]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/projects/libunwind/src/UnwindCursor.hpp
Merge llvm trunk r321414 to contrib/llvm.
[FreeBSD/FreeBSD.git] / contrib / llvm / projects / libunwind / src / UnwindCursor.hpp
1 //===------------------------- UnwindCursor.hpp ---------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is dual licensed under the MIT and the University of Illinois Open
6 // Source Licenses. See LICENSE.TXT for details.
7 //
8 //
9 // C++ interface to lower levels of libunwind
10 //===----------------------------------------------------------------------===//
11
12 #ifndef __UNWINDCURSOR_HPP__
13 #define __UNWINDCURSOR_HPP__
14
15 #include <algorithm>
16 #include <stdint.h>
17 #include <stdio.h>
18 #include <stdlib.h>
19 #include <pthread.h>
20 #include <unwind.h>
21
22 #ifdef __APPLE__
23   #include <mach-o/dyld.h>
24 #endif
25
26 #include "config.h"
27
28 #include "AddressSpace.hpp"
29 #include "CompactUnwinder.hpp"
30 #include "config.h"
31 #include "DwarfInstructions.hpp"
32 #include "EHHeaderParser.hpp"
33 #include "libunwind.h"
34 #include "Registers.hpp"
35 #include "Unwind-EHABI.h"
36
37 namespace libunwind {
38
39 #if _LIBUNWIND_SUPPORT_DWARF_UNWIND
40 /// Cache of recently found FDEs.
41 template <typename A>
42 class _LIBUNWIND_HIDDEN DwarfFDECache {
43   typedef typename A::pint_t pint_t;
44 public:
45   static pint_t findFDE(pint_t mh, pint_t pc);
46   static void add(pint_t mh, pint_t ip_start, pint_t ip_end, pint_t fde);
47   static void removeAllIn(pint_t mh);
48   static void iterateCacheEntries(void (*func)(unw_word_t ip_start,
49                                                unw_word_t ip_end,
50                                                unw_word_t fde, unw_word_t mh));
51
52 private:
53
54   struct entry {
55     pint_t mh;
56     pint_t ip_start;
57     pint_t ip_end;
58     pint_t fde;
59   };
60
61   // These fields are all static to avoid needing an initializer.
62   // There is only one instance of this class per process.
63   static pthread_rwlock_t _lock;
64 #ifdef __APPLE__
65   static void dyldUnloadHook(const struct mach_header *mh, intptr_t slide);
66   static bool _registeredForDyldUnloads;
67 #endif
68   // Can't use std::vector<> here because this code is below libc++.
69   static entry *_buffer;
70   static entry *_bufferUsed;
71   static entry *_bufferEnd;
72   static entry _initialBuffer[64];
73 };
74
75 template <typename A>
76 typename DwarfFDECache<A>::entry *
77 DwarfFDECache<A>::_buffer = _initialBuffer;
78
79 template <typename A>
80 typename DwarfFDECache<A>::entry *
81 DwarfFDECache<A>::_bufferUsed = _initialBuffer;
82
83 template <typename A>
84 typename DwarfFDECache<A>::entry *
85 DwarfFDECache<A>::_bufferEnd = &_initialBuffer[64];
86
87 template <typename A>
88 typename DwarfFDECache<A>::entry DwarfFDECache<A>::_initialBuffer[64];
89
90 template <typename A>
91 pthread_rwlock_t DwarfFDECache<A>::_lock = PTHREAD_RWLOCK_INITIALIZER;
92
93 #ifdef __APPLE__
94 template <typename A>
95 bool DwarfFDECache<A>::_registeredForDyldUnloads = false;
96 #endif
97
98 template <typename A>
99 typename A::pint_t DwarfFDECache<A>::findFDE(pint_t mh, pint_t pc) {
100   pint_t result = 0;
101   _LIBUNWIND_LOG_NON_ZERO(::pthread_rwlock_rdlock(&_lock));
102   for (entry *p = _buffer; p < _bufferUsed; ++p) {
103     if ((mh == p->mh) || (mh == 0)) {
104       if ((p->ip_start <= pc) && (pc < p->ip_end)) {
105         result = p->fde;
106         break;
107       }
108     }
109   }
110   _LIBUNWIND_LOG_NON_ZERO(::pthread_rwlock_unlock(&_lock));
111   return result;
112 }
113
114 template <typename A>
115 void DwarfFDECache<A>::add(pint_t mh, pint_t ip_start, pint_t ip_end,
116                            pint_t fde) {
117 #if !defined(_LIBUNWIND_NO_HEAP)
118   _LIBUNWIND_LOG_NON_ZERO(::pthread_rwlock_wrlock(&_lock));
119   if (_bufferUsed >= _bufferEnd) {
120     size_t oldSize = (size_t)(_bufferEnd - _buffer);
121     size_t newSize = oldSize * 4;
122     // Can't use operator new (we are below it).
123     entry *newBuffer = (entry *)malloc(newSize * sizeof(entry));
124     memcpy(newBuffer, _buffer, oldSize * sizeof(entry));
125     if (_buffer != _initialBuffer)
126       free(_buffer);
127     _buffer = newBuffer;
128     _bufferUsed = &newBuffer[oldSize];
129     _bufferEnd = &newBuffer[newSize];
130   }
131   _bufferUsed->mh = mh;
132   _bufferUsed->ip_start = ip_start;
133   _bufferUsed->ip_end = ip_end;
134   _bufferUsed->fde = fde;
135   ++_bufferUsed;
136 #ifdef __APPLE__
137   if (!_registeredForDyldUnloads) {
138     _dyld_register_func_for_remove_image(&dyldUnloadHook);
139     _registeredForDyldUnloads = true;
140   }
141 #endif
142   _LIBUNWIND_LOG_NON_ZERO(::pthread_rwlock_unlock(&_lock));
143 #endif
144 }
145
146 template <typename A>
147 void DwarfFDECache<A>::removeAllIn(pint_t mh) {
148   _LIBUNWIND_LOG_NON_ZERO(::pthread_rwlock_wrlock(&_lock));
149   entry *d = _buffer;
150   for (const entry *s = _buffer; s < _bufferUsed; ++s) {
151     if (s->mh != mh) {
152       if (d != s)
153         *d = *s;
154       ++d;
155     }
156   }
157   _bufferUsed = d;
158   _LIBUNWIND_LOG_NON_ZERO(::pthread_rwlock_unlock(&_lock));
159 }
160
161 #ifdef __APPLE__
162 template <typename A>
163 void DwarfFDECache<A>::dyldUnloadHook(const struct mach_header *mh, intptr_t ) {
164   removeAllIn((pint_t) mh);
165 }
166 #endif
167
168 template <typename A>
169 void DwarfFDECache<A>::iterateCacheEntries(void (*func)(
170     unw_word_t ip_start, unw_word_t ip_end, unw_word_t fde, unw_word_t mh)) {
171   _LIBUNWIND_LOG_NON_ZERO(::pthread_rwlock_wrlock(&_lock));
172   for (entry *p = _buffer; p < _bufferUsed; ++p) {
173     (*func)(p->ip_start, p->ip_end, p->fde, p->mh);
174   }
175   _LIBUNWIND_LOG_NON_ZERO(::pthread_rwlock_unlock(&_lock));
176 }
177 #endif // _LIBUNWIND_SUPPORT_DWARF_UNWIND
178
179
180 #define arrayoffsetof(type, index, field) ((size_t)(&((type *)0)[index].field))
181
182 #if _LIBUNWIND_SUPPORT_COMPACT_UNWIND
183 template <typename A> class UnwindSectionHeader {
184 public:
185   UnwindSectionHeader(A &addressSpace, typename A::pint_t addr)
186       : _addressSpace(addressSpace), _addr(addr) {}
187
188   uint32_t version() const {
189     return _addressSpace.get32(_addr +
190                                offsetof(unwind_info_section_header, version));
191   }
192   uint32_t commonEncodingsArraySectionOffset() const {
193     return _addressSpace.get32(_addr +
194                                offsetof(unwind_info_section_header,
195                                         commonEncodingsArraySectionOffset));
196   }
197   uint32_t commonEncodingsArrayCount() const {
