]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/include/clang/Analysis/Analyses/ThreadSafetyTIL.h
Merge clang 3.5.0 release from ^/vendor/clang/dist, resolve conflicts,
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / include / clang / Analysis / Analyses / ThreadSafetyTIL.h
1 //===- ThreadSafetyTIL.h ---------------------------------------*- C++ --*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT in the llvm repository for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a simple Typed Intermediate Language, or TIL, that is used
11 // by the thread safety analysis (See ThreadSafety.cpp).  The TIL is intended
12 // to be largely independent of clang, in the hope that the analysis can be
13 // reused for other non-C++ languages.  All dependencies on clang/llvm should
14 // go in ThreadSafetyUtil.h.
15 //
16 // Thread safety analysis works by comparing mutex expressions, e.g.
17 //
18 // class A { Mutex mu; int dat GUARDED_BY(this->mu); }
19 // class B { A a; }
20 //
21 // void foo(B* b) {
22 //   (*b).a.mu.lock();     // locks (*b).a.mu
23 //   b->a.dat = 0;         // substitute &b->a for 'this';
24 //                         // requires lock on (&b->a)->mu
25 //   (b->a.mu).unlock();   // unlocks (b->a.mu)
26 // }
27 //
28 // As illustrated by the above example, clang Exprs are not well-suited to
29 // represent mutex expressions directly, since there is no easy way to compare
30 // Exprs for equivalence.  The thread safety analysis thus lowers clang Exprs
31 // into a simple intermediate language (IL).  The IL supports:
32 //
33 // (1) comparisons for semantic equality of expressions
34 // (2) SSA renaming of variables
35 // (3) wildcards and pattern matching over expressions
36 // (4) hash-based expression lookup
37 //
38 // The TIL is currently very experimental, is intended only for use within
39 // the thread safety analysis, and is subject to change without notice.
40 // After the API stabilizes and matures, it may be appropriate to make this
41 // more generally available to other analyses.
42 //
43 // UNDER CONSTRUCTION.  USE AT YOUR OWN RISK.
44 //
45 //===----------------------------------------------------------------------===//
46
47 #ifndef LLVM_CLANG_THREAD_SAFETY_TIL_H
48 #define LLVM_CLANG_THREAD_SAFETY_TIL_H
49
50 // All clang include dependencies for this file must be put in
51 // ThreadSafetyUtil.h.
52 #include "ThreadSafetyUtil.h"
53
54 #include <stdint.h>
55 #include <algorithm>
56 #include <cassert>
57 #include <cstddef>
58 #include <utility>
59
60
61 namespace clang {
62 namespace threadSafety {
63 namespace til {
64
65
66 enum TIL_Opcode {
67 #define TIL_OPCODE_DEF(X) COP_##X,
68 #include "ThreadSafetyOps.def"
69 #undef TIL_OPCODE_DEF
70 };
71
72 enum TIL_UnaryOpcode : unsigned char {
73   UOP_Minus,        //  -
74   UOP_BitNot,       //  ~
75   UOP_LogicNot      //  !
76 };
77
78 enum TIL_BinaryOpcode : unsigned char {
79   BOP_Mul,          //  *
80   BOP_Div,          //  /
81   BOP_Rem,          //  %
82   BOP_Add,          //  +
83   BOP_Sub,          //  -
84   BOP_Shl,          //  <<
85   BOP_Shr,          //  >>
86   BOP_BitAnd,       //  &
87   BOP_BitXor,       //  ^
88   BOP_BitOr,        //  |
89   BOP_Eq,           //  ==
90   BOP_Neq,          //  !=
91   BOP_Lt,           //  <
92   BOP_Leq,          //  <=
93   BOP_LogicAnd,     //  &&
94   BOP_LogicOr       //  ||
95 };
96
97 enum TIL_CastOpcode : unsigned char {
98   CAST_none = 0,
99   CAST_extendNum,   // extend precision of numeric type
100   CAST_truncNum,    // truncate precision of numeric type
101   CAST_toFloat,     // convert to floating point type
102   CAST_toInt,       // convert to integer type
103 };
104
105 const TIL_Opcode       COP_Min  = COP_Future;
106 const TIL_Opcode       COP_Max  = COP_Branch;
107 const TIL_UnaryOpcode  UOP_Min  = UOP_Minus;
108 const TIL_UnaryOpcode  UOP_Max  = UOP_LogicNot;
109 const TIL_BinaryOpcode BOP_Min  = BOP_Mul;
110 const TIL_BinaryOpcode BOP_Max  = BOP_LogicOr;
111 const TIL_CastOpcode   CAST_Min = CAST_none;
112 const TIL_CastOpcode   CAST_Max = CAST_toInt;
113
114 StringRef getUnaryOpcodeString(TIL_UnaryOpcode Op);
115 StringRef getBinaryOpcodeString(TIL_BinaryOpcode Op);
116
117
118 // ValueTypes are data types that can actually be held in registers.
119 // All variables and expressions must have a vBNF_Nonealue type.
120 // Pointer types are further subdivided into the various heap-allocated
121 // types, such as functions, records, etc.
122 // Structured types that are passed by value (e.g. complex numbers)
123 // require special handling; they use BT_ValueRef, and size ST_0.
124 struct ValueType {
125   enum BaseType : unsigned char {
126     BT_Void = 0,
127     BT_Bool,
128     BT_Int,
129     BT_Float,
130     BT_String,    // String literals
131     BT_Pointer,
132     BT_ValueRef
133   };
134
135   enum SizeType : unsigned char {
136     ST_0 = 0,
137     ST_1,
138     ST_8,
139     ST_16,
140     ST_32,
141     ST_64,
142     ST_128
143   };
144
145   inline static SizeType getSizeType(unsigned nbytes);
146
147   template <class T>
148   inline static ValueType getValueType();
149
150   ValueType(BaseType B, SizeType Sz, bool S, unsigned char VS)
151       : Base(B), Size(Sz), Signed(S), VectSize(VS)
152   { }
153
154   BaseType      Base;
155   SizeType      Size;
156   bool          Signed;
157   unsigned char VectSize;  // 0 for scalar, otherwise num elements in vector
158 };
159
160
161 inline ValueType::SizeType ValueType::getSizeType(unsigned nbytes) {
162   switch (nbytes) {
163     case 1: return ST_8;
164     case 2: return ST_16;
165     case 4: return ST_32;
166     case 8: return ST_64;
167     case 16: return ST_128;
168     default: return ST_0;
169   }
170 }
171
172
173 template<>
174 inline ValueType ValueType::getValueType<void>() {
175   return ValueType(BT_Void, ST_0, false, 0);
176 }
177
178 template<>
179 inline ValueType ValueType::getValueType<bool>() {
180   return ValueType(BT_Bool, ST_1, false, 0);
181 }
182
183 template<>
184 inline ValueType ValueType::getValueType<int8_t>() {
185   return ValueType(BT_Int, ST_8, true, 0);
186 }
187
188 template<>
189 inline ValueType ValueType::getValueType<uint8_t>() {
190   return ValueType(BT_Int, ST_8, false, 0);
191 }
192
193 template<>
194 inline ValueType ValueType::getValueType<int16_t>() {
195   return ValueType(BT_Int, ST_16, true, 0);
196 }
197
198 template<>
199 inline ValueType ValueType::getValueType<uint16_t>() {
200   return ValueType(BT_Int, ST_16, false, 0);
201 }
202
203 template<>
204 inline ValueType ValueType::getValueType<int32_t>() {
205   return ValueType(BT_Int, ST_32, true, 0);
206 }
207
208 template<>
209 inline ValueType ValueType::getValueType<uint32_t>() {
210   return ValueType(BT_Int, ST_32, false, 0);
211 }
212
213 template<>
214 inline ValueType ValueType::getValueType<int64_t>() {
215   return ValueType(BT_Int, ST_64, true, 0);
216 }
217
218 template<>
219 inline ValueType ValueType::getValueType<uint64_t>() {
220   return ValueType(BT_Int, ST_64, false, 0);
221 }
222
223 template<>
224 inline ValueType ValueType::getValueType<float>() {
225   return ValueType(BT_Float, ST_32, true, 0);
226 }
227
228 template<>
229 inline ValueType ValueType::getValueType<double>() {
230   return ValueType(BT_Float, ST_64, true, 0);
231 }
232
233 template<>
234 inline ValueType ValueType::getValueType<long double>() {
235   return ValueType(BT_Float, ST_128, true, 0);
236 }
237
238 template<>
239 inline ValueType ValueType::getValueType<StringRef>() {
240   return ValueType(BT_String, getSizeType(sizeof(StringRef)), false, 0);
241 }
242
243 template<>
244 inline ValueType ValueType::getValueType<void*>() {
245   return ValueType(BT_Pointer, getSizeType(sizeof(void*)), false, 0);
246 }
247
248
249
250 // Base class for AST nodes in the typed intermediate language.
