]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/AST/Decl.cpp
Merge ^/head r275715 through r275748.
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / AST / Decl.cpp
1 //===--- Decl.cpp - Declaration AST Node Implementation -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Decl subclasses.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/AST/Decl.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTLambda.h"
17 #include "clang/AST/ASTMutationListener.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/Expr.h"
23 #include "clang/AST/ExprCXX.h"
24 #include "clang/AST/PrettyPrinter.h"
25 #include "clang/AST/Stmt.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/Basic/Builtins.h"
28 #include "clang/Basic/IdentifierTable.h"
29 #include "clang/Basic/Module.h"
30 #include "clang/Basic/Specifiers.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include <algorithm>
34
35 using namespace clang;
36
37 Decl *clang::getPrimaryMergedDecl(Decl *D) {
38   return D->getASTContext().getPrimaryMergedDecl(D);
39 }
40
41 //===----------------------------------------------------------------------===//
42 // NamedDecl Implementation
43 //===----------------------------------------------------------------------===//
44
45 // Visibility rules aren't rigorously externally specified, but here
46 // are the basic principles behind what we implement:
47 //
48 // 1. An explicit visibility attribute is generally a direct expression
49 // of the user's intent and should be honored.  Only the innermost
50 // visibility attribute applies.  If no visibility attribute applies,
51 // global visibility settings are considered.
52 //
53 // 2. There is one caveat to the above: on or in a template pattern,
54 // an explicit visibility attribute is just a default rule, and
55 // visibility can be decreased by the visibility of template
56 // arguments.  But this, too, has an exception: an attribute on an
57 // explicit specialization or instantiation causes all the visibility
58 // restrictions of the template arguments to be ignored.
59 //
60 // 3. A variable that does not otherwise have explicit visibility can
61 // be restricted by the visibility of its type.
62 //
63 // 4. A visibility restriction is explicit if it comes from an
64 // attribute (or something like it), not a global visibility setting.
65 // When emitting a reference to an external symbol, visibility
66 // restrictions are ignored unless they are explicit.
67 //
68 // 5. When computing the visibility of a non-type, including a
69 // non-type member of a class, only non-type visibility restrictions
70 // are considered: the 'visibility' attribute, global value-visibility
71 // settings, and a few special cases like __private_extern.
72 //
73 // 6. When computing the visibility of a type, including a type member
74 // of a class, only type visibility restrictions are considered:
75 // the 'type_visibility' attribute and global type-visibility settings.
76 // However, a 'visibility' attribute counts as a 'type_visibility'
77 // attribute on any declaration that only has the former.
78 //
79 // The visibility of a "secondary" entity, like a template argument,
80 // is computed using the kind of that entity, not the kind of the
81 // primary entity for which we are computing visibility.  For example,
82 // the visibility of a specialization of either of these templates:
83 //   template <class T, bool (&compare)(T, X)> bool has_match(list<T>, X);
84 //   template <class T, bool (&compare)(T, X)> class matcher;
85 // is restricted according to the type visibility of the argument 'T',
86 // the type visibility of 'bool(&)(T,X)', and the value visibility of
87 // the argument function 'compare'.  That 'has_match' is a value
88 // and 'matcher' is a type only matters when looking for attributes
89 // and settings from the immediate context.
90
91 const unsigned IgnoreExplicitVisibilityBit = 2;
92 const unsigned IgnoreAllVisibilityBit = 4;
93
94 /// Kinds of LV computation.  The linkage side of the computation is
95 /// always the same, but different things can change how visibility is
96 /// computed.
97 enum LVComputationKind {
98   /// Do an LV computation for, ultimately, a type.
99   /// Visibility may be restricted by type visibility settings and
100   /// the visibility of template arguments.
101   LVForType = NamedDecl::VisibilityForType,
102
103   /// Do an LV computation for, ultimately, a non-type declaration.
104   /// Visibility may be restricted by value visibility settings and
105   /// the visibility of template arguments.
106   LVForValue = NamedDecl::VisibilityForValue,
107
108   /// Do an LV computation for, ultimately, a type that already has
109   /// some sort of explicit visibility.  Visibility may only be
110   /// restricted by the visibility of template arguments.
111   LVForExplicitType = (LVForType | IgnoreExplicitVisibilityBit),
112
113   /// Do an LV computation for, ultimately, a non-type declaration
114   /// that already has some sort of explicit visibility.  Visibility
115   /// may only be restricted by the visibility of template arguments.
116   LVForExplicitValue = (LVForValue | IgnoreExplicitVisibilityBit),
117
118   /// Do an LV computation when we only care about the linkage.
119   LVForLinkageOnly =
120       LVForValue | IgnoreExplicitVisibilityBit | IgnoreAllVisibilityBit
121 };
122
123 /// Does this computation kind permit us to consider additional
124 /// visibility settings from attributes and the like?
125 static bool hasExplicitVisibilityAlready(LVComputationKind computation) {
126   return ((unsigned(computation) & IgnoreExplicitVisibilityBit) != 0);
127 }
128
129 /// Given an LVComputationKind, return one of the same type/value sort
130 /// that records that it already has explicit visibility.
131 static LVComputationKind
132 withExplicitVisibilityAlready(LVComputationKind oldKind) {
133   LVComputationKind newKind =
134     static_cast<LVComputationKind>(unsigned(oldKind) |
135                                    IgnoreExplicitVisibilityBit);
136   assert(oldKind != LVForType          || newKind == LVForExplicitType);
137   assert(oldKind != LVForValue         || newKind == LVForExplicitValue);
138   assert(oldKind != LVForExplicitType  || newKind == LVForExplicitType);
139   assert(oldKind != LVForExplicitValue || newKind == LVForExplicitValue);
140   return newKind;
141 }
142
143 static Optional<Visibility> getExplicitVisibility(const NamedDecl *D,
144                                                   LVComputationKind kind) {
145   assert(!hasExplicitVisibilityAlready(kind) &&
146          "asking for explicit visibility when we shouldn't be");
147   return D->getExplicitVisibility((NamedDecl::ExplicitVisibilityKind) kind);
148 }
149
150 /// Is the given declaration a "type" or a "value" for the purposes of
151 /// visibility computation?
152 static bool usesTypeVisibility(const NamedDecl *D) {
153   return isa<TypeDecl>(D) ||
154          isa<ClassTemplateDecl>(D) ||
155          isa<ObjCInterfaceDecl>(D);
156 }
157
158 /// Does the given declaration have member specialization information,
159 /// and if so, is it an explicit specialization?
160 template <class T> static typename
161 std::enable_if<!std::is_base_of<RedeclarableTemplateDecl, T>::value, bool>::type
162 isExplicitMemberSpecialization(const T *D) {
163   if (const MemberSpecializationInfo *member =
164         D->getMemberSpecializationInfo()) {
165     return member->isExplicitSpecialization();
166   }
167   return false;
168 }
169
170 /// For templates, this question is easier: a member template can't be
171 /// explicitly instantiated, so there's a single bit indicating whether
172 /// or not this is an explicit member specialization.