198     return _addressSpace.get32(_addr + offsetof(unwind_info_section_header,
199                                                 commonEncodingsArrayCount));
200   }
201   uint32_t personalityArraySectionOffset() const {
202     return _addressSpace.get32(_addr + offsetof(unwind_info_section_header,
203                                                 personalityArraySectionOffset));
204   }
205   uint32_t personalityArrayCount() const {
206     return _addressSpace.get32(
207         _addr + offsetof(unwind_info_section_header, personalityArrayCount));
208   }
209   uint32_t indexSectionOffset() const {
210     return _addressSpace.get32(
211         _addr + offsetof(unwind_info_section_header, indexSectionOffset));
212   }
213   uint32_t indexCount() const {
214     return _addressSpace.get32(
215         _addr + offsetof(unwind_info_section_header, indexCount));
216   }
217
218 private:
219   A                     &_addressSpace;
220   typename A::pint_t     _addr;
221 };
222
223 template <typename A> class UnwindSectionIndexArray {
224 public:
225   UnwindSectionIndexArray(A &addressSpace, typename A::pint_t addr)
226       : _addressSpace(addressSpace), _addr(addr) {}
227
228   uint32_t functionOffset(uint32_t index) const {
229     return _addressSpace.get32(
230         _addr + arrayoffsetof(unwind_info_section_header_index_entry, index,
231                               functionOffset));
232   }
233   uint32_t secondLevelPagesSectionOffset(uint32_t index) const {
234     return _addressSpace.get32(
235         _addr + arrayoffsetof(unwind_info_section_header_index_entry, index,
236                               secondLevelPagesSectionOffset));
237   }
238   uint32_t lsdaIndexArraySectionOffset(uint32_t index) const {
239     return _addressSpace.get32(
240         _addr + arrayoffsetof(unwind_info_section_header_index_entry, index,
241                               lsdaIndexArraySectionOffset));
242   }
243
244 private:
245   A                   &_addressSpace;
246   typename A::pint_t   _addr;
247 };
248
249 template <typename A> class UnwindSectionRegularPageHeader {
250 public:
251   UnwindSectionRegularPageHeader(A &addressSpace, typename A::pint_t addr)
252       : _addressSpace(addressSpace), _addr(addr) {}
253
254   uint32_t kind() const {
255     return _addressSpace.get32(
256         _addr + offsetof(unwind_info_regular_second_level_page_header, kind));
257   }
258   uint16_t entryPageOffset() const {
259     return _addressSpace.get16(
260         _addr + offsetof(unwind_info_regular_second_level_page_header,
261                          entryPageOffset));
262   }
263   uint16_t entryCount() const {
264     return _addressSpace.get16(
265         _addr +
266         offsetof(unwind_info_regular_second_level_page_header, entryCount));
267   }
268
269 private:
270   A &_addressSpace;
271   typename A::pint_t _addr;
272 };
273
274 template <typename A> class UnwindSectionRegularArray {
275 public:
276   UnwindSectionRegularArray(A &addressSpace, typename A::pint_t addr)
277       : _addressSpace(addressSpace), _addr(addr) {}
278
279   uint32_t functionOffset(uint32_t index) const {
280     return _addressSpace.get32(
281         _addr + arrayoffsetof(unwind_info_regular_second_level_entry, index,
282                               functionOffset));
283   }
284   uint32_t encoding(uint32_t index) const {
285     return _addressSpace.get32(
286         _addr +
287         arrayoffsetof(unwind_info_regular_second_level_entry, index, encoding));
288   }
289
290 private:
291   A &_addressSpace;
292   typename A::pint_t _addr;
293 };
294
295 template <typename A> class UnwindSectionCompressedPageHeader {
296 public:
297   UnwindSectionCompressedPageHeader(A &addressSpace, typename A::pint_t addr)
298       : _addressSpace(addressSpace), _addr(addr) {}
299
300   uint32_t kind() const {
301     return _addressSpace.get32(
302         _addr +
303         offsetof(unwind_info_compressed_second_level_page_header, kind));
304   }
305   uint16_t entryPageOffset() const {
306     return _addressSpace.get16(
307         _addr + offsetof(unwind_info_compressed_second_level_page_header,
308                          entryPageOffset));
309   }
310   uint16_t entryCount() const {
311     return _addressSpace.get16(
312         _addr +
313         offsetof(unwind_info_compressed_second_level_page_header, entryCount));
314   }
315   uint16_t encodingsPageOffset() const {
316     return _addressSpace.get16(
317         _addr + offsetof(unwind_info_compressed_second_level_page_header,
318                          encodingsPageOffset));
319   }
320   uint16_t encodingsCount() const {
321     return _addressSpace.get16(
322         _addr + offsetof(unwind_info_compressed_second_level_page_header,
323                          encodingsCount));
324   }
325
326 private:
327   A &_addressSpace;
328   typename A::pint_t _addr;
329 };
330
331 template <typename A> class UnwindSectionCompressedArray {
332 public:
333   UnwindSectionCompressedArray(A &addressSpace, typename A::pint_t addr)
334       : _addressSpace(addressSpace), _addr(addr) {}
335
336   uint32_t functionOffset(uint32_t index) const {
337     return UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET(
338         _addressSpace.get32(_addr + index * sizeof(uint32_t)));
339   }
340   uint16_t encodingIndex(uint32_t index) const {
341     return UNWIND_INFO_COMPRESSED_ENTRY_ENCODING_INDEX(
342         _addressSpace.get32(_addr + index * sizeof(uint32_t)));
343   }
344
345 private:
346   A &_addressSpace;
347   typename A::pint_t _addr;
348 };
349
350 template <typename A> class UnwindSectionLsdaArray {
351 public:
352   UnwindSectionLsdaArray(A &addressSpace, typename A::pint_t addr)
353       : _addressSpace(addressSpace), _addr(addr) {}
354
355   uint32_t functionOffset(uint32_t index) const {
356     return _addressSpace.get32(
357         _addr + arrayoffsetof(unwind_info_section_header_lsda_index_entry,
358                               index, functionOffset));
359   }
360   uint32_t lsdaOffset(uint32_t index) const {
361     return _addressSpace.get32(
362         _addr + arrayoffsetof(unwind_info_section_header_lsda_index_entry,
363                               index, lsdaOffset));
364   }
365
366 private:
367   A                   &_addressSpace;
368   typename A::pint_t   _addr;
369 };
370 #endif // _LIBUNWIND_SUPPORT_COMPACT_UNWIND
371
372 class _LIBUNWIND_HIDDEN AbstractUnwindCursor {
373 public:
374   // NOTE: provide a class specific placement deallocation function (S5.3.4 p20)
375   // This avoids an unnecessary dependency to libc++abi.
