]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/include/clang/StaticAnalyzer/Core/PathSensitive/CoreEngine.h
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / include / clang / StaticAnalyzer / Core / PathSensitive / CoreEngine.h
1 //===- CoreEngine.h - Path-Sensitive Dataflow Engine ------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines a generic engine for intraprocedural, path-sensitive,
11 //  dataflow analysis via graph reachability.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_COREENGINE_H
16 #define LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_COREENGINE_H
17
18 #include "clang/AST/Stmt.h"
19 #include "clang/Analysis/AnalysisDeclContext.h"
20 #include "clang/Analysis/CFG.h"
21 #include "clang/Analysis/ProgramPoint.h"
22 #include "clang/Basic/LLVM.h"
23 #include "clang/StaticAnalyzer/Core/PathSensitive/BlockCounter.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
25 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
26 #include "clang/StaticAnalyzer/Core/PathSensitive/WorkList.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/Support/Casting.h"
29 #include <cassert>
30 #include <memory>
31 #include <utility>
32 #include <vector>
33
34 namespace clang {
35
36 class AnalyzerOptions;
37 class CXXBindTemporaryExpr;
38 class Expr;
39 class LabelDecl;
40
41 namespace ento {
42
43 class FunctionSummariesTy;
44 class SubEngine;
45
46 //===----------------------------------------------------------------------===//
47 /// CoreEngine - Implements the core logic of the graph-reachability
48 ///   analysis. It traverses the CFG and generates the ExplodedGraph.
49 ///   Program "states" are treated as opaque void pointers.
50 ///   The template class CoreEngine (which subclasses CoreEngine)
51 ///   provides the matching component to the engine that knows the actual types
52 ///   for states.  Note that this engine only dispatches to transfer functions
53 ///   at the statement and block-level.  The analyses themselves must implement
54 ///   any transfer function logic and the sub-expression level (if any).
55 class CoreEngine {
56   friend class CommonNodeBuilder;
57   friend class EndOfFunctionNodeBuilder;
58   friend class ExprEngine;
59   friend class IndirectGotoNodeBuilder;
60   friend class NodeBuilder;
61   friend struct NodeBuilderContext;
62   friend class SwitchNodeBuilder;
63
64 public:
65   using BlocksExhausted =
66       std::vector<std::pair<BlockEdge, const ExplodedNode *>>;
67
68   using BlocksAborted =
69       std::vector<std::pair<const CFGBlock *, const ExplodedNode *>>;
70
71 private:
72   SubEngine &SubEng;
73
74   /// G - The simulation graph.  Each node is a (location,state) pair.
75   mutable ExplodedGraph G;
76
77   /// WList - A set of queued nodes that need to be processed by the
78   ///  worklist algorithm.  It is up to the implementation of WList to decide
79   ///  the order that nodes are processed.
80   std::unique_ptr<WorkList> WList;
81
82   /// BCounterFactory - A factory object for created BlockCounter objects.
83   ///   These are used to record for key nodes in the ExplodedGraph the
84   ///   number of times different CFGBlocks have been visited along a path.
85   BlockCounter::Factory BCounterFactory;
86
87   /// The locations where we stopped doing work because we visited a location
88   ///  too many times.
89   BlocksExhausted blocksExhausted;
90
91   /// The locations where we stopped because the engine aborted analysis,
92   /// usually because it could not reason about something.
93   BlocksAborted blocksAborted;
94
95   /// The information about functions shared by the whole translation unit.
96   /// (This data is owned by AnalysisConsumer.)
97   FunctionSummariesTy *FunctionSummaries;
98
99   void generateNode(const ProgramPoint &Loc,
100                     ProgramStateRef State,
101                     ExplodedNode *Pred);
102
103   void HandleBlockEdge(const BlockEdge &E, ExplodedNode *Pred);
104   void HandleBlockEntrance(const BlockEntrance &E, ExplodedNode *Pred);
105   void HandleBlockExit(const CFGBlock *B, ExplodedNode *Pred);
106
107   void HandleCallEnter(const CallEnter &CE, ExplodedNode *Pred);
108
109   void HandlePostStmt(const CFGBlock *B, unsigned StmtIdx, ExplodedNode *Pred);
110
111   void HandleBranch(const Stmt *Cond, const Stmt *Term, const CFGBlock *B,
112                     ExplodedNode *Pred);
113   void HandleCleanupTemporaryBranch(const CXXBindTemporaryExpr *BTE,
114                                     const CFGBlock *B, ExplodedNode *Pred);
115
116   /// Handle conditional logic for running static initializers.
