]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/lib/Transforms/Vectorize/SLPVectorizer.cpp
Merge llvm trunk r321414 to contrib/llvm.
[FreeBSD/FreeBSD.git] / contrib / llvm / lib / Transforms / Vectorize / SLPVectorizer.cpp
1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
11 // stores that can be put together into vector-stores. Next, it attempts to
12 // construct vectorizable tree using the use-def chains. If a profitable tree
13 // was found, the SLP vectorizer performs vectorization on the tree.
14 //
15 // The pass is inspired by the work described in the paper:
16 //  "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
17 //
18 //===----------------------------------------------------------------------===//
19
20 #include "llvm/Transforms/Vectorize/SLPVectorizer.h"
21 #include "llvm/ADT/ArrayRef.h"
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/DenseSet.h"
24 #include "llvm/ADT/MapVector.h"
25 #include "llvm/ADT/None.h"
26 #include "llvm/ADT/Optional.h"
27 #include "llvm/ADT/PostOrderIterator.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetVector.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/ADT/iterator.h"
35 #include "llvm/ADT/iterator_range.h"
36 #include "llvm/Analysis/AliasAnalysis.h"
37 #include "llvm/Analysis/CodeMetrics.h"
38 #include "llvm/Analysis/DemandedBits.h"
39 #include "llvm/Analysis/GlobalsModRef.h"
40 #include "llvm/Analysis/LoopAccessAnalysis.h"
41 #include "llvm/Analysis/LoopInfo.h"
42 #include "llvm/Analysis/MemoryLocation.h"
43 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
44 #include "llvm/Analysis/ScalarEvolution.h"
45 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
46 #include "llvm/Analysis/TargetLibraryInfo.h"
47 #include "llvm/Analysis/TargetTransformInfo.h"
48 #include "llvm/Analysis/ValueTracking.h"
49 #include "llvm/Analysis/VectorUtils.h"
50 #include "llvm/IR/Attributes.h"
51 #include "llvm/IR/BasicBlock.h"
52 #include "llvm/IR/Constant.h"
53 #include "llvm/IR/Constants.h"
54 #include "llvm/IR/DataLayout.h"
55 #include "llvm/IR/DebugLoc.h"
56 #include "llvm/IR/DerivedTypes.h"
57 #include "llvm/IR/Dominators.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/IRBuilder.h"
60 #include "llvm/IR/InstrTypes.h"
61 #include "llvm/IR/Instruction.h"
62 #include "llvm/IR/Instructions.h"
63 #include "llvm/IR/IntrinsicInst.h"
64 #include "llvm/IR/Intrinsics.h"
65 #include "llvm/IR/Module.h"
66 #include "llvm/IR/NoFolder.h"
67 #include "llvm/IR/Operator.h"
68 #include "llvm/IR/PassManager.h"
69 #include "llvm/IR/PatternMatch.h"
70 #include "llvm/IR/Type.h"
71 #include "llvm/IR/Use.h"
72 #include "llvm/IR/User.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/IR/ValueHandle.h"
75 #include "llvm/IR/Verifier.h"
76 #include "llvm/Pass.h"
77 #include "llvm/Support/Casting.h"
78 #include "llvm/Support/CommandLine.h"
79 #include "llvm/Support/Compiler.h"
80 #include "llvm/Support/DOTGraphTraits.h"
81 #include "llvm/Support/Debug.h"
82 #include "llvm/Support/ErrorHandling.h"
83 #include "llvm/Support/GraphWriter.h"
84 #include "llvm/Support/KnownBits.h"
85 #include "llvm/Support/MathExtras.h"
86 #include "llvm/Support/raw_ostream.h"
87 #include "llvm/Transforms/Utils/LoopUtils.h"
88 #include "llvm/Transforms/Vectorize.h"
89 #include <algorithm>
90 #include <cassert>
91 #include <cstdint>
92 #include <iterator>
93 #include <memory>
94 #include <set>
95 #include <string>
96 #include <tuple>
97 #include <utility>
98 #include <vector>
99
100 using namespace llvm;
101 using namespace llvm::PatternMatch;
102 using namespace slpvectorizer;
103
104 #define SV_NAME "slp-vectorizer"
105 #define DEBUG_TYPE "SLP"
106
107 STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
108
109 static cl::opt<int>
110     SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
111                      cl::desc("Only vectorize if you gain more than this "
112                               "number "));
113
114 static cl::opt<bool>
115 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
116                    cl::desc("Attempt to vectorize horizontal reductions"));
117
118 static cl::opt<bool> ShouldStartVectorizeHorAtStore(
119     "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
120     cl::desc(
121         "Attempt to vectorize horizontal reductions feeding into a store"));
122
123 static cl::opt<int>
124 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
125     cl::desc("Attempt to vectorize for this register size in bits"));
126
127 /// Limits the size of scheduling regions in a block.
128 /// It avoid long compile times for _very_ large blocks where vector
129 /// instructions are spread over a wide range.
130 /// This limit is way higher than needed by real-world functions.
131 static cl::opt<int>
132 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
133     cl::desc("Limit the size of the SLP scheduling region per block"));
134
135 static cl::opt<int> MinVectorRegSizeOption(
136     "slp-min-reg-size", cl::init(128), cl::Hidden,
137     cl::desc("Attempt to vectorize for this register size in bits"));
138
139 static cl::opt<unsigned> RecursionMaxDepth(
140     "slp-recursion-max-depth", cl::init(12), cl::Hidden,
141     cl::desc("Limit the recursion depth when building a vectorizable tree"));
142
143 static cl::opt<unsigned> MinTreeSize(
144     "slp-min-tree-size", cl::init(3), cl::Hidden,
145     cl::desc("Only vectorize small trees if they are fully vectorizable"));
146
147 static cl::opt<bool>
148     ViewSLPTree("view-slp-tree", cl::Hidden,
149                 cl::desc("Display the SLP trees with Graphviz"));
150
151 // Limit the number of alias checks. The limit is chosen so that
152 // it has no negative effect on the llvm benchmarks.
153 static const unsigned AliasedCheckLimit = 10;
154
155 // Another limit for the alias checks: The maximum distance between load/store
156 // instructions where alias checks are done.
157 // This limit is useful for very large basic blocks.
158 static const unsigned MaxMemDepDistance = 160;
159
160 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
161 /// regions to be handled.
162 static const int MinScheduleRegionSize = 16;
163
164 /// \brief Predicate for the element types that the SLP vectorizer supports.
165 ///
166 /// The most important thing to filter here are types which are invalid in LLVM
167 /// vectors. We also filter target specific types which have absolutely no
168 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
169 /// avoids spending time checking the cost model and realizing that they will
170 /// be inevitably scalarized.
171 static bool isValidElementType(Type *Ty) {
172   return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
173          !Ty->isPPC_FP128Ty();
174 }
175
176 /// \returns true if all of the instructions in \p VL are in the same block or
177 /// false otherwise.
178 static bool allSameBlock(ArrayRef<Value *> VL) {
179   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
180   if (!I0)
181     return false;
182   BasicBlock *BB = I0->getParent();
183   for (int i = 1, e = VL.size(); i < e; i++) {
184     Instruction *I = dyn_cast<Instruction>(VL[i]);
185     if (!I)
186       return false;
187
188     if (BB != I->getParent())
189       return false;
190   }
191   return true;
192 }
193
194 /// \returns True if all of the values in \p VL are constants.
195 static bool allConstant(ArrayRef<Value *> VL) {
196   for (Value *i : VL)
197     if (!isa<Constant>(i))
198       return false;
199   return true;
200 }
201
202 /// \returns True if all of the values in \p VL are identical.
203 static bool isSplat(ArrayRef<Value *> VL) {
204   for (unsigned i = 1, e = VL.size(); i < e; ++i)
205     if (VL[i] != VL[0])
206       return false;
207   return true;
208 }
209
210 /// Checks if the vector of instructions can be represented as a shuffle, like:
211 /// %x0 = extractelement <4 x i8> %x, i32 0
212 /// %x3 = extractelement <4 x i8> %x, i32 3
213 /// %y1 = extractelement <4 x i8> %y, i32 1
214 /// %y2 = extractelement <4 x i8> %y, i32 2
215 /// %x0x0 = mul i8 %x0, %x0
216 /// %x3x3 = mul i8 %x3, %x3
217 /// %y1y1 = mul i8 %y1, %y1
218 /// %y2y2 = mul i8 %y2, %y2
219 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0
220 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
221 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
222 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
223 /// ret <4 x i8> %ins4
224 /// can be transformed into:
225 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
226 ///                                                         i32 6>
227 /// %2 = mul <4 x i8> %1, %1
228 /// ret <4 x i8> %2
229 /// We convert this initially to something like:
230 /// %x0 = extractelement <4 x i8> %x, i32 0
231 /// %x3 = extractelement <4 x i8> %x, i32 3
232 /// %y1 = extractelement <4 x i8> %y, i32 1
233 /// %y2 = extractelement <4 x i8> %y, i32 2
234 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0
235 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1
236 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2
237 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3
238 /// %5 = mul <4 x i8> %4, %4
239 /// %6 = extractelement <4 x i8> %5, i32 0
240 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0
241 /// %7 = extractelement <4 x i8> %5, i32 1
242 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1
243 /// %8 = extractelement <4 x i8> %5, i32 2
244 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2
245 /// %9 = extractelement <4 x i8> %5, i32 3
246 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3
247 /// ret <4 x i8> %ins4
248 /// InstCombiner transforms this into a shuffle and vector mul
249 static Optional<TargetTransformInfo::ShuffleKind>
250 isShuffle(ArrayRef<Value *> VL) {
251   auto *EI0 = cast<ExtractElementInst>(VL[0]);
252   unsigned Size = EI0->getVectorOperandType()->getVectorNumElements();
253   Value *Vec1 = nullptr;
254   Value *Vec2 = nullptr;
255   enum ShuffleMode {Unknown, FirstAlternate, SecondAlternate, Permute};
256   ShuffleMode CommonShuffleMode = Unknown;
257   for (unsigned I = 0, E = VL.size(); I < E; ++I) {
258     auto *EI = cast<ExtractElementInst>(VL[I]);
259     auto *Vec = EI->getVectorOperand();
260     // All vector operands must have the same number of vector elements.
261     if (Vec->getType()->getVectorNumElements() != Size)
262       return None;
263     auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand());
264     if (!Idx)
265       return None;
266     // Undefined behavior if Idx is negative or >= Size.
267     if (Idx->getValue().uge(Size))
268       continue;
269     unsigned IntIdx = Idx->getValue().getZExtValue();
270     // We can extractelement from undef vector.
271     if (isa<UndefValue>(Vec))
272       continue;
273     // For correct shuffling we have to have at most 2 different vector operands
274     // in all extractelement instructions.
275     if (Vec1 && Vec2 && Vec != Vec1 && Vec != Vec2)
276       return None;
277     if (CommonShuffleMode == Permute)
278       continue;
279     // If the extract index is not the same as the operation number, it is a
280     // permutation.
281     if (IntIdx != I) {
282       CommonShuffleMode = Permute;
283       continue;
284     }
285     // Check the shuffle mode for the current operation.
286     if (!Vec1)
287       Vec1 = Vec;
288     else if (Vec != Vec1)
289       Vec2 = Vec;
290     // Example: shufflevector A, B, <0,5,2,7>
291     // I is odd and IntIdx for A == I - FirstAlternate shuffle.
292     // I is even and IntIdx for B == I - FirstAlternate shuffle.
293     // Example: shufflevector A, B, <4,1,6,3>
294     // I is even and IntIdx for A == I - SecondAlternate shuffle.
295     // I is odd and IntIdx for B == I - SecondAlternate shuffle.
296     const bool IIsEven = I & 1;
297     const bool CurrVecIsA = Vec == Vec1;
298     const bool IIsOdd = !IIsEven;
299     const bool CurrVecIsB = !CurrVecIsA;
300     ShuffleMode CurrentShuffleMode =
301         ((IIsOdd && CurrVecIsA) || (IIsEven && CurrVecIsB)) ? FirstAlternate
302                                                             : SecondAlternate;
303     // Common mode is not set or the same as the shuffle mode of the current
304     // operation - alternate.
305     if (CommonShuffleMode == Unknown)
306       CommonShuffleMode = CurrentShuffleMode;
307     // Common shuffle mode is not the same as the shuffle mode of the current
308     // operation - permutation.
309     if (CommonShuffleMode != CurrentShuffleMode)
310       CommonShuffleMode = Permute;
311   }
312   // If we're not crossing lanes in different vectors, consider it as blending.
313   if ((CommonShuffleMode == FirstAlternate ||
314        CommonShuffleMode == SecondAlternate) &&
315       Vec2)
316     return TargetTransformInfo::SK_Alternate;
317   // If Vec2 was never used, we have a permutation of a single vector, otherwise
318   // we have permutation of 2 vectors.
319   return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc
320               : TargetTransformInfo::SK_PermuteSingleSrc;
321 }
322
323 ///\returns Opcode that can be clubbed with \p Op to create an alternate
324 /// sequence which can later be merged as a ShuffleVector instruction.
325 static unsigned getAltOpcode(unsigned Op) {
326   switch (Op) {
327   case Instruction::FAdd:
328     return Instruction::FSub;
329   case Instruction::FSub:
330     return Instruction::FAdd;
331   case Instruction::Add:
332     return Instruction::Sub;
333   case Instruction::Sub:
334     return Instruction::Add;
335   default:
336     return 0;
337   }
338 }
339
340 static bool isOdd(unsigned Value) {
341   return Value & 1;
342 }
343
344 static bool sameOpcodeOrAlt(unsigned Opcode, unsigned AltOpcode,
345                             unsigned CheckedOpcode) {
346   return Opcode == CheckedOpcode || AltOpcode == CheckedOpcode;
347 }
348
349 /// Chooses the correct key for scheduling data. If \p Op has the same (or
350 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
351 /// OpValue.
352 static Value *isOneOf(Value *OpValue, Value *Op) {
353   auto *I = dyn_cast<Instruction>(Op);
354   if (!I)
355     return OpValue;
356   auto *OpInst = cast<Instruction>(OpValue);
357   unsigned OpInstOpcode = OpInst->getOpcode();
358   unsigned IOpcode = I->getOpcode();
359   if (sameOpcodeOrAlt(OpInstOpcode, getAltOpcode(OpInstOpcode), IOpcode))
360     return Op;
361   return OpValue;
362 }
363
364 namespace {
365
366 /// Contains data for the instructions going to be vectorized.
367 struct RawInstructionsData {
368   /// Main Opcode of the instructions going to be vectorized.
369   unsigned Opcode = 0;
370
371   /// The list of instructions have some instructions with alternate opcodes.
372   bool HasAltOpcodes = false;
373 };
374
375 } // end anonymous namespace
376
377 /// Checks the list of the vectorized instructions \p VL and returns info about
378 /// this list.
379 static RawInstructionsData getMainOpcode(ArrayRef<Value *> VL) {
380   auto *I0 = dyn_cast<Instruction>(VL[0]);
381   if (!I0)
382     return {};
383   RawInstructionsData Res;
384   unsigned Opcode = I0->getOpcode();
385   // Walk through the list of the vectorized instructions
386   // in order to check its structure described by RawInstructionsData.
387   for (unsigned Cnt = 0, E = VL.size(); Cnt != E; ++Cnt) {
388     auto *I = dyn_cast<Instruction>(VL[Cnt]);
389     if (!I)
390       return {};
391     if (Opcode != I->getOpcode())
392       Res.HasAltOpcodes = true;
393   }
394   Res.Opcode = Opcode;
395   return Res;
396 }
397
398 namespace {
399
400 /// Main data required for vectorization of instructions.
401 struct InstructionsState {
402   /// The very first instruction in the list with the main opcode.
403   Value *OpValue = nullptr;
404
405   /// The main opcode for the list of instructions.
406   unsigned Opcode = 0;
407
408   /// Some of the instructions in the list have alternate opcodes.
409   bool IsAltShuffle = false;
410
411   InstructionsState() = default;
412   InstructionsState(Value *OpValue, unsigned Opcode, bool IsAltShuffle)
413       : OpValue(OpValue), Opcode(Opcode), IsAltShuffle(IsAltShuffle) {}
414 };
415
416 } // end anonymous namespace
417
418 /// \returns analysis of the Instructions in \p VL described in
419 /// InstructionsState, the Opcode that we suppose the whole list 
420 /// could be vectorized even if its structure is diverse.
421 static InstructionsState getSameOpcode(ArrayRef<Value *> VL) {
422   auto Res = getMainOpcode(VL);
423   unsigned Opcode = Res.Opcode;
424   if (!Res.HasAltOpcodes)
425     return InstructionsState(VL[0], Opcode, false);
426   auto *OpInst = cast<Instruction>(VL[0]);
427   unsigned AltOpcode = getAltOpcode(Opcode);
428   // Examine each element in the list instructions VL to determine
429   // if some operations there could be considered as an alternative
430   // (for example as subtraction relates to addition operation).
431   for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) {
432     auto *I = cast<Instruction>(VL[Cnt]);
433     unsigned InstOpcode = I->getOpcode();
434     if ((Res.HasAltOpcodes &&
435          InstOpcode != (isOdd(Cnt) ? AltOpcode : Opcode)) ||
436         (!Res.HasAltOpcodes && InstOpcode != Opcode)) {
437       return InstructionsState(OpInst, 0, false);
438     }
439   }
440   return InstructionsState(OpInst, Opcode, Res.HasAltOpcodes);
441 }
442
443 /// \returns true if all of the values in \p VL have the same type or false
444 /// otherwise.
445 static bool allSameType(ArrayRef<Value *> VL) {
446   Type *Ty = VL[0]->getType();
447   for (int i = 1, e = VL.size(); i < e; i++)
448     if (VL[i]->getType() != Ty)
449       return false;
450
451   return true;
452 }
453
454 /// \returns True if Extract{Value,Element} instruction extracts element Idx.
455 static bool matchExtractIndex(Instruction *E, unsigned Idx, unsigned Opcode) {
456   assert(Opcode == Instruction::ExtractElement ||
457          Opcode == Instruction::ExtractValue);
458   if (Opcode == Instruction::ExtractElement) {
459     ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1));
460     return CI && CI->getZExtValue() == Idx;
461   } else {
462     ExtractValueInst *EI = cast<ExtractValueInst>(E);
463     return EI->getNumIndices() == 1 && *EI->idx_begin() == Idx;
464   }
465 }
466
467 /// \returns True if in-tree use also needs extract. This refers to
468 /// possible scalar operand in vectorized instruction.
469 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
470                                     TargetLibraryInfo *TLI) {
471   unsigned Opcode = UserInst->getOpcode();
472   switch (Opcode) {
473   case Instruction::Load: {
474     LoadInst *LI = cast<LoadInst>(UserInst);
475     return (LI->getPointerOperand() == Scalar);
476   }
477   case Instruction::Store: {
478     StoreInst *SI = cast<StoreInst>(UserInst);
479     return (SI->getPointerOperand() == Scalar);
480   }
481   case Instruction::Call: {
482     CallInst *CI = cast<CallInst>(UserInst);
483     Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
484     if (hasVectorInstrinsicScalarOpd(ID, 1)) {
485       return (CI->getArgOperand(1) == Scalar);
486     }
487     LLVM_FALLTHROUGH;
488   }
489   default:
490     return false;
491   }
492 }
493
494 /// \returns the AA location that is being access by the instruction.
495 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) {
496   if (StoreInst *SI = dyn_cast<StoreInst>(I))
497     return MemoryLocation::get(SI);
498   if (LoadInst *LI = dyn_cast<LoadInst>(I))
499     return MemoryLocation::get(LI);
500   return MemoryLocation();
501 }
502
503 /// \returns True if the instruction is not a volatile or atomic load/store.
504 static bool isSimple(Instruction *I) {
505   if (LoadInst *LI = dyn_cast<LoadInst>(I))
506     return LI->isSimple();
507   if (StoreInst *SI = dyn_cast<StoreInst>(I))
508     return SI->isSimple();
509   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
510     return !MI->isVolatile();
511   return true;
512 }
513
514 namespace llvm {
515
516 namespace slpvectorizer {
517
518 /// Bottom Up SLP Vectorizer.
519 class BoUpSLP {
520 public:
521   using ValueList = SmallVector<Value *, 8>;
522   using InstrList = SmallVector<Instruction *, 16>;
523   using ValueSet = SmallPtrSet<Value *, 16>;
524   using StoreList = SmallVector<StoreInst *, 8>;
525   using ExtraValueToDebugLocsMap =
526       MapVector<Value *, SmallVector<Instruction *, 2>>;
527
528   BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
529           TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li,
530           DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
531           const DataLayout *DL, OptimizationRemarkEmitter *ORE)
532       : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC),
533         DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) {
534     CodeMetrics::collectEphemeralValues(F, AC, EphValues);
535     // Use the vector register size specified by the target unless overridden
536     // by a command-line option.
537     // TODO: It would be better to limit the vectorization factor based on
538     //       data type rather than just register size. For example, x86 AVX has
539     //       256-bit registers, but it does not support integer operations
540     //       at that width (that requires AVX2).
541     if (MaxVectorRegSizeOption.getNumOccurrences())
542       MaxVecRegSize = MaxVectorRegSizeOption;
543     else
544       MaxVecRegSize = TTI->getRegisterBitWidth(true);
545
546     if (MinVectorRegSizeOption.getNumOccurrences())
547       MinVecRegSize = MinVectorRegSizeOption;
548     else
549       MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
550   }
551
552   /// \brief Vectorize the tree that starts with the elements in \p VL.
553   /// Returns the vectorized root.
554   Value *vectorizeTree();
555
556   /// Vectorize the tree but with the list of externally used values \p
557   /// ExternallyUsedValues. Values in this MapVector can be replaced but the
558   /// generated extractvalue instructions.
559   Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues);
560
561   /// \returns the cost incurred by unwanted spills and fills, caused by
562   /// holding live values over call sites.
563   int getSpillCost();
564
565   /// \returns the vectorization cost of the subtree that starts at \p VL.
566   /// A negative number means that this is profitable.
567   int getTreeCost();
568
569   /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
570   /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
571   void buildTree(ArrayRef<Value *> Roots,
572                  ArrayRef<Value *> UserIgnoreLst = None);
573
574   /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
575   /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking
576   /// into account (anf updating it, if required) list of externally used
577   /// values stored in \p ExternallyUsedValues.
578   void buildTree(ArrayRef<Value *> Roots,
579                  ExtraValueToDebugLocsMap &ExternallyUsedValues,
580                  ArrayRef<Value *> UserIgnoreLst = None);
581
582   /// Clear the internal data structures that are created by 'buildTree'.
583   void deleteTree() {
584     VectorizableTree.clear();
585     ScalarToTreeEntry.clear();
586     MustGather.clear();
587     ExternalUses.clear();
588     NumLoadsWantToKeepOrder = 0;
589     NumLoadsWantToChangeOrder = 0;
590     for (auto &Iter : BlocksSchedules) {
591       BlockScheduling *BS = Iter.second.get();
592       BS->clear();
593     }
594     MinBWs.clear();
595   }
596
597   unsigned getTreeSize() const { return VectorizableTree.size(); }
598
599   /// \brief Perform LICM and CSE on the newly generated gather sequences.
600   void optimizeGatherSequence(Function &F);
601
602   /// \returns true if it is beneficial to reverse the vector order.
603   bool shouldReorder() const {
604     return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder;
605   }
606
607   /// \return The vector element size in bits to use when vectorizing the
608   /// expression tree ending at \p V. If V is a store, the size is the width of
609   /// the stored value. Otherwise, the size is the width of the largest loaded
610   /// value reaching V. This method is used by the vectorizer to calculate
611   /// vectorization factors.
612   unsigned getVectorElementSize(Value *V);
613
614   /// Compute the minimum type sizes required to represent the entries in a
615   /// vectorizable tree.
616   void computeMinimumValueSizes();
617
618   // \returns maximum vector register size as set by TTI or overridden by cl::opt.
619   unsigned getMaxVecRegSize() const {
620     return MaxVecRegSize;
621   }
622
623   // \returns minimum vector register size as set by cl::opt.
624   unsigned getMinVecRegSize() const {
625     return MinVecRegSize;
626   }
627
628   /// \brief Check if ArrayType or StructType is isomorphic to some VectorType.
629   ///
630   /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
631   unsigned canMapToVector(Type *T, const DataLayout &DL) const;
632
633   /// \returns True if the VectorizableTree is both tiny and not fully
634   /// vectorizable. We do not vectorize such trees.
635   bool isTreeTinyAndNotFullyVectorizable();
636
637   OptimizationRemarkEmitter *getORE() { return ORE; }
638
639 private:
640   struct TreeEntry;
641
642   /// Checks if all users of \p I are the part of the vectorization tree.
643   bool areAllUsersVectorized(Instruction *I) const;
644
645   /// \returns the cost of the vectorizable entry.
646   int getEntryCost(TreeEntry *E);
647
648   /// This is the recursive part of buildTree.
649   void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, int);
650
651   /// \returns True if the ExtractElement/ExtractValue instructions in VL can
652   /// be vectorized to use the original vector (or aggregate "bitcast" to a vector).
653   bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue) const;
654
655   /// Vectorize a single entry in the tree.
656   Value *vectorizeTree(TreeEntry *E);
657
658   /// Vectorize a single entry in the tree, starting in \p VL.
659   Value *vectorizeTree(ArrayRef<Value *> VL);
660
661   /// \returns the pointer to the vectorized value if \p VL is already
662   /// vectorized, or NULL. They may happen in cycles.
663   Value *alreadyVectorized(ArrayRef<Value *> VL, Value *OpValue) const;
664
665   /// \returns the scalarization cost for this type. Scalarization in this
666   /// context means the creation of vectors from a group of scalars.
667   int getGatherCost(Type *Ty);
668
669   /// \returns the scalarization cost for this list of values. Assuming that
670   /// this subtree gets vectorized, we may need to extract the values from the
671   /// roots. This method calculates the cost of extracting the values.
672   int getGatherCost(ArrayRef<Value *> VL);
673
674   /// \brief Set the Builder insert point to one after the last instruction in
675   /// the bundle
676   void setInsertPointAfterBundle(ArrayRef<Value *> VL, Value *OpValue);
677
678   /// \returns a vector from a collection of scalars in \p VL.
679   Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
680
681   /// \returns whether the VectorizableTree is fully vectorizable and will
682   /// be beneficial even the tree height is tiny.
683   bool isFullyVectorizableTinyTree();
684
685   /// \reorder commutative operands in alt shuffle if they result in
686   ///  vectorized code.
687   void reorderAltShuffleOperands(unsigned Opcode, ArrayRef<Value *> VL,
688                                  SmallVectorImpl<Value *> &Left,
689                                  SmallVectorImpl<Value *> &Right);
690
691   /// \reorder commutative operands to get better probability of
692   /// generating vectorized code.
693   void reorderInputsAccordingToOpcode(unsigned Opcode, ArrayRef<Value *> VL,
694                                       SmallVectorImpl<Value *> &Left,
695                                       SmallVectorImpl<Value *> &Right);
696   struct TreeEntry {
697     TreeEntry(std::vector<TreeEntry> &Container) : Container(Container) {}
698
699     /// \returns true if the scalars in VL are equal to this entry.
700     bool isSame(ArrayRef<Value *> VL) const {
701       assert(VL.size() == Scalars.size() && "Invalid size");
702       return std::equal(VL.begin(), VL.end(), Scalars.begin());
703     }
704
705     /// A vector of scalars.
706     ValueList Scalars;
707
708     /// The Scalars are vectorized into this value. It is initialized to Null.
709     Value *VectorizedValue = nullptr;
710
711     /// Do we need to gather this sequence ?
712     bool NeedToGather = false;
713
714     /// Points back to the VectorizableTree.
715     ///
716     /// Only used for Graphviz right now.  Unfortunately GraphTrait::NodeRef has
717     /// to be a pointer and needs to be able to initialize the child iterator.
718     /// Thus we need a reference back to the container to translate the indices
719     /// to entries.
720     std::vector<TreeEntry> &Container;
721
722     /// The TreeEntry index containing the user of this entry.  We can actually
723     /// have multiple users so the data structure is not truly a tree.
