]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/bugpoint/ToolRunner.cpp
Copy ^/vendor/NetBSD/tests/dist to contrib/netbsd-tests
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / bugpoint / ToolRunner.cpp
1 //===-- ToolRunner.cpp ----------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the interfaces described in the ToolRunner.h file.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "ToolRunner.h"
15 #include "llvm/Config/config.h"   // for HAVE_LINK_R
16 #include "llvm/Support/CommandLine.h"
17 #include "llvm/Support/Debug.h"
18 #include "llvm/Support/FileSystem.h"
19 #include "llvm/Support/FileUtilities.h"
20 #include "llvm/Support/Program.h"
21 #include "llvm/Support/raw_ostream.h"
22 #include <fstream>
23 #include <sstream>
24 #include <utility>
25 using namespace llvm;
26
27 #define DEBUG_TYPE "toolrunner"
28
29 namespace llvm {
30   cl::opt<bool>
31   SaveTemps("save-temps", cl::init(false), cl::desc("Save temporary files"));
32 }
33
34 namespace {
35   cl::opt<std::string>
36   RemoteClient("remote-client",
37                cl::desc("Remote execution client (rsh/ssh)"));
38
39   cl::opt<std::string>
40   RemoteHost("remote-host",
41              cl::desc("Remote execution (rsh/ssh) host"));
42
43   cl::opt<std::string>
44   RemotePort("remote-port",
45              cl::desc("Remote execution (rsh/ssh) port"));
46
47   cl::opt<std::string>
48   RemoteUser("remote-user",
49              cl::desc("Remote execution (rsh/ssh) user id"));
50
51   cl::opt<std::string>
52   RemoteExtra("remote-extra-options",
53           cl::desc("Remote execution (rsh/ssh) extra options"));
54 }
55
56 /// RunProgramWithTimeout - This function provides an alternate interface
57 /// to the sys::Program::ExecuteAndWait interface.
58 /// @see sys::Program::ExecuteAndWait
59 static int RunProgramWithTimeout(StringRef ProgramPath,
60                                  const char **Args,
61                                  StringRef StdInFile,
62                                  StringRef StdOutFile,
63                                  StringRef StdErrFile,
64                                  unsigned NumSeconds = 0,
65                                  unsigned MemoryLimit = 0,
66                                  std::string *ErrMsg = nullptr) {
67   const StringRef *Redirects[3] = { &StdInFile, &StdOutFile, &StdErrFile };
68   return sys::ExecuteAndWait(ProgramPath, Args, nullptr, Redirects,
69                              NumSeconds, MemoryLimit, ErrMsg);
70 }
71
72 /// RunProgramRemotelyWithTimeout - This function runs the given program
73 /// remotely using the given remote client and the sys::Program::ExecuteAndWait.
74 /// Returns the remote program exit code or reports a remote client error if it
75 /// fails. Remote client is required to return 255 if it failed or program exit
76 /// code otherwise.
77 /// @see sys::Program::ExecuteAndWait
78 static int RunProgramRemotelyWithTimeout(StringRef RemoteClientPath,
79                                          const char **Args,
80                                          StringRef StdInFile,
81                                          StringRef StdOutFile,
82                                          StringRef StdErrFile,
83                                          unsigned NumSeconds = 0,
84                                          unsigned MemoryLimit = 0) {
85   const StringRef *Redirects[3] = { &StdInFile, &StdOutFile, &StdErrFile };
86
87   // Run the program remotely with the remote client
88   int ReturnCode = sys::ExecuteAndWait(RemoteClientPath, Args, nullptr,
89                                        Redirects, NumSeconds, MemoryLimit);
90
91   // Has the remote client fail?
92   if (255 == ReturnCode) {
93     std::ostringstream OS;
94     OS << "\nError running remote client:\n ";
95     for (const char **Arg = Args; *Arg; ++Arg)
96       OS << " " << *Arg;
97     OS << "\n";
98
99     // The error message is in the output file, let's print it out from there.
100     std::string StdOutFileName = StdOutFile.str();
101     std::ifstream ErrorFile(StdOutFileName.c_str());
102     if (ErrorFile) {
103       std::copy(std::istreambuf_iterator<char>(ErrorFile),
104                 std::istreambuf_iterator<char>(),
105                 std::ostreambuf_iterator<char>(OS));
106       ErrorFile.close();
107     }
108
109     errs() << OS.str();
110   }
111
112   return ReturnCode;
113 }
114
115 static std::string ProcessFailure(StringRef ProgPath, const char** Args,
116                                   unsigned Timeout = 0,
117                                   unsigned MemoryLimit = 0) {
118   std::ostringstream OS;
119   OS << "\nError running tool:\n ";
120   for (const char **Arg = Args; *Arg; ++Arg)
121     OS << " " << *Arg;
122   OS << "\n";
123
124   // Rerun the compiler, capturing any error messages to print them.