117   void HandleStaticInit(const DeclStmt *DS, const CFGBlock *B,
118                         ExplodedNode *Pred);
119
120 private:
121   ExplodedNode *generateCallExitBeginNode(ExplodedNode *N,
122                                           const ReturnStmt *RS);
123
124 public:
125   /// Construct a CoreEngine object to analyze the provided CFG.
126   CoreEngine(SubEngine &subengine,
127              FunctionSummariesTy *FS,
128              AnalyzerOptions &Opts);
129
130   CoreEngine(const CoreEngine &) = delete;
131   CoreEngine &operator=(const CoreEngine &) = delete;
132
133   /// getGraph - Returns the exploded graph.
134   ExplodedGraph &getGraph() { return G; }
135
136   /// ExecuteWorkList - Run the worklist algorithm for a maximum number of
137   ///  steps.  Returns true if there is still simulation state on the worklist.
138   bool ExecuteWorkList(const LocationContext *L, unsigned Steps,
139                        ProgramStateRef InitState);
140
141   /// Returns true if there is still simulation state on the worklist.
142   bool ExecuteWorkListWithInitialState(const LocationContext *L,
143                                        unsigned Steps,
144                                        ProgramStateRef InitState,
145                                        ExplodedNodeSet &Dst);
146
147   /// Dispatch the work list item based on the given location information.
148   /// Use Pred parameter as the predecessor state.
149   void dispatchWorkItem(ExplodedNode* Pred, ProgramPoint Loc,
150                         const WorkListUnit& WU);
151
152   // Functions for external checking of whether we have unfinished work
153   bool wasBlockAborted() const { return !blocksAborted.empty(); }
154   bool wasBlocksExhausted() const { return !blocksExhausted.empty(); }
155   bool hasWorkRemaining() const { return wasBlocksExhausted() ||
156                                          WList->hasWork() ||
157                                          wasBlockAborted(); }
158
159   /// Inform the CoreEngine that a basic block was aborted because
160   /// it could not be completely analyzed.
161   void addAbortedBlock(const ExplodedNode *node, const CFGBlock *block) {
162     blocksAborted.push_back(std::make_pair(block, node));
163   }
164
165   WorkList *getWorkList() const { return WList.get(); }
166
167   BlocksExhausted::const_iterator blocks_exhausted_begin() const {
168     return blocksExhausted.begin();
169   }
170
171   BlocksExhausted::const_iterator blocks_exhausted_end() const {
172     return blocksExhausted.end();
173   }
174
175   BlocksAborted::const_iterator blocks_aborted_begin() const {
176     return blocksAborted.begin();
177   }
178
179   BlocksAborted::const_iterator blocks_aborted_end() const {
180     return blocksAborted.end();
181   }
182
183   /// Enqueue the given set of nodes onto the work list.
184   void enqueue(ExplodedNodeSet &Set);
185
186   /// Enqueue nodes that were created as a result of processing
187   /// a statement onto the work list.
188   void enqueue(ExplodedNodeSet &Set, const CFGBlock *Block, unsigned Idx);
189
190   /// enqueue the nodes corresponding to the end of function onto the
191   /// end of path / work list.
192   void enqueueEndOfFunction(ExplodedNodeSet &Set, const ReturnStmt *RS);
193
194   /// Enqueue a single node created as a result of statement processing.
195   void enqueueStmtNode(ExplodedNode *N, const CFGBlock *Block, unsigned Idx);
196 };
197
198 // TODO: Turn into a calss.
199 struct NodeBuilderContext {
200   const CoreEngine &Eng;
201   const CFGBlock *Block;
202   const LocationContext *LC;
203
204   NodeBuilderContext(const CoreEngine &E, const CFGBlock *B, ExplodedNode *N)
205       : Eng(E), Block(B), LC(N->getLocationContext()) { assert(B); }
206
207   /// Return the CFGBlock associated with this builder.
208   const CFGBlock *getBlock() const { return Block; }
209
210   /// Returns the number of times the current basic block has been
211   /// visited on the exploded graph path.
212   unsigned blockCount() const {
213     return Eng.WList->getBlockCounter().getNumVisited(
214                     LC->getStackFrame(),
215                     Block->getBlockID());
216   }
217 };
218
219 /// \class NodeBuilder
220 /// This is the simplest builder which generates nodes in the
221 /// ExplodedGraph.