376   void operator delete(void *, size_t) {}
377
378   virtual ~AbstractUnwindCursor() {}
379   virtual bool validReg(int) { _LIBUNWIND_ABORT("validReg not implemented"); }
380   virtual unw_word_t getReg(int) { _LIBUNWIND_ABORT("getReg not implemented"); }
381   virtual void setReg(int, unw_word_t) {
382     _LIBUNWIND_ABORT("setReg not implemented");
383   }
384   virtual bool validFloatReg(int) {
385     _LIBUNWIND_ABORT("validFloatReg not implemented");
386   }
387   virtual unw_fpreg_t getFloatReg(int) {
388     _LIBUNWIND_ABORT("getFloatReg not implemented");
389   }
390   virtual void setFloatReg(int, unw_fpreg_t) {
391     _LIBUNWIND_ABORT("setFloatReg not implemented");
392   }
393   virtual int step() { _LIBUNWIND_ABORT("step not implemented"); }
394   virtual void getInfo(unw_proc_info_t *) {
395     _LIBUNWIND_ABORT("getInfo not implemented");
396   }
397   virtual void jumpto() { _LIBUNWIND_ABORT("jumpto not implemented"); }
398   virtual bool isSignalFrame() {
399     _LIBUNWIND_ABORT("isSignalFrame not implemented");
400   }
401   virtual bool getFunctionName(char *, size_t, unw_word_t *) {
402     _LIBUNWIND_ABORT("getFunctionName not implemented");
403   }
404   virtual void setInfoBasedOnIPRegister(bool = false) {
405     _LIBUNWIND_ABORT("setInfoBasedOnIPRegister not implemented");
406   }
407   virtual const char *getRegisterName(int) {
408     _LIBUNWIND_ABORT("getRegisterName not implemented");
409   }
410 #ifdef __arm__
411   virtual void saveVFPAsX() { _LIBUNWIND_ABORT("saveVFPAsX not implemented"); }
412 #endif
413 };
414
415 /// UnwindCursor contains all state (including all register values) during
416 /// an unwind.  This is normally stack allocated inside a unw_cursor_t.
417 template <typename A, typename R>
418 class UnwindCursor : public AbstractUnwindCursor{
419   typedef typename A::pint_t pint_t;
420 public:
421                       UnwindCursor(unw_context_t *context, A &as);
422                       UnwindCursor(A &as, void *threadArg);
423   virtual             ~UnwindCursor() {}
424   virtual bool        validReg(int);
425   virtual unw_word_t  getReg(int);
426   virtual void        setReg(int, unw_word_t);
427   virtual bool        validFloatReg(int);
428   virtual unw_fpreg_t getFloatReg(int);
429   virtual void        setFloatReg(int, unw_fpreg_t);
430   virtual int         step();
431   virtual void        getInfo(unw_proc_info_t *);
432   virtual void        jumpto();
433   virtual bool        isSignalFrame();
434   virtual bool        getFunctionName(char *buf, size_t len, unw_word_t *off);
435   virtual void        setInfoBasedOnIPRegister(bool isReturnAddress = false);
436   virtual const char *getRegisterName(int num);
437 #ifdef __arm__
438   virtual void        saveVFPAsX();
439 #endif
440
441 private:
442
443 #if _LIBUNWIND_ARM_EHABI
444   bool getInfoFromEHABISection(pint_t pc, const UnwindInfoSections &sects);
445
446   int stepWithEHABI() {
447     size_t len = 0;
448     size_t off = 0;
449     // FIXME: Calling decode_eht_entry() here is violating the libunwind
450     // abstraction layer.
451     const uint32_t *ehtp =
452         decode_eht_entry(reinterpret_cast<const uint32_t *>(_info.unwind_info),
453                          &off, &len);
454     if (_Unwind_VRS_Interpret((_Unwind_Context *)this, ehtp, off, len) !=
455             _URC_CONTINUE_UNWIND)
456       return UNW_STEP_END;
457     return UNW_STEP_SUCCESS;
458   }
459 #endif
460
461 #if _LIBUNWIND_SUPPORT_DWARF_UNWIND
462   bool getInfoFromDwarfSection(pint_t pc, const UnwindInfoSections &sects,
463                                             uint32_t fdeSectionOffsetHint=0);
464   int stepWithDwarfFDE() {
465     return DwarfInstructions<A, R>::stepWithDwarf(_addressSpace,
466                                               (pint_t)this->getReg(UNW_REG_IP),
467                                               (pint_t)_info.unwind_info,
468                                               _registers);
469   }
470 #endif
471
472 #if _LIBUNWIND_SUPPORT_COMPACT_UNWIND
473   bool getInfoFromCompactEncodingSection(pint_t pc,
474                                             const UnwindInfoSections &sects);
475   int stepWithCompactEncoding() {
476   #if _LIBUNWIND_SUPPORT_DWARF_UNWIND
477     if ( compactSaysUseDwarf() )
478       return stepWithDwarfFDE();
479   #endif
480     R dummy;
481     return stepWithCompactEncoding(dummy);
482   }
483
484 #if defined(_LIBUNWIND_TARGET_X86_64)
485   int stepWithCompactEncoding(Registers_x86_64 &) {
486     return CompactUnwinder_x86_64<A>::stepWithCompactEncoding(
487         _info.format, _info.start_ip, _addressSpace, _registers);
488   }
489 #endif
490
491 #if defined(_LIBUNWIND_TARGET_I386)
492   int stepWithCompactEncoding(Registers_x86 &) {
493     return CompactUnwinder_x86<A>::stepWithCompactEncoding(
494         _info.format, (uint32_t)_info.start_ip, _addressSpace, _registers);
495   }
496 #endif
497
498 #if defined(_LIBUNWIND_TARGET_PPC)
499   int stepWithCompactEncoding(Registers_ppc &) {
500     return UNW_EINVAL;
501   }
502 #endif
503
504 #if defined(_LIBUNWIND_TARGET_AARCH64)
505   int stepWithCompactEncoding(Registers_arm64 &) {
506     return CompactUnwinder_arm64<A>::stepWithCompactEncoding(
507         _info.format, _info.start_ip, _addressSpace, _registers);
508   }
509 #endif
510
511   bool compactSaysUseDwarf(uint32_t *offset=NULL) const {
512     R dummy;
513     return compactSaysUseDwarf(dummy, offset);
514   }
515
516 #if defined(_LIBUNWIND_TARGET_X86_64)
517   bool compactSaysUseDwarf(Registers_x86_64 &, uint32_t *offset) const {
518     if ((_info.format & UNWIND_X86_64_MODE_MASK) == UNWIND_X86_64_MODE_DWARF) {
519       if (offset)
520         *offset = (_info.format & UNWIND_X86_64_DWARF_SECTION_OFFSET);
521       return true;
522     }
523     return false;
524   }
525 #endif
526
527 #if defined(_LIBUNWIND_TARGET_I386)
528   bool compactSaysUseDwarf(Registers_x86 &, uint32_t *offset) const {
529     if ((_info.format & UNWIND_X86_MODE_MASK) == UNWIND_X86_MODE_DWARF) {
530       if (offset)
531         *offset = (_info.format & UNWIND_X86_DWARF_SECTION_OFFSET);
532       return true;
533     }
534     return false;
535   }
536 #endif
537
538 #if defined(_LIBUNWIND_TARGET_PPC)
539   bool compactSaysUseDwarf(Registers_ppc &, uint32_t *) const {
540     return true;
541   }
542 #endif
543
544 #if defined(_LIBUNWIND_TARGET_AARCH64)
545   bool compactSaysUseDwarf(Registers_arm64 &, uint32_t *offset) const {
546     if ((_info.format & UNWIND_ARM64_MODE_MASK) == UNWIND_ARM64_MODE_DWARF) {
547       if (offset)
548         *offset = (_info.format & UNWIND_ARM64_DWARF_SECTION_OFFSET);
549       return true;
550     }
551     return false;
552   }
553 #endif
554 #endif // _LIBUNWIND_SUPPORT_COMPACT_UNWIND
555
556 #if _LIBUNWIND_SUPPORT_DWARF_UNWIND
557   compact_unwind_encoding_t dwarfEncoding() const {
558     R dummy;