724     SmallVector<int, 1> UserTreeIndices;
725   };
726
727   /// Create a new VectorizableTree entry.
728   TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized,
729                           int &UserTreeIdx) {
730     VectorizableTree.emplace_back(VectorizableTree);
731     int idx = VectorizableTree.size() - 1;
732     TreeEntry *Last = &VectorizableTree[idx];
733     Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
734     Last->NeedToGather = !Vectorized;
735     if (Vectorized) {
736       for (int i = 0, e = VL.size(); i != e; ++i) {
737         assert(!getTreeEntry(VL[i]) && "Scalar already in tree!");
738         ScalarToTreeEntry[VL[i]] = idx;
739       }
740     } else {
741       MustGather.insert(VL.begin(), VL.end());
742     }
743
744     if (UserTreeIdx >= 0)
745       Last->UserTreeIndices.push_back(UserTreeIdx);
746     UserTreeIdx = idx;
747     return Last;
748   }
749
750   /// -- Vectorization State --
751   /// Holds all of the tree entries.
752   std::vector<TreeEntry> VectorizableTree;
753
754   TreeEntry *getTreeEntry(Value *V) {
755     auto I = ScalarToTreeEntry.find(V);
756     if (I != ScalarToTreeEntry.end())
757       return &VectorizableTree[I->second];
758     return nullptr;
759   }
760
761   const TreeEntry *getTreeEntry(Value *V) const {
762     auto I = ScalarToTreeEntry.find(V);
763     if (I != ScalarToTreeEntry.end())
764       return &VectorizableTree[I->second];
765     return nullptr;
766   }
767
768   /// Maps a specific scalar to its tree entry.
769   SmallDenseMap<Value*, int> ScalarToTreeEntry;
770
771   /// A list of scalars that we found that we need to keep as scalars.
772   ValueSet MustGather;
773
774   /// This POD struct describes one external user in the vectorized tree.
775   struct ExternalUser {
776     ExternalUser(Value *S, llvm::User *U, int L)
777         : Scalar(S), User(U), Lane(L) {}
778
779     // Which scalar in our function.
780     Value *Scalar;
781
782     // Which user that uses the scalar.
783     llvm::User *User;
784
785     // Which lane does the scalar belong to.
786     int Lane;
787   };
788   using UserList = SmallVector<ExternalUser, 16>;
789
790   /// Checks if two instructions may access the same memory.
791   ///
792   /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
793   /// is invariant in the calling loop.
794   bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
795                  Instruction *Inst2) {
796     // First check if the result is already in the cache.
797     AliasCacheKey key = std::make_pair(Inst1, Inst2);
798     Optional<bool> &result = AliasCache[key];
799     if (result.hasValue()) {
800       return result.getValue();
801     }
802     MemoryLocation Loc2 = getLocation(Inst2, AA);
803     bool aliased = true;
804     if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
805       // Do the alias check.
806       aliased = AA->alias(Loc1, Loc2);
807     }
808     // Store the result in the cache.
809     result = aliased;
810     return aliased;
811   }
812
813   using AliasCacheKey = std::pair<Instruction *, Instruction *>;
814
815   /// Cache for alias results.
816   /// TODO: consider moving this to the AliasAnalysis itself.
817   DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
818
819   /// Removes an instruction from its block and eventually deletes it.
820   /// It's like Instruction::eraseFromParent() except that the actual deletion
821   /// is delayed until BoUpSLP is destructed.
822   /// This is required to ensure that there are no incorrect collisions in the
823   /// AliasCache, which can happen if a new instruction is allocated at the
824   /// same address as a previously deleted instruction.
825   void eraseInstruction(Instruction *I) {
826     I->removeFromParent();
827     I->dropAllReferences();
828     DeletedInstructions.emplace_back(I);
829   }
830
831   /// Temporary store for deleted instructions. Instructions will be deleted
832   /// eventually when the BoUpSLP is destructed.
833   SmallVector<unique_value, 8> DeletedInstructions;
834
835   /// A list of values that need to extracted out of the tree.
836   /// This list holds pairs of (Internal Scalar : External User). External User
837   /// can be nullptr, it means that this Internal Scalar will be used later,
838   /// after vectorization.
839   UserList ExternalUses;
840
841   /// Values used only by @llvm.assume calls.
842   SmallPtrSet<const Value *, 32> EphValues;
843
844   /// Holds all of the instructions that we gathered.
845   SetVector<Instruction *> GatherSeq;
846
847   /// A list of blocks that we are going to CSE.
848   SetVector<BasicBlock *> CSEBlocks;
849
850   /// Contains all scheduling relevant data for an instruction.
851   /// A ScheduleData either represents a single instruction or a member of an
852   /// instruction bundle (= a group of instructions which is combined into a
853   /// vector instruction).
854   struct ScheduleData {
855     // The initial value for the dependency counters. It means that the
856     // dependencies are not calculated yet.
857     enum { InvalidDeps = -1 };
858
859     ScheduleData() = default;
860
861     void init(int BlockSchedulingRegionID, Value *OpVal) {
862       FirstInBundle = this;
863       NextInBundle = nullptr;
864       NextLoadStore = nullptr;
865       IsScheduled = false;
866       SchedulingRegionID = BlockSchedulingRegionID;
867       UnscheduledDepsInBundle = UnscheduledDeps;
868       clearDependencies();
869       OpValue = OpVal;
870     }
871
872     /// Returns true if the dependency information has been calculated.
873     bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
874
875     /// Returns true for single instructions and for bundle representatives
876     /// (= the head of a bundle).
877     bool isSchedulingEntity() const { return FirstInBundle == this; }
878
879     /// Returns true if it represents an instruction bundle and not only a
880     /// single instruction.
881     bool isPartOfBundle() const {
882       return NextInBundle != nullptr || FirstInBundle != this;
883     }
884
885     /// Returns true if it is ready for scheduling, i.e. it has no more
886     /// unscheduled depending instructions/bundles.
887     bool isReady() const {
888       assert(isSchedulingEntity() &&
889              "can't consider non-scheduling entity for ready list");
890       return UnscheduledDepsInBundle == 0 && !IsScheduled;
891     }
892
893     /// Modifies the number of unscheduled dependencies, also updating it for
894     /// the whole bundle.
895     int incrementUnscheduledDeps(int Incr) {
896       UnscheduledDeps += Incr;
897       return FirstInBundle->UnscheduledDepsInBundle += Incr;
898     }
899
900     /// Sets the number of unscheduled dependencies to the number of
901     /// dependencies.
902     void resetUnscheduledDeps() {
903       incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
904     }
905
906     /// Clears all dependency information.
907     void clearDependencies() {
908       Dependencies = InvalidDeps;
909       resetUnscheduledDeps();
910       MemoryDependencies.clear();
911     }
912
913     void dump(raw_ostream &os) const {
914       if (!isSchedulingEntity()) {
915         os << "/ " << *Inst;
916       } else if (NextInBundle) {
917         os << '[' << *Inst;
918         ScheduleData *SD = NextInBundle;
919         while (SD) {
920           os << ';' << *SD->Inst;
921           SD = SD->NextInBundle;
922         }
923         os << ']';
924       } else {
925         os << *Inst;
926       }
927     }
928
929     Instruction *Inst = nullptr;
930
931     /// Points to the head in an instruction bundle (and always to this for
932     /// single instructions).
933     ScheduleData *FirstInBundle = nullptr;
934
935     /// Single linked list of all instructions in a bundle. Null if it is a
936     /// single instruction.
937     ScheduleData *NextInBundle = nullptr;
938
939     /// Single linked list of all memory instructions (e.g. load, store, call)
940     /// in the block - until the end of the scheduling region.
941     ScheduleData *NextLoadStore = nullptr;
942
943     /// The dependent memory instructions.
944     /// This list is derived on demand in calculateDependencies().
945     SmallVector<ScheduleData *, 4> MemoryDependencies;
946
947     /// This ScheduleData is in the current scheduling region if this matches
948     /// the current SchedulingRegionID of BlockScheduling.
949     int SchedulingRegionID = 0;
950
951     /// Used for getting a "good" final ordering of instructions.
952     int SchedulingPriority = 0;
953
954     /// The number of dependencies. Constitutes of the number of users of the
955     /// instruction plus the number of dependent memory instructions (if any).
956     /// This value is calculated on demand.
957     /// If InvalidDeps, the number of dependencies is not calculated yet.
958     int Dependencies = InvalidDeps;
959
960     /// The number of dependencies minus the number of dependencies of scheduled
961     /// instructions. As soon as this is zero, the instruction/bundle gets ready
962     /// for scheduling.
963     /// Note that this is negative as long as Dependencies is not calculated.
964     int UnscheduledDeps = InvalidDeps;
965
966     /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
967     /// single instructions.
968     int UnscheduledDepsInBundle = InvalidDeps;
969
970     /// True if this instruction is scheduled (or considered as scheduled in the
971     /// dry-run).
972     bool IsScheduled = false;
973
974     /// Opcode of the current instruction in the schedule data.
975     Value *OpValue = nullptr;
976   };
977
978 #ifndef NDEBUG
979   friend inline raw_ostream &operator<<(raw_ostream &os,
980                                         const BoUpSLP::ScheduleData &SD) {
981     SD.dump(os);
982     return os;
983   }
984 #endif
985
986   friend struct GraphTraits<BoUpSLP *>;
987   friend struct DOTGraphTraits<BoUpSLP *>;
988
989   /// Contains all scheduling data for a basic block.
990   struct BlockScheduling {
991     BlockScheduling(BasicBlock *BB)
992         : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {}
993
994     void clear() {
995       ReadyInsts.clear();
996       ScheduleStart = nullptr;
997       ScheduleEnd = nullptr;
998       FirstLoadStoreInRegion = nullptr;
999       LastLoadStoreInRegion = nullptr;
1000
1001       // Reduce the maximum schedule region size by the size of the
1002       // previous scheduling run.
1003       ScheduleRegionSizeLimit -= ScheduleRegionSize;
1004       if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
1005         ScheduleRegionSizeLimit = MinScheduleRegionSize;
1006       ScheduleRegionSize = 0;
1007
1008       // Make a new scheduling region, i.e. all existing ScheduleData is not
1009       // in the new region yet.
1010       ++SchedulingRegionID;
1011     }
1012
1013     ScheduleData *getScheduleData(Value *V) {
1014       ScheduleData *SD = ScheduleDataMap[V];
1015       if (SD && SD->SchedulingRegionID == SchedulingRegionID)
1016         return SD;
1017       return nullptr;
1018     }
1019
1020     ScheduleData *getScheduleData(Value *V, Value *Key) {
1021       if (V == Key)
1022         return getScheduleData(V);
1023       auto I = ExtraScheduleDataMap.find(V);
1024       if (I != ExtraScheduleDataMap.end()) {
1025         ScheduleData *SD = I->second[Key];
1026         if (SD && SD->SchedulingRegionID == SchedulingRegionID)
1027           return SD;
1028       }
1029       return nullptr;
1030     }
1031
1032     bool isInSchedulingRegion(ScheduleData *SD) {
1033       return SD->SchedulingRegionID == SchedulingRegionID;
1034     }
1035
1036     /// Marks an instruction as scheduled and puts all dependent ready
1037     /// instructions into the ready-list.
1038     template <typename ReadyListType>
1039     void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
1040       SD->IsScheduled = true;
1041       DEBUG(dbgs() << "SLP:   schedule " << *SD << "\n");
1042
1043       ScheduleData *BundleMember = SD;
1044       while (BundleMember) {
1045         if (BundleMember->Inst != BundleMember->OpValue) {
1046           BundleMember = BundleMember->NextInBundle;
1047           continue;
1048         }
1049         // Handle the def-use chain dependencies.
1050         for (Use &U : BundleMember->Inst->operands()) {
1051           auto *I = dyn_cast<Instruction>(U.get());
1052           if (!I)
1053             continue;
1054           doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) {
1055             if (OpDef && OpDef->hasValidDependencies() &&
1056                 OpDef->incrementUnscheduledDeps(-1) == 0) {
1057               // There are no more unscheduled dependencies after
1058               // decrementing, so we can put the dependent instruction
1059               // into the ready list.
1060               ScheduleData *DepBundle = OpDef->FirstInBundle;
1061               assert(!DepBundle->IsScheduled &&
1062                      "already scheduled bundle gets ready");
1063               ReadyList.insert(DepBundle);
1064               DEBUG(dbgs()
1065                     << "SLP:    gets ready (def): " << *DepBundle << "\n");
1066             }
1067           });
1068         }
1069         // Handle the memory dependencies.
1070         for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
1071           if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
1072             // There are no more unscheduled dependencies after decrementing,
1073             // so we can put the dependent instruction into the ready list.
1074             ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
1075             assert(!DepBundle->IsScheduled &&
1076                    "already scheduled bundle gets ready");
1077             ReadyList.insert(DepBundle);
1078             DEBUG(dbgs() << "SLP:    gets ready (mem): " << *DepBundle
1079                          << "\n");
1080           }
1081         }
1082         BundleMember = BundleMember->NextInBundle;
1083       }
1084     }
1085
1086     void doForAllOpcodes(Value *V,
1087                          function_ref<void(ScheduleData *SD)> Action) {
1088       if (ScheduleData *SD = getScheduleData(V))
1089         Action(SD);
1090       auto I = ExtraScheduleDataMap.find(V);
1091       if (I != ExtraScheduleDataMap.end())
1092         for (auto &P : I->second)
1093           if (P.second->SchedulingRegionID == SchedulingRegionID)
1094             Action(P.second);
1095     }
1096
1097     /// Put all instructions into the ReadyList which are ready for scheduling.
1098     template <typename ReadyListType>
1099     void initialFillReadyList(ReadyListType &ReadyList) {
1100       for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
1101         doForAllOpcodes(I, [&](ScheduleData *SD) {
1102           if (SD->isSchedulingEntity() && SD->isReady()) {
1103             ReadyList.insert(SD);
1104             DEBUG(dbgs() << "SLP:    initially in ready list: " << *I << "\n");
1105           }
1106         });
1107       }
1108     }
1109
1110     /// Checks if a bundle of instructions can be scheduled, i.e. has no
1111     /// cyclic dependencies. This is only a dry-run, no instructions are
1112     /// actually moved at this stage.
1113     bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP, Value *OpValue);
1114
1115     /// Un-bundles a group of instructions.
1116     void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);
1117
1118     /// Allocates schedule data chunk.
1119     ScheduleData *allocateScheduleDataChunks();
1120
1121     /// Extends the scheduling region so that V is inside the region.
1122     /// \returns true if the region size is within the limit.
1123     bool extendSchedulingRegion(Value *V, Value *OpValue);
1124
1125     /// Initialize the ScheduleData structures for new instructions in the
1126     /// scheduling region.
1127     void initScheduleData(Instruction *FromI, Instruction *ToI,
1128                           ScheduleData *PrevLoadStore,
1129                           ScheduleData *NextLoadStore);
1130
1131     /// Updates the dependency information of a bundle and of all instructions/
1132     /// bundles which depend on the original bundle.
1133     void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
1134                                BoUpSLP *SLP);
1135
1136     /// Sets all instruction in the scheduling region to un-scheduled.
1137     void resetSchedule();
1138
1139     BasicBlock *BB;
1140
1141     /// Simple memory allocation for ScheduleData.
1142     std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
1143
1144     /// The size of a ScheduleData array in ScheduleDataChunks.
1145     int ChunkSize;
1146
1147     /// The allocator position in the current chunk, which is the last entry
1148     /// of ScheduleDataChunks.
1149     int ChunkPos;
1150
1151     /// Attaches ScheduleData to Instruction.
1152     /// Note that the mapping survives during all vectorization iterations, i.e.
1153     /// ScheduleData structures are recycled.
1154     DenseMap<Value *, ScheduleData *> ScheduleDataMap;
1155
1156     /// Attaches ScheduleData to Instruction with the leading key.
1157     DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>>
1158         ExtraScheduleDataMap;
1159
1160     struct ReadyList : SmallVector<ScheduleData *, 8> {
1161       void insert(ScheduleData *SD) { push_back(SD); }
1162     };
1163
1164     /// The ready-list for scheduling (only used for the dry-run).
1165     ReadyList ReadyInsts;
1166
1167     /// The first instruction of the scheduling region.
1168     Instruction *ScheduleStart = nullptr;
1169
1170     /// The first instruction _after_ the scheduling region.
1171     Instruction *ScheduleEnd = nullptr;
1172
1173     /// The first memory accessing instruction in the scheduling region
1174     /// (can be null).
1175     ScheduleData *FirstLoadStoreInRegion = nullptr;
1176
1177     /// The last memory accessing instruction in the scheduling region
1178     /// (can be null).
1179     ScheduleData *LastLoadStoreInRegion = nullptr;
1180
1181     /// The current size of the scheduling region.
1182     int ScheduleRegionSize = 0;
1183
1184     /// The maximum size allowed for the scheduling region.
1185     int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget;
1186
1187     /// The ID of the scheduling region. For a new vectorization iteration this
1188     /// is incremented which "removes" all ScheduleData from the region.
1189     // Make sure that the initial SchedulingRegionID is greater than the
1190     // initial SchedulingRegionID in ScheduleData (which is 0).
1191     int SchedulingRegionID = 1;
1192   };
1193
1194   /// Attaches the BlockScheduling structures to basic blocks.
1195   MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
1196
1197   /// Performs the "real" scheduling. Done before vectorization is actually
1198   /// performed in a basic block.
1199   void scheduleBlock(BlockScheduling *BS);
1200
1201   /// List of users to ignore during scheduling and that don't need extracting.
1202   ArrayRef<Value *> UserIgnoreList;
1203
1204   // Number of load bundles that contain consecutive loads.
1205   int NumLoadsWantToKeepOrder = 0;
1206
1207   // Number of load bundles that contain consecutive loads in reversed order.
1208   int NumLoadsWantToChangeOrder = 0;
1209
1210   // Analysis and block reference.
1211   Function *F;
1212   ScalarEvolution *SE;
1213   TargetTransformInfo *TTI;
1214   TargetLibraryInfo *TLI;
1215   AliasAnalysis *AA;
1216   LoopInfo *LI;
1217   DominatorTree *DT;
1218   AssumptionCache *AC;
1219   DemandedBits *DB;
1220   const DataLayout *DL;
1221   OptimizationRemarkEmitter *ORE;
1222
1223   unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
1224   unsigned MinVecRegSize; // Set by cl::opt (default: 128).
1225
1226   /// Instruction builder to construct the vectorized tree.
1227   IRBuilder<> Builder;
1228
1229   /// A map of scalar integer values to the smallest bit width with which they
1230   /// can legally be represented. The values map to (width, signed) pairs,
1231   /// where "width" indicates the minimum bit width and "signed" is True if the
1232   /// value must be signed-extended, rather than zero-extended, back to its
1233   /// original width.
1234   MapVector<Value *, std::pair<uint64_t, bool>> MinBWs;
1235 };
1236
1237 } // end namespace slpvectorizer
1238
1239 template <> struct GraphTraits<BoUpSLP *> {
1240   using TreeEntry = BoUpSLP::TreeEntry;
1241
1242   /// NodeRef has to be a pointer per the GraphWriter.
1243   using NodeRef = TreeEntry *;
1244
1245   /// \brief Add the VectorizableTree to the index iterator to be able to return
1246   /// TreeEntry pointers.
1247   struct ChildIteratorType
1248       : public iterator_adaptor_base<ChildIteratorType,
1249                                      SmallVector<int, 1>::iterator> {
1250     std::vector<TreeEntry> &VectorizableTree;
1251
1252     ChildIteratorType(SmallVector<int, 1>::iterator W,
1253                       std::vector<TreeEntry> &VT)
1254         : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}
1255
1256     NodeRef operator*() { return &VectorizableTree[*I]; }
1257   };
1258
1259   static NodeRef getEntryNode(BoUpSLP &R) { return &R.VectorizableTree[0]; }
1260
1261   static ChildIteratorType child_begin(NodeRef N) {
1262     return {N->UserTreeIndices.begin(), N->Container};
1263   }
1264
1265   static ChildIteratorType child_end(NodeRef N) {
1266     return {N->UserTreeIndices.end(), N->Container};
1267   }
1268
1269   /// For the node iterator we just need to turn the TreeEntry iterator into a
1270   /// TreeEntry* iterator so that it dereferences to NodeRef.
1271   using nodes_iterator = pointer_iterator<std::vector<TreeEntry>::iterator>;
1272
1273   static nodes_iterator nodes_begin(BoUpSLP *R) {
1274     return nodes_iterator(R->VectorizableTree.begin());
1275   }
1276
1277   static nodes_iterator nodes_end(BoUpSLP *R) {
1278     return nodes_iterator(R->VectorizableTree.end());
1279   }
1280
1281   static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
1282 };
1283
1284 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
1285   using TreeEntry = BoUpSLP::TreeEntry;
1286
1287   DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
1288
1289   std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
1290     std::string Str;
1291     raw_string_ostream OS(Str);
1292     if (isSplat(Entry->Scalars)) {
1293       OS << "<splat> " << *Entry->Scalars[0];
1294       return Str;
1295     }
1296     for (auto V : Entry->Scalars) {
1297       OS << *V;
1298       if (std::any_of(
1299               R->ExternalUses.begin(), R->ExternalUses.end(),
1300               [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; }))
1301         OS << " <extract>";
1302       OS << "\n";
1303     }
1304     return Str;
1305   }
1306
1307   static std::string getNodeAttributes(const TreeEntry *Entry,
1308                                        const BoUpSLP *) {
1309     if (Entry->NeedToGather)
1310       return "color=red";
1311     return "";
1312   }
1313 };
1314
1315 } // end namespace llvm
1316
1317 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
1318                         ArrayRef<Value *> UserIgnoreLst) {
1319   ExtraValueToDebugLocsMap ExternallyUsedValues;
1320   buildTree(Roots, ExternallyUsedValues, UserIgnoreLst);
1321 }
1322
1323 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
1324                         ExtraValueToDebugLocsMap &ExternallyUsedValues,
1325                         ArrayRef<Value *> UserIgnoreLst) {
1326   deleteTree();
1327   UserIgnoreList = UserIgnoreLst;
1328   if (!allSameType(Roots))
1329     return;
1330   buildTree_rec(Roots, 0, -1);
1331
1332   // Collect the values that we need to extract from the tree.
1333   for (TreeEntry &EIdx : VectorizableTree) {
1334     TreeEntry *Entry = &EIdx;
1335
1336     // No need to handle users of gathered values.
1337     if (Entry->NeedToGather)
1338       continue;
1339
1340     // For each lane:
1341     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
1342       Value *Scalar = Entry->Scalars[Lane];
1343
1344       // Check if the scalar is externally used as an extra arg.
1345       auto ExtI = ExternallyUsedValues.find(Scalar);
1346       if (ExtI != ExternallyUsedValues.end()) {
1347         DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " <<
1348               Lane << " from " << *Scalar << ".\n");
1349         ExternalUses.emplace_back(Scalar, nullptr, Lane);
1350         continue;
1351       }
1352       for (User *U : Scalar->users()) {
1353         DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
1354
1355         Instruction *UserInst = dyn_cast<Instruction>(U);
1356         if (!UserInst)
1357           continue;
1358
1359         // Skip in-tree scalars that become vectors
1360         if (TreeEntry *UseEntry = getTreeEntry(U)) {
1361           Value *UseScalar = UseEntry->Scalars[0];
1362           // Some in-tree scalars will remain as scalar in vectorized
1363           // instructions. If that is the case, the one in Lane 0 will
1364           // be used.
1365           if (UseScalar != U ||
1366               !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
1367             DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
1368                          << ".\n");
1369             assert(!UseEntry->NeedToGather && "Bad state");
1370             continue;
1371           }
1372         }
1373
1374         // Ignore users in the user ignore list.
1375         if (is_contained(UserIgnoreList, UserInst))
1376           continue;
1377
1378         DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " <<
1379               Lane << " from " << *Scalar << ".\n");
1380         ExternalUses.push_back(ExternalUser(Scalar, U, Lane));
1381       }
1382     }
1383   }
1384 }
1385
1386 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
1387                             int UserTreeIdx) {
1388   assert((allConstant(VL) || allSameType(VL)) && "Invalid types!");
1389
1390   InstructionsState S = getSameOpcode(VL);
1391   if (Depth == RecursionMaxDepth) {
1392     DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
1393     newTreeEntry(VL, false, UserTreeIdx);
1394     return;
1395   }
1396
1397   // Don't handle vectors.
1398   if (S.OpValue->getType()->isVectorTy()) {
1399     DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
1400     newTreeEntry(VL, false, UserTreeIdx);
1401     return;
1402   }
1403
1404   if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
1405     if (SI->getValueOperand()->getType()->isVectorTy()) {
1406       DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
1407       newTreeEntry(VL, false, UserTreeIdx);
1408       return;
1409     }
1410
1411   // If all of the operands are identical or constant we have a simple solution.
1412   if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.Opcode) {
1413     DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
1414     newTreeEntry(VL, false, UserTreeIdx);
1415     return;
1416   }
1417
1418   // We now know that this is a vector of instructions of the same type from
1419   // the same block.
1420
1421   // Don't vectorize ephemeral values.
1422   for (unsigned i = 0, e = VL.size(); i != e; ++i) {
1423     if (EphValues.count(VL[i])) {
1424       DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
1425             ") is ephemeral.\n");
1426       newTreeEntry(VL, false, UserTreeIdx);
1427       return;
1428     }
1429   }
1430
1431   // Check if this is a duplicate of another entry.
1432   if (TreeEntry *E = getTreeEntry(S.OpValue)) {
1433     for (unsigned i = 0, e = VL.size(); i != e; ++i) {
1434       DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n");
1435       if (E->Scalars[i] != VL[i]) {
1436         DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
1437         newTreeEntry(VL, false, UserTreeIdx);
1438         return;
1439       }
1440     }
1441     // Record the reuse of the tree node.  FIXME, currently this is only used to
1442     // properly draw the graph rather than for the actual vectorization.
1443     E->UserTreeIndices.push_back(UserTreeIdx);
1444     DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue << ".\n");
1445     return;
1446   }
1447
1448   // Check that none of the instructions in the bundle are already in the tree.
1449   for (unsigned i = 0, e = VL.size(); i != e; ++i) {
1450     auto *I = dyn_cast<Instruction>(VL[i]);
1451     if (!I)
1452       continue;
1453     if (getTreeEntry(I)) {
1454       DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
1455             ") is already in tree.\n");
1456       newTreeEntry(VL, false, UserTreeIdx);
1457       return;
1458     }
1459   }
1460
1461   // If any of the scalars is marked as a value that needs to stay scalar, then
1462   // we need to gather the scalars.
1463   for (unsigned i = 0, e = VL.size(); i != e; ++i) {
1464     if (MustGather.count(VL[i])) {
1465       DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
1466       newTreeEntry(VL, false, UserTreeIdx);
1467       return;
1468     }
1469   }
1470
1471   // Check that all of the users of the scalars that we want to vectorize are
1472   // schedulable.
1473   auto *VL0 = cast<Instruction>(S.OpValue);
1474   BasicBlock *BB = VL0->getParent();
1475
1476   if (!DT->isReachableFromEntry(BB)) {
1477     // Don't go into unreachable blocks. They may contain instructions with
1478     // dependency cycles which confuse the final scheduling.
1479     DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
1480     newTreeEntry(VL, false, UserTreeIdx);
1481     return;
1482   }
1483
1484   // Check that every instruction appears once in this bundle.
1485   for (unsigned i = 0, e = VL.size(); i < e; ++i)
1486     for (unsigned j = i + 1; j < e; ++j)
1487       if (VL[i] == VL[j]) {
1488         DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
1489         newTreeEntry(VL, false, UserTreeIdx);
1490         return;
1491       }
1492
1493   auto &BSRef = BlocksSchedules[BB];
1494   if (!BSRef)
1495     BSRef = llvm::make_unique<BlockScheduling>(BB);
1496
1497   BlockScheduling &BS = *BSRef.get();
1498
1499   if (!BS.tryScheduleBundle(VL, this, S.OpValue)) {
1500     DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
1501     assert((!BS.getScheduleData(VL0) ||
1502             !BS.getScheduleData(VL0)->isPartOfBundle()) &&
1503            "tryScheduleBundle should cancelScheduling on failure");
1504     newTreeEntry(VL, false, UserTreeIdx);
1505     return;
1506   }
1507   DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
1508
1509   unsigned ShuffleOrOp = S.IsAltShuffle ?