173 static bool isExplicitMemberSpecialization(const RedeclarableTemplateDecl *D) {
174   return D->isMemberSpecialization();
175 }
176
177 /// Given a visibility attribute, return the explicit visibility
178 /// associated with it.
179 template <class T>
180 static Visibility getVisibilityFromAttr(const T *attr) {
181   switch (attr->getVisibility()) {
182   case T::Default:
183     return DefaultVisibility;
184   case T::Hidden:
185     return HiddenVisibility;
186   case T::Protected:
187     return ProtectedVisibility;
188   }
189   llvm_unreachable("bad visibility kind");
190 }
191
192 /// Return the explicit visibility of the given declaration.
193 static Optional<Visibility> getVisibilityOf(const NamedDecl *D,
194                                     NamedDecl::ExplicitVisibilityKind kind) {
195   // If we're ultimately computing the visibility of a type, look for
196   // a 'type_visibility' attribute before looking for 'visibility'.
197   if (kind == NamedDecl::VisibilityForType) {
198     if (const TypeVisibilityAttr *A = D->getAttr<TypeVisibilityAttr>()) {
199       return getVisibilityFromAttr(A);
200     }
201   }
202
203   // If this declaration has an explicit visibility attribute, use it.
204   if (const VisibilityAttr *A = D->getAttr<VisibilityAttr>()) {
205     return getVisibilityFromAttr(A);
206   }
207
208   // If we're on Mac OS X, an 'availability' for Mac OS X attribute
209   // implies visibility(default).
210   if (D->getASTContext().getTargetInfo().getTriple().isOSDarwin()) {
211     for (const auto *A : D->specific_attrs<AvailabilityAttr>())
212       if (A->getPlatform()->getName().equals("macosx"))
213         return DefaultVisibility;
214   }
215
216   return None;
217 }
218
219 static LinkageInfo
220 getLVForType(const Type &T, LVComputationKind computation) {
221   if (computation == LVForLinkageOnly)
222     return LinkageInfo(T.getLinkage(), DefaultVisibility, true);
223   return T.getLinkageAndVisibility();
224 }
225
226 /// \brief Get the most restrictive linkage for the types in the given
227 /// template parameter list.  For visibility purposes, template
228 /// parameters are part of the signature of a template.
229 static LinkageInfo
230 getLVForTemplateParameterList(const TemplateParameterList *Params,
231                               LVComputationKind computation) {
232   LinkageInfo LV;
233   for (const NamedDecl *P : *Params) {
234     // Template type parameters are the most common and never
235     // contribute to visibility, pack or not.
236     if (isa<TemplateTypeParmDecl>(P))
237       continue;
238
239     // Non-type template parameters can be restricted by the value type, e.g.
240     //   template <enum X> class A { ... };
241     // We have to be careful here, though, because we can be dealing with
242     // dependent types.
243     if (const NonTypeTemplateParmDecl *NTTP =
244             dyn_cast<NonTypeTemplateParmDecl>(P)) {
245       // Handle the non-pack case first.
246       if (!NTTP->isExpandedParameterPack()) {
247         if (!NTTP->getType()->isDependentType()) {
248           LV.merge(getLVForType(*NTTP->getType(), computation));
249         }
250         continue;
251       }
252
253       // Look at all the types in an expanded pack.
254       for (unsigned i = 0, n = NTTP->getNumExpansionTypes(); i != n; ++i) {
255         QualType type = NTTP->getExpansionType(i);
256         if (!type->isDependentType())
257           LV.merge(type->getLinkageAndVisibility());
258       }
259       continue;
260     }
261
262     // Template template parameters can be restricted by their
263     // template parameters, recursively.
264     const TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(P);
265
266     // Handle the non-pack case first.
267     if (!TTP->isExpandedParameterPack()) {
268       LV.merge(getLVForTemplateParameterList(TTP->getTemplateParameters(),
269                                              computation));
270       continue;
271     }
272
273     // Look at all expansions in an expanded pack.
274     for (unsigned i = 0, n = TTP->getNumExpansionTemplateParameters();
275            i != n; ++i) {
276       LV.merge(getLVForTemplateParameterList(
277           TTP->getExpansionTemplateParameters(i), computation));
278     }
279   }
280
281   return LV;
282 }
283
284 /// getLVForDecl - Get the linkage and visibility for the given declaration.
285 static LinkageInfo getLVForDecl(const NamedDecl *D,
286                                 LVComputationKind computation);
287
288 static const Decl *getOutermostFuncOrBlockContext(const Decl *D) {
289   const Decl *Ret = nullptr;
290   const DeclContext *DC = D->getDeclContext();
291   while (DC->getDeclKind() != Decl::TranslationUnit) {
292     if (isa<FunctionDecl>(DC) || isa<BlockDecl>(DC))
293       Ret = cast<Decl>(DC);
294     DC = DC->getParent();
295   }
296   return Ret;
297 }
298
299 /// \brief Get the most restrictive linkage for the types and
300 /// declarations in the given template argument list.
301 ///
302 /// Note that we don't take an LVComputationKind because we always
303 /// want to honor the visibility of template arguments in the same way.
304 static LinkageInfo getLVForTemplateArgumentList(ArrayRef<TemplateArgument> Args,
305                                                 LVComputationKind computation) {
306   LinkageInfo LV;
307
308   for (const TemplateArgument &Arg : Args) {
309     switch (Arg.getKind()) {
310     case TemplateArgument::Null:
311     case TemplateArgument::Integral:
312     case TemplateArgument::Expression:
313       continue;
314
315     case TemplateArgument::Type:
316       LV.merge(getLVForType(*Arg.getAsType(), computation));
317       continue;
318
319     case TemplateArgument::Declaration:
320       if (NamedDecl *ND = dyn_cast<NamedDecl>(Arg.getAsDecl())) {
321         assert(!usesTypeVisibility(ND));
322         LV.merge(getLVForDecl(ND, computation));
323       }
324       continue;
325
326     case TemplateArgument::NullPtr:
327       LV.merge(Arg.getNullPtrType()->getLinkageAndVisibility());
328       continue;
329
330     case TemplateArgument::Template:
331     case TemplateArgument::TemplateExpansion:
332       if (TemplateDecl *Template =
333               Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl())
334         LV.merge(getLVForDecl(Template, computation));
335       continue;
336
337     case TemplateArgument::Pack:
338       LV.merge(getLVForTemplateArgumentList(Arg.getPackAsArray(), computation));
339       continue;
340     }
341     llvm_unreachable("bad template argument kind");
342   }
343
344   return LV;
345 }
346
347 static LinkageInfo
348 getLVForTemplateArgumentList(const TemplateArgumentList &TArgs,
349                              LVComputationKind computation) {
350   return getLVForTemplateArgumentList(TArgs.asArray(), computation);
351 }
352
353 static bool shouldConsiderTemplateVisibility(const FunctionDecl *fn,
354                         const FunctionTemplateSpecializationInfo *specInfo) {
355   // Include visibility from the template parameters and arguments
356   // only if this is not an explicit instantiation or specialization
357   // with direct explicit visibility.  (Implicit instantiations won't
358   // have a direct attribute.)
359   if (!specInfo->isExplicitInstantiationOrSpecialization())
360     return true;
361
362   return !fn->hasAttr<VisibilityAttr>();
363 }
364
365 /// Merge in template-related linkage and visibility for the given
366 /// function template specialization.
367 ///
368 /// We don't need a computation kind here because we can assume
369 /// LVForValue.
370 ///
371 /// \param[out] LV the computation to use for the parent
372 static void
373 mergeTemplateLV(LinkageInfo &LV, const FunctionDecl *fn,
374                 const FunctionTemplateSpecializationInfo *specInfo,
375                 LVComputationKind computation) {
376   bool considerVisibility =
377     shouldConsiderTemplateVisibility(fn, specInfo);
378
379   // Merge information from the template parameters.
380   FunctionTemplateDecl *temp = specInfo->getTemplate();
381   LinkageInfo tempLV =
382     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
383   LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
384
385   // Merge information from the template arguments.
386   const TemplateArgumentList &templateArgs = *specInfo->TemplateArguments;
387   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
388   LV.mergeMaybeWithVisibility(argsLV, considerVisibility);
389 }
390
391 /// Does the given declaration have a direct visibility attribute
392 /// that would match the given rules?
393 static bool hasDirectVisibilityAttribute(const NamedDecl *D,
394                                          LVComputationKind computation) {
395   switch (computation) {
396   case LVForType:
397   case LVForExplicitType:
398     if (D->hasAttr<TypeVisibilityAttr>())
399       return true;
400     // fallthrough
401   case LVForValue:
402   case LVForExplicitValue:
403     if (D->hasAttr<VisibilityAttr>())
404       return true;
405     return false;
406   case LVForLinkageOnly:
407     return false;
408   }
409   llvm_unreachable("bad visibility computation kind");
410 }
411
412 /// Should we consider visibility associated with the template
413 /// arguments and parameters of the given class template specialization?
414 static bool shouldConsiderTemplateVisibility(
415                                  const ClassTemplateSpecializationDecl *spec,
416                                  LVComputationKind computation) {
417   // Include visibility from the template parameters and arguments
418   // only if this is not an explicit instantiation or specialization
419   // with direct explicit visibility (and note that implicit
420   // instantiations won't have a direct attribute).
421   //
422   // Furthermore, we want to ignore template parameters and arguments
423   // for an explicit specialization when computing the visibility of a
424   // member thereof with explicit visibility.
425   //
426   // This is a bit complex; let's unpack it.
427   //
428   // An explicit class specialization is an independent, top-level
429   // declaration.  As such, if it or any of its members has an
430   // explicit visibility attribute, that must directly express the
431   // user's intent, and we should honor it.  The same logic applies to
432   // an explicit instantiation of a member of such a thing.
433
434   // Fast path: if this is not an explicit instantiation or
435   // specialization, we always want to consider template-related
436   // visibility restrictions.
437   if (!spec->isExplicitInstantiationOrSpecialization())
438     return true;
439
440   // This is the 'member thereof' check.
441   if (spec->isExplicitSpecialization() &&
442       hasExplicitVisibilityAlready(computation))
443     return false;
444
445   return !hasDirectVisibilityAttribute(spec, computation);
446 }
447
448 /// Merge in template-related linkage and visibility for the given
449 /// class template specialization.
450 static void mergeTemplateLV(LinkageInfo &LV,
451                             const ClassTemplateSpecializationDecl *spec,
452                             LVComputationKind computation) {
453   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
454
455   // Merge information from the template parameters, but ignore
456   // visibility if we're only considering template arguments.
457
458   ClassTemplateDecl *temp = spec->getSpecializedTemplate();
459   LinkageInfo tempLV =
460     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
461   LV.mergeMaybeWithVisibility(tempLV,
462            considerVisibility && !hasExplicitVisibilityAlready(computation));
463
464   // Merge information from the template arguments.  We ignore
465   // template-argument visibility if we've got an explicit
466   // instantiation with a visibility attribute.
467   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
468   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
469   if (considerVisibility)
470     LV.mergeVisibility(argsLV);
471   LV.mergeExternalVisibility(argsLV);
472 }
473
474 /// Should we consider visibility associated with the template
475 /// arguments and parameters of the given variable template
476 /// specialization? As usual, follow class template specialization
477 /// logic up to initialization.
478 static bool shouldConsiderTemplateVisibility(
479                                  const VarTemplateSpecializationDecl *spec,
480                                  LVComputationKind computation) {
481   // Include visibility from the template parameters and arguments
482   // only if this is not an explicit instantiation or specialization
483   // with direct explicit visibility (and note that implicit
484   // instantiations won't have a direct attribute).
485   if (!spec->isExplicitInstantiationOrSpecialization())
486     return true;
487
488   // An explicit variable specialization is an independent, top-level
489   // declaration.  As such, if it has an explicit visibility attribute,
490   // that must directly express the user's intent, and we should honor
491   // it.
492   if (spec->isExplicitSpecialization() &&
493       hasExplicitVisibilityAlready(computation))
494     return false;
495
496   return !hasDirectVisibilityAttribute(spec, computation);
497 }
498
499 /// Merge in template-related linkage and visibility for the given
500 /// variable template specialization. As usual, follow class template
501 /// specialization logic up to initialization.
502 static void mergeTemplateLV(LinkageInfo &LV,
503                             const VarTemplateSpecializationDecl *spec,
504                             LVComputationKind computation) {
505   bool considerVisibility = shouldConsiderTemplateVisibility(spec, computation);
506
507   // Merge information from the template parameters, but ignore
508   // visibility if we're only considering template arguments.
509
510   VarTemplateDecl *temp = spec->getSpecializedTemplate();
511   LinkageInfo tempLV =
512     getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
513   LV.mergeMaybeWithVisibility(tempLV,
514            considerVisibility && !hasExplicitVisibilityAlready(computation));
515
516   // Merge information from the template arguments.  We ignore
517   // template-argument visibility if we've got an explicit
518   // instantiation with a visibility attribute.
519   const TemplateArgumentList &templateArgs = spec->getTemplateArgs();
520   LinkageInfo argsLV = getLVForTemplateArgumentList(templateArgs, computation);
521   if (considerVisibility)
522     LV.mergeVisibility(argsLV);
523   LV.mergeExternalVisibility(argsLV);
524 }
525
526 static bool useInlineVisibilityHidden(const NamedDecl *D) {
527   // FIXME: we should warn if -fvisibility-inlines-hidden is used with c.
528   const LangOptions &Opts = D->getASTContext().getLangOpts();
529   if (!Opts.CPlusPlus || !Opts.InlineVisibilityHidden)
530     return false;
531
532   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
533   if (!FD)
534     return false;
535
536   TemplateSpecializationKind TSK = TSK_Undeclared;
537   if (FunctionTemplateSpecializationInfo *spec
538       = FD->getTemplateSpecializationInfo()) {
539     TSK = spec->getTemplateSpecializationKind();
540   } else if (MemberSpecializationInfo *MSI =
541              FD->getMemberSpecializationInfo()) {
542     TSK = MSI->getTemplateSpecializationKind();
543   }
544
545   const FunctionDecl *Def = nullptr;
546   // InlineVisibilityHidden only applies to definitions, and
547   // isInlined() only gives meaningful answers on definitions
548   // anyway.
549   return TSK != TSK_ExplicitInstantiationDeclaration &&
550     TSK != TSK_ExplicitInstantiationDefinition &&
551     FD->hasBody(Def) && Def->isInlined() && !Def->hasAttr<GNUInlineAttr>();
552 }
553
554 template <typename T> static bool isFirstInExternCContext(T *D) {
555   const T *First = D->getFirstDecl();
556   return First->isInExternCContext();
557 }
558
559 static bool isSingleLineLanguageLinkage(const Decl &D) {
560   if (const LinkageSpecDecl *SD = dyn_cast<LinkageSpecDecl>(D.getDeclContext()))
561     if (!SD->hasBraces())
562       return true;
563   return false;
564 }
565
566 static LinkageInfo getLVForNamespaceScopeDecl(const NamedDecl *D,
567                                               LVComputationKind computation) {
568   assert(D->getDeclContext()->getRedeclContext()->isFileContext() &&
569          "Not a name having namespace scope");
570   ASTContext &Context = D->getASTContext();
571
572   // C++ [basic.link]p3:
573   //   A name having namespace scope (3.3.6) has internal linkage if it
574   //   is the name of
575   //     - an object, reference, function or function template that is
576   //       explicitly declared static; or,
577   // (This bullet corresponds to C99 6.2.2p3.)
578   if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
579     // Explicitly declared static.
580     if (Var->getStorageClass() == SC_Static)
581       return LinkageInfo::internal();
582
583     // - a non-volatile object or reference that is explicitly declared const
584     //   or constexpr and neither explicitly declared extern nor previously
585     //   declared to have external linkage; or (there is no equivalent in C99)
586     if (Context.getLangOpts().CPlusPlus &&
587         Var->getType().isConstQualified() && 
588         !Var->getType().isVolatileQualified()) {
589       const VarDecl *PrevVar = Var->getPreviousDecl();
590       if (PrevVar)
591         return getLVForDecl(PrevVar, computation);
592
593       if (Var->getStorageClass() != SC_Extern &&
594           Var->getStorageClass() != SC_PrivateExtern &&
595           !isSingleLineLanguageLinkage(*Var))
596         return LinkageInfo::internal();
597     }
598
599     for (const VarDecl *PrevVar = Var->getPreviousDecl(); PrevVar;
600          PrevVar = PrevVar->getPreviousDecl()) {
601       if (PrevVar->getStorageClass() == SC_PrivateExtern &&
602           Var->getStorageClass() == SC_None)
603         return PrevVar->getLinkageAndVisibility();
604       // Explicitly declared static.
605       if (PrevVar->getStorageClass() == SC_Static)
606         return LinkageInfo::internal();
607     }
608   } else if (const FunctionDecl *Function = D->getAsFunction()) {
609     // C++ [temp]p4:
610     //   A non-member function template can have internal linkage; any
611     //   other template name shall have external linkage.
612
613     // Explicitly declared static.
614     if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
615       return LinkageInfo(InternalLinkage, DefaultVisibility, false);
616   }
617   //   - a data member of an anonymous union.
618   assert(!isa<IndirectFieldDecl>(D) && "Didn't expect an IndirectFieldDecl!");
619   assert(!isa<FieldDecl>(D) && "Didn't expect a FieldDecl!");
620
621   if (D->isInAnonymousNamespace()) {
622     const VarDecl *Var = dyn_cast<VarDecl>(D);
623     const FunctionDecl *Func = dyn_cast<FunctionDecl>(D);
624     if ((!Var || !isFirstInExternCContext(Var)) &&
625         (!Func || !isFirstInExternCContext(Func)))
626       return LinkageInfo::uniqueExternal();
627   }
628
629   // Set up the defaults.
630
631   // C99 6.2.2p5:
632   //   If the declaration of an identifier for an object has file
633   //   scope and no storage-class specifier, its linkage is
634   //   external.
635   LinkageInfo LV;
636
637   if (!hasExplicitVisibilityAlready(computation)) {
638     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation)) {
639       LV.mergeVisibility(*Vis, true);
640     } else {
641       // If we're declared in a namespace with a visibility attribute,
642       // use that namespace's visibility, and it still counts as explicit.
643       for (const DeclContext *DC = D->getDeclContext();
644            !isa<TranslationUnitDecl>(DC);
645            DC = DC->getParent()) {
646         const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC);
647         if (!ND) continue;
648         if (Optional<Visibility> Vis = getExplicitVisibility(ND, computation)) {
649           LV.mergeVisibility(*Vis, true);
650           break;
651         }
652       }
653     }
654
655     // Add in global settings if the above didn't give us direct visibility.
656     if (!LV.isVisibilityExplicit()) {
657       // Use global type/value visibility as appropriate.
658       Visibility globalVisibility;
659       if (computation == LVForValue) {
660         globalVisibility = Context.getLangOpts().getValueVisibilityMode();
661       } else {
662         assert(computation == LVForType);
663         globalVisibility = Context.getLangOpts().getTypeVisibilityMode();
664       }
665       LV.mergeVisibility(globalVisibility, /*explicit*/ false);
666
667       // If we're paying attention to global visibility, apply
668       // -finline-visibility-hidden if this is an inline method.
669       if (useInlineVisibilityHidden(D))
670         LV.mergeVisibility(HiddenVisibility, true);
671     }
672   }
673
674   // C++ [basic.link]p4:
675
676   //   A name having namespace scope has external linkage if it is the
677   //   name of
678   //
679   //     - an object or reference, unless it has internal linkage; or
680   if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
681     // GCC applies the following optimization to variables and static
682     // data members, but not to functions:
683     //
684     // Modify the variable's LV by the LV of its type unless this is
685     // C or extern "C".  This follows from [basic.link]p9:
686     //   A type without linkage shall not be used as the type of a
687     //   variable or function with external linkage unless
688     //    - the entity has C language linkage, or
689     //    - the entity is declared within an unnamed namespace, or
690     //    - the entity is not used or is defined in the same
691     //      translation unit.
692     // and [basic.link]p10:
693     //   ...the types specified by all declarations referring to a
694     //   given variable or function shall be identical...
695     // C does not have an equivalent rule.
696     //
697     // Ignore this if we've got an explicit attribute;  the user
698     // probably knows what they're doing.
699     //
700     // Note that we don't want to make the variable non-external
701     // because of this, but unique-external linkage suits us.
702     if (Context.getLangOpts().CPlusPlus && !isFirstInExternCContext(Var)) {
703       LinkageInfo TypeLV = getLVForType(*Var->getType(), computation);
704       if (TypeLV.getLinkage() != ExternalLinkage)
705         return LinkageInfo::uniqueExternal();
706       if (!LV.isVisibilityExplicit())
707         LV.mergeVisibility(TypeLV);
708     }
709
710     if (Var->getStorageClass() == SC_PrivateExtern)
711       LV.mergeVisibility(HiddenVisibility, true);
712
713     // Note that Sema::MergeVarDecl already takes care of implementing
714     // C99 6.2.2p4 and propagating the visibility attribute, so we don't have
715     // to do it here.
716
717     // As per function and class template specializations (below),
718     // consider LV for the template and template arguments.  We're at file
719     // scope, so we do not need to worry about nested specializations.
720     if (const VarTemplateSpecializationDecl *spec
721               = dyn_cast<VarTemplateSpecializationDecl>(Var)) {
722       mergeTemplateLV(LV, spec, computation);
723     }
724
725   //     - a function, unless it has internal linkage; or
726   } else if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
727     // In theory, we can modify the function's LV by the LV of its
728     // type unless it has C linkage (see comment above about variables
729     // for justification).  In practice, GCC doesn't do this, so it's
730     // just too painful to make work.
731
732     if (Function->getStorageClass() == SC_PrivateExtern)
733       LV.mergeVisibility(HiddenVisibility, true);
734
735     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
736     // merging storage classes and visibility attributes, so we don't have to
737     // look at previous decls in here.
738
739     // In C++, then if the type of the function uses a type with
740     // unique-external linkage, it's not legally usable from outside
741     // this translation unit.  However, we should use the C linkage
742     // rules instead for extern "C" declarations.
743     if (Context.getLangOpts().CPlusPlus &&
744         !Function->isInExternCContext()) {
745       // Only look at the type-as-written. If this function has an auto-deduced
746       // return type, we can't compute the linkage of that type because it could
747       // require looking at the linkage of this function, and we don't need this
748       // for correctness because the type is not part of the function's
749       // signature.
750       // FIXME: This is a hack. We should be able to solve this circularity and 
751       // the one in getLVForClassMember for Functions some other way.
752       QualType TypeAsWritten = Function->getType();
753       if (TypeSourceInfo *TSI = Function->getTypeSourceInfo())
754         TypeAsWritten = TSI->getType();
755       if (TypeAsWritten->getLinkage() == UniqueExternalLinkage)
756         return LinkageInfo::uniqueExternal();
757     }
758
759     // Consider LV from the template and the template arguments.
760     // We're at file scope, so we do not need to worry about nested
761     // specializations.
762     if (FunctionTemplateSpecializationInfo *specInfo
763                                = Function->getTemplateSpecializationInfo()) {
764       mergeTemplateLV(LV, Function, specInfo, computation);
765     }
766
767   //     - a named class (Clause 9), or an unnamed class defined in a
768   //       typedef declaration in which the class has the typedef name
769   //       for linkage purposes (7.1.3); or
770   //     - a named enumeration (7.2), or an unnamed enumeration
771   //       defined in a typedef declaration in which the enumeration
772   //       has the typedef name for linkage purposes (7.1.3); or
773   } else if (const TagDecl *Tag = dyn_cast<TagDecl>(D)) {
774     // Unnamed tags have no linkage.
775     if (!Tag->hasNameForLinkage())
776       return LinkageInfo::none();
777
778     // If this is a class template specialization, consider the
779     // linkage of the template and template arguments.  We're at file
780     // scope, so we do not need to worry about nested specializations.
781     if (const ClassTemplateSpecializationDecl *spec
782           = dyn_cast<ClassTemplateSpecializationDecl>(Tag)) {
783       mergeTemplateLV(LV, spec, computation);
784     }
785
786   //     - an enumerator belonging to an enumeration with external linkage;
787   } else if (isa<EnumConstantDecl>(D)) {
788     LinkageInfo EnumLV = getLVForDecl(cast<NamedDecl>(D->getDeclContext()),
789                                       computation);
790     if (!isExternalFormalLinkage(EnumLV.getLinkage()))
791       return LinkageInfo::none();
792     LV.merge(EnumLV);
793
794   //     - a template, unless it is a function template that has
795   //       internal linkage (Clause 14);
796   } else if (const TemplateDecl *temp = dyn_cast<TemplateDecl>(D)) {
797     bool considerVisibility = !hasExplicitVisibilityAlready(computation);
798     LinkageInfo tempLV =
799       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
800     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
801
802   //     - a namespace (7.3), unless it is declared within an unnamed
803   //       namespace.
804   } else if (isa<NamespaceDecl>(D) && !D->isInAnonymousNamespace()) {
805     return LV;
806
807   // By extension, we assign external linkage to Objective-C
808   // interfaces.
809   } else if (isa<ObjCInterfaceDecl>(D)) {
810     // fallout
811
812   // Everything not covered here has no linkage.
813   } else {
814     return LinkageInfo::none();
815   }
816
817   // If we ended up with non-external linkage, visibility should
818   // always be default.
819   if (LV.getLinkage() != ExternalLinkage)
820     return LinkageInfo(LV.getLinkage(), DefaultVisibility, false);
821
822   return LV;
823 }
824
825 static LinkageInfo getLVForClassMember(const NamedDecl *D,
826                                        LVComputationKind computation) {
827   // Only certain class members have linkage.  Note that fields don't
828   // really have linkage, but it's convenient to say they do for the
829   // purposes of calculating linkage of pointer-to-data-member
830   // template arguments.
831   //
832   // Templates also don't officially have linkage, but since we ignore
833   // the C++ standard and look at template arguments when determining
834   // linkage and visibility of a template specialization, we might hit
835   // a template template argument that way. If we do, we need to
836   // consider its linkage.
837   if (!(isa<CXXMethodDecl>(D) ||
838         isa<VarDecl>(D) ||
839         isa<FieldDecl>(D) ||
840         isa<IndirectFieldDecl>(D) ||
841         isa<TagDecl>(D) ||
842         isa<TemplateDecl>(D)))
843     return LinkageInfo::none();
844
845   LinkageInfo LV;
846
847   // If we have an explicit visibility attribute, merge that in.
848   if (!hasExplicitVisibilityAlready(computation)) {
849     if (Optional<Visibility> Vis = getExplicitVisibility(D, computation))
850       LV.mergeVisibility(*Vis, true);
851     // If we're paying attention to global visibility, apply
852     // -finline-visibility-hidden if this is an inline method.
853     //
854     // Note that we do this before merging information about
855     // the class visibility.
856     if (!LV.isVisibilityExplicit() && useInlineVisibilityHidden(D))
857       LV.mergeVisibility(HiddenVisibility, true);
858   }
859
860   // If this class member has an explicit visibility attribute, the only
861   // thing that can change its visibility is the template arguments, so
862   // only look for them when processing the class.
863   LVComputationKind classComputation = computation;
864   if (LV.isVisibilityExplicit())
865     classComputation = withExplicitVisibilityAlready(computation);
866
867   LinkageInfo classLV =
868     getLVForDecl(cast<RecordDecl>(D->getDeclContext()), classComputation);
869   // If the class already has unique-external linkage, we can't improve.
870   if (classLV.getLinkage() == UniqueExternalLinkage)
871     return LinkageInfo::uniqueExternal();
872
873   if (!isExternallyVisible(classLV.getLinkage()))
874     return LinkageInfo::none();
875
876
877   // Otherwise, don't merge in classLV yet, because in certain cases
878   // we need to completely ignore the visibility from it.
879
880   // Specifically, if this decl exists and has an explicit attribute.
881   const NamedDecl *explicitSpecSuppressor = nullptr;
882
883   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
884     // If the type of the function uses a type with unique-external
885     // linkage, it's not legally usable from outside this translation unit.
886     // But only look at the type-as-written. If this function has an auto-deduced
887     // return type, we can't compute the linkage of that type because it could
888     // require looking at the linkage of this function, and we don't need this
889     // for correctness because the type is not part of the function's
890     // signature.
891     // FIXME: This is a hack. We should be able to solve this circularity and the
892     // one in getLVForNamespaceScopeDecl for Functions some other way.
893     {
894       QualType TypeAsWritten = MD->getType();
895       if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
896         TypeAsWritten = TSI->getType();
897       if (TypeAsWritten->getLinkage() == UniqueExternalLinkage)
898         return LinkageInfo::uniqueExternal();
899     }
900     // If this is a method template specialization, use the linkage for
901     // the template parameters and arguments.
902     if (FunctionTemplateSpecializationInfo *spec
903            = MD->getTemplateSpecializationInfo()) {
904       mergeTemplateLV(LV, MD, spec, computation);
905       if (spec->isExplicitSpecialization()) {
906         explicitSpecSuppressor = MD;
907       } else if (isExplicitMemberSpecialization(spec->getTemplate())) {
908         explicitSpecSuppressor = spec->getTemplate()->getTemplatedDecl();
909       }
910     } else if (isExplicitMemberSpecialization(MD)) {
911       explicitSpecSuppressor = MD;
912     }
913
914   } else if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
915     if (const ClassTemplateSpecializationDecl *spec
916         = dyn_cast<ClassTemplateSpecializationDecl>(RD)) {
917       mergeTemplateLV(LV, spec, computation);
918       if (spec->isExplicitSpecialization()) {
919         explicitSpecSuppressor = spec;
920       } else {
921         const ClassTemplateDecl *temp = spec->getSpecializedTemplate();
922         if (isExplicitMemberSpecialization(temp)) {
923           explicitSpecSuppressor = temp->getTemplatedDecl();
924         }
925       }
926     } else if (isExplicitMemberSpecialization(RD)) {
927       explicitSpecSuppressor = RD;
928     }
929
930   // Static data members.
931   } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
932     if (const VarTemplateSpecializationDecl *spec
933         = dyn_cast<VarTemplateSpecializationDecl>(VD))
934       mergeTemplateLV(LV, spec, computation);
935
936     // Modify the variable's linkage by its type, but ignore the
937     // type's visibility unless it's a definition.
938     LinkageInfo typeLV = getLVForType(*VD->getType(), computation);
939     if (!LV.isVisibilityExplicit() && !classLV.isVisibilityExplicit())
940       LV.mergeVisibility(typeLV);
941     LV.mergeExternalVisibility(typeLV);
942
943     if (isExplicitMemberSpecialization(VD)) {
944       explicitSpecSuppressor = VD;
945     }
946
947   // Template members.
948   } else if (const TemplateDecl *temp = dyn_cast<TemplateDecl>(D)) {
949     bool considerVisibility =
950       (!LV.isVisibilityExplicit() &&
951        !classLV.isVisibilityExplicit() &&
952        !hasExplicitVisibilityAlready(computation));
953     LinkageInfo tempLV =
954       getLVForTemplateParameterList(temp->getTemplateParameters(), computation);
955     LV.mergeMaybeWithVisibility(tempLV, considerVisibility);
956
957     if (const RedeclarableTemplateDecl *redeclTemp =
958           dyn_cast<RedeclarableTemplateDecl>(temp)) {
959       if (isExplicitMemberSpecialization(redeclTemp)) {
960         explicitSpecSuppressor = temp->getTemplatedDecl();
961       }
962     }
963   }
964
965   // We should never be looking for an attribute directly on a template.
966   assert(!explicitSpecSuppressor || !isa<TemplateDecl>(explicitSpecSuppressor));
967
968   // If this member is an explicit member specialization, and it has
969   // an explicit attribute, ignore visibility from the parent.
970   bool considerClassVisibility = true;
971   if (explicitSpecSuppressor &&
972       // optimization: hasDVA() is true only with explicit visibility.
973       LV.isVisibilityExplicit() &&
974       classLV.getVisibility() != DefaultVisibility &&
975       hasDirectVisibilityAttribute(explicitSpecSuppressor, computation)) {
976     considerClassVisibility = false;
977   }
978
979   // Finally, merge in information from the class.
980   LV.mergeMaybeWithVisibility(classLV, considerClassVisibility);
981   return LV;
982 }
983
984 void NamedDecl::anchor() { }
985
986 static LinkageInfo computeLVForDecl(const NamedDecl *D,
987                                     LVComputationKind computation);
988
989 bool NamedDecl::isLinkageValid() const {
990   if (!hasCachedLinkage())
991     return true;
992
993   return computeLVForDecl(this, LVForLinkageOnly).getLinkage() ==
994          getCachedLinkage();
995 }
996
997 Linkage NamedDecl::getLinkageInternal() const {
998   // We don't care about visibility here, so ask for the cheapest
999   // possible visibility analysis.
1000   return getLVForDecl(this, LVForLinkageOnly).getLinkage();
1001 }
1002
1003 LinkageInfo NamedDecl::getLinkageAndVisibility() const {
1004   LVComputationKind computation =
1005     (usesTypeVisibility(this) ? LVForType : LVForValue);
1006   return getLVForDecl(this, computation);
1007 }
1008
1009 static Optional<Visibility>
1010 getExplicitVisibilityAux(const NamedDecl *ND,
1011                          NamedDecl::ExplicitVisibilityKind kind,
1012                          bool IsMostRecent) {
1013   assert(!IsMostRecent || ND == ND->getMostRecentDecl());
1014
1015   // Check the declaration itself first.
1016   if (Optional<Visibility> V = getVisibilityOf(ND, kind))
1017     return V;
1018
1019   // If this is a member class of a specialization of a class template
1020   // and the corresponding decl has explicit visibility, use that.
1021   if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(ND)) {
1022     CXXRecordDecl *InstantiatedFrom = RD->getInstantiatedFromMemberClass();
1023     if (InstantiatedFrom)
1024       return getVisibilityOf(InstantiatedFrom, kind);
1025   }
1026
1027   // If there wasn't explicit visibility there, and this is a
1028   // specialization of a class template, check for visibility
1029   // on the pattern.
1030   if (const ClassTemplateSpecializationDecl *spec
1031         = dyn_cast<ClassTemplateSpecializationDecl>(ND))
1032     return getVisibilityOf(spec->getSpecializedTemplate()->getTemplatedDecl(),
1033                            kind);
1034
1035   // Use the most recent declaration.
1036   if (!IsMostRecent && !isa<NamespaceDecl>(ND)) {
1037     const NamedDecl *MostRecent = ND->getMostRecentDecl();
1038     if (MostRecent != ND)
1039       return getExplicitVisibilityAux(MostRecent, kind, true);
1040   }
1041
1042   if (const VarDecl *Var = dyn_cast<VarDecl>(ND)) {
1043     if (Var->isStaticDataMember()) {
1044       VarDecl *InstantiatedFrom = Var->getInstantiatedFromStaticDataMember();
1045       if (InstantiatedFrom)
1046         return getVisibilityOf(InstantiatedFrom, kind);
1047     }
1048
1049     if (const auto *VTSD = dyn_cast<VarTemplateSpecializationDecl>(Var))
1050       return getVisibilityOf(VTSD->getSpecializedTemplate()->getTemplatedDecl(),
1051                              kind);
1052
1053     return None;
1054   }
1055   // Also handle function template specializations.
1056   if (const FunctionDecl *fn = dyn_cast<FunctionDecl>(ND)) {
1057     // If the function is a specialization of a template with an
1058     // explicit visibility attribute, use that.
1059     if (FunctionTemplateSpecializationInfo *templateInfo
1060           = fn->getTemplateSpecializationInfo())
1061       return getVisibilityOf(templateInfo->getTemplate()->getTemplatedDecl(),
1062                              kind);
1063
1064     // If the function is a member of a specialization of a class template
1065     // and the corresponding decl has explicit visibility, use that.
1066     FunctionDecl *InstantiatedFrom = fn->getInstantiatedFromMemberFunction();
1067     if (InstantiatedFrom)
1068       return getVisibilityOf(InstantiatedFrom, kind);
1069
1070     return None;
1071   }
1072
1073   // The visibility of a template is stored in the templated decl.
1074   if (const TemplateDecl *TD = dyn_cast<TemplateDecl>(ND))
1075     return getVisibilityOf(TD->getTemplatedDecl(), kind);
1076
1077   return None;
1078 }
1079
1080 Optional<Visibility>
1081 NamedDecl::getExplicitVisibility(ExplicitVisibilityKind kind) const {
1082   return getExplicitVisibilityAux(this, kind, false);
1083 }
1084
1085 static LinkageInfo getLVForClosure(const DeclContext *DC, Decl *ContextDecl,
1086                                    LVComputationKind computation) {
1087   // This lambda has its linkage/visibility determined by its owner.
1088   if (ContextDecl) {
1089     if (isa<ParmVarDecl>(ContextDecl))
1090       DC = ContextDecl->getDeclContext()->getRedeclContext();
1091     else
1092       return getLVForDecl(cast<NamedDecl>(ContextDecl), computation);
1093   }
1094
1095   if (const NamedDecl *ND = dyn_cast<NamedDecl>(DC))
1096     return getLVForDecl(ND, computation);
1097
1098   return LinkageInfo::external();
1099 }
1100
1101 static LinkageInfo getLVForLocalDecl(const NamedDecl *D,
1102                                      LVComputationKind computation) {
1103   if (const FunctionDecl *Function = dyn_cast<FunctionDecl>(D)) {
1104     if (Function->isInAnonymousNamespace() &&
1105         !Function->isInExternCContext())
1106       return LinkageInfo::uniqueExternal();
1107
1108     // This is a "void f();" which got merged with a file static.
1109     if (Function->getCanonicalDecl()->getStorageClass() == SC_Static)
1110       return LinkageInfo::internal();
1111
1112     LinkageInfo LV;
1113     if (!hasExplicitVisibilityAlready(computation)) {
1114       if (Optional<Visibility> Vis =
1115               getExplicitVisibility(Function, computation))
1116         LV.mergeVisibility(*Vis, true);
1117     }
1118
1119     // Note that Sema::MergeCompatibleFunctionDecls already takes care of
1120     // merging storage classes and visibility attributes, so we don't have to
1121     // look at previous decls in here.
1122
1123     return LV;
1124   }
1125
1126   if (const VarDecl *Var = dyn_cast<VarDecl>(D)) {
1127     if (Var->hasExternalStorage()) {
1128       if (Var->isInAnonymousNamespace() && !Var->isInExternCContext())
1129         return LinkageInfo::uniqueExternal();
1130
1131       LinkageInfo LV;
1132       if (Var->getStorageClass() == SC_PrivateExtern)
1133         LV.mergeVisibility(HiddenVisibility, true);
1134       else if (!hasExplicitVisibilityAlready(computation)) {
1135         if (Optional<Visibility> Vis = getExplicitVisibility(Var, computation))
1136           LV.mergeVisibility(*Vis, true);
1137       }
1138
1139       if (const VarDecl *Prev = Var->getPreviousDecl()) {
1140         LinkageInfo PrevLV = getLVForDecl(Prev, computation);
1141         if (PrevLV.getLinkage())
1142           LV.setLinkage(PrevLV.getLinkage());
1143         LV.mergeVisibility(PrevLV);
1144       }
1145
1146       return LV;
1147     }
1148
1149     if (!Var->isStaticLocal())
1150       return LinkageInfo::none();
1151   }
1152
1153   ASTContext &Context = D->getASTContext();
1154   if (!Context.getLangOpts().CPlusPlus)
1155     return LinkageInfo::none();
1156
1157   const Decl *OuterD = getOutermostFuncOrBlockContext(D);
1158   if (!OuterD)
1159     return LinkageInfo::none();
1160
1161   LinkageInfo LV;
1162   if (const BlockDecl *BD = dyn_cast<BlockDecl>(OuterD)) {
1163     if (!BD->getBlockManglingNumber())
1164       return LinkageInfo::none();
1165
1166     LV = getLVForClosure(BD->getDeclContext()->getRedeclContext(),
1167                          BD->getBlockManglingContextDecl(), computation);
1168   } else {
1169     const FunctionDecl *FD = cast<FunctionDecl>(OuterD);
1170     if (!FD->isInlined() &&
1171         FD->getTemplateSpecializationKind() == TSK_Undeclared)
1172       return LinkageInfo::none();
1173
1174     LV = getLVForDecl(FD, computation);
1175   }
1176   if (!isExternallyVisible(LV.getLinkage()))
1177     return LinkageInfo::none();
1178   return LinkageInfo(VisibleNoLinkage, LV.getVisibility(),
1179                      LV.isVisibilityExplicit());
1180 }
1181
1182 static inline const CXXRecordDecl*
1183 getOutermostEnclosingLambda(const CXXRecordDecl *Record) {
1184   const CXXRecordDecl *Ret = Record;
1185   while (Record && Record->isLambda()) {
1186     Ret = Record;
1187     if (!Record->getParent()) break;
1188     // Get the Containing Class of this Lambda Class
1189     Record = dyn_cast_or_null<CXXRecordDecl>(
1190       Record->getParent()->getParent());
1191   }
1192   return Ret;
1193 }
1194
1195 static LinkageInfo computeLVForDecl(const NamedDecl *D,
1196                                     LVComputationKind computation) {
1197   // Objective-C: treat all Objective-C declarations as having external
1198   // linkage.
1199   switch (D->getKind()) {
1200     default:
1201       break;
1202     case Decl::ParmVar:
1203       return LinkageInfo::none();
1204     case Decl::TemplateTemplateParm: // count these as external
1205     case Decl::NonTypeTemplateParm:
1206     case Decl::ObjCAtDefsField:
1207     case Decl::ObjCCategory:
1208     case Decl::ObjCCategoryImpl:
1209     case Decl::ObjCCompatibleAlias:
1210     case Decl::ObjCImplementation:
1211     case Decl::ObjCMethod:
1212     case Decl::ObjCProperty:
1213     case Decl::ObjCPropertyImpl:
1214     case Decl::ObjCProtocol:
1215       return LinkageInfo::external();
1216       
1217     case Decl::CXXRecord: {
1218       const CXXRecordDecl *Record = cast<CXXRecordDecl>(D);
1219       if (Record->isLambda()) {
1220         if (!Record->getLambdaManglingNumber()) {
1221           // This lambda has no mangling number, so it's internal.
1222           return LinkageInfo::internal();
1223         }
1224
1225         // This lambda has its linkage/visibility determined:
1226         //  - either by the outermost lambda if that lambda has no mangling 
1227         //    number. 
1228         //  - or by the parent of the outer most lambda
1229         // This prevents infinite recursion in settings such as nested lambdas 
1230         // used in NSDMI's, for e.g. 
1231         //  struct L {
1232         //    int t{};
1233         //    int t2 = ([](int a) { return [](int b) { return b; };})(t)(t);    
1234         //  };
1235         const CXXRecordDecl *OuterMostLambda = 
1236             getOutermostEnclosingLambda(Record);
1237         if (!OuterMostLambda->getLambdaManglingNumber())
1238           return LinkageInfo::internal();
1239         
1240         return getLVForClosure(
1241                   OuterMostLambda->getDeclContext()->getRedeclContext(),
1242                   OuterMostLambda->getLambdaContextDecl(), computation);
1243       }
1244       
1245       break;
1246     }
1247   }
1248
1249   // Handle linkage for namespace-scope names.
1250   if (D->getDeclContext()->getRedeclContext()->isFileContext())
1251     return getLVForNamespaceScopeDecl(D, computation);
1252   
1253   // C++ [basic.link]p5:
1254   //   In addition, a member function, static data member, a named
1255   //   class or enumeration of class scope, or an unnamed class or
1256   //   enumeration defined in a class-scope typedef declaration such
1257   //   that the class or enumeration has the typedef name for linkage
1258   //   purposes (7.1.3), has external linkage if the name of the class
1259   //   has external linkage.
1260   if (D->getDeclContext()->isRecord())
1261     return getLVForClassMember(D, computation);
1262
1263   // C++ [basic.link]p6:
1264   //   The name of a function declared in block scope and the name of
1265   //   an object declared by a block scope extern declaration have
1266   //   linkage. If there is a visible declaration of an entity with
1267   //   linkage having the same name and type, ignoring entities
1268   //   declared outside the innermost enclosing namespace scope, the
1269   //   block scope declaration declares that same entity and receives
1270   //   the linkage of the previous declaration. If there is more than
1271   //   one such matching entity, the program is ill-formed. Otherwise,
1272   //   if no matching entity is found, the block scope entity receives
1273   //   external linkage.
1274   if (D->getDeclContext()->isFunctionOrMethod())
1275     return getLVForLocalDecl(D, computation);
1276
1277   // C++ [basic.link]p6:
1278   //   Names not covered by these rules have no linkage.
1279   return LinkageInfo::none();
1280 }
1281
1282 namespace clang {
1283 class LinkageComputer {
1284 public:
1285   static LinkageInfo getLVForDecl(const NamedDecl *D,
1286                                   LVComputationKind computation) {
1287     if (computation == LVForLinkageOnly && D->hasCachedLinkage())
1288       return LinkageInfo(D->getCachedLinkage(), DefaultVisibility, false);
1289
1290     LinkageInfo LV = computeLVForDecl(D, computation);
1291     if (D->hasCachedLinkage())
1292       assert(D->getCachedLinkage() == LV.getLinkage());
1293
1294     D->setCachedLinkage(LV.getLinkage());
1295
1296 #ifndef NDEBUG
1297     // In C (because of gnu inline) and in c++ with microsoft extensions an
1298     // static can follow an extern, so we can have two decls with different
1299     // linkages.
1300     const LangOptions &Opts = D->getASTContext().getLangOpts();
1301     if (!Opts.CPlusPlus || Opts.MicrosoftExt)
1302       return LV;
1303
1304     // We have just computed the linkage for this decl. By induction we know
1305     // that all other computed linkages match, check that the one we just
1306     // computed also does.
1307     NamedDecl *Old = nullptr;
1308     for (auto I : D->redecls()) {
1309       NamedDecl *T = cast<NamedDecl>(I);
1310       if (T == D)
1311         continue;
1312       if (!T->isInvalidDecl() && T->hasCachedLinkage()) {
1313         Old = T;
1314         break;
1315       }
1316     }
1317     assert(!Old || Old->getCachedLinkage() == D->getCachedLinkage());
1318 #endif
1319
1320     return LV;
1321   }
1322 };
1323 }
1324
1325 static LinkageInfo getLVForDecl(const NamedDecl *D,
1326                                 LVComputationKind computation) {
1327   return clang::LinkageComputer::getLVForDecl(D, computation);
1328 }
1329
1330 std::string NamedDecl::getQualifiedNameAsString() const {
1331   std::string QualName;
1332   llvm::raw_string_ostream OS(QualName);
1333   printQualifiedName(OS, getASTContext().getPrintingPolicy());
1334   return OS.str();
1335 }
1336
1337 void NamedDecl::printQualifiedName(raw_ostream &OS) const {
1338   printQualifiedName(OS, getASTContext().getPrintingPolicy());
1339 }
1340
1341 void NamedDecl::printQualifiedName(raw_ostream &OS,
1342                                    const PrintingPolicy &P) const {
1343   const DeclContext *Ctx = getDeclContext();
1344
1345   if (Ctx->isFunctionOrMethod()) {
1346     printName(OS);
1347     return;
1348   }
1349
1350   typedef SmallVector<const DeclContext *, 8> ContextsTy;