251 class SExpr {
252 public:
253   TIL_Opcode opcode() const { return static_cast<TIL_Opcode>(Opcode); }
254
255   // Subclasses of SExpr must define the following:
256   //
257   // This(const This& E, ...) {
258   //   copy constructor: construct copy of E, with some additional arguments.
259   // }
260   //
261   // template <class V>
262   // typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
263   //   traverse all subexpressions, following the traversal/rewriter interface.
264   // }
265   //
266   // template <class C> typename C::CType compare(CType* E, C& Cmp) {
267   //   compare all subexpressions, following the comparator interface
268   // }
269
270   void *operator new(size_t S, MemRegionRef &R) {
271     return ::operator new(S, R);
272   }
273
274   // SExpr objects cannot be deleted.
275   // This declaration is public to workaround a gcc bug that breaks building
276   // with REQUIRES_EH=1.
277   void operator delete(void *) LLVM_DELETED_FUNCTION;
278
279 protected:
280   SExpr(TIL_Opcode Op) : Opcode(Op), Reserved(0), Flags(0) {}
281   SExpr(const SExpr &E) : Opcode(E.Opcode), Reserved(0), Flags(E.Flags) {}
282
283   const unsigned char Opcode;
284   unsigned char Reserved;
285   unsigned short Flags;
286
287 private:
288   SExpr() LLVM_DELETED_FUNCTION;
289
290   // SExpr objects must be created in an arena.
291   void *operator new(size_t) LLVM_DELETED_FUNCTION;
292 };
293
294
295 // Class for owning references to SExprs.
296 // Includes attach/detach logic for counting variable references and lazy
297 // rewriting strategies.
298 class SExprRef {
299 public:
300   SExprRef() : Ptr(nullptr) { }
301   SExprRef(std::nullptr_t P) : Ptr(nullptr) { }
302   SExprRef(SExprRef &&R) : Ptr(R.Ptr) { R.Ptr = nullptr; }
303
304   // Defined after Variable and Future, below.
305   inline SExprRef(SExpr *P);
306   inline ~SExprRef();
307
308   SExpr       *get()       { return Ptr; }
309   const SExpr *get() const { return Ptr; }
310
311   SExpr       *operator->()       { return get(); }
312   const SExpr *operator->() const { return get(); }
313
314   SExpr       &operator*()        { return *Ptr; }
315   const SExpr &operator*() const  { return *Ptr; }
316
317   bool operator==(const SExprRef &R) const { return Ptr == R.Ptr; }
318   bool operator!=(const SExprRef &R) const { return !operator==(R); }
319   bool operator==(const SExpr *P)    const { return Ptr == P; }
320   bool operator!=(const SExpr *P)    const { return !operator==(P); }
321   bool operator==(std::nullptr_t)    const { return Ptr == nullptr; }
322   bool operator!=(std::nullptr_t)    const { return Ptr != nullptr; }
323
324   inline void reset(SExpr *E);
325
326 private:
327   inline void attach();
328   inline void detach();
329
330   SExpr *Ptr;
331 };
332
333
334 // Contains various helper functions for SExprs.
335 namespace ThreadSafetyTIL {
336   inline bool isTrivial(const SExpr *E) {
337     unsigned Op = E->opcode();
338     return Op == COP_Variable || Op == COP_Literal || Op == COP_LiteralPtr;
339   }
340 }
341
342 // Nodes which declare variables
343 class Function;
344 class SFunction;
345 class BasicBlock;
346 class Let;
347
348
349 // A named variable, e.g. "x".
350 //
351 // There are two distinct places in which a Variable can appear in the AST.
352 // A variable declaration introduces a new variable, and can occur in 3 places:
353 //   Let-expressions:           (Let (x = t) u)
354 //   Functions:                 (Function (x : t) u)
355 //   Self-applicable functions  (SFunction (x) t)
356 //
357 // If a variable occurs in any other location, it is a reference to an existing
358 // variable declaration -- e.g. 'x' in (x * y + z). To save space, we don't
359 // allocate a separate AST node for variable references; a reference is just a
360 // pointer to the original declaration.
361 class Variable : public SExpr {
362 public:
363   static bool classof(const SExpr *E) { return E->opcode() == COP_Variable; }
364
365   // Let-variable, function parameter, or self-variable
366   enum VariableKind {
367     VK_Let,
368     VK_LetBB,
369     VK_Fun,
370     VK_SFun
371   };
372
373   // These are defined after SExprRef contructor, below
374   inline Variable(SExpr *D, const clang::ValueDecl *Cvd = nullptr);
375   inline Variable(StringRef s, SExpr *D = nullptr);
376   inline Variable(const Variable &Vd, SExpr *D);
377
378   VariableKind kind() const { return static_cast<VariableKind>(Flags); }
379
380   const StringRef name() const { return Name; }
381   const clang::ValueDecl *clangDecl() const { return Cvdecl; }
382
383   // Returns the definition (for let vars) or type (for parameter & self vars)
384   SExpr *definition() { return Definition.get(); }
385   const SExpr *definition() const { return Definition.get(); }
386
387   void attachVar() const { ++NumUses; }
388   void detachVar() const { assert(NumUses > 0); --NumUses; }
389
390   unsigned getID() const { return Id; }
391   unsigned getBlockID() const { return BlockID; }
392
393   void setName(StringRef S) { Name = S; }
394   void setID(unsigned Bid, unsigned I) {
395     BlockID = static_cast<unsigned short>(Bid);
396     Id = static_cast<unsigned short>(I);
397   }
398   void setClangDecl(const clang::ValueDecl *VD) { Cvdecl = VD; }
399   void setDefinition(SExpr *E);
400   void setKind(VariableKind K) { Flags = K; }
401
402   template <class V>
403   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
404     // This routine is only called for variable references.
405     return Vs.reduceVariableRef(this);
406   }
407
408   template <class C> typename C::CType compare(Variable* E, C& Cmp) {
409     return Cmp.compareVariableRefs(this, E);
410   }
411
412 private:
413   friend class Function;
414   friend class SFunction;
415   friend class BasicBlock;
416   friend class Let;
417
418   StringRef Name;                  // The name of the variable.
419   SExprRef  Definition;            // The TIL type or definition
420   const clang::ValueDecl *Cvdecl;  // The clang declaration for this variable.
421
422   unsigned short BlockID;
423   unsigned short Id;
424   mutable unsigned NumUses;
425 };
426
427
428 // Placeholder for an expression that has not yet been created.
429 // Used to implement lazy copy and rewriting strategies.
430 class Future : public SExpr {
431 public:
432   static bool classof(const SExpr *E) { return E->opcode() == COP_Future; }
433
434   enum FutureStatus {
435     FS_pending,
436     FS_evaluating,
437     FS_done
438   };
439
440   Future() :
441     SExpr(COP_Future), Status(FS_pending), Result(nullptr), Location(nullptr)
442   {}
443 private:
444   virtual ~Future() LLVM_DELETED_FUNCTION;
445 public:
446
447   // Registers the location in the AST where this future is stored.
448   // Forcing the future will automatically update the AST.
449   static inline void registerLocation(SExprRef *Member) {
450     if (Future *F = dyn_cast_or_null<Future>(Member->get()))
451       F->Location = Member;
452   }
453
454   // A lazy rewriting strategy should subclass Future and override this method.
455   virtual SExpr *create() { return nullptr; }
456
457   // Return the result of this future if it exists, otherwise return null.
458   SExpr *maybeGetResult() {
459     return Result;
460   }
461
462   // Return the result of this future; forcing it if necessary.
463   SExpr *result() {
464     switch (Status) {
465     case FS_pending:
466       force();
467       return Result;
468     case FS_evaluating:
469       return nullptr; // infinite loop; illegal recursion.
470     case FS_done:
471       return Result;
472     }
473   }
474
475   template <class V>
476   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
477     assert(Result && "Cannot traverse Future that has not been forced.");
478     return Vs.traverse(Result, Ctx);
479   }
480
481   template <class C> typename C::CType compare(Future* E, C& Cmp) {
482     if (!Result || !E->Result)
483       return Cmp.comparePointers(this, E);
484     return Cmp.compare(Result, E->Result);
485   }
486
487 private:
488   // Force the future.