559     return dwarfEncoding(dummy);
560   }
561
562 #if defined(_LIBUNWIND_TARGET_X86_64)
563   compact_unwind_encoding_t dwarfEncoding(Registers_x86_64 &) const {
564     return UNWIND_X86_64_MODE_DWARF;
565   }
566 #endif
567
568 #if defined(_LIBUNWIND_TARGET_I386)
569   compact_unwind_encoding_t dwarfEncoding(Registers_x86 &) const {
570     return UNWIND_X86_MODE_DWARF;
571   }
572 #endif
573
574 #if defined(_LIBUNWIND_TARGET_PPC)
575   compact_unwind_encoding_t dwarfEncoding(Registers_ppc &) const {
576     return 0;
577   }
578 #endif
579
580 #if defined(_LIBUNWIND_TARGET_AARCH64)
581   compact_unwind_encoding_t dwarfEncoding(Registers_arm64 &) const {
582     return UNWIND_ARM64_MODE_DWARF;
583   }
584 #endif
585
586 #if defined (_LIBUNWIND_TARGET_OR1K)
587   compact_unwind_encoding_t dwarfEncoding(Registers_or1k &) const {
588     return 0;
589   }
590 #endif
591
592 #if defined (_LIBUNWIND_TARGET_RISCV)
593   compact_unwind_encoding_t dwarfEncoding(Registers_riscv &) const {
594     return 0;
595   }
596 #endif
597 #endif // _LIBUNWIND_SUPPORT_DWARF_UNWIND
598
599
600   A               &_addressSpace;
601   R                _registers;
602   unw_proc_info_t  _info;
603   bool             _unwindInfoMissing;
604   bool             _isSignalFrame;
605 };
606
607
608 template <typename A, typename R>
609 UnwindCursor<A, R>::UnwindCursor(unw_context_t *context, A &as)
610     : _addressSpace(as), _registers(context), _unwindInfoMissing(false),
611       _isSignalFrame(false) {
612   static_assert((check_fit<UnwindCursor<A, R>, unw_cursor_t>::does_fit),
613                 "UnwindCursor<> does not fit in unw_cursor_t");
614   memset(&_info, 0, sizeof(_info));
615 }
616
617 template <typename A, typename R>
618 UnwindCursor<A, R>::UnwindCursor(A &as, void *)
619     : _addressSpace(as), _unwindInfoMissing(false), _isSignalFrame(false) {
620   memset(&_info, 0, sizeof(_info));
621   // FIXME
622   // fill in _registers from thread arg
623 }
624
625
626 template <typename A, typename R>
627 bool UnwindCursor<A, R>::validReg(int regNum) {
628   return _registers.validRegister(regNum);
629 }
630
631 template <typename A, typename R>
632 unw_word_t UnwindCursor<A, R>::getReg(int regNum) {
633   return _registers.getRegister(regNum);
634 }
635
636 template <typename A, typename R>
637 void UnwindCursor<A, R>::setReg(int regNum, unw_word_t value) {
638   _registers.setRegister(regNum, (typename A::pint_t)value);
639 }
640
641 template <typename A, typename R>
642 bool UnwindCursor<A, R>::validFloatReg(int regNum) {
643   return _registers.validFloatRegister(regNum);
644 }
645
646 template <typename A, typename R>
647 unw_fpreg_t UnwindCursor<A, R>::getFloatReg(int regNum) {
648   return _registers.getFloatRegister(regNum);
649 }
650
651 template <typename A, typename R>
652 void UnwindCursor<A, R>::setFloatReg(int regNum, unw_fpreg_t value) {
653   _registers.setFloatRegister(regNum, value);
654 }
655
656 template <typename A, typename R> void UnwindCursor<A, R>::jumpto() {
657   _registers.jumpto();
658 }
659
660 #ifdef __arm__
661 template <typename A, typename R> void UnwindCursor<A, R>::saveVFPAsX() {
662   _registers.saveVFPAsX();
663 }
664 #endif
665
666 template <typename A, typename R>
667 const char *UnwindCursor<A, R>::getRegisterName(int regNum) {
668   return _registers.getRegisterName(regNum);
669 }
670
671 template <typename A, typename R> bool UnwindCursor<A, R>::isSignalFrame() {
672   return _isSignalFrame;
673 }
674
675 #if _LIBUNWIND_ARM_EHABI
676 struct EHABIIndexEntry {
677   uint32_t functionOffset;
678   uint32_t data;
679 };
680
681 template<typename A>
682 struct EHABISectionIterator {
683   typedef EHABISectionIterator _Self;
684
685   typedef std::random_access_iterator_tag iterator_category;
686   typedef typename A::pint_t value_type;
687   typedef typename A::pint_t* pointer;
688   typedef typename A::pint_t& reference;
689   typedef size_t size_type;
690   typedef size_t difference_type;
691
692   static _Self begin(A& addressSpace, const UnwindInfoSections& sects) {
693     return _Self(addressSpace, sects, 0);
694   }
695   static _Self end(A& addressSpace, const UnwindInfoSections& sects) {
696     return _Self(addressSpace, sects, sects.arm_section_length);
697   }
698
699   EHABISectionIterator(A& addressSpace, const UnwindInfoSections& sects, size_t i)
700       : _i(i), _addressSpace(&addressSpace), _sects(&sects) {}
701
702   _Self& operator++() { ++_i; return *this; }
703   _Self& operator+=(size_t a) { _i += a; return *this; }
704   _Self& operator--() { assert(_i > 0); --_i; return *this; }
705   _Self& operator-=(size_t a) { assert(_i >= a); _i -= a; return *this; }
706
707   _Self operator+(size_t a) { _Self out = *this; out._i += a; return out; }
708   _Self operator-(size_t a) { assert(_i >= a); _Self out = *this; out._i -= a; return out; }
709
710   size_t operator-(const _Self& other) { return _i - other._i; }
711
712   bool operator==(const _Self& other) const {
713     assert(_addressSpace == other._addressSpace);
714     assert(_sects == other._sects);
715     return _i == other._i;
716   }
717
718   typename A::pint_t operator*() const { return functionAddress(); }
719
720   typename A::pint_t functionAddress() const {
721     typename A::pint_t indexAddr = _sects->arm_section + arrayoffsetof(
722         EHABIIndexEntry, _i, functionOffset);
723     return indexAddr + signExtendPrel31(_addressSpace->get32(indexAddr));
724   }
725
726   typename A::pint_t dataAddress() {
727     typename A::pint_t indexAddr = _sects->arm_section + arrayoffsetof(
728         EHABIIndexEntry, _i, data);
729     return indexAddr;
730   }
731
732  private:
733   size_t _i;
734   A* _addressSpace;
735   const UnwindInfoSections* _sects;
736 };
737
738 template <typename A, typename R>
739 bool UnwindCursor<A, R>::getInfoFromEHABISection(
740     pint_t pc,
741     const UnwindInfoSections &sects) {
742   EHABISectionIterator<A> begin =
743       EHABISectionIterator<A>::begin(_addressSpace, sects);
744   EHABISectionIterator<A> end =
745       EHABISectionIterator<A>::end(_addressSpace, sects);
746
747   EHABISectionIterator<A> itNextPC = std::upper_bound(begin, end, pc);
748   if (itNextPC == begin || itNextPC == end)
749     return false;
750   EHABISectionIterator<A> itThisPC = itNextPC - 1;
751
752   pint_t thisPC = itThisPC.functionAddress();
753   pint_t nextPC = itNextPC.functionAddress();
754   pint_t indexDataAddr = itThisPC.dataAddress();
755
756   if (indexDataAddr == 0)
757     return false;
758
759   uint32_t indexData = _addressSpace.get32(indexDataAddr);
760   if (indexData == UNW_EXIDX_CANTUNWIND)
761     return false;
762
763   // If the high bit is set, the exception handling table entry is inline inside
764   // the index table entry on the second word (aka |indexDataAddr|). Otherwise,
765   // the table points at an offset in the exception handling table (section 5 EHABI).
766   pint_t exceptionTableAddr;
767   uint32_t exceptionTableData;
768   bool isSingleWordEHT;
769   if (indexData & 0x80000000) {
770     exceptionTableAddr = indexDataAddr;
771     // TODO(ajwong): Should this data be 0?
772     exceptionTableData = indexData;
773     isSingleWordEHT = true;
774   } else {
775     exceptionTableAddr = indexDataAddr + signExtendPrel31(indexData);
776     exceptionTableData = _addressSpace.get32(exceptionTableAddr);
777     isSingleWordEHT = false;
778   }
779
780   // Now we know the 3 things:
781   //   exceptionTableAddr -- exception handler table entry.
782   //   exceptionTableData -- the data inside the first word of the eht entry.
783   //   isSingleWordEHT -- whether the entry is in the index.
784   unw_word_t personalityRoutine = 0xbadf00d;
785   bool scope32 = false;
786   uintptr_t lsda;
787
788   // If the high bit in the exception handling table entry is set, the entry is
789   // in compact form (section 6.3 EHABI).
790   if (exceptionTableData & 0x80000000) {
791     // Grab the index of the personality routine from the compact form.
792     uint32_t choice = (exceptionTableData & 0x0f000000) >> 24;
793     uint32_t extraWords = 0;
794     switch (choice) {
795       case 0:
796         personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr0;
797         extraWords = 0;
798         scope32 = false;
799         lsda = isSingleWordEHT ? 0 : (exceptionTableAddr + 4);
800         break;
801       case 1:
802         personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr1;
803         extraWords = (exceptionTableData & 0x00ff0000) >> 16;
804         scope32 = false;
805         lsda = exceptionTableAddr + (extraWords + 1) * 4;
806         break;
807       case 2:
808         personalityRoutine = (unw_word_t) &__aeabi_unwind_cpp_pr2;
809         extraWords = (exceptionTableData & 0x00ff0000) >> 16;
810         scope32 = true;
811         lsda = exceptionTableAddr + (extraWords + 1) * 4;
812         break;
813       default:
814         _LIBUNWIND_ABORT("unknown personality routine");
815         return false;
816     }
817
818     if (isSingleWordEHT) {
819       if (extraWords != 0) {
820         _LIBUNWIND_ABORT("index inlined table detected but pr function "
821                          "requires extra words");
822         return false;
823       }
824     }
825   } else {
826     pint_t personalityAddr =
827         exceptionTableAddr + signExtendPrel31(exceptionTableData);
828     personalityRoutine = personalityAddr;
829
830     // ARM EHABI # 6.2, # 9.2
831     //
832     //  +---- ehtp
833     //  v
834     // +--------------------------------------+
835     // | +--------+--------+--------+-------+ |
836     // | |0| prel31 to personalityRoutine   | |
837     // | +--------+--------+--------+-------+ |
838     // | |      N |      unwind opcodes     | |  <-- UnwindData
839     // | +--------+--------+--------+-------+ |
840     // | | Word 2        unwind opcodes     | |
841     // | +--------+--------+--------+-------+ |
842     // | ...                                  |
843     // | +--------+--------+--------+-------+ |
844     // | | Word N        unwind opcodes     | |
845     // | +--------+--------+--------+-------+ |
846     // | | LSDA                             | |  <-- lsda
847     // | | ...                              | |
848     // | +--------+--------+--------+-------+ |
849     // +--------------------------------------+
850
851     uint32_t *UnwindData = reinterpret_cast<uint32_t*>(exceptionTableAddr) + 1;
852     uint32_t FirstDataWord = *UnwindData;
853     size_t N = ((FirstDataWord >> 24) & 0xff);
854     size_t NDataWords = N + 1;
855     lsda = reinterpret_cast<uintptr_t>(UnwindData + NDataWords);
856   }
857
858   _info.start_ip = thisPC;
859   _info.end_ip = nextPC;
860   _info.handler = personalityRoutine;
861   _info.unwind_info = exceptionTableAddr;
862   _info.lsda = lsda;
863   // flags is pr_cache.additional. See EHABI #7.2 for definition of bit 0.
864   _info.flags = isSingleWordEHT ? 1 : 0 | scope32 ? 0x2 : 0;  // Use enum?
865
866   return true;
867 }
868 #endif
869
870 #if _LIBUNWIND_SUPPORT_DWARF_UNWIND
871 template <typename A, typename R>
872 bool UnwindCursor<A, R>::getInfoFromDwarfSection(pint_t pc,
873                                                 const UnwindInfoSections &sects,
874                                                 uint32_t fdeSectionOffsetHint) {
875   typename CFI_Parser<A>::FDE_Info fdeInfo;
876   typename CFI_Parser<A>::CIE_Info cieInfo;
877   bool foundFDE = false;
878   bool foundInCache = false;
879   // If compact encoding table gave offset into dwarf section, go directly there
880   if (fdeSectionOffsetHint != 0) {
881     foundFDE = CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section,
882                                     (uint32_t)sects.dwarf_section_length,
883                                     sects.dwarf_section + fdeSectionOffsetHint,
884                                     &fdeInfo, &cieInfo);
885   }
886 #if _LIBUNWIND_SUPPORT_DWARF_INDEX
887   if (!foundFDE && (sects.dwarf_index_section != 0)) {
888     foundFDE = EHHeaderParser<A>::findFDE(
889         _addressSpace, pc, sects.dwarf_index_section,
890         (uint32_t)sects.dwarf_index_section_length, &fdeInfo, &cieInfo);
891   }
892 #endif
893   if (!foundFDE) {
894     // otherwise, search cache of previously found FDEs.
895     pint_t cachedFDE = DwarfFDECache<A>::findFDE(sects.dso_base, pc);
896     if (cachedFDE != 0) {
897       foundFDE =
898           CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section,
899                                  (uint32_t)sects.dwarf_section_length,
900                                  cachedFDE, &fdeInfo, &cieInfo);
901       foundInCache = foundFDE;
902     }
903   }
904   if (!foundFDE) {
905     // Still not found, do full scan of __eh_frame section.
906     foundFDE = CFI_Parser<A>::findFDE(_addressSpace, pc, sects.dwarf_section,
907                                       (uint32_t)sects.dwarf_section_length, 0,
908                                       &fdeInfo, &cieInfo);
909   }
910   if (foundFDE) {
911     typename CFI_Parser<A>::PrologInfo prolog;
912     if (CFI_Parser<A>::parseFDEInstructions(_addressSpace, fdeInfo, cieInfo, pc,
913                                             &prolog)) {
914       // Save off parsed FDE info
915       _info.start_ip          = fdeInfo.pcStart;
916       _info.end_ip            = fdeInfo.pcEnd;
917       _info.lsda              = fdeInfo.lsda;
918       _info.handler           = cieInfo.personality;
919       _info.gp                = prolog.spExtraArgSize;
920       _info.flags             = 0;
921       _info.format            = dwarfEncoding();
922       _info.unwind_info       = fdeInfo.fdeStart;
923       _info.unwind_info_size  = (uint32_t)fdeInfo.fdeLength;
924       _info.extra             = (unw_word_t) sects.dso_base;
925
926       // Add to cache (to make next lookup faster) if we had no hint
927       // and there was no index.
928       if (!foundInCache && (fdeSectionOffsetHint == 0)) {
929   #if _LIBUNWIND_SUPPORT_DWARF_INDEX
930         if (sects.dwarf_index_section == 0)
931   #endif
932         DwarfFDECache<A>::add(sects.dso_base, fdeInfo.pcStart, fdeInfo.pcEnd,
933                               fdeInfo.fdeStart);
934       }
935       return true;
936     }
937   }
938   //_LIBUNWIND_DEBUG_LOG("can't find/use FDE for pc=0x%llX", (uint64_t)pc);
939   return false;
940 }
941 #endif // _LIBUNWIND_SUPPORT_DWARF_UNWIND
942
943
944 #if _LIBUNWIND_SUPPORT_COMPACT_UNWIND
945 template <typename A, typename R>
946 bool UnwindCursor<A, R>::getInfoFromCompactEncodingSection(pint_t pc,
947                                               const UnwindInfoSections &sects) {
948   const bool log = false;
949   if (log)
950     fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX, mh=0x%llX)\n",
951             (uint64_t)pc, (uint64_t)sects.dso_base);
952
953   const UnwindSectionHeader<A> sectionHeader(_addressSpace,
954                                                 sects.compact_unwind_section);
955   if (sectionHeader.version() != UNWIND_SECTION_VERSION)
956     return false;
957
958   // do a binary search of top level index to find page with unwind info
959   pint_t targetFunctionOffset = pc - sects.dso_base;
960   const UnwindSectionIndexArray<A> topIndex(_addressSpace,
961                                            sects.compact_unwind_section
962                                          + sectionHeader.indexSectionOffset());
963   uint32_t low = 0;
964   uint32_t high = sectionHeader.indexCount();
965   uint32_t last = high - 1;
966   while (low < high) {
967     uint32_t mid = (low + high) / 2;
968     //if ( log ) fprintf(stderr, "\tmid=%d, low=%d, high=%d, *mid=0x%08X\n",
969     //mid, low, high, topIndex.functionOffset(mid));
970     if (topIndex.functionOffset(mid) <= targetFunctionOffset) {
971       if ((mid == last) ||
972           (topIndex.functionOffset(mid + 1) > targetFunctionOffset)) {
973         low = mid;
974         break;
975       } else {
976         low = mid + 1;
977       }
978     } else {
979       high = mid;
980     }
981   }
982   const uint32_t firstLevelFunctionOffset = topIndex.functionOffset(low);
983   const uint32_t firstLevelNextPageFunctionOffset =
984       topIndex.functionOffset(low + 1);
985   const pint_t secondLevelAddr =
986       sects.compact_unwind_section + topIndex.secondLevelPagesSectionOffset(low);
987   const pint_t lsdaArrayStartAddr =
988       sects.compact_unwind_section + topIndex.lsdaIndexArraySectionOffset(low);
989   const pint_t lsdaArrayEndAddr =
990       sects.compact_unwind_section + topIndex.lsdaIndexArraySectionOffset(low+1);
991   if (log)
992     fprintf(stderr, "\tfirst level search for result index=%d "
993                     "to secondLevelAddr=0x%llX\n",
994                     low, (uint64_t) secondLevelAddr);
995   // do a binary search of second level page index
996   uint32_t encoding = 0;
997   pint_t funcStart = 0;
998   pint_t funcEnd = 0;
999   pint_t lsda = 0;
1000   pint_t personality = 0;
1001   uint32_t pageKind = _addressSpace.get32(secondLevelAddr);
1002   if (pageKind == UNWIND_SECOND_LEVEL_REGULAR) {
1003     // regular page
1004     UnwindSectionRegularPageHeader<A> pageHeader(_addressSpace,
1005                                                  secondLevelAddr);
1006     UnwindSectionRegularArray<A> pageIndex(
1007         _addressSpace, secondLevelAddr + pageHeader.entryPageOffset());
1008     // binary search looks for entry with e where index[e].offset <= pc <
1009     // index[e+1].offset
1010     if (log)
1011       fprintf(stderr, "\tbinary search for targetFunctionOffset=0x%08llX in "
1012                       "regular page starting at secondLevelAddr=0x%llX\n",
1013               (uint64_t) targetFunctionOffset, (uint64_t) secondLevelAddr);
1014     low = 0;
1015     high = pageHeader.entryCount();
1016     while (low < high) {
1017       uint32_t mid = (low + high) / 2;
1018       if (pageIndex.functionOffset(mid) <= targetFunctionOffset) {
1019         if (mid == (uint32_t)(pageHeader.entryCount() - 1)) {
1020           // at end of table
1021           low = mid;
1022           funcEnd = firstLevelNextPageFunctionOffset + sects.dso_base;
1023           break;
1024         } else if (pageIndex.functionOffset(mid + 1) > targetFunctionOffset) {
1025           // next is too big, so we found it
1026           low = mid;
1027           funcEnd = pageIndex.functionOffset(low + 1) + sects.dso_base;
1028           break;
1029         } else {
1030           low = mid + 1;
1031         }
1032       } else {
1033         high = mid;
1034       }
1035     }
1036     encoding = pageIndex.encoding(low);
1037     funcStart = pageIndex.functionOffset(low) + sects.dso_base;
1038     if (pc < funcStart) {
1039       if (log)
1040         fprintf(
1041             stderr,
1042             "\tpc not in table, pc=0x%llX, funcStart=0x%llX, funcEnd=0x%llX\n",
1043             (uint64_t) pc, (uint64_t) funcStart, (uint64_t) funcEnd);
1044       return false;
1045     }
1046     if (pc > funcEnd) {
1047       if (log)
1048         fprintf(
1049             stderr,
1050             "\tpc not in table, pc=0x%llX, funcStart=0x%llX, funcEnd=0x%llX\n",
1051             (uint64_t) pc, (uint64_t) funcStart, (uint64_t) funcEnd);
1052       return false;
1053     }
1054   } else if (pageKind == UNWIND_SECOND_LEVEL_COMPRESSED) {
1055     // compressed page
1056     UnwindSectionCompressedPageHeader<A> pageHeader(_addressSpace,
1057                                                     secondLevelAddr);
1058     UnwindSectionCompressedArray<A> pageIndex(
1059         _addressSpace, secondLevelAddr + pageHeader.entryPageOffset());
1060     const uint32_t targetFunctionPageOffset =
1061         (uint32_t)(targetFunctionOffset - firstLevelFunctionOffset);
1062     // binary search looks for entry with e where index[e].offset <= pc <
1063     // index[e+1].offset
1064     if (log)
1065       fprintf(stderr, "\tbinary search of compressed page starting at "
1066                       "secondLevelAddr=0x%llX\n",
1067               (uint64_t) secondLevelAddr);
1068     low = 0;
1069     last = pageHeader.entryCount() - 1;
1070     high = pageHeader.entryCount();
1071     while (low < high) {
1072       uint32_t mid = (low + high) / 2;
1073       if (pageIndex.functionOffset(mid) <= targetFunctionPageOffset) {
1074         if ((mid == last) ||
1075             (pageIndex.functionOffset(mid + 1) > targetFunctionPageOffset)) {
1076           low = mid;
1077           break;
1078         } else {
1079           low = mid + 1;
1080         }
1081       } else {
1082         high = mid;
1083       }
1084     }
1085     funcStart = pageIndex.functionOffset(low) + firstLevelFunctionOffset
1086                                                               + sects.dso_base;
1087     if (low < last)
1088       funcEnd =
1089           pageIndex.functionOffset(low + 1) + firstLevelFunctionOffset
1090                                                               + sects.dso_base;
1091     else
1092       funcEnd = firstLevelNextPageFunctionOffset + sects.dso_base;
1093     if (pc < funcStart) {
1094       _LIBUNWIND_DEBUG_LOG("malformed __unwind_info, pc=0x%llX not in second  "
1095                            "level compressed unwind table. funcStart=0x%llX",
1096                             (uint64_t) pc, (uint64_t) funcStart);
1097       return false;
1098     }
1099     if (pc > funcEnd) {
1100       _LIBUNWIND_DEBUG_LOG("malformed __unwind_info, pc=0x%llX not in second  "
1101                           "level compressed unwind table. funcEnd=0x%llX",
1102                            (uint64_t) pc, (uint64_t) funcEnd);
1103       return false;
1104     }
1105     uint16_t encodingIndex = pageIndex.encodingIndex(low);
1106     if (encodingIndex < sectionHeader.commonEncodingsArrayCount()) {
1107       // encoding is in common table in section header
1108       encoding = _addressSpace.get32(
1109           sects.compact_unwind_section +
1110           sectionHeader.commonEncodingsArraySectionOffset() +
1111           encodingIndex * sizeof(uint32_t));
1112     } else {
1113       // encoding is in page specific table
1114       uint16_t pageEncodingIndex =
1115           encodingIndex - (uint16_t)sectionHeader.commonEncodingsArrayCount();
1116       encoding = _addressSpace.get32(secondLevelAddr +
1117                                      pageHeader.encodingsPageOffset() +
1118                                      pageEncodingIndex * sizeof(uint32_t));
1119     }
1120   } else {
1121     _LIBUNWIND_DEBUG_LOG("malformed __unwind_info at 0x%0llX bad second "
1122                          "level page",
1123                           (uint64_t) sects.compact_unwind_section);
1124     return false;
1125   }
1126
1127   // look up LSDA, if encoding says function has one
1128   if (encoding & UNWIND_HAS_LSDA) {
1129     UnwindSectionLsdaArray<A> lsdaIndex(_addressSpace, lsdaArrayStartAddr);
1130     uint32_t funcStartOffset = (uint32_t)(funcStart - sects.dso_base);
1131     low = 0;
1132     high = (uint32_t)(lsdaArrayEndAddr - lsdaArrayStartAddr) /
1133                     sizeof(unwind_info_section_header_lsda_index_entry);
1134     // binary search looks for entry with exact match for functionOffset
1135     if (log)
1136       fprintf(stderr,
1137               "\tbinary search of lsda table for targetFunctionOffset=0x%08X\n",
1138               funcStartOffset);
1139     while (low < high) {
1140       uint32_t mid = (low + high) / 2;
1141       if (lsdaIndex.functionOffset(mid) == funcStartOffset) {
1142         lsda = lsdaIndex.lsdaOffset(mid) + sects.dso_base;
1143         break;
1144       } else if (lsdaIndex.functionOffset(mid) < funcStartOffset) {
1145         low = mid + 1;
1146       } else {
1147         high = mid;
1148       }
1149     }
1150     if (lsda == 0) {
1151       _LIBUNWIND_DEBUG_LOG("found encoding 0x%08X with HAS_LSDA bit set for "
1152                     "pc=0x%0llX, but lsda table has no entry",
1153                     encoding, (uint64_t) pc);
1154       return false;
1155     }
1156   }
1157
1158   // extact personality routine, if encoding says function has one
1159   uint32_t personalityIndex = (encoding & UNWIND_PERSONALITY_MASK) >>
1160                               (__builtin_ctz(UNWIND_PERSONALITY_MASK));
1161   if (personalityIndex != 0) {
1162     --personalityIndex; // change 1-based to zero-based index
1163     if (personalityIndex > sectionHeader.personalityArrayCount()) {
1164       _LIBUNWIND_DEBUG_LOG("found encoding 0x%08X with personality index %d,  "
1165                             "but personality table has only %d entires",
1166                             encoding, personalityIndex,
1167                             sectionHeader.personalityArrayCount());
1168       return false;
1169     }
1170     int32_t personalityDelta = (int32_t)_addressSpace.get32(
1171         sects.compact_unwind_section +
1172         sectionHeader.personalityArraySectionOffset() +
1173         personalityIndex * sizeof(uint32_t));
1174     pint_t personalityPointer = sects.dso_base + (pint_t)personalityDelta;
1175     personality = _addressSpace.getP(personalityPointer);
1176     if (log)
1177       fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX), "
1178                       "personalityDelta=0x%08X, personality=0x%08llX\n",
1179               (uint64_t) pc, personalityDelta, (uint64_t) personality);
1180   }
1181
1182   if (log)
1183     fprintf(stderr, "getInfoFromCompactEncodingSection(pc=0x%llX), "
1184                     "encoding=0x%08X, lsda=0x%08llX for funcStart=0x%llX\n",
1185             (uint64_t) pc, encoding, (uint64_t) lsda, (uint64_t) funcStart);
1186   _info.start_ip = funcStart;
1187   _info.end_ip = funcEnd;
1188   _info.lsda = lsda;
1189   _info.handler = personality;
1190   _info.gp = 0;
1191   _info.flags = 0;
1192   _info.format = encoding;
1193   _info.unwind_info = 0;
1194   _info.unwind_info_size = 0;
1195   _info.extra = sects.dso_base;
1196   return true;
1197 }
1198 #endif // _LIBUNWIND_SUPPORT_COMPACT_UNWIND
1199
1200
1201 template <typename A, typename R>
1202 void UnwindCursor<A, R>::setInfoBasedOnIPRegister(bool isReturnAddress) {
1203   pint_t pc = (pint_t)this->getReg(UNW_REG_IP);
1204 #if _LIBUNWIND_ARM_EHABI
1205   // Remove the thumb bit so the IP represents the actual instruction address.
1206   // This matches the behaviour of _Unwind_GetIP on arm.
1207   pc &= (pint_t)~0x1;
1208 #endif
1209
1210   // If the last line of a function is a "throw" the compiler sometimes
1211   // emits no instructions after the call to __cxa_throw.  This means
1212   // the return address is actually the start of the next function.
1213   // To disambiguate this, back up the pc when we know it is a return
1214   // address.
1215   if (isReturnAddress)
1216     --pc;
1217
1218   // Ask address space object to find unwind sections for this pc.
1219   UnwindInfoSections sects;
1220   if (_addressSpace.findUnwindSections(pc, sects)) {
1221 #if _LIBUNWIND_SUPPORT_COMPACT_UNWIND
1222     // If there is a compact unwind encoding table, look there first.
1223     if (sects.compact_unwind_section != 0) {
1224       if (this->getInfoFromCompactEncodingSection(pc, sects)) {
1225   #if _LIBUNWIND_SUPPORT_DWARF_UNWIND
1226         // Found info in table, done unless encoding says to use dwarf.
1227         uint32_t dwarfOffset;
1228         if ((sects.dwarf_section != 0) && compactSaysUseDwarf(&dwarfOffset)) {
1229           if (this->getInfoFromDwarfSection(pc, sects, dwarfOffset)) {
1230             // found info in dwarf, done
1231             return;
1232           }
1233         }
1234   #endif
1235         // If unwind table has entry, but entry says there is no unwind info,
1236         // record that we have no unwind info.
1237         if (_info.format == 0)
1238           _unwindInfoMissing = true;
1239         return;
1240       }
1241     }
1242 #endif // _LIBUNWIND_SUPPORT_COMPACT_UNWIND
1243
1244 #if _LIBUNWIND_SUPPORT_DWARF_UNWIND
1245     // If there is dwarf unwind info, look there next.
1246     if (sects.dwarf_section != 0) {
1247       if (this->getInfoFromDwarfSection(pc, sects)) {
1248         // found info in dwarf, done
1249         return;
1250       }
1251     }
1252 #endif
1253
1254 #if _LIBUNWIND_ARM_EHABI
1255     // If there is ARM EHABI unwind info, look there next.
1256     if (sects.arm_section != 0 && this->getInfoFromEHABISection(pc, sects))
1257       return;
1258 #endif
1259   }
1260
1261 #if _LIBUNWIND_SUPPORT_DWARF_UNWIND
1262   // There is no static unwind info for this pc. Look to see if an FDE was
1263   // dynamically registered for it.
1264   pint_t cachedFDE = DwarfFDECache<A>::findFDE(0, pc);
1265   if (cachedFDE != 0) {
1266     CFI_Parser<LocalAddressSpace>::FDE_Info fdeInfo;
1267     CFI_Parser<LocalAddressSpace>::CIE_Info cieInfo;
1268     const char *msg = CFI_Parser<A>::decodeFDE(_addressSpace,
1269                                                 cachedFDE, &fdeInfo, &cieInfo);
1270     if (msg == NULL) {
1271       typename CFI_Parser<A>::PrologInfo prolog;
1272       if (CFI_Parser<A>::parseFDEInstructions(_addressSpace, fdeInfo, cieInfo,
1273                                                                 pc, &prolog)) {
1274         // save off parsed FDE info
1275         _info.start_ip         = fdeInfo.pcStart;
1276         _info.end_ip           = fdeInfo.pcEnd;
1277         _info.lsda             = fdeInfo.lsda;
1278         _info.handler          = cieInfo.personality;
1279         _info.gp               = prolog.spExtraArgSize;
1280                                   // Some frameless functions need SP
1281                                   // altered when resuming in function.
1282         _info.flags            = 0;
1283         _info.format           = dwarfEncoding();
1284         _info.unwind_info      = fdeInfo.fdeStart;
1285         _info.unwind_info_size = (uint32_t)fdeInfo.fdeLength;
1286         _info.extra            = 0;
1287         return;
1288       }
1289     }
1290   }
1291
1292   // Lastly, ask AddressSpace object about platform specific ways to locate
1293   // other FDEs.
1294   pint_t fde;
1295   if (_addressSpace.findOtherFDE(pc, fde)) {
1296     CFI_Parser<LocalAddressSpace>::FDE_Info fdeInfo;
1297     CFI_Parser<LocalAddressSpace>::CIE_Info cieInfo;
1298     if (!CFI_Parser<A>::decodeFDE(_addressSpace, fde, &fdeInfo, &cieInfo)) {
1299       // Double check this FDE is for a function that includes the pc.
1300       if ((fdeInfo.pcStart <= pc) && (pc < fdeInfo.pcEnd)) {
1301         typename CFI_Parser<A>::PrologInfo prolog;
1302         if (CFI_Parser<A>::parseFDEInstructions(_addressSpace, fdeInfo,
1303                                                 cieInfo, pc, &prolog)) {
1304           // save off parsed FDE info
1305           _info.start_ip         = fdeInfo.pcStart;
1306           _info.end_ip           = fdeInfo.pcEnd;
1307           _info.lsda             = fdeInfo.lsda;
1308           _info.handler          = cieInfo.personality;
1309           _info.gp               = prolog.spExtraArgSize;
1310           _info.flags            = 0;
1311           _info.format           = dwarfEncoding();
1312           _info.unwind_info      = fdeInfo.fdeStart;
1313           _info.unwind_info_size = (uint32_t)fdeInfo.fdeLength;
1314           _info.extra            = 0;
1315           return;
1316         }
1317       }
1318     }
1319   }
1320 #endif // #if _LIBUNWIND_SUPPORT_DWARF_UNWIND
1321
1322   // no unwind info, flag that we can't reliably unwind
1323   _unwindInfoMissing = true;
1324 }
1325
1326 template <typename A, typename R>
1327 int UnwindCursor<A, R>::step() {
1328   // Bottom of stack is defined is when unwind info cannot be found.
1329   if (_unwindInfoMissing)
1330     return UNW_STEP_END;
1331
1332   // Use unwinding info to modify register set as if function returned.
1333   int result;
1334 #if _LIBUNWIND_SUPPORT_COMPACT_UNWIND
1335   result = this->stepWithCompactEncoding();
1336 #elif _LIBUNWIND_SUPPORT_DWARF_UNWIND
1337   result = this->stepWithDwarfFDE();
1338 #elif _LIBUNWIND_ARM_EHABI
1339   result = this->stepWithEHABI();
1340 #else
1341   #error Need _LIBUNWIND_SUPPORT_COMPACT_UNWIND or \
1342               _LIBUNWIND_SUPPORT_DWARF_UNWIND or \
1343               _LIBUNWIND_ARM_EHABI
1344 #endif
1345
1346   // update info based on new PC
1347   if (result == UNW_STEP_SUCCESS) {
1348     this->setInfoBasedOnIPRegister(true);
1349     if (_unwindInfoMissing)
1350       return UNW_STEP_END;
1351     if (_info.gp)
1352       setReg(UNW_REG_SP, getReg(UNW_REG_SP) + _info.gp);
1353   }
1354
1355   return result;
1356 }
1357
1358 template <typename A, typename R>
1359 void UnwindCursor<A, R>::getInfo(unw_proc_info_t *info) {
1360   *info = _info;
1361 }
1362
1363 template <typename A, typename R>
1364 bool UnwindCursor<A, R>::getFunctionName(char *buf, size_t bufLen,
1365                                                            unw_word_t *offset) {
1366   return _addressSpace.findFunctionName((pint_t)this->getReg(UNW_REG_IP),
1367                                          buf, bufLen, offset);
1368 }
1369
1370 } // namespace libunwind
1371
1372 #endif // __UNWINDCURSOR_HPP__