125   SmallString<128> ErrorFilename;
126   std::error_code EC = sys::fs::createTemporaryFile(
127       "bugpoint.program_error_messages", "", ErrorFilename);
128   if (EC) {
129     errs() << "Error making unique filename: " << EC.message() << "\n";
130     exit(1);
131   }
132
133   RunProgramWithTimeout(ProgPath, Args, "", ErrorFilename.str(),
134                         ErrorFilename.str(), Timeout, MemoryLimit);
135   // FIXME: check return code ?
136
137   // Print out the error messages generated by CC if possible...
138   std::ifstream ErrorFile(ErrorFilename.c_str());
139   if (ErrorFile) {
140     std::copy(std::istreambuf_iterator<char>(ErrorFile),
141               std::istreambuf_iterator<char>(),
142               std::ostreambuf_iterator<char>(OS));
143     ErrorFile.close();
144   }
145
146   sys::fs::remove(ErrorFilename.c_str());
147   return OS.str();
148 }
149
150 //===---------------------------------------------------------------------===//
151 // LLI Implementation of AbstractIntepreter interface
152 //
153 namespace {
154   class LLI : public AbstractInterpreter {
155     std::string LLIPath;          // The path to the LLI executable
156     std::vector<std::string> ToolArgs; // Args to pass to LLI
157   public:
158     LLI(const std::string &Path, const std::vector<std::string> *Args)
159       : LLIPath(Path) {
160       ToolArgs.clear ();
161       if (Args) { ToolArgs = *Args; }
162     }
163
164     int ExecuteProgram(const std::string &Bitcode,
165                        const std::vector<std::string> &Args,
166                        const std::string &InputFile,
167                        const std::string &OutputFile,
168                        std::string *Error,
169                        const std::vector<std::string> &CCArgs,
170                        const std::vector<std::string> &SharedLibs =
171                        std::vector<std::string>(),
172                        unsigned Timeout = 0,
173                        unsigned MemoryLimit = 0) override;
174   };
175 }
176
177 int LLI::ExecuteProgram(const std::string &Bitcode,
178                         const std::vector<std::string> &Args,
179                         const std::string &InputFile,
180                         const std::string &OutputFile,
181                         std::string *Error,
182                         const std::vector<std::string> &CCArgs,
183                         const std::vector<std::string> &SharedLibs,
184                         unsigned Timeout,
185                         unsigned MemoryLimit) {
186   std::vector<const char*> LLIArgs;
187   LLIArgs.push_back(LLIPath.c_str());
188   LLIArgs.push_back("-force-interpreter=true");
189
190   for (std::vector<std::string>::const_iterator i = SharedLibs.begin(),
191          e = SharedLibs.end(); i != e; ++i) {
192     LLIArgs.push_back("-load");
193     LLIArgs.push_back((*i).c_str());
194   }
195
196   // Add any extra LLI args.
197   for (unsigned i = 0, e = ToolArgs.size(); i != e; ++i)
198     LLIArgs.push_back(ToolArgs[i].c_str());
199
200   LLIArgs.push_back(Bitcode.c_str());
201   // Add optional parameters to the running program from Argv
202   for (unsigned i=0, e = Args.size(); i != e; ++i)
203     LLIArgs.push_back(Args[i].c_str());
204   LLIArgs.push_back(nullptr);
205
206   outs() << "<lli>"; outs().flush();
207   DEBUG(errs() << "\nAbout to run:\t";
208         for (unsigned i=0, e = LLIArgs.size()-1; i != e; ++i)
209           errs() << " " << LLIArgs[i];
210         errs() << "\n";
211         );
212   return RunProgramWithTimeout(LLIPath, &LLIArgs[0],
213       InputFile, OutputFile, OutputFile,
214       Timeout, MemoryLimit, Error);
215 }
216
217 void AbstractInterpreter::anchor() { }
218
219 #if defined(LLVM_ON_UNIX)
220 const char EXESuffix[] = "";
221 #elif defined (LLVM_ON_WIN32)
222 const char EXESuffix[] = "exe";
223 #endif
224
225 /// Prepend the path to the program being executed
226 /// to \p ExeName, given the value of argv[0] and the address of main()
227 /// itself. This allows us to find another LLVM tool if it is built in the same
228 /// directory. An empty string is returned on error; note that this function
229 /// just mainpulates the path and doesn't check for executability.
230 /// @brief Find a named executable.
231 static std::string PrependMainExecutablePath(const std::string &ExeName,
232                                              const char *Argv0,
233                                              void *MainAddr) {
234   // Check the directory that the calling program is in.  We can do
235   // this if ProgramPath contains at least one / character, indicating that it
236   // is a relative path to the executable itself.