489   inline void force();
490
491   FutureStatus Status;
492   SExpr *Result;
493   SExprRef *Location;
494 };
495
496
497 inline void SExprRef::attach() {
498   if (!Ptr)
499     return;
500
501   TIL_Opcode Op = Ptr->opcode();
502   if (Op == COP_Variable) {
503     cast<Variable>(Ptr)->attachVar();
504   } else if (Op == COP_Future) {
505     cast<Future>(Ptr)->registerLocation(this);
506   }
507 }
508
509 inline void SExprRef::detach() {
510   if (Ptr && Ptr->opcode() == COP_Variable) {
511     cast<Variable>(Ptr)->detachVar();
512   }
513 }
514
515 inline SExprRef::SExprRef(SExpr *P) : Ptr(P) {
516   attach();
517 }
518
519 inline SExprRef::~SExprRef() {
520   detach();
521 }
522
523 inline void SExprRef::reset(SExpr *P) {
524   detach();
525   Ptr = P;
526   attach();
527 }
528
529
530 inline Variable::Variable(StringRef s, SExpr *D)
531     : SExpr(COP_Variable), Name(s), Definition(D), Cvdecl(nullptr),
532       BlockID(0), Id(0), NumUses(0) {
533   Flags = VK_Let;
534 }
535
536 inline Variable::Variable(SExpr *D, const clang::ValueDecl *Cvd)
537     : SExpr(COP_Variable), Name(Cvd ? Cvd->getName() : "_x"),
538       Definition(D), Cvdecl(Cvd), BlockID(0), Id(0), NumUses(0) {
539   Flags = VK_Let;
540 }
541
542 inline Variable::Variable(const Variable &Vd, SExpr *D) // rewrite constructor
543     : SExpr(Vd), Name(Vd.Name), Definition(D), Cvdecl(Vd.Cvdecl),
544       BlockID(0), Id(0), NumUses(0) {
545   Flags = Vd.kind();
546 }
547
548 inline void Variable::setDefinition(SExpr *E) {
549   Definition.reset(E);
550 }
551
552 void Future::force() {
553   Status = FS_evaluating;
554   SExpr *R = create();
555   Result = R;
556   if (Location)
557     Location->reset(R);
558   Status = FS_done;
559 }
560
561
562 // Placeholder for C++ expressions that cannot be represented in the TIL.
563 class Undefined : public SExpr {
564 public:
565   static bool classof(const SExpr *E) { return E->opcode() == COP_Undefined; }
566
567   Undefined(const clang::Stmt *S = nullptr) : SExpr(COP_Undefined), Cstmt(S) {}
568   Undefined(const Undefined &U) : SExpr(U), Cstmt(U.Cstmt) {}
569
570   template <class V>
571   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
572     return Vs.reduceUndefined(*this);
573   }
574
575   template <class C> typename C::CType compare(Undefined* E, C& Cmp) {
576     return Cmp.comparePointers(Cstmt, E->Cstmt);
577   }
578
579 private:
580   const clang::Stmt *Cstmt;
581 };
582
583
584 // Placeholder for a wildcard that matches any other expression.
585 class Wildcard : public SExpr {
586 public:
587   static bool classof(const SExpr *E) { return E->opcode() == COP_Wildcard; }
588
589   Wildcard() : SExpr(COP_Wildcard) {}
590   Wildcard(const Wildcard &W) : SExpr(W) {}
591
592   template <class V> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
593     return Vs.reduceWildcard(*this);
594   }
595
596   template <class C> typename C::CType compare(Wildcard* E, C& Cmp) {
597     return Cmp.trueResult();
598   }
599 };
600
601
602 template <class T> class LiteralT;
603
604 // Base class for literal values.
605 class Literal : public SExpr {
606 public:
607   static bool classof(const SExpr *E) { return E->opcode() == COP_Literal; }
608
609   Literal(const clang::Expr *C)
610      : SExpr(COP_Literal), ValType(ValueType::getValueType<void>()), Cexpr(C)
611   { }
612   Literal(ValueType VT) : SExpr(COP_Literal), ValType(VT), Cexpr(nullptr) {}
613   Literal(const Literal &L) : SExpr(L), ValType(L.ValType), Cexpr(L.Cexpr) {}
614
615   // The clang expression for this literal.
616   const clang::Expr *clangExpr() const { return Cexpr; }
617
618   ValueType valueType() const { return ValType; }
619
620   template<class T> const LiteralT<T>& as() const {
621     return *static_cast<const LiteralT<T>*>(this);
622   }
623   template<class T> LiteralT<T>& as() {
624     return *static_cast<LiteralT<T>*>(this);
625   }
626
627   template <class V> typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx);
628
629   template <class C> typename C::CType compare(Literal* E, C& Cmp) {
630     // TODO -- use value, not pointer equality
631     return Cmp.comparePointers(Cexpr, E->Cexpr);
632   }
633
634 private:
635   const ValueType ValType;
636   const clang::Expr *Cexpr;
637 };
638
639
640 // Derived class for literal values, which stores the actual value.
641 template<class T>
642 class LiteralT : public Literal {
643 public:
644   LiteralT(T Dat) : Literal(ValueType::getValueType<T>()), Val(Dat) { }
645   LiteralT(const LiteralT<T> &L) : Literal(L), Val(L.Val) { }
646
647   T  value() const { return Val;}
648   T& value() { return Val; }
649
650 private:
651   T Val;
652 };
653
654
655
656 template <class V>
657 typename V::R_SExpr Literal::traverse(V &Vs, typename V::R_Ctx Ctx) {
658   if (Cexpr)
659     return Vs.reduceLiteral(*this);
660
661   switch (ValType.Base) {
662   case ValueType::BT_Void:
663     break;
664   case ValueType::BT_Bool:
665     return Vs.reduceLiteralT(as<bool>());
666   case ValueType::BT_Int: {
667     switch (ValType.Size) {
668     case ValueType::ST_8:
669       if (ValType.Signed)
670         return Vs.reduceLiteralT(as<int8_t>());
671       else
672         return Vs.reduceLiteralT(as<uint8_t>());
673     case ValueType::ST_16:
674       if (ValType.Signed)
675         return Vs.reduceLiteralT(as<int16_t>());
676       else
677         return Vs.reduceLiteralT(as<uint16_t>());
678     case ValueType::ST_32:
679       if (ValType.Signed)
680         return Vs.reduceLiteralT(as<int32_t>());
681       else
682         return Vs.reduceLiteralT(as<uint32_t>());
683     case ValueType::ST_64:
684       if (ValType.Signed)
685         return Vs.reduceLiteralT(as<int64_t>());
686       else
687         return Vs.reduceLiteralT(as<uint64_t>());
688     default:
689       break;
690     }
691   }
692   case ValueType::BT_Float: {
693     switch (ValType.Size) {
694     case ValueType::ST_32:
695       return Vs.reduceLiteralT(as<float>());
696     case ValueType::ST_64:
697       return Vs.reduceLiteralT(as<double>());
698     default:
699       break;
700     }
701   }
702   case ValueType::BT_String:
703     return Vs.reduceLiteralT(as<StringRef>());
704   case ValueType::BT_Pointer:
705     return Vs.reduceLiteralT(as<void*>());
706   case ValueType::BT_ValueRef:
707     break;
708   }
709   return Vs.reduceLiteral(*this);
710 }
711
712
713 // Literal pointer to an object allocated in memory.
714 // At compile time, pointer literals are represented by symbolic names.
715 class LiteralPtr : public SExpr {
716 public:
717   static bool classof(const SExpr *E) { return E->opcode() == COP_LiteralPtr; }
718
719   LiteralPtr(const clang::ValueDecl *D) : SExpr(COP_LiteralPtr), Cvdecl(D) {}
720   LiteralPtr(const LiteralPtr &R) : SExpr(R), Cvdecl(R.Cvdecl) {}
721
722   // The clang declaration for the value that this pointer points to.
723   const clang::ValueDecl *clangDecl() const { return Cvdecl; }
724
725   template <class V>
726   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
727     return Vs.reduceLiteralPtr(*this);
728   }
729
730   template <class C> typename C::CType compare(LiteralPtr* E, C& Cmp) {
731     return Cmp.comparePointers(Cvdecl, E->Cvdecl);
732   }
733
734 private:
735   const clang::ValueDecl *Cvdecl;
736 };
737
738
739 // A function -- a.k.a. lambda abstraction.
740 // Functions with multiple arguments are created by currying,
741 // e.g. (function (x: Int) (function (y: Int) (add x y)))
742 class Function : public SExpr {
743 public:
744   static bool classof(const SExpr *E) { return E->opcode() == COP_Function; }
745
746   Function(Variable *Vd, SExpr *Bd)
747       : SExpr(COP_Function), VarDecl(Vd), Body(Bd) {
748     Vd->setKind(Variable::VK_Fun);
749   }
750   Function(const Function &F, Variable *Vd, SExpr *Bd) // rewrite constructor
751       : SExpr(F), VarDecl(Vd), Body(Bd) {
752     Vd->setKind(Variable::VK_Fun);
753   }
754
755   Variable *variableDecl()  { return VarDecl; }
756   const Variable *variableDecl() const { return VarDecl; }
757
758   SExpr *body() { return Body.get(); }
759   const SExpr *body() const { return Body.get(); }
760
761   template <class V>
762   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
763     // This is a variable declaration, so traverse the definition.
