]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/AST/Decl.cpp
Merge in changes from ^/vendor/NetBSD/tests/dist@r313245
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / AST / Decl.cpp
1 //===--- Decl.cpp - Declaration AST Node Implementation -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Decl subclasses.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/AST/Decl.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTLambda.h"
17 #include "clang/AST/ASTMutationListener.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclOpenMP.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/PrettyPrinter.h"
26 #include "clang/AST/Stmt.h"
27 #include "clang/AST/TypeLoc.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/IdentifierTable.h"
30 #include "clang/Basic/Module.h"
31 #include "clang/Basic/Specifiers.h"
32 #include "clang/Basic/TargetInfo.h"
33 #include "clang/Frontend/FrontendDiagnostic.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include <algorithm>
36
37 using namespace clang;
38
39 Decl *clang::getPrimaryMergedDecl(Decl *D) {
40   return D->getASTContext().getPrimaryMergedDecl(D);
41 }
42
43 // Defined here so that it can be inlined into its direct callers.
44 bool Decl::isOutOfLine() const {
45   return !getLexicalDeclContext()->Equals(getDeclContext());
46 }
47
48 TranslationUnitDecl::TranslationUnitDecl(ASTContext &ctx)
49     : Decl(TranslationUnit, nullptr, SourceLocation()),
50       DeclContext(TranslationUnit), Ctx(ctx), AnonymousNamespace(nullptr) {
51   Hidden = Ctx.getLangOpts().ModulesLocalVisibility;
52 }
53
54 //===----------------------------------------------------------------------===//
55 // NamedDecl Implementation
56 //===----------------------------------------------------------------------===//
57
58 // Visibility rules aren't rigorously externally specified, but here
59 // are the basic principles behind what we implement:
60 //
61 // 1. An explicit visibility attribute is generally a direct expression
62 // of the user's intent and should be honored.  Only the innermost
63 // visibility attribute applies.  If no visibility attribute applies,
64 // global visibility settings are considered.
65 //
66 // 2. There is one caveat to the above: on or in a template pattern,
67 // an explicit visibility attribute is just a default rule, and
68 // visibility can be decreased by the visibility of template
69 // arguments.  But this, too, has an exception: an attribute on an
70 // explicit specialization or instantiation causes all the visibility
71 // restrictions of the template arguments to be ignored.
72 //
73 // 3. A variable that does not otherwise have explicit visibility can
74 // be restricted by the visibility of its type.
75 //
76 // 4. A visibility restriction is explicit if it comes from an
77 // attribute (or something like it), not a global visibility setting.
78 // When emitting a reference to an external symbol, visibility
79 // restrictions are ignored unless they are explicit.
80 //
81 // 5. When computing the visibility of a non-type, including a
82 // non-type member of a class, only non-type visibility restrictions
83 // are considered: the 'visibility' attribute, global value-visibility
84 // settings, and a few special cases like __private_extern.
85 //
86 // 6. When computing the visibility of a type, including a type member
87 // of a class, only type visibility restrictions are considered:
88 // the 'type_visibility' attribute and global type-visibility settings.
89 // However, a 'visibility' attribute counts as a 'type_visibility'
90 // attribute on any declaration that only has the former.
91 //
92 // The visibility of a "secondary" entity, like a template argument,
93 // is computed using the kind of that entity, not the kind of the
94 // primary entity for which we are computing visibility.  For example,
95 // the visibility of a specialization of either of these templates:
96 //   template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
97 //   template <class T, bool (&compare)(T, X)> class matcher;
98 // is restricted according to the type visibility of the argument 'T',
99 // the type visibility of 'bool(&)(T,X)', and the value visibility of
100 // the argument function 'compare'.  That 'has_match' is a value
101 // and 'matcher' is a type only matters when looking for attributes
102 // and settings from the immediate context.
103
104 const unsigned IgnoreExplicitVisibilityBit = 2;
105 const unsigned IgnoreAllVisibilityBit = 4;
106
107 /// Kinds of LV computation.  The linkage side of the computation is
108 /// always the same, but different things can change how visibility is
109 /// computed.
110 enum LVComputationKind {
111   /// Do an LV computation for, ultimately, a type.
112   /// Visibility may be restricted by type visibility settings and
113   /// the visibility of template arguments.
114   LVForType = NamedDecl::VisibilityForType,
115
116   /// Do an LV computation for, ultimately, a non-type declaration.
117   /// Visibility may be restricted by value visibility settings and
118   /// the visibility of template arguments.
119   LVForValue = NamedDecl::VisibilityForValue,
120
121   /// Do an LV computation for, ultimately, a type that already has
122   /// some sort of explicit visibility.  Visibility may only be
123   /// restricted by the visibility of template arguments.
124   LVForExplicitType = (LVForType | IgnoreExplicitVisibilityBit),
125
126   /// Do an LV computation for, ultimately, a non-type declaration
127   /// that already has some sort of explicit visibility.  Visibility
128   /// may only be restricted by the visibility of template arguments.
129   LVForExplicitValue = (LVForValue | IgnoreExplicitVisibilityBit),
130
131   /// Do an LV computation when we only care about the linkage.
132   LVForLinkageOnly =
133       LVForValue | IgnoreExplicitVisibilityBit | IgnoreAllVisibilityBit
134 };
135
136 /// Does this computation kind permit us to consider additional
137 /// visibility settings from attributes and the like?
138 static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
139   return ((unsigned(computation) & IgnoreExplicitVisibilityBit) != 0);
140 }
141
142 /// Given an LVComputationKind, return one of the same type/value sort
143 /// that records that it already has explicit visibility.
144 static LVComputationKind
145 withExplicitVisibilityAlready(LVComputationKind oldKind) {
146   LVComputationKind newKind =
147     static_cast<LVComputationKind>(unsigned(oldKind) |
148                                    IgnoreExplicitVisibilityBit);
149   assert(oldKind != LVForType          || newKind == LVForExplicitType);
150   assert(oldKind != LVForValue         || newKind == LVForExplicitValue);
151   assert(oldKind != LVForExplicitType  || newKind == LVForExplicitType);
152   assert(oldKind != LVForExplicitValue || newKind == LVForExplicitValue);
153   return newKind;
154 }
155
156 static Optional<Visibility> getExplicitVisibility(const NamedDecl *D,
157                                                   LVComputationKind kind) {
158   assert(!hasExplicitVisibilityAlready(kind) &&
159          "asking for explicit visibility when we shouldn't be");
160   return D->getExplicitVisibility((NamedDecl::ExplicitVisibilityKind) kind);
161 }
162
163 /// Is the given declaration a "type" or a "value" for the purposes of
164 /// visibility computation?
165 static bool usesTypeVisibility(const NamedDecl *D) {
166   return isa<TypeDecl>(D) ||
167          isa<ClassTemplateDecl>(D) ||
168          isa<ObjCInterfaceDecl>(D);
169 }
170
171 /// Does the given declaration have member specialization information,
172 /// and if so, is it an explicit specialization?
173 template <class T> static typename
174 std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type
175 isExplicitMemberSpecialization(const T *D) {
176   if (const MemberSpecializationInfo *member =
177         D->getMemberSpecializationInfo()) {
178     return member->isExplicitSpecialization();
179   }
180   return false;
181 }
182
183 /// For templates, this question is easier: a member template can't be
184 /// explicitly instantiated, so there's a single bit indicating whether
185 /// or not this is an explicit member specialization.
186 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
187   return D->isMemberSpecialization();
188 }
189
190 /// Given a visibility attribute, return the explicit visibility
191 /// associated with it.
192 template <class T>
193 static Visibility getVisibilityFromAttr(const T *attr) {
194   switch (attr->getVisibility()) {
195   case T::Default:
196     return DefaultVisibility;
197   case T::Hidden:
198     return HiddenVisibility;
199   case T::Protected:
200     return ProtectedVisibility;
201   }
202   llvm_unreachable("bad visibility kind");
203 }
204
205 /// Return the explicit visibility of the given declaration.
206 static Optional<Visibility> getVisibilityOf(const NamedDecl *D,
207                                     NamedDecl::ExplicitVisibilityKind kind) {
208   // If we're ultimately computing the visibility of a type, look for
209   // a 'type_visibility' attribute before looking for 'visibility'.
210   if (kind == NamedDecl::VisibilityForType) {
211     if (const auto *A = D->getAttr<TypeVisibilityAttr>()) {
212       return getVisibilityFromAttr(A);
213     }
214   }
215
216   // If this declaration has an explicit visibility attribute, use it.
217   if (const auto *A = D->getAttr<VisibilityAttr>()) {
218     return getVisibilityFromAttr(A);
219   }
220
221   // If we're on Mac OS X, an 'availability' for Mac OS X attribute
222   // implies visibility(default).
223   if (D->getASTContext().getTargetInfo().getTriple().isOSDarwin()) {
224     for (const auto *A : D->specific_attrs<AvailabilityAttr>())
225       if (A->getPlatform()->getName().equals("macos"))
226         return DefaultVisibility;
227   }
228
229   return None;
230 }
231
232 static LinkageInfo
233 getLVForType(const Type &T, LVComputationKind computation) {
234   if (computation == LVForLinkageOnly)
235     return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
236   return T.getLinkageAndVisibility();
237 }
238
239 /// \brief Get the most restrictive linkage for the types in the given
240 /// template parameter list.  For visibility purposes, template
241 /// parameters are part of the signature of a template.
242 static LinkageInfo
243 getLVForTemplateParameterList(const TemplateParameterList *Params,
244                               LVComputationKind computation) {
245   LinkageInfo LV;
246   for (const NamedDecl *P : *Params) {
247     // Template type parameters are the most common and never
248     // contribute to visibility, pack or not.
249     if (isa<TemplateTypeParmDecl>(P))
250       continue;
251
252     // Non-type template parameters can be restricted by the value type, e.g.
253     //   template <enum X> class A { ... };
254     // We have to be careful here, though, because we can be dealing with
255     // dependent types.
256     if (const auto *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
257       // Handle the non-pack case first.
258       if (!NTTP->isExpandedParameterPack()) {
259         if (!NTTP->getType()->isDependentType()) {
260           LV.merge(getLVForType(*NTTP->getType(), computation));
261         }
262         continue;
263       }
264
265       // Look at all the types in an expanded pack.
266       for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
267         QualType type = NTTP->getExpansionType(i);
268         if (!type->isDependentType())
269           LV.merge(type->getLinkageAndVisibility());
270       }
271       continue;
272     }
273
274     // Template template parameters can be restricted by their
275     // template parameters, recursively.
276     const auto *TTP = cast<TemplateTemplateParmDecl>(P);
277
278     // Handle the non-pack case first.
279     if (!TTP->isExpandedParameterPack()) {
280       LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
281                                              computation));
282       continue;
283     }
284
285     // Look at all expansions in an expanded pack.
286     for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
287            i != n; ++i) {
288       LV.merge(getLVForTemplateParameterList(
289           TTP->getExpansionTemplateParameters(i), computation));
290     }
291   }
292
293   return LV;
294 }
295
296 /// getLVForDecl - Get the linkage and visibility for the given declaration.
297 static LinkageInfo getLVForDecl(const NamedDecl *D,
298                                 LVComputationKind computation);
299
300 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
301   const Decl *Ret = nullptr;
302   const DeclContext *DC = D->getDeclContext();
303   while (DC->getDeclKind() != Decl::TranslationUnit) {
304     if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
305       Ret = cast<Decl>(DC);
306     DC = DC->getParent();
307   }
308   return Ret;
309 }
310
311 /// \brief Get the most restrictive linkage for the types and
312 /// declarations in the given template argument list.
313 ///
314 /// Note that we don't take an LVComputationKind because we always
315 /// want to honor the visibility of template arguments in the same way.
316 static LinkageInfo getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
317                                                 LVComputationKind computation) {
318   LinkageInfo LV;
319
320   for (const TemplateArgument &Arg : Args) {
321     switch (Arg.getKind()) {
322     case TemplateArgument::Null:
323     case TemplateArgument::Integral:
324     case TemplateArgument::Expression:
325       continue;
326
327     case TemplateArgument::Type:
328       LV.merge(getLVForType(*Arg.getAsType(), computation));
329       continue;
330
331     case TemplateArgument::Declaration:
332       if (const auto *ND = dyn_cast<NamedDecl>(Arg.getAsDecl())) {
333         assert(!usesTypeVisibility(ND));
334         LV.merge(getLVForDecl(ND, computation));
335       }
336       continue;
337
338     case TemplateArgument::NullPtr:
339       LV.merge(Arg.getNullPtrType()->getLinkageAndVisibility());
340       continue;
341
342     case TemplateArgument::Template:
343     case TemplateArgument::TemplateExpansion:
344       if (TemplateDecl *Template =
345               Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
346         LV.merge(getLVForDecl(Template, computation));
347       continue;
348
349     case TemplateArgument::Pack:
350       LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
351       continue;
352     }
353     llvm_unreachable("bad template argument kind");
354   }
355
356   return LV;
357 }
358
359 static LinkageInfo
360 getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
361                              LVComputationKind computation) {
362   return getLVForTemplateArgumentList(TArgs.asArray(), computation);
363 }
364
365 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
366                         const FunctionTemplateSpecializationInfo *specInfo) {
367   // Include visibility from the template parameters and arguments
368   // only if this is not an explicit instantiation or specialization
369   // with direct explicit visibility.  (Implicit instantiations won't
370   // have a direct attribute.)
371   if (!specInfo->isExplicitInstantiationOrSpecialization())
372     return true;
373
374   return !fn->hasAttr<VisibilityAttr>();
375 }
376
377 /// Merge in template-related linkage and visibility for the given
378 /// function template specialization.
379 ///
380 /// We don't need a computation kind here because we can assume
381 /// LVForValue.
382 ///
383 /// \param[out] LV the computation to use for the parent
384 static void
385 mergeTemplateLV(LinkageInfo &LV, const FunctionDecl *fn,
386                 const FunctionTemplateSpecializationInfo *specInfo,
387                 LVComputationKind computation) {
388   bool considerVisibility =
389     shouldConsiderTemplateVisibility(fn, specInfo);
390
391   // Merge information from the template parameters.
392   FunctionTemplateDecl *temp = specInfo->getTemplate();
393   LinkageInfo tempLV =
394     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
395   LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
396
397   // Merge information from the template arguments.
398   const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
399   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
400   LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
401 }
402
403 /// Does the given declaration have a direct visibility attribute
404 /// that would match the given rules?
405 static bool hasDirectVisibilityAttribute(const NamedDecl *D,
406                                          LVComputationKind computation) {
407   switch (computation) {
408   case LVForType:
409   case LVForExplicitType:
410     if (D->hasAttr<TypeVisibilityAttr>())
411       return true;
412     // fallthrough
413   case LVForValue:
414   case LVForExplicitValue:
415     if (D->hasAttr<VisibilityAttr>())
416       return true;
417     return false;
418   case LVForLinkageOnly:
419     return false;
420   }
421   llvm_unreachable("bad visibility computation kind");
422 }
423
424 /// Should we consider visibility associated with the template
425 /// arguments and parameters of the given class template specialization?
426 static bool shouldConsiderTemplateVisibility(
427                                  const ClassTemplateSpecializationDecl *spec,
428                                  LVComputationKind computation) {
429   // Include visibility from the template parameters and arguments
430   // only if this is not an explicit instantiation or specialization
431   // with direct explicit visibility (and note that implicit
432   // instantiations won't have a direct attribute).
433   //
434   // Furthermore, we want to ignore template parameters and arguments
435   // for an explicit specialization when computing the visibility of a
436   // member thereof with explicit visibility.
437   //
438   // This is a bit complex; let's unpack it.
439   //
440   // An explicit class specialization is an independent, top-level
441   // declaration.  As such, if it or any of its members has an
442   // explicit visibility attribute, that must directly express the
443   // user's intent, and we should honor it.  The same logic applies to
444   // an explicit instantiation of a member of such a thing.
445
446   // Fast path: if this is not an explicit instantiation or
447   // specialization, we always want to consider template-related
448   // visibility restrictions.
449   if (!spec->isExplicitInstantiationOrSpecialization())
450     return true;
451
452   // This is the 'member thereof' check.
453   if (spec->isExplicitSpecialization() &&
454       hasExplicitVisibilityAlready(computation))
455     return false;
456
457   return !hasDirectVisibilityAttribute(spec, computation);
458 }
459
460 /// Merge in template-related linkage and visibility for the given
461 /// class template specialization.
462 static void mergeTemplateLV(LinkageInfo &LV,
463                             const ClassTemplateSpecializationDecl *spec,
464                             LVComputationKind computation) {
465   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
466
467   // Merge information from the template parameters, but ignore
468   // visibility if we're only considering template arguments.
469
470   ClassTemplateDecl *temp = spec->getSpecializedTemplate();
471   LinkageInfo tempLV =
472     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
473   LV.mergeMaybeWithVisibility(tempLV,
474            considerVisibility && !hasExplicitVisibilityAlready(computation));
475
476   // Merge information from the template arguments.  We ignore
477   // template-argument visibility if we've got an explicit
478   // instantiation with a visibility attribute.
479   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
480   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
481   if (considerVisibility)
482     LV.mergeVisibility(argsLV);
483   LV.mergeExternalVisibility(argsLV);
484 }
485
486 /// Should we consider visibility associated with the template
487 /// arguments and parameters of the given variable template
488 /// specialization? As usual, follow class template specialization
489 /// logic up to initialization.
490 static bool shouldConsiderTemplateVisibility(
491                                  const VarTemplateSpecializationDecl *spec,
492                                  LVComputationKind computation) {
493   // Include visibility from the template parameters and arguments
494   // only if this is not an explicit instantiation or specialization
495   // with direct explicit visibility (and note that implicit
496   // instantiations won't have a direct attribute).
497   if (!spec->isExplicitInstantiationOrSpecialization())
498     return true;
499
500   // An explicit variable specialization is an independent, top-level
501   // declaration.  As such, if it has an explicit visibility attribute,
502   // that must directly express the user's intent, and we should honor
503   // it.
504   if (spec->isExplicitSpecialization() &&
505       hasExplicitVisibilityAlready(computation))
506     return false;
507
508   return !hasDirectVisibilityAttribute(spec, computation);
509 }
510
511 /// Merge in template-related linkage and visibility for the given
512 /// variable template specialization. As usual, follow class template
513 /// specialization logic up to initialization.
514 static void mergeTemplateLV(LinkageInfo &LV,
515                             const VarTemplateSpecializationDecl *spec,
516                             LVComputationKind computation) {
517   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
518
519   // Merge information from the template parameters, but ignore
520   // visibility if we're only considering template arguments.
521
522   VarTemplateDecl *temp = spec->getSpecializedTemplate();
523   LinkageInfo tempLV =
524     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
525   LV.mergeMaybeWithVisibility(tempLV,
526            considerVisibility && !hasExplicitVisibilityAlready(computation));
527
528   // Merge information from the template arguments.  We ignore
529   // template-argument visibility if we've got an explicit
530   // instantiation with a visibility attribute.
531   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
532   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
533   if (considerVisibility)
534     LV.mergeVisibility(argsLV);
535   LV.mergeExternalVisibility(argsLV);
536 }
537
538 static bool useInlineVisibilityHidden(const NamedDecl *D) {
539   // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
540   const LangOptions &Opts = D->getASTContext().getLangOpts();
541   if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
542     return false;
543
544   const auto *FD = dyn_cast<FunctionDecl>(D);
545   if (!FD)
546     return false;
547
548   TemplateSpecializationKind TSK = TSK_Undeclared;
549   if (FunctionTemplateSpecializationInfo *spec
550       = FD->getTemplateSpecializationInfo()) {
551     TSK = spec->getTemplateSpecializationKind();
552   } else if (MemberSpecializationInfo *MSI =
553              FD->getMemberSpecializationInfo()) {
554     TSK = MSI->getTemplateSpecializationKind();
555   }
556
557   const FunctionDecl *Def = nullptr;
558   // InlineVisibilityHidden only applies to definitions, and
559   // isInlined() only gives meaningful answers on definitions
560   // anyway.
561   return TSK != TSK_ExplicitInstantiationDeclaration &&
562     TSK != TSK_ExplicitInstantiationDefinition &&
563     FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
564 }
565
566 template <typename T> static bool isFirstInExternCContext(T *D) {
567   const T *First = D->getFirstDecl();
568   return First->isInExternCContext();
569 }
570
571 static bool isSingleLineLanguageLinkage(const Decl &D) {
572   if (const auto *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
573     if (!SD->hasBraces())
574       return true;
575   return false;
576 }
577
578 static LinkageInfo getLVForNamespaceScopeDecl(const NamedDecl *D,
579                                               LVComputationKind computation) {
580   assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
581          "Not a name having namespace scope");
582   ASTContext &Context = D->getASTContext();
583
584   // C++ [basic.link]p3:
585   //   A name having namespace scope (3.3.6) has internal linkage if it
586   //   is the name of
587   //     - an object, reference, function or function template that is
588   //       explicitly declared static; or,
589   // (This bullet corresponds to C99 6.2.2p3.)
590   if (const auto *Var = dyn_cast<VarDecl>(D)) {
591     // Explicitly declared static.
592     if (Var->getStorageClass() == SC_Static)
593       return LinkageInfo::internal();
594
595     // - a non-inline, non-volatile object or reference that is explicitly
596     //   declared const or constexpr and neither explicitly declared extern
597     //   nor previously declared to have external linkage; or (there is no
598     //   equivalent in C99)
599     if (Context.getLangOpts().CPlusPlus &&
600         Var->getType().isConstQualified() && 
601         !Var->getType().isVolatileQualified() &&
602         !Var->isInline()) {
603       const VarDecl *PrevVar = Var->getPreviousDecl();
604       if (PrevVar)
605         return getLVForDecl(PrevVar, computation);
606
607       if (Var->getStorageClass() != SC_Extern &&
608           Var->getStorageClass() != SC_PrivateExtern &&
609           !isSingleLineLanguageLinkage(*Var))
610         return LinkageInfo::internal();
611     }
612
613     for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
614          PrevVar = PrevVar->getPreviousDecl()) {
615       if (PrevVar->getStorageClass() == SC_PrivateExtern &&
616           Var->getStorageClass() == SC_None)
617         return PrevVar->getLinkageAndVisibility();
618       // Explicitly declared static.
619       if (PrevVar->getStorageClass() == SC_Static)
620         return LinkageInfo::internal();
621     }
622   } else if (const FunctionDecl *Function = D->getAsFunction()) {
623     // C++ [temp]p4:
624     //   A non-member function template can have internal linkage; any
625     //   other template name shall have external linkage.
626
627     // Explicitly declared static.
628     if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
629       return LinkageInfo(InternalLinkage, DefaultVisibility, false);
630   } else if (const auto *IFD = dyn_cast<IndirectFieldDecl>(D)) {
631     //   - a data member of an anonymous union.
632     const VarDecl *VD = IFD->getVarDecl();
633     assert(VD && "Expected a VarDecl in this IndirectFieldDecl!");
634     return getLVForNamespaceScopeDecl(VD, computation);
635   }
636   assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
637
638   if (D->isInAnonymousNamespace()) {
639     const auto *Var = dyn_cast<VarDecl>(D);
640     const auto *Func = dyn_cast<FunctionDecl>(D);
641     // FIXME: In C++11 onwards, anonymous namespaces should give decls
642     // within them internal linkage, not unique external linkage.
643     if ((!Var || !isFirstInExternCContext(Var)) &&
644         (!Func || !isFirstInExternCContext(Func)))
645       return LinkageInfo::uniqueExternal();
646   }
647
648   // Set up the defaults.
649
650   // C99 6.2.2p5:
651   //   If the declaration of an identifier for an object has file
652   //   scope and no storage-class specifier, its linkage is
653   //   external.
654   LinkageInfo LV;
655
656   if (!hasExplicitVisibilityAlready(computation)) {
657     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
658       LV.mergeVisibility(*Vis, true);
659     } else {
660       // If we're declared in a namespace with a visibility attribute,
661       // use that namespace's visibility, and it still counts as explicit.
662       for (const DeclContext *DC = D->getDeclContext();
663            !isa<TranslationUnitDecl>(DC);
664            DC = DC->getParent()) {
665         const auto *ND = dyn_cast<NamespaceDecl>(DC);
666         if (!ND) continue;
667         if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
668           LV.mergeVisibility(*Vis, true);
669           break;
670         }
671       }
672     }
673
674     // Add in global settings if the above didn't give us direct visibility.
675     if (!LV.isVisibilityExplicit()) {
676       // Use global type/value visibility as appropriate.
677       Visibility globalVisibility;
678       if (computation == LVForValue) {
679         globalVisibility = Context.getLangOpts().getValueVisibilityMode();
680       } else {
681         assert(computation == LVForType);
682         globalVisibility = Context.getLangOpts().getTypeVisibilityMode();
683       }
684       LV.mergeVisibility(globalVisibility, /*explicit*/ false);
685
686       // If we're paying attention to global visibility, apply
687       // -finline-visibility-hidden if this is an inline method.
688       if (useInlineVisibilityHidden(D))
689         LV.mergeVisibility(HiddenVisibility, true);
690     }
691   }
692
693   // C++ [basic.link]p4:
694
695   //   A name having namespace scope has external linkage if it is the
696   //   name of
697   //
698   //     - an object or reference, unless it has internal linkage; or
699   if (const auto *Var = dyn_cast<VarDecl>(D)) {
700     // GCC applies the following optimization to variables and static
701     // data members, but not to functions:
702     //
703     // Modify the variable's LV by the LV of its type unless this is
704     // C or extern "C".  This follows from [basic.link]p9:
705     //   A type without linkage shall not be used as the type of a
706     //   variable or function with external linkage unless
707     //    - the entity has C language linkage, or
708     //    - the entity is declared within an unnamed namespace, or
709     //    - the entity is not used or is defined in the same
710     //      translation unit.
711     // and [basic.link]p10:
712     //   ...the types specified by all declarations referring to a
713     //   given variable or function shall be identical...
714     // C does not have an equivalent rule.
715     //
716     // Ignore this if we've got an explicit attribute;  the user
717     // probably knows what they're doing.
718     //
719     // Note that we don't want to make the variable non-external
720     // because of this, but unique-external linkage suits us.
721     if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var)) {
722       LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
723       if (TypeLV.getLinkage() != ExternalLinkage)
724         return LinkageInfo::uniqueExternal();
725       if (!LV.isVisibilityExplicit())
726         LV.mergeVisibility(TypeLV);
727     }
728
729     if (Var->getStorageClass() == SC_PrivateExtern)
730       LV.mergeVisibility(HiddenVisibility, true);
731
732     // Note that Sema::MergeVarDecl already takes care of implementing
733     // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
734     // to do it here.
735
736     // As per function and class template specializations (below),
737     // consider LV for the template and template arguments.  We're at file
738     // scope, so we do not need to worry about nested specializations.
739     if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
740       mergeTemplateLV(LV, spec, computation);
741     }
742
743   //     - a function, unless it has internal linkage; or
744   } else if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
745     // In theory, we can modify the function's LV by the LV of its
746     // type unless it has C linkage (see comment above about variables
747     // for justification).  In practice, GCC doesn't do this, so it's
748     // just too painful to make work.
749
750     if (Function->getStorageClass() == SC_PrivateExtern)
751       LV.mergeVisibility(HiddenVisibility, true);
752
753     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
754     // merging storage classes and visibility attributes, so we don't have to
755     // look at previous decls in here.
756
757     // In C++, then if the type of the function uses a type with
758     // unique-external linkage, it's not legally usable from outside
759     // this translation unit.  However, we should use the C linkage
760     // rules instead for extern "C" declarations.
761     if (Context.getLangOpts().CPlusPlus &&
762         !Function->isInExternCContext()) {
763       // Only look at the type-as-written. If this function has an auto-deduced
764       // return type, we can't compute the linkage of that type because it could
765       // require looking at the linkage of this function, and we don't need this
766       // for correctness because the type is not part of the function's
767       // signature.
768       // FIXME: This is a hack. We should be able to solve this circularity and 
769       // the one in getLVForClassMember for Functions some other way.
770       QualType TypeAsWritten = Function->getType();
771       if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
772         TypeAsWritten = TSI->getType();
773       if (TypeAsWritten->getLinkage() == UniqueExternalLinkage)
774         return LinkageInfo::uniqueExternal();
775     }
776
777     // Consider LV from the template and the template arguments.
778     // We're at file scope, so we do not need to worry about nested
779     // specializations.
780     if (FunctionTemplateSpecializationInfo *specInfo
781                                = Function->getTemplateSpecializationInfo()) {
782       mergeTemplateLV(LV, Function, specInfo, computation);
783     }
784
785   //     - a named class (Clause 9), or an unnamed class defined in a
786   //       typedef declaration in which the class has the typedef name
787   //       for linkage purposes (7.1.3); or
788   //     - a named enumeration (7.2), or an unnamed enumeration
789   //       defined in a typedef declaration in which the enumeration
790   //       has the typedef name for linkage purposes (7.1.3); or
791   } else if (const auto *Tag = dyn_cast<TagDecl>(D)) {
792     // Unnamed tags have no linkage.
793     if (!Tag->hasNameForLinkage())
794       return LinkageInfo::none();
795
796     // If this is a class template specialization, consider the
797     // linkage of the template and template arguments.  We're at file
798     // scope, so we do not need to worry about nested specializations.
799     if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
800       mergeTemplateLV(LV, spec, computation);
801     }
802
803   //     - an enumerator belonging to an enumeration with external linkage;
804   } else if (isa<EnumConstantDecl>(D)) {
805     LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
806                                       computation);
807     if (!isExternalFormalLinkage(EnumLV.getLinkage()))
808       return LinkageInfo::none();
809     LV.merge(EnumLV);
810
811   //     - a template, unless it is a function template that has
812   //       internal linkage (Clause 14);
813   } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
814     bool considerVisibility = !hasExplicitVisibilityAlready(computation);
815     LinkageInfo tempLV =
816       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
817     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
818
819   //     - a namespace (7.3), unless it is declared within an unnamed
820   //       namespace.
821   } else if (isa<NamespaceDecl>(D) && !D->isInAnonymousNamespace()) {
822     return LV;
823
824   // By extension, we assign external linkage to Objective-C
825   // interfaces.
826   } else if (isa<ObjCInterfaceDecl>(D)) {
827     // fallout
828
829   } else if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
830     // A typedef declaration has linkage if it gives a type a name for
831     // linkage purposes.
832     if (!TD->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
833       return LinkageInfo::none();
834
835   // Everything not covered here has no linkage.
836   } else {
837     return LinkageInfo::none();
838   }
839
840   // If we ended up with non-external linkage, visibility should
841   // always be default.
842   if (LV.getLinkage() != ExternalLinkage)
843     return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
844
845   return LV;
846 }
847
848 static LinkageInfo getLVForClassMember(const NamedDecl *D,
849                                        LVComputationKind computation) {
850   // Only certain class members have linkage.  Note that fields don't
851   // really have linkage, but it's convenient to say they do for the
852   // purposes of calculating linkage of pointer-to-data-member
853   // template arguments.
854   //
855   // Templates also don't officially have linkage, but since we ignore
856   // the C++ standard and look at template arguments when determining
857   // linkage and visibility of a template specialization, we might hit
858   // a template template argument that way. If we do, we need to
859   // consider its linkage.
860   if (!(isa<CXXMethodDecl>(D) ||
861         isa<VarDecl>(D) ||
862         isa<FieldDecl>(D) ||
863         isa<IndirectFieldDecl>(D) ||
864         isa<TagDecl>(D) ||
865         isa<TemplateDecl>(D)))
866     return LinkageInfo::none();
867
868   LinkageInfo LV;
869
870   // If we have an explicit visibility attribute, merge that in.
871   if (!hasExplicitVisibilityAlready(computation)) {
872     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
873       LV.mergeVisibility(*Vis, true);
874     // If we're paying attention to global visibility, apply
875     // -finline-visibility-hidden if this is an inline method.
876     //
877     // Note that we do this before merging information about
878     // the class visibility.
879     if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
880       LV.mergeVisibility(HiddenVisibility, true);
881   }
882
883   // If this class member has an explicit visibility attribute, the only
884   // thing that can change its visibility is the template arguments, so
885   // only look for them when processing the class.
886   LVComputationKind classComputation = computation;
887   if (LV.isVisibilityExplicit())
888     classComputation = withExplicitVisibilityAlready(computation);
889
890   LinkageInfo classLV =
891     getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
892   // If the class already has unique-external linkage, we can't improve.
893   if (classLV.getLinkage() == UniqueExternalLinkage)
894     return LinkageInfo::uniqueExternal();
895
896   if (!isExternallyVisible(classLV.getLinkage()))
897     return LinkageInfo::none();
898
899
900   // Otherwise, don't merge in classLV yet, because in certain cases
901   // we need to completely ignore the visibility from it.
902
903   // Specifically, if this decl exists and has an explicit attribute.
904   const NamedDecl *explicitSpecSuppressor = nullptr;
905
906   if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
907     // If the type of the function uses a type with unique-external
908     // linkage, it's not legally usable from outside this translation unit.
909     // But only look at the type-as-written. If this function has an
910     // auto-deduced return type, we can't compute the linkage of that type
911     // because it could require looking at the linkage of this function, and we
912     // don't need this for correctness because the type is not part of the
913     // function's signature.
914     // FIXME: This is a hack. We should be able to solve this circularity and
915     // the one in getLVForNamespaceScopeDecl for Functions some other way.
916     {
917       QualType TypeAsWritten = MD->getType();
918       if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
919         TypeAsWritten = TSI->getType();
920       if (TypeAsWritten->getLinkage() == UniqueExternalLinkage)
921         return LinkageInfo::uniqueExternal();
922     }
923     // If this is a method template specialization, use the linkage for
924     // the template parameters and arguments.
925     if (FunctionTemplateSpecializationInfo *spec
926            = MD->getTemplateSpecializationInfo()) {
927       mergeTemplateLV(LV, MD, spec, computation);
928       if (spec->isExplicitSpecialization()) {
929         explicitSpecSuppressor = MD;
930       } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
931         explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
932       }
933     } else if (isExplicitMemberSpecialization(MD)) {
934       explicitSpecSuppressor = MD;
935     }
936
937   } else if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
938     if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
939       mergeTemplateLV(LV, spec, computation);
940       if (spec->isExplicitSpecialization()) {
941         explicitSpecSuppressor = spec;
942       } else {
943         const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
944         if (isExplicitMemberSpecialization(temp)) {
945           explicitSpecSuppressor = temp->getTemplatedDecl();
946         }
947       }
948     } else if (isExplicitMemberSpecialization(RD)) {
949       explicitSpecSuppressor = RD;
950     }
951
952   // Static data members.
953   } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
954     if (const auto *spec = dyn_cast<VarTemplateSpecializationDecl>(VD))
955       mergeTemplateLV(LV, spec, computation);
956
957     // Modify the variable's linkage by its type, but ignore the
958     // type's visibility unless it's a definition.
959     LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
960     if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
961       LV.mergeVisibility(typeLV);
962     LV.mergeExternalVisibility(typeLV);
963
964     if (isExplicitMemberSpecialization(VD)) {
965       explicitSpecSuppressor = VD;
966     }
967
968   // Template members.
969   } else if (const auto *temp = dyn_cast<TemplateDecl>(D)) {
970     bool considerVisibility =
971       (!LV.isVisibilityExplicit() &&
972        !classLV.isVisibilityExplicit() &&
973        !hasExplicitVisibilityAlready(computation));
974     LinkageInfo tempLV =
975       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
976     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
977
978     if (const auto *redeclTemp = dyn_cast<RedeclarableTemplateDecl>(temp)) {
979       if (isExplicitMemberSpecialization(redeclTemp)) {
980         explicitSpecSuppressor = temp->getTemplatedDecl();
981       }
982     }
983   }
984
985   // We should never be looking for an attribute directly on a template.
986   assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
987
988   // If this member is an explicit member specialization, and it has
989   // an explicit attribute, ignore visibility from the parent.
990   bool considerClassVisibility = true;
991   if (explicitSpecSuppressor &&
992       // optimization: hasDVA() is true only with explicit visibility.
993       LV.isVisibilityExplicit() &&
994       classLV.getVisibility() != DefaultVisibility &&
995       hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
996     considerClassVisibility = false;
997   }
998
999   // Finally, merge in information from the class.
1000   LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
1001   return LV;
1002 }
1003
1004 void NamedDecl::anchor() { }
1005
1006 static LinkageInfo computeLVForDecl(const NamedDecl *D,
1007                                     LVComputationKind computation);
1008
1009 bool NamedDecl::isLinkageValid() const {
1010   if (!hasCachedLinkage())
1011     return true;
1012
1013   return computeLVForDecl(this, LVForLinkageOnly).getLinkage() ==
1014          getCachedLinkage();
1015 }
1016
1017 ObjCStringFormatFamily NamedDecl::getObjCFStringFormattingFamily() const {
1018   StringRef name = getName();
1019   if (name.empty()) return SFF_None;
1020   
1021   if (name.front() == 'C')
1022     if (name == "CFStringCreateWithFormat" ||
1023         name == "CFStringCreateWithFormatAndArguments" ||
1024         name == "CFStringAppendFormat" ||
1025         name == "CFStringAppendFormatAndArguments")
1026       return SFF_CFString;
1027   return SFF_None;
1028 }
1029
1030 Linkage NamedDecl::getLinkageInternal() const {
1031   // We don't care about visibility here, so ask for the cheapest
1032   // possible visibility analysis.
1033   return getLVForDecl(this, LVForLinkageOnly).getLinkage();
1034 }
1035
1036 LinkageInfo NamedDecl::getLinkageAndVisibility() const {
1037   LVComputationKind computation =
1038     (usesTypeVisibility(this) ? LVForType : LVForValue);
1039   return getLVForDecl(this, computation);
1040 }
1041
1042 static Optional<Visibility>
1043 getExplicitVisibilityAux(const NamedDecl *ND,
1044                          NamedDecl::ExplicitVisibilityKind kind,
1045                          bool IsMostRecent) {
1046   assert(!IsMostRecent || ND == ND->getMostRecentDecl());
1047
1048   // Check the declaration itself first.
1049   if (Optional<Visibility> V = getVisibilityOf(ND, kind))
1050     return V;
1051
1052   // If this is a member class of a specialization of a class template
1053   // and the corresponding decl has explicit visibility, use that.
1054   if (const auto *RD = dyn_cast<CXXRecordDecl>(ND)) {
1055     CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
1056     if (InstantiatedFrom)
1057       return getVisibilityOf(InstantiatedFrom, kind);
1058   }
1059
1060   // If there wasn't explicit visibility there, and this is a
1061   // specialization of a class template, check for visibility
1062   // on the pattern.
1063   if (const auto *spec = dyn_cast<ClassTemplateSpecializationDecl>(ND))
1064     return getVisibilityOf(spec->getSpecializedTemplate()->getTemplatedDecl(),
1065                            kind);
1066
1067   // Use the most recent declaration.
1068   if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
1069     const NamedDecl *MostRecent = ND->getMostRecentDecl();
1070     if (MostRecent != ND)
1071       return getExplicitVisibilityAux(MostRecent, kind, true);
1072   }
1073
1074   if (const auto *Var = dyn_cast<VarDecl>(ND)) {
1075     if (Var->isStaticDataMember()) {
1076       VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
1077       if (InstantiatedFrom)
1078         return getVisibilityOf(InstantiatedFrom, kind);
1079     }
1080
1081     if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
1082       return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
1083                              kind);
1084
1085     return None;
1086   }
1087   // Also handle function template specializations.
1088   if (const auto *fn = dyn_cast<FunctionDecl>(ND)) {
1089     // If the function is a specialization of a template with an
1090     // explicit visibility attribute, use that.
1091     if (FunctionTemplateSpecializationInfo *templateInfo
1092           = fn->getTemplateSpecializationInfo())
1093       return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
1094                              kind);
1095
1096     // If the function is a member of a specialization of a class template
1097     // and the corresponding decl has explicit visibility, use that.
1098     FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1099     if (InstantiatedFrom)
1100       return getVisibilityOf(InstantiatedFrom, kind);
1101
1102     return None;
1103   }
1104
1105   // The visibility of a template is stored in the templated decl.
1106   if (const auto *TD = dyn_cast<TemplateDecl>(ND))
1107     return getVisibilityOf(TD->getTemplatedDecl(), kind);
1108
1109   return None;
1110 }
1111
1112 Optional<Visibility>
1113 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
1114   return getExplicitVisibilityAux(this, kind, false);
1115 }
1116
1117 static LinkageInfo getLVForClosure(const DeclContext *DC, Decl *ContextDecl,
1118                                    LVComputationKind computation) {
1119   // This lambda has its linkage/visibility determined by its owner.
1120   if (ContextDecl) {
1121     if (isa<ParmVarDecl>(ContextDecl))
1122       DC = ContextDecl->getDeclContext()->getRedeclContext();
1123     else
1124       return getLVForDecl(cast<NamedDecl>(ContextDecl), computation);
1125   }
1126
1127   if (const auto *ND = dyn_cast<NamedDecl>(DC))
1128     return getLVForDecl(ND, computation);
1129
1130   return LinkageInfo::external();
1131 }
1132
1133 static LinkageInfo getLVForLocalDecl(const NamedDecl *D,
1134                                      LVComputationKind computation) {
1135   if (const auto *Function = dyn_cast<FunctionDecl>(D)) {
1136     if (Function->isInAnonymousNamespace() &&
1137         !Function->isInExternCContext())
1138       return LinkageInfo::uniqueExternal();
1139
1140     // This is a "void f();" which got merged with a file static.
1141     if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1142       return LinkageInfo::internal();
1143
1144     LinkageInfo LV;
1145     if (!hasExplicitVisibilityAlready(computation)) {
1146       if (Optional<Visibility> Vis =
1147               getExplicitVisibility(Function, computation))
1148         LV.mergeVisibility(*Vis, true);
1149     }
1150
1151     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1152     // merging storage classes and visibility attributes, so we don't have to
1153     // look at previous decls in here.
1154
1155     return LV;
1156   }
1157
1158   if (const auto *Var = dyn_cast<VarDecl>(D)) {
1159     if (Var->hasExternalStorage()) {
1160       if (Var->isInAnonymousNamespace() && !Var->isInExternCContext())
1161         return LinkageInfo::uniqueExternal();
1162
1163       LinkageInfo LV;
1164       if (Var->getStorageClass() == SC_PrivateExtern)
1165         LV.mergeVisibility(HiddenVisibility, true);
1166       else if (!hasExplicitVisibilityAlready(computation)) {
1167         if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
1168           LV.mergeVisibility(*Vis, true);
1169       }
1170
1171       if (const VarDecl *Prev = Var->getPreviousDecl()) {
1172         LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1173         if (PrevLV.getLinkage())
1174           LV.setLinkage(PrevLV.getLinkage());
1175         LV.mergeVisibility(PrevLV);
1176       }
1177
1178       return LV;
1179     }
1180
1181     if (!Var->isStaticLocal())
1182       return LinkageInfo::none();
1183   }
1184
1185   ASTContext &Context = D->getASTContext();
1186   if (!Context.getLangOpts().CPlusPlus)
1187     return LinkageInfo::none();
1188
1189   const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1190   if (!OuterD || OuterD->isInvalidDecl())
1191     return LinkageInfo::none();
1192
1193   LinkageInfo LV;
1194   if (const auto *BD = dyn_cast<BlockDecl>(OuterD)) {
1195     if (!BD->getBlockManglingNumber())
1196       return LinkageInfo::none();
1197
1198     LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1199                          BD->getBlockManglingContextDecl(), computation);
1200   } else {
1201     const auto *FD = cast<FunctionDecl>(OuterD);
1202     if (!FD->isInlined() &&
1203         !isTemplateInstantiation(FD->getTemplateSpecializationKind()))
1204       return LinkageInfo::none();
1205
1206     LV = getLVForDecl(FD, computation);
1207   }
1208   if (!isExternallyVisible(LV.getLinkage()))
1209     return LinkageInfo::none();
1210   return LinkageInfo(VisibleNoLinkage, LV.getVisibility(),
1211                      LV.isVisibilityExplicit());
1212 }
1213
1214 static inline const CXXRecordDecl*
1215 getOutermostEnclosingLambda(const CXXRecordDecl *Record) {
1216   const CXXRecordDecl *Ret = Record;
1217   while (Record && Record->isLambda()) {
1218     Ret = Record;
1219     if (!Record->getParent()) break;
1220     // Get the Containing Class of this Lambda Class
1221     Record = dyn_cast_or_null<CXXRecordDecl>(
1222       Record->getParent()->getParent());
1223   }
1224   return Ret;
1225 }
1226
1227 static LinkageInfo computeLVForDecl(const NamedDecl *D,
1228                                     LVComputationKind computation) {
1229   // Internal_linkage attribute overrides other considerations.
1230   if (D->hasAttr<InternalLinkageAttr>())
1231     return LinkageInfo::internal();
1232
1233   // Objective-C: treat all Objective-C declarations as having external
1234   // linkage.
1235   switch (D->getKind()) {
1236     default:
1237       break;
1238
1239     // Per C++ [basic.link]p2, only the names of objects, references,
1240     // functions, types, templates, namespaces, and values ever have linkage.
1241     //
1242     // Note that the name of a typedef, namespace alias, using declaration,
1243     // and so on are not the name of the corresponding type, namespace, or
1244     // declaration, so they do *not* have linkage.
1245     case Decl::ImplicitParam:
1246     case Decl::Label:
1247     case Decl::NamespaceAlias:
1248     case Decl::ParmVar:
1249     case Decl::Using:
1250     case Decl::UsingShadow:
1251     case Decl::UsingDirective:
1252       return LinkageInfo::none();
1253
1254     case Decl::EnumConstant:
1255       // C++ [basic.link]p4: an enumerator has the linkage of its enumeration.
1256       return getLVForDecl(cast<EnumDecl>(D->getDeclContext()), computation);
1257
1258     case Decl::Typedef:
1259     case Decl::TypeAlias:
1260       // A typedef declaration has linkage if it gives a type a name for
1261       // linkage purposes.
1262       if (!D->getASTContext().getLangOpts().CPlusPlus ||
1263           !cast<TypedefNameDecl>(D)
1264                ->getAnonDeclWithTypedefName(/*AnyRedecl*/true))
1265         return LinkageInfo::none();
1266       break;
1267
1268     case Decl::TemplateTemplateParm: // count these as external
1269     case Decl::NonTypeTemplateParm:
1270     case Decl::ObjCAtDefsField:
1271     case Decl::ObjCCategory:
1272     case Decl::ObjCCategoryImpl:
1273     case Decl::ObjCCompatibleAlias:
1274     case Decl::ObjCImplementation:
1275     case Decl::ObjCMethod:
1276     case Decl::ObjCProperty:
1277     case Decl::ObjCPropertyImpl:
1278     case Decl::ObjCProtocol:
1279       return LinkageInfo::external();
1280       
1281     case Decl::CXXRecord: {
1282       const auto *Record = cast<CXXRecordDecl>(D);
1283       if (Record->isLambda()) {
1284         if (!Record->getLambdaManglingNumber()) {
1285           // This lambda has no mangling number, so it's internal.
1286           return LinkageInfo::internal();
1287         }
1288
1289         // This lambda has its linkage/visibility determined:
1290         //  - either by the outermost lambda if that lambda has no mangling 
1291         //    number. 
1292         //  - or by the parent of the outer most lambda
1293         // This prevents infinite recursion in settings such as nested lambdas 
1294         // used in NSDMI's, for e.g. 
1295         //  struct L {
1296         //    int t{};
1297         //    int t2 = ([](int a) { return [](int b) { return b; };})(t)(t);    
1298         //  };
1299         const CXXRecordDecl *OuterMostLambda = 
1300             getOutermostEnclosingLambda(Record);
1301         if (!OuterMostLambda->getLambdaManglingNumber())
1302           return LinkageInfo::internal();
1303         
1304         return getLVForClosure(
1305                   OuterMostLambda->getDeclContext()->getRedeclContext(),
1306                   OuterMostLambda->getLambdaContextDecl(), computation);
1307       }
1308       
1309       break;
1310     }
1311   }
1312
1313   // Handle linkage for namespace-scope names.
1314   if (D->getDeclContext()->getRedeclContext()->isFileContext())
1315     return getLVForNamespaceScopeDecl(D, computation);
1316   
1317   // C++ [basic.link]p5:
1318   //   In addition, a member function, static data member, a named
1319   //   class or enumeration of class scope, or an unnamed class or
1320   //   enumeration defined in a class-scope typedef declaration such
1321   //   that the class or enumeration has the typedef name for linkage
1322   //   purposes (7.1.3), has external linkage if the name of the class
1323   //   has external linkage.
1324   if (D->getDeclContext()->isRecord())
1325     return getLVForClassMember(D, computation);
1326
1327   // C++ [basic.link]p6:
1328   //   The name of a function declared in block scope and the name of
1329   //   an object declared by a block scope extern declaration have
1330   //   linkage. If there is a visible declaration of an entity with
1331   //   linkage having the same name and type, ignoring entities
1332   //   declared outside the innermost enclosing namespace scope, the
1333   //   block scope declaration declares that same entity and receives
1334   //   the linkage of the previous declaration. If there is more than
1335   //   one such matching entity, the program is ill-formed. Otherwise,
1336   //   if no matching entity is found, the block scope entity receives
1337   //   external linkage.
1338   if (D->getDeclContext()->isFunctionOrMethod())
1339     return getLVForLocalDecl(D, computation);
1340
1341   // C++ [basic.link]p6:
1342   //   Names not covered by these rules have no linkage.
1343   return LinkageInfo::none();
1344 }
1345
1346 namespace clang {
1347 class LinkageComputer {
1348 public:
1349   static LinkageInfo getLVForDecl(const NamedDecl *D,
1350                                   LVComputationKind computation) {
1351     // Internal_linkage attribute overrides other considerations.
1352     if (D->hasAttr<InternalLinkageAttr>())
1353       return LinkageInfo::internal();
1354
1355     if (computation == LVForLinkageOnly && D->hasCachedLinkage())
1356       return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1357
1358     LinkageInfo LV = computeLVForDecl(D, computation);
1359     if (D->hasCachedLinkage())
1360       assert(D->getCachedLinkage() == LV.getLinkage());
1361
1362     D->setCachedLinkage(LV.getLinkage());
1363
1364 #ifndef NDEBUG
1365     // In C (because of gnu inline) and in c++ with microsoft extensions an
1366     // static can follow an extern, so we can have two decls with different
1367     // linkages.
1368     const LangOptions &Opts = D->getASTContext().getLangOpts();
1369     if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1370       return LV;
1371
1372     // We have just computed the linkage for this decl. By induction we know
1373     // that all other computed linkages match, check that the one we just
1374     // computed also does.
1375     NamedDecl *Old = nullptr;
1376     for (auto I : D->redecls()) {
1377       auto *T = cast<NamedDecl>(I);
1378       if (T == D)
1379         continue;
1380       if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
1381         Old = T;
1382         break;
1383       }
1384     }
1385     assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
1386 #endif
1387
1388     return LV;
1389   }
1390 };
1391 }
1392
1393 static LinkageInfo getLVForDecl(const NamedDecl *D,
1394                                 LVComputationKind computation) {
1395   return clang::LinkageComputer::getLVForDecl(D, computation);
1396 }
1397
1398 std::string NamedDecl::getQualifiedNameAsString() const {
1399   std::string QualName;
1400   llvm::raw_string_ostream OS(QualName);
1401   printQualifiedName(OS, getASTContext().getPrintingPolicy());
1402   return OS.str();
1403 }
1404
1405 void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1406   printQualifiedName(OS, getASTContext().getPrintingPolicy());
1407 }
1408
1409 void NamedDecl::printQualifiedName(raw_ostream &OS,
1410                                    const PrintingPolicy &P) const {
1411   const DeclContext *Ctx = getDeclContext();
1412
1413   if (Ctx->isFunctionOrMethod()) {
1414     printName(OS);
1415     return;
1416   }
1417
1418   typedef SmallVector<const DeclContext *, 8> ContextsTy;
1419   ContextsTy Contexts;
1420
1421   // Collect contexts.
1422   while (Ctx && isa<NamedDecl>(Ctx)) {
1423     Contexts.push_back(Ctx);
1424     Ctx = Ctx->getParent();
1425   }
1426
1427   for (const DeclContext *DC : reverse(Contexts)) {
1428     if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
1429       OS << Spec->getName();
1430       const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1431       TemplateSpecializationType::PrintTemplateArgumentList(
1432           OS, TemplateArgs.asArray(), P);
1433     } else if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) {
1434       if (P.SuppressUnwrittenScope &&
1435           (ND->isAnonymousNamespace() || ND->isInline()))
1436         continue;
1437       if (ND->isAnonymousNamespace()) {
1438         OS << (P.MSVCFormatting ? "`anonymous namespace\'"
1439                                 : "(anonymous namespace)");
1440       }
1441       else
1442         OS << *ND;
1443     } else if (const auto *RD = dyn_cast<RecordDecl>(DC)) {
1444       if (!RD->getIdentifier())
1445         OS << "(anonymous " << RD->getKindName() << ')';
1446       else
1447         OS << *RD;
1448     } else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
1449       const FunctionProtoType *FT = nullptr;
1450       if (FD->hasWrittenPrototype())
1451         FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1452
1453       OS << *FD << '(';
1454       if (FT) {
1455         unsigned NumParams = FD->getNumParams();
1456         for (unsigned i = 0; i < NumParams; ++i) {
1457           if (i)
1458             OS << ", ";
1459           OS << FD->getParamDecl(i)->getType().stream(P);
1460         }
1461
1462         if (FT->isVariadic()) {
1463           if (NumParams > 0)
1464             OS << ", ";
1465           OS << "...";
1466         }
1467       }
1468       OS << ')';
1469     } else if (const auto *ED = dyn_cast<EnumDecl>(DC)) {
1470       // C++ [dcl.enum]p10: Each enum-name and each unscoped
1471       // enumerator is declared in the scope that immediately contains
1472       // the enum-specifier. Each scoped enumerator is declared in the
1473       // scope of the enumeration.
1474       if (ED->isScoped() || ED->getIdentifier())
1475         OS << *ED;
1476       else
1477         continue;
1478     } else {
1479       OS << *cast<NamedDecl>(DC);
1480     }
1481     OS << "::";
1482   }
1483
1484   if (getDeclName())
1485     OS << *this;
1486   else
1487     OS << "(anonymous)";
1488 }
1489
1490 void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1491                                      const PrintingPolicy &Policy,
1492                                      bool Qualified) const {
1493   if (Qualified)
1494     printQualifiedName(OS, Policy);
1495   else
1496     printName(OS);
1497 }
1498
1499 template<typename T> static bool isRedeclarableImpl(Redeclarable<T> *) {
1500   return true;
1501 }
1502 static bool isRedeclarableImpl(...) { return false; }
1503 static bool isRedeclarable(Decl::Kind K) {
1504   switch (K) {
1505 #define DECL(Type, Base) \
1506   case Decl::Type: \
1507     return isRedeclarableImpl((Type##Decl *)nullptr);
1508 #define ABSTRACT_DECL(DECL)
1509 #include "clang/AST/DeclNodes.inc"
1510   }
1511   llvm_unreachable("unknown decl kind");
1512 }
1513
1514 bool NamedDecl::declarationReplaces(NamedDecl *OldD, bool IsKnownNewer) const {
1515   assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
1516
1517   // Never replace one imported declaration with another; we need both results
1518   // when re-exporting.
1519   if (OldD->isFromASTFile() && isFromASTFile())
1520     return false;
1521
1522   // A kind mismatch implies that the declaration is not replaced.
1523   if (OldD->getKind() != getKind())
1524     return false;
1525
1526   // For method declarations, we never replace. (Why?)
1527   if (isa<ObjCMethodDecl>(this))
1528     return false;
1529
1530   // For parameters, pick the newer one. This is either an error or (in
1531   // Objective-C) permitted as an extension.
1532   if (isa<ParmVarDecl>(this))
1533     return true;
1534
1535   // Inline namespaces can give us two declarations with the same
1536   // name and kind in the same scope but different contexts; we should
1537   // keep both declarations in this case.
1538   if (!this->getDeclContext()->getRedeclContext()->Equals(
1539           OldD->getDeclContext()->getRedeclContext()))
1540     return false;
1541
1542   // Using declarations can be replaced if they import the same name from the
1543   // same context.
1544   if (auto *UD = dyn_cast<UsingDecl>(this)) {
1545     ASTContext &Context = getASTContext();
1546     return Context.getCanonicalNestedNameSpecifier(UD->getQualifier()) ==
1547            Context.getCanonicalNestedNameSpecifier(
1548                cast<UsingDecl>(OldD)->getQualifier());
1549   }
1550   if (auto *UUVD = dyn_cast<UnresolvedUsingValueDecl>(this)) {
1551     ASTContext &Context = getASTContext();
1552     return Context.getCanonicalNestedNameSpecifier(UUVD->getQualifier()) ==
1553            Context.getCanonicalNestedNameSpecifier(
1554                         cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
1555   }
1556
1557   // UsingDirectiveDecl's are not really NamedDecl's, and all have same name.
1558   // They can be replaced if they nominate the same namespace.
1559   // FIXME: Is this true even if they have different module visibility?
1560   if (auto *UD = dyn_cast<UsingDirectiveDecl>(this))
1561     return UD->getNominatedNamespace()->getOriginalNamespace() ==
1562            cast<UsingDirectiveDecl>(OldD)->getNominatedNamespace()
1563                ->getOriginalNamespace();
1564
1565   if (isRedeclarable(getKind())) {
1566     if (getCanonicalDecl() != OldD->getCanonicalDecl())
1567       return false;
1568
1569     if (IsKnownNewer)
1570       return true;
1571
1572     // Check whether this is actually newer than OldD. We want to keep the
1573     // newer declaration. This loop will usually only iterate once, because
1574     // OldD is usually the previous declaration.
1575     for (auto D : redecls()) {
1576       if (D == OldD)
1577         break;
1578
1579       // If we reach the canonical declaration, then OldD is not actually older
1580       // than this one.
1581       //
1582       // FIXME: In this case, we should not add this decl to the lookup table.
1583       if (D->isCanonicalDecl())
1584         return false;
1585     }
1586
1587     // It's a newer declaration of the same kind of declaration in the same
1588     // scope: we want this decl instead of the existing one.
1589     return true;
1590   }
1591
1592   // In all other cases, we need to keep both declarations in case they have
1593   // different visibility. Any attempt to use the name will result in an
1594   // ambiguity if more than one is visible.
1595   return false;
1596 }
1597
1598 bool NamedDecl::hasLinkage() const {
1599   return getFormalLinkage() != NoLinkage;
1600 }
1601
1602 NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1603   NamedDecl *ND = this;
1604   while (auto *UD = dyn_cast<UsingShadowDecl>(ND))
1605     ND = UD->getTargetDecl();
1606
1607   if (auto *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1608     return AD->getClassInterface();
1609
1610   if (auto *AD = dyn_cast<NamespaceAliasDecl>(ND))
1611     return AD->getNamespace();
1612
1613   return ND;
1614 }
1615
1616 bool NamedDecl::isCXXInstanceMember() const {
1617   if (!isCXXClassMember())
1618     return false;
1619   
1620   const NamedDecl *D = this;
1621   if (isa<UsingShadowDecl>(D))
1622     D = cast<UsingShadowDecl>(D)->getTargetDecl();
1623
1624   if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1625     return true;
1626   if (const auto *MD = dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
1627     return MD->isInstance();
1628   return false;
1629 }
1630
1631 //===----------------------------------------------------------------------===//
1632 // DeclaratorDecl Implementation
1633 //===----------------------------------------------------------------------===//
1634
1635 template <typename DeclT>
1636 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
1637   if (decl->getNumTemplateParameterLists() > 0)
1638     return decl->getTemplateParameterList(0)->getTemplateLoc();
1639   else
1640     return decl->getInnerLocStart();
1641 }
1642
1643 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
1644   TypeSourceInfo *TSI = getTypeSourceInfo();
1645   if (TSI) return TSI->getTypeLoc().getBeginLoc();
1646   return SourceLocation();
1647 }
1648
1649 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
1650   if (QualifierLoc) {
1651     // Make sure the extended decl info is allocated.
1652     if (!hasExtInfo()) {
1653       // Save (non-extended) type source info pointer.
1654       auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1655       // Allocate external info struct.
1656       DeclInfo = new (getASTContext()) ExtInfo;
1657       // Restore savedTInfo into (extended) decl info.
1658       getExtInfo()->TInfo = savedTInfo;
1659     }
1660     // Set qualifier info.
1661     getExtInfo()->QualifierLoc = QualifierLoc;
1662   } else {
1663     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1664     if (hasExtInfo()) {
1665       if (getExtInfo()->NumTemplParamLists == 0) {
1666         // Save type source info pointer.
1667         TypeSourceInfo *savedTInfo = getExtInfo()->TInfo;
1668         // Deallocate the extended decl info.
1669         getASTContext().Deallocate(getExtInfo());
1670         // Restore savedTInfo into (non-extended) decl info.
1671         DeclInfo = savedTInfo;
1672       }
1673       else
1674         getExtInfo()->QualifierLoc = QualifierLoc;
1675     }
1676   }
1677 }
1678
1679 void DeclaratorDecl::setTemplateParameterListsInfo(
1680     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1681   assert(!TPLists.empty());
1682   // Make sure the extended decl info is allocated.
1683   if (!hasExtInfo()) {
1684     // Save (non-extended) type source info pointer.
1685     auto *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1686     // Allocate external info struct.
1687     DeclInfo = new (getASTContext()) ExtInfo;
1688     // Restore savedTInfo into (extended) decl info.
1689     getExtInfo()->TInfo = savedTInfo;
1690   }
1691   // Set the template parameter lists info.
1692   getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
1693 }
1694
1695 SourceLocation DeclaratorDecl::getOuterLocStart() const {
1696   return getTemplateOrInnerLocStart(this);
1697 }
1698
1699 namespace {
1700
1701 // Helper function: returns true if QT is or contains a type
1702 // having a postfix component.
1703 bool typeIsPostfix(clang::QualType QT) {
1704   while (true) {
1705     const Type* T = QT.getTypePtr();
1706     switch (T->getTypeClass()) {
1707     default:
1708       return false;
1709     case Type::Pointer:
1710       QT = cast<PointerType>(T)->getPointeeType();
1711       break;
1712     case Type::BlockPointer:
1713       QT = cast<BlockPointerType>(T)->getPointeeType();
1714       break;
1715     case Type::MemberPointer:
1716       QT = cast<MemberPointerType>(T)->getPointeeType();
1717       break;
1718     case Type::LValueReference:
1719     case Type::RValueReference:
1720       QT = cast<ReferenceType>(T)->getPointeeType();
1721       break;
1722     case Type::PackExpansion:
1723       QT = cast<PackExpansionType>(T)->getPattern();
1724       break;
1725     case Type::Paren:
1726     case Type::ConstantArray:
1727     case Type::DependentSizedArray:
1728     case Type::IncompleteArray:
1729     case Type::VariableArray:
1730     case Type::FunctionProto:
1731     case Type::FunctionNoProto:
1732       return true;
1733     }
1734   }
1735 }
1736
1737 } // namespace
1738
1739 SourceRange DeclaratorDecl::getSourceRange() const {
1740   SourceLocation RangeEnd = getLocation();
1741   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
1742     // If the declaration has no name or the type extends past the name take the
1743     // end location of the type.
1744     if (!getDeclName() || typeIsPostfix(TInfo->getType()))
1745       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
1746   }
1747   return SourceRange(getOuterLocStart(), RangeEnd);
1748 }
1749
1750 void QualifierInfo::setTemplateParameterListsInfo(
1751     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
1752   // Free previous template parameters (if any).
1753   if (NumTemplParamLists > 0) {
1754     Context.Deallocate(TemplParamLists);
1755     TemplParamLists = nullptr;
1756     NumTemplParamLists = 0;
1757   }
1758   // Set info on matched template parameter lists (if any).
1759   if (!TPLists.empty()) {
1760     TemplParamLists = new (Context) TemplateParameterList *[TPLists.size()];
1761     NumTemplParamLists = TPLists.size();
1762     std::copy(TPLists.begin(), TPLists.end(), TemplParamLists);
1763   }
1764 }
1765
1766 //===----------------------------------------------------------------------===//
1767 // VarDecl Implementation
1768 //===----------------------------------------------------------------------===//
1769
1770 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
1771   switch (SC) {
1772   case SC_None:                 break;
1773   case SC_Auto:                 return "auto";
1774   case SC_Extern:               return "extern";
1775   case SC_PrivateExtern:        return "__private_extern__";
1776   case SC_Register:             return "register";
1777   case SC_Static:               return "static";
1778   }
1779
1780   llvm_unreachable("Invalid storage class");
1781 }
1782
1783 VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC,
1784                  SourceLocation StartLoc, SourceLocation IdLoc,
1785                  IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1786                  StorageClass SC)
1787     : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
1788       redeclarable_base(C), Init() {
1789   static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
1790                 "VarDeclBitfields too large!");
1791   static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
1792                 "ParmVarDeclBitfields too large!");
1793   static_assert(sizeof(NonParmVarDeclBitfields) <= sizeof(unsigned),
1794                 "NonParmVarDeclBitfields too large!");
1795   AllBits = 0;
1796   VarDeclBits.SClass = SC;
1797   // Everything else is implicitly initialized to false.
1798 }
1799
1800 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC,
1801                          SourceLocation StartL, SourceLocation IdL,
1802                          IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1803                          StorageClass S) {
1804   return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
1805 }
1806
1807 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1808   return new (C, ID)
1809       VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
1810               QualType(), nullptr, SC_None);
1811 }
1812
1813 void VarDecl::setStorageClass(StorageClass SC) {
1814   assert(isLegalForVariable(SC));
1815   VarDeclBits.SClass = SC;
1816 }
1817
1818 VarDecl::TLSKind VarDecl::getTLSKind() const {
1819   switch (VarDeclBits.TSCSpec) {
1820   case TSCS_unspecified:
1821     if (!hasAttr<ThreadAttr>() &&
1822         !(getASTContext().getLangOpts().OpenMPUseTLS &&
1823           getASTContext().getTargetInfo().isTLSSupported() &&
1824           hasAttr<OMPThreadPrivateDeclAttr>()))
1825       return TLS_None;
1826     return ((getASTContext().getLangOpts().isCompatibleWithMSVC(
1827                 LangOptions::MSVC2015)) ||
1828             hasAttr<OMPThreadPrivateDeclAttr>())
1829                ? TLS_Dynamic
1830                : TLS_Static;
1831   case TSCS___thread: // Fall through.
1832   case TSCS__Thread_local:
1833     return TLS_Static;
1834   case TSCS_thread_local:
1835     return TLS_Dynamic;
1836   }
1837   llvm_unreachable("Unknown thread storage class specifier!");
1838 }
1839
1840 SourceRange VarDecl::getSourceRange() const {
1841   if (const Expr *Init = getInit()) {
1842     SourceLocation InitEnd = Init->getLocEnd();
1843     // If Init is implicit, ignore its source range and fallback on 
1844     // DeclaratorDecl::getSourceRange() to handle postfix elements.
1845     if (InitEnd.isValid() && InitEnd != getLocation())
1846       return SourceRange(getOuterLocStart(), InitEnd);
1847   }
1848   return DeclaratorDecl::getSourceRange();
1849 }
1850
1851 template<typename T>
1852 static LanguageLinkage getDeclLanguageLinkage(const T &D) {
1853   // C++ [dcl.link]p1: All function types, function names with external linkage,
1854   // and variable names with external linkage have a language linkage.
1855   if (!D.hasExternalFormalLinkage())
1856     return NoLanguageLinkage;
1857
1858   // Language linkage is a C++ concept, but saying that everything else in C has
1859   // C language linkage fits the implementation nicely.
1860   ASTContext &Context = D.getASTContext();
1861   if (!Context.getLangOpts().CPlusPlus)
1862     return CLanguageLinkage;
1863
1864   // C++ [dcl.link]p4: A C language linkage is ignored in determining the
1865   // language linkage of the names of class members and the function type of
1866   // class member functions.
1867   const DeclContext *DC = D.getDeclContext();
1868   if (DC->isRecord())
1869     return CXXLanguageLinkage;
1870
1871   // If the first decl is in an extern "C" context, any other redeclaration
1872   // will have C language linkage. If the first one is not in an extern "C"
1873   // context, we would have reported an error for any other decl being in one.
1874   if (isFirstInExternCContext(&D))
1875     return CLanguageLinkage;
1876   return CXXLanguageLinkage;
1877 }
1878
1879 template<typename T>
1880 static bool isDeclExternC(const T &D) {
1881   // Since the context is ignored for class members, they can only have C++
1882   // language linkage or no language linkage.
1883   const DeclContext *DC = D.getDeclContext();
1884   if (DC->isRecord()) {
1885     assert(D.getASTContext().getLangOpts().CPlusPlus);
1886     return false;
1887   }
1888
1889   return D.getLanguageLinkage() == CLanguageLinkage;
1890 }
1891
1892 LanguageLinkage VarDecl::getLanguageLinkage() const {
1893   return getDeclLanguageLinkage(*this);
1894 }
1895
1896 bool VarDecl::isExternC() const {
1897   return isDeclExternC(*this);
1898 }
1899
1900 bool VarDecl::isInExternCContext() const {
1901   return getLexicalDeclContext()->isExternCContext();
1902 }
1903
1904 bool VarDecl::isInExternCXXContext() const {
1905   return getLexicalDeclContext()->isExternCXXContext();
1906 }
1907
1908 VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); }
1909
1910 VarDecl::DefinitionKind
1911 VarDecl::isThisDeclarationADefinition(ASTContext &C) const {
1912   // C++ [basic.def]p2:
1913   //   A declaration is a definition unless [...] it contains the 'extern'
1914   //   specifier or a linkage-specification and neither an initializer [...],
1915   //   it declares a non-inline static data member in a class declaration [...],
1916   //   it declares a static data member outside a class definition and the variable
1917   //   was defined within the class with the constexpr specifier [...],
1918   // C++1y [temp.expl.spec]p15:
1919   //   An explicit specialization of a static data member or an explicit
1920   //   specialization of a static data member template is a definition if the
1921   //   declaration includes an initializer; otherwise, it is a declaration.
1922   //
1923   // FIXME: How do you declare (but not define) a partial specialization of
1924   // a static data member template outside the containing class?
1925   if (isStaticDataMember()) {
1926     if (isOutOfLine() &&
1927         !(getCanonicalDecl()->isInline() &&
1928           getCanonicalDecl()->isConstexpr()) &&
1929         (hasInit() ||
1930          // If the first declaration is out-of-line, this may be an
1931          // instantiation of an out-of-line partial specialization of a variable
1932          // template for which we have not yet instantiated the initializer.
1933          (getFirstDecl()->isOutOfLine()
1934               ? getTemplateSpecializationKind() == TSK_Undeclared
1935               : getTemplateSpecializationKind() !=
1936                     TSK_ExplicitSpecialization) ||
1937          isa<VarTemplatePartialSpecializationDecl>(this)))
1938       return Definition;
1939     else if (!isOutOfLine() && isInline())
1940       return Definition;
1941     else
1942       return DeclarationOnly;
1943   }
1944   // C99 6.7p5:
1945   //   A definition of an identifier is a declaration for that identifier that
1946   //   [...] causes storage to be reserved for that object.
1947   // Note: that applies for all non-file-scope objects.
1948   // C99 6.9.2p1:
1949   //   If the declaration of an identifier for an object has file scope and an
1950   //   initializer, the declaration is an external definition for the identifier
1951   if (hasInit())
1952     return Definition;
1953
1954   if (hasDefiningAttr())
1955     return Definition;
1956
1957   if (const auto *SAA = getAttr<SelectAnyAttr>())
1958     if (!SAA->isInherited())
1959       return Definition;
1960
1961   // A variable template specialization (other than a static data member
1962   // template or an explicit specialization) is a declaration until we
1963   // instantiate its initializer.
1964   if (isa<VarTemplateSpecializationDecl>(this) &&
1965       getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
1966     return DeclarationOnly;
1967
1968   if (hasExternalStorage())
1969     return DeclarationOnly;
1970
1971   // [dcl.link] p7:
1972   //   A declaration directly contained in a linkage-specification is treated
1973   //   as if it contains the extern specifier for the purpose of determining
1974   //   the linkage of the declared name and whether it is a definition.
1975   if (isSingleLineLanguageLinkage(*this))
1976     return DeclarationOnly;
1977
1978   // C99 6.9.2p2:
1979   //   A declaration of an object that has file scope without an initializer,
1980   //   and without a storage class specifier or the scs 'static', constitutes
1981   //   a tentative definition.
1982   // No such thing in C++.
1983   if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
1984     return TentativeDefinition;
1985
1986   // What's left is (in C, block-scope) declarations without initializers or
1987   // external storage. These are definitions.
1988   return Definition;
1989 }
1990
1991 VarDecl *VarDecl::getActingDefinition() {
1992   DefinitionKind Kind = isThisDeclarationADefinition();
1993   if (Kind != TentativeDefinition)
1994     return nullptr;
1995
1996   VarDecl *LastTentative = nullptr;
1997   VarDecl *First = getFirstDecl();
1998   for (auto I : First->redecls()) {
1999     Kind = I->isThisDeclarationADefinition();
2000     if (Kind == Definition)
2001       return nullptr;
2002     else if (Kind == TentativeDefinition)
2003       LastTentative = I;
2004   }
2005   return LastTentative;
2006 }
2007
2008 VarDecl *VarDecl::getDefinition(ASTContext &C) {
2009   VarDecl *First = getFirstDecl();
2010   for (auto I : First->redecls()) {
2011     if (I->isThisDeclarationADefinition(C) == Definition)
2012       return I;
2013   }
2014   return nullptr;
2015 }
2016
2017 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
2018   DefinitionKind Kind = DeclarationOnly;
2019
2020   const VarDecl *First = getFirstDecl();
2021   for (auto I : First->redecls()) {
2022     Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
2023     if (Kind == Definition)
2024       break;
2025   }
2026
2027   return Kind;
2028 }
2029
2030 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
2031   for (auto I : redecls()) {
2032     if (auto Expr = I->getInit()) {
2033       D = I;
2034       return Expr;
2035     }
2036   }
2037   return nullptr;
2038 }
2039
2040 bool VarDecl::hasInit() const {
2041   if (auto *P = dyn_cast<ParmVarDecl>(this))
2042     if (P->hasUnparsedDefaultArg() || P->hasUninstantiatedDefaultArg())
2043       return false;
2044
2045   return !Init.isNull();
2046 }
2047
2048 Expr *VarDecl::getInit() {
2049   if (!hasInit())
2050     return nullptr;
2051
2052   if (auto *S = Init.dyn_cast<Stmt *>())
2053     return cast<Expr>(S);
2054
2055   return cast_or_null<Expr>(Init.get<EvaluatedStmt *>()->Value);
2056 }
2057
2058 Stmt **VarDecl::getInitAddress() {
2059   if (auto *ES = Init.dyn_cast<EvaluatedStmt *>())
2060     return &ES->Value;
2061
2062   return Init.getAddrOfPtr1();
2063 }
2064
2065 bool VarDecl::isOutOfLine() const {
2066   if (Decl::isOutOfLine())
2067     return true;
2068
2069   if (!isStaticDataMember())
2070     return false;
2071
2072   // If this static data member was instantiated from a static data member of
2073   // a class template, check whether that static data member was defined 
2074   // out-of-line.
2075   if (VarDecl *VD = getInstantiatedFromStaticDataMember())
2076     return VD->isOutOfLine();
2077   
2078   return false;
2079 }
2080
2081 void VarDecl::setInit(Expr *I) {
2082   if (auto *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
2083     Eval->~EvaluatedStmt();
2084     getASTContext().Deallocate(Eval);
2085   }
2086
2087   Init = I;
2088 }
2089
2090 bool VarDecl::isUsableInConstantExpressions(ASTContext &C) const {
2091   const LangOptions &Lang = C.getLangOpts();
2092
2093   if (!Lang.CPlusPlus)
2094     return false;
2095
2096   // In C++11, any variable of reference type can be used in a constant
2097   // expression if it is initialized by a constant expression.
2098   if (Lang.CPlusPlus11 && getType()->isReferenceType())
2099     return true;
2100
2101   // Only const objects can be used in constant expressions in C++. C++98 does
2102   // not require the variable to be non-volatile, but we consider this to be a
2103   // defect.
2104   if (!getType().isConstQualified() || getType().isVolatileQualified())
2105     return false;
2106
2107   // In C++, const, non-volatile variables of integral or enumeration types
2108   // can be used in constant expressions.
2109   if (getType()->isIntegralOrEnumerationType())
2110     return true;
2111
2112   // Additionally, in C++11, non-volatile constexpr variables can be used in
2113   // constant expressions.
2114   return Lang.CPlusPlus11 && isConstexpr();
2115 }
2116
2117 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt
2118 /// form, which contains extra information on the evaluated value of the
2119 /// initializer.
2120 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
2121   auto *Eval = Init.dyn_cast<EvaluatedStmt *>();
2122   if (!Eval) {
2123     // Note: EvaluatedStmt contains an APValue, which usually holds
2124     // resources not allocated from the ASTContext.  We need to do some
2125     // work to avoid leaking those, but we do so in VarDecl::evaluateValue
2126     // where we can detect whether there's anything to clean up or not.
2127     Eval = new (getASTContext()) EvaluatedStmt;
2128     Eval->Value = Init.get<Stmt *>();
2129     Init = Eval;
2130   }
2131   return Eval;
2132 }
2133
2134 APValue *VarDecl::evaluateValue() const {
2135   SmallVector<PartialDiagnosticAt, 8> Notes;
2136   return evaluateValue(Notes);
2137 }
2138
2139 namespace {
2140 // Destroy an APValue that was allocated in an ASTContext.
2141 void DestroyAPValue(void* UntypedValue) {
2142   static_cast<APValue*>(UntypedValue)->~APValue();
2143 }
2144 } // namespace
2145
2146 APValue *VarDecl::evaluateValue(
2147     SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2148   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2149
2150   // We only produce notes indicating why an initializer is non-constant the
2151   // first time it is evaluated. FIXME: The notes won't always be emitted the
2152   // first time we try evaluation, so might not be produced at all.
2153   if (Eval->WasEvaluated)
2154     return Eval->Evaluated.isUninit() ? nullptr : &Eval->Evaluated;
2155
2156   const auto *Init = cast<Expr>(Eval->Value);
2157   assert(!Init->isValueDependent());
2158
2159   if (Eval->IsEvaluating) {
2160     // FIXME: Produce a diagnostic for self-initialization.
2161     Eval->CheckedICE = true;
2162     Eval->IsICE = false;
2163     return nullptr;
2164   }
2165
2166   Eval->IsEvaluating = true;
2167
2168   bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
2169                                             this, Notes);
2170
2171   // Ensure the computed APValue is cleaned up later if evaluation succeeded,
2172   // or that it's empty (so that there's nothing to clean up) if evaluation
2173   // failed.
2174   if (!Result)
2175     Eval->Evaluated = APValue();
2176   else if (Eval->Evaluated.needsCleanup())
2177     getASTContext().AddDeallocation(DestroyAPValue, &Eval->Evaluated);
2178
2179   Eval->IsEvaluating = false;
2180   Eval->WasEvaluated = true;
2181
2182   // In C++11, we have determined whether the initializer was a constant
2183   // expression as a side-effect.
2184   if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) {
2185     Eval->CheckedICE = true;
2186     Eval->IsICE = Result && Notes.empty();
2187   }
2188
2189   return Result ? &Eval->Evaluated : nullptr;
2190 }
2191
2192 APValue *VarDecl::getEvaluatedValue() const {
2193   if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
2194     if (Eval->WasEvaluated)
2195       return &Eval->Evaluated;
2196
2197   return nullptr;
2198 }
2199
2200 bool VarDecl::isInitKnownICE() const {
2201   if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>())
2202     return Eval->CheckedICE;
2203
2204   return false;
2205 }
2206
2207 bool VarDecl::isInitICE() const {
2208   assert(isInitKnownICE() &&
2209          "Check whether we already know that the initializer is an ICE");
2210   return Init.get<EvaluatedStmt *>()->IsICE;
2211 }
2212
2213 bool VarDecl::checkInitIsICE() const {
2214   // Initializers of weak variables are never ICEs.
2215   if (isWeak())
2216     return false;
2217
2218   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2219   if (Eval->CheckedICE)
2220     // We have already checked whether this subexpression is an
2221     // integral constant expression.
2222     return Eval->IsICE;
2223
2224   const auto *Init = cast<Expr>(Eval->Value);
2225   assert(!Init->isValueDependent());
2226
2227   // In C++11, evaluate the initializer to check whether it's a constant
2228   // expression.
2229   if (getASTContext().getLangOpts().CPlusPlus11) {
2230     SmallVector<PartialDiagnosticAt, 8> Notes;
2231     evaluateValue(Notes);
2232     return Eval->IsICE;
2233   }
2234
2235   // It's an ICE whether or not the definition we found is
2236   // out-of-line.  See DR 721 and the discussion in Clang PR
2237   // 6206 for details.
2238
2239   if (Eval->CheckingICE)
2240     return false;
2241   Eval->CheckingICE = true;
2242
2243   Eval->IsICE = Init->isIntegerConstantExpr(getASTContext());
2244   Eval->CheckingICE = false;
2245   Eval->CheckedICE = true;
2246   return Eval->IsICE;
2247 }
2248
2249 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
2250   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2251     return cast<VarDecl>(MSI->getInstantiatedFrom());
2252
2253   return nullptr;
2254 }
2255
2256 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
2257   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2258     return Spec->getSpecializationKind();
2259
2260   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2261     return MSI->getTemplateSpecializationKind();
2262
2263   return TSK_Undeclared;
2264 }
2265
2266 SourceLocation VarDecl::getPointOfInstantiation() const {
2267   if (const auto *Spec = dyn_cast<VarTemplateSpecializationDecl>(this))
2268     return Spec->getPointOfInstantiation();
2269
2270   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2271     return MSI->getPointOfInstantiation();
2272
2273   return SourceLocation();
2274 }
2275
2276 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
2277   return getASTContext().getTemplateOrSpecializationInfo(this)
2278       .dyn_cast<VarTemplateDecl *>();
2279 }
2280
2281 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
2282   getASTContext().setTemplateOrSpecializationInfo(this, Template);
2283 }
2284
2285 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
2286   if (isStaticDataMember())
2287     // FIXME: Remove ?
2288     // return getASTContext().getInstantiatedFromStaticDataMember(this);
2289     return getASTContext().getTemplateOrSpecializationInfo(this)
2290         .dyn_cast<MemberSpecializationInfo *>();
2291   return nullptr;
2292 }
2293
2294 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2295                                          SourceLocation PointOfInstantiation) {
2296   assert((isa<VarTemplateSpecializationDecl>(this) ||
2297           getMemberSpecializationInfo()) &&
2298          "not a variable or static data member template specialization");
2299
2300   if (VarTemplateSpecializationDecl *Spec =
2301           dyn_cast<VarTemplateSpecializationDecl>(this)) {
2302     Spec->setSpecializationKind(TSK);
2303     if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2304         Spec->getPointOfInstantiation().isInvalid())
2305       Spec->setPointOfInstantiation(PointOfInstantiation);
2306   }
2307
2308   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
2309     MSI->setTemplateSpecializationKind(TSK);
2310     if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2311         MSI->getPointOfInstantiation().isInvalid())
2312       MSI->setPointOfInstantiation(PointOfInstantiation);
2313   }
2314 }
2315
2316 void
2317 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
2318                                             TemplateSpecializationKind TSK) {
2319   assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
2320          "Previous template or instantiation?");
2321   getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
2322 }
2323
2324 //===----------------------------------------------------------------------===//
2325 // ParmVarDecl Implementation
2326 //===----------------------------------------------------------------------===//
2327
2328 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
2329                                  SourceLocation StartLoc,
2330                                  SourceLocation IdLoc, IdentifierInfo *Id,
2331                                  QualType T, TypeSourceInfo *TInfo,
2332                                  StorageClass S, Expr *DefArg) {
2333   return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
2334                                  S, DefArg);
2335 }
2336
2337 QualType ParmVarDecl::getOriginalType() const {
2338   TypeSourceInfo *TSI = getTypeSourceInfo();
2339   QualType T = TSI ? TSI->getType() : getType();
2340   if (const auto *DT = dyn_cast<DecayedType>(T))
2341     return DT->getOriginalType();
2342   return T;
2343 }
2344
2345 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2346   return new (C, ID)
2347       ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
2348                   nullptr, QualType(), nullptr, SC_None, nullptr);
2349 }
2350
2351 SourceRange ParmVarDecl::getSourceRange() const {
2352   if (!hasInheritedDefaultArg()) {
2353     SourceRange ArgRange = getDefaultArgRange();
2354     if (ArgRange.isValid())
2355       return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2356   }
2357
2358   // DeclaratorDecl considers the range of postfix types as overlapping with the
2359   // declaration name, but this is not the case with parameters in ObjC methods.
2360   if (isa<ObjCMethodDecl>(getDeclContext()))
2361     return SourceRange(DeclaratorDecl::getLocStart(), getLocation());
2362
2363   return DeclaratorDecl::getSourceRange();
2364 }
2365
2366 Expr *ParmVarDecl::getDefaultArg() {
2367   assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
2368   assert(!hasUninstantiatedDefaultArg() &&
2369          "Default argument is not yet instantiated!");
2370
2371   Expr *Arg = getInit();
2372   if (auto *E = dyn_cast_or_null<ExprWithCleanups>(Arg))
2373     return E->getSubExpr();
2374
2375   return Arg;
2376 }
2377
2378 void ParmVarDecl::setDefaultArg(Expr *defarg) {
2379   ParmVarDeclBits.DefaultArgKind = DAK_Normal;
2380   Init = defarg;
2381 }
2382
2383 SourceRange ParmVarDecl::getDefaultArgRange() const {
2384   switch (ParmVarDeclBits.DefaultArgKind) {
2385   case DAK_None:
2386   case DAK_Unparsed:
2387     // Nothing we can do here.
2388     return SourceRange();
2389
2390   case DAK_Uninstantiated:
2391     return getUninstantiatedDefaultArg()->getSourceRange();
2392
2393   case DAK_Normal:
2394     if (const Expr *E = getInit())
2395       return E->getSourceRange();
2396
2397     // Missing an actual expression, may be invalid.
2398     return SourceRange();
2399   }
2400   llvm_unreachable("Invalid default argument kind.");
2401 }
2402
2403 void ParmVarDecl::setUninstantiatedDefaultArg(Expr *arg) {
2404   ParmVarDeclBits.DefaultArgKind = DAK_Uninstantiated;
2405   Init = arg;
2406 }
2407
2408 Expr *ParmVarDecl::getUninstantiatedDefaultArg() {
2409   assert(hasUninstantiatedDefaultArg() &&
2410          "Wrong kind of initialization expression!");
2411   return cast_or_null<Expr>(Init.get<Stmt *>());
2412 }
2413
2414 bool ParmVarDecl::hasDefaultArg() const {
2415   // FIXME: We should just return false for DAK_None here once callers are
2416   // prepared for the case that we encountered an invalid default argument and
2417   // were unable to even build an invalid expression.
2418   return hasUnparsedDefaultArg() || hasUninstantiatedDefaultArg() ||
2419          !Init.isNull();
2420 }
2421
2422 bool ParmVarDecl::isParameterPack() const {
2423   return isa<PackExpansionType>(getType());
2424 }
2425
2426 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
2427   getASTContext().setParameterIndex(this, parameterIndex);
2428   ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
2429 }
2430
2431 unsigned ParmVarDecl::getParameterIndexLarge() const {
2432   return getASTContext().getParameterIndex(this);
2433 }
2434
2435 //===----------------------------------------------------------------------===//
2436 // FunctionDecl Implementation
2437 //===----------------------------------------------------------------------===//
2438
2439 void FunctionDecl::getNameForDiagnostic(
2440     raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
2441   NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
2442   const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
2443   if (TemplateArgs)
2444     TemplateSpecializationType::PrintTemplateArgumentList(
2445         OS, TemplateArgs->asArray(), Policy);
2446 }
2447
2448 bool FunctionDecl::isVariadic() const {
2449   if (const auto *FT = getType()->getAs<FunctionProtoType>())
2450     return FT->isVariadic();
2451   return false;
2452 }
2453
2454 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
2455   for (auto I : redecls()) {
2456     if (I->Body || I->IsLateTemplateParsed) {
2457       Definition = I;
2458       return true;
2459     }
2460   }
2461
2462   return false;
2463 }
2464
2465 bool FunctionDecl::hasTrivialBody() const
2466 {
2467   Stmt *S = getBody();
2468   if (!S) {
2469     // Since we don't have a body for this function, we don't know if it's
2470     // trivial or not.
2471     return false;
2472   }
2473
2474   if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
2475     return true;
2476   return false;
2477 }
2478
2479 bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const {
2480   for (auto I : redecls()) {
2481     if (I->IsDeleted || I->IsDefaulted || I->Body || I->IsLateTemplateParsed ||
2482         I->hasDefiningAttr()) {
2483       Definition = I->IsDeleted ? I->getCanonicalDecl() : I;
2484       return true;
2485     }
2486   }
2487
2488   return false;
2489 }
2490
2491 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
2492   if (!hasBody(Definition))
2493     return nullptr;
2494
2495   if (Definition->Body)
2496     return Definition->Body.get(getASTContext().getExternalSource());
2497
2498   return nullptr;
2499 }
2500
2501 void FunctionDecl::setBody(Stmt *B) {
2502   Body = B;
2503   if (B)
2504     EndRangeLoc = B->getLocEnd();
2505 }
2506
2507 void FunctionDecl::setPure(bool P) {
2508   IsPure = P;
2509   if (P)
2510     if (auto *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
2511       Parent->markedVirtualFunctionPure();
2512 }
2513
2514 template<std::size_t Len>
2515 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
2516   IdentifierInfo *II = ND->getIdentifier();
2517   return II && II->isStr(Str);
2518 }
2519
2520 bool FunctionDecl::isMain() const {
2521   const TranslationUnitDecl *tunit =
2522     dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
2523   return tunit &&
2524          !tunit->getASTContext().getLangOpts().Freestanding &&
2525          isNamed(this, "main");
2526 }
2527
2528 bool FunctionDecl::isMSVCRTEntryPoint() const {
2529   const TranslationUnitDecl *TUnit =
2530       dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
2531   if (!TUnit)
2532     return false;
2533
2534   // Even though we aren't really targeting MSVCRT if we are freestanding,
2535   // semantic analysis for these functions remains the same.
2536
2537   // MSVCRT entry points only exist on MSVCRT targets.
2538   if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
2539     return false;
2540
2541   // Nameless functions like constructors cannot be entry points.
2542   if (!getIdentifier())
2543     return false;
2544
2545   return llvm::StringSwitch<bool>(getName())
2546       .Cases("main",     // an ANSI console app
2547              "wmain",    // a Unicode console App
2548              "WinMain",  // an ANSI GUI app
2549              "wWinMain", // a Unicode GUI app
2550              "DllMain",  // a DLL
2551              true)
2552       .Default(false);
2553 }
2554
2555 bool FunctionDecl::isReservedGlobalPlacementOperator() const {
2556   assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
2557   assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
2558          getDeclName().getCXXOverloadedOperator() == OO_Delete ||
2559          getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
2560          getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
2561
2562   if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
2563     return false;
2564
2565   const auto *proto = getType()->castAs<FunctionProtoType>();
2566   if (proto->getNumParams() != 2 || proto->isVariadic())
2567     return false;
2568
2569   ASTContext &Context =
2570     cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
2571       ->getASTContext();
2572
2573   // The result type and first argument type are constant across all
2574   // these operators.  The second argument must be exactly void*.
2575   return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
2576 }
2577
2578 bool FunctionDecl::isReplaceableGlobalAllocationFunction() const {
2579   if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
2580     return false;
2581   if (getDeclName().getCXXOverloadedOperator() != OO_New &&
2582       getDeclName().getCXXOverloadedOperator() != OO_Delete &&
2583       getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
2584       getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
2585     return false;
2586
2587   if (isa<CXXRecordDecl>(getDeclContext()))
2588     return false;
2589
2590   // This can only fail for an invalid 'operator new' declaration.
2591   if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
2592     return false;
2593
2594   const auto *FPT = getType()->castAs<FunctionProtoType>();
2595   if (FPT->getNumParams() == 0 || FPT->getNumParams() > 2 || FPT->isVariadic())
2596     return false;
2597
2598   // If this is a single-parameter function, it must be a replaceable global
2599   // allocation or deallocation function.
2600   if (FPT->getNumParams() == 1)
2601     return true;
2602
2603   // Otherwise, we're looking for a second parameter whose type is
2604   // 'const std::nothrow_t &', or, in C++1y, 'std::size_t'.
2605   QualType Ty = FPT->getParamType(1);
2606   ASTContext &Ctx = getASTContext();
2607   if (Ctx.getLangOpts().SizedDeallocation &&
2608       Ctx.hasSameType(Ty, Ctx.getSizeType()))
2609     return true;
2610   if (!Ty->isReferenceType())
2611     return false;
2612   Ty = Ty->getPointeeType();
2613   if (Ty.getCVRQualifiers() != Qualifiers::Const)
2614     return false;
2615   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
2616   return RD && isNamed(RD, "nothrow_t") && RD->isInStdNamespace();
2617 }
2618
2619 LanguageLinkage FunctionDecl::getLanguageLinkage() const {
2620   return getDeclLanguageLinkage(*this);
2621 }
2622
2623 bool FunctionDecl::isExternC() const {
2624   return isDeclExternC(*this);
2625 }
2626
2627 bool FunctionDecl::isInExternCContext() const {
2628   return getLexicalDeclContext()->isExternCContext();
2629 }
2630
2631 bool FunctionDecl::isInExternCXXContext() const {
2632   return getLexicalDeclContext()->isExternCXXContext();
2633 }
2634
2635 bool FunctionDecl::isGlobal() const {
2636   if (const auto *Method = dyn_cast<CXXMethodDecl>(this))
2637     return Method->isStatic();
2638
2639   if (getCanonicalDecl()->getStorageClass() == SC_Static)
2640     return false;
2641
2642   for (const DeclContext *DC = getDeclContext();
2643        DC->isNamespace();
2644        DC = DC->getParent()) {
2645     if (const auto *Namespace = cast<NamespaceDecl>(DC)) {
2646       if (!Namespace->getDeclName())
2647         return false;
2648       break;
2649     }
2650   }
2651
2652   return true;
2653 }
2654
2655 bool FunctionDecl::isNoReturn() const {
2656   return hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
2657          hasAttr<C11NoReturnAttr>() ||
2658          getType()->getAs<FunctionType>()->getNoReturnAttr();
2659 }
2660
2661 void
2662 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
2663   redeclarable_base::setPreviousDecl(PrevDecl);
2664
2665   if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
2666     FunctionTemplateDecl *PrevFunTmpl
2667       = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
2668     assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
2669     FunTmpl->setPreviousDecl(PrevFunTmpl);
2670   }
2671   
2672   if (PrevDecl && PrevDecl->IsInline)
2673     IsInline = true;
2674 }
2675
2676 FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); }
2677
2678 /// \brief Returns a value indicating whether this function
2679 /// corresponds to a builtin function.
2680 ///
2681 /// The function corresponds to a built-in function if it is
2682 /// declared at translation scope or within an extern "C" block and
2683 /// its name matches with the name of a builtin. The returned value
2684 /// will be 0 for functions that do not correspond to a builtin, a
2685 /// value of type \c Builtin::ID if in the target-independent range
2686 /// \c [1,Builtin::First), or a target-specific builtin value.
2687 unsigned FunctionDecl::getBuiltinID() const {
2688   if (!getIdentifier())
2689     return 0;
2690
2691   unsigned BuiltinID = getIdentifier()->getBuiltinID();
2692   if (!BuiltinID)
2693     return 0;
2694
2695   ASTContext &Context = getASTContext();
2696   if (Context.getLangOpts().CPlusPlus) {
2697     const auto *LinkageDecl =
2698         dyn_cast<LinkageSpecDecl>(getFirstDecl()->getDeclContext());
2699     // In C++, the first declaration of a builtin is always inside an implicit
2700     // extern "C".
2701     // FIXME: A recognised library function may not be directly in an extern "C"
2702     // declaration, for instance "extern "C" { namespace std { decl } }".
2703     if (!LinkageDecl) {
2704       if (BuiltinID == Builtin::BI__GetExceptionInfo &&
2705           Context.getTargetInfo().getCXXABI().isMicrosoft())
2706         return Builtin::BI__GetExceptionInfo;
2707       return 0;
2708     }
2709     if (LinkageDecl->getLanguage() != LinkageSpecDecl::lang_c)
2710       return 0;
2711   }
2712
2713   // If the function is marked "overloadable", it has a different mangled name
2714   // and is not the C library function.
2715   if (hasAttr<OverloadableAttr>())
2716     return 0;
2717
2718   if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
2719     return BuiltinID;
2720
2721   // This function has the name of a known C library
2722   // function. Determine whether it actually refers to the C library
2723   // function or whether it just has the same name.
2724
2725   // If this is a static function, it's not a builtin.
2726   if (getStorageClass() == SC_Static)
2727     return 0;
2728
2729   // OpenCL v1.2 s6.9.f - The library functions defined in
2730   // the C99 standard headers are not available.
2731   if (Context.getLangOpts().OpenCL &&
2732       Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
2733     return 0;
2734
2735   return BuiltinID;
2736 }
2737
2738
2739 /// getNumParams - Return the number of parameters this function must have
2740 /// based on its FunctionType.  This is the length of the ParamInfo array
2741 /// after it has been created.
2742 unsigned FunctionDecl::getNumParams() const {
2743   const auto *FPT = getType()->getAs<FunctionProtoType>();
2744   return FPT ? FPT->getNumParams() : 0;
2745 }
2746
2747 void FunctionDecl::setParams(ASTContext &C,
2748                              ArrayRef<ParmVarDecl *> NewParamInfo) {
2749   assert(!ParamInfo && "Already has param info!");
2750   assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
2751
2752   // Zero params -> null pointer.
2753   if (!NewParamInfo.empty()) {
2754     ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
2755     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
2756   }
2757 }
2758
2759 void FunctionDecl::setDeclsInPrototypeScope(ArrayRef<NamedDecl *> NewDecls) {
2760   assert(DeclsInPrototypeScope.empty() && "Already has prototype decls!");
2761
2762   if (!NewDecls.empty()) {
2763     NamedDecl **A = new (getASTContext()) NamedDecl*[NewDecls.size()];
2764     std::copy(NewDecls.begin(), NewDecls.end(), A);
2765     DeclsInPrototypeScope = llvm::makeArrayRef(A, NewDecls.size());
2766     // Move declarations introduced in prototype to the function context.
2767     for (auto I : NewDecls) {
2768       DeclContext *DC = I->getDeclContext();
2769       // Forward-declared reference to an enumeration is not added to
2770       // declaration scope, so skip declaration that is absent from its
2771       // declaration contexts.
2772       if (DC->containsDecl(I)) {
2773           DC->removeDecl(I);
2774           I->setDeclContext(this);
2775           addDecl(I);
2776       }
2777     }
2778   }
2779 }
2780
2781 /// getMinRequiredArguments - Returns the minimum number of arguments
2782 /// needed to call this function. This may be fewer than the number of
2783 /// function parameters, if some of the parameters have default
2784 /// arguments (in C++) or are parameter packs (C++11).
2785 unsigned FunctionDecl::getMinRequiredArguments() const {
2786   if (!getASTContext().getLangOpts().CPlusPlus)
2787     return getNumParams();
2788
2789   unsigned NumRequiredArgs = 0;
2790   for (auto *Param : parameters())
2791     if (!Param->isParameterPack() && !Param->hasDefaultArg())
2792       ++NumRequiredArgs;
2793   return NumRequiredArgs;
2794 }
2795
2796 /// \brief The combination of the extern and inline keywords under MSVC forces
2797 /// the function to be required.
2798 ///
2799 /// Note: This function assumes that we will only get called when isInlined()
2800 /// would return true for this FunctionDecl.
2801 bool FunctionDecl::isMSExternInline() const {
2802   assert(isInlined() && "expected to get called on an inlined function!");
2803
2804   const ASTContext &Context = getASTContext();
2805   if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
2806       !hasAttr<DLLExportAttr>())
2807     return false;
2808
2809   for (const FunctionDecl *FD = getMostRecentDecl(); FD;
2810        FD = FD->getPreviousDecl())
2811     if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
2812       return true;
2813
2814   return false;
2815 }
2816
2817 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
2818   if (Redecl->getStorageClass() != SC_Extern)
2819     return false;
2820
2821   for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
2822        FD = FD->getPreviousDecl())
2823     if (!FD->isImplicit() && FD->getStorageClass() == SC_Extern)
2824       return false;
2825
2826   return true;
2827 }
2828
2829 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
2830   // Only consider file-scope declarations in this test.
2831   if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
2832     return false;
2833
2834   // Only consider explicit declarations; the presence of a builtin for a
2835   // libcall shouldn't affect whether a definition is externally visible.
2836   if (Redecl->isImplicit())
2837     return false;
2838
2839   if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern) 
2840     return true; // Not an inline definition
2841
2842   return false;
2843 }
2844
2845 /// \brief For a function declaration in C or C++, determine whether this
2846 /// declaration causes the definition to be externally visible.
2847 ///
2848 /// For instance, this determines if adding the current declaration to the set
2849 /// of redeclarations of the given functions causes
2850 /// isInlineDefinitionExternallyVisible to change from false to true.
2851 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
2852   assert(!doesThisDeclarationHaveABody() &&
2853          "Must have a declaration without a body.");
2854
2855   ASTContext &Context = getASTContext();
2856
2857   if (Context.getLangOpts().MSVCCompat) {
2858     const FunctionDecl *Definition;
2859     if (hasBody(Definition) && Definition->isInlined() &&
2860         redeclForcesDefMSVC(this))
2861       return true;
2862   }
2863
2864   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
2865     // With GNU inlining, a declaration with 'inline' but not 'extern', forces
2866     // an externally visible definition.
2867     //
2868     // FIXME: What happens if gnu_inline gets added on after the first
2869     // declaration?
2870     if (!isInlineSpecified() || getStorageClass() == SC_Extern)
2871       return false;
2872
2873     const FunctionDecl *Prev = this;
2874     bool FoundBody = false;
2875     while ((Prev = Prev->getPreviousDecl())) {
2876       FoundBody |= Prev->Body.isValid();
2877
2878       if (Prev->Body) {
2879         // If it's not the case that both 'inline' and 'extern' are
2880         // specified on the definition, then it is always externally visible.
2881         if (!Prev->isInlineSpecified() ||
2882             Prev->getStorageClass() != SC_Extern)
2883           return false;
2884       } else if (Prev->isInlineSpecified() && 
2885                  Prev->getStorageClass() != SC_Extern) {
2886         return false;
2887       }
2888     }
2889     return FoundBody;
2890   }
2891
2892   if (Context.getLangOpts().CPlusPlus)
2893     return false;
2894
2895   // C99 6.7.4p6:
2896   //   [...] If all of the file scope declarations for a function in a 
2897   //   translation unit include the inline function specifier without extern, 
2898   //   then the definition in that translation unit is an inline definition.
2899   if (isInlineSpecified() && getStorageClass() != SC_Extern)
2900     return false;
2901   const FunctionDecl *Prev = this;
2902   bool FoundBody = false;
2903   while ((Prev = Prev->getPreviousDecl())) {
2904     FoundBody |= Prev->Body.isValid();
2905     if (RedeclForcesDefC99(Prev))
2906       return false;
2907   }
2908   return FoundBody;
2909 }
2910
2911 SourceRange FunctionDecl::getReturnTypeSourceRange() const {
2912   const TypeSourceInfo *TSI = getTypeSourceInfo();
2913   if (!TSI)
2914     return SourceRange();
2915   FunctionTypeLoc FTL =
2916       TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>();
2917   if (!FTL)
2918     return SourceRange();
2919
2920   // Skip self-referential return types.
2921   const SourceManager &SM = getASTContext().getSourceManager();
2922   SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
2923   SourceLocation Boundary = getNameInfo().getLocStart();
2924   if (RTRange.isInvalid() || Boundary.isInvalid() ||
2925       !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
2926     return SourceRange();
2927
2928   return RTRange;
2929 }
2930
2931 const Attr *FunctionDecl::getUnusedResultAttr() const {
2932   QualType RetType = getReturnType();
2933   if (RetType->isRecordType()) {
2934     const CXXRecordDecl *Ret = RetType->getAsCXXRecordDecl();
2935     const auto *MD = dyn_cast<CXXMethodDecl>(this);
2936     if (Ret && !(MD && MD->getCorrespondingMethodInClass(Ret, true))) {
2937       if (const auto *R = Ret->getAttr<WarnUnusedResultAttr>())
2938         return R;
2939     }
2940   } else if (const auto *ET = RetType->getAs<EnumType>()) {
2941     if (const EnumDecl *ED = ET->getDecl()) {
2942       if (const auto *R = ED->getAttr<WarnUnusedResultAttr>())
2943         return R;
2944     }
2945   }
2946   return getAttr<WarnUnusedResultAttr>();
2947 }
2948
2949 /// \brief For an inline function definition in C, or for a gnu_inline function
2950 /// in C++, determine whether the definition will be externally visible.
2951 ///
2952 /// Inline function definitions are always available for inlining optimizations.
2953 /// However, depending on the language dialect, declaration specifiers, and
2954 /// attributes, the definition of an inline function may or may not be
2955 /// "externally" visible to other translation units in the program.
2956 ///
2957 /// In C99, inline definitions are not externally visible by default. However,
2958 /// if even one of the global-scope declarations is marked "extern inline", the
2959 /// inline definition becomes externally visible (C99 6.7.4p6).
2960 ///
2961 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function
2962 /// definition, we use the GNU semantics for inline, which are nearly the 
2963 /// opposite of C99 semantics. In particular, "inline" by itself will create 
2964 /// an externally visible symbol, but "extern inline" will not create an 
2965 /// externally visible symbol.
2966 bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
2967   assert(doesThisDeclarationHaveABody() && "Must have the function definition");
2968   assert(isInlined() && "Function must be inline");
2969   ASTContext &Context = getASTContext();
2970   
2971   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
2972     // Note: If you change the logic here, please change
2973     // doesDeclarationForceExternallyVisibleDefinition as well.
2974     //
2975     // If it's not the case that both 'inline' and 'extern' are
2976     // specified on the definition, then this inline definition is
2977     // externally visible.
2978     if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
2979       return true;
2980     
2981     // If any declaration is 'inline' but not 'extern', then this definition
2982     // is externally visible.
2983     for (auto Redecl : redecls()) {
2984       if (Redecl->isInlineSpecified() && 
2985           Redecl->getStorageClass() != SC_Extern)
2986         return true;
2987     }    
2988     
2989     return false;
2990   }
2991
2992   // The rest of this function is C-only.
2993   assert(!Context.getLangOpts().CPlusPlus &&
2994          "should not use C inline rules in C++");
2995
2996   // C99 6.7.4p6:
2997   //   [...] If all of the file scope declarations for a function in a 
2998   //   translation unit include the inline function specifier without extern, 
2999   //   then the definition in that translation unit is an inline definition.
3000   for (auto Redecl : redecls()) {
3001     if (RedeclForcesDefC99(Redecl))
3002       return true;
3003   }
3004   
3005   // C99 6.7.4p6:
3006   //   An inline definition does not provide an external definition for the 
3007   //   function, and does not forbid an external definition in another 
3008   //   translation unit.
3009   return false;
3010 }
3011
3012 /// getOverloadedOperator - Which C++ overloaded operator this
3013 /// function represents, if any.
3014 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
3015   if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
3016     return getDeclName().getCXXOverloadedOperator();
3017   else
3018     return OO_None;
3019 }
3020
3021 /// getLiteralIdentifier - The literal suffix identifier this function
3022 /// represents, if any.
3023 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
3024   if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
3025     return getDeclName().getCXXLiteralIdentifier();
3026   else
3027     return nullptr;
3028 }
3029
3030 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
3031   if (TemplateOrSpecialization.isNull())
3032     return TK_NonTemplate;
3033   if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
3034     return TK_FunctionTemplate;
3035   if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
3036     return TK_MemberSpecialization;
3037   if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
3038     return TK_FunctionTemplateSpecialization;
3039   if (TemplateOrSpecialization.is
3040                                <DependentFunctionTemplateSpecializationInfo*>())
3041     return TK_DependentFunctionTemplateSpecialization;
3042
3043   llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
3044 }
3045
3046 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
3047   if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
3048     return cast<FunctionDecl>(Info->getInstantiatedFrom());
3049
3050   return nullptr;
3051 }
3052
3053 MemberSpecializationInfo *FunctionDecl::getMemberSpecializationInfo() const {
3054   return TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo *>();
3055 }
3056
3057 void 
3058 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
3059                                                FunctionDecl *FD,
3060                                                TemplateSpecializationKind TSK) {
3061   assert(TemplateOrSpecialization.isNull() && 
3062          "Member function is already a specialization");
3063   MemberSpecializationInfo *Info 
3064     = new (C) MemberSpecializationInfo(FD, TSK);
3065   TemplateOrSpecialization = Info;
3066 }
3067
3068 FunctionTemplateDecl *FunctionDecl::getDescribedFunctionTemplate() const {
3069   return TemplateOrSpecialization.dyn_cast<FunctionTemplateDecl *>();
3070 }
3071
3072 void FunctionDecl::setDescribedFunctionTemplate(FunctionTemplateDecl *Template) {
3073   TemplateOrSpecialization = Template;
3074 }
3075
3076 bool FunctionDecl::isImplicitlyInstantiable() const {
3077   // If the function is invalid, it can't be implicitly instantiated.
3078   if (isInvalidDecl())
3079     return false;
3080   
3081   switch (getTemplateSpecializationKind()) {
3082   case TSK_Undeclared:
3083   case TSK_ExplicitInstantiationDefinition:
3084     return false;
3085       
3086   case TSK_ImplicitInstantiation:
3087     return true;
3088
3089   // It is possible to instantiate TSK_ExplicitSpecialization kind
3090   // if the FunctionDecl has a class scope specialization pattern.
3091   case TSK_ExplicitSpecialization:
3092     return getClassScopeSpecializationPattern() != nullptr;
3093
3094   case TSK_ExplicitInstantiationDeclaration:
3095     // Handled below.
3096     break;
3097   }
3098
3099   // Find the actual template from which we will instantiate.
3100   const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
3101   bool HasPattern = false;
3102   if (PatternDecl)
3103     HasPattern = PatternDecl->hasBody(PatternDecl);
3104   
3105   // C++0x [temp.explicit]p9:
3106   //   Except for inline functions, other explicit instantiation declarations
3107   //   have the effect of suppressing the implicit instantiation of the entity
3108   //   to which they refer. 
3109   if (!HasPattern || !PatternDecl) 
3110     return true;
3111
3112   return PatternDecl->isInlined();
3113 }
3114
3115 bool FunctionDecl::isTemplateInstantiation() const {
3116   switch (getTemplateSpecializationKind()) {
3117     case TSK_Undeclared:
3118     case TSK_ExplicitSpecialization:
3119       return false;      
3120     case TSK_ImplicitInstantiation:
3121     case TSK_ExplicitInstantiationDeclaration:
3122     case TSK_ExplicitInstantiationDefinition:
3123       return true;
3124   }
3125   llvm_unreachable("All TSK values handled.");
3126 }
3127    
3128 FunctionDecl *FunctionDecl::getTemplateInstantiationPattern() const {
3129   // Handle class scope explicit specialization special case.
3130   if (getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
3131     return getClassScopeSpecializationPattern();
3132   
3133   // If this is a generic lambda call operator specialization, its 
3134   // instantiation pattern is always its primary template's pattern
3135   // even if its primary template was instantiated from another 
3136   // member template (which happens with nested generic lambdas).
3137   // Since a lambda's call operator's body is transformed eagerly, 
3138   // we don't have to go hunting for a prototype definition template 
3139   // (i.e. instantiated-from-member-template) to use as an instantiation 
3140   // pattern.
3141
3142   if (isGenericLambdaCallOperatorSpecialization(
3143           dyn_cast<CXXMethodDecl>(this))) {
3144     assert(getPrimaryTemplate() && "A generic lambda specialization must be "
3145                                    "generated from a primary call operator "
3146                                    "template");
3147     assert(getPrimaryTemplate()->getTemplatedDecl()->getBody() &&
3148            "A generic lambda call operator template must always have a body - "
3149            "even if instantiated from a prototype (i.e. as written) member "
3150            "template");
3151     return getPrimaryTemplate()->getTemplatedDecl();
3152   }
3153   
3154   if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
3155     while (Primary->getInstantiatedFromMemberTemplate()) {
3156       // If we have hit a point where the user provided a specialization of
3157       // this template, we're done looking.
3158       if (Primary->isMemberSpecialization())
3159         break;
3160       Primary = Primary->getInstantiatedFromMemberTemplate();
3161     }
3162     
3163     return Primary->getTemplatedDecl();
3164   } 
3165     
3166   return getInstantiatedFromMemberFunction();
3167 }
3168
3169 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
3170   if (FunctionTemplateSpecializationInfo *Info
3171         = TemplateOrSpecialization
3172             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3173     return Info->Template.getPointer();
3174   }
3175   return nullptr;
3176 }
3177
3178 FunctionDecl *FunctionDecl::getClassScopeSpecializationPattern() const {
3179     return getASTContext().getClassScopeSpecializationPattern(this);
3180 }
3181
3182 FunctionTemplateSpecializationInfo *
3183 FunctionDecl::getTemplateSpecializationInfo() const {
3184   return TemplateOrSpecialization
3185       .dyn_cast<FunctionTemplateSpecializationInfo *>();
3186 }
3187
3188 const TemplateArgumentList *
3189 FunctionDecl::getTemplateSpecializationArgs() const {
3190   if (FunctionTemplateSpecializationInfo *Info
3191         = TemplateOrSpecialization
3192             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3193     return Info->TemplateArguments;
3194   }
3195   return nullptr;
3196 }
3197
3198 const ASTTemplateArgumentListInfo *
3199 FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
3200   if (FunctionTemplateSpecializationInfo *Info
3201         = TemplateOrSpecialization
3202             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3203     return Info->TemplateArgumentsAsWritten;
3204   }
3205   return nullptr;
3206 }
3207
3208 void
3209 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
3210                                                 FunctionTemplateDecl *Template,
3211                                      const TemplateArgumentList *TemplateArgs,
3212                                                 void *InsertPos,
3213                                                 TemplateSpecializationKind TSK,
3214                         const TemplateArgumentListInfo *TemplateArgsAsWritten,
3215                                           SourceLocation PointOfInstantiation) {
3216   assert(TSK != TSK_Undeclared && 
3217          "Must specify the type of function template specialization");
3218   FunctionTemplateSpecializationInfo *Info
3219     = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
3220   if (!Info)
3221     Info = FunctionTemplateSpecializationInfo::Create(C, this, Template, TSK,
3222                                                       TemplateArgs,
3223                                                       TemplateArgsAsWritten,
3224                                                       PointOfInstantiation);
3225   TemplateOrSpecialization = Info;
3226   Template->addSpecialization(Info, InsertPos);
3227 }
3228
3229 void
3230 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
3231                                     const UnresolvedSetImpl &Templates,
3232                              const TemplateArgumentListInfo &TemplateArgs) {
3233   assert(TemplateOrSpecialization.isNull());
3234   DependentFunctionTemplateSpecializationInfo *Info =
3235       DependentFunctionTemplateSpecializationInfo::Create(Context, Templates,
3236                                                           TemplateArgs);
3237   TemplateOrSpecialization = Info;
3238 }
3239
3240 DependentFunctionTemplateSpecializationInfo *
3241 FunctionDecl::getDependentSpecializationInfo() const {
3242   return TemplateOrSpecialization
3243       .dyn_cast<DependentFunctionTemplateSpecializationInfo *>();
3244 }
3245
3246 DependentFunctionTemplateSpecializationInfo *
3247 DependentFunctionTemplateSpecializationInfo::Create(
3248     ASTContext &Context, const UnresolvedSetImpl &Ts,
3249     const TemplateArgumentListInfo &TArgs) {
3250   void *Buffer = Context.Allocate(
3251       totalSizeToAlloc<TemplateArgumentLoc, FunctionTemplateDecl *>(
3252           TArgs.size(), Ts.size()));
3253   return new (Buffer) DependentFunctionTemplateSpecializationInfo(Ts, TArgs);
3254 }
3255
3256 DependentFunctionTemplateSpecializationInfo::
3257 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
3258                                       const TemplateArgumentListInfo &TArgs)
3259   : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
3260
3261   NumTemplates = Ts.size();
3262   NumArgs = TArgs.size();
3263
3264   FunctionTemplateDecl **TsArray = getTrailingObjects<FunctionTemplateDecl *>();
3265   for (unsigned I = 0, E = Ts.size(); I != E; ++I)
3266     TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
3267
3268   TemplateArgumentLoc *ArgsArray = getTrailingObjects<TemplateArgumentLoc>();
3269   for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
3270     new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
3271 }
3272
3273 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
3274   // For a function template specialization, query the specialization
3275   // information object.
3276   FunctionTemplateSpecializationInfo *FTSInfo
3277     = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
3278   if (FTSInfo)
3279     return FTSInfo->getTemplateSpecializationKind();
3280
3281   MemberSpecializationInfo *MSInfo
3282     = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>();
3283   if (MSInfo)
3284     return MSInfo->getTemplateSpecializationKind();
3285   
3286   return TSK_Undeclared;
3287 }
3288
3289 void
3290 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3291                                           SourceLocation PointOfInstantiation) {
3292   if (FunctionTemplateSpecializationInfo *FTSInfo
3293         = TemplateOrSpecialization.dyn_cast<
3294                                     FunctionTemplateSpecializationInfo*>()) {
3295     FTSInfo->setTemplateSpecializationKind(TSK);
3296     if (TSK != TSK_ExplicitSpecialization &&
3297         PointOfInstantiation.isValid() &&
3298         FTSInfo->getPointOfInstantiation().isInvalid())
3299       FTSInfo->setPointOfInstantiation(PointOfInstantiation);
3300   } else if (MemberSpecializationInfo *MSInfo
3301              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
3302     MSInfo->setTemplateSpecializationKind(TSK);
3303     if (TSK != TSK_ExplicitSpecialization &&
3304         PointOfInstantiation.isValid() &&
3305         MSInfo->getPointOfInstantiation().isInvalid())
3306       MSInfo->setPointOfInstantiation(PointOfInstantiation);
3307   } else
3308     llvm_unreachable("Function cannot have a template specialization kind");
3309 }
3310
3311 SourceLocation FunctionDecl::getPointOfInstantiation() const {
3312   if (FunctionTemplateSpecializationInfo *FTSInfo
3313         = TemplateOrSpecialization.dyn_cast<
3314                                         FunctionTemplateSpecializationInfo*>())
3315     return FTSInfo->getPointOfInstantiation();
3316   else if (MemberSpecializationInfo *MSInfo
3317              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>())
3318     return MSInfo->getPointOfInstantiation();
3319   
3320   return SourceLocation();
3321 }
3322
3323 bool FunctionDecl::isOutOfLine() const {
3324   if (Decl::isOutOfLine())
3325     return true;
3326   
3327   // If this function was instantiated from a member function of a 
3328   // class template, check whether that member function was defined out-of-line.
3329   if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
3330     const FunctionDecl *Definition;
3331     if (FD->hasBody(Definition))
3332       return Definition->isOutOfLine();
3333   }
3334   
3335   // If this function was instantiated from a function template,
3336   // check whether that function template was defined out-of-line.
3337   if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
3338     const FunctionDecl *Definition;
3339     if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
3340       return Definition->isOutOfLine();
3341   }
3342   
3343   return false;
3344 }
3345
3346 SourceRange FunctionDecl::getSourceRange() const {
3347   return SourceRange(getOuterLocStart(), EndRangeLoc);
3348 }
3349
3350 unsigned FunctionDecl::getMemoryFunctionKind() const {
3351   IdentifierInfo *FnInfo = getIdentifier();
3352
3353   if (!FnInfo)
3354     return 0;
3355     
3356   // Builtin handling.
3357   switch (getBuiltinID()) {
3358   case Builtin::BI__builtin_memset:
3359   case Builtin::BI__builtin___memset_chk:
3360   case Builtin::BImemset:
3361     return Builtin::BImemset;
3362
3363   case Builtin::BI__builtin_memcpy:
3364   case Builtin::BI__builtin___memcpy_chk:
3365   case Builtin::BImemcpy:
3366     return Builtin::BImemcpy;
3367
3368   case Builtin::BI__builtin_memmove:
3369   case Builtin::BI__builtin___memmove_chk:
3370   case Builtin::BImemmove:
3371     return Builtin::BImemmove;
3372
3373   case Builtin::BIstrlcpy:
3374   case Builtin::BI__builtin___strlcpy_chk:
3375     return Builtin::BIstrlcpy;
3376
3377   case Builtin::BIstrlcat:
3378   case Builtin::BI__builtin___strlcat_chk:
3379     return Builtin::BIstrlcat;
3380
3381   case Builtin::BI__builtin_memcmp:
3382   case Builtin::BImemcmp:
3383     return Builtin::BImemcmp;
3384
3385   case Builtin::BI__builtin_strncpy:
3386   case Builtin::BI__builtin___strncpy_chk:
3387   case Builtin::BIstrncpy:
3388     return Builtin::BIstrncpy;
3389
3390   case Builtin::BI__builtin_strncmp:
3391   case Builtin::BIstrncmp:
3392     return Builtin::BIstrncmp;
3393
3394   case Builtin::BI__builtin_strncasecmp:
3395   case Builtin::BIstrncasecmp:
3396     return Builtin::BIstrncasecmp;
3397
3398   case Builtin::BI__builtin_strncat:
3399   case Builtin::BI__builtin___strncat_chk:
3400   case Builtin::BIstrncat:
3401     return Builtin::BIstrncat;
3402
3403   case Builtin::BI__builtin_strndup:
3404   case Builtin::BIstrndup:
3405     return Builtin::BIstrndup;
3406
3407   case Builtin::BI__builtin_strlen:
3408   case Builtin::BIstrlen:
3409     return Builtin::BIstrlen;
3410
3411   default:
3412     if (isExternC()) {
3413       if (FnInfo->isStr("memset"))
3414         return Builtin::BImemset;
3415       else if (FnInfo->isStr("memcpy"))
3416         return Builtin::BImemcpy;
3417       else if (FnInfo->isStr("memmove"))
3418         return Builtin::BImemmove;
3419       else if (FnInfo->isStr("memcmp"))
3420         return Builtin::BImemcmp;
3421       else if (FnInfo->isStr("strncpy"))
3422         return Builtin::BIstrncpy;
3423       else if (FnInfo->isStr("strncmp"))
3424         return Builtin::BIstrncmp;
3425       else if (FnInfo->isStr("strncasecmp"))
3426         return Builtin::BIstrncasecmp;
3427       else if (FnInfo->isStr("strncat"))
3428         return Builtin::BIstrncat;
3429       else if (FnInfo->isStr("strndup"))
3430         return Builtin::BIstrndup;
3431       else if (FnInfo->isStr("strlen"))
3432         return Builtin::BIstrlen;
3433     }
3434     break;
3435   }
3436   return 0;
3437 }
3438
3439 //===----------------------------------------------------------------------===//
3440 // FieldDecl Implementation
3441 //===----------------------------------------------------------------------===//
3442
3443 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
3444                              SourceLocation StartLoc, SourceLocation IdLoc,
3445                              IdentifierInfo *Id, QualType T,
3446                              TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
3447                              InClassInitStyle InitStyle) {
3448   return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
3449                                BW, Mutable, InitStyle);
3450 }
3451
3452 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3453   return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
3454                                SourceLocation(), nullptr, QualType(), nullptr,
3455                                nullptr, false, ICIS_NoInit);
3456 }
3457
3458 bool FieldDecl::isAnonymousStructOrUnion() const {
3459   if (!isImplicit() || getDeclName())
3460     return false;
3461
3462   if (const auto *Record = getType()->getAs<RecordType>())
3463     return Record->getDecl()->isAnonymousStructOrUnion();
3464
3465   return false;
3466 }
3467
3468 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
3469   assert(isBitField() && "not a bitfield");
3470   auto *BitWidth = static_cast<Expr *>(InitStorage.getPointer());
3471   return BitWidth->EvaluateKnownConstInt(Ctx).getZExtValue();
3472 }
3473
3474 unsigned FieldDecl::getFieldIndex() const {
3475   const FieldDecl *Canonical = getCanonicalDecl();
3476   if (Canonical != this)
3477     return Canonical->getFieldIndex();
3478
3479   if (CachedFieldIndex) return CachedFieldIndex - 1;
3480
3481   unsigned Index = 0;
3482   const RecordDecl *RD = getParent();
3483
3484   for (auto *Field : RD->fields()) {
3485     Field->getCanonicalDecl()->CachedFieldIndex = Index + 1;
3486     ++Index;
3487   }
3488
3489   assert(CachedFieldIndex && "failed to find field in parent");
3490   return CachedFieldIndex - 1;
3491 }
3492
3493 SourceRange FieldDecl::getSourceRange() const {
3494   switch (InitStorage.getInt()) {
3495   // All three of these cases store an optional Expr*.
3496   case ISK_BitWidthOrNothing:
3497   case ISK_InClassCopyInit:
3498   case ISK_InClassListInit:
3499     if (const auto *E = static_cast<const Expr *>(InitStorage.getPointer()))
3500       return SourceRange(getInnerLocStart(), E->getLocEnd());
3501     // FALLTHROUGH
3502
3503   case ISK_CapturedVLAType:
3504     return DeclaratorDecl::getSourceRange();
3505   }
3506   llvm_unreachable("bad init storage kind");
3507 }
3508
3509 void FieldDecl::setCapturedVLAType(const VariableArrayType *VLAType) {
3510   assert((getParent()->isLambda() || getParent()->isCapturedRecord()) &&
3511          "capturing type in non-lambda or captured record.");
3512   assert(InitStorage.getInt() == ISK_BitWidthOrNothing &&
3513          InitStorage.getPointer() == nullptr &&
3514          "bit width, initializer or captured type already set");
3515   InitStorage.setPointerAndInt(const_cast<VariableArrayType *>(VLAType),
3516                                ISK_CapturedVLAType);
3517 }
3518
3519 //===----------------------------------------------------------------------===//
3520 // TagDecl Implementation
3521 //===----------------------------------------------------------------------===//
3522
3523 SourceLocation TagDecl::getOuterLocStart() const {
3524   return getTemplateOrInnerLocStart(this);
3525 }
3526
3527 SourceRange TagDecl::getSourceRange() const {
3528   SourceLocation RBraceLoc = BraceRange.getEnd();
3529   SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
3530   return SourceRange(getOuterLocStart(), E);
3531 }
3532
3533 TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); }
3534
3535 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
3536   TypedefNameDeclOrQualifier = TDD;
3537   if (const Type *T = getTypeForDecl()) {
3538     (void)T;
3539     assert(T->isLinkageValid());
3540   }
3541   assert(isLinkageValid());
3542 }
3543
3544 void TagDecl::startDefinition() {
3545   IsBeingDefined = true;
3546
3547   if (auto *D = dyn_cast<CXXRecordDecl>(this)) {
3548     struct CXXRecordDecl::DefinitionData *Data =
3549       new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
3550     for (auto I : redecls())
3551       cast<CXXRecordDecl>(I)->DefinitionData = Data;
3552   }
3553 }
3554
3555 void TagDecl::completeDefinition() {
3556   assert((!isa<CXXRecordDecl>(this) ||
3557           cast<CXXRecordDecl>(this)->hasDefinition()) &&
3558          "definition completed but not started");
3559
3560   IsCompleteDefinition = true;
3561   IsBeingDefined = false;
3562
3563   if (ASTMutationListener *L = getASTMutationListener())
3564     L->CompletedTagDefinition(this);
3565 }
3566
3567 TagDecl *TagDecl::getDefinition() const {
3568   if (isCompleteDefinition())
3569     return const_cast<TagDecl *>(this);
3570
3571   // If it's possible for us to have an out-of-date definition, check now.
3572   if (MayHaveOutOfDateDef) {
3573     if (IdentifierInfo *II = getIdentifier()) {
3574       if (II->isOutOfDate()) {
3575         updateOutOfDate(*II);
3576       }
3577     }
3578   }
3579
3580   if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(this))
3581     return CXXRD->getDefinition();
3582
3583   for (auto R : redecls())
3584     if (R->isCompleteDefinition())
3585       return R;
3586
3587   return nullptr;
3588 }
3589
3590 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
3591   if (QualifierLoc) {
3592     // Make sure the extended qualifier info is allocated.
3593     if (!hasExtInfo())
3594       TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
3595     // Set qualifier info.
3596     getExtInfo()->QualifierLoc = QualifierLoc;
3597   } else {
3598     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
3599     if (hasExtInfo()) {
3600       if (getExtInfo()->NumTemplParamLists == 0) {
3601         getASTContext().Deallocate(getExtInfo());
3602         TypedefNameDeclOrQualifier = (TypedefNameDecl *)nullptr;
3603       }
3604       else
3605         getExtInfo()->QualifierLoc = QualifierLoc;
3606     }
3607   }
3608 }
3609
3610 void TagDecl::setTemplateParameterListsInfo(
3611     ASTContext &Context, ArrayRef<TemplateParameterList *> TPLists) {
3612   assert(!TPLists.empty());
3613   // Make sure the extended decl info is allocated.
3614   if (!hasExtInfo())
3615     // Allocate external info struct.
3616     TypedefNameDeclOrQualifier = new (getASTContext()) ExtInfo;
3617   // Set the template parameter lists info.
3618   getExtInfo()->setTemplateParameterListsInfo(Context, TPLists);
3619 }
3620
3621 //===----------------------------------------------------------------------===//
3622 // EnumDecl Implementation
3623 //===----------------------------------------------------------------------===//
3624
3625 void EnumDecl::anchor() { }
3626
3627 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
3628                            SourceLocation StartLoc, SourceLocation IdLoc,
3629                            IdentifierInfo *Id,
3630                            EnumDecl *PrevDecl, bool IsScoped,
3631                            bool IsScopedUsingClassTag, bool IsFixed) {
3632   auto *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
3633                                     IsScoped, IsScopedUsingClassTag, IsFixed);
3634   Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3635   C.getTypeDeclType(Enum, PrevDecl);
3636   return Enum;
3637 }
3638
3639 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3640   EnumDecl *Enum =
3641       new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
3642                            nullptr, nullptr, false, false, false);
3643   Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3644   return Enum;
3645 }
3646
3647 SourceRange EnumDecl::getIntegerTypeRange() const {
3648   if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
3649     return TI->getTypeLoc().getSourceRange();
3650   return SourceRange();
3651 }
3652
3653 void EnumDecl::completeDefinition(QualType NewType,
3654                                   QualType NewPromotionType,
3655                                   unsigned NumPositiveBits,
3656                                   unsigned NumNegativeBits) {
3657   assert(!isCompleteDefinition() && "Cannot redefine enums!");
3658   if (!IntegerType)
3659     IntegerType = NewType.getTypePtr();
3660   PromotionType = NewPromotionType;
3661   setNumPositiveBits(NumPositiveBits);
3662   setNumNegativeBits(NumNegativeBits);
3663   TagDecl::completeDefinition();
3664 }
3665
3666 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
3667   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
3668     return MSI->getTemplateSpecializationKind();
3669
3670   return TSK_Undeclared;
3671 }
3672
3673 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3674                                          SourceLocation PointOfInstantiation) {
3675   MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
3676   assert(MSI && "Not an instantiated member enumeration?");
3677   MSI->setTemplateSpecializationKind(TSK);
3678   if (TSK != TSK_ExplicitSpecialization &&
3679       PointOfInstantiation.isValid() &&
3680       MSI->getPointOfInstantiation().isInvalid())
3681     MSI->setPointOfInstantiation(PointOfInstantiation);
3682 }
3683
3684 EnumDecl *EnumDecl::getTemplateInstantiationPattern() const {
3685   if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) {
3686     if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) {
3687       EnumDecl *ED = getInstantiatedFromMemberEnum();
3688       while (auto *NewED = ED->getInstantiatedFromMemberEnum())
3689         ED = NewED;
3690       return ED;
3691     }
3692   }
3693
3694   assert(!isTemplateInstantiation(getTemplateSpecializationKind()) &&
3695          "couldn't find pattern for enum instantiation");
3696   return nullptr;
3697 }
3698
3699 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
3700   if (SpecializationInfo)
3701     return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
3702
3703   return nullptr;
3704 }
3705
3706 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
3707                                             TemplateSpecializationKind TSK) {
3708   assert(!SpecializationInfo && "Member enum is already a specialization");
3709   SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
3710 }
3711
3712 //===----------------------------------------------------------------------===//
3713 // RecordDecl Implementation
3714 //===----------------------------------------------------------------------===//
3715
3716 RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C,
3717                        DeclContext *DC, SourceLocation StartLoc,
3718                        SourceLocation IdLoc, IdentifierInfo *Id,
3719                        RecordDecl *PrevDecl)
3720     : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
3721   HasFlexibleArrayMember = false;
3722   AnonymousStructOrUnion = false;
3723   HasObjectMember = false;
3724   HasVolatileMember = false;
3725   LoadedFieldsFromExternalStorage = false;
3726   assert(classof(static_cast<Decl*>(this)) && "Invalid Kind!");
3727 }
3728
3729 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
3730                                SourceLocation StartLoc, SourceLocation IdLoc,
3731                                IdentifierInfo *Id, RecordDecl* PrevDecl) {
3732   RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
3733                                          StartLoc, IdLoc, Id, PrevDecl);
3734   R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3735
3736   C.getTypeDeclType(R, PrevDecl);
3737   return R;
3738 }
3739
3740 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
3741   RecordDecl *R =
3742       new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
3743                              SourceLocation(), nullptr, nullptr);
3744   R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3745   return R;
3746 }
3747
3748 bool RecordDecl::isInjectedClassName() const {
3749   return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
3750     cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
3751 }
3752
3753 bool RecordDecl::isLambda() const {
3754   if (auto RD = dyn_cast<CXXRecordDecl>(this))
3755     return RD->isLambda();
3756   return false;
3757 }
3758
3759 bool RecordDecl::isCapturedRecord() const {
3760   return hasAttr<CapturedRecordAttr>();
3761 }
3762
3763 void RecordDecl::setCapturedRecord() {
3764   addAttr(CapturedRecordAttr::CreateImplicit(getASTContext()));
3765 }
3766
3767 RecordDecl::field_iterator RecordDecl::field_begin() const {
3768   if (hasExternalLexicalStorage() && !LoadedFieldsFromExternalStorage)
3769     LoadFieldsFromExternalStorage();
3770
3771   return field_iterator(decl_iterator(FirstDecl));
3772 }
3773
3774 /// completeDefinition - Notes that the definition of this type is now
3775 /// complete.
3776 void RecordDecl::completeDefinition() {
3777   assert(!isCompleteDefinition() && "Cannot redefine record!");
3778   TagDecl::completeDefinition();
3779 }
3780
3781 /// isMsStruct - Get whether or not this record uses ms_struct layout.
3782 /// This which can be turned on with an attribute, pragma, or the
3783 /// -mms-bitfields command-line option.
3784 bool RecordDecl::isMsStruct(const ASTContext &C) const {
3785   return hasAttr<MSStructAttr>() || C.getLangOpts().MSBitfields == 1;
3786 }
3787
3788 void RecordDecl::LoadFieldsFromExternalStorage() const {
3789   ExternalASTSource *Source = getASTContext().getExternalSource();
3790   assert(hasExternalLexicalStorage() && Source && "No external storage?");
3791
3792   // Notify that we have a RecordDecl doing some initialization.
3793   ExternalASTSource::Deserializing TheFields(Source);
3794
3795   SmallVector<Decl*, 64> Decls;
3796   LoadedFieldsFromExternalStorage = true;
3797   Source->FindExternalLexicalDecls(this, [](Decl::Kind K) {
3798     return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
3799   }, Decls);
3800
3801 #ifndef NDEBUG
3802   // Check that all decls we got were FieldDecls.
3803   for (unsigned i=0, e=Decls.size(); i != e; ++i)
3804     assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
3805 #endif
3806
3807   if (Decls.empty())
3808     return;
3809
3810   std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
3811                                                  /*FieldsAlreadyLoaded=*/false);
3812 }
3813
3814 bool RecordDecl::mayInsertExtraPadding(bool EmitRemark) const {
3815   ASTContext &Context = getASTContext();
3816   if (!Context.getLangOpts().Sanitize.hasOneOf(
3817           SanitizerKind::Address | SanitizerKind::KernelAddress) ||
3818       !Context.getLangOpts().SanitizeAddressFieldPadding)
3819     return false;
3820   const auto &Blacklist = Context.getSanitizerBlacklist();
3821   const auto *CXXRD = dyn_cast<CXXRecordDecl>(this);
3822   // We may be able to relax some of these requirements.
3823   int ReasonToReject = -1;
3824   if (!CXXRD || CXXRD->isExternCContext())
3825     ReasonToReject = 0;  // is not C++.
3826   else if (CXXRD->hasAttr<PackedAttr>())
3827     ReasonToReject = 1;  // is packed.
3828   else if (CXXRD->isUnion())
3829     ReasonToReject = 2;  // is a union.
3830   else if (CXXRD->isTriviallyCopyable())
3831     ReasonToReject = 3;  // is trivially copyable.
3832   else if (CXXRD->hasTrivialDestructor())
3833     ReasonToReject = 4;  // has trivial destructor.
3834   else if (CXXRD->isStandardLayout())
3835     ReasonToReject = 5;  // is standard layout.
3836   else if (Blacklist.isBlacklistedLocation(getLocation(), "field-padding"))
3837     ReasonToReject = 6;  // is in a blacklisted file.
3838   else if (Blacklist.isBlacklistedType(getQualifiedNameAsString(),
3839                                        "field-padding"))
3840     ReasonToReject = 7;  // is blacklisted.
3841
3842   if (EmitRemark) {
3843     if (ReasonToReject >= 0)
3844       Context.getDiagnostics().Report(
3845           getLocation(),
3846           diag::remark_sanitize_address_insert_extra_padding_rejected)
3847           << getQualifiedNameAsString() << ReasonToReject;
3848     else
3849       Context.getDiagnostics().Report(
3850           getLocation(),
3851           diag::remark_sanitize_address_insert_extra_padding_accepted)
3852           << getQualifiedNameAsString();
3853   }
3854   return ReasonToReject < 0;
3855 }
3856
3857 const FieldDecl *RecordDecl::findFirstNamedDataMember() const {
3858   for (const auto *I : fields()) {
3859     if (I->getIdentifier())
3860       return I;
3861
3862     if (const auto *RT = I->getType()->getAs<RecordType>())
3863       if (const FieldDecl *NamedDataMember =
3864               RT->getDecl()->findFirstNamedDataMember())
3865         return NamedDataMember;
3866   }
3867
3868   // We didn't find a named data member.
3869   return nullptr;
3870 }
3871
3872
3873 //===----------------------------------------------------------------------===//
3874 // BlockDecl Implementation
3875 //===----------------------------------------------------------------------===//
3876
3877 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
3878   assert(!ParamInfo && "Already has param info!");
3879
3880   // Zero params -> null pointer.
3881   if (!NewParamInfo.empty()) {
3882     NumParams = NewParamInfo.size();
3883     ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
3884     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3885   }
3886 }
3887
3888 void BlockDecl::setCaptures(ASTContext &Context, ArrayRef<Capture> Captures,
3889                             bool CapturesCXXThis) {
3890   this->CapturesCXXThis = CapturesCXXThis;
3891   this->NumCaptures = Captures.size();
3892
3893   if (Captures.empty()) {
3894     this->Captures = nullptr;
3895     return;
3896   }
3897
3898   this->Captures = Captures.copy(Context).data();
3899 }
3900
3901 bool BlockDecl::capturesVariable(const VarDecl *variable) const {
3902   for (const auto &I : captures())
3903     // Only auto vars can be captured, so no redeclaration worries.
3904     if (I.getVariable() == variable)
3905       return true;
3906
3907   return false;
3908 }
3909
3910 SourceRange BlockDecl::getSourceRange() const {
3911   return SourceRange(getLocation(), Body? Body->getLocEnd() : getLocation());
3912 }
3913
3914 //===----------------------------------------------------------------------===//
3915 // Other Decl Allocation/Deallocation Method Implementations
3916 //===----------------------------------------------------------------------===//
3917
3918 void TranslationUnitDecl::anchor() { }
3919
3920 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
3921   return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
3922 }
3923
3924 void PragmaCommentDecl::anchor() { }
3925
3926 PragmaCommentDecl *PragmaCommentDecl::Create(const ASTContext &C,
3927                                              TranslationUnitDecl *DC,
3928                                              SourceLocation CommentLoc,
3929                                              PragmaMSCommentKind CommentKind,
3930                                              StringRef Arg) {
3931   PragmaCommentDecl *PCD =
3932       new (C, DC, additionalSizeToAlloc<char>(Arg.size() + 1))
3933           PragmaCommentDecl(DC, CommentLoc, CommentKind);
3934   memcpy(PCD->getTrailingObjects<char>(), Arg.data(), Arg.size());
3935   PCD->getTrailingObjects<char>()[Arg.size()] = '\0';
3936   return PCD;
3937 }
3938
3939 PragmaCommentDecl *PragmaCommentDecl::CreateDeserialized(ASTContext &C,
3940                                                          unsigned ID,
3941                                                          unsigned ArgSize) {
3942   return new (C, ID, additionalSizeToAlloc<char>(ArgSize + 1))
3943       PragmaCommentDecl(nullptr, SourceLocation(), PCK_Unknown);
3944 }
3945
3946 void PragmaDetectMismatchDecl::anchor() { }
3947
3948 PragmaDetectMismatchDecl *
3949 PragmaDetectMismatchDecl::Create(const ASTContext &C, TranslationUnitDecl *DC,
3950                                  SourceLocation Loc, StringRef Name,
3951                                  StringRef Value) {
3952   size_t ValueStart = Name.size() + 1;
3953   PragmaDetectMismatchDecl *PDMD =
3954       new (C, DC, additionalSizeToAlloc<char>(ValueStart + Value.size() + 1))
3955           PragmaDetectMismatchDecl(DC, Loc, ValueStart);
3956   memcpy(PDMD->getTrailingObjects<char>(), Name.data(), Name.size());
3957   PDMD->getTrailingObjects<char>()[Name.size()] = '\0';
3958   memcpy(PDMD->getTrailingObjects<char>() + ValueStart, Value.data(),
3959          Value.size());
3960   PDMD->getTrailingObjects<char>()[ValueStart + Value.size()] = '\0';
3961   return PDMD;
3962 }
3963
3964 PragmaDetectMismatchDecl *
3965 PragmaDetectMismatchDecl::CreateDeserialized(ASTContext &C, unsigned ID,
3966                                              unsigned NameValueSize) {
3967   return new (C, ID, additionalSizeToAlloc<char>(NameValueSize + 1))
3968       PragmaDetectMismatchDecl(nullptr, SourceLocation(), 0);
3969 }
3970
3971 void ExternCContextDecl::anchor() { }
3972
3973 ExternCContextDecl *ExternCContextDecl::Create(const ASTContext &C,
3974                                                TranslationUnitDecl *DC) {
3975   return new (C, DC) ExternCContextDecl(DC);
3976 }
3977
3978 void LabelDecl::anchor() { }
3979
3980 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
3981                              SourceLocation IdentL, IdentifierInfo *II) {
3982   return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
3983 }
3984
3985 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
3986                              SourceLocation IdentL, IdentifierInfo *II,
3987                              SourceLocation GnuLabelL) {
3988   assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
3989   return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
3990 }
3991
3992 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3993   return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
3994                                SourceLocation());
3995 }
3996
3997 void LabelDecl::setMSAsmLabel(StringRef Name) {
3998   char *Buffer = new (getASTContext(), 1) char[Name.size() + 1];
3999   memcpy(Buffer, Name.data(), Name.size());
4000   Buffer[Name.size()] = '\0';
4001   MSAsmName = Buffer;
4002 }
4003
4004 void ValueDecl::anchor() { }
4005
4006 bool ValueDecl::isWeak() const {
4007   for (const auto *I : attrs())
4008     if (isa<WeakAttr>(I) || isa<WeakRefAttr>(I))
4009       return true;
4010
4011   return isWeakImported();
4012 }
4013
4014 void ImplicitParamDecl::anchor() { }
4015
4016 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
4017                                              SourceLocation IdLoc,
4018                                              IdentifierInfo *Id,
4019                                              QualType Type) {
4020   return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type);
4021 }
4022
4023 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
4024                                                          unsigned ID) {
4025   return new (C, ID) ImplicitParamDecl(C, nullptr, SourceLocation(), nullptr,
4026                                        QualType());
4027 }
4028
4029 FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC,
4030                                    SourceLocation StartLoc,
4031                                    const DeclarationNameInfo &NameInfo,
4032                                    QualType T, TypeSourceInfo *TInfo,
4033                                    StorageClass SC,
4034                                    bool isInlineSpecified,
4035                                    bool hasWrittenPrototype,
4036                                    bool isConstexprSpecified) {
4037   FunctionDecl *New =
4038       new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo,
4039                                SC, isInlineSpecified, isConstexprSpecified);
4040   New->HasWrittenPrototype = hasWrittenPrototype;
4041   return New;
4042 }
4043
4044 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4045   return new (C, ID) FunctionDecl(Function, C, nullptr, SourceLocation(),
4046                                   DeclarationNameInfo(), QualType(), nullptr,
4047                                   SC_None, false, false);
4048 }
4049
4050 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
4051   return new (C, DC) BlockDecl(DC, L);
4052 }
4053
4054 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4055   return new (C, ID) BlockDecl(nullptr, SourceLocation());
4056 }
4057
4058 CapturedDecl::CapturedDecl(DeclContext *DC, unsigned NumParams)
4059     : Decl(Captured, DC, SourceLocation()), DeclContext(Captured),
4060       NumParams(NumParams), ContextParam(0), BodyAndNothrow(nullptr, false) {}
4061
4062 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
4063                                    unsigned NumParams) {
4064   return new (C, DC, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4065       CapturedDecl(DC, NumParams);
4066 }
4067
4068 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4069                                                unsigned NumParams) {
4070   return new (C, ID, additionalSizeToAlloc<ImplicitParamDecl *>(NumParams))
4071       CapturedDecl(nullptr, NumParams);
4072 }
4073
4074 Stmt *CapturedDecl::getBody() const { return BodyAndNothrow.getPointer(); }
4075 void CapturedDecl::setBody(Stmt *B) { BodyAndNothrow.setPointer(B); }
4076
4077 bool CapturedDecl::isNothrow() const { return BodyAndNothrow.getInt(); }
4078 void CapturedDecl::setNothrow(bool Nothrow) { BodyAndNothrow.setInt(Nothrow); }
4079
4080 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
4081                                            SourceLocation L,
4082                                            IdentifierInfo *Id, QualType T,
4083                                            Expr *E, const llvm::APSInt &V) {
4084   return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
4085 }
4086
4087 EnumConstantDecl *
4088 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4089   return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
4090                                       QualType(), nullptr, llvm::APSInt());
4091 }
4092
4093 void IndirectFieldDecl::anchor() { }
4094
4095 IndirectFieldDecl::IndirectFieldDecl(ASTContext &C, DeclContext *DC,
4096                                      SourceLocation L, DeclarationName N,
4097                                      QualType T,
4098                                      MutableArrayRef<NamedDecl *> CH)
4099     : ValueDecl(IndirectField, DC, L, N, T), Chaining(CH.data()),
4100       ChainingSize(CH.size()) {
4101   // In C++, indirect field declarations conflict with tag declarations in the
4102   // same scope, so add them to IDNS_Tag so that tag redeclaration finds them.
4103   if (C.getLangOpts().CPlusPlus)
4104     IdentifierNamespace |= IDNS_Tag;
4105 }
4106
4107 IndirectFieldDecl *
4108 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
4109                           IdentifierInfo *Id, QualType T,
4110                           llvm::MutableArrayRef<NamedDecl *> CH) {
4111   return new (C, DC) IndirectFieldDecl(C, DC, L, Id, T, CH);
4112 }
4113
4114 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
4115                                                          unsigned ID) {
4116   return new (C, ID) IndirectFieldDecl(C, nullptr, SourceLocation(),
4117                                        DeclarationName(), QualType(), None);
4118 }
4119
4120 SourceRange EnumConstantDecl::getSourceRange() const {
4121   SourceLocation End = getLocation();
4122   if (Init)
4123     End = Init->getLocEnd();
4124   return SourceRange(getLocation(), End);
4125 }
4126
4127 void TypeDecl::anchor() { }
4128
4129 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
4130                                  SourceLocation StartLoc, SourceLocation IdLoc,
4131                                  IdentifierInfo *Id, TypeSourceInfo *TInfo) {
4132   return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4133 }
4134
4135 void TypedefNameDecl::anchor() { }
4136
4137 TagDecl *TypedefNameDecl::getAnonDeclWithTypedefName(bool AnyRedecl) const {
4138   if (auto *TT = getTypeSourceInfo()->getType()->getAs<TagType>()) {
4139     auto *OwningTypedef = TT->getDecl()->getTypedefNameForAnonDecl();
4140     auto *ThisTypedef = this;
4141     if (AnyRedecl && OwningTypedef) {
4142       OwningTypedef = OwningTypedef->getCanonicalDecl();
4143       ThisTypedef = ThisTypedef->getCanonicalDecl();
4144     }
4145     if (OwningTypedef == ThisTypedef)
4146       return TT->getDecl();
4147   }
4148
4149   return nullptr;
4150 }
4151
4152 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4153   return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
4154                                  nullptr, nullptr);
4155 }
4156
4157 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
4158                                      SourceLocation StartLoc,
4159                                      SourceLocation IdLoc, IdentifierInfo *Id,
4160                                      TypeSourceInfo *TInfo) {
4161   return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
4162 }
4163
4164 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4165   return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
4166                                    SourceLocation(), nullptr, nullptr);
4167 }
4168
4169 SourceRange TypedefDecl::getSourceRange() const {
4170   SourceLocation RangeEnd = getLocation();
4171   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
4172     if (typeIsPostfix(TInfo->getType()))
4173       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
4174   }
4175   return SourceRange(getLocStart(), RangeEnd);
4176 }
4177
4178 SourceRange TypeAliasDecl::getSourceRange() const {
4179   SourceLocation RangeEnd = getLocStart();
4180   if (TypeSourceInfo *TInfo = getTypeSourceInfo())
4181     RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
4182   return SourceRange(getLocStart(), RangeEnd);
4183 }
4184
4185 void FileScopeAsmDecl::anchor() { }
4186
4187 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
4188                                            StringLiteral *Str,
4189                                            SourceLocation AsmLoc,
4190                                            SourceLocation RParenLoc) {
4191   return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
4192 }
4193
4194 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
4195                                                        unsigned ID) {
4196   return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
4197                                       SourceLocation());
4198 }
4199
4200 void EmptyDecl::anchor() {}
4201
4202 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
4203   return new (C, DC) EmptyDecl(DC, L);
4204 }
4205
4206 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
4207   return new (C, ID) EmptyDecl(nullptr, SourceLocation());
4208 }
4209
4210 //===----------------------------------------------------------------------===//
4211 // ImportDecl Implementation
4212 //===----------------------------------------------------------------------===//
4213
4214 /// \brief Retrieve the number of module identifiers needed to name the given
4215 /// module.
4216 static unsigned getNumModuleIdentifiers(Module *Mod) {
4217   unsigned Result = 1;
4218   while (Mod->Parent) {
4219     Mod = Mod->Parent;
4220     ++Result;
4221   }
4222   return Result;
4223 }
4224
4225 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc, 
4226                        Module *Imported,
4227                        ArrayRef<SourceLocation> IdentifierLocs)
4228   : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true),
4229     NextLocalImport()
4230 {
4231   assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
4232   auto *StoredLocs = getTrailingObjects<SourceLocation>();
4233   std::uninitialized_copy(IdentifierLocs.begin(), IdentifierLocs.end(),
4234                           StoredLocs);
4235 }
4236
4237 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc, 
4238                        Module *Imported, SourceLocation EndLoc)
4239   : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false),
4240     NextLocalImport()
4241 {
4242   *getTrailingObjects<SourceLocation>() = EndLoc;
4243 }
4244
4245 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
4246                                SourceLocation StartLoc, Module *Imported,
4247                                ArrayRef<SourceLocation> IdentifierLocs) {
4248   return new (C, DC,
4249               additionalSizeToAlloc<SourceLocation>(IdentifierLocs.size()))
4250       ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
4251 }
4252
4253 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
4254                                        SourceLocation StartLoc,
4255                                        Module *Imported,
4256                                        SourceLocation EndLoc) {
4257   ImportDecl *Import = new (C, DC, additionalSizeToAlloc<SourceLocation>(1))
4258       ImportDecl(DC, StartLoc, Imported, EndLoc);
4259   Import->setImplicit();
4260   return Import;
4261 }
4262
4263 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
4264                                            unsigned NumLocations) {
4265   return new (C, ID, additionalSizeToAlloc<SourceLocation>(NumLocations))
4266       ImportDecl(EmptyShell());
4267 }
4268
4269 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
4270   if (!ImportedAndComplete.getInt())
4271     return None;
4272
4273   const auto *StoredLocs = getTrailingObjects<SourceLocation>();
4274   return llvm::makeArrayRef(StoredLocs,
4275                             getNumModuleIdentifiers(getImportedModule()));
4276 }
4277
4278 SourceRange ImportDecl::getSourceRange() const {
4279   if (!ImportedAndComplete.getInt())
4280     return SourceRange(getLocation(), *getTrailingObjects<SourceLocation>());
4281
4282   return SourceRange(getLocation(), getIdentifierLocs().back());
4283 }