1510                 (unsigned) Instruction::ShuffleVector : S.Opcode;
1511   switch (ShuffleOrOp) {
1512     case Instruction::PHI: {
1513       PHINode *PH = dyn_cast<PHINode>(VL0);
1514
1515       // Check for terminator values (e.g. invoke).
1516       for (unsigned j = 0; j < VL.size(); ++j)
1517         for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
1518           TerminatorInst *Term = dyn_cast<TerminatorInst>(
1519               cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i)));
1520           if (Term) {
1521             DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n");
1522             BS.cancelScheduling(VL, VL0);
1523             newTreeEntry(VL, false, UserTreeIdx);
1524             return;
1525           }
1526         }
1527
1528       newTreeEntry(VL, true, UserTreeIdx);
1529       DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
1530
1531       for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
1532         ValueList Operands;
1533         // Prepare the operand vector.
1534         for (Value *j : VL)
1535           Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock(
1536               PH->getIncomingBlock(i)));
1537
1538         buildTree_rec(Operands, Depth + 1, UserTreeIdx);
1539       }
1540       return;
1541     }
1542     case Instruction::ExtractValue:
1543     case Instruction::ExtractElement: {
1544       bool Reuse = canReuseExtract(VL, VL0);
1545       if (Reuse) {
1546         DEBUG(dbgs() << "SLP: Reusing extract sequence.\n");
1547       } else {
1548         BS.cancelScheduling(VL, VL0);
1549       }
1550       newTreeEntry(VL, Reuse, UserTreeIdx);
1551       return;
1552     }
1553     case Instruction::Load: {
1554       // Check that a vectorized load would load the same memory as a scalar
1555       // load. For example, we don't want to vectorize loads that are smaller
1556       // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
1557       // treats loading/storing it as an i8 struct. If we vectorize loads/stores
1558       // from such a struct, we read/write packed bits disagreeing with the
1559       // unvectorized version.
1560       Type *ScalarTy = VL0->getType();
1561
1562       if (DL->getTypeSizeInBits(ScalarTy) !=
1563           DL->getTypeAllocSizeInBits(ScalarTy)) {
1564         BS.cancelScheduling(VL, VL0);
1565         newTreeEntry(VL, false, UserTreeIdx);
1566         DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
1567         return;
1568       }
1569
1570       // Make sure all loads in the bundle are simple - we can't vectorize
1571       // atomic or volatile loads.
1572       for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) {
1573         LoadInst *L = cast<LoadInst>(VL[i]);
1574         if (!L->isSimple()) {
1575           BS.cancelScheduling(VL, VL0);
1576           newTreeEntry(VL, false, UserTreeIdx);
1577           DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
1578           return;
1579         }
1580       }
1581
1582       // Check if the loads are consecutive, reversed, or neither.
1583       // TODO: What we really want is to sort the loads, but for now, check
1584       // the two likely directions.
1585       bool Consecutive = true;
1586       bool ReverseConsecutive = true;
1587       for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) {
1588         if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) {
1589           Consecutive = false;
1590           break;
1591         } else {
1592           ReverseConsecutive = false;
1593         }
1594       }
1595
1596       if (Consecutive) {
1597         ++NumLoadsWantToKeepOrder;
1598         newTreeEntry(VL, true, UserTreeIdx);
1599         DEBUG(dbgs() << "SLP: added a vector of loads.\n");
1600         return;
1601       }
1602
1603       // If none of the load pairs were consecutive when checked in order,
1604       // check the reverse order.
1605       if (ReverseConsecutive)
1606         for (unsigned i = VL.size() - 1; i > 0; --i)
1607           if (!isConsecutiveAccess(VL[i], VL[i - 1], *DL, *SE)) {
1608             ReverseConsecutive = false;
1609             break;
1610           }
1611
1612       BS.cancelScheduling(VL, VL0);
1613       newTreeEntry(VL, false, UserTreeIdx);
1614
1615       if (ReverseConsecutive) {
1616         ++NumLoadsWantToChangeOrder;
1617         DEBUG(dbgs() << "SLP: Gathering reversed loads.\n");
1618       } else {
1619         DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
1620       }
1621       return;
1622     }
1623     case Instruction::ZExt:
1624     case Instruction::SExt:
1625     case Instruction::FPToUI:
1626     case Instruction::FPToSI:
1627     case Instruction::FPExt:
1628     case Instruction::PtrToInt:
1629     case Instruction::IntToPtr:
1630     case Instruction::SIToFP:
1631     case Instruction::UIToFP:
1632     case Instruction::Trunc:
1633     case Instruction::FPTrunc:
1634     case Instruction::BitCast: {
1635       Type *SrcTy = VL0->getOperand(0)->getType();
1636       for (unsigned i = 0; i < VL.size(); ++i) {
1637         Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType();
1638         if (Ty != SrcTy || !isValidElementType(Ty)) {
1639           BS.cancelScheduling(VL, VL0);
1640           newTreeEntry(VL, false, UserTreeIdx);
1641           DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n");
1642           return;
1643         }
1644       }
1645       newTreeEntry(VL, true, UserTreeIdx);
1646       DEBUG(dbgs() << "SLP: added a vector of casts.\n");
1647
1648       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1649         ValueList Operands;
1650         // Prepare the operand vector.
1651         for (Value *j : VL)
1652           Operands.push_back(cast<Instruction>(j)->getOperand(i));
1653
1654         buildTree_rec(Operands, Depth + 1, UserTreeIdx);
1655       }
1656       return;
1657     }
1658     case Instruction::ICmp:
1659     case Instruction::FCmp: {
1660       // Check that all of the compares have the same predicate.
1661       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
1662       Type *ComparedTy = VL0->getOperand(0)->getType();
1663       for (unsigned i = 1, e = VL.size(); i < e; ++i) {
1664         CmpInst *Cmp = cast<CmpInst>(VL[i]);
1665         if (Cmp->getPredicate() != P0 ||
1666             Cmp->getOperand(0)->getType() != ComparedTy) {
1667           BS.cancelScheduling(VL, VL0);
1668           newTreeEntry(VL, false, UserTreeIdx);
1669           DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n");
1670           return;
1671         }
1672       }
1673
1674       newTreeEntry(VL, true, UserTreeIdx);
1675       DEBUG(dbgs() << "SLP: added a vector of compares.\n");
1676
1677       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1678         ValueList Operands;
1679         // Prepare the operand vector.
1680         for (Value *j : VL)
1681           Operands.push_back(cast<Instruction>(j)->getOperand(i));
1682
1683         buildTree_rec(Operands, Depth + 1, UserTreeIdx);
1684       }
1685       return;
1686     }
1687     case Instruction::Select:
1688     case Instruction::Add:
1689     case Instruction::FAdd:
1690     case Instruction::Sub:
1691     case Instruction::FSub:
1692     case Instruction::Mul:
1693     case Instruction::FMul:
1694     case Instruction::UDiv:
1695     case Instruction::SDiv:
1696     case Instruction::FDiv:
1697     case Instruction::URem:
1698     case Instruction::SRem:
1699     case Instruction::FRem:
1700     case Instruction::Shl:
1701     case Instruction::LShr:
1702     case Instruction::AShr:
1703     case Instruction::And:
1704     case Instruction::Or:
1705     case Instruction::Xor:
1706       newTreeEntry(VL, true, UserTreeIdx);
1707       DEBUG(dbgs() << "SLP: added a vector of bin op.\n");
1708
1709       // Sort operands of the instructions so that each side is more likely to
1710       // have the same opcode.
1711       if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
1712         ValueList Left, Right;
1713         reorderInputsAccordingToOpcode(S.Opcode, VL, Left, Right);
1714         buildTree_rec(Left, Depth + 1, UserTreeIdx);
1715         buildTree_rec(Right, Depth + 1, UserTreeIdx);
1716         return;
1717       }
1718
1719       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1720         ValueList Operands;
1721         // Prepare the operand vector.
1722         for (Value *j : VL)
1723           Operands.push_back(cast<Instruction>(j)->getOperand(i));
1724
1725         buildTree_rec(Operands, Depth + 1, UserTreeIdx);
1726       }
1727       return;
1728
1729     case Instruction::GetElementPtr: {
1730       // We don't combine GEPs with complicated (nested) indexing.
1731       for (unsigned j = 0; j < VL.size(); ++j) {
1732         if (cast<Instruction>(VL[j])->getNumOperands() != 2) {
1733           DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
1734           BS.cancelScheduling(VL, VL0);
1735           newTreeEntry(VL, false, UserTreeIdx);
1736           return;
1737         }
1738       }
1739
1740       // We can't combine several GEPs into one vector if they operate on
1741       // different types.
1742       Type *Ty0 = VL0->getOperand(0)->getType();
1743       for (unsigned j = 0; j < VL.size(); ++j) {
1744         Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType();
1745         if (Ty0 != CurTy) {
1746           DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n");
1747           BS.cancelScheduling(VL, VL0);
1748           newTreeEntry(VL, false, UserTreeIdx);
1749           return;
1750         }
1751       }
1752
1753       // We don't combine GEPs with non-constant indexes.
1754       for (unsigned j = 0; j < VL.size(); ++j) {
1755         auto Op = cast<Instruction>(VL[j])->getOperand(1);
1756         if (!isa<ConstantInt>(Op)) {
1757           DEBUG(
1758               dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n");
1759           BS.cancelScheduling(VL, VL0);
1760           newTreeEntry(VL, false, UserTreeIdx);
1761           return;
1762         }
1763       }
1764
1765       newTreeEntry(VL, true, UserTreeIdx);
1766       DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
1767       for (unsigned i = 0, e = 2; i < e; ++i) {
1768         ValueList Operands;
1769         // Prepare the operand vector.
1770         for (Value *j : VL)
1771           Operands.push_back(cast<Instruction>(j)->getOperand(i));
1772
1773         buildTree_rec(Operands, Depth + 1, UserTreeIdx);
1774       }
1775       return;
1776     }
1777     case Instruction::Store: {
1778       // Check if the stores are consecutive or of we need to swizzle them.
1779       for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
1780         if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) {
1781           BS.cancelScheduling(VL, VL0);
1782           newTreeEntry(VL, false, UserTreeIdx);
1783           DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
1784           return;
1785         }
1786
1787       newTreeEntry(VL, true, UserTreeIdx);
1788       DEBUG(dbgs() << "SLP: added a vector of stores.\n");
1789
1790       ValueList Operands;
1791       for (Value *j : VL)
1792         Operands.push_back(cast<Instruction>(j)->getOperand(0));
1793
1794       buildTree_rec(Operands, Depth + 1, UserTreeIdx);
1795       return;
1796     }
1797     case Instruction::Call: {
1798       // Check if the calls are all to the same vectorizable intrinsic.
1799       CallInst *CI = cast<CallInst>(VL0);
1800       // Check if this is an Intrinsic call or something that can be
1801       // represented by an intrinsic call
1802       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
1803       if (!isTriviallyVectorizable(ID)) {
1804         BS.cancelScheduling(VL, VL0);
1805         newTreeEntry(VL, false, UserTreeIdx);
1806         DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
1807         return;
1808       }
1809       Function *Int = CI->getCalledFunction();
1810       Value *A1I = nullptr;
1811       if (hasVectorInstrinsicScalarOpd(ID, 1))
1812         A1I = CI->getArgOperand(1);
1813       for (unsigned i = 1, e = VL.size(); i != e; ++i) {
1814         CallInst *CI2 = dyn_cast<CallInst>(VL[i]);
1815         if (!CI2 || CI2->getCalledFunction() != Int ||
1816             getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
1817             !CI->hasIdenticalOperandBundleSchema(*CI2)) {
1818           BS.cancelScheduling(VL, VL0);
1819           newTreeEntry(VL, false, UserTreeIdx);
1820           DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i]
1821                        << "\n");
1822           return;
1823         }
1824         // ctlz,cttz and powi are special intrinsics whose second argument
1825         // should be same in order for them to be vectorized.
1826         if (hasVectorInstrinsicScalarOpd(ID, 1)) {
1827           Value *A1J = CI2->getArgOperand(1);
1828           if (A1I != A1J) {
1829             BS.cancelScheduling(VL, VL0);
1830             newTreeEntry(VL, false, UserTreeIdx);
1831             DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
1832                          << " argument "<< A1I<<"!=" << A1J
1833                          << "\n");
1834             return;
1835           }
1836         }
1837         // Verify that the bundle operands are identical between the two calls.
1838         if (CI->hasOperandBundles() &&
1839             !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
1840                         CI->op_begin() + CI->getBundleOperandsEndIndex(),
1841                         CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
1842           BS.cancelScheduling(VL, VL0);
1843           newTreeEntry(VL, false, UserTreeIdx);
1844           DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" << *CI << "!="
1845                        << *VL[i] << '\n');
1846           return;
1847         }
1848       }
1849
1850       newTreeEntry(VL, true, UserTreeIdx);
1851       for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
1852         ValueList Operands;
1853         // Prepare the operand vector.
1854         for (Value *j : VL) {
1855           CallInst *CI2 = dyn_cast<CallInst>(j);
1856           Operands.push_back(CI2->getArgOperand(i));
1857         }
1858         buildTree_rec(Operands, Depth + 1, UserTreeIdx);
1859       }
1860       return;
1861     }
1862     case Instruction::ShuffleVector:
1863       // If this is not an alternate sequence of opcode like add-sub
1864       // then do not vectorize this instruction.
1865       if (!S.IsAltShuffle) {
1866         BS.cancelScheduling(VL, VL0);
1867         newTreeEntry(VL, false, UserTreeIdx);
1868         DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
1869         return;
1870       }
1871       newTreeEntry(VL, true, UserTreeIdx);
1872       DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
1873
1874       // Reorder operands if reordering would enable vectorization.
1875       if (isa<BinaryOperator>(VL0)) {
1876         ValueList Left, Right;
1877         reorderAltShuffleOperands(S.Opcode, VL, Left, Right);
1878         buildTree_rec(Left, Depth + 1, UserTreeIdx);
1879         buildTree_rec(Right, Depth + 1, UserTreeIdx);
1880         return;
1881       }
1882
1883       for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1884         ValueList Operands;
1885         // Prepare the operand vector.
1886         for (Value *j : VL)
1887           Operands.push_back(cast<Instruction>(j)->getOperand(i));
1888
1889         buildTree_rec(Operands, Depth + 1, UserTreeIdx);
1890       }
1891       return;
1892
1893     default:
1894       BS.cancelScheduling(VL, VL0);
1895       newTreeEntry(VL, false, UserTreeIdx);
1896       DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
1897       return;
1898   }
1899 }
1900
1901 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
1902   unsigned N;
1903   Type *EltTy;
1904   auto *ST = dyn_cast<StructType>(T);
1905   if (ST) {
1906     N = ST->getNumElements();
1907     EltTy = *ST->element_begin();
1908   } else {
1909     N = cast<ArrayType>(T)->getNumElements();
1910     EltTy = cast<ArrayType>(T)->getElementType();
1911   }
1912   if (!isValidElementType(EltTy))
1913     return 0;
1914   uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N));
1915   if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
1916     return 0;
1917   if (ST) {
1918     // Check that struct is homogeneous.
1919     for (const auto *Ty : ST->elements())
1920       if (Ty != EltTy)
1921         return 0;
1922   }
1923   return N;
1924 }
1925
1926 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue) const {
1927   Instruction *E0 = cast<Instruction>(OpValue);
1928   assert(E0->getOpcode() == Instruction::ExtractElement ||
1929          E0->getOpcode() == Instruction::ExtractValue);
1930   assert(E0->getOpcode() == getSameOpcode(VL).Opcode && "Invalid opcode");
1931   // Check if all of the extracts come from the same vector and from the
1932   // correct offset.
1933   Value *Vec = E0->getOperand(0);
1934
1935   // We have to extract from a vector/aggregate with the same number of elements.
1936   unsigned NElts;
1937   if (E0->getOpcode() == Instruction::ExtractValue) {
1938     const DataLayout &DL = E0->getModule()->getDataLayout();
1939     NElts = canMapToVector(Vec->getType(), DL);
1940     if (!NElts)
1941       return false;
1942     // Check if load can be rewritten as load of vector.
1943     LoadInst *LI = dyn_cast<LoadInst>(Vec);
1944     if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
1945       return false;
1946   } else {
1947     NElts = Vec->getType()->getVectorNumElements();
1948   }
1949
1950   if (NElts != VL.size())
1951     return false;
1952
1953   // Check that all of the indices extract from the correct offset.
1954   for (unsigned I = 0, E = VL.size(); I < E; ++I) {
1955     Instruction *Inst = cast<Instruction>(VL[I]);
1956     if (!matchExtractIndex(Inst, I, Inst->getOpcode()))
1957       return false;
1958     if (Inst->getOperand(0) != Vec)
1959       return false;
1960   }
1961
1962   return true;
1963 }
1964
1965 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const {
1966   return I->hasOneUse() ||
1967          std::all_of(I->user_begin(), I->user_end(), [this](User *U) {
1968            return ScalarToTreeEntry.count(U) > 0;
1969          });
1970 }
1971
1972 int BoUpSLP::getEntryCost(TreeEntry *E) {
1973   ArrayRef<Value*> VL = E->Scalars;
1974
1975   Type *ScalarTy = VL[0]->getType();
1976   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
1977     ScalarTy = SI->getValueOperand()->getType();
1978   else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0]))
1979     ScalarTy = CI->getOperand(0)->getType();
1980   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
1981
1982   // If we have computed a smaller type for the expression, update VecTy so
1983   // that the costs will be accurate.
1984   if (MinBWs.count(VL[0]))
1985     VecTy = VectorType::get(
1986         IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size());
1987
1988   if (E->NeedToGather) {
1989     if (allConstant(VL))
1990       return 0;
1991     if (isSplat(VL)) {
1992       return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
1993     }
1994     if (getSameOpcode(VL).Opcode == Instruction::ExtractElement) {
1995       Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL);
1996       if (ShuffleKind.hasValue()) {
1997         int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy);
1998         for (auto *V : VL) {
1999           // If all users of instruction are going to be vectorized and this
2000           // instruction itself is not going to be vectorized, consider this
2001           // instruction as dead and remove its cost from the final cost of the
2002           // vectorized tree.
2003           if (areAllUsersVectorized(cast<Instruction>(V)) &&
2004               !ScalarToTreeEntry.count(V)) {
2005             auto *IO = cast<ConstantInt>(
2006                 cast<ExtractElementInst>(V)->getIndexOperand());
2007             Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
2008                                             IO->getZExtValue());
2009           }
2010         }
2011         return Cost;
2012       }
2013     }
2014     return getGatherCost(E->Scalars);
2015   }
2016   InstructionsState S = getSameOpcode(VL);
2017   assert(S.Opcode && allSameType(VL) && allSameBlock(VL) && "Invalid VL");
2018   Instruction *VL0 = cast<Instruction>(S.OpValue);
2019   unsigned ShuffleOrOp = S.IsAltShuffle ?
2020                (unsigned) Instruction::ShuffleVector : S.Opcode;
2021   switch (ShuffleOrOp) {
2022     case Instruction::PHI:
2023       return 0;
2024
2025     case Instruction::ExtractValue:
2026     case Instruction::ExtractElement:
2027       if (canReuseExtract(VL, S.OpValue)) {
2028         int DeadCost = 0;
2029         for (unsigned i = 0, e = VL.size(); i < e; ++i) {
2030           Instruction *E = cast<Instruction>(VL[i]);
2031           // If all users are going to be vectorized, instruction can be
2032           // considered as dead.
2033           // The same, if have only one user, it will be vectorized for sure.
2034           if (areAllUsersVectorized(E))
2035             // Take credit for instruction that will become dead.
2036             DeadCost +=
2037                 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i);
2038         }
2039         return -DeadCost;
2040       }
2041       return getGatherCost(VecTy);
2042
2043     case Instruction::ZExt:
2044     case Instruction::SExt:
2045     case Instruction::FPToUI:
2046     case Instruction::FPToSI:
2047     case Instruction::FPExt:
2048     case Instruction::PtrToInt:
2049     case Instruction::IntToPtr:
2050     case Instruction::SIToFP:
2051     case Instruction::UIToFP:
2052     case Instruction::Trunc:
2053     case Instruction::FPTrunc:
2054     case Instruction::BitCast: {
2055       Type *SrcTy = VL0->getOperand(0)->getType();
2056
2057       // Calculate the cost of this instruction.
2058       int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(),
2059                                                          VL0->getType(), SrcTy, VL0);
2060
2061       VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
2062       int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy, VL0);
2063       return VecCost - ScalarCost;
2064     }
2065     case Instruction::FCmp:
2066     case Instruction::ICmp:
2067     case Instruction::Select: {
2068       // Calculate the cost of this instruction.
2069       VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
2070       int ScalarCost = VecTy->getNumElements() *
2071           TTI->getCmpSelInstrCost(S.Opcode, ScalarTy, Builder.getInt1Ty(), VL0);
2072       int VecCost = TTI->getCmpSelInstrCost(S.Opcode, VecTy, MaskTy, VL0);
2073       return VecCost - ScalarCost;
2074     }
2075     case Instruction::Add:
2076     case Instruction::FAdd:
2077     case Instruction::Sub:
2078     case Instruction::FSub:
2079     case Instruction::Mul:
2080     case Instruction::FMul:
2081     case Instruction::UDiv:
2082     case Instruction::SDiv:
2083     case Instruction::FDiv:
2084     case Instruction::URem:
2085     case Instruction::SRem:
2086     case Instruction::FRem:
2087     case Instruction::Shl:
2088     case Instruction::LShr:
2089     case Instruction::AShr:
2090     case Instruction::And:
2091     case Instruction::Or:
2092     case Instruction::Xor: {
2093       // Certain instructions can be cheaper to vectorize if they have a
2094       // constant second vector operand.
2095       TargetTransformInfo::OperandValueKind Op1VK =
2096           TargetTransformInfo::OK_AnyValue;
2097       TargetTransformInfo::OperandValueKind Op2VK =
2098           TargetTransformInfo::OK_UniformConstantValue;
2099       TargetTransformInfo::OperandValueProperties Op1VP =
2100           TargetTransformInfo::OP_None;
2101       TargetTransformInfo::OperandValueProperties Op2VP =
2102           TargetTransformInfo::OP_None;
2103
2104       // If all operands are exactly the same ConstantInt then set the
2105       // operand kind to OK_UniformConstantValue.
2106       // If instead not all operands are constants, then set the operand kind
2107       // to OK_AnyValue. If all operands are constants but not the same,
2108       // then set the operand kind to OK_NonUniformConstantValue.
2109       ConstantInt *CInt = nullptr;
2110       for (unsigned i = 0; i < VL.size(); ++i) {
2111         const Instruction *I = cast<Instruction>(VL[i]);
2112         if (!isa<ConstantInt>(I->getOperand(1))) {
2113           Op2VK = TargetTransformInfo::OK_AnyValue;
2114           break;
2115         }
2116         if (i == 0) {
2117           CInt = cast<ConstantInt>(I->getOperand(1));
2118           continue;
2119         }
2120         if (Op2VK == TargetTransformInfo::OK_UniformConstantValue &&
2121             CInt != cast<ConstantInt>(I->getOperand(1)))
2122           Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
2123       }
2124       // FIXME: Currently cost of model modification for division by power of
2125       // 2 is handled for X86 and AArch64. Add support for other targets.
2126       if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt &&
2127           CInt->getValue().isPowerOf2())
2128         Op2VP = TargetTransformInfo::OP_PowerOf2;
2129
2130       SmallVector<const Value *, 4> Operands(VL0->operand_values());
2131       int ScalarCost =
2132           VecTy->getNumElements() *
2133           TTI->getArithmeticInstrCost(S.Opcode, ScalarTy, Op1VK, Op2VK, Op1VP,
2134                                       Op2VP, Operands);
2135       int VecCost = TTI->getArithmeticInstrCost(S.Opcode, VecTy, Op1VK, Op2VK,
2136                                                 Op1VP, Op2VP, Operands);
2137       return VecCost - ScalarCost;
2138     }
2139     case Instruction::GetElementPtr: {
2140       TargetTransformInfo::OperandValueKind Op1VK =
2141           TargetTransformInfo::OK_AnyValue;
2142       TargetTransformInfo::OperandValueKind Op2VK =
2143           TargetTransformInfo::OK_UniformConstantValue;
2144
2145       int ScalarCost =
2146           VecTy->getNumElements() *
2147           TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK);
2148       int VecCost =
2149           TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK);
2150
2151       return VecCost - ScalarCost;
2152     }
2153     case Instruction::Load: {
2154       // Cost of wide load - cost of scalar loads.
2155       unsigned alignment = dyn_cast<LoadInst>(VL0)->getAlignment();
2156       int ScalarLdCost = VecTy->getNumElements() *
2157           TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0);
2158       int VecLdCost = TTI->getMemoryOpCost(Instruction::Load,
2159                                            VecTy, alignment, 0, VL0);
2160       return VecLdCost - ScalarLdCost;
2161     }
2162     case Instruction::Store: {
2163       // We know that we can merge the stores. Calculate the cost.
2164       unsigned alignment = dyn_cast<StoreInst>(VL0)->getAlignment();
2165       int ScalarStCost = VecTy->getNumElements() *
2166           TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0);
2167       int VecStCost = TTI->getMemoryOpCost(Instruction::Store,
2168                                            VecTy, alignment, 0, VL0);
2169       return VecStCost - ScalarStCost;
2170     }
2171     case Instruction::Call: {
2172       CallInst *CI = cast<CallInst>(VL0);
2173       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
2174
2175       // Calculate the cost of the scalar and vector calls.
2176       SmallVector<Type*, 4> ScalarTys;
2177       for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op)
2178         ScalarTys.push_back(CI->getArgOperand(op)->getType());
2179
2180       FastMathFlags FMF;
2181       if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
2182         FMF = FPMO->getFastMathFlags();
2183
2184       int ScalarCallCost = VecTy->getNumElements() *
2185           TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF);
2186
2187       SmallVector<Value *, 4> Args(CI->arg_operands());
2188       int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF,
2189                                                    VecTy->getNumElements());
2190
2191       DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost
2192             << " (" << VecCallCost  << "-" <<  ScalarCallCost << ")"
2193             << " for " << *CI << "\n");
2194
2195       return VecCallCost - ScalarCallCost;
2196     }
2197     case Instruction::ShuffleVector: {
2198       TargetTransformInfo::OperandValueKind Op1VK =
2199           TargetTransformInfo::OK_AnyValue;
2200       TargetTransformInfo::OperandValueKind Op2VK =
2201           TargetTransformInfo::OK_AnyValue;
2202       int ScalarCost = 0;
2203       int VecCost = 0;
2204       for (Value *i : VL) {
2205         Instruction *I = cast<Instruction>(i);
2206         if (!I)
2207           break;
2208         ScalarCost +=
2209             TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK);
2210       }
2211       // VecCost is equal to sum of the cost of creating 2 vectors
2212       // and the cost of creating shuffle.
2213       Instruction *I0 = cast<Instruction>(VL[0]);
2214       VecCost =
2215           TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK);
2216       Instruction *I1 = cast<Instruction>(VL[1]);
2217       VecCost +=
2218           TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK);
2219       VecCost +=
2220           TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0);
2221       return VecCost - ScalarCost;
2222     }
2223     default:
2224       llvm_unreachable("Unknown instruction");
2225   }
2226 }
2227
2228 bool BoUpSLP::isFullyVectorizableTinyTree() {
2229   DEBUG(dbgs() << "SLP: Check whether the tree with height " <<
2230         VectorizableTree.size() << " is fully vectorizable .\n");
2231
2232   // We only handle trees of heights 1 and 2.
2233   if (VectorizableTree.size() == 1 && !VectorizableTree[0].NeedToGather)
2234     return true;
2235
2236   if (VectorizableTree.size() != 2)
2237     return false;
2238
2239   // Handle splat and all-constants stores.