764     auto E0 = Vs.traverse(VarDecl->Definition, Vs.typeCtx(Ctx));
765     // Tell the rewriter to enter the scope of the function.
766     Variable *Nvd = Vs.enterScope(*VarDecl, E0);
767     auto E1 = Vs.traverse(Body, Vs.declCtx(Ctx));
768     Vs.exitScope(*VarDecl);
769     return Vs.reduceFunction(*this, Nvd, E1);
770   }
771
772   template <class C> typename C::CType compare(Function* E, C& Cmp) {
773     typename C::CType Ct =
774       Cmp.compare(VarDecl->definition(), E->VarDecl->definition());
775     if (Cmp.notTrue(Ct))
776       return Ct;
777     Cmp.enterScope(variableDecl(), E->variableDecl());
778     Ct = Cmp.compare(body(), E->body());
779     Cmp.leaveScope();
780     return Ct;
781   }
782
783 private:
784   Variable *VarDecl;
785   SExprRef Body;
786 };
787
788
789 // A self-applicable function.
790 // A self-applicable function can be applied to itself.  It's useful for
791 // implementing objects and late binding
792 class SFunction : public SExpr {
793 public:
794   static bool classof(const SExpr *E) { return E->opcode() == COP_SFunction; }
795
796   SFunction(Variable *Vd, SExpr *B)
797       : SExpr(COP_SFunction), VarDecl(Vd), Body(B) {
798     assert(Vd->Definition == nullptr);
799     Vd->setKind(Variable::VK_SFun);
800     Vd->Definition.reset(this);
801   }
802   SFunction(const SFunction &F, Variable *Vd, SExpr *B) // rewrite constructor
803       : SExpr(F), VarDecl(Vd), Body(B) {
804     assert(Vd->Definition == nullptr);
805     Vd->setKind(Variable::VK_SFun);
806     Vd->Definition.reset(this);
807   }
808
809   Variable *variableDecl() { return VarDecl; }
810   const Variable *variableDecl() const { return VarDecl; }
811
812   SExpr *body() { return Body.get(); }
813   const SExpr *body() const { return Body.get(); }
814
815   template <class V>
816   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
817     // A self-variable points to the SFunction itself.
818     // A rewrite must introduce the variable with a null definition, and update
819     // it after 'this' has been rewritten.
820     Variable *Nvd = Vs.enterScope(*VarDecl, nullptr);
821     auto E1 = Vs.traverse(Body, Vs.declCtx(Ctx));
822     Vs.exitScope(*VarDecl);
823     // A rewrite operation will call SFun constructor to set Vvd->Definition.
824     return Vs.reduceSFunction(*this, Nvd, E1);
825   }
826
827   template <class C> typename C::CType compare(SFunction* E, C& Cmp) {
828     Cmp.enterScope(variableDecl(), E->variableDecl());
829     typename C::CType Ct = Cmp.compare(body(), E->body());
830     Cmp.leaveScope();
831     return Ct;
832   }
833
834 private:
835   Variable *VarDecl;
836   SExprRef Body;
837 };
838
839
840 // A block of code -- e.g. the body of a function.
841 class Code : public SExpr {
842 public:
843   static bool classof(const SExpr *E) { return E->opcode() == COP_Code; }
844
845   Code(SExpr *T, SExpr *B) : SExpr(COP_Code), ReturnType(T), Body(B) {}
846   Code(const Code &C, SExpr *T, SExpr *B) // rewrite constructor
847       : SExpr(C), ReturnType(T), Body(B) {}
848
849   SExpr *returnType() { return ReturnType.get(); }
850   const SExpr *returnType() const { return ReturnType.get(); }
851
852   SExpr *body() { return Body.get(); }
853   const SExpr *body() const { return Body.get(); }
854
855   template <class V>
856   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
857     auto Nt = Vs.traverse(ReturnType, Vs.typeCtx(Ctx));
858     auto Nb = Vs.traverse(Body,       Vs.lazyCtx(Ctx));
859     return Vs.reduceCode(*this, Nt, Nb);
860   }
861
862   template <class C> typename C::CType compare(Code* E, C& Cmp) {
863     typename C::CType Ct = Cmp.compare(returnType(), E->returnType());
864     if (Cmp.notTrue(Ct))
865       return Ct;
866     return Cmp.compare(body(), E->body());
867   }
868
869 private:
870   SExprRef ReturnType;
871   SExprRef Body;
872 };
873
874
875 // A typed, writable location in memory
876 class Field : public SExpr {
877 public:
878   static bool classof(const SExpr *E) { return E->opcode() == COP_Field; }
879
880   Field(SExpr *R, SExpr *B) : SExpr(COP_Field), Range(R), Body(B) {}
881   Field(const Field &C, SExpr *R, SExpr *B) // rewrite constructor
882       : SExpr(C), Range(R), Body(B) {}
883
884   SExpr *range() { return Range.get(); }
885   const SExpr *range() const { return Range.get(); }
886
887   SExpr *body() { return Body.get(); }
888   const SExpr *body() const { return Body.get(); }
889
890   template <class V>
891   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
892     auto Nr = Vs.traverse(Range, Vs.typeCtx(Ctx));
893     auto Nb = Vs.traverse(Body,  Vs.lazyCtx(Ctx));
894     return Vs.reduceField(*this, Nr, Nb);
895   }
896
897   template <class C> typename C::CType compare(Field* E, C& Cmp) {
898     typename C::CType Ct = Cmp.compare(range(), E->range());
899     if (Cmp.notTrue(Ct))
900       return Ct;
901     return Cmp.compare(body(), E->body());
902   }
903
904 private:
905   SExprRef Range;
906   SExprRef Body;
907 };
908
909
910 // Apply an argument to a function
911 class Apply : public SExpr {
912 public:
913   static bool classof(const SExpr *E) { return E->opcode() == COP_Apply; }
914
915   Apply(SExpr *F, SExpr *A) : SExpr(COP_Apply), Fun(F), Arg(A) {}
916   Apply(const Apply &A, SExpr *F, SExpr *Ar)  // rewrite constructor
917       : SExpr(A), Fun(F), Arg(Ar)
918   {}
919
920   SExpr *fun() { return Fun.get(); }
921   const SExpr *fun() const { return Fun.get(); }
922
923   SExpr *arg() { return Arg.get(); }
924   const SExpr *arg() const { return Arg.get(); }
925
926   template <class V>
927   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
928     auto Nf = Vs.traverse(Fun, Vs.subExprCtx(Ctx));
929     auto Na = Vs.traverse(Arg, Vs.subExprCtx(Ctx));
930     return Vs.reduceApply(*this, Nf, Na);
931   }
932
933   template <class C> typename C::CType compare(Apply* E, C& Cmp) {
934     typename C::CType Ct = Cmp.compare(fun(), E->fun());
935     if (Cmp.notTrue(Ct))
936       return Ct;
937     return Cmp.compare(arg(), E->arg());
938   }
939
940 private:
941   SExprRef Fun;
942   SExprRef Arg;
943 };
944
945
946 // Apply a self-argument to a self-applicable function
947 class SApply : public SExpr {
948 public:
949   static bool classof(const SExpr *E) { return E->opcode() == COP_SApply; }
950
951   SApply(SExpr *Sf, SExpr *A = nullptr) : SExpr(COP_SApply), Sfun(Sf), Arg(A) {}
952   SApply(SApply &A, SExpr *Sf, SExpr *Ar = nullptr) // rewrite constructor
953       : SExpr(A), Sfun(Sf), Arg(Ar) {}
954
955   SExpr *sfun() { return Sfun.get(); }
956   const SExpr *sfun() const { return Sfun.get(); }
957
958   SExpr *arg() { return Arg.get() ? Arg.get() : Sfun.get(); }
959   const SExpr *arg() const { return Arg.get() ? Arg.get() : Sfun.get(); }
960
961   bool isDelegation() const { return Arg == nullptr; }
962
963   template <class V>
964   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
965     auto Nf = Vs.traverse(Sfun, Vs.subExprCtx(Ctx));
966     typename V::R_SExpr Na = Arg.get() ? Vs.traverse(Arg, Vs.subExprCtx(Ctx))
967                                        : nullptr;
968     return Vs.reduceSApply(*this, Nf, Na);
969   }
970
971   template <class C> typename C::CType compare(SApply* E, C& Cmp) {
972     typename C::CType Ct = Cmp.compare(sfun(), E->sfun());
973     if (Cmp.notTrue(Ct) || (!arg() && !E->arg()))
974       return Ct;
975     return Cmp.compare(arg(), E->arg());
976   }
977
978 private:
979   SExprRef Sfun;
980   SExprRef Arg;
981 };
982
983
984 // Project a named slot from a C++ struct or class.