237   std::string Main = sys::fs::getMainExecutable(Argv0, MainAddr);
238   StringRef Result = sys::path::parent_path(Main);
239
240   if (!Result.empty()) {
241     SmallString<128> Storage = Result;
242     sys::path::append(Storage, ExeName);
243     sys::path::replace_extension(Storage, EXESuffix);
244     return Storage.str();
245   }
246
247   return Result.str();
248 }
249
250 // LLI create method - Try to find the LLI executable
251 AbstractInterpreter *AbstractInterpreter::createLLI(const char *Argv0,
252                                                     std::string &Message,
253                                      const std::vector<std::string> *ToolArgs) {
254   std::string LLIPath =
255       PrependMainExecutablePath("lli", Argv0, (void *)(intptr_t) & createLLI);
256   if (!LLIPath.empty()) {
257     Message = "Found lli: " + LLIPath + "\n";
258     return new LLI(LLIPath, ToolArgs);
259   }
260
261   Message = "Cannot find `lli' in executable directory!\n";
262   return nullptr;
263 }
264
265 //===---------------------------------------------------------------------===//
266 // Custom compiler command implementation of AbstractIntepreter interface
267 //
268 // Allows using a custom command for compiling the bitcode, thus allows, for
269 // example, to compile a bitcode fragment without linking or executing, then
270 // using a custom wrapper script to check for compiler errors.
271 namespace {
272   class CustomCompiler : public AbstractInterpreter {
273     std::string CompilerCommand;
274     std::vector<std::string> CompilerArgs;
275   public:
276     CustomCompiler(const std::string &CompilerCmd,
277                    std::vector<std::string> CompArgs)
278         : CompilerCommand(CompilerCmd), CompilerArgs(std::move(CompArgs)) {}
279
280     void compileProgram(const std::string &Bitcode,
281                         std::string *Error,
282                         unsigned Timeout = 0,
283                         unsigned MemoryLimit = 0) override;
284
285     int ExecuteProgram(const std::string &Bitcode,
286                        const std::vector<std::string> &Args,
287                        const std::string &InputFile,
288                        const std::string &OutputFile,
289                        std::string *Error,
290                        const std::vector<std::string> &CCArgs =
291                        std::vector<std::string>(),
292                        const std::vector<std::string> &SharedLibs =
293                        std::vector<std::string>(),
294                        unsigned Timeout = 0,
295                        unsigned MemoryLimit = 0) override {
296       *Error = "Execution not supported with -compile-custom";
297       return -1;
298     }
299   };
300 }
301
302 void CustomCompiler::compileProgram(const std::string &Bitcode,
303                                     std::string *Error,
304                                     unsigned Timeout,
305                                     unsigned MemoryLimit) {
306
307   std::vector<const char*> ProgramArgs;
308   ProgramArgs.push_back(CompilerCommand.c_str());
309
310   for (std::size_t i = 0; i < CompilerArgs.size(); ++i)
311     ProgramArgs.push_back(CompilerArgs.at(i).c_str());
312   ProgramArgs.push_back(Bitcode.c_str());
313   ProgramArgs.push_back(nullptr);
314
315   // Add optional parameters to the running program from Argv
316   for (unsigned i = 0, e = CompilerArgs.size(); i != e; ++i)
317     ProgramArgs.push_back(CompilerArgs[i].c_str());
318
319   if (RunProgramWithTimeout(CompilerCommand, &ProgramArgs[0],
320                              "", "", "",
321                              Timeout, MemoryLimit, Error))
322     *Error = ProcessFailure(CompilerCommand, &ProgramArgs[0],
323                            Timeout, MemoryLimit);
324 }
325
326 //===---------------------------------------------------------------------===//
327 // Custom execution command implementation of AbstractIntepreter interface
328 //
329 // Allows using a custom command for executing the bitcode, thus allows,
330 // for example, to invoke a cross compiler for code generation followed by
331 // a simulator that executes the generated binary.