2240   if (!VectorizableTree[0].NeedToGather &&
2241       (allConstant(VectorizableTree[1].Scalars) ||
2242        isSplat(VectorizableTree[1].Scalars)))
2243     return true;
2244
2245   // Gathering cost would be too much for tiny trees.
2246   if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather)
2247     return false;
2248
2249   return true;
2250 }
2251
2252 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() {
2253   // We can vectorize the tree if its size is greater than or equal to the
2254   // minimum size specified by the MinTreeSize command line option.
2255   if (VectorizableTree.size() >= MinTreeSize)
2256     return false;
2257
2258   // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
2259   // can vectorize it if we can prove it fully vectorizable.
2260   if (isFullyVectorizableTinyTree())
2261     return false;
2262
2263   assert(VectorizableTree.empty()
2264              ? ExternalUses.empty()
2265              : true && "We shouldn't have any external users");
2266
2267   // Otherwise, we can't vectorize the tree. It is both tiny and not fully
2268   // vectorizable.
2269   return true;
2270 }
2271
2272 int BoUpSLP::getSpillCost() {
2273   // Walk from the bottom of the tree to the top, tracking which values are
2274   // live. When we see a call instruction that is not part of our tree,
2275   // query TTI to see if there is a cost to keeping values live over it
2276   // (for example, if spills and fills are required).
2277   unsigned BundleWidth = VectorizableTree.front().Scalars.size();
2278   int Cost = 0;
2279
2280   SmallPtrSet<Instruction*, 4> LiveValues;
2281   Instruction *PrevInst = nullptr;
2282
2283   for (const auto &N : VectorizableTree) {
2284     Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]);
2285     if (!Inst)
2286       continue;
2287
2288     if (!PrevInst) {
2289       PrevInst = Inst;
2290       continue;
2291     }
2292
2293     // Update LiveValues.
2294     LiveValues.erase(PrevInst);
2295     for (auto &J : PrevInst->operands()) {
2296       if (isa<Instruction>(&*J) && getTreeEntry(&*J))
2297         LiveValues.insert(cast<Instruction>(&*J));
2298     }
2299
2300     DEBUG(
2301       dbgs() << "SLP: #LV: " << LiveValues.size();
2302       for (auto *X : LiveValues)
2303         dbgs() << " " << X->getName();
2304       dbgs() << ", Looking at ";
2305       Inst->dump();
2306       );
2307
2308     // Now find the sequence of instructions between PrevInst and Inst.
2309     BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
2310                                  PrevInstIt =
2311                                      PrevInst->getIterator().getReverse();
2312     while (InstIt != PrevInstIt) {
2313       if (PrevInstIt == PrevInst->getParent()->rend()) {
2314         PrevInstIt = Inst->getParent()->rbegin();
2315         continue;
2316       }
2317
2318       if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) {
2319         SmallVector<Type*, 4> V;
2320         for (auto *II : LiveValues)
2321           V.push_back(VectorType::get(II->getType(), BundleWidth));
2322         Cost += TTI->getCostOfKeepingLiveOverCall(V);
2323       }
2324
2325       ++PrevInstIt;
2326     }
2327
2328     PrevInst = Inst;
2329   }
2330
2331   return Cost;
2332 }
2333
2334 int BoUpSLP::getTreeCost() {
2335   int Cost = 0;
2336   DEBUG(dbgs() << "SLP: Calculating cost for tree of size " <<
2337         VectorizableTree.size() << ".\n");
2338
2339   unsigned BundleWidth = VectorizableTree[0].Scalars.size();
2340
2341   for (TreeEntry &TE : VectorizableTree) {
2342     int C = getEntryCost(&TE);
2343     DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with "
2344                  << *TE.Scalars[0] << ".\n");
2345     Cost += C;
2346   }
2347
2348   SmallSet<Value *, 16> ExtractCostCalculated;
2349   int ExtractCost = 0;
2350   for (ExternalUser &EU : ExternalUses) {
2351     // We only add extract cost once for the same scalar.
2352     if (!ExtractCostCalculated.insert(EU.Scalar).second)
2353       continue;
2354
2355     // Uses by ephemeral values are free (because the ephemeral value will be
2356     // removed prior to code generation, and so the extraction will be
2357     // removed as well).
2358     if (EphValues.count(EU.User))
2359       continue;
2360
2361     // If we plan to rewrite the tree in a smaller type, we will need to sign
2362     // extend the extracted value back to the original type. Here, we account
2363     // for the extract and the added cost of the sign extend if needed.
2364     auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth);
2365     auto *ScalarRoot = VectorizableTree[0].Scalars[0];
2366     if (MinBWs.count(ScalarRoot)) {
2367       auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
2368       auto Extend =
2369           MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt;
2370       VecTy = VectorType::get(MinTy, BundleWidth);
2371       ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
2372                                                    VecTy, EU.Lane);
2373     } else {
2374       ExtractCost +=
2375           TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
2376     }
2377   }
2378
2379   int SpillCost = getSpillCost();
2380   Cost += SpillCost + ExtractCost;
2381
2382   std::string Str;
2383   {
2384     raw_string_ostream OS(Str);
2385     OS << "SLP: Spill Cost = " << SpillCost << ".\n"
2386        << "SLP: Extract Cost = " << ExtractCost << ".\n"
2387        << "SLP: Total Cost = " << Cost << ".\n";
2388   }
2389   DEBUG(dbgs() << Str);
2390
2391   if (ViewSLPTree)
2392     ViewGraph(this, "SLP" + F->getName(), false, Str);
2393
2394   return Cost;
2395 }
2396
2397 int BoUpSLP::getGatherCost(Type *Ty) {
2398   int Cost = 0;
2399   for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
2400     Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
2401   return Cost;
2402 }
2403
2404 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) {
2405   // Find the type of the operands in VL.
2406   Type *ScalarTy = VL[0]->getType();
2407   if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
2408     ScalarTy = SI->getValueOperand()->getType();
2409   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
2410   // Find the cost of inserting/extracting values from the vector.
2411   return getGatherCost(VecTy);
2412 }
2413
2414 // Reorder commutative operations in alternate shuffle if the resulting vectors
2415 // are consecutive loads. This would allow us to vectorize the tree.
2416 // If we have something like-
2417 // load a[0] - load b[0]
2418 // load b[1] + load a[1]
2419 // load a[2] - load b[2]
2420 // load a[3] + load b[3]
2421 // Reordering the second load b[1]  load a[1] would allow us to vectorize this
2422 // code.
2423 void BoUpSLP::reorderAltShuffleOperands(unsigned Opcode, ArrayRef<Value *> VL,
2424                                         SmallVectorImpl<Value *> &Left,
2425                                         SmallVectorImpl<Value *> &Right) {
2426   // Push left and right operands of binary operation into Left and Right
2427   unsigned AltOpcode = getAltOpcode(Opcode);
2428   (void)AltOpcode;
2429   for (Value *V : VL) {
2430     auto *I = cast<Instruction>(V);
2431     assert(sameOpcodeOrAlt(Opcode, AltOpcode, I->getOpcode()) &&
2432            "Incorrect instruction in vector");
2433     Left.push_back(I->getOperand(0));
2434     Right.push_back(I->getOperand(1));
2435   }
2436
2437   // Reorder if we have a commutative operation and consecutive access
2438   // are on either side of the alternate instructions.
2439   for (unsigned j = 0; j < VL.size() - 1; ++j) {
2440     if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) {
2441       if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) {
2442         Instruction *VL1 = cast<Instruction>(VL[j]);
2443         Instruction *VL2 = cast<Instruction>(VL[j + 1]);
2444         if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) {
2445           std::swap(Left[j], Right[j]);
2446           continue;
2447         } else if (VL2->isCommutative() &&
2448                    isConsecutiveAccess(L, L1, *DL, *SE)) {
2449           std::swap(Left[j + 1], Right[j + 1]);
2450           continue;
2451         }
2452         // else unchanged
2453       }
2454     }
2455     if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) {
2456       if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) {
2457         Instruction *VL1 = cast<Instruction>(VL[j]);
2458         Instruction *VL2 = cast<Instruction>(VL[j + 1]);
2459         if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) {
2460           std::swap(Left[j], Right[j]);
2461           continue;
2462         } else if (VL2->isCommutative() &&
2463                    isConsecutiveAccess(L, L1, *DL, *SE)) {
2464           std::swap(Left[j + 1], Right[j + 1]);
2465           continue;
2466         }
2467         // else unchanged
2468       }
2469     }
2470   }
2471 }
2472
2473 // Return true if I should be commuted before adding it's left and right
2474 // operands to the arrays Left and Right.
2475 //
2476 // The vectorizer is trying to either have all elements one side being
2477 // instruction with the same opcode to enable further vectorization, or having
2478 // a splat to lower the vectorizing cost.
2479 static bool shouldReorderOperands(
2480     int i, unsigned Opcode, Instruction &I, ArrayRef<Value *> Left,
2481     ArrayRef<Value *> Right, bool AllSameOpcodeLeft, bool AllSameOpcodeRight,
2482     bool SplatLeft, bool SplatRight, Value *&VLeft, Value *&VRight) {
2483   VLeft = I.getOperand(0);
2484   VRight = I.getOperand(1);
2485   // If we have "SplatRight", try to see if commuting is needed to preserve it.
2486   if (SplatRight) {
2487     if (VRight == Right[i - 1])
2488       // Preserve SplatRight
2489       return false;
2490     if (VLeft == Right[i - 1]) {
2491       // Commuting would preserve SplatRight, but we don't want to break
2492       // SplatLeft either, i.e. preserve the original order if possible.
2493       // (FIXME: why do we care?)
2494       if (SplatLeft && VLeft == Left[i - 1])
2495         return false;
2496       return true;
2497     }
2498   }
2499   // Symmetrically handle Right side.
2500   if (SplatLeft) {
2501     if (VLeft == Left[i - 1])
2502       // Preserve SplatLeft
2503       return false;
2504     if (VRight == Left[i - 1])
2505       return true;
2506   }
2507
2508   Instruction *ILeft = dyn_cast<Instruction>(VLeft);
2509   Instruction *IRight = dyn_cast<Instruction>(VRight);
2510
2511   // If we have "AllSameOpcodeRight", try to see if the left operands preserves
2512   // it and not the right, in this case we want to commute.
2513   if (AllSameOpcodeRight) {
2514     unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode();
2515     if (IRight && RightPrevOpcode == IRight->getOpcode())
2516       // Do not commute, a match on the right preserves AllSameOpcodeRight
2517       return false;
2518     if (ILeft && RightPrevOpcode == ILeft->getOpcode()) {
2519       // We have a match and may want to commute, but first check if there is
2520       // not also a match on the existing operands on the Left to preserve
2521       // AllSameOpcodeLeft, i.e. preserve the original order if possible.
2522       // (FIXME: why do we care?)
2523       if (AllSameOpcodeLeft && ILeft &&
2524           cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode())
2525         return false;
2526       return true;
2527     }
2528   }
2529   // Symmetrically handle Left side.
2530   if (AllSameOpcodeLeft) {
2531     unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode();
2532     if (ILeft && LeftPrevOpcode == ILeft->getOpcode())
2533       return false;
2534     if (IRight && LeftPrevOpcode == IRight->getOpcode())
2535       return true;
2536   }
2537   return false;
2538 }
2539
2540 void BoUpSLP::reorderInputsAccordingToOpcode(unsigned Opcode,
2541                                              ArrayRef<Value *> VL,
2542                                              SmallVectorImpl<Value *> &Left,
2543                                              SmallVectorImpl<Value *> &Right) {
2544   if (!VL.empty()) {
2545     // Peel the first iteration out of the loop since there's nothing
2546     // interesting to do anyway and it simplifies the checks in the loop.
2547     auto *I = cast<Instruction>(VL[0]);
2548     Value *VLeft = I->getOperand(0);
2549     Value *VRight = I->getOperand(1);
2550     if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft))
2551       // Favor having instruction to the right. FIXME: why?
2552       std::swap(VLeft, VRight);
2553     Left.push_back(VLeft);
2554     Right.push_back(VRight);
2555   }
2556
2557   // Keep track if we have instructions with all the same opcode on one side.
2558   bool AllSameOpcodeLeft = isa<Instruction>(Left[0]);
2559   bool AllSameOpcodeRight = isa<Instruction>(Right[0]);
2560   // Keep track if we have one side with all the same value (broadcast).
2561   bool SplatLeft = true;
2562   bool SplatRight = true;
2563
2564   for (unsigned i = 1, e = VL.size(); i != e; ++i) {
2565     Instruction *I = cast<Instruction>(VL[i]);
2566     assert(((I->getOpcode() == Opcode && I->isCommutative()) ||
2567             (I->getOpcode() != Opcode && Instruction::isCommutative(Opcode))) &&
2568            "Can only process commutative instruction");
2569     // Commute to favor either a splat or maximizing having the same opcodes on
2570     // one side.
2571     Value *VLeft;
2572     Value *VRight;
2573     if (shouldReorderOperands(i, Opcode, *I, Left, Right, AllSameOpcodeLeft,
2574                               AllSameOpcodeRight, SplatLeft, SplatRight, VLeft,
2575                               VRight)) {
2576       Left.push_back(VRight);
2577       Right.push_back(VLeft);
2578     } else {
2579       Left.push_back(VLeft);
2580       Right.push_back(VRight);
2581     }
2582     // Update Splat* and AllSameOpcode* after the insertion.
2583     SplatRight = SplatRight && (Right[i - 1] == Right[i]);
2584     SplatLeft = SplatLeft && (Left[i - 1] == Left[i]);
2585     AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) &&
2586                         (cast<Instruction>(Left[i - 1])->getOpcode() ==
2587                          cast<Instruction>(Left[i])->getOpcode());
2588     AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) &&
2589                          (cast<Instruction>(Right[i - 1])->getOpcode() ==
2590                           cast<Instruction>(Right[i])->getOpcode());
2591   }
2592
2593   // If one operand end up being broadcast, return this operand order.
2594   if (SplatRight || SplatLeft)
2595     return;
2596
2597   // Finally check if we can get longer vectorizable chain by reordering
2598   // without breaking the good operand order detected above.
2599   // E.g. If we have something like-
2600   // load a[0]  load b[0]
2601   // load b[1]  load a[1]
2602   // load a[2]  load b[2]
2603   // load a[3]  load b[3]
2604   // Reordering the second load b[1]  load a[1] would allow us to vectorize
2605   // this code and we still retain AllSameOpcode property.
2606   // FIXME: This load reordering might break AllSameOpcode in some rare cases
2607   // such as-
2608   // add a[0],c[0]  load b[0]
2609   // add a[1],c[2]  load b[1]
2610   // b[2]           load b[2]
2611   // add a[3],c[3]  load b[3]
2612   for (unsigned j = 0; j < VL.size() - 1; ++j) {
2613     if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) {
2614       if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) {
2615         if (isConsecutiveAccess(L, L1, *DL, *SE)) {
2616           std::swap(Left[j + 1], Right[j + 1]);
2617           continue;
2618         }
2619       }
2620     }
2621     if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) {
2622       if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) {
2623         if (isConsecutiveAccess(L, L1, *DL, *SE)) {
2624           std::swap(Left[j + 1], Right[j + 1]);
2625           continue;
2626         }
2627       }
2628     }
2629     // else unchanged
2630   }
2631 }
2632
2633 void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL, Value *OpValue) {
2634   // Get the basic block this bundle is in. All instructions in the bundle
2635   // should be in this block.
2636   auto *Front = cast<Instruction>(OpValue);
2637   auto *BB = Front->getParent();
2638   const unsigned Opcode = cast<Instruction>(OpValue)->getOpcode();
2639   const unsigned AltOpcode = getAltOpcode(Opcode);
2640   assert(llvm::all_of(make_range(VL.begin(), VL.end()), [=](Value *V) -> bool {
2641     return !sameOpcodeOrAlt(Opcode, AltOpcode,
2642                             cast<Instruction>(V)->getOpcode()) ||
2643            cast<Instruction>(V)->getParent() == BB;
2644   }));
2645
2646   // The last instruction in the bundle in program order.
2647   Instruction *LastInst = nullptr;
2648
2649   // Find the last instruction. The common case should be that BB has been
2650   // scheduled, and the last instruction is VL.back(). So we start with
2651   // VL.back() and iterate over schedule data until we reach the end of the
2652   // bundle. The end of the bundle is marked by null ScheduleData.
2653   if (BlocksSchedules.count(BB)) {
2654     auto *Bundle =
2655         BlocksSchedules[BB]->getScheduleData(isOneOf(OpValue, VL.back()));
2656     if (Bundle && Bundle->isPartOfBundle())
2657       for (; Bundle; Bundle = Bundle->NextInBundle)
2658         if (Bundle->OpValue == Bundle->Inst)
2659           LastInst = Bundle->Inst;
2660   }
2661
2662   // LastInst can still be null at this point if there's either not an entry
2663   // for BB in BlocksSchedules or there's no ScheduleData available for
2664   // VL.back(). This can be the case if buildTree_rec aborts for various
2665   // reasons (e.g., the maximum recursion depth is reached, the maximum region
2666   // size is reached, etc.). ScheduleData is initialized in the scheduling
2667   // "dry-run".
2668   //
2669   // If this happens, we can still find the last instruction by brute force. We
2670   // iterate forwards from Front (inclusive) until we either see all
2671   // instructions in the bundle or reach the end of the block. If Front is the
2672   // last instruction in program order, LastInst will be set to Front, and we
2673   // will visit all the remaining instructions in the block.
2674   //
2675   // One of the reasons we exit early from buildTree_rec is to place an upper
2676   // bound on compile-time. Thus, taking an additional compile-time hit here is
2677   // not ideal. However, this should be exceedingly rare since it requires that
2678   // we both exit early from buildTree_rec and that the bundle be out-of-order
2679   // (causing us to iterate all the way to the end of the block).
2680   if (!LastInst) {
2681     SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end());
2682     for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) {
2683       if (Bundle.erase(&I) && sameOpcodeOrAlt(Opcode, AltOpcode, I.getOpcode()))
2684         LastInst = &I;
2685       if (Bundle.empty())
2686         break;
2687     }
2688   }
2689
2690   // Set the insertion point after the last instruction in the bundle. Set the
2691   // debug location to Front.
2692   Builder.SetInsertPoint(BB, ++LastInst->getIterator());
2693   Builder.SetCurrentDebugLocation(Front->getDebugLoc());
2694 }
2695
2696 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
2697   Value *Vec = UndefValue::get(Ty);
2698   // Generate the 'InsertElement' instruction.
2699   for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
2700     Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
2701     if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) {
2702       GatherSeq.insert(Insrt);
2703       CSEBlocks.insert(Insrt->getParent());
2704
2705       // Add to our 'need-to-extract' list.
2706       if (TreeEntry *E = getTreeEntry(VL[i])) {
2707         // Find which lane we need to extract.
2708         int FoundLane = -1;
2709         for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) {
2710           // Is this the lane of the scalar that we are looking for ?
2711           if (E->Scalars[Lane] == VL[i]) {
2712             FoundLane = Lane;
2713             break;
2714           }
2715         }
2716         assert(FoundLane >= 0 && "Could not find the correct lane");
2717         ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
2718       }
2719     }
2720   }
2721
2722   return Vec;
2723 }
2724
2725 Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL, Value *OpValue) const {
2726   if (const TreeEntry *En = getTreeEntry(OpValue)) {
2727     if (En->isSame(VL) && En->VectorizedValue)
2728       return En->VectorizedValue;
2729   }
2730   return nullptr;
2731 }
2732
2733 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
2734   InstructionsState S = getSameOpcode(VL);
2735   if (S.Opcode) {
2736     if (TreeEntry *E = getTreeEntry(S.OpValue)) {
2737       if (E->isSame(VL))
2738         return vectorizeTree(E);
2739     }
2740   }
2741
2742   Type *ScalarTy = S.OpValue->getType();
2743   if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
2744     ScalarTy = SI->getValueOperand()->getType();
2745   VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
2746
2747   return Gather(VL, VecTy);
2748 }
2749
2750 Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
2751   IRBuilder<>::InsertPointGuard Guard(Builder);
2752
2753   if (E->VectorizedValue) {
2754     DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
2755     return E->VectorizedValue;
2756   }
2757
2758   InstructionsState S = getSameOpcode(E->Scalars);
2759   Instruction *VL0 = cast<Instruction>(E->Scalars[0]);
2760   Type *ScalarTy = VL0->getType();
2761   if (StoreInst *SI = dyn_cast<StoreInst>(VL0))
2762     ScalarTy = SI->getValueOperand()->getType();
2763   VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
2764
2765   if (E->NeedToGather) {
2766     setInsertPointAfterBundle(E->Scalars, VL0);
2767     auto *V = Gather(E->Scalars, VecTy);
2768     E->VectorizedValue = V;
2769     return V;
2770   }
2771
2772   unsigned ShuffleOrOp = S.IsAltShuffle ?
2773            (unsigned) Instruction::ShuffleVector : S.Opcode;
2774   switch (ShuffleOrOp) {
2775     case Instruction::PHI: {
2776       PHINode *PH = dyn_cast<PHINode>(VL0);
2777       Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
2778       Builder.SetCurrentDebugLocation(PH->getDebugLoc());
2779       PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
2780       E->VectorizedValue = NewPhi;
2781
2782       // PHINodes may have multiple entries from the same block. We want to
2783       // visit every block once.
2784       SmallSet<BasicBlock*, 4> VisitedBBs;
2785
2786       for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
2787         ValueList Operands;
2788         BasicBlock *IBB = PH->getIncomingBlock(i);
2789
2790         if (!VisitedBBs.insert(IBB).second) {
2791           NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
2792           continue;
2793         }
2794
2795         // Prepare the operand vector.
2796         for (Value *V : E->Scalars)
2797           Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB));
2798
2799         Builder.SetInsertPoint(IBB->getTerminator());
2800         Builder.SetCurrentDebugLocation(PH->getDebugLoc());
2801         Value *Vec = vectorizeTree(Operands);
2802         NewPhi->addIncoming(Vec, IBB);
2803       }
2804
2805       assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
2806              "Invalid number of incoming values");
2807       return NewPhi;
2808     }
2809
2810     case Instruction::ExtractElement: {
2811       if (canReuseExtract(E->Scalars, VL0)) {
2812         Value *V = VL0->getOperand(0);
2813         E->VectorizedValue = V;
2814         return V;
2815       }
2816       setInsertPointAfterBundle(E->Scalars, VL0);
2817       auto *V = Gather(E->Scalars, VecTy);
2818       E->VectorizedValue = V;
2819       return V;
2820     }
2821     case Instruction::ExtractValue: {
2822       if (canReuseExtract(E->Scalars, VL0)) {
2823         LoadInst *LI = cast<LoadInst>(VL0->getOperand(0));
2824         Builder.SetInsertPoint(LI);
2825         PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace());
2826         Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
2827         LoadInst *V = Builder.CreateAlignedLoad(Ptr, LI->getAlignment());
2828         E->VectorizedValue = V;
2829         return propagateMetadata(V, E->Scalars);
2830       }
2831       setInsertPointAfterBundle(E->Scalars, VL0);
2832       auto *V = Gather(E->Scalars, VecTy);
2833       E->VectorizedValue = V;
2834       return V;
2835     }
2836     case Instruction::ZExt:
2837     case Instruction::SExt:
2838     case Instruction::FPToUI:
2839     case Instruction::FPToSI:
2840     case Instruction::FPExt:
2841     case Instruction::PtrToInt:
2842     case Instruction::IntToPtr:
2843     case Instruction::SIToFP:
2844     case Instruction::UIToFP:
2845     case Instruction::Trunc:
2846     case Instruction::FPTrunc:
2847     case Instruction::BitCast: {
2848       ValueList INVL;
2849       for (Value *V : E->Scalars)
2850         INVL.push_back(cast<Instruction>(V)->getOperand(0));
2851
2852       setInsertPointAfterBundle(E->Scalars, VL0);
2853
2854       Value *InVec = vectorizeTree(INVL);
2855
2856       if (Value *V = alreadyVectorized(E->Scalars, VL0))
2857         return V;
2858
2859       CastInst *CI = dyn_cast<CastInst>(VL0);
2860       Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
2861       E->VectorizedValue = V;
2862       ++NumVectorInstructions;
2863       return V;
2864     }
2865     case Instruction::FCmp:
2866     case Instruction::ICmp: {
2867       ValueList LHSV, RHSV;
2868       for (Value *V : E->Scalars) {
2869         LHSV.push_back(cast<Instruction>(V)->getOperand(0));
2870         RHSV.push_back(cast<Instruction>(V)->getOperand(1));
2871       }
2872
2873       setInsertPointAfterBundle(E->Scalars, VL0);
2874
2875       Value *L = vectorizeTree(LHSV);
2876       Value *R = vectorizeTree(RHSV);
2877
2878       if (Value *V = alreadyVectorized(E->Scalars, VL0))
2879         return V;
2880
2881       CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
2882       Value *V;
2883       if (S.Opcode == Instruction::FCmp)
2884         V = Builder.CreateFCmp(P0, L, R);
2885       else
2886         V = Builder.CreateICmp(P0, L, R);
2887
2888       E->VectorizedValue = V;
2889       propagateIRFlags(E->VectorizedValue, E->Scalars, VL0);
2890       ++NumVectorInstructions;
2891       return V;
2892     }
2893     case Instruction::Select: {
2894       ValueList TrueVec, FalseVec, CondVec;
2895       for (Value *V : E->Scalars) {
2896         CondVec.push_back(cast<Instruction>(V)->getOperand(0));
2897         TrueVec.push_back(cast<Instruction>(V)->getOperand(1));
2898         FalseVec.push_back(cast<Instruction>(V)->getOperand(2));
2899       }
2900
2901       setInsertPointAfterBundle(E->Scalars, VL0);
2902
2903       Value *Cond = vectorizeTree(CondVec);
2904       Value *True = vectorizeTree(TrueVec);
2905       Value *False = vectorizeTree(FalseVec);
2906
2907       if (Value *V = alreadyVectorized(E->Scalars, VL0))
2908         return V;
2909
2910       Value *V = Builder.CreateSelect(Cond, True, False);
2911       E->VectorizedValue = V;
2912       ++NumVectorInstructions;
2913       return V;
2914     }
2915     case Instruction::Add:
2916     case Instruction::FAdd:
2917     case Instruction::Sub:
2918     case Instruction::FSub:
2919     case Instruction::Mul:
2920     case Instruction::FMul:
2921     case Instruction::UDiv:
2922     case Instruction::SDiv:
2923     case Instruction::FDiv:
2924     case Instruction::URem:
2925     case Instruction::SRem:
2926     case Instruction::FRem:
2927     case Instruction::Shl:
2928     case Instruction::LShr:
2929     case Instruction::AShr:
2930     case Instruction::And:
2931     case Instruction::Or:
2932     case Instruction::Xor: {
2933       ValueList LHSVL, RHSVL;
2934       if (isa<BinaryOperator>(VL0) && VL0->isCommutative())
2935         reorderInputsAccordingToOpcode(S.Opcode, E->Scalars, LHSVL,
2936                                        RHSVL);
2937       else
2938         for (Value *V : E->Scalars) {
2939           auto *I = cast<Instruction>(V);
2940           LHSVL.push_back(I->getOperand(0));
2941           RHSVL.push_back(I->getOperand(1));
2942         }
2943
2944       setInsertPointAfterBundle(E->Scalars, VL0);
2945
2946       Value *LHS = vectorizeTree(LHSVL);
2947       Value *RHS = vectorizeTree(RHSVL);
2948
2949       if (Value *V = alreadyVectorized(E->Scalars, VL0))
2950         return V;
2951
2952       Value *V = Builder.CreateBinOp(
2953           static_cast<Instruction::BinaryOps>(S.Opcode), LHS, RHS);
2954       E->VectorizedValue = V;
2955       propagateIRFlags(E->VectorizedValue, E->Scalars, VL0);
2956       ++NumVectorInstructions;
2957
2958       if (Instruction *I = dyn_cast<Instruction>(V))
2959         return propagateMetadata(I, E->Scalars);
2960
2961       return V;
2962     }
2963     case Instruction::Load: {
2964       // Loads are inserted at the head of the tree because we don't want to
2965       // sink them all the way down past store instructions.