985 class Project : public SExpr {
986 public:
987   static bool classof(const SExpr *E) { return E->opcode() == COP_Project; }
988
989   Project(SExpr *R, StringRef SName)
990       : SExpr(COP_Project), Rec(R), SlotName(SName), Cvdecl(nullptr)
991   { }
992   Project(SExpr *R, clang::ValueDecl *Cvd)
993       : SExpr(COP_Project), Rec(R), SlotName(Cvd->getName()), Cvdecl(Cvd)
994   { }
995   Project(const Project &P, SExpr *R)
996       : SExpr(P), Rec(R), SlotName(P.SlotName), Cvdecl(P.Cvdecl)
997   { }
998
999   SExpr *record() { return Rec.get(); }
1000   const SExpr *record() const { return Rec.get(); }
1001
1002   const clang::ValueDecl *clangValueDecl() const { return Cvdecl; }
1003
1004   StringRef slotName() const {
1005     if (Cvdecl)
1006       return Cvdecl->getName();
1007     else
1008       return SlotName;
1009   }
1010
1011   template <class V>
1012   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1013     auto Nr = Vs.traverse(Rec, Vs.subExprCtx(Ctx));
1014     return Vs.reduceProject(*this, Nr);
1015   }
1016
1017   template <class C> typename C::CType compare(Project* E, C& Cmp) {
1018     typename C::CType Ct = Cmp.compare(record(), E->record());
1019     if (Cmp.notTrue(Ct))
1020       return Ct;
1021     return Cmp.comparePointers(Cvdecl, E->Cvdecl);
1022   }
1023
1024 private:
1025   SExprRef Rec;
1026   StringRef SlotName;
1027   clang::ValueDecl *Cvdecl;
1028 };
1029
1030
1031 // Call a function (after all arguments have been applied).
1032 class Call : public SExpr {
1033 public:
1034   static bool classof(const SExpr *E) { return E->opcode() == COP_Call; }
1035
1036   Call(SExpr *T, const clang::CallExpr *Ce = nullptr)
1037       : SExpr(COP_Call), Target(T), Cexpr(Ce) {}
1038   Call(const Call &C, SExpr *T) : SExpr(C), Target(T), Cexpr(C.Cexpr) {}
1039
1040   SExpr *target() { return Target.get(); }
1041   const SExpr *target() const { return Target.get(); }
1042
1043   const clang::CallExpr *clangCallExpr() const { return Cexpr; }
1044
1045   template <class V>
1046   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1047     auto Nt = Vs.traverse(Target, Vs.subExprCtx(Ctx));
1048     return Vs.reduceCall(*this, Nt);
1049   }
1050
1051   template <class C> typename C::CType compare(Call* E, C& Cmp) {
1052     return Cmp.compare(target(), E->target());
1053   }
1054
1055 private:
1056   SExprRef Target;
1057   const clang::CallExpr *Cexpr;
1058 };
1059
1060
1061 // Allocate memory for a new value on the heap or stack.
1062 class Alloc : public SExpr {
1063 public:
1064   static bool classof(const SExpr *E) { return E->opcode() == COP_Call; }
1065
1066   enum AllocKind {
1067     AK_Stack,
1068     AK_Heap
1069   };
1070
1071   Alloc(SExpr *D, AllocKind K) : SExpr(COP_Alloc), Dtype(D) { Flags = K; }
1072   Alloc(const Alloc &A, SExpr *Dt) : SExpr(A), Dtype(Dt) { Flags = A.kind(); }
1073
1074   AllocKind kind() const { return static_cast<AllocKind>(Flags); }
1075
1076   SExpr *dataType() { return Dtype.get(); }
1077   const SExpr *dataType() const { return Dtype.get(); }
1078
1079   template <class V>
1080   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1081     auto Nd = Vs.traverse(Dtype, Vs.declCtx(Ctx));
1082     return Vs.reduceAlloc(*this, Nd);
1083   }
1084
1085   template <class C> typename C::CType compare(Alloc* E, C& Cmp) {
1086     typename C::CType Ct = Cmp.compareIntegers(kind(), E->kind());
1087     if (Cmp.notTrue(Ct))
1088       return Ct;
1089     return Cmp.compare(dataType(), E->dataType());
1090   }
1091
1092 private:
1093   SExprRef Dtype;
1094 };
1095
1096
1097 // Load a value from memory.
1098 class Load : public SExpr {
1099 public:
1100   static bool classof(const SExpr *E) { return E->opcode() == COP_Load; }
1101
1102   Load(SExpr *P) : SExpr(COP_Load), Ptr(P) {}
1103   Load(const Load &L, SExpr *P) : SExpr(L), Ptr(P) {}
1104
1105   SExpr *pointer() { return Ptr.get(); }
1106   const SExpr *pointer() const { return Ptr.get(); }
1107
1108   template <class V>
1109   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1110     auto Np = Vs.traverse(Ptr, Vs.subExprCtx(Ctx));
1111     return Vs.reduceLoad(*this, Np);
1112   }
1113
1114   template <class C> typename C::CType compare(Load* E, C& Cmp) {
1115     return Cmp.compare(pointer(), E->pointer());
1116   }
1117
1118 private:
1119   SExprRef Ptr;
1120 };
1121
1122
1123 // Store a value to memory.
1124 // Source is a pointer, destination is the value to store.
1125 class Store : public SExpr {
1126 public:
1127   static bool classof(const SExpr *E) { return E->opcode() == COP_Store; }
1128
1129   Store(SExpr *P, SExpr *V) : SExpr(COP_Store), Dest(P), Source(V) {}
1130   Store(const Store &S, SExpr *P, SExpr *V) : SExpr(S), Dest(P), Source(V) {}
1131
1132   SExpr *destination() { return Dest.get(); }  // Address to store to
1133   const SExpr *destination() const { return Dest.get(); }
1134
1135   SExpr *source() { return Source.get(); }     // Value to store
1136   const SExpr *source() const { return Source.get(); }
1137
1138   template <class V>
1139   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1140     auto Np = Vs.traverse(Dest,   Vs.subExprCtx(Ctx));
1141     auto Nv = Vs.traverse(Source, Vs.subExprCtx(Ctx));
1142     return Vs.reduceStore(*this, Np, Nv);
1143   }
1144
1145   template <class C> typename C::CType compare(Store* E, C& Cmp) {
1146     typename C::CType Ct = Cmp.compare(destination(), E->destination());
1147     if (Cmp.notTrue(Ct))
1148       return Ct;
1149     return Cmp.compare(source(), E->source());
1150   }
1151
1152 private:
1153   SExprRef Dest;
1154   SExprRef Source;
1155 };
1156
1157
1158 // If p is a reference to an array, then first(p) is a reference to the first
1159 // element.  The usual array notation p[i]  becomes first(p + i).
1160 class ArrayIndex : public SExpr {
1161 public:
1162   static bool classof(const SExpr *E) { return E->opcode() == COP_ArrayIndex; }
1163
1164   ArrayIndex(SExpr *A, SExpr *N) : SExpr(COP_ArrayIndex), Array(A), Index(N) {}
1165   ArrayIndex(const ArrayIndex &E, SExpr *A, SExpr *N)
1166     : SExpr(E), Array(A), Index(N) {}
1167
1168   SExpr *array() { return Array.get(); }
1169   const SExpr *array() const { return Array.get(); }
1170
1171   SExpr *index() { return Index.get(); }
1172   const SExpr *index() const { return Index.get(); }
1173
1174   template <class V>
1175   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1176     auto Na = Vs.traverse(Array, Vs.subExprCtx(Ctx));
1177     auto Ni = Vs.traverse(Index, Vs.subExprCtx(Ctx));
1178     return Vs.reduceArrayIndex(*this, Na, Ni);
1179   }
1180
1181   template <class C> typename C::CType compare(ArrayIndex* E, C& Cmp) {
1182     typename C::CType Ct = Cmp.compare(array(), E->array());
1183     if (Cmp.notTrue(Ct))
1184       return Ct;
1185     return Cmp.compare(index(), E->index());
1186   }
1187
1188 private:
1189   SExprRef Array;
1190   SExprRef Index;
1191 };
1192
1193
1194 // Pointer arithmetic, restricted to arrays only.
1195 // If p is a reference to an array, then p + n, where n is an integer, is
1196 // a reference to a subarray.