222 ///
223 /// The main benefit of the builder is that it automatically tracks the
224 /// frontier nodes (or destination set). This is the set of nodes which should
225 /// be propagated to the next step / builder. They are the nodes which have been
226 /// added to the builder (either as the input node set or as the newly
227 /// constructed nodes) but did not have any outgoing transitions added.
228 class NodeBuilder {
229   virtual void anchor();
230
231 protected:
232   const NodeBuilderContext &C;
233
234   /// Specifies if the builder results have been finalized. For example, if it
235   /// is set to false, autotransitions are yet to be generated.
236   bool Finalized;
237
238   bool HasGeneratedNodes = false;
239
240   /// The frontier set - a set of nodes which need to be propagated after
241   /// the builder dies.
242   ExplodedNodeSet &Frontier;
243
244   /// Checks if the results are ready.
245   virtual bool checkResults() {
246     return Finalized;
247   }
248
249   bool hasNoSinksInFrontier() {
250     for (const auto  I : Frontier)
251       if (I->isSink())
252         return false;
253     return true;
254   }
255
256   /// Allow subclasses to finalize results before result_begin() is executed.
257   virtual void finalizeResults() {}
258
259   ExplodedNode *generateNodeImpl(const ProgramPoint &PP,
260                                  ProgramStateRef State,
261                                  ExplodedNode *Pred,
262                                  bool MarkAsSink = false);
263
264 public:
265   NodeBuilder(ExplodedNode *SrcNode, ExplodedNodeSet &DstSet,
266               const NodeBuilderContext &Ctx, bool F = true)
267       : C(Ctx), Finalized(F), Frontier(DstSet) {
268     Frontier.Add(SrcNode);
269   }
270
271   NodeBuilder(const ExplodedNodeSet &SrcSet, ExplodedNodeSet &DstSet,
272               const NodeBuilderContext &Ctx, bool F = true)
273       : C(Ctx), Finalized(F), Frontier(DstSet) {
274     Frontier.insert(SrcSet);
275     assert(hasNoSinksInFrontier());
276   }
277
278   virtual ~NodeBuilder() = default;
279
280   /// Generates a node in the ExplodedGraph.
281   ExplodedNode *generateNode(const ProgramPoint &PP,
282                              ProgramStateRef State,
283                              ExplodedNode *Pred) {
284     return generateNodeImpl(PP, State, Pred, false);
285   }
286
287   /// Generates a sink in the ExplodedGraph.
288   ///
289   /// When a node is marked as sink, the exploration from the node is stopped -
290   /// the node becomes the last node on the path and certain kinds of bugs are
291   /// suppressed.
292   ExplodedNode *generateSink(const ProgramPoint &PP,
293                              ProgramStateRef State,
294                              ExplodedNode *Pred) {
295     return generateNodeImpl(PP, State, Pred, true);
296   }
297
298   const ExplodedNodeSet &getResults() {
299     finalizeResults();
300     assert(checkResults());
301     return Frontier;
302   }
303
304   using iterator = ExplodedNodeSet::iterator;
305
306   /// Iterators through the results frontier.
307   iterator begin() {
308     finalizeResults();
309     assert(checkResults());
310     return Frontier.begin();
311   }
312
313   iterator end() {
314     finalizeResults();
315     return Frontier.end();
316   }
317
318   const NodeBuilderContext &getContext() { return C; }
319   bool hasGeneratedNodes() { return HasGeneratedNodes; }
320
321   void takeNodes(const ExplodedNodeSet &S) {
322     for (const auto I : S)
323       Frontier.erase(I);
324   }
325
326   void takeNodes(ExplodedNode *N) { Frontier.erase(N); }
327   void addNodes(const ExplodedNodeSet &S) { Frontier.insert(S); }
328   void addNodes(ExplodedNode *N) { Frontier.Add(N); }
329 };
330
331 /// \class NodeBuilderWithSinks
332 /// This node builder keeps track of the generated sink nodes.