2966       setInsertPointAfterBundle(E->Scalars, VL0);
2967
2968       LoadInst *LI = cast<LoadInst>(VL0);
2969       Type *ScalarLoadTy = LI->getType();
2970       unsigned AS = LI->getPointerAddressSpace();
2971
2972       Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
2973                                             VecTy->getPointerTo(AS));
2974
2975       // The pointer operand uses an in-tree scalar so we add the new BitCast to
2976       // ExternalUses list to make sure that an extract will be generated in the
2977       // future.
2978       Value *PO = LI->getPointerOperand();
2979       if (getTreeEntry(PO))
2980         ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0));
2981
2982       unsigned Alignment = LI->getAlignment();
2983       LI = Builder.CreateLoad(VecPtr);
2984       if (!Alignment) {
2985         Alignment = DL->getABITypeAlignment(ScalarLoadTy);
2986       }
2987       LI->setAlignment(Alignment);
2988       E->VectorizedValue = LI;
2989       ++NumVectorInstructions;
2990       return propagateMetadata(LI, E->Scalars);
2991     }
2992     case Instruction::Store: {
2993       StoreInst *SI = cast<StoreInst>(VL0);
2994       unsigned Alignment = SI->getAlignment();
2995       unsigned AS = SI->getPointerAddressSpace();
2996
2997       ValueList ScalarStoreValues;
2998       for (Value *V : E->Scalars)
2999         ScalarStoreValues.push_back(cast<StoreInst>(V)->getValueOperand());
3000
3001       setInsertPointAfterBundle(E->Scalars, VL0);
3002
3003       Value *VecValue = vectorizeTree(ScalarStoreValues);
3004       Value *ScalarPtr = SI->getPointerOperand();
3005       Value *VecPtr = Builder.CreateBitCast(ScalarPtr, VecTy->getPointerTo(AS));
3006       StoreInst *S = Builder.CreateStore(VecValue, VecPtr);
3007
3008       // The pointer operand uses an in-tree scalar, so add the new BitCast to
3009       // ExternalUses to make sure that an extract will be generated in the
3010       // future.
3011       if (getTreeEntry(ScalarPtr))
3012         ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0));
3013
3014       if (!Alignment)
3015         Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType());
3016
3017       S->setAlignment(Alignment);
3018       E->VectorizedValue = S;
3019       ++NumVectorInstructions;
3020       return propagateMetadata(S, E->Scalars);
3021     }
3022     case Instruction::GetElementPtr: {
3023       setInsertPointAfterBundle(E->Scalars, VL0);
3024
3025       ValueList Op0VL;
3026       for (Value *V : E->Scalars)
3027         Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0));
3028
3029       Value *Op0 = vectorizeTree(Op0VL);
3030
3031       std::vector<Value *> OpVecs;
3032       for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
3033            ++j) {
3034         ValueList OpVL;
3035         for (Value *V : E->Scalars)
3036           OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j));
3037
3038         Value *OpVec = vectorizeTree(OpVL);
3039         OpVecs.push_back(OpVec);
3040       }
3041
3042       Value *V = Builder.CreateGEP(
3043           cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
3044       E->VectorizedValue = V;
3045       ++NumVectorInstructions;
3046
3047       if (Instruction *I = dyn_cast<Instruction>(V))
3048         return propagateMetadata(I, E->Scalars);
3049
3050       return V;
3051     }
3052     case Instruction::Call: {
3053       CallInst *CI = cast<CallInst>(VL0);
3054       setInsertPointAfterBundle(E->Scalars, VL0);
3055       Function *FI;
3056       Intrinsic::ID IID  = Intrinsic::not_intrinsic;
3057       Value *ScalarArg = nullptr;
3058       if (CI && (FI = CI->getCalledFunction())) {
3059         IID = FI->getIntrinsicID();
3060       }
3061       std::vector<Value *> OpVecs;
3062       for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
3063         ValueList OpVL;
3064         // ctlz,cttz and powi are special intrinsics whose second argument is
3065         // a scalar. This argument should not be vectorized.
3066         if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) {
3067           CallInst *CEI = cast<CallInst>(VL0);
3068           ScalarArg = CEI->getArgOperand(j);
3069           OpVecs.push_back(CEI->getArgOperand(j));
3070           continue;
3071         }
3072         for (Value *V : E->Scalars) {
3073           CallInst *CEI = cast<CallInst>(V);
3074           OpVL.push_back(CEI->getArgOperand(j));
3075         }
3076
3077         Value *OpVec = vectorizeTree(OpVL);
3078         DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
3079         OpVecs.push_back(OpVec);
3080       }
3081
3082       Module *M = F->getParent();
3083       Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3084       Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) };
3085       Function *CF = Intrinsic::getDeclaration(M, ID, Tys);
3086       SmallVector<OperandBundleDef, 1> OpBundles;
3087       CI->getOperandBundlesAsDefs(OpBundles);
3088       Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
3089
3090       // The scalar argument uses an in-tree scalar so we add the new vectorized
3091       // call to ExternalUses list to make sure that an extract will be
3092       // generated in the future.
3093       if (ScalarArg && getTreeEntry(ScalarArg))
3094         ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
3095
3096       E->VectorizedValue = V;
3097       propagateIRFlags(E->VectorizedValue, E->Scalars, VL0);
3098       ++NumVectorInstructions;
3099       return V;
3100     }
3101     case Instruction::ShuffleVector: {
3102       ValueList LHSVL, RHSVL;
3103       assert(Instruction::isBinaryOp(S.Opcode) &&
3104              "Invalid Shuffle Vector Operand");
3105       reorderAltShuffleOperands(S.Opcode, E->Scalars, LHSVL, RHSVL);
3106       setInsertPointAfterBundle(E->Scalars, VL0);
3107
3108       Value *LHS = vectorizeTree(LHSVL);
3109       Value *RHS = vectorizeTree(RHSVL);
3110
3111       if (Value *V = alreadyVectorized(E->Scalars, VL0))
3112         return V;
3113
3114       // Create a vector of LHS op1 RHS
3115       Value *V0 = Builder.CreateBinOp(
3116           static_cast<Instruction::BinaryOps>(S.Opcode), LHS, RHS);
3117
3118       unsigned AltOpcode = getAltOpcode(S.Opcode);
3119       // Create a vector of LHS op2 RHS
3120       Value *V1 = Builder.CreateBinOp(
3121           static_cast<Instruction::BinaryOps>(AltOpcode), LHS, RHS);
3122
3123       // Create shuffle to take alternate operations from the vector.
3124       // Also, gather up odd and even scalar ops to propagate IR flags to
3125       // each vector operation.
3126       ValueList OddScalars, EvenScalars;
3127       unsigned e = E->Scalars.size();
3128       SmallVector<Constant *, 8> Mask(e);
3129       for (unsigned i = 0; i < e; ++i) {
3130         if (isOdd(i)) {
3131           Mask[i] = Builder.getInt32(e + i);
3132           OddScalars.push_back(E->Scalars[i]);
3133         } else {
3134           Mask[i] = Builder.getInt32(i);
3135           EvenScalars.push_back(E->Scalars[i]);
3136         }
3137       }
3138
3139       Value *ShuffleMask = ConstantVector::get(Mask);
3140       propagateIRFlags(V0, EvenScalars);
3141       propagateIRFlags(V1, OddScalars);
3142
3143       Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask);
3144       E->VectorizedValue = V;
3145       ++NumVectorInstructions;
3146       if (Instruction *I = dyn_cast<Instruction>(V))
3147         return propagateMetadata(I, E->Scalars);
3148
3149       return V;
3150     }
3151     default:
3152     llvm_unreachable("unknown inst");
3153   }
3154   return nullptr;
3155 }
3156
3157 Value *BoUpSLP::vectorizeTree() {
3158   ExtraValueToDebugLocsMap ExternallyUsedValues;
3159   return vectorizeTree(ExternallyUsedValues);
3160 }
3161
3162 Value *
3163 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) {
3164   // All blocks must be scheduled before any instructions are inserted.
3165   for (auto &BSIter : BlocksSchedules) {
3166     scheduleBlock(BSIter.second.get());
3167   }
3168
3169   Builder.SetInsertPoint(&F->getEntryBlock().front());
3170   auto *VectorRoot = vectorizeTree(&VectorizableTree[0]);
3171
3172   // If the vectorized tree can be rewritten in a smaller type, we truncate the
3173   // vectorized root. InstCombine will then rewrite the entire expression. We
3174   // sign extend the extracted values below.
3175   auto *ScalarRoot = VectorizableTree[0].Scalars[0];
3176   if (MinBWs.count(ScalarRoot)) {
3177     if (auto *I = dyn_cast<Instruction>(VectorRoot))
3178       Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
3179     auto BundleWidth = VectorizableTree[0].Scalars.size();
3180     auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
3181     auto *VecTy = VectorType::get(MinTy, BundleWidth);
3182     auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
3183     VectorizableTree[0].VectorizedValue = Trunc;
3184   }
3185
3186   DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n");
3187
3188   // If necessary, sign-extend or zero-extend ScalarRoot to the larger type
3189   // specified by ScalarType.
3190   auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) {
3191     if (!MinBWs.count(ScalarRoot))
3192       return Ex;
3193     if (MinBWs[ScalarRoot].second)
3194       return Builder.CreateSExt(Ex, ScalarType);
3195     return Builder.CreateZExt(Ex, ScalarType);
3196   };
3197
3198   // Extract all of the elements with the external uses.
3199   for (const auto &ExternalUse : ExternalUses) {
3200     Value *Scalar = ExternalUse.Scalar;
3201     llvm::User *User = ExternalUse.User;
3202
3203     // Skip users that we already RAUW. This happens when one instruction
3204     // has multiple uses of the same value.
3205     if (User && !is_contained(Scalar->users(), User))
3206       continue;
3207     TreeEntry *E = getTreeEntry(Scalar);
3208     assert(E && "Invalid scalar");
3209     assert(!E->NeedToGather && "Extracting from a gather list");
3210
3211     Value *Vec = E->VectorizedValue;
3212     assert(Vec && "Can't find vectorizable value");
3213
3214     Value *Lane = Builder.getInt32(ExternalUse.Lane);
3215     // If User == nullptr, the Scalar is used as extra arg. Generate
3216     // ExtractElement instruction and update the record for this scalar in
3217     // ExternallyUsedValues.
3218     if (!User) {
3219       assert(ExternallyUsedValues.count(Scalar) &&
3220              "Scalar with nullptr as an external user must be registered in "
3221              "ExternallyUsedValues map");
3222       if (auto *VecI = dyn_cast<Instruction>(Vec)) {
3223         Builder.SetInsertPoint(VecI->getParent(),
3224                                std::next(VecI->getIterator()));
3225       } else {
3226         Builder.SetInsertPoint(&F->getEntryBlock().front());
3227       }
3228       Value *Ex = Builder.CreateExtractElement(Vec, Lane);
3229       Ex = extend(ScalarRoot, Ex, Scalar->getType());
3230       CSEBlocks.insert(cast<Instruction>(Scalar)->getParent());
3231       auto &Locs = ExternallyUsedValues[Scalar];
3232       ExternallyUsedValues.insert({Ex, Locs});
3233       ExternallyUsedValues.erase(Scalar);
3234       continue;
3235     }
3236
3237     // Generate extracts for out-of-tree users.
3238     // Find the insertion point for the extractelement lane.
3239     if (auto *VecI = dyn_cast<Instruction>(Vec)) {
3240       if (PHINode *PH = dyn_cast<PHINode>(User)) {
3241         for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
3242           if (PH->getIncomingValue(i) == Scalar) {
3243             TerminatorInst *IncomingTerminator =
3244                 PH->getIncomingBlock(i)->getTerminator();
3245             if (isa<CatchSwitchInst>(IncomingTerminator)) {
3246               Builder.SetInsertPoint(VecI->getParent(),
3247                                      std::next(VecI->getIterator()));
3248             } else {
3249               Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
3250             }
3251             Value *Ex = Builder.CreateExtractElement(Vec, Lane);
3252             Ex = extend(ScalarRoot, Ex, Scalar->getType());
3253             CSEBlocks.insert(PH->getIncomingBlock(i));
3254             PH->setOperand(i, Ex);
3255           }
3256         }
3257       } else {
3258         Builder.SetInsertPoint(cast<Instruction>(User));
3259         Value *Ex = Builder.CreateExtractElement(Vec, Lane);
3260         Ex = extend(ScalarRoot, Ex, Scalar->getType());
3261         CSEBlocks.insert(cast<Instruction>(User)->getParent());
3262         User->replaceUsesOfWith(Scalar, Ex);
3263      }
3264     } else {
3265       Builder.SetInsertPoint(&F->getEntryBlock().front());
3266       Value *Ex = Builder.CreateExtractElement(Vec, Lane);
3267       Ex = extend(ScalarRoot, Ex, Scalar->getType());
3268       CSEBlocks.insert(&F->getEntryBlock());
3269       User->replaceUsesOfWith(Scalar, Ex);
3270     }
3271
3272     DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
3273   }
3274
3275   // For each vectorized value:
3276   for (TreeEntry &EIdx : VectorizableTree) {
3277     TreeEntry *Entry = &EIdx;
3278
3279     // No need to handle users of gathered values.
3280     if (Entry->NeedToGather)
3281       continue;
3282
3283     assert(Entry->VectorizedValue && "Can't find vectorizable value");
3284
3285     // For each lane:
3286     for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
3287       Value *Scalar = Entry->Scalars[Lane];
3288
3289       Type *Ty = Scalar->getType();
3290       if (!Ty->isVoidTy()) {
3291 #ifndef NDEBUG
3292         for (User *U : Scalar->users()) {
3293           DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
3294
3295           // It is legal to replace users in the ignorelist by undef.
3296           assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) &&
3297                  "Replacing out-of-tree value with undef");
3298         }
3299 #endif
3300         Value *Undef = UndefValue::get(Ty);
3301         Scalar->replaceAllUsesWith(Undef);
3302       }
3303       DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
3304       eraseInstruction(cast<Instruction>(Scalar));
3305     }
3306   }
3307
3308   Builder.ClearInsertionPoint();
3309
3310   return VectorizableTree[0].VectorizedValue;
3311 }
3312
3313 void BoUpSLP::optimizeGatherSequence(Function &F) {
3314   DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
3315         << " gather sequences instructions.\n");
3316   // LICM InsertElementInst sequences.
3317   for (Instruction *it : GatherSeq) {
3318     InsertElementInst *Insert = dyn_cast<InsertElementInst>(it);
3319
3320     if (!Insert)
3321       continue;
3322
3323     // Check if this block is inside a loop.
3324     Loop *L = LI->getLoopFor(Insert->getParent());
3325     if (!L)
3326       continue;
3327
3328     // Check if it has a preheader.
3329     BasicBlock *PreHeader = L->getLoopPreheader();
3330     if (!PreHeader)
3331       continue;
3332
3333     // If the vector or the element that we insert into it are
3334     // instructions that are defined in this basic block then we can't
3335     // hoist this instruction.
3336     Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0));
3337     Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1));
3338     if (CurrVec && L->contains(CurrVec))
3339       continue;
3340     if (NewElem && L->contains(NewElem))
3341       continue;
3342
3343     // We can hoist this instruction. Move it to the pre-header.
3344     Insert->moveBefore(PreHeader->getTerminator());
3345   }
3346
3347   // Perform O(N^2) search over the gather sequences and merge identical
3348   // instructions. TODO: We can further optimize this scan if we split the
3349   // instructions into different buckets based on the insert lane.
3350   SmallVector<Instruction *, 16> Visited;
3351   ReversePostOrderTraversal<Function *> RPOT(&F);
3352   for (auto BB : RPOT) {
3353     // Traverse CSEBlocks by RPOT order.
3354     if (!CSEBlocks.count(BB))
3355       continue;
3356
3357     // For all instructions in blocks containing gather sequences:
3358     for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
3359       Instruction *In = &*it++;
3360       if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
3361         continue;
3362
3363       // Check if we can replace this instruction with any of the
3364       // visited instructions.
3365       for (Instruction *v : Visited) {
3366         if (In->isIdenticalTo(v) &&
3367             DT->dominates(v->getParent(), In->getParent())) {
3368           In->replaceAllUsesWith(v);
3369           eraseInstruction(In);
3370           In = nullptr;
3371           break;
3372         }
3373       }
3374       if (In) {
3375         assert(!is_contained(Visited, In));
3376         Visited.push_back(In);
3377       }
3378     }
3379   }
3380   CSEBlocks.clear();
3381   GatherSeq.clear();
3382 }
3383
3384 // Groups the instructions to a bundle (which is then a single scheduling entity)
3385 // and schedules instructions until the bundle gets ready.
3386 bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL,
3387                                                  BoUpSLP *SLP, Value *OpValue) {
3388   if (isa<PHINode>(OpValue))
3389     return true;
3390
3391   // Initialize the instruction bundle.
3392   Instruction *OldScheduleEnd = ScheduleEnd;
3393   ScheduleData *PrevInBundle = nullptr;
3394   ScheduleData *Bundle = nullptr;
3395   bool ReSchedule = false;
3396   DEBUG(dbgs() << "SLP:  bundle: " << *OpValue << "\n");
3397
3398   // Make sure that the scheduling region contains all
3399   // instructions of the bundle.
3400   for (Value *V : VL) {
3401     if (!extendSchedulingRegion(V, OpValue))
3402       return false;
3403   }
3404
3405   for (Value *V : VL) {
3406     ScheduleData *BundleMember = getScheduleData(V);
3407     assert(BundleMember &&
3408            "no ScheduleData for bundle member (maybe not in same basic block)");
3409     if (BundleMember->IsScheduled) {
3410       // A bundle member was scheduled as single instruction before and now
3411       // needs to be scheduled as part of the bundle. We just get rid of the
3412       // existing schedule.
3413       DEBUG(dbgs() << "SLP:  reset schedule because " << *BundleMember
3414                    << " was already scheduled\n");
3415       ReSchedule = true;
3416     }
3417     assert(BundleMember->isSchedulingEntity() &&
3418            "bundle member already part of other bundle");
3419     if (PrevInBundle) {
3420       PrevInBundle->NextInBundle = BundleMember;
3421     } else {
3422       Bundle = BundleMember;
3423     }
3424     BundleMember->UnscheduledDepsInBundle = 0;
3425     Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
3426
3427     // Group the instructions to a bundle.
3428     BundleMember->FirstInBundle = Bundle;
3429     PrevInBundle = BundleMember;
3430   }
3431   if (ScheduleEnd != OldScheduleEnd) {
3432     // The scheduling region got new instructions at the lower end (or it is a
3433     // new region for the first bundle). This makes it necessary to
3434     // recalculate all dependencies.
3435     // It is seldom that this needs to be done a second time after adding the
3436     // initial bundle to the region.
3437     for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
3438       doForAllOpcodes(I, [](ScheduleData *SD) {
3439         SD->clearDependencies();
3440       });
3441     }
3442     ReSchedule = true;
3443   }
3444   if (ReSchedule) {
3445     resetSchedule();
3446     initialFillReadyList(ReadyInsts);
3447   }
3448
3449   DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block "
3450                << BB->getName() << "\n");
3451
3452   calculateDependencies(Bundle, true, SLP);
3453
3454   // Now try to schedule the new bundle. As soon as the bundle is "ready" it
3455   // means that there are no cyclic dependencies and we can schedule it.
3456   // Note that's important that we don't "schedule" the bundle yet (see
3457   // cancelScheduling).
3458   while (!Bundle->isReady() && !ReadyInsts.empty()) {
3459
3460     ScheduleData *pickedSD = ReadyInsts.back();
3461     ReadyInsts.pop_back();
3462
3463     if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) {
3464       schedule(pickedSD, ReadyInsts);
3465     }
3466   }
3467   if (!Bundle->isReady()) {
3468     cancelScheduling(VL, OpValue);
3469     return false;
3470   }
3471   return true;
3472 }
3473
3474 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
3475                                                 Value *OpValue) {
3476   if (isa<PHINode>(OpValue))
3477     return;
3478
3479   ScheduleData *Bundle = getScheduleData(OpValue);
3480   DEBUG(dbgs() << "SLP:  cancel scheduling of " << *Bundle << "\n");
3481   assert(!Bundle->IsScheduled &&
3482          "Can't cancel bundle which is already scheduled");
3483   assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
3484          "tried to unbundle something which is not a bundle");
3485
3486   // Un-bundle: make single instructions out of the bundle.
3487   ScheduleData *BundleMember = Bundle;
3488   while (BundleMember) {
3489     assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
3490     BundleMember->FirstInBundle = BundleMember;
3491     ScheduleData *Next = BundleMember->NextInBundle;
3492     BundleMember->NextInBundle = nullptr;
3493     BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
3494     if (BundleMember->UnscheduledDepsInBundle == 0) {
3495       ReadyInsts.insert(BundleMember);
3496     }
3497     BundleMember = Next;
3498   }
3499 }
3500
3501 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
3502   // Allocate a new ScheduleData for the instruction.
3503   if (ChunkPos >= ChunkSize) {
3504     ScheduleDataChunks.push_back(llvm::make_unique<ScheduleData[]>(ChunkSize));
3505     ChunkPos = 0;
3506   }
3507   return &(ScheduleDataChunks.back()[ChunkPos++]);
3508 }
3509
3510 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V,
3511                                                       Value *OpValue) {
3512   if (getScheduleData(V, isOneOf(OpValue, V)))
3513     return true;
3514   Instruction *I = dyn_cast<Instruction>(V);
3515   assert(I && "bundle member must be an instruction");
3516   assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled");
3517   auto &&CheckSheduleForI = [this, OpValue](Instruction *I) -> bool {
3518     ScheduleData *ISD = getScheduleData(I);
3519     if (!ISD)
3520       return false;
3521     assert(isInSchedulingRegion(ISD) &&
3522            "ScheduleData not in scheduling region");
3523     ScheduleData *SD = allocateScheduleDataChunks();
3524     SD->Inst = I;
3525     SD->init(SchedulingRegionID, OpValue);
3526     ExtraScheduleDataMap[I][OpValue] = SD;
3527     return true;
3528   };
3529   if (CheckSheduleForI(I))
3530     return true;
3531   if (!ScheduleStart) {
3532     // It's the first instruction in the new region.
3533     initScheduleData(I, I->getNextNode(), nullptr, nullptr);
3534     ScheduleStart = I;
3535     ScheduleEnd = I->getNextNode();
3536     if (isOneOf(OpValue, I) != I)
3537       CheckSheduleForI(I);
3538     assert(ScheduleEnd && "tried to vectorize a TerminatorInst?");
3539     DEBUG(dbgs() << "SLP:  initialize schedule region to " << *I << "\n");
3540     return true;
3541   }
3542   // Search up and down at the same time, because we don't know if the new
3543   // instruction is above or below the existing scheduling region.
3544   BasicBlock::reverse_iterator UpIter =
3545       ++ScheduleStart->getIterator().getReverse();
3546   BasicBlock::reverse_iterator UpperEnd = BB->rend();
3547   BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
3548   BasicBlock::iterator LowerEnd = BB->end();
3549   while (true) {
3550     if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
3551       DEBUG(dbgs() << "SLP:  exceeded schedule region size limit\n");
3552       return false;
3553     }
3554
3555     if (UpIter != UpperEnd) {
3556       if (&*UpIter == I) {
3557         initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
3558         ScheduleStart = I;
3559         if (isOneOf(OpValue, I) != I)
3560           CheckSheduleForI(I);
3561         DEBUG(dbgs() << "SLP:  extend schedule region start to " << *I << "\n");
3562         return true;
3563       }
3564       UpIter++;
3565     }
3566     if (DownIter != LowerEnd) {
3567       if (&*DownIter == I) {
3568         initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
3569                          nullptr);
3570         ScheduleEnd = I->getNextNode();
3571         if (isOneOf(OpValue, I) != I)
3572           CheckSheduleForI(I);
3573         assert(ScheduleEnd && "tried to vectorize a TerminatorInst?");
3574         DEBUG(dbgs() << "SLP:  extend schedule region end to " << *I << "\n");
3575         return true;
3576       }
3577       DownIter++;
3578     }
3579     assert((UpIter != UpperEnd || DownIter != LowerEnd) &&
3580            "instruction not found in block");
3581   }
3582   return true;
3583 }
3584
3585 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
3586                                                 Instruction *ToI,
3587                                                 ScheduleData *PrevLoadStore,
3588                                                 ScheduleData *NextLoadStore) {
3589   ScheduleData *CurrentLoadStore = PrevLoadStore;
3590   for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
3591     ScheduleData *SD = ScheduleDataMap[I];
3592     if (!SD) {
3593       SD = allocateScheduleDataChunks();
3594       ScheduleDataMap[I] = SD;
3595       SD->Inst = I;
3596     }
3597     assert(!isInSchedulingRegion(SD) &&
3598            "new ScheduleData already in scheduling region");
3599     SD->init(SchedulingRegionID, I);
3600
3601     if (I->mayReadOrWriteMemory() &&
3602         (!isa<IntrinsicInst>(I) ||
3603          cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) {
3604       // Update the linked list of memory accessing instructions.
3605       if (CurrentLoadStore) {
3606         CurrentLoadStore->NextLoadStore = SD;
3607       } else {
3608         FirstLoadStoreInRegion = SD;
3609       }
3610       CurrentLoadStore = SD;
3611     }
3612   }
3613   if (NextLoadStore) {
3614     if (CurrentLoadStore)
3615       CurrentLoadStore->NextLoadStore = NextLoadStore;
3616   } else {
3617     LastLoadStoreInRegion = CurrentLoadStore;
3618   }
3619 }
3620
3621 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
3622                                                      bool InsertInReadyList,
3623                                                      BoUpSLP *SLP) {
3624   assert(SD->isSchedulingEntity());
3625
3626   SmallVector<ScheduleData *, 10> WorkList;
3627   WorkList.push_back(SD);
3628
3629   while (!WorkList.empty()) {
3630     ScheduleData *SD = WorkList.back();
3631     WorkList.pop_back();
3632
3633     ScheduleData *BundleMember = SD;
3634     while (BundleMember) {
3635       assert(isInSchedulingRegion(BundleMember));
3636       if (!BundleMember->hasValidDependencies()) {
3637
3638         DEBUG(dbgs() << "SLP:       update deps of " << *BundleMember << "\n");
3639         BundleMember->Dependencies = 0;
3640         BundleMember->resetUnscheduledDeps();
3641
3642         // Handle def-use chain dependencies.
3643         if (BundleMember->OpValue != BundleMember->Inst) {
3644           ScheduleData *UseSD = getScheduleData(BundleMember->Inst);
3645           if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
3646             BundleMember->Dependencies++;
3647             ScheduleData *DestBundle = UseSD->FirstInBundle;
3648             if (!DestBundle->IsScheduled)
3649               BundleMember->incrementUnscheduledDeps(1);
3650             if (!DestBundle->hasValidDependencies())
3651               WorkList.push_back(DestBundle);
3652           }
3653         } else {
3654           for (User *U : BundleMember->Inst->users()) {
3655             if (isa<Instruction>(U)) {
3656               ScheduleData *UseSD = getScheduleData(U);
3657               if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
3658                 BundleMember->Dependencies++;
3659                 ScheduleData *DestBundle = UseSD->FirstInBundle;
3660                 if (!DestBundle->IsScheduled)
3661                   BundleMember->incrementUnscheduledDeps(1);
3662                 if (!DestBundle->hasValidDependencies())
3663                   WorkList.push_back(DestBundle);
3664               }
3665             } else {
3666               // I'm not sure if this can ever happen. But we need to be safe.
3667               // This lets the instruction/bundle never be scheduled and
3668               // eventually disable vectorization.
3669               BundleMember->Dependencies++;
3670               BundleMember->incrementUnscheduledDeps(1);
3671             }
3672           }
3673         }
3674
3675         // Handle the memory dependencies.
3676         ScheduleData *DepDest = BundleMember->NextLoadStore;
3677         if (DepDest) {
3678           Instruction *SrcInst = BundleMember->Inst;
3679           MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
3680           bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
3681           unsigned numAliased = 0;
3682           unsigned DistToSrc = 1;
3683
3684           while (DepDest) {
3685             assert(isInSchedulingRegion(DepDest));
3686
3687             // We have two limits to reduce the complexity:
3688             // 1) AliasedCheckLimit: It's a small limit to reduce calls to
3689             //    SLP->isAliased (which is the expensive part in this loop).