332 namespace {
333   class CustomExecutor : public AbstractInterpreter {
334     std::string ExecutionCommand;
335     std::vector<std::string> ExecutorArgs;
336   public:
337     CustomExecutor(const std::string &ExecutionCmd,
338                    std::vector<std::string> ExecArgs)
339         : ExecutionCommand(ExecutionCmd), ExecutorArgs(std::move(ExecArgs)) {}
340
341     int ExecuteProgram(const std::string &Bitcode,
342                        const std::vector<std::string> &Args,
343                        const std::string &InputFile,
344                        const std::string &OutputFile,
345                        std::string *Error,
346                        const std::vector<std::string> &CCArgs,
347                        const std::vector<std::string> &SharedLibs =
348                          std::vector<std::string>(),
349                        unsigned Timeout = 0,
350                        unsigned MemoryLimit = 0) override;
351   };
352 }
353
354 int CustomExecutor::ExecuteProgram(const std::string &Bitcode,
355                         const std::vector<std::string> &Args,
356                         const std::string &InputFile,
357                         const std::string &OutputFile,
358                         std::string *Error,
359                         const std::vector<std::string> &CCArgs,
360                         const std::vector<std::string> &SharedLibs,
361                         unsigned Timeout,
362                         unsigned MemoryLimit) {
363
364   std::vector<const char*> ProgramArgs;
365   ProgramArgs.push_back(ExecutionCommand.c_str());
366
367   for (std::size_t i = 0; i < ExecutorArgs.size(); ++i)
368     ProgramArgs.push_back(ExecutorArgs.at(i).c_str());
369   ProgramArgs.push_back(Bitcode.c_str());
370   ProgramArgs.push_back(nullptr);
371
372   // Add optional parameters to the running program from Argv
373   for (unsigned i = 0, e = Args.size(); i != e; ++i)
374     ProgramArgs.push_back(Args[i].c_str());
375
376   return RunProgramWithTimeout(
377     ExecutionCommand,
378     &ProgramArgs[0], InputFile, OutputFile,
379     OutputFile, Timeout, MemoryLimit, Error);
380 }
381
382 // Tokenize the CommandLine to the command and the args to allow
383 // defining a full command line as the command instead of just the
384 // executed program. We cannot just pass the whole string after the command
385 // as a single argument because then program sees only a single
386 // command line argument (with spaces in it: "foo bar" instead
387 // of "foo" and "bar").
388 //
389 // code borrowed from:
390 // http://oopweb.com/CPP/Documents/CPPHOWTO/Volume/C++Programming-HOWTO-7.html
391 static void lexCommand(std::string &Message, const std::string &CommandLine,
392                        std::string &CmdPath, std::vector<std::string> &Args) {
393
394   std::string Command = "";
395   std::string delimiters = " ";
396
397   std::string::size_type lastPos = CommandLine.find_first_not_of(delimiters, 0);
398   std::string::size_type pos = CommandLine.find_first_of(delimiters, lastPos);
399
400   while (std::string::npos != pos || std::string::npos != lastPos) {
401     std::string token = CommandLine.substr(lastPos, pos - lastPos);
402     if (Command == "")
403        Command = token;
404     else
405        Args.push_back(token);
406     // Skip delimiters.  Note the "not_of"
407     lastPos = CommandLine.find_first_not_of(delimiters, pos);
408     // Find next "non-delimiter"
409     pos = CommandLine.find_first_of(delimiters, lastPos);
410   }
411
412   auto Path = sys::findProgramByName(Command);
413   if (!Path) {
414     Message =
415       std::string("Cannot find '") + Command +
416       "' in PATH: " + Path.getError().message() + "\n";
417     return;
418   }
419   CmdPath = *Path;
420
421   Message = "Found command in: " + CmdPath + "\n";
422 }
423
424 // Custom execution environment create method, takes the execution command
425 // as arguments
426 AbstractInterpreter *AbstractInterpreter::createCustomCompiler(
427                     std::string &Message,
428                     const std::string &CompileCommandLine) {
429
430   std::string CmdPath;
431   std::vector<std::string> Args;
432   lexCommand(Message, CompileCommandLine, CmdPath, Args);
433   if (CmdPath.empty())
434     return nullptr;
435
436   return new CustomCompiler(CmdPath, Args);
437 }
438
439 // Custom execution environment create method, takes the execution command
440 // as arguments
441 AbstractInterpreter *AbstractInterpreter::createCustomExecutor(
442                     std::string &Message,
443                     const std::string &ExecCommandLine) {
444
445
446   std::string CmdPath;
447   std::vector<std::string> Args;
448   lexCommand(Message, ExecCommandLine, CmdPath, Args);
449   if (CmdPath.empty())
450     return nullptr;
451
452   return new CustomExecutor(CmdPath, Args);
453 }
454
455 //===----------------------------------------------------------------------===//
456 // LLC Implementation of AbstractIntepreter interface
457 //
458 CC::FileType LLC::OutputCode(const std::string &Bitcode,
459                               std::string &OutputAsmFile, std::string &Error,
460                               unsigned Timeout, unsigned MemoryLimit) {
461   const char *Suffix = (UseIntegratedAssembler ? ".llc.o" : ".llc.s");
462
463   SmallString<128> UniqueFile;
464   std::error_code EC =
465       sys::fs::createUniqueFile(Bitcode + "-%%%%%%%" + Suffix, UniqueFile);
466   if (EC) {
467     errs() << "Error making unique filename: " << EC.message() << "\n";
468     exit(1);
469   }
470   OutputAsmFile = UniqueFile.str();
471   std::vector<const char *> LLCArgs;
472   LLCArgs.push_back(LLCPath.c_str());
473
474   // Add any extra LLC args.