333 class NodeBuilderWithSinks: public NodeBuilder {
334   void anchor() override;
335
336 protected:
337   SmallVector<ExplodedNode*, 2> sinksGenerated;
338   ProgramPoint &Location;
339
340 public:
341   NodeBuilderWithSinks(ExplodedNode *Pred, ExplodedNodeSet &DstSet,
342                        const NodeBuilderContext &Ctx, ProgramPoint &L)
343       : NodeBuilder(Pred, DstSet, Ctx), Location(L) {}
344
345   ExplodedNode *generateNode(ProgramStateRef State,
346                              ExplodedNode *Pred,
347                              const ProgramPointTag *Tag = nullptr) {
348     const ProgramPoint &LocalLoc = (Tag ? Location.withTag(Tag) : Location);
349     return NodeBuilder::generateNode(LocalLoc, State, Pred);
350   }
351
352   ExplodedNode *generateSink(ProgramStateRef State, ExplodedNode *Pred,
353                              const ProgramPointTag *Tag = nullptr) {
354     const ProgramPoint &LocalLoc = (Tag ? Location.withTag(Tag) : Location);
355     ExplodedNode *N = NodeBuilder::generateSink(LocalLoc, State, Pred);
356     if (N && N->isSink())
357       sinksGenerated.push_back(N);
358     return N;
359   }
360
361   const SmallVectorImpl<ExplodedNode*> &getSinks() const {
362     return sinksGenerated;
363   }
364 };
365
366 /// \class StmtNodeBuilder
367 /// This builder class is useful for generating nodes that resulted from
368 /// visiting a statement. The main difference from its parent NodeBuilder is
369 /// that it creates a statement specific ProgramPoint.
370 class StmtNodeBuilder: public NodeBuilder {
371   NodeBuilder *EnclosingBldr;
372
373 public:
374   /// Constructs a StmtNodeBuilder. If the builder is going to process
375   /// nodes currently owned by another builder(with larger scope), use
376   /// Enclosing builder to transfer ownership.
377   StmtNodeBuilder(ExplodedNode *SrcNode, ExplodedNodeSet &DstSet,
378                   const NodeBuilderContext &Ctx,
379                   NodeBuilder *Enclosing = nullptr)
380       : NodeBuilder(SrcNode, DstSet, Ctx), EnclosingBldr(Enclosing) {
381     if (EnclosingBldr)
382       EnclosingBldr->takeNodes(SrcNode);
383   }
384
385   StmtNodeBuilder(ExplodedNodeSet &SrcSet, ExplodedNodeSet &DstSet,
386                   const NodeBuilderContext &Ctx,
387                   NodeBuilder *Enclosing = nullptr)
388       : NodeBuilder(SrcSet, DstSet, Ctx), EnclosingBldr(Enclosing) {
389     if (EnclosingBldr)
390       for (const auto I : SrcSet)
391         EnclosingBldr->takeNodes(I);
392   }
393
394   ~StmtNodeBuilder() override;
395
396   using NodeBuilder::generateNode;
397   using NodeBuilder::generateSink;
398
399   ExplodedNode *generateNode(const Stmt *S,
400                              ExplodedNode *Pred,
401                              ProgramStateRef St,
402                              const ProgramPointTag *tag = nullptr,
403                              ProgramPoint::Kind K = ProgramPoint::PostStmtKind){
404     const ProgramPoint &L = ProgramPoint::getProgramPoint(S, K,
405                                   Pred->getLocationContext(), tag);
406     return NodeBuilder::generateNode(L, St, Pred);
407   }
408
409   ExplodedNode *generateSink(const Stmt *S,
410                              ExplodedNode *Pred,
411                              ProgramStateRef St,
412                              const ProgramPointTag *tag = nullptr,
413                              ProgramPoint::Kind K = ProgramPoint::PostStmtKind){
414     const ProgramPoint &L = ProgramPoint::getProgramPoint(S, K,
415                                   Pred->getLocationContext(), tag);
416     return NodeBuilder::generateSink(L, St, Pred);
417   }
418 };
419
420 /// BranchNodeBuilder is responsible for constructing the nodes
421 /// corresponding to the two branches of the if statement - true and false.
422 class BranchNodeBuilder: public NodeBuilder {
423   const CFGBlock *DstT;
424   const CFGBlock *DstF;
425
426   bool InFeasibleTrue;
427   bool InFeasibleFalse;
428
429   void anchor() override;
430
431 public:
432   BranchNodeBuilder(ExplodedNode *SrcNode, ExplodedNodeSet &DstSet,
433                     const NodeBuilderContext &C,
434                     const CFGBlock *dstT, const CFGBlock *dstF)
435       : NodeBuilder(SrcNode, DstSet, C), DstT(dstT), DstF(dstF),
436         InFeasibleTrue(!DstT), InFeasibleFalse(!DstF) {
437     // The branch node builder does not generate autotransitions.
438     // If there are no successors it means that both branches are infeasible.