3690             // 2) MaxMemDepDistance: It's for very large blocks and it aborts
3691             //    the whole loop (even if the loop is fast, it's quadratic).
3692             //    It's important for the loop break condition (see below) to
3693             //    check this limit even between two read-only instructions.
3694             if (DistToSrc >= MaxMemDepDistance ||
3695                     ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
3696                      (numAliased >= AliasedCheckLimit ||
3697                       SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
3698
3699               // We increment the counter only if the locations are aliased
3700               // (instead of counting all alias checks). This gives a better
3701               // balance between reduced runtime and accurate dependencies.
3702               numAliased++;
3703
3704               DepDest->MemoryDependencies.push_back(BundleMember);
3705               BundleMember->Dependencies++;
3706               ScheduleData *DestBundle = DepDest->FirstInBundle;
3707               if (!DestBundle->IsScheduled) {
3708                 BundleMember->incrementUnscheduledDeps(1);
3709               }
3710               if (!DestBundle->hasValidDependencies()) {
3711                 WorkList.push_back(DestBundle);
3712               }
3713             }
3714             DepDest = DepDest->NextLoadStore;
3715
3716             // Example, explaining the loop break condition: Let's assume our
3717             // starting instruction is i0 and MaxMemDepDistance = 3.
3718             //
3719             //                      +--------v--v--v
3720             //             i0,i1,i2,i3,i4,i5,i6,i7,i8
3721             //             +--------^--^--^
3722             //
3723             // MaxMemDepDistance let us stop alias-checking at i3 and we add
3724             // dependencies from i0 to i3,i4,.. (even if they are not aliased).
3725             // Previously we already added dependencies from i3 to i6,i7,i8
3726             // (because of MaxMemDepDistance). As we added a dependency from
3727             // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
3728             // and we can abort this loop at i6.
3729             if (DistToSrc >= 2 * MaxMemDepDistance)
3730                 break;
3731             DistToSrc++;
3732           }
3733         }
3734       }
3735       BundleMember = BundleMember->NextInBundle;
3736     }
3737     if (InsertInReadyList && SD->isReady()) {
3738       ReadyInsts.push_back(SD);
3739       DEBUG(dbgs() << "SLP:     gets ready on update: " << *SD->Inst << "\n");
3740     }
3741   }
3742 }
3743
3744 void BoUpSLP::BlockScheduling::resetSchedule() {
3745   assert(ScheduleStart &&
3746          "tried to reset schedule on block which has not been scheduled");
3747   for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
3748     doForAllOpcodes(I, [&](ScheduleData *SD) {
3749       assert(isInSchedulingRegion(SD) &&
3750              "ScheduleData not in scheduling region");
3751       SD->IsScheduled = false;
3752       SD->resetUnscheduledDeps();
3753     });
3754   }
3755   ReadyInsts.clear();
3756 }
3757
3758 void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
3759   if (!BS->ScheduleStart)
3760     return;
3761
3762   DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
3763
3764   BS->resetSchedule();
3765
3766   // For the real scheduling we use a more sophisticated ready-list: it is
3767   // sorted by the original instruction location. This lets the final schedule
3768   // be as  close as possible to the original instruction order.
3769   struct ScheduleDataCompare {
3770     bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
3771       return SD2->SchedulingPriority < SD1->SchedulingPriority;
3772     }
3773   };
3774   std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
3775
3776   // Ensure that all dependency data is updated and fill the ready-list with
3777   // initial instructions.
3778   int Idx = 0;
3779   int NumToSchedule = 0;
3780   for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
3781        I = I->getNextNode()) {
3782     BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) {
3783       assert(SD->isPartOfBundle() ==
3784                  (getTreeEntry(SD->Inst) != nullptr) &&
3785              "scheduler and vectorizer bundle mismatch");
3786       SD->FirstInBundle->SchedulingPriority = Idx++;
3787       if (SD->isSchedulingEntity()) {
3788         BS->calculateDependencies(SD, false, this);
3789         NumToSchedule++;
3790       }
3791     });
3792   }
3793   BS->initialFillReadyList(ReadyInsts);
3794
3795   Instruction *LastScheduledInst = BS->ScheduleEnd;
3796
3797   // Do the "real" scheduling.
3798   while (!ReadyInsts.empty()) {
3799     ScheduleData *picked = *ReadyInsts.begin();
3800     ReadyInsts.erase(ReadyInsts.begin());
3801
3802     // Move the scheduled instruction(s) to their dedicated places, if not
3803     // there yet.
3804     ScheduleData *BundleMember = picked;
3805     while (BundleMember) {
3806       Instruction *pickedInst = BundleMember->Inst;
3807       if (LastScheduledInst->getNextNode() != pickedInst) {
3808         BS->BB->getInstList().remove(pickedInst);
3809         BS->BB->getInstList().insert(LastScheduledInst->getIterator(),
3810                                      pickedInst);
3811       }
3812       LastScheduledInst = pickedInst;
3813       BundleMember = BundleMember->NextInBundle;
3814     }
3815
3816     BS->schedule(picked, ReadyInsts);
3817     NumToSchedule--;
3818   }
3819   assert(NumToSchedule == 0 && "could not schedule all instructions");
3820
3821   // Avoid duplicate scheduling of the block.
3822   BS->ScheduleStart = nullptr;
3823 }
3824
3825 unsigned BoUpSLP::getVectorElementSize(Value *V) {
3826   // If V is a store, just return the width of the stored value without
3827   // traversing the expression tree. This is the common case.
3828   if (auto *Store = dyn_cast<StoreInst>(V))
3829     return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
3830
3831   // If V is not a store, we can traverse the expression tree to find loads
3832   // that feed it. The type of the loaded value may indicate a more suitable
3833   // width than V's type. We want to base the vector element size on the width
3834   // of memory operations where possible.
3835   SmallVector<Instruction *, 16> Worklist;
3836   SmallPtrSet<Instruction *, 16> Visited;
3837   if (auto *I = dyn_cast<Instruction>(V))
3838     Worklist.push_back(I);
3839
3840   // Traverse the expression tree in bottom-up order looking for loads. If we
3841   // encounter an instruciton we don't yet handle, we give up.
3842   auto MaxWidth = 0u;
3843   auto FoundUnknownInst = false;
3844   while (!Worklist.empty() && !FoundUnknownInst) {
3845     auto *I = Worklist.pop_back_val();
3846     Visited.insert(I);
3847
3848     // We should only be looking at scalar instructions here. If the current
3849     // instruction has a vector type, give up.
3850     auto *Ty = I->getType();
3851     if (isa<VectorType>(Ty))
3852       FoundUnknownInst = true;
3853
3854     // If the current instruction is a load, update MaxWidth to reflect the
3855     // width of the loaded value.
3856     else if (isa<LoadInst>(I))
3857       MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty));
3858
3859     // Otherwise, we need to visit the operands of the instruction. We only
3860     // handle the interesting cases from buildTree here. If an operand is an
3861     // instruction we haven't yet visited, we add it to the worklist.
3862     else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
3863              isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) {
3864       for (Use &U : I->operands())
3865         if (auto *J = dyn_cast<Instruction>(U.get()))
3866           if (!Visited.count(J))
3867             Worklist.push_back(J);
3868     }
3869
3870     // If we don't yet handle the instruction, give up.
3871     else
3872       FoundUnknownInst = true;
3873   }
3874
3875   // If we didn't encounter a memory access in the expression tree, or if we
3876   // gave up for some reason, just return the width of V.
3877   if (!MaxWidth || FoundUnknownInst)
3878     return DL->getTypeSizeInBits(V->getType());
3879
3880   // Otherwise, return the maximum width we found.
3881   return MaxWidth;
3882 }
3883
3884 // Determine if a value V in a vectorizable expression Expr can be demoted to a
3885 // smaller type with a truncation. We collect the values that will be demoted
3886 // in ToDemote and additional roots that require investigating in Roots.
3887 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
3888                                   SmallVectorImpl<Value *> &ToDemote,
3889                                   SmallVectorImpl<Value *> &Roots) {
3890   // We can always demote constants.
3891   if (isa<Constant>(V)) {
3892     ToDemote.push_back(V);
3893     return true;
3894   }
3895
3896   // If the value is not an instruction in the expression with only one use, it
3897   // cannot be demoted.
3898   auto *I = dyn_cast<Instruction>(V);
3899   if (!I || !I->hasOneUse() || !Expr.count(I))
3900     return false;
3901
3902   switch (I->getOpcode()) {
3903
3904   // We can always demote truncations and extensions. Since truncations can
3905   // seed additional demotion, we save the truncated value.
3906   case Instruction::Trunc:
3907     Roots.push_back(I->getOperand(0));
3908     break;
3909   case Instruction::ZExt:
3910   case Instruction::SExt:
3911     break;
3912
3913   // We can demote certain binary operations if we can demote both of their
3914   // operands.
3915   case Instruction::Add:
3916   case Instruction::Sub:
3917   case Instruction::Mul:
3918   case Instruction::And:
3919   case Instruction::Or:
3920   case Instruction::Xor:
3921     if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
3922         !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
3923       return false;
3924     break;
3925
3926   // We can demote selects if we can demote their true and false values.
3927   case Instruction::Select: {
3928     SelectInst *SI = cast<SelectInst>(I);
3929     if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
3930         !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
3931       return false;
3932     break;
3933   }
3934
3935   // We can demote phis if we can demote all their incoming operands. Note that
3936   // we don't need to worry about cycles since we ensure single use above.
3937   case Instruction::PHI: {
3938     PHINode *PN = cast<PHINode>(I);
3939     for (Value *IncValue : PN->incoming_values())
3940       if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
3941         return false;
3942     break;
3943   }
3944
3945   // Otherwise, conservatively give up.
3946   default:
3947     return false;
3948   }
3949
3950   // Record the value that we can demote.
3951   ToDemote.push_back(V);
3952   return true;
3953 }
3954
3955 void BoUpSLP::computeMinimumValueSizes() {
3956   // If there are no external uses, the expression tree must be rooted by a
3957   // store. We can't demote in-memory values, so there is nothing to do here.
3958   if (ExternalUses.empty())
3959     return;
3960
3961   // We only attempt to truncate integer expressions.
3962   auto &TreeRoot = VectorizableTree[0].Scalars;
3963   auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
3964   if (!TreeRootIT)
3965     return;
3966
3967   // If the expression is not rooted by a store, these roots should have
3968   // external uses. We will rely on InstCombine to rewrite the expression in
3969   // the narrower type. However, InstCombine only rewrites single-use values.
3970   // This means that if a tree entry other than a root is used externally, it
3971   // must have multiple uses and InstCombine will not rewrite it. The code
3972   // below ensures that only the roots are used externally.
3973   SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
3974   for (auto &EU : ExternalUses)
3975     if (!Expr.erase(EU.Scalar))
3976       return;
3977   if (!Expr.empty())
3978     return;
3979
3980   // Collect the scalar values of the vectorizable expression. We will use this
3981   // context to determine which values can be demoted. If we see a truncation,
3982   // we mark it as seeding another demotion.
3983   for (auto &Entry : VectorizableTree)
3984     Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end());
3985
3986   // Ensure the roots of the vectorizable tree don't form a cycle. They must
3987   // have a single external user that is not in the vectorizable tree.
3988   for (auto *Root : TreeRoot)
3989     if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
3990       return;
3991
3992   // Conservatively determine if we can actually truncate the roots of the
3993   // expression. Collect the values that can be demoted in ToDemote and
3994   // additional roots that require investigating in Roots.
3995   SmallVector<Value *, 32> ToDemote;
3996   SmallVector<Value *, 4> Roots;
3997   for (auto *Root : TreeRoot)
3998     if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
3999       return;
4000
4001   // The maximum bit width required to represent all the values that can be
4002   // demoted without loss of precision. It would be safe to truncate the roots
4003   // of the expression to this width.
4004   auto MaxBitWidth = 8u;
4005
4006   // We first check if all the bits of the roots are demanded. If they're not,
4007   // we can truncate the roots to this narrower type.
4008   for (auto *Root : TreeRoot) {
4009     auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
4010     MaxBitWidth = std::max<unsigned>(
4011         Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
4012   }
4013
4014   // True if the roots can be zero-extended back to their original type, rather
4015   // than sign-extended. We know that if the leading bits are not demanded, we
4016   // can safely zero-extend. So we initialize IsKnownPositive to True.
4017   bool IsKnownPositive = true;
4018
4019   // If all the bits of the roots are demanded, we can try a little harder to
4020   // compute a narrower type. This can happen, for example, if the roots are
4021   // getelementptr indices. InstCombine promotes these indices to the pointer
4022   // width. Thus, all their bits are technically demanded even though the
4023   // address computation might be vectorized in a smaller type.
4024   //
4025   // We start by looking at each entry that can be demoted. We compute the
4026   // maximum bit width required to store the scalar by using ValueTracking to
4027   // compute the number of high-order bits we can truncate.
4028   if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType())) {
4029     MaxBitWidth = 8u;
4030
4031     // Determine if the sign bit of all the roots is known to be zero. If not,
4032     // IsKnownPositive is set to False.
4033     IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) {
4034       KnownBits Known = computeKnownBits(R, *DL);
4035       return Known.isNonNegative();
4036     });
4037
4038     // Determine the maximum number of bits required to store the scalar
4039     // values.
4040     for (auto *Scalar : ToDemote) {
4041       auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT);
4042       auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
4043       MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
4044     }
4045
4046     // If we can't prove that the sign bit is zero, we must add one to the
4047     // maximum bit width to account for the unknown sign bit. This preserves
4048     // the existing sign bit so we can safely sign-extend the root back to the
4049     // original type. Otherwise, if we know the sign bit is zero, we will
4050     // zero-extend the root instead.
4051     //
4052     // FIXME: This is somewhat suboptimal, as there will be cases where adding
4053     //        one to the maximum bit width will yield a larger-than-necessary
4054     //        type. In general, we need to add an extra bit only if we can't
4055     //        prove that the upper bit of the original type is equal to the
4056     //        upper bit of the proposed smaller type. If these two bits are the
4057     //        same (either zero or one) we know that sign-extending from the
4058     //        smaller type will result in the same value. Here, since we can't
4059     //        yet prove this, we are just making the proposed smaller type
4060     //        larger to ensure correctness.
4061     if (!IsKnownPositive)
4062       ++MaxBitWidth;
4063   }
4064
4065   // Round MaxBitWidth up to the next power-of-two.
4066   if (!isPowerOf2_64(MaxBitWidth))
4067     MaxBitWidth = NextPowerOf2(MaxBitWidth);
4068
4069   // If the maximum bit width we compute is less than the with of the roots'
4070   // type, we can proceed with the narrowing. Otherwise, do nothing.
4071   if (MaxBitWidth >= TreeRootIT->getBitWidth())
4072     return;
4073
4074   // If we can truncate the root, we must collect additional values that might
4075   // be demoted as a result. That is, those seeded by truncations we will
4076   // modify.
4077   while (!Roots.empty())
4078     collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
4079
4080   // Finally, map the values we can demote to the maximum bit with we computed.
4081   for (auto *Scalar : ToDemote)
4082     MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive);
4083 }
4084
4085 namespace {
4086
4087 /// The SLPVectorizer Pass.
4088 struct SLPVectorizer : public FunctionPass {
4089   SLPVectorizerPass Impl;
4090
4091   /// Pass identification, replacement for typeid
4092   static char ID;
4093
4094   explicit SLPVectorizer() : FunctionPass(ID) {
4095     initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
4096   }
4097
4098   bool doInitialization(Module &M) override {
4099     return false;
4100   }
4101
4102   bool runOnFunction(Function &F) override {
4103     if (skipFunction(F))
4104       return false;
4105
4106     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
4107     auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
4108     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
4109     auto *TLI = TLIP ? &TLIP->getTLI() : nullptr;
4110     auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
4111     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
4112     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
4113     auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
4114     auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
4115     auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
4116
4117     return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
4118   }
4119
4120   void getAnalysisUsage(AnalysisUsage &AU) const override {
4121     FunctionPass::getAnalysisUsage(AU);
4122     AU.addRequired<AssumptionCacheTracker>();
4123     AU.addRequired<ScalarEvolutionWrapperPass>();
4124     AU.addRequired<AAResultsWrapperPass>();
4125     AU.addRequired<TargetTransformInfoWrapperPass>();
4126     AU.addRequired<LoopInfoWrapperPass>();
4127     AU.addRequired<DominatorTreeWrapperPass>();
4128     AU.addRequired<DemandedBitsWrapperPass>();
4129     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
4130     AU.addPreserved<LoopInfoWrapperPass>();
4131     AU.addPreserved<DominatorTreeWrapperPass>();
4132     AU.addPreserved<AAResultsWrapperPass>();
4133     AU.addPreserved<GlobalsAAWrapperPass>();
4134     AU.setPreservesCFG();
4135   }
4136 };
4137
4138 } // end anonymous namespace
4139
4140 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
4141   auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
4142   auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
4143   auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
4144   auto *AA = &AM.getResult<AAManager>(F);
4145   auto *LI = &AM.getResult<LoopAnalysis>(F);
4146   auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
4147   auto *AC = &AM.getResult<AssumptionAnalysis>(F);
4148   auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
4149   auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
4150
4151   bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
4152   if (!Changed)
4153     return PreservedAnalyses::all();
4154
4155   PreservedAnalyses PA;
4156   PA.preserveSet<CFGAnalyses>();
4157   PA.preserve<AAManager>();
4158   PA.preserve<GlobalsAA>();
4159   return PA;
4160 }
4161
4162 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
4163                                 TargetTransformInfo *TTI_,
4164                                 TargetLibraryInfo *TLI_, AliasAnalysis *AA_,
4165                                 LoopInfo *LI_, DominatorTree *DT_,
4166                                 AssumptionCache *AC_, DemandedBits *DB_,
4167                                 OptimizationRemarkEmitter *ORE_) {
4168   SE = SE_;
4169   TTI = TTI_;
4170   TLI = TLI_;
4171   AA = AA_;
4172   LI = LI_;
4173   DT = DT_;
4174   AC = AC_;
4175   DB = DB_;
4176   DL = &F.getParent()->getDataLayout();
4177
4178   Stores.clear();
4179   GEPs.clear();
4180   bool Changed = false;
4181
4182   // If the target claims to have no vector registers don't attempt
4183   // vectorization.
4184   if (!TTI->getNumberOfRegisters(true))
4185     return false;
4186
4187   // Don't vectorize when the attribute NoImplicitFloat is used.
4188   if (F.hasFnAttribute(Attribute::NoImplicitFloat))
4189     return false;
4190
4191   DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
4192
4193   // Use the bottom up slp vectorizer to construct chains that start with
4194   // store instructions.
4195   BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);
4196
4197   // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
4198   // delete instructions.
4199
4200   // Scan the blocks in the function in post order.
4201   for (auto BB : post_order(&F.getEntryBlock())) {
4202     collectSeedInstructions(BB);
4203
4204     // Vectorize trees that end at stores.
4205     if (!Stores.empty()) {
4206       DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()
4207                    << " underlying objects.\n");
4208       Changed |= vectorizeStoreChains(R);
4209     }
4210
4211     // Vectorize trees that end at reductions.
4212     Changed |= vectorizeChainsInBlock(BB, R);
4213
4214     // Vectorize the index computations of getelementptr instructions. This
4215     // is primarily intended to catch gather-like idioms ending at
4216     // non-consecutive loads.
4217     if (!GEPs.empty()) {
4218       DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()
4219                    << " underlying objects.\n");
4220       Changed |= vectorizeGEPIndices(BB, R);
4221     }
4222   }
4223
4224   if (Changed) {
4225     R.optimizeGatherSequence(F);
4226     DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
4227     DEBUG(verifyFunction(F));
4228   }
4229   return Changed;
4230 }
4231
4232 /// \brief Check that the Values in the slice in VL array are still existent in
4233 /// the WeakTrackingVH array.
4234 /// Vectorization of part of the VL array may cause later values in the VL array
4235 /// to become invalid. We track when this has happened in the WeakTrackingVH
4236 /// array.
4237 static bool hasValueBeenRAUWed(ArrayRef<Value *> VL,
4238                                ArrayRef<WeakTrackingVH> VH, unsigned SliceBegin,
4239                                unsigned SliceSize) {
4240   VL = VL.slice(SliceBegin, SliceSize);
4241   VH = VH.slice(SliceBegin, SliceSize);
4242   return !std::equal(VL.begin(), VL.end(), VH.begin());
4243 }
4244
4245 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
4246                                             unsigned VecRegSize) {
4247   unsigned ChainLen = Chain.size();
4248   DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
4249         << "\n");
4250   unsigned Sz = R.getVectorElementSize(Chain[0]);
4251   unsigned VF = VecRegSize / Sz;
4252
4253   if (!isPowerOf2_32(Sz) || VF < 2)
4254     return false;
4255
4256   // Keep track of values that were deleted by vectorizing in the loop below.
4257   SmallVector<WeakTrackingVH, 8> TrackValues(Chain.begin(), Chain.end());
4258
4259   bool Changed = false;
4260   // Look for profitable vectorizable trees at all offsets, starting at zero.
4261   for (unsigned i = 0, e = ChainLen; i < e; ++i) {
4262     if (i + VF > e)
4263       break;
4264
4265     // Check that a previous iteration of this loop did not delete the Value.
4266     if (hasValueBeenRAUWed(Chain, TrackValues, i, VF))
4267       continue;
4268
4269     DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i
4270           << "\n");
4271     ArrayRef<Value *> Operands = Chain.slice(i, VF);
4272
4273     R.buildTree(Operands);
4274     if (R.isTreeTinyAndNotFullyVectorizable())
4275       continue;
4276
4277     R.computeMinimumValueSizes();
4278
4279     int Cost = R.getTreeCost();
4280
4281     DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
4282     if (Cost < -SLPCostThreshold) {
4283       DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
4284
4285       using namespace ore;
4286
4287       R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized",
4288                                           cast<StoreInst>(Chain[i]))
4289                        << "Stores SLP vectorized with cost " << NV("Cost", Cost)
4290                        << " and with tree size "
4291                        << NV("TreeSize", R.getTreeSize()));
4292
4293       R.vectorizeTree();
4294
4295       // Move to the next bundle.
4296       i += VF - 1;
4297       Changed = true;
4298     }
4299   }
4300
4301   return Changed;
4302 }
4303
4304 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
4305                                         BoUpSLP &R) {
4306   SetVector<StoreInst *> Heads;
4307   SmallDenseSet<StoreInst *> Tails;
4308   SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
4309
4310   // We may run into multiple chains that merge into a single chain. We mark the
4311   // stores that we vectorized so that we don't visit the same store twice.
4312   BoUpSLP::ValueSet VectorizedStores;
4313   bool Changed = false;
4314
4315   // Do a quadratic search on all of the given stores in reverse order and find
4316   // all of the pairs of stores that follow each other.
4317   SmallVector<unsigned, 16> IndexQueue;
4318   unsigned E = Stores.size();
4319   IndexQueue.resize(E - 1);
4320   for (unsigned I = E; I > 0; --I) {
4321     unsigned Idx = I - 1;
4322     // If a store has multiple consecutive store candidates, search Stores
4323     // array according to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ...
4324     // This is because usually pairing with immediate succeeding or preceding
4325     // candidate create the best chance to find slp vectorization opportunity.
4326     unsigned Offset = 1;
4327     unsigned Cnt = 0;
4328     for (unsigned J = 0; J < E - 1; ++J, ++Offset) {
4329       if (Idx >= Offset) {
4330         IndexQueue[Cnt] = Idx - Offset;
4331         ++Cnt;
4332       }
4333       if (Idx + Offset < E) {
4334         IndexQueue[Cnt] = Idx + Offset;
4335         ++Cnt;
4336       }
4337     }
4338
4339     for (auto K : IndexQueue) {
4340       if (isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE)) {
4341         Tails.insert(Stores[Idx]);
4342         Heads.insert(Stores[K]);
4343         ConsecutiveChain[Stores[K]] = Stores[Idx];
4344         break;
4345       }
4346     }
4347   }
4348
4349   // For stores that start but don't end a link in the chain:
4350   for (auto *SI : llvm::reverse(Heads)) {
4351     if (Tails.count(SI))
4352       continue;
4353
4354     // We found a store instr that starts a chain. Now follow the chain and try
4355     // to vectorize it.
4356     BoUpSLP::ValueList Operands;
4357     StoreInst *I = SI;
4358     // Collect the chain into a list.
4359     while ((Tails.count(I) || Heads.count(I)) && !VectorizedStores.count(I)) {
4360       Operands.push_back(I);
4361       // Move to the next value in the chain.
4362       I = ConsecutiveChain[I];
4363     }
4364
4365     // FIXME: Is division-by-2 the correct step? Should we assert that the
4366     // register size is a power-of-2?
4367     for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize();
4368          Size /= 2) {
4369       if (vectorizeStoreChain(Operands, R, Size)) {
4370         // Mark the vectorized stores so that we don't vectorize them again.
4371         VectorizedStores.insert(Operands.begin(), Operands.end());
4372         Changed = true;
4373         break;
4374       }
4375     }
4376   }
4377
4378   return Changed;
4379 }
4380
4381 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
4382   // Initialize the collections. We will make a single pass over the block.
4383   Stores.clear();
4384   GEPs.clear();
4385
4386   // Visit the store and getelementptr instructions in BB and organize them in
4387   // Stores and GEPs according to the underlying objects of their pointer
4388   // operands.
4389   for (Instruction &I : *BB) {
4390     // Ignore store instructions that are volatile or have a pointer operand
4391     // that doesn't point to a scalar type.
4392     if (auto *SI = dyn_cast<StoreInst>(&I)) {
4393       if (!SI->isSimple())
4394         continue;
4395       if (!isValidElementType(SI->getValueOperand()->getType()))
4396         continue;
4397       Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI);
4398     }
4399
4400     // Ignore getelementptr instructions that have more than one index, a
4401     // constant index, or a pointer operand that doesn't point to a scalar
4402     // type.
4403     else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
4404       auto Idx = GEP->idx_begin()->get();
4405       if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
4406         continue;
4407       if (!isValidElementType(Idx->getType()))
4408         continue;
4409       if (GEP->getType()->isVectorTy())
4410         continue;
4411       GEPs[GetUnderlyingObject(GEP->getPointerOperand(), *DL)].push_back(GEP);
4412     }
4413   }
4414 }
4415
4416 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
4417   if (!A || !B)
4418     return false;
4419   Value *VL[] = { A, B };
4420   return tryToVectorizeList(VL, R, None, true);
4421 }
4422
4423 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
4424                                            ArrayRef<Value *> BuildVector,
4425                                            bool AllowReorder,
4426                                            bool NeedExtraction) {
4427   if (VL.size() < 2)
4428     return false;
4429
4430   DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " << VL.size()
4431                << ".\n");
4432
4433   // Check that all of the parts are scalar instructions of the same type.
4434   Instruction *I0 = dyn_cast<Instruction>(VL[0]);
4435   if (!I0)
4436     return false;
4437
4438   unsigned Opcode0 = I0->getOpcode();
4439
4440   unsigned Sz = R.getVectorElementSize(I0);
4441   unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz);
4442   unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
4443   if (MaxVF < 2) {
4444      R.getORE()->emit([&]() {
4445          return OptimizationRemarkMissed(
4446                     SV_NAME, "SmallVF", I0)
4447                 << "Cannot SLP vectorize list: vectorization factor "
4448                 << "less than 2 is not supported";
4449      });
4450      return false;
4451   }
4452
4453   for (Value *V : VL) {
4454     Type *Ty = V->getType();
4455     if (!isValidElementType(Ty)) {
4456       // NOTE: the following will give user internal llvm type name, which may not be useful
4457       R.getORE()->emit([&]() {
4458           std::string type_str;
4459           llvm::raw_string_ostream rso(type_str);
4460           Ty->print(rso);
4461           return OptimizationRemarkMissed(
4462                      SV_NAME, "UnsupportedType", I0)
4463                  << "Cannot SLP vectorize list: type "
4464                  << rso.str() + " is unsupported by vectorizer";
4465       });
4466       return false;
4467     }
4468     Instruction *Inst = dyn_cast<Instruction>(V);
4469
4470     if (!Inst)
4471         return false;
4472     if (Inst->getOpcode() != Opcode0) {
4473       R.getORE()->emit([&]() {
4474           return OptimizationRemarkMissed(
4475                      SV_NAME, "InequableTypes", I0)
4476                  << "Cannot SLP vectorize list: not all of the "
4477                  << "parts of scalar instructions are of the same type: "
4478                  << ore::NV("Instruction1Opcode", I0) << " and "
4479                  << ore::NV("Instruction2Opcode", Inst);
4480       });
4481       return false;
4482     }
4483   }
4484
4485   bool Changed = false;
4486   bool CandidateFound = false;
4487   int MinCost = SLPCostThreshold;
4488
4489   // Keep track of values that were deleted by vectorizing in the loop below.