475   for (unsigned i = 0, e = ToolArgs.size(); i != e; ++i)
476     LLCArgs.push_back(ToolArgs[i].c_str());
477
478   LLCArgs.push_back("-o");
479   LLCArgs.push_back(OutputAsmFile.c_str()); // Output to the Asm file
480   LLCArgs.push_back(Bitcode.c_str());      // This is the input bitcode
481
482   if (UseIntegratedAssembler)
483     LLCArgs.push_back("-filetype=obj");
484
485   LLCArgs.push_back (nullptr);
486
487   outs() << (UseIntegratedAssembler ? "<llc-ia>" : "<llc>");
488   outs().flush();
489   DEBUG(errs() << "\nAbout to run:\t";
490         for (unsigned i = 0, e = LLCArgs.size()-1; i != e; ++i)
491           errs() << " " << LLCArgs[i];
492         errs() << "\n";
493         );
494   if (RunProgramWithTimeout(LLCPath, &LLCArgs[0],
495                             "", "", "",
496                             Timeout, MemoryLimit))
497     Error = ProcessFailure(LLCPath, &LLCArgs[0],
498                            Timeout, MemoryLimit);
499   return UseIntegratedAssembler ? CC::ObjectFile : CC::AsmFile;
500 }
501
502 void LLC::compileProgram(const std::string &Bitcode, std::string *Error,
503                          unsigned Timeout, unsigned MemoryLimit) {
504   std::string OutputAsmFile;
505   OutputCode(Bitcode, OutputAsmFile, *Error, Timeout, MemoryLimit);
506   sys::fs::remove(OutputAsmFile);
507 }
508
509 int LLC::ExecuteProgram(const std::string &Bitcode,
510                         const std::vector<std::string> &Args,
511                         const std::string &InputFile,
512                         const std::string &OutputFile,
513                         std::string *Error,
514                         const std::vector<std::string> &ArgsForCC,
515                         const std::vector<std::string> &SharedLibs,
516                         unsigned Timeout,
517                         unsigned MemoryLimit) {
518
519   std::string OutputAsmFile;
520   CC::FileType FileKind = OutputCode(Bitcode, OutputAsmFile, *Error, Timeout,
521                                       MemoryLimit);
522   FileRemover OutFileRemover(OutputAsmFile, !SaveTemps);
523
524   std::vector<std::string> CCArgs(ArgsForCC);
525   CCArgs.insert(CCArgs.end(), SharedLibs.begin(), SharedLibs.end());
526
527   // Assuming LLC worked, compile the result with CC and run it.
528   return cc->ExecuteProgram(OutputAsmFile, Args, FileKind,
529                              InputFile, OutputFile, Error, CCArgs,
530                              Timeout, MemoryLimit);
531 }
532
533 /// createLLC - Try to find the LLC executable
534 ///
535 LLC *AbstractInterpreter::createLLC(const char *Argv0,
536                                     std::string &Message,
537                                     const std::string &CCBinary,
538                                     const std::vector<std::string> *Args,
539                                     const std::vector<std::string> *CCArgs,
540                                     bool UseIntegratedAssembler) {
541   std::string LLCPath =
542       PrependMainExecutablePath("llc", Argv0, (void *)(intptr_t) & createLLC);
543   if (LLCPath.empty()) {
544     Message = "Cannot find `llc' in executable directory!\n";
545     return nullptr;
546   }
547
548   CC *cc = CC::create(Message, CCBinary, CCArgs);
549   if (!cc) {
550     errs() << Message << "\n";
551     exit(1);
552   }
553   Message = "Found llc: " + LLCPath + "\n";
554   return new LLC(LLCPath, cc, Args, UseIntegratedAssembler);
555 }
556
557 //===---------------------------------------------------------------------===//
558 // JIT Implementation of AbstractIntepreter interface
559 //
560 namespace {
561   class JIT : public AbstractInterpreter {
562     std::string LLIPath;          // The path to the LLI executable
563     std::vector<std::string> ToolArgs; // Args to pass to LLI
564   public:
565     JIT(const std::string &Path, const std::vector<std::string> *Args)
566       : LLIPath(Path) {
567       ToolArgs.clear ();
568       if (Args) { ToolArgs = *Args; }
569     }
570
571     int ExecuteProgram(const std::string &Bitcode,
572                        const std::vector<std::string> &Args,
573                        const std::string &InputFile,
574                        const std::string &OutputFile,
575                        std::string *Error,
576                        const std::vector<std::string> &CCArgs =
577                          std::vector<std::string>(),
578                        const std::vector<std::string> &SharedLibs =
579                          std::vector<std::string>(),
580                        unsigned Timeout = 0,
581                        unsigned MemoryLimit = 0) override;
582   };
583 }
584
585 int JIT::ExecuteProgram(const std::string &Bitcode,
586                         const std::vector<std::string> &Args,
587                         const std::string &InputFile,
588                         const std::string &OutputFile,
589                         std::string *Error,
590                         const std::vector<std::string> &CCArgs,
591                         const std::vector<std::string> &SharedLibs,
592                         unsigned Timeout,
593                         unsigned MemoryLimit) {
594   // Construct a vector of parameters, incorporating those from the command-line
595   std::vector<const char*> JITArgs;
596   JITArgs.push_back(LLIPath.c_str());
597   JITArgs.push_back("-force-interpreter=false");
598
599   // Add any extra LLI args.
600   for (unsigned i = 0, e = ToolArgs.size(); i != e; ++i)
601     JITArgs.push_back(ToolArgs[i].c_str());
602
603   for (unsigned i = 0, e = SharedLibs.size(); i != e; ++i) {
604     JITArgs.push_back("-load");
605     JITArgs.push_back(SharedLibs[i].c_str());
606   }
607   JITArgs.push_back(Bitcode.c_str());
608   // Add optional parameters to the running program from Argv
609   for (unsigned i=0, e = Args.size(); i != e; ++i)
610     JITArgs.push_back(Args[i].c_str());
611   JITArgs.push_back(nullptr);
612
613   outs() << "<jit>"; outs().flush();
614   DEBUG(errs() << "\nAbout to run:\t";
615         for (unsigned i=0, e = JITArgs.size()-1; i != e; ++i)
616           errs() << " " << JITArgs[i];
617         errs() << "\n";
618         );
619   DEBUG(errs() << "\nSending output to " << OutputFile << "\n");
620   return RunProgramWithTimeout(LLIPath, &JITArgs[0],
621       InputFile, OutputFile, OutputFile,
622       Timeout, MemoryLimit, Error);
623 }
624
625 /// createJIT - Try to find the LLI executable
626 ///
627 AbstractInterpreter *AbstractInterpreter::createJIT(const char *Argv0,
628                    std::string &Message, const std::vector<std::string> *Args) {
629   std::string LLIPath =
630       PrependMainExecutablePath("lli", Argv0, (void *)(intptr_t) & createJIT);
631   if (!LLIPath.empty()) {
632     Message = "Found lli: " + LLIPath + "\n";
633     return new JIT(LLIPath, Args);
634   }
635
636   Message = "Cannot find `lli' in executable directory!\n";
637   return nullptr;
638 }
639
640 //===---------------------------------------------------------------------===//
641 // CC abstraction
642 //
643
644 static bool IsARMArchitecture(std::vector<const char*> Args) {
645   for (std::vector<const char*>::const_iterator
646          I = Args.begin(), E = Args.end(); I != E; ++I) {
647     if (StringRef(*I).equals_lower("-arch")) {
648       ++I;
649       if (I != E && StringRef(*I).startswith_lower("arm"))
650         return true;
651     }
652   }
653
654   return false;
655 }
656
657 int CC::ExecuteProgram(const std::string &ProgramFile,
658                         const std::vector<std::string> &Args,
659                         FileType fileType,
660                         const std::string &InputFile,
661                         const std::string &OutputFile,
662                         std::string *Error,
663                         const std::vector<std::string> &ArgsForCC,
664                         unsigned Timeout,
665                         unsigned MemoryLimit) {
666   std::vector<const char*> CCArgs;
667
668   CCArgs.push_back(CCPath.c_str());
669
670   if (TargetTriple.getArch() == Triple::x86)
671     CCArgs.push_back("-m32");
672
673   for (std::vector<std::string>::const_iterator
674          I = ccArgs.begin(), E = ccArgs.end(); I != E; ++I)
675     CCArgs.push_back(I->c_str());
676
677   // Specify -x explicitly in case the extension is wonky
678   if (fileType != ObjectFile) {
679     CCArgs.push_back("-x");
680     if (fileType == CFile) {
681       CCArgs.push_back("c");
682       CCArgs.push_back("-fno-strict-aliasing");
683     } else {
684       CCArgs.push_back("assembler");
685
686       // For ARM architectures we don't want this flag. bugpoint isn't
687       // explicitly told what architecture it is working on, so we get
688       // it from cc flags
689       if (TargetTriple.isOSDarwin() && !IsARMArchitecture(CCArgs))
690         CCArgs.push_back("-force_cpusubtype_ALL");
691     }
692   }
693
694   CCArgs.push_back(ProgramFile.c_str());  // Specify the input filename.
695
696   CCArgs.push_back("-x");
697   CCArgs.push_back("none");
698   CCArgs.push_back("-o");
699
700   SmallString<128> OutputBinary;
701   std::error_code EC =
702       sys::fs::createUniqueFile(ProgramFile + "-%%%%%%%.cc.exe", OutputBinary);
703   if (EC) {
704     errs() << "Error making unique filename: " << EC.message() << "\n";
705     exit(1);
706   }
707   CCArgs.push_back(OutputBinary.c_str()); // Output to the right file...
708
709   // Add any arguments intended for CC. We locate them here because this is
710   // most likely -L and -l options that need to come before other libraries but
711   // after the source. Other options won't be sensitive to placement on the
712   // command line, so this should be safe.
713   for (unsigned i = 0, e = ArgsForCC.size(); i != e; ++i)
714     CCArgs.push_back(ArgsForCC[i].c_str());
715
716   CCArgs.push_back("-lm");                // Hard-code the math library...
717   CCArgs.push_back("-O2");                // Optimize the program a bit...
718 #if defined (HAVE_LINK_R)
719   CCArgs.push_back("-Wl,-R.");            // Search this dir for .so files
720 #endif
721   if (TargetTriple.getArch() == Triple::sparc)
722     CCArgs.push_back("-mcpu=v9");
723   CCArgs.push_back(nullptr);                    // NULL terminator
724
725   outs() << "<CC>"; outs().flush();
726   DEBUG(errs() << "\nAbout to run:\t";
727         for (unsigned i = 0, e = CCArgs.size()-1; i != e; ++i)
728           errs() << " " << CCArgs[i];
729         errs() << "\n";
730         );
731   if (RunProgramWithTimeout(CCPath, &CCArgs[0], "", "", "")) {
732     *Error = ProcessFailure(CCPath, &CCArgs[0]);
733     return -1;
734   }
735
736   std::vector<const char*> ProgramArgs;
737
738   // Declared here so that the destructor only runs after
739   // ProgramArgs is used.
740   std::string Exec;
741
742   if (RemoteClientPath.empty())
743     ProgramArgs.push_back(OutputBinary.c_str());
744   else {
745     ProgramArgs.push_back(RemoteClientPath.c_str());
746     ProgramArgs.push_back(RemoteHost.c_str());
747     if (!RemoteUser.empty()) {
748       ProgramArgs.push_back("-l");
749       ProgramArgs.push_back(RemoteUser.c_str());
750     }
751     if (!RemotePort.empty()) {
752       ProgramArgs.push_back("-p");
753       ProgramArgs.push_back(RemotePort.c_str());
754     }
755     if (!RemoteExtra.empty()) {
756       ProgramArgs.push_back(RemoteExtra.c_str());
757     }
758
759     // Full path to the binary. We need to cd to the exec directory because
760     // there is a dylib there that the exec expects to find in the CWD
761     char* env_pwd = getenv("PWD");
762     Exec = "cd ";
763     Exec += env_pwd;
764     Exec += "; ./";
765     Exec += OutputBinary.c_str();
766     ProgramArgs.push_back(Exec.c_str());
767   }
768
769   // Add optional parameters to the running program from Argv
770   for (unsigned i = 0, e = Args.size(); i != e; ++i)
771     ProgramArgs.push_back(Args[i].c_str());
772   ProgramArgs.push_back(nullptr);                // NULL terminator
773
774   // Now that we have a binary, run it!
775   outs() << "<program>"; outs().flush();
776   DEBUG(errs() << "\nAbout to run:\t";
777         for (unsigned i = 0, e = ProgramArgs.size()-1; i != e; ++i)
778           errs() << " " << ProgramArgs[i];
779         errs() << "\n";
780         );
781
782   FileRemover OutputBinaryRemover(OutputBinary.str(), !SaveTemps);
783
784   if (RemoteClientPath.empty()) {
785     DEBUG(errs() << "<run locally>");
786     int ExitCode = RunProgramWithTimeout(OutputBinary.str(), &ProgramArgs[0],
787                                          InputFile, OutputFile, OutputFile,
788                                          Timeout, MemoryLimit, Error);
789     // Treat a signal (usually SIGSEGV) or timeout as part of the program output
790     // so that crash-causing miscompilation is handled seamlessly.
791     if (ExitCode < -1) {
792       std::ofstream outFile(OutputFile.c_str(), std::ios_base::app);
793       outFile << *Error << '\n';
794       outFile.close();
795       Error->clear();
796     }
797     return ExitCode;
798   } else {
799     outs() << "<run remotely>"; outs().flush();
800     return RunProgramRemotelyWithTimeout(RemoteClientPath,
801         &ProgramArgs[0], InputFile, OutputFile,
802         OutputFile, Timeout, MemoryLimit);
803   }
804 }
805
806 int CC::MakeSharedObject(const std::string &InputFile, FileType fileType,
807                           std::string &OutputFile,
808                           const std::vector<std::string> &ArgsForCC,
809                           std::string &Error) {
810   SmallString<128> UniqueFilename;
811   std::error_code EC = sys::fs::createUniqueFile(
812       InputFile + "-%%%%%%%" + LTDL_SHLIB_EXT, UniqueFilename);
813   if (EC) {
814     errs() << "Error making unique filename: " << EC.message() << "\n";
815     exit(1);
816   }
817   OutputFile = UniqueFilename.str();
818
819   std::vector<const char*> CCArgs;
820
821   CCArgs.push_back(CCPath.c_str());
822
823   if (TargetTriple.getArch() == Triple::x86)
824     CCArgs.push_back("-m32");
825
826   for (std::vector<std::string>::const_iterator
827          I = ccArgs.begin(), E = ccArgs.end(); I != E; ++I)
828     CCArgs.push_back(I->c_str());
829
830   // Compile the C/asm file into a shared object
831   if (fileType != ObjectFile) {
832     CCArgs.push_back("-x");
833     CCArgs.push_back(fileType == AsmFile ? "assembler" : "c");
834   }
835   CCArgs.push_back("-fno-strict-aliasing");
836   CCArgs.push_back(InputFile.c_str());   // Specify the input filename.
837   CCArgs.push_back("-x");
838   CCArgs.push_back("none");
839   if (TargetTriple.getArch() == Triple::sparc)
840     CCArgs.push_back("-G");       // Compile a shared library, `-G' for Sparc
841   else if (TargetTriple.isOSDarwin()) {
842     // link all source files into a single module in data segment, rather than
843     // generating blocks. dynamic_lookup requires that you set
844     // MACOSX_DEPLOYMENT_TARGET=10.3 in your env.  FIXME: it would be better for
845     // bugpoint to just pass that in the environment of CC.
846     CCArgs.push_back("-single_module");
847     CCArgs.push_back("-dynamiclib");   // `-dynamiclib' for MacOS X/PowerPC
848     CCArgs.push_back("-undefined");
849     CCArgs.push_back("dynamic_lookup");
850   } else
851     CCArgs.push_back("-shared");  // `-shared' for Linux/X86, maybe others
852
853   if (TargetTriple.getArch() == Triple::x86_64)
854     CCArgs.push_back("-fPIC");   // Requires shared objs to contain PIC
855
856   if (TargetTriple.getArch() == Triple::sparc)
857     CCArgs.push_back("-mcpu=v9");
858
859   CCArgs.push_back("-o");
860   CCArgs.push_back(OutputFile.c_str()); // Output to the right filename.
861   CCArgs.push_back("-O2");              // Optimize the program a bit.
862
863
864
865   // Add any arguments intended for CC. We locate them here because this is
866   // most likely -L and -l options that need to come before other libraries but
867   // after the source. Other options won't be sensitive to placement on the
868   // command line, so this should be safe.
869   for (unsigned i = 0, e = ArgsForCC.size(); i != e; ++i)
870     CCArgs.push_back(ArgsForCC[i].c_str());
871   CCArgs.push_back(nullptr);                    // NULL terminator
872
873
874
875   outs() << "<CC>"; outs().flush();
876   DEBUG(errs() << "\nAbout to run:\t";
877         for (unsigned i = 0, e = CCArgs.size()-1; i != e; ++i)
878           errs() << " " << CCArgs[i];
879         errs() << "\n";
880         );
881   if (RunProgramWithTimeout(CCPath, &CCArgs[0], "", "", "")) {
882     Error = ProcessFailure(CCPath, &CCArgs[0]);
883     return 1;
884   }
885   return 0;
886 }
887
888 /// create - Try to find the CC executable
889 ///
890 CC *CC::create(std::string &Message,
891                  const std::string &CCBinary,
892                  const std::vector<std::string> *Args) {
893   auto CCPath = sys::findProgramByName(CCBinary);
894   if (!CCPath) {
895     Message = "Cannot find `" + CCBinary + "' in PATH: " +
896               CCPath.getError().message() + "\n";
897     return nullptr;
898   }
899
900   std::string RemoteClientPath;
901   if (!RemoteClient.empty()) {
902     auto Path = sys::findProgramByName(RemoteClient);
903     if (!Path) {
904       Message = "Cannot find `" + RemoteClient + "' in PATH: " +
905                 Path.getError().message() + "\n";
906       return nullptr;
907     }
908     RemoteClientPath = *Path;
909   }
910
911   Message = "Found CC: " + *CCPath + "\n";
912   return new CC(*CCPath, RemoteClientPath, Args);
913 }