @f(i32 %k) {
216       // entry:
217       //   br i1 undef, label %r, label %l
218       //
219       // l:
220       //   %k.inc.l = add i32 %k, 1
221       //   br label %loop
222       //
223       // r:
224       //   %k.inc.r = add i32 %k, 1
225       //   br label %loop
226       //
227       // loop:
228       //   %iv = phi i32 [ %k.inc.l, %l ], [ %k.inc.r, %r ], [ %iv.inc, %loop ]
229       //   %iv.inc = add i32 %iv, 1
230       //   br label %loop
231       // }
232       //
233       // but if it starts to, at some point, then the assertion below will have
234       // to be changed to a runtime check.
235
236       Value *Incoming = PN->getIncomingValue(i);
237
238 #ifndef NDEBUG
239       if (auto *I = dyn_cast<Instruction>(Incoming))
240         assert(DT->dominates(I, ICmp) && "Should be a unique loop dominating value!");
241 #endif
242
243       const SCEV *IncomingS = SE->getSCEV(Incoming);
244
245       if (!NewLHS && IncomingS == InvariantLHS)
246         NewLHS = Incoming;
247       if (!NewRHS && IncomingS == InvariantRHS)
248         NewRHS = Incoming;
249     }
250
251     if (!NewLHS || !NewRHS)
252       // We could not find an existing value to replace either LHS or RHS.
253       // Generating new instructions has subtler tradeoffs, so avoid doing that
254       // for now.
255       return;
256
257     DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n');
258     ICmp->setPredicate(InvariantPredicate);
259     ICmp->setOperand(0, NewLHS);
260     ICmp->setOperand(1, NewRHS);
261   } else
262     return;
263
264   ++NumElimCmp;
265   Changed = true;
266 }
267
268 /// SimplifyIVUsers helper for eliminating useless
269 /// remainder operations operating on an induction variable.
270 void SimplifyIndvar::eliminateIVRemainder(BinaryOperator *Rem,
271                                       Value *IVOperand,
272                                       bool IsSigned) {
273   // We're only interested in the case where we know something about
274   // the numerator.
275   if (IVOperand != Rem->getOperand(0))
276     return;
277
278   // Get the SCEVs for the ICmp operands.
279   const SCEV *S = SE->getSCEV(Rem->getOperand(0));
280   const SCEV *X = SE->getSCEV(Rem->getOperand(1));
281
282   // Simplify unnecessary loops away.
283   const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
284   S = SE->getSCEVAtScope(S, ICmpLoop);
285   X = SE->getSCEVAtScope(X, ICmpLoop);
286
287   // i % n  -->  i  if i is in [0,n).
288   if ((!IsSigned || SE->isKnownNonNegative(S)) &&
289       SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
290                            S, X))
291     Rem->replaceAllUsesWith(Rem->getOperand(0));
292   else {
293     // (i+1) % n  -->  (i+1)==n?0:(i+1)  if i is in [0,n).
294     const SCEV *LessOne = SE->getMinusSCEV(S, SE->getOne(S->getType()));
295     if (IsSigned && !SE->isKnownNonNegative(LessOne))
296       return;
297
298     if (!SE->isKnownPredicate(IsSigned ?
299                               ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
300                               LessOne, X))
301       return;
302
303     ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ,
304                                   Rem->getOperand(0), Rem->getOperand(1));
305     SelectInst *Sel =
306       SelectInst::Create(ICmp,
307                          ConstantInt::get(Rem->getType(), 0),
308                          Rem->getOperand(0), "tmp", Rem);
309     Rem->replaceAllUsesWith(Sel);
310   }
311
312   DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
313   ++NumElimRem;
314   Changed = true;
315   DeadInsts.emplace_back(Rem);
316 }
317
318 bool SimplifyIndvar::eliminateOverflowIntrinsic(CallInst *CI) {
319   auto *F = CI->getCalledFunction();
320   if (!F)
321     return false;
322
323   typedef const SCEV *(ScalarEvolution::*OperationFunctionTy)(
324       const SCEV *, const SCEV *, SCEV::NoWrapFlags);
325   typedef const SCEV *(ScalarEvolution::*ExtensionFunctionTy)(
326       const SCEV *, Type *);
327
328   OperationFunctionTy Operation;
329   ExtensionFunctionTy Extension;
330
331   Instruction::BinaryOps RawOp;
332
333   // We always have exactly one of nsw or nuw.  If NoSignedOverflow is false, we
334   // have nuw.
335   bool NoSignedOverflow;
336
337   switch (F->getIntrinsicID()) {
338   default:
339     return false;
340
341   case Intrinsic::sadd_with_overflow:
342     Operation = &ScalarEvolution::getAddExpr;
343     Extension = &ScalarEvolution::getSignExtendExpr;
344     RawOp = Instruction::Add;
345     NoSignedOverflow = true;
346     break;
347
348   case Intrinsic::uadd_with_overflow:
349     Operation = &ScalarEvolution::getAddExpr;
350     Extension = &ScalarEvolution::getZeroExtendExpr;
351     RawOp = Instruction::Add;
352     NoSignedOverflow = false;
353     break;
354
355   case Intrinsic::ssub_with_overflow:
356     Operation = &ScalarEvolution::getMinusSCEV;
357     Extension = &ScalarEvolution::getSignExtendExpr;
358     RawOp = Instruction::Sub;
359     NoSignedOverflow = true;
360     break;
361
362   case Intrinsic::usub_with_overflow:
363     Operation = &ScalarEvolution::getMinusSCEV;
364     Extension = &ScalarEvolution::getZeroExtendExpr;
365     RawOp = Instruction::Sub;
366     NoSignedOverflow = false;
367     break;
368   }
369
370   const SCEV *LHS = SE->getSCEV(CI->getArgOperand(0));
371   const SCEV *RHS = SE->getSCEV(CI->getArgOperand(1));
372
373   auto *NarrowTy = cast<IntegerType>(LHS->getType());
374   auto *WideTy =
375     IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2);
376
377   const SCEV *A =
378       (SE->*Extension)((SE->*Operation)(LHS, RHS, SCEV::FlagAnyWrap), WideTy);
379   const SCEV *B =
380       (SE->*Operation)((SE->*Extension)(LHS, WideTy),
381                        (SE->*Extension)(RHS, WideTy), SCEV::FlagAnyWrap);
382
383   if (A != B)
384     return false;
385
386   // Proved no overflow, nuke the overflow check and, if possible, the overflow
387   // intrinsic as well.
388
389   BinaryOperator *NewResult = BinaryOperator::Create(
390       RawOp, CI->getArgOperand(0), CI->getArgOperand(1), "", CI);
391
392   if (NoSignedOverflow)
393     NewResult->setHasNoSignedWrap(true);
394   else
395     NewResult->setHasNoUnsignedWrap(true);
396
397   SmallVector<ExtractValueInst *, 4> ToDelete;
398
399   for (auto *U : CI->users()) {
400     if (auto *EVI = dyn_cast<ExtractValueInst>(U)) {
401       if (EVI->getIndices()[0] == 1)
402         EVI->replaceAllUsesWith(ConstantInt::getFalse(CI->getContext()));
403       else {
404         assert(EVI->getIndices()[0] == 0 && "Only two possibilities!");
405         EVI->replaceAllUsesWith(NewResult);
406       }
407       ToDelete.push_back(EVI);
408     }
409   }
410
411   for (auto *EVI : ToDelete)
412     EVI->eraseFromParent();
413
414   if (CI->use_empty())
415     CI->eraseFromParent();
416
417   return true;
418 }
419
420 /// Eliminate an operation that consumes a simple IV and has no observable
421 /// side-effect given the range of IV values.  IVOperand is guaranteed SCEVable,
422 /// but UseInst may not be.
423 bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst,
424                                      Instruction *IVOperand) {
425   if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
426     eliminateIVComparison(ICmp, IVOperand);
427     return true;
428   }
429   if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) {
430     bool IsSigned = Rem->getOpcode() == Instruction::SRem;
431     if (IsSigned || Rem->getOpcode() == Instruction::URem) {
432       eliminateIVRemainder(Rem, IVOperand, IsSigned);
433       return true;
434     }
435   }
436
437   if (auto *CI = dyn_cast<CallInst>(UseInst))
438     if (eliminateOverflowIntrinsic(CI))
439       return true;
440
441   if (eliminateIdentitySCEV(UseInst, IVOperand))
442     return true;
443
444   return false;
445 }
446
447 /// Eliminate any operation that SCEV can prove is an identity function.
448 bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst,
449                                            Instruction *IVOperand) {
450   if (!SE->isSCEVable(UseInst->getType()) ||
451       (UseInst->getType() != IVOperand->getType()) ||
452       (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
453     return false;
454
455   // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the
456   // dominator tree, even if X is an operand to Y.  For instance, in
457   //
458   //     %iv = phi i32 {0,+,1}
459   //     br %cond, label %left, label %merge
460   //
461   //   left:
462   //     %X = add i32 %iv, 0
463   //     br label %merge
464   //
465   //   merge:
466   //     %M = phi (%X, %iv)
467   //
468   // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and
469   // %M.replaceAllUsesWith(%X) would be incorrect.
470
471   if (isa<PHINode>(UseInst))
472     // If UseInst is not a PHI node then we know that IVOperand dominates
473     // UseInst directly from the legality of SSA.
474     if (!DT || !DT->dominates(IVOperand, UseInst))
475       return false;
476
477   if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand))
478     return false;
479
480   DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
481
482   UseInst->replaceAllUsesWith(IVOperand);
483   ++NumElimIdentity;
484   Changed = true;
485   DeadInsts.emplace_back(UseInst);
486   return true;
487 }
488
489 /// Annotate BO with nsw / nuw if it provably does not signed-overflow /
490 /// unsigned-overflow.  Returns true if anything changed, false otherwise.
491 bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO,
492                                                     Value *IVOperand) {
493
494   // Fastpath: we don't have any work to do if `BO` is `nuw` and `nsw`.
495   if (BO->hasNoUnsignedWrap() && BO->hasNoSignedWrap())
496     return false;
497
498   const SCEV *(ScalarEvolution::*GetExprForBO)(const SCEV *, const SCEV *,
499                                                SCEV::NoWrapFlags);
500
501   switch (BO->getOpcode()) {
502   default:
503     return false;
504
505   case Instruction::Add:
506     GetExprForBO = &ScalarEvolution::getAddExpr;
507     break;
508
509   case Instruction::Sub:
510     GetExprForBO = &ScalarEvolution::getMinusSCEV;
511     break;
512
513   case Instruction::Mul:
514     GetExprForBO = &ScalarEvolution::getMulExpr;
515     break;
516   }
517
518   unsigned BitWidth = cast<IntegerType>(BO->getType())->getBitWidth();
519   Type *WideTy = IntegerType::get(BO->getContext(), BitWidth * 2);
520   const SCEV *LHS = SE->getSCEV(BO->getOperand(0));
521   const SCEV *RHS = SE->getSCEV(BO->getOperand(1));
522
523   bool Changed = false;
524
525   if (!BO->hasNoUnsignedWrap()) {
526     const SCEV *ExtendAfterOp = SE->getZeroExtendExpr(SE->getSCEV(BO), WideTy);
527     const SCEV *OpAfterExtend = (SE->*GetExprForBO)(
528       SE->getZeroExtendExpr(LHS, WideTy), SE->getZeroExtendExpr(RHS, WideTy),
529       SCEV::FlagAnyWrap);
530     if (ExtendAfterOp == OpAfterExtend) {
531       BO->setHasNoUnsignedWrap();
532       SE->forgetValue(BO);
533       Changed = true;
534     }
535   }
536
537   if (!BO->hasNoSignedWrap()) {
538     const SCEV *ExtendAfterOp = SE->getSignExtendExpr(SE->getSCEV(BO), WideTy);
539     const SCEV *OpAfterExtend = (SE->*GetExprForBO)(
540       SE->getSignExtendExpr(LHS, WideTy), SE->getSignExtendExpr(RHS, WideTy),
541       SCEV::FlagAnyWrap);
542     if (ExtendAfterOp == OpAfterExtend) {
543       BO->setHasNoSignedWrap();
544       SE->forgetValue(BO);
545       Changed = true;
546     }
547   }
548
549   return Changed;
550 }
551
552 /// Add all uses of Def to the current IV's worklist.
553 static void pushIVUsers(
554   Instruction *Def,
555   SmallPtrSet<Instruction*,16> &Simplified,
556   SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {
557
558   for (User *U : Def->users()) {
559     Instruction *UI = cast<Instruction>(U);
560
561     // Avoid infinite or exponential worklist processing.
562     // Also ensure unique worklist users.
563     // If Def is a LoopPhi, it may not be in the Simplified set, so check for
564     // self edges first.
565     if (UI != Def && Simplified.insert(UI).second)
566       SimpleIVUsers.push_back(std::make_pair(UI, Def));
567   }
568 }
569
570 /// Return true if this instruction generates a simple SCEV
571 /// expression in terms of that IV.
572 ///
573 /// This is similar to IVUsers' isInteresting() but processes each instruction
574 /// non-recursively when the operand is already known to be a simpleIVUser.
575 ///
576 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) {
577   if (!SE->isSCEVable(I->getType()))
578     return false;
579
580   // Get the symbolic expression for this instruction.
581   const SCEV *S = SE->getSCEV(I);
582
583   // Only consider affine recurrences.
584   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
585   if (AR && AR->getLoop() == L)
586     return true;
587
588   return false;
589 }
590
591 /// Iteratively perform simplification on a worklist of users
592 /// of the specified induction variable. Each successive simplification may push
593 /// more users which may themselves be candidates for simplification.
594 ///
595 /// This algorithm does not require IVUsers analysis. Instead, it simplifies
596 /// instructions in-place during analysis. Rather than rewriting induction
597 /// variables bottom-up from their users, it transforms a chain of IVUsers
598 /// top-down, updating the IR only when it encounters a clear optimization
599 /// opportunity.
600 ///
601 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
602 ///
603 void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) {
604   if (!SE->isSCEVable(CurrIV->getType()))
605     return;
606
607   // Instructions processed by SimplifyIndvar for CurrIV.
608   SmallPtrSet<Instruction*,16> Simplified;
609
610   // Use-def pairs if IV users waiting to be processed for CurrIV.
611   SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
612
613   // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
614   // called multiple times for the same LoopPhi. This is the proper thing to
615   // do for loop header phis that use each other.
616   pushIVUsers(CurrIV, Simplified, SimpleIVUsers);
617
618   while (!SimpleIVUsers.empty()) {
619     std::pair<Instruction*, Instruction*> UseOper =
620       SimpleIVUsers.pop_back_val();
621     Instruction *UseInst = UseOper.first;
622
623     // Bypass back edges to avoid extra work.
624     if (UseInst == CurrIV) continue;
625
626     Instruction *IVOperand = UseOper.second;
627     for (unsigned N = 0; IVOperand; ++N) {
628       assert(N <= Simplified.size() && "runaway iteration");
629
630       Value *NewOper = foldIVUser(UseOper.first, IVOperand);
631       if (!NewOper)
632         break; // done folding
633       IVOperand = dyn_cast<Instruction>(NewOper);
634     }
635     if (!IVOperand)
636       continue;
637
638     if (eliminateIVUser(UseOper.first, IVOperand)) {
639       pushIVUsers(IVOperand, Simplified, SimpleIVUsers);
640       continue;
641     }
642
643     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseOper.first)) {
644       if (isa<OverflowingBinaryOperator>(BO) &&
645           strengthenOverflowingOperation(BO, IVOperand)) {
646         // re-queue uses of the now modified binary operator and fall
647         // through to the checks that remain.
648         pushIVUsers(IVOperand, Simplified, SimpleIVUsers);
649       }
650     }
651
652     CastInst *Cast = dyn_cast<CastInst>(UseOper.first);
653     if (V && Cast) {
654       V->visitCast(Cast);
655       continue;
656     }
657     if (isSimpleIVUser(UseOper.first, L, SE)) {
658       pushIVUsers(UseOper.first, Simplified, SimpleIVUsers);
659     }
660   }
661 }
662
663 namespace llvm {
664
665 void IVVisitor::anchor() { }
666
667 /// Simplify instructions that use this induction variable
668 /// by using ScalarEvolution to analyze the IV's recurrence.
669 bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT,
670                        LoopInfo *LI, SmallVectorImpl<WeakVH> &Dead,
671                        IVVisitor *V) {
672   SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, Dead);
673   SIV.simplifyUsers(CurrIV, V);
674   return SIV.hasChanged();
675 }
676
677 /// Simplify users of induction variables within this
678 /// loop. This does not actually change or add IVs.
679 bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT,
680                      LoopInfo *LI, SmallVectorImpl<WeakVH> &Dead) {
681   bool Changed = false;
682   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
683     Changed |= simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, Dead);
684   }
685   return Changed;
686 }
687
688 } // namespace llvm