4490   SmallVector<WeakTrackingVH, 8> TrackValues(VL.begin(), VL.end());
4491
4492   unsigned NextInst = 0, MaxInst = VL.size();
4493   for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF;
4494        VF /= 2) {
4495     // No actual vectorization should happen, if number of parts is the same as
4496     // provided vectorization factor (i.e. the scalar type is used for vector
4497     // code during codegen).
4498     auto *VecTy = VectorType::get(VL[0]->getType(), VF);
4499     if (TTI->getNumberOfParts(VecTy) == VF)
4500       continue;
4501     for (unsigned I = NextInst; I < MaxInst; ++I) {
4502       unsigned OpsWidth = 0;
4503
4504       if (I + VF > MaxInst)
4505         OpsWidth = MaxInst - I;
4506       else
4507         OpsWidth = VF;
4508
4509       if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
4510         break;
4511
4512       // Check that a previous iteration of this loop did not delete the Value.
4513       if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth))
4514         continue;
4515
4516       DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
4517                    << "\n");
4518       ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
4519
4520       ArrayRef<Value *> EmptyArray;
4521       ArrayRef<Value *> BuildVectorSlice;
4522       if (!BuildVector.empty())
4523         BuildVectorSlice = BuildVector.slice(I, OpsWidth);
4524
4525       R.buildTree(Ops, NeedExtraction ? EmptyArray : BuildVectorSlice);
4526       // TODO: check if we can allow reordering for more cases.
4527       if (AllowReorder && R.shouldReorder()) {
4528         // Conceptually, there is nothing actually preventing us from trying to
4529         // reorder a larger list. In fact, we do exactly this when vectorizing
4530         // reductions. However, at this point, we only expect to get here when
4531         // there are exactly two operations.
4532         assert(Ops.size() == 2);
4533         assert(BuildVectorSlice.empty());
4534         Value *ReorderedOps[] = {Ops[1], Ops[0]};
4535         R.buildTree(ReorderedOps, None);
4536       }
4537       if (R.isTreeTinyAndNotFullyVectorizable())
4538         continue;
4539
4540       R.computeMinimumValueSizes();
4541       int Cost = R.getTreeCost();
4542       CandidateFound = true;
4543       MinCost = std::min(MinCost, Cost);
4544
4545       if (Cost < -SLPCostThreshold) {
4546         DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
4547         R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList",
4548                                                     cast<Instruction>(Ops[0]))
4549                                  << "SLP vectorized with cost " << ore::NV("Cost", Cost)
4550                                  << " and with tree size "
4551                                  << ore::NV("TreeSize", R.getTreeSize()));
4552
4553         Value *VectorizedRoot = R.vectorizeTree();
4554
4555         // Reconstruct the build vector by extracting the vectorized root. This
4556         // way we handle the case where some elements of the vector are
4557         // undefined.
4558         //  (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2))
4559         if (!BuildVectorSlice.empty()) {
4560           // The insert point is the last build vector instruction. The
4561           // vectorized root will precede it. This guarantees that we get an
4562           // instruction. The vectorized tree could have been constant folded.
4563           Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back());
4564           unsigned VecIdx = 0;
4565           for (auto &V : BuildVectorSlice) {
4566             IRBuilder<NoFolder> Builder(InsertAfter->getParent(),
4567                                         ++BasicBlock::iterator(InsertAfter));
4568             Instruction *I = cast<Instruction>(V);
4569             assert(isa<InsertElementInst>(I) || isa<InsertValueInst>(I));
4570             Instruction *Extract =
4571                 cast<Instruction>(Builder.CreateExtractElement(
4572                     VectorizedRoot, Builder.getInt32(VecIdx++)));
4573             I->setOperand(1, Extract);
4574             I->moveAfter(Extract);
4575             InsertAfter = I;
4576           }
4577         }
4578         // Move to the next bundle.
4579         I += VF - 1;
4580         NextInst = I + 1;
4581         Changed = true;
4582       }
4583     }
4584   }
4585
4586   if (!Changed && CandidateFound) {
4587     R.getORE()->emit([&]() {
4588         return OptimizationRemarkMissed(
4589                    SV_NAME, "NotBeneficial",  I0)
4590                << "List vectorization was possible but not beneficial with cost "
4591                << ore::NV("Cost", MinCost) << " >= "
4592                << ore::NV("Treshold", -SLPCostThreshold);
4593     });
4594   } else if (!Changed) {
4595     R.getORE()->emit([&]() {
4596         return OptimizationRemarkMissed(
4597                    SV_NAME, "NotPossible", I0)
4598                << "Cannot SLP vectorize list: vectorization was impossible"
4599                << " with available vectorization factors";
4600     });
4601   }
4602   return Changed;
4603 }
4604
4605 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) {
4606   if (!I)
4607     return false;
4608
4609   if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I))
4610     return false;
4611
4612   Value *P = I->getParent();
4613
4614   // Vectorize in current basic block only.
4615   auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
4616   auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
4617   if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
4618     return false;
4619
4620   // Try to vectorize V.
4621   if (tryToVectorizePair(Op0, Op1, R))
4622     return true;
4623
4624   auto *A = dyn_cast<BinaryOperator>(Op0);
4625   auto *B = dyn_cast<BinaryOperator>(Op1);
4626   // Try to skip B.
4627   if (B && B->hasOneUse()) {
4628     auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
4629     auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
4630     if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R))
4631       return true;
4632     if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R))
4633       return true;
4634   }
4635
4636   // Try to skip A.
4637   if (A && A->hasOneUse()) {
4638     auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
4639     auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
4640     if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R))
4641       return true;
4642     if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R))
4643       return true;
4644   }
4645   return false;
4646 }
4647
4648 /// \brief Generate a shuffle mask to be used in a reduction tree.
4649 ///
4650 /// \param VecLen The length of the vector to be reduced.
4651 /// \param NumEltsToRdx The number of elements that should be reduced in the
4652 ///        vector.
4653 /// \param IsPairwise Whether the reduction is a pairwise or splitting
4654 ///        reduction. A pairwise reduction will generate a mask of
4655 ///        <0,2,...> or <1,3,..> while a splitting reduction will generate
4656 ///        <2,3, undef,undef> for a vector of 4 and NumElts = 2.
4657 /// \param IsLeft True will generate a mask of even elements, odd otherwise.
4658 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
4659                                    bool IsPairwise, bool IsLeft,
4660                                    IRBuilder<> &Builder) {
4661   assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");
4662
4663   SmallVector<Constant *, 32> ShuffleMask(
4664       VecLen, UndefValue::get(Builder.getInt32Ty()));
4665
4666   if (IsPairwise)
4667     // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
4668     for (unsigned i = 0; i != NumEltsToRdx; ++i)
4669       ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft);
4670   else
4671     // Move the upper half of the vector to the lower half.
4672     for (unsigned i = 0; i != NumEltsToRdx; ++i)
4673       ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i);
4674
4675   return ConstantVector::get(ShuffleMask);
4676 }
4677
4678 namespace {
4679
4680 /// Model horizontal reductions.
4681 ///
4682 /// A horizontal reduction is a tree of reduction operations (currently add and
4683 /// fadd) that has operations that can be put into a vector as its leaf.
4684 /// For example, this tree:
4685 ///
4686 /// mul mul mul mul
4687 ///  \  /    \  /
4688 ///   +       +
4689 ///    \     /
4690 ///       +
4691 /// This tree has "mul" as its reduced values and "+" as its reduction
4692 /// operations. A reduction might be feeding into a store or a binary operation
4693 /// feeding a phi.
4694 ///    ...
4695 ///    \  /
4696 ///     +
4697 ///     |
4698 ///  phi +=
4699 ///
4700 ///  Or:
4701 ///    ...
4702 ///    \  /
4703 ///     +
4704 ///     |
4705 ///   *p =
4706 ///
4707 class HorizontalReduction {
4708   using ReductionOpsType = SmallVector<Value *, 16>;
4709   using ReductionOpsListType = SmallVector<ReductionOpsType, 2>;
4710   ReductionOpsListType  ReductionOps;
4711   SmallVector<Value *, 32> ReducedVals;
4712   // Use map vector to make stable output.
4713   MapVector<Instruction *, Value *> ExtraArgs;
4714
4715   /// Kind of the reduction data.
4716   enum ReductionKind {
4717     RK_None,       /// Not a reduction.
4718     RK_Arithmetic, /// Binary reduction data.
4719     RK_Min,        /// Minimum reduction data.
4720     RK_UMin,       /// Unsigned minimum reduction data.
4721     RK_Max,        /// Maximum reduction data.
4722     RK_UMax,       /// Unsigned maximum reduction data.
4723   };
4724
4725   /// Contains info about operation, like its opcode, left and right operands.
4726   class OperationData {
4727     /// Opcode of the instruction.
4728     unsigned Opcode = 0;
4729
4730     /// Left operand of the reduction operation.
4731     Value *LHS = nullptr;
4732
4733     /// Right operand of the reduction operation.
4734     Value *RHS = nullptr;
4735
4736     /// Kind of the reduction operation.
4737     ReductionKind Kind = RK_None;
4738
4739     /// True if float point min/max reduction has no NaNs.
4740     bool NoNaN = false;
4741
4742     /// Checks if the reduction operation can be vectorized.
4743     bool isVectorizable() const {
4744       return LHS && RHS &&
4745              // We currently only support adds && min/max reductions.
4746              ((Kind == RK_Arithmetic &&
4747                (Opcode == Instruction::Add || Opcode == Instruction::FAdd)) ||
4748               ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
4749                (Kind == RK_Min || Kind == RK_Max)) ||
4750               (Opcode == Instruction::ICmp &&
4751                (Kind == RK_UMin || Kind == RK_UMax)));
4752     }
4753
4754     /// Creates reduction operation with the current opcode.
4755     Value *createOp(IRBuilder<> &Builder, const Twine &Name) const {
4756       assert(isVectorizable() &&
4757              "Expected add|fadd or min/max reduction operation.");
4758       Value *Cmp;
4759       switch (Kind) {
4760       case RK_Arithmetic:
4761         return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS,
4762                                    Name);
4763       case RK_Min:
4764         Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS)
4765                                           : Builder.CreateFCmpOLT(LHS, RHS);
4766         break;
4767       case RK_Max:
4768         Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS)
4769                                           : Builder.CreateFCmpOGT(LHS, RHS);
4770         break;
4771       case RK_UMin:
4772         assert(Opcode == Instruction::ICmp && "Expected integer types.");
4773         Cmp = Builder.CreateICmpULT(LHS, RHS);
4774         break;
4775       case RK_UMax:
4776         assert(Opcode == Instruction::ICmp && "Expected integer types.");
4777         Cmp = Builder.CreateICmpUGT(LHS, RHS);
4778         break;
4779       case RK_None:
4780         llvm_unreachable("Unknown reduction operation.");
4781       }
4782       return Builder.CreateSelect(Cmp, LHS, RHS, Name);
4783     }
4784
4785   public:
4786     explicit OperationData() = default;
4787
4788     /// Construction for reduced values. They are identified by opcode only and
4789     /// don't have associated LHS/RHS values.
4790     explicit OperationData(Value *V) {
4791       if (auto *I = dyn_cast<Instruction>(V))
4792         Opcode = I->getOpcode();
4793     }
4794
4795     /// Constructor for reduction operations with opcode and its left and
4796     /// right operands.
4797     OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind,
4798                   bool NoNaN = false)
4799         : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) {
4800       assert(Kind != RK_None && "One of the reduction operations is expected.");
4801     }
4802
4803     explicit operator bool() const { return Opcode; }
4804
4805     /// Get the index of the first operand.
4806     unsigned getFirstOperandIndex() const {
4807       assert(!!*this && "The opcode is not set.");
4808       switch (Kind) {
4809       case RK_Min:
4810       case RK_UMin:
4811       case RK_Max:
4812       case RK_UMax:
4813         return 1;
4814       case RK_Arithmetic:
4815       case RK_None:
4816         break;
4817       }
4818       return 0;
4819     }
4820
4821     /// Total number of operands in the reduction operation.
4822     unsigned getNumberOfOperands() const {
4823       assert(Kind != RK_None && !!*this && LHS && RHS &&
4824              "Expected reduction operation.");
4825       switch (Kind) {
4826       case RK_Arithmetic:
4827         return 2;
4828       case RK_Min:
4829       case RK_UMin:
4830       case RK_Max:
4831       case RK_UMax:
4832         return 3;
4833       case RK_None:
4834         break;
4835       }
4836       llvm_unreachable("Reduction kind is not set");
4837     }
4838
4839     /// Checks if the operation has the same parent as \p P.
4840     bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const {
4841       assert(Kind != RK_None && !!*this && LHS && RHS &&
4842              "Expected reduction operation.");
4843       if (!IsRedOp)
4844         return I->getParent() == P;
4845       switch (Kind) {
4846       case RK_Arithmetic:
4847         // Arithmetic reduction operation must be used once only.
4848         return I->getParent() == P;
4849       case RK_Min:
4850       case RK_UMin:
4851       case RK_Max:
4852       case RK_UMax: {
4853         // SelectInst must be used twice while the condition op must have single
4854         // use only.
4855         auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition());
4856         return I->getParent() == P && Cmp && Cmp->getParent() == P;
4857       }
4858       case RK_None:
4859         break;
4860       }
4861       llvm_unreachable("Reduction kind is not set");
4862     }
4863     /// Expected number of uses for reduction operations/reduced values.
4864     bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const {
4865       assert(Kind != RK_None && !!*this && LHS && RHS &&
4866              "Expected reduction operation.");
4867       switch (Kind) {
4868       case RK_Arithmetic:
4869         return I->hasOneUse();
4870       case RK_Min:
4871       case RK_UMin:
4872       case RK_Max:
4873       case RK_UMax:
4874         return I->hasNUses(2) &&
4875                (!IsReductionOp ||
4876                 cast<SelectInst>(I)->getCondition()->hasOneUse());
4877       case RK_None:
4878         break;
4879       }
4880       llvm_unreachable("Reduction kind is not set");
4881     }
4882
4883     /// Initializes the list of reduction operations.
4884     void initReductionOps(ReductionOpsListType &ReductionOps) {
4885       assert(Kind != RK_None && !!*this && LHS && RHS &&
4886              "Expected reduction operation.");
4887       switch (Kind) {
4888       case RK_Arithmetic:
4889         ReductionOps.assign(1, ReductionOpsType());
4890         break;
4891       case RK_Min:
4892       case RK_UMin:
4893       case RK_Max:
4894       case RK_UMax:
4895         ReductionOps.assign(2, ReductionOpsType());
4896         break;
4897       case RK_None:
4898         llvm_unreachable("Reduction kind is not set");
4899       }
4900     }
4901     /// Add all reduction operations for the reduction instruction \p I.
4902     void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) {
4903       assert(Kind != RK_None && !!*this && LHS && RHS &&
4904              "Expected reduction operation.");
4905       switch (Kind) {
4906       case RK_Arithmetic:
4907         ReductionOps[0].emplace_back(I);
4908         break;
4909       case RK_Min:
4910       case RK_UMin:
4911       case RK_Max:
4912       case RK_UMax:
4913         ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition());
4914         ReductionOps[1].emplace_back(I);
4915         break;
4916       case RK_None:
4917         llvm_unreachable("Reduction kind is not set");
4918       }
4919     }
4920
4921     /// Checks if instruction is associative and can be vectorized.
4922     bool isAssociative(Instruction *I) const {
4923       assert(Kind != RK_None && *this && LHS && RHS &&
4924              "Expected reduction operation.");
4925       switch (Kind) {
4926       case RK_Arithmetic:
4927         return I->isAssociative();
4928       case RK_Min:
4929       case RK_Max:
4930         return Opcode == Instruction::ICmp ||
4931                cast<Instruction>(I->getOperand(0))->isFast();
4932       case RK_UMin:
4933       case RK_UMax:
4934         assert(Opcode == Instruction::ICmp &&
4935                "Only integer compare operation is expected.");
4936         return true;
4937       case RK_None:
4938         break;
4939       }
4940       llvm_unreachable("Reduction kind is not set");
4941     }
4942
4943     /// Checks if the reduction operation can be vectorized.
4944     bool isVectorizable(Instruction *I) const {
4945       return isVectorizable() && isAssociative(I);
4946     }
4947
4948     /// Checks if two operation data are both a reduction op or both a reduced
4949     /// value.
4950     bool operator==(const OperationData &OD) {
4951       assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) &&
4952              "One of the comparing operations is incorrect.");
4953       return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode);
4954     }
4955     bool operator!=(const OperationData &OD) { return !(*this == OD); }
4956     void clear() {
4957       Opcode = 0;
4958       LHS = nullptr;
4959       RHS = nullptr;
4960       Kind = RK_None;
4961       NoNaN = false;
4962     }
4963
4964     /// Get the opcode of the reduction operation.
4965     unsigned getOpcode() const {
4966       assert(isVectorizable() && "Expected vectorizable operation.");
4967       return Opcode;
4968     }
4969
4970     /// Get kind of reduction data.
4971     ReductionKind getKind() const { return Kind; }
4972     Value *getLHS() const { return LHS; }
4973     Value *getRHS() const { return RHS; }
4974     Type *getConditionType() const {
4975       switch (Kind) {
4976       case RK_Arithmetic:
4977         return nullptr;
4978       case RK_Min:
4979       case RK_Max:
4980       case RK_UMin:
4981       case RK_UMax:
4982         return CmpInst::makeCmpResultType(LHS->getType());
4983       case RK_None:
4984         break;
4985       }
4986       llvm_unreachable("Reduction kind is not set");
4987     }
4988
4989     /// Creates reduction operation with the current opcode with the IR flags
4990     /// from \p ReductionOps.
4991     Value *createOp(IRBuilder<> &Builder, const Twine &Name,
4992                     const ReductionOpsListType &ReductionOps) const {
4993       assert(isVectorizable() &&
4994              "Expected add|fadd or min/max reduction operation.");
4995       auto *Op = createOp(Builder, Name);
4996       switch (Kind) {
4997       case RK_Arithmetic:
4998         propagateIRFlags(Op, ReductionOps[0]);
4999         return Op;
5000       case RK_Min:
5001       case RK_Max:
5002       case RK_UMin:
5003       case RK_UMax:
5004         if (auto *SI = dyn_cast<SelectInst>(Op))
5005           propagateIRFlags(SI->getCondition(), ReductionOps[0]);
5006         propagateIRFlags(Op, ReductionOps[1]);
5007         return Op;
5008       case RK_None:
5009         break;
5010       }
5011       llvm_unreachable("Unknown reduction operation.");
5012     }
5013     /// Creates reduction operation with the current opcode with the IR flags
5014     /// from \p I.
5015     Value *createOp(IRBuilder<> &Builder, const Twine &Name,
5016                     Instruction *I) const {
5017       assert(isVectorizable() &&
5018              "Expected add|fadd or min/max reduction operation.");
5019       auto *Op = createOp(Builder, Name);
5020       switch (Kind) {
5021       case RK_Arithmetic:
5022         propagateIRFlags(Op, I);
5023         return Op;
5024       case RK_Min:
5025       case RK_Max:
5026       case RK_UMin:
5027       case RK_UMax:
5028         if (auto *SI = dyn_cast<SelectInst>(Op)) {
5029           propagateIRFlags(SI->getCondition(),
5030                            cast<SelectInst>(I)->getCondition());
5031         }
5032         propagateIRFlags(Op, I);
5033         return Op;
5034       case RK_None:
5035         break;
5036       }
5037       llvm_unreachable("Unknown reduction operation.");
5038     }
5039
5040     TargetTransformInfo::ReductionFlags getFlags() const {
5041       TargetTransformInfo::ReductionFlags Flags;
5042       Flags.NoNaN = NoNaN;
5043       switch (Kind) {
5044       case RK_Arithmetic:
5045         break;
5046       case RK_Min:
5047         Flags.IsSigned = Opcode == Instruction::ICmp;
5048         Flags.IsMaxOp = false;
5049         break;
5050       case RK_Max:
5051         Flags.IsSigned = Opcode == Instruction::ICmp;
5052         Flags.IsMaxOp = true;
5053         break;
5054       case RK_UMin:
5055         Flags.IsSigned = false;
5056         Flags.IsMaxOp = false;
5057         break;
5058       case RK_UMax:
5059         Flags.IsSigned = false;
5060         Flags.IsMaxOp = true;
5061         break;
5062       case RK_None:
5063         llvm_unreachable("Reduction kind is not set");
5064       }
5065       return Flags;
5066     }
5067   };
5068
5069   Instruction *ReductionRoot = nullptr;
5070
5071   /// The operation data of the reduction operation.
5072   OperationData ReductionData;
5073
5074   /// The operation data of the values we perform a reduction on.
5075   OperationData ReducedValueData;
5076
5077   /// Should we model this reduction as a pairwise reduction tree or a tree that
5078   /// splits the vector in halves and adds those halves.
5079   bool IsPairwiseReduction = false;
5080
5081   /// Checks if the ParentStackElem.first should be marked as a reduction
5082   /// operation with an extra argument or as extra argument itself.
5083   void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem,
5084                     Value *ExtraArg) {
5085     if (ExtraArgs.count(ParentStackElem.first)) {
5086       ExtraArgs[ParentStackElem.first] = nullptr;
5087       // We ran into something like:
5088       // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg.
5089       // The whole ParentStackElem.first should be considered as an extra value
5090       // in this case.
5091       // Do not perform analysis of remaining operands of ParentStackElem.first
5092       // instruction, this whole instruction is an extra argument.
5093       ParentStackElem.second = ParentStackElem.first->getNumOperands();
5094     } else {
5095       // We ran into something like:
5096       // ParentStackElem.first += ... + ExtraArg + ...
5097       ExtraArgs[ParentStackElem.first] = ExtraArg;
5098     }
5099   }
5100
5101   static OperationData getOperationData(Value *V) {
5102     if (!V)
5103       return OperationData();
5104
5105     Value *LHS;
5106     Value *RHS;
5107     if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) {
5108       return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS,
5109                            RK_Arithmetic);
5110     }
5111     if (auto *Select = dyn_cast<SelectInst>(V)) {
5112       // Look for a min/max pattern.
5113       if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
5114         return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin);
5115       } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
5116         return OperationData(Instruction::ICmp, LHS, RHS, RK_Min);
5117       } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) ||
5118                  m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
5119         return OperationData(
5120             Instruction::FCmp, LHS, RHS, RK_Min,
5121             cast<Instruction>(Select->getCondition())->hasNoNaNs());
5122       } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
5123         return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax);
5124       } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
5125         return OperationData(Instruction::ICmp, LHS, RHS, RK_Max);
5126       } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) ||
5127                  m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
5128         return OperationData(
5129             Instruction::FCmp, LHS, RHS, RK_Max,
5130             cast<Instruction>(Select->getCondition())->hasNoNaNs());
5131       }
5132     }
5133     return OperationData(V);
5134   }
5135
5136 public:
5137   HorizontalReduction() = default;
5138
5139   /// \brief Try to find a reduction tree.
5140   bool matchAssociativeReduction(PHINode *Phi, Instruction *B) {
5141     assert((!Phi || is_contained(Phi->operands(), B)) &&
5142            "Thi phi needs to use the binary operator");
5143
5144     ReductionData = getOperationData(B);
5145
5146     // We could have a initial reductions that is not an add.
5147     //  r *= v1 + v2 + v3 + v4
5148     // In such a case start looking for a tree rooted in the first '+'.
5149     if (Phi) {
5150       if (ReductionData.getLHS() == Phi) {
5151         Phi = nullptr;
5152         B = dyn_cast<Instruction>(ReductionData.getRHS());
5153         ReductionData = getOperationData(B);
5154       } else if (ReductionData.getRHS() == Phi) {
5155         Phi = nullptr;
5156         B = dyn_cast<Instruction>(ReductionData.getLHS());
5157         ReductionData = getOperationData(B);
5158       }
5159     }
5160
5161     if (!ReductionData.isVectorizable(B))
5162       return false;
5163
5164     Type *Ty = B->getType();
5165     if (!isValidElementType(Ty))
5166       return false;
5167
5168     ReducedValueData.clear();
5169     ReductionRoot = B;
5170
5171     // Post order traverse the reduction tree starting at B. We only handle true
5172     // trees containing only binary operators.
5173     SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
5174     Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex()));
5175     ReductionData.initReductionOps(ReductionOps);
5176     while (!Stack.empty()) {
5177       Instruction *TreeN = Stack.back().first;
5178       unsigned EdgeToVist = Stack.back().second++;
5179       OperationData OpData = getOperationData(TreeN);
5180       bool IsReducedValue = OpData != ReductionData;
5181
5182       // Postorder vist.
5183       if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) {
5184         if (IsReducedValue)
5185           ReducedVals.push_back(TreeN);
5186         else {
5187           auto I = ExtraArgs.find(TreeN);
5188           if (I != ExtraArgs.end() && !I->second) {
5189             // Check if TreeN is an extra argument of its parent operation.
5190             if (Stack.size() <= 1) {
5191               // TreeN can't be an extra argument as it is a root reduction
5192               // operation.
5193               return false;
5194             }
5195             // Yes, TreeN is an extra argument, do not add it to a list of
5196             // reduction operations.
5197             // Stack[Stack.size() - 2] always points to the parent operation.
5198             markExtraArg(Stack[Stack.size() - 2], TreeN);
5199             ExtraArgs.erase(TreeN);
5200           } else
5201             ReductionData.addReductionOps(TreeN, ReductionOps);
5202         }
5203         // Retract.
5204         Stack.pop_back();
5205         continue;
5206       }
5207
5208       // Visit left or right.
5209       Value *NextV = TreeN->getOperand(EdgeToVist);
5210       if (NextV != Phi) {
5211         auto *I = dyn_cast<Instruction>(NextV);
5212         OpData = getOperationData(I);
5213         // Continue analysis if the next operand is a reduction operation or
5214         // (possibly) a reduced value. If the reduced value opcode is not set,
5215         // the first met operation != reduction operation is considered as the
5216         // reduced value class.
5217         if (I && (!ReducedValueData || OpData == ReducedValueData ||
5218                   OpData == ReductionData)) {
5219           const bool IsReductionOperation = OpData == ReductionData;
5220           // Only handle trees in the current basic block.
5221           if (!ReductionData.hasSameParent(I, B->getParent(),
5222                                            IsReductionOperation)) {
5223             // I is an extra argument for TreeN (its parent operation).
5224             markExtraArg(Stack.back(), I);
5225             continue;
5226           }
5227
5228           // Each tree node needs to have minimal number of users except for the
5229           // ultimate reduction.
5230           if (!ReductionData.hasRequiredNumberOfUses(I,
5231                                                      OpData == ReductionData) &&
5232               I != B) {
5233             // I is an extra argument for TreeN (its parent operation).
5234             markExtraArg(Stack.back(), I);
5235             continue;
5236           }
5237
5238           if (IsReductionOperation) {
5239             // We need to be able to reassociate the reduction operations.
5240             if (!OpData.isAssociative(I)) {
5241               // I is an extra argument for TreeN (its parent operation).
5242               markExtraArg(Stack.back(), I);
5243               continue;
5244             }
5245           } else if (ReducedValueData &&
5246                      ReducedValueData != OpData) {
5247             // Make sure that the opcodes of the operations that we are going to
5248             // reduce match.