439     takeNodes(SrcNode);
440   }
441
442   BranchNodeBuilder(const ExplodedNodeSet &SrcSet, ExplodedNodeSet &DstSet,
443                     const NodeBuilderContext &C,
444                     const CFGBlock *dstT, const CFGBlock *dstF)
445       : NodeBuilder(SrcSet, DstSet, C), DstT(dstT), DstF(dstF),
446         InFeasibleTrue(!DstT), InFeasibleFalse(!DstF) {
447     takeNodes(SrcSet);
448   }
449
450   ExplodedNode *generateNode(ProgramStateRef State, bool branch,
451                              ExplodedNode *Pred);
452
453   const CFGBlock *getTargetBlock(bool branch) const {
454     return branch ? DstT : DstF;
455   }
456
457   void markInfeasible(bool branch) {
458     if (branch)
459       InFeasibleTrue = true;
460     else
461       InFeasibleFalse = true;
462   }
463
464   bool isFeasible(bool branch) {
465     return branch ? !InFeasibleTrue : !InFeasibleFalse;
466   }
467 };
468
469 class IndirectGotoNodeBuilder {
470   CoreEngine& Eng;
471   const CFGBlock *Src;
472   const CFGBlock &DispatchBlock;
473   const Expr *E;
474   ExplodedNode *Pred;
475
476 public:
477   IndirectGotoNodeBuilder(ExplodedNode *pred, const CFGBlock *src,
478                     const Expr *e, const CFGBlock *dispatch, CoreEngine* eng)
479       : Eng(*eng), Src(src), DispatchBlock(*dispatch), E(e), Pred(pred) {}
480
481   class iterator {
482     friend class IndirectGotoNodeBuilder;
483
484     CFGBlock::const_succ_iterator I;
485
486     iterator(CFGBlock::const_succ_iterator i) : I(i) {}
487
488   public:
489     iterator &operator++() { ++I; return *this; }
490     bool operator!=(const iterator &X) const { return I != X.I; }
491
492     const LabelDecl *getLabel() const {
493       return cast<LabelStmt>((*I)->getLabel())->getDecl();
494     }
495
496     const CFGBlock *getBlock() const {
497       return *I;
498     }
499   };
500
501   iterator begin() { return iterator(DispatchBlock.succ_begin()); }
502   iterator end() { return iterator(DispatchBlock.succ_end()); }
503
504   ExplodedNode *generateNode(const iterator &I,
505                              ProgramStateRef State,
506                              bool isSink = false);
507
508   const Expr *getTarget() const { return E; }
509
510   ProgramStateRef getState() const { return Pred->State; }
511
512   const LocationContext *getLocationContext() const {
513     return Pred->getLocationContext();
514   }
515 };
516
517 class SwitchNodeBuilder {
518   CoreEngine& Eng;
519   const CFGBlock *Src;
520   const Expr *Condition;
521   ExplodedNode *Pred;
522
523 public:
524   SwitchNodeBuilder(ExplodedNode *pred, const CFGBlock *src,
525                     const Expr *condition, CoreEngine* eng)
526       : Eng(*eng), Src(src), Condition(condition), Pred(pred) {}
527
528   class iterator {
529     friend class SwitchNodeBuilder;
530
531     CFGBlock::const_succ_reverse_iterator I;
532
533     iterator(CFGBlock::const_succ_reverse_iterator i) : I(i) {}
534
535   public:
536     iterator &operator++() { ++I; return *this; }
537     bool operator!=(const iterator &X) const { return I != X.I; }
538     bool operator==(const iterator &X) const { return I == X.I; }
539
540     const CaseStmt *getCase() const {
541       return cast<CaseStmt>((*I)->getLabel());
542     }
543
544     const CFGBlock *getBlock() const {
545       return *I;
546     }
547   };
548
549   iterator begin() { return iterator(Src->succ_rbegin()+1); }
550   iterator end() { return iterator(Src->succ_rend()); }
551
552   const SwitchStmt *getSwitch() const {
553     return cast<SwitchStmt>(Src->getTerminator());
554   }
555
556   ExplodedNode *generateCaseStmtNode(const iterator &I,
557                                      ProgramStateRef State);
558
559   ExplodedNode *generateDefaultCaseNode(ProgramStateRef State,
560                                         bool isSink = false);
561
562   const Expr *getCondition() const { return Condition; }
563
564   ProgramStateRef getState() const { return Pred->State; }
565
566   const LocationContext *getLocationContext() const {
567     return Pred->getLocationContext();
568   }
569 };
570
571 } // namespace ento
572
573 } // namespace clang
574
575 #endif // LLVM_CLANG_STATICANALYZER_CORE_PATHSENSITIVE_COREENGINE_H