1197 class ArrayAdd : public SExpr {
1198 public:
1199   static bool classof(const SExpr *E) { return E->opcode() == COP_ArrayAdd; }
1200
1201   ArrayAdd(SExpr *A, SExpr *N) : SExpr(COP_ArrayAdd), Array(A), Index(N) {}
1202   ArrayAdd(const ArrayAdd &E, SExpr *A, SExpr *N)
1203     : SExpr(E), Array(A), Index(N) {}
1204
1205   SExpr *array() { return Array.get(); }
1206   const SExpr *array() const { return Array.get(); }
1207
1208   SExpr *index() { return Index.get(); }
1209   const SExpr *index() const { return Index.get(); }
1210
1211   template <class V>
1212   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1213     auto Na = Vs.traverse(Array, Vs.subExprCtx(Ctx));
1214     auto Ni = Vs.traverse(Index, Vs.subExprCtx(Ctx));
1215     return Vs.reduceArrayAdd(*this, Na, Ni);
1216   }
1217
1218   template <class C> typename C::CType compare(ArrayAdd* E, C& Cmp) {
1219     typename C::CType Ct = Cmp.compare(array(), E->array());
1220     if (Cmp.notTrue(Ct))
1221       return Ct;
1222     return Cmp.compare(index(), E->index());
1223   }
1224
1225 private:
1226   SExprRef Array;
1227   SExprRef Index;
1228 };
1229
1230
1231 // Simple unary operation -- e.g. !, ~, etc.
1232 class UnaryOp : public SExpr {
1233 public:
1234   static bool classof(const SExpr *E) { return E->opcode() == COP_UnaryOp; }
1235
1236   UnaryOp(TIL_UnaryOpcode Op, SExpr *E) : SExpr(COP_UnaryOp), Expr0(E) {
1237     Flags = Op;
1238   }
1239   UnaryOp(const UnaryOp &U, SExpr *E) : SExpr(U), Expr0(E) { Flags = U.Flags; }
1240
1241   TIL_UnaryOpcode unaryOpcode() const {
1242     return static_cast<TIL_UnaryOpcode>(Flags);
1243   }
1244
1245   SExpr *expr() { return Expr0.get(); }
1246   const SExpr *expr() const { return Expr0.get(); }
1247
1248   template <class V>
1249   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1250     auto Ne = Vs.traverse(Expr0, Vs.subExprCtx(Ctx));
1251     return Vs.reduceUnaryOp(*this, Ne);
1252   }
1253
1254   template <class C> typename C::CType compare(UnaryOp* E, C& Cmp) {
1255     typename C::CType Ct =
1256       Cmp.compareIntegers(unaryOpcode(), E->unaryOpcode());
1257     if (Cmp.notTrue(Ct))
1258       return Ct;
1259     return Cmp.compare(expr(), E->expr());
1260   }
1261
1262 private:
1263   SExprRef Expr0;
1264 };
1265
1266
1267 // Simple binary operation -- e.g. +, -, etc.
1268 class BinaryOp : public SExpr {
1269 public:
1270   static bool classof(const SExpr *E) { return E->opcode() == COP_BinaryOp; }
1271
1272   BinaryOp(TIL_BinaryOpcode Op, SExpr *E0, SExpr *E1)
1273       : SExpr(COP_BinaryOp), Expr0(E0), Expr1(E1) {
1274     Flags = Op;
1275   }
1276   BinaryOp(const BinaryOp &B, SExpr *E0, SExpr *E1)
1277       : SExpr(B), Expr0(E0), Expr1(E1) {
1278     Flags = B.Flags;
1279   }
1280
1281   TIL_BinaryOpcode binaryOpcode() const {
1282     return static_cast<TIL_BinaryOpcode>(Flags);
1283   }
1284
1285   SExpr *expr0() { return Expr0.get(); }
1286   const SExpr *expr0() const { return Expr0.get(); }
1287
1288   SExpr *expr1() { return Expr1.get(); }
1289   const SExpr *expr1() const { return Expr1.get(); }
1290
1291   template <class V>
1292   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1293     auto Ne0 = Vs.traverse(Expr0, Vs.subExprCtx(Ctx));
1294     auto Ne1 = Vs.traverse(Expr1, Vs.subExprCtx(Ctx));
1295     return Vs.reduceBinaryOp(*this, Ne0, Ne1);
1296   }
1297
1298   template <class C> typename C::CType compare(BinaryOp* E, C& Cmp) {
1299     typename C::CType Ct =
1300       Cmp.compareIntegers(binaryOpcode(), E->binaryOpcode());
1301     if (Cmp.notTrue(Ct))
1302       return Ct;
1303     Ct = Cmp.compare(expr0(), E->expr0());
1304     if (Cmp.notTrue(Ct))
1305       return Ct;
1306     return Cmp.compare(expr1(), E->expr1());
1307   }
1308
1309 private:
1310   SExprRef Expr0;
1311   SExprRef Expr1;
1312 };
1313
1314
1315 // Cast expression
1316 class Cast : public SExpr {
1317 public:
1318   static bool classof(const SExpr *E) { return E->opcode() == COP_Cast; }
1319
1320   Cast(TIL_CastOpcode Op, SExpr *E) : SExpr(COP_Cast), Expr0(E) { Flags = Op; }
1321   Cast(const Cast &C, SExpr *E) : SExpr(C), Expr0(E) { Flags = C.Flags; }
1322
1323   TIL_CastOpcode castOpcode() const {
1324     return static_cast<TIL_CastOpcode>(Flags);
1325   }
1326
1327   SExpr *expr() { return Expr0.get(); }
1328   const SExpr *expr() const { return Expr0.get(); }
1329
1330   template <class V>
1331   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1332     auto Ne = Vs.traverse(Expr0, Vs.subExprCtx(Ctx));
1333     return Vs.reduceCast(*this, Ne);
1334   }
1335
1336   template <class C> typename C::CType compare(Cast* E, C& Cmp) {
1337     typename C::CType Ct =
1338       Cmp.compareIntegers(castOpcode(), E->castOpcode());
1339     if (Cmp.notTrue(Ct))
1340       return Ct;
1341     return Cmp.compare(expr(), E->expr());
1342   }
1343
1344 private:
1345   SExprRef Expr0;
1346 };
1347
1348
1349 class SCFG;
1350
1351
1352 class Phi : public SExpr {
1353 public:
1354   // TODO: change to SExprRef
1355   typedef SimpleArray<SExpr *> ValArray;
1356
1357   // In minimal SSA form, all Phi nodes are MultiVal.
1358   // During conversion to SSA, incomplete Phi nodes may be introduced, which
1359   // are later determined to be SingleVal, and are thus redundant.
1360   enum Status {
1361     PH_MultiVal = 0, // Phi node has multiple distinct values.  (Normal)
1362     PH_SingleVal,    // Phi node has one distinct value, and can be eliminated
1363     PH_Incomplete    // Phi node is incomplete
1364   };
1365
1366   static bool classof(const SExpr *E) { return E->opcode() == COP_Phi; }
1367
1368   Phi() : SExpr(COP_Phi) {}
1369   Phi(MemRegionRef A, unsigned Nvals) : SExpr(COP_Phi), Values(A, Nvals) {}
1370   Phi(const Phi &P, ValArray &&Vs)    : SExpr(P), Values(std::move(Vs)) {}
1371
1372   const ValArray &values() const { return Values; }
1373   ValArray &values() { return Values; }
1374
1375   Status status() const { return static_cast<Status>(Flags); }
1376   void setStatus(Status s) { Flags = s; }
1377
1378   template <class V>
1379   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1380     typename V::template Container<typename V::R_SExpr>
1381       Nvs(Vs, Values.size());
1382
1383     for (auto *Val : Values) {
1384       Nvs.push_back( Vs.traverse(Val, Vs.subExprCtx(Ctx)) );
1385     }
1386     return Vs.reducePhi(*this, Nvs);
1387   }
1388
1389   template <class C> typename C::CType compare(Phi *E, C &Cmp) {
1390     // TODO: implement CFG comparisons
1391     return Cmp.comparePointers(this, E);
1392   }
1393
1394 private:
1395   ValArray Values;
1396 };
1397
1398
1399 // A basic block is part of an SCFG, and can be treated as a function in
1400 // continuation passing style.  It consists of a sequence of phi nodes, which
1401 // are "arguments" to the function, followed by a sequence of instructions.
1402 // Both arguments and instructions define new variables.  It ends with a
1403 // branch or goto to another basic block in the same SCFG.
1404 class BasicBlock : public SExpr {
1405 public:
1406   typedef SimpleArray<Variable*>   VarArray;
1407   typedef SimpleArray<BasicBlock*> BlockArray;
1408
1409   static bool classof(const SExpr *E) { return E->opcode() == COP_BasicBlock; }
1410
1411   explicit BasicBlock(MemRegionRef A, BasicBlock* P = nullptr)
1412       : SExpr(COP_BasicBlock), Arena(A), CFGPtr(nullptr), BlockID(0),
1413         Parent(P), Terminator(nullptr)
1414   { }
1415   BasicBlock(BasicBlock &B, VarArray &&As, VarArray &&Is, SExpr *T)
1416       : SExpr(COP_BasicBlock), Arena(B.Arena), CFGPtr(nullptr), BlockID(0),
1417         Parent(nullptr), Args(std::move(As)), Instrs(std::move(Is)),
1418         Terminator(T)
1419   { }
1420
1421   unsigned blockID() const { return BlockID; }
1422   unsigned numPredecessors() const { return Predecessors.size(); }
1423
1424   const SCFG* cfg() const { return CFGPtr; }
1425   SCFG* cfg() { return CFGPtr; }
1426
1427   const BasicBlock *parent() const { return Parent; }
1428   BasicBlock *parent() { return Parent; }
1429
1430   const VarArray &arguments() const { return Args; }
1431   VarArray &arguments() { return Args; }
1432
1433   const VarArray &instructions() const { return Instrs; }
1434   VarArray &instructions() { return Instrs; }
1435
1436   const BlockArray &predecessors() const { return Predecessors; }
1437   BlockArray &predecessors() { return Predecessors; }
1438
1439   const SExpr *terminator() const { return Terminator.get(); }
1440   SExpr *terminator() { return Terminator.get(); }
1441
1442   void setBlockID(unsigned i)   { BlockID = i; }
1443   void setParent(BasicBlock *P) { Parent = P;  }
1444   void setTerminator(SExpr *E)  { Terminator.reset(E); }
1445
1446   // Add a new argument.  V must define a phi-node.
1447   void addArgument(Variable *V) {
1448     V->setKind(Variable::VK_LetBB);
1449     Args.reserveCheck(1, Arena);
1450     Args.push_back(V);
1451   }
1452   // Add a new instruction.
1453   void addInstruction(Variable *V) {
1454     V->setKind(Variable::VK_LetBB);
1455     Instrs.reserveCheck(1, Arena);
1456     Instrs.push_back(V);
1457   }
1458   // Add a new predecessor, and return the phi-node index for it.
1459   // Will add an argument to all phi-nodes, initialized to nullptr.
1460   unsigned addPredecessor(BasicBlock *Pred);
1461
1462   // Reserve space for Nargs arguments.
1463   void reserveArguments(unsigned Nargs)   { Args.reserve(Nargs, Arena); }
1464
1465   // Reserve space for Nins instructions.
1466   void reserveInstructions(unsigned Nins) { Instrs.reserve(Nins, Arena); }
1467
1468   // Reserve space for NumPreds predecessors, including space in phi nodes.
1469   void reservePredecessors(unsigned NumPreds);
1470
1471   // Return the index of BB, or Predecessors.size if BB is not a predecessor.
1472   unsigned findPredecessorIndex(const BasicBlock *BB) const {
1473     auto I = std::find(Predecessors.cbegin(), Predecessors.cend(), BB);
1474     return std::distance(Predecessors.cbegin(), I);
1475   }
1476
1477   // Set id numbers for variables.
1478   void renumberVars();
1479
1480   template <class V>
1481   typename V::R_BasicBlock traverse(V &Vs, typename V::R_Ctx Ctx) {
1482     typename V::template Container<Variable*> Nas(Vs, Args.size());
1483     typename V::template Container<Variable*> Nis(Vs, Instrs.size());
1484
1485     // Entering the basic block should do any scope initialization.
1486     Vs.enterBasicBlock(*this);
1487
1488     for (auto *A : Args) {
1489       auto Ne = Vs.traverse(A->Definition, Vs.subExprCtx(Ctx));
1490       Variable *Nvd = Vs.enterScope(*A, Ne);
1491       Nas.push_back(Nvd);
1492     }
1493     for (auto *I : Instrs) {
1494       auto Ne = Vs.traverse(I->Definition, Vs.subExprCtx(Ctx));
1495       Variable *Nvd = Vs.enterScope(*I, Ne);
1496       Nis.push_back(Nvd);
1497     }
1498     auto Nt = Vs.traverse(Terminator, Ctx);
1499
1500     // Exiting the basic block should handle any scope cleanup.
1501     Vs.exitBasicBlock(*this);
1502
1503     return Vs.reduceBasicBlock(*this, Nas, Nis, Nt);
1504   }
1505
1506   template <class C> typename C::CType compare(BasicBlock *E, C &Cmp) {
1507     // TODO: implement CFG comparisons
1508     return Cmp.comparePointers(this, E);
1509   }
1510
1511 private:
1512   friend class SCFG;
1513
1514   MemRegionRef Arena;
1515
1516   SCFG       *CFGPtr;       // The CFG that contains this block.
1517   unsigned   BlockID;       // unique id for this BB in the containing CFG
1518   BasicBlock *Parent;       // The parent block is the enclosing lexical scope.
1519                             // The parent dominates this block.
1520   BlockArray Predecessors;  // Predecessor blocks in the CFG.
1521   VarArray   Args;          // Phi nodes.  One argument per predecessor.
1522   VarArray   Instrs;        // Instructions.
1523   SExprRef   Terminator;    // Branch or Goto
1524 };
1525
1526
1527 // An SCFG is a control-flow graph.  It consists of a set of basic blocks, each
1528 // of which terminates in a branch to another basic block.  There is one
1529 // entry point, and one exit point.
1530 class SCFG : public SExpr {
1531 public:
1532   typedef SimpleArray<BasicBlock *> BlockArray;
1533   typedef BlockArray::iterator iterator;
1534   typedef BlockArray::const_iterator const_iterator;
1535
1536   static bool classof(const SExpr *E) { return E->opcode() == COP_SCFG; }
1537
1538   SCFG(MemRegionRef A, unsigned Nblocks)
1539     : SExpr(COP_SCFG), Arena(A), Blocks(A, Nblocks),
1540       Entry(nullptr), Exit(nullptr) {
1541     Entry = new (A) BasicBlock(A, nullptr);
1542     Exit  = new (A) BasicBlock(A, Entry);
1543     auto *V = new (A) Variable(new (A) Phi());
1544     Exit->addArgument(V);
1545     add(Entry);
1546     add(Exit);
1547   }
1548   SCFG(const SCFG &Cfg, BlockArray &&Ba) // steals memory from Ba
1549       : SExpr(COP_SCFG), Arena(Cfg.Arena), Blocks(std::move(Ba)),
1550         Entry(nullptr), Exit(nullptr) {
1551     // TODO: set entry and exit!
1552   }
1553
1554   iterator begin() { return Blocks.begin(); }
1555   iterator end() { return Blocks.end(); }
1556
1557   const_iterator begin() const { return cbegin(); }
1558   const_iterator end() const { return cend(); }
1559
1560   const_iterator cbegin() const { return Blocks.cbegin(); }
1561   const_iterator cend() const { return Blocks.cend(); }
1562
1563   const BasicBlock *entry() const { return Entry; }
1564   BasicBlock *entry() { return Entry; }
1565   const BasicBlock *exit() const { return Exit; }
1566   BasicBlock *exit() { return Exit; }
1567
1568   inline void add(BasicBlock *BB) {
1569     assert(BB->CFGPtr == nullptr || BB->CFGPtr == this);
1570     BB->setBlockID(Blocks.size());
1571     BB->CFGPtr = this;
1572     Blocks.reserveCheck(1, Arena);
1573     Blocks.push_back(BB);
1574   }
1575
1576   void setEntry(BasicBlock *BB) { Entry = BB; }
1577   void setExit(BasicBlock *BB)  { Exit = BB;  }
1578
1579   // Set varable ids in all blocks.
1580   void renumberVars();
1581
1582   template <class V>
1583   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1584     Vs.enterCFG(*this);
1585     typename V::template Container<BasicBlock *> Bbs(Vs, Blocks.size());
1586     for (auto *B : Blocks) {
1587       Bbs.push_back( B->traverse(Vs, Vs.subExprCtx(Ctx)) );
1588     }
1589     Vs.exitCFG(*this);
1590     return Vs.reduceSCFG(*this, Bbs);
1591   }
1592
1593   template <class C> typename C::CType compare(SCFG *E, C &Cmp) {
1594     // TODO -- implement CFG comparisons
1595     return Cmp.comparePointers(this, E);
1596   }
1597
1598 private:
1599   MemRegionRef Arena;
1600   BlockArray   Blocks;
1601   BasicBlock   *Entry;
1602   BasicBlock   *Exit;
1603 };
1604
1605
1606 class Goto : public SExpr {
1607 public:
1608   static bool classof(const SExpr *E) { return E->opcode() == COP_Goto; }
1609
1610   Goto(BasicBlock *B, unsigned I)
1611       : SExpr(COP_Goto), TargetBlock(B), Index(I) {}
1612   Goto(const Goto &G, BasicBlock *B, unsigned I)
1613       : SExpr(COP_Goto), TargetBlock(B), Index(I) {}
1614
1615   const BasicBlock *targetBlock() const { return TargetBlock; }
1616   BasicBlock *targetBlock() { return TargetBlock; }
1617
1618   unsigned index() const { return Index; }
1619
1620   template <class V>
1621   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1622     BasicBlock *Ntb = Vs.reduceBasicBlockRef(TargetBlock);
1623     return Vs.reduceGoto(*this, Ntb);
1624   }
1625
1626   template <class C> typename C::CType compare(Goto *E, C &Cmp) {
1627     // TODO -- implement CFG comparisons
1628     return Cmp.comparePointers(this, E);
1629   }
1630
1631 private:
1632   BasicBlock *TargetBlock;
1633   unsigned Index;   // Index into Phi nodes of target block.
1634 };
1635
1636
1637 class Branch : public SExpr {
1638 public:
1639   static bool classof(const SExpr *E) { return E->opcode() == COP_Branch; }
1640
1641   Branch(SExpr *C, BasicBlock *T, BasicBlock *E, unsigned TI, unsigned EI)
1642       : SExpr(COP_Branch), Condition(C), ThenBlock(T), ElseBlock(E),
1643         ThenIndex(TI), ElseIndex(EI)
1644   {}
1645   Branch(const Branch &Br, SExpr *C, BasicBlock *T, BasicBlock *E,
1646          unsigned TI, unsigned EI)
1647       : SExpr(COP_Branch), Condition(C), ThenBlock(T), ElseBlock(E),
1648         ThenIndex(TI), ElseIndex(EI)
1649   {}
1650
1651   const SExpr *condition() const { return Condition; }
1652   SExpr *condition() { return Condition; }
1653
1654   const BasicBlock *thenBlock() const { return ThenBlock; }
1655   BasicBlock *thenBlock() { return ThenBlock; }
1656
1657   const BasicBlock *elseBlock() const { return ElseBlock; }
1658   BasicBlock *elseBlock() { return ElseBlock; }
1659
1660   unsigned thenIndex() const { return ThenIndex; }
1661   unsigned elseIndex() const { return ElseIndex; }
1662
1663   template <class V>
1664   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1665     auto Nc = Vs.traverse(Condition, Vs.subExprCtx(Ctx));
1666     BasicBlock *Ntb = Vs.reduceBasicBlockRef(ThenBlock);
1667     BasicBlock *Nte = Vs.reduceBasicBlockRef(ElseBlock);
1668     return Vs.reduceBranch(*this, Nc, Ntb, Nte);
1669   }
1670
1671   template <class C> typename C::CType compare(Branch *E, C &Cmp) {
1672     // TODO -- implement CFG comparisons
1673     return Cmp.comparePointers(this, E);
1674   }
1675
1676 private:
1677   SExpr *Condition;
1678   BasicBlock *ThenBlock;
1679   BasicBlock *ElseBlock;
1680   unsigned ThenIndex;
1681   unsigned ElseIndex;
1682 };
1683
1684
1685 // An identifier, e.g. 'foo' or 'x'.
1686 // This is a pseduo-term; it will be lowered to a variable or projection.
1687 class Identifier : public SExpr {
1688 public:
1689   static bool classof(const SExpr *E) { return E->opcode() == COP_Identifier; }
1690
1691   Identifier(StringRef Id): SExpr(COP_Identifier), Name(Id) { }
1692   Identifier(const Identifier& I) : SExpr(I), Name(I.Name)  { }
1693
1694   StringRef name() const { return Name; }
1695
1696   template <class V>
1697   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1698     return Vs.reduceIdentifier(*this);
1699   }
1700
1701   template <class C> typename C::CType compare(Identifier* E, C& Cmp) {
1702     return Cmp.compareStrings(name(), E->name());
1703   }
1704
1705 private:
1706   StringRef Name;
1707 };
1708
1709
1710 // An if-then-else expression.
1711 // This is a pseduo-term; it will be lowered to a branch in a CFG.
1712 class IfThenElse : public SExpr {
1713 public:
1714   static bool classof(const SExpr *E) { return E->opcode() == COP_IfThenElse; }
1715
1716   IfThenElse(SExpr *C, SExpr *T, SExpr *E)
1717     : SExpr(COP_IfThenElse), Condition(C), ThenExpr(T), ElseExpr(E)
1718   { }
1719   IfThenElse(const IfThenElse &I, SExpr *C, SExpr *T, SExpr *E)
1720     : SExpr(I), Condition(C), ThenExpr(T), ElseExpr(E)
1721   { }
1722
1723   SExpr *condition() { return Condition.get(); }   // Address to store to
1724   const SExpr *condition() const { return Condition.get(); }
1725
1726   SExpr *thenExpr() { return ThenExpr.get(); }     // Value to store
1727   const SExpr *thenExpr() const { return ThenExpr.get(); }
1728
1729   SExpr *elseExpr() { return ElseExpr.get(); }     // Value to store
1730   const SExpr *elseExpr() const { return ElseExpr.get(); }
1731
1732   template <class V>
1733   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1734     auto Nc = Vs.traverse(Condition, Vs.subExprCtx(Ctx));
1735     auto Nt = Vs.traverse(ThenExpr,  Vs.subExprCtx(Ctx));
1736     auto Ne = Vs.traverse(ElseExpr,  Vs.subExprCtx(Ctx));
1737     return Vs.reduceIfThenElse(*this, Nc, Nt, Ne);
1738   }
1739
1740   template <class C> typename C::CType compare(IfThenElse* E, C& Cmp) {
1741     typename C::CType Ct = Cmp.compare(condition(), E->condition());
1742     if (Cmp.notTrue(Ct))
1743       return Ct;
1744     Ct = Cmp.compare(thenExpr(), E->thenExpr());
1745     if (Cmp.notTrue(Ct))
1746       return Ct;
1747     return Cmp.compare(elseExpr(), E->elseExpr());
1748   }
1749
1750 private:
1751   SExprRef Condition;
1752   SExprRef ThenExpr;
1753   SExprRef ElseExpr;
1754 };
1755
1756
1757 // A let-expression,  e.g.  let x=t; u.
1758 // This is a pseduo-term; it will be lowered to instructions in a CFG.
1759 class Let : public SExpr {
1760 public:
1761   static bool classof(const SExpr *E) { return E->opcode() == COP_Let; }
1762
1763   Let(Variable *Vd, SExpr *Bd) : SExpr(COP_Let), VarDecl(Vd), Body(Bd) {
1764     Vd->setKind(Variable::VK_Let);
1765   }
1766   Let(const Let &L, Variable *Vd, SExpr *Bd) : SExpr(L), VarDecl(Vd), Body(Bd) {
1767     Vd->setKind(Variable::VK_Let);
1768   }
1769
1770   Variable *variableDecl()  { return VarDecl; }
1771   const Variable *variableDecl() const { return VarDecl; }
1772
1773   SExpr *body() { return Body.get(); }
1774   const SExpr *body() const { return Body.get(); }
1775
1776   template <class V>
1777   typename V::R_SExpr traverse(V &Vs, typename V::R_Ctx Ctx) {
1778     // This is a variable declaration, so traverse the definition.
1779     auto E0 = Vs.traverse(VarDecl->Definition, Vs.subExprCtx(Ctx));
1780     // Tell the rewriter to enter the scope of the let variable.
1781     Variable *Nvd = Vs.enterScope(*VarDecl, E0);
1782     auto E1 = Vs.traverse(Body, Ctx);
1783     Vs.exitScope(*VarDecl);
1784     return Vs.reduceLet(*this, Nvd, E1);
1785   }
1786
1787   template <class C> typename C::CType compare(Let* E, C& Cmp) {
1788     typename C::CType Ct =
1789       Cmp.compare(VarDecl->definition(), E->VarDecl->definition());
1790     if (Cmp.notTrue(Ct))
1791       return Ct;
1792     Cmp.enterScope(variableDecl(), E->variableDecl());
1793     Ct = Cmp.compare(body(), E->body());
1794     Cmp.leaveScope();
1795     return Ct;
1796   }
1797
1798 private:
1799   Variable *VarDecl;
1800   SExprRef Body;
1801 };
1802
1803
1804
1805 SExpr *getCanonicalVal(SExpr *E);
1806 void simplifyIncompleteArg(Variable *V, til::Phi *Ph);
1807
1808
1809 } // end namespace til
1810 } // end namespace threadSafety
1811 } // end namespace clang
1812
1813 #endif // LLVM_CLANG_THREAD_SAFETY_TIL_H