5249             // I is an extra argument for TreeN (its parent operation).
5250             markExtraArg(Stack.back(), I);
5251             continue;
5252           } else if (!ReducedValueData)
5253             ReducedValueData = OpData;
5254
5255           Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex()));
5256           continue;
5257         }
5258       }
5259       // NextV is an extra argument for TreeN (its parent operation).
5260       markExtraArg(Stack.back(), NextV);
5261     }
5262     return true;
5263   }
5264
5265   /// \brief Attempt to vectorize the tree found by
5266   /// matchAssociativeReduction.
5267   bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
5268     if (ReducedVals.empty())
5269       return false;
5270
5271     // If there is a sufficient number of reduction values, reduce
5272     // to a nearby power-of-2. Can safely generate oversized
5273     // vectors and rely on the backend to split them to legal sizes.
5274     unsigned NumReducedVals = ReducedVals.size();
5275     if (NumReducedVals < 4)
5276       return false;
5277
5278     unsigned ReduxWidth = PowerOf2Floor(NumReducedVals);
5279
5280     Value *VectorizedTree = nullptr;
5281     IRBuilder<> Builder(ReductionRoot);
5282     FastMathFlags Unsafe;
5283     Unsafe.setFast();
5284     Builder.setFastMathFlags(Unsafe);
5285     unsigned i = 0;
5286
5287     BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
5288     // The same extra argument may be used several time, so log each attempt
5289     // to use it.
5290     for (auto &Pair : ExtraArgs)
5291       ExternallyUsedValues[Pair.second].push_back(Pair.first);
5292     SmallVector<Value *, 16> IgnoreList;
5293     for (auto &V : ReductionOps)
5294       IgnoreList.append(V.begin(), V.end());
5295     while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) {
5296       auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth);
5297       V.buildTree(VL, ExternallyUsedValues, IgnoreList);
5298       if (V.shouldReorder()) {
5299         SmallVector<Value *, 8> Reversed(VL.rbegin(), VL.rend());
5300         V.buildTree(Reversed, ExternallyUsedValues, IgnoreList);
5301       }
5302       if (V.isTreeTinyAndNotFullyVectorizable())
5303         break;
5304
5305       V.computeMinimumValueSizes();
5306
5307       // Estimate cost.
5308       int Cost =
5309           V.getTreeCost() + getReductionCost(TTI, ReducedVals[i], ReduxWidth);
5310       if (Cost >= -SLPCostThreshold) {
5311           V.getORE()->emit([&]() {
5312               return OptimizationRemarkMissed(
5313                          SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0]))
5314                      << "Vectorizing horizontal reduction is possible"
5315                      << "but not beneficial with cost "
5316                      << ore::NV("Cost", Cost) << " and threshold "
5317                      << ore::NV("Threshold", -SLPCostThreshold);
5318           });
5319           break;
5320       }
5321
5322       DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost
5323                    << ". (HorRdx)\n");
5324       V.getORE()->emit([&]() {
5325           return OptimizationRemark(
5326                      SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0]))
5327           << "Vectorized horizontal reduction with cost "
5328           << ore::NV("Cost", Cost) << " and with tree size "
5329           << ore::NV("TreeSize", V.getTreeSize());
5330       });
5331
5332       // Vectorize a tree.
5333       DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
5334       Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues);
5335
5336       // Emit a reduction.
5337       Value *ReducedSubTree =
5338           emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI);
5339       if (VectorizedTree) {
5340         Builder.SetCurrentDebugLocation(Loc);
5341         OperationData VectReductionData(ReductionData.getOpcode(),
5342                                         VectorizedTree, ReducedSubTree,
5343                                         ReductionData.getKind());
5344         VectorizedTree =
5345             VectReductionData.createOp(Builder, "op.rdx", ReductionOps);
5346       } else
5347         VectorizedTree = ReducedSubTree;
5348       i += ReduxWidth;
5349       ReduxWidth = PowerOf2Floor(NumReducedVals - i);
5350     }
5351
5352     if (VectorizedTree) {
5353       // Finish the reduction.
5354       for (; i < NumReducedVals; ++i) {
5355         auto *I = cast<Instruction>(ReducedVals[i]);
5356         Builder.SetCurrentDebugLocation(I->getDebugLoc());
5357         OperationData VectReductionData(ReductionData.getOpcode(),
5358                                         VectorizedTree, I,
5359                                         ReductionData.getKind());
5360         VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps);
5361       }
5362       for (auto &Pair : ExternallyUsedValues) {
5363         assert(!Pair.second.empty() &&
5364                "At least one DebugLoc must be inserted");
5365         // Add each externally used value to the final reduction.
5366         for (auto *I : Pair.second) {
5367           Builder.SetCurrentDebugLocation(I->getDebugLoc());
5368           OperationData VectReductionData(ReductionData.getOpcode(),
5369                                           VectorizedTree, Pair.first,
5370                                           ReductionData.getKind());
5371           VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I);
5372         }
5373       }
5374       // Update users.
5375       ReductionRoot->replaceAllUsesWith(VectorizedTree);
5376     }
5377     return VectorizedTree != nullptr;
5378   }
5379
5380   unsigned numReductionValues() const {
5381     return ReducedVals.size();
5382   }
5383
5384 private:
5385   /// \brief Calculate the cost of a reduction.
5386   int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal,
5387                        unsigned ReduxWidth) {
5388     Type *ScalarTy = FirstReducedVal->getType();
5389     Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);
5390
5391     int PairwiseRdxCost;
5392     int SplittingRdxCost;
5393     switch (ReductionData.getKind()) {
5394     case RK_Arithmetic:
5395       PairwiseRdxCost =
5396           TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
5397                                           /*IsPairwiseForm=*/true);
5398       SplittingRdxCost =
5399           TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
5400                                           /*IsPairwiseForm=*/false);
5401       break;
5402     case RK_Min:
5403     case RK_Max:
5404     case RK_UMin:
5405     case RK_UMax: {
5406       Type *VecCondTy = CmpInst::makeCmpResultType(VecTy);
5407       bool IsUnsigned = ReductionData.getKind() == RK_UMin ||
5408                         ReductionData.getKind() == RK_UMax;
5409       PairwiseRdxCost =
5410           TTI->getMinMaxReductionCost(VecTy, VecCondTy,
5411                                       /*IsPairwiseForm=*/true, IsUnsigned);
5412       SplittingRdxCost =
5413           TTI->getMinMaxReductionCost(VecTy, VecCondTy,
5414                                       /*IsPairwiseForm=*/false, IsUnsigned);
5415       break;
5416     }
5417     case RK_None:
5418       llvm_unreachable("Expected arithmetic or min/max reduction operation");
5419     }
5420
5421     IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
5422     int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
5423
5424     int ScalarReduxCost;
5425     switch (ReductionData.getKind()) {
5426     case RK_Arithmetic:
5427       ScalarReduxCost =
5428           TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy);
5429       break;
5430     case RK_Min:
5431     case RK_Max:
5432     case RK_UMin:
5433     case RK_UMax:
5434       ScalarReduxCost =
5435           TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) +
5436           TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
5437                                   CmpInst::makeCmpResultType(ScalarTy));
5438       break;
5439     case RK_None:
5440       llvm_unreachable("Expected arithmetic or min/max reduction operation");
5441     }
5442     ScalarReduxCost *= (ReduxWidth - 1);
5443
5444     DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
5445                  << " for reduction that starts with " << *FirstReducedVal
5446                  << " (It is a "
5447                  << (IsPairwiseReduction ? "pairwise" : "splitting")
5448                  << " reduction)\n");
5449
5450     return VecReduxCost - ScalarReduxCost;
5451   }
5452
5453   /// \brief Emit a horizontal reduction of the vectorized value.
5454   Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
5455                        unsigned ReduxWidth, const TargetTransformInfo *TTI) {
5456     assert(VectorizedValue && "Need to have a vectorized tree node");
5457     assert(isPowerOf2_32(ReduxWidth) &&
5458            "We only handle power-of-two reductions for now");
5459
5460     if (!IsPairwiseReduction)
5461       return createSimpleTargetReduction(
5462           Builder, TTI, ReductionData.getOpcode(), VectorizedValue,
5463           ReductionData.getFlags(), ReductionOps.back());
5464
5465     Value *TmpVec = VectorizedValue;
5466     for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
5467       Value *LeftMask =
5468           createRdxShuffleMask(ReduxWidth, i, true, true, Builder);
5469       Value *RightMask =
5470           createRdxShuffleMask(ReduxWidth, i, true, false, Builder);
5471
5472       Value *LeftShuf = Builder.CreateShuffleVector(
5473           TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
5474       Value *RightShuf = Builder.CreateShuffleVector(
5475           TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
5476           "rdx.shuf.r");
5477       OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf,
5478                                       RightShuf, ReductionData.getKind());
5479       TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps);
5480     }
5481
5482     // The result is in the first element of the vector.
5483     return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
5484   }
5485 };
5486
5487 } // end anonymous namespace
5488
5489 /// \brief Recognize construction of vectors like
5490 ///  %ra = insertelement <4 x float> undef, float %s0, i32 0
5491 ///  %rb = insertelement <4 x float> %ra, float %s1, i32 1
5492 ///  %rc = insertelement <4 x float> %rb, float %s2, i32 2
5493 ///  %rd = insertelement <4 x float> %rc, float %s3, i32 3
5494 ///  starting from the last insertelement instruction.
5495 ///
5496 /// Returns true if it matches
5497 static bool findBuildVector(InsertElementInst *LastInsertElem,
5498                             SmallVectorImpl<Value *> &BuildVector,
5499                             SmallVectorImpl<Value *> &BuildVectorOpds) {
5500   Value *V = nullptr;
5501   do {
5502     BuildVector.push_back(LastInsertElem);
5503     BuildVectorOpds.push_back(LastInsertElem->getOperand(1));
5504     V = LastInsertElem->getOperand(0);
5505     if (isa<UndefValue>(V))
5506       break;
5507     LastInsertElem = dyn_cast<InsertElementInst>(V);
5508     if (!LastInsertElem || !LastInsertElem->hasOneUse())
5509       return false;
5510   } while (true);
5511   std::reverse(BuildVector.begin(), BuildVector.end());
5512   std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end());
5513   return true;
5514 }
5515
5516 /// \brief Like findBuildVector, but looks for construction of aggregate.
5517 ///
5518 /// \return true if it matches.
5519 static bool findBuildAggregate(InsertValueInst *IV,
5520                                SmallVectorImpl<Value *> &BuildVector,
5521                                SmallVectorImpl<Value *> &BuildVectorOpds) {
5522   Value *V;
5523   do {
5524     BuildVector.push_back(IV);
5525     BuildVectorOpds.push_back(IV->getInsertedValueOperand());
5526     V = IV->getAggregateOperand();
5527     if (isa<UndefValue>(V))
5528       break;
5529     IV = dyn_cast<InsertValueInst>(V);
5530     if (!IV || !IV->hasOneUse())
5531       return false;
5532   } while (true);
5533   std::reverse(BuildVector.begin(), BuildVector.end());
5534   std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end());
5535   return true;
5536 }
5537
5538 static bool PhiTypeSorterFunc(Value *V, Value *V2) {
5539   return V->getType() < V2->getType();
5540 }
5541
5542 /// \brief Try and get a reduction value from a phi node.
5543 ///
5544 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions
5545 /// if they come from either \p ParentBB or a containing loop latch.
5546 ///
5547 /// \returns A candidate reduction value if possible, or \code nullptr \endcode
5548 /// if not possible.
5549 static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
5550                                 BasicBlock *ParentBB, LoopInfo *LI) {
5551   // There are situations where the reduction value is not dominated by the
5552   // reduction phi. Vectorizing such cases has been reported to cause
5553   // miscompiles. See PR25787.
5554   auto DominatedReduxValue = [&](Value *R) {
5555     return (
5556         dyn_cast<Instruction>(R) &&
5557         DT->dominates(P->getParent(), dyn_cast<Instruction>(R)->getParent()));
5558   };
5559
5560   Value *Rdx = nullptr;
5561
5562   // Return the incoming value if it comes from the same BB as the phi node.
5563   if (P->getIncomingBlock(0) == ParentBB) {
5564     Rdx = P->getIncomingValue(0);
5565   } else if (P->getIncomingBlock(1) == ParentBB) {
5566     Rdx = P->getIncomingValue(1);
5567   }
5568
5569   if (Rdx && DominatedReduxValue(Rdx))
5570     return Rdx;
5571
5572   // Otherwise, check whether we have a loop latch to look at.
5573   Loop *BBL = LI->getLoopFor(ParentBB);
5574   if (!BBL)
5575     return nullptr;
5576   BasicBlock *BBLatch = BBL->getLoopLatch();
5577   if (!BBLatch)
5578     return nullptr;
5579
5580   // There is a loop latch, return the incoming value if it comes from
5581   // that. This reduction pattern occasionally turns up.
5582   if (P->getIncomingBlock(0) == BBLatch) {
5583     Rdx = P->getIncomingValue(0);
5584   } else if (P->getIncomingBlock(1) == BBLatch) {
5585     Rdx = P->getIncomingValue(1);
5586   }
5587
5588   if (Rdx && DominatedReduxValue(Rdx))
5589     return Rdx;
5590
5591   return nullptr;
5592 }
5593
5594 /// Attempt to reduce a horizontal reduction.
5595 /// If it is legal to match a horizontal reduction feeding the phi node \a P
5596 /// with reduction operators \a Root (or one of its operands) in a basic block
5597 /// \a BB, then check if it can be done. If horizontal reduction is not found
5598 /// and root instruction is a binary operation, vectorization of the operands is
5599 /// attempted.
5600 /// \returns true if a horizontal reduction was matched and reduced or operands
5601 /// of one of the binary instruction were vectorized.
5602 /// \returns false if a horizontal reduction was not matched (or not possible)
5603 /// or no vectorization of any binary operation feeding \a Root instruction was
5604 /// performed.
5605 static bool tryToVectorizeHorReductionOrInstOperands(
5606     PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R,
5607     TargetTransformInfo *TTI,
5608     const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) {
5609   if (!ShouldVectorizeHor)
5610     return false;
5611
5612   if (!Root)
5613     return false;
5614
5615   if (Root->getParent() != BB || isa<PHINode>(Root))
5616     return false;
5617   // Start analysis starting from Root instruction. If horizontal reduction is
5618   // found, try to vectorize it. If it is not a horizontal reduction or
5619   // vectorization is not possible or not effective, and currently analyzed
5620   // instruction is a binary operation, try to vectorize the operands, using
5621   // pre-order DFS traversal order. If the operands were not vectorized, repeat
5622   // the same procedure considering each operand as a possible root of the
5623   // horizontal reduction.
5624   // Interrupt the process if the Root instruction itself was vectorized or all
5625   // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
5626   SmallVector<std::pair<WeakTrackingVH, unsigned>, 8> Stack(1, {Root, 0});
5627   SmallSet<Value *, 8> VisitedInstrs;
5628   bool Res = false;
5629   while (!Stack.empty()) {
5630     Value *V;
5631     unsigned Level;
5632     std::tie(V, Level) = Stack.pop_back_val();
5633     if (!V)
5634       continue;
5635     auto *Inst = dyn_cast<Instruction>(V);
5636     if (!Inst)
5637       continue;
5638     auto *BI = dyn_cast<BinaryOperator>(Inst);
5639     auto *SI = dyn_cast<SelectInst>(Inst);
5640     if (BI || SI) {
5641       HorizontalReduction HorRdx;
5642       if (HorRdx.matchAssociativeReduction(P, Inst)) {
5643         if (HorRdx.tryToReduce(R, TTI)) {
5644           Res = true;
5645           // Set P to nullptr to avoid re-analysis of phi node in
5646           // matchAssociativeReduction function unless this is the root node.
5647           P = nullptr;
5648           continue;
5649         }
5650       }
5651       if (P && BI) {
5652         Inst = dyn_cast<Instruction>(BI->getOperand(0));
5653         if (Inst == P)
5654           Inst = dyn_cast<Instruction>(BI->getOperand(1));
5655         if (!Inst) {
5656           // Set P to nullptr to avoid re-analysis of phi node in
5657           // matchAssociativeReduction function unless this is the root node.
5658           P = nullptr;
5659           continue;
5660         }
5661       }
5662     }
5663     // Set P to nullptr to avoid re-analysis of phi node in
5664     // matchAssociativeReduction function unless this is the root node.
5665     P = nullptr;
5666     if (Vectorize(Inst, R)) {
5667       Res = true;
5668       continue;
5669     }
5670
5671     // Try to vectorize operands.
5672     // Continue analysis for the instruction from the same basic block only to
5673     // save compile time.
5674     if (++Level < RecursionMaxDepth)
5675       for (auto *Op : Inst->operand_values())
5676         if (VisitedInstrs.insert(Op).second)
5677           if (auto *I = dyn_cast<Instruction>(Op))
5678             if (!isa<PHINode>(I) && I->getParent() == BB)
5679               Stack.emplace_back(Op, Level);
5680   }
5681   return Res;
5682 }
5683
5684 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V,
5685                                                  BasicBlock *BB, BoUpSLP &R,
5686                                                  TargetTransformInfo *TTI) {
5687   if (!V)
5688     return false;
5689   auto *I = dyn_cast<Instruction>(V);
5690   if (!I)
5691     return false;
5692
5693   if (!isa<BinaryOperator>(I))
5694     P = nullptr;
5695   // Try to match and vectorize a horizontal reduction.
5696   auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool {
5697     return tryToVectorize(I, R);
5698   };
5699   return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI,
5700                                                   ExtraVectorization);
5701 }
5702
5703 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI,
5704                                                  BasicBlock *BB, BoUpSLP &R) {
5705   const DataLayout &DL = BB->getModule()->getDataLayout();
5706   if (!R.canMapToVector(IVI->getType(), DL))
5707     return false;
5708
5709   SmallVector<Value *, 16> BuildVector;
5710   SmallVector<Value *, 16> BuildVectorOpds;
5711   if (!findBuildAggregate(IVI, BuildVector, BuildVectorOpds))
5712     return false;
5713
5714   DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n");
5715   // Aggregate value is unlikely to be processed in vector register, we need to
5716   // extract scalars into scalar registers, so NeedExtraction is set true.
5717   return tryToVectorizeList(BuildVectorOpds, R, BuildVector, false, true);
5718 }
5719
5720 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI,
5721                                                    BasicBlock *BB, BoUpSLP &R) {
5722   SmallVector<Value *, 16> BuildVector;
5723   SmallVector<Value *, 16> BuildVectorOpds;
5724   if (!findBuildVector(IEI, BuildVector, BuildVectorOpds))
5725     return false;
5726
5727   // Vectorize starting with the build vector operands ignoring the BuildVector
5728   // instructions for the purpose of scheduling and user extraction.
5729   return tryToVectorizeList(BuildVectorOpds, R, BuildVector);
5730 }
5731
5732 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB,
5733                                          BoUpSLP &R) {
5734   if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R))
5735     return true;
5736
5737   bool OpsChanged = false;
5738   for (int Idx = 0; Idx < 2; ++Idx) {
5739     OpsChanged |=
5740         vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI);
5741   }
5742   return OpsChanged;
5743 }
5744
5745 bool SLPVectorizerPass::vectorizeSimpleInstructions(
5746     SmallVectorImpl<WeakVH> &Instructions, BasicBlock *BB, BoUpSLP &R) {
5747   bool OpsChanged = false;
5748   for (auto &VH : reverse(Instructions)) {
5749     auto *I = dyn_cast_or_null<Instruction>(VH);
5750     if (!I)
5751       continue;
5752     if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I))
5753       OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R);
5754     else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I))
5755       OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R);
5756     else if (auto *CI = dyn_cast<CmpInst>(I))
5757       OpsChanged |= vectorizeCmpInst(CI, BB, R);
5758   }
5759   Instructions.clear();
5760   return OpsChanged;
5761 }
5762
5763 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
5764   bool Changed = false;
5765   SmallVector<Value *, 4> Incoming;
5766   SmallSet<Value *, 16> VisitedInstrs;
5767
5768   bool HaveVectorizedPhiNodes = true;
5769   while (HaveVectorizedPhiNodes) {
5770     HaveVectorizedPhiNodes = false;
5771
5772     // Collect the incoming values from the PHIs.
5773     Incoming.clear();
5774     for (Instruction &I : *BB) {
5775       PHINode *P = dyn_cast<PHINode>(&I);
5776       if (!P)
5777         break;
5778
5779       if (!VisitedInstrs.count(P))
5780         Incoming.push_back(P);
5781     }
5782
5783     // Sort by type.
5784     std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc);
5785
5786     // Try to vectorize elements base on their type.
5787     for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
5788                                            E = Incoming.end();
5789          IncIt != E;) {
5790
5791       // Look for the next elements with the same type.
5792       SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
5793       while (SameTypeIt != E &&
5794              (*SameTypeIt)->getType() == (*IncIt)->getType()) {
5795         VisitedInstrs.insert(*SameTypeIt);
5796         ++SameTypeIt;
5797       }
5798
5799       // Try to vectorize them.
5800       unsigned NumElts = (SameTypeIt - IncIt);
5801       DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n");
5802       // The order in which the phi nodes appear in the program does not matter.
5803       // So allow tryToVectorizeList to reorder them if it is beneficial. This
5804       // is done when there are exactly two elements since tryToVectorizeList
5805       // asserts that there are only two values when AllowReorder is true.
5806       bool AllowReorder = NumElts == 2;
5807       if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R,
5808                                             None, AllowReorder)) {
5809         // Success start over because instructions might have been changed.
5810         HaveVectorizedPhiNodes = true;
5811         Changed = true;
5812         break;
5813       }
5814
5815       // Start over at the next instruction of a different type (or the end).
5816       IncIt = SameTypeIt;
5817     }
5818   }
5819
5820   VisitedInstrs.clear();
5821
5822   SmallVector<WeakVH, 8> PostProcessInstructions;
5823   SmallDenseSet<Instruction *, 4> KeyNodes;
5824   for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) {
5825     // We may go through BB multiple times so skip the one we have checked.
5826     if (!VisitedInstrs.insert(&*it).second) {
5827       if (it->use_empty() && KeyNodes.count(&*it) > 0 &&
5828           vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) {
5829         // We would like to start over since some instructions are deleted
5830         // and the iterator may become invalid value.
5831         Changed = true;
5832         it = BB->begin();
5833         e = BB->end();
5834       }
5835       continue;
5836     }
5837
5838     if (isa<DbgInfoIntrinsic>(it))
5839       continue;
5840
5841     // Try to vectorize reductions that use PHINodes.
5842     if (PHINode *P = dyn_cast<PHINode>(it)) {
5843       // Check that the PHI is a reduction PHI.
5844       if (P->getNumIncomingValues() != 2)
5845         return Changed;
5846
5847       // Try to match and vectorize a horizontal reduction.
5848       if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R,
5849                                    TTI)) {
5850         Changed = true;
5851         it = BB->begin();
5852         e = BB->end();
5853         continue;
5854       }
5855       continue;
5856     }
5857
5858     // Ran into an instruction without users, like terminator, or function call
5859     // with ignored return value, store. Ignore unused instructions (basing on
5860     // instruction type, except for CallInst and InvokeInst).
5861     if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) ||
5862                             isa<InvokeInst>(it))) {
5863       KeyNodes.insert(&*it);
5864       bool OpsChanged = false;
5865       if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) {
5866         for (auto *V : it->operand_values()) {
5867           // Try to match and vectorize a horizontal reduction.
5868           OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI);
5869         }
5870       }
5871       // Start vectorization of post-process list of instructions from the
5872       // top-tree instructions to try to vectorize as many instructions as
5873       // possible.
5874       OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R);
5875       if (OpsChanged) {
5876         // We would like to start over since some instructions are deleted
5877         // and the iterator may become invalid value.
5878         Changed = true;
5879         it = BB->begin();
5880         e = BB->end();
5881         continue;
5882       }
5883     }
5884
5885     if (isa<InsertElementInst>(it) || isa<CmpInst>(it) ||
5886         isa<InsertValueInst>(it))
5887       PostProcessInstructions.push_back(&*it);
5888
5889   }
5890
5891   return Changed;
5892 }
5893
5894 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
5895   auto Changed = false;
5896   for (auto &Entry : GEPs) {
5897     // If the getelementptr list has fewer than two elements, there's nothing
5898     // to do.
5899     if (Entry.second.size() < 2)
5900       continue;
5901
5902     DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "
5903                  << Entry.second.size() << ".\n");
5904
5905     // We process the getelementptr list in chunks of 16 (like we do for
5906     // stores) to minimize compile-time.
5907     for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) {
5908       auto Len = std::min<unsigned>(BE - BI, 16);
5909       auto GEPList = makeArrayRef(&Entry.second[BI], Len);
5910
5911       // Initialize a set a candidate getelementptrs. Note that we use a
5912       // SetVector here to preserve program order. If the index computations
5913       // are vectorizable and begin with loads, we want to minimize the chance
5914       // of having to reorder them later.
5915       SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
5916
5917       // Some of the candidates may have already been vectorized after we
5918       // initially collected them. If so, the WeakTrackingVHs will have
5919       // nullified the
5920       // values, so remove them from the set of candidates.
5921       Candidates.remove(nullptr);
5922
5923       // Remove from the set of candidates all pairs of getelementptrs with
5924       // constant differences. Such getelementptrs are likely not good
5925       // candidates for vectorization in a bottom-up phase since one can be
5926       // computed from the other. We also ensure all candidate getelementptr
5927       // indices are unique.
5928       for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
5929         auto *GEPI = cast<GetElementPtrInst>(GEPList[I]);
5930         if (!Candidates.count(GEPI))
5931           continue;
5932         auto *SCEVI = SE->getSCEV(GEPList[I]);
5933         for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
5934           auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]);
5935           auto *SCEVJ = SE->getSCEV(GEPList[J]);
5936           if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
5937             Candidates.remove(GEPList[I]);
5938             Candidates.remove(GEPList[J]);
5939           } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
5940             Candidates.remove(GEPList[J]);
5941           }
5942         }
5943       }
5944
5945       // We break out of the above computation as soon as we know there are
5946       // fewer than two candidates remaining.
5947       if (Candidates.size() < 2)
5948         continue;
5949
5950       // Add the single, non-constant index of each candidate to the bundle. We
5951       // ensured the indices met these constraints when we originally collected
5952       // the getelementptrs.
5953       SmallVector<Value *, 16> Bundle(Candidates.size());
5954       auto BundleIndex = 0u;
5955       for (auto *V : Candidates) {
5956         auto *GEP = cast<GetElementPtrInst>(V);
5957         auto *GEPIdx = GEP->idx_begin()->get();
5958         assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx));
5959         Bundle[BundleIndex++] = GEPIdx;
5960       }
5961
5962       // Try and vectorize the indices. We are currently only interested in
5963       // gather-like cases of the form:
5964       //
5965       // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
5966       //
5967       // where the loads of "a", the loads of "b", and the subtractions can be
5968       // performed in parallel. It's likely that detecting this pattern in a
5969       // bottom-up phase will be simpler and less costly than building a
5970       // full-blown top-down phase beginning at the consecutive loads.
5971       Changed |= tryToVectorizeList(Bundle, R);
5972     }
5973   }
5974   return Changed;
5975 }
5976
5977 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
5978   bool Changed = false;
5979   // Attempt to sort and vectorize each of the store-groups.
5980   for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e;
5981        ++it) {
5982     if (it->second.size() < 2)
5983       continue;
5984
5985     DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
5986           << it->second.size() << ".\n");
5987
5988     // Process the stores in chunks of 16.
5989     // TODO: The limit of 16 inhibits greater vectorization factors.
5990     //       For example, AVX2 supports v32i8. Increasing this limit, however,
5991     //       may cause a significant compile-time increase.
5992     for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) {
5993       unsigned Len = std::min<unsigned>(CE - CI, 16);
5994       Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R);
5995     }
5996   }
5997   return Changed;
5998 }
5999
6000 char SLPVectorizer::ID = 0;
6001
6002 static const char lv_name[] = "SLP Vectorizer";
6003
6004 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
6005 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
6006 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
6007 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
6008 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
6009 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
6010 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
6011 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
6012 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
6013
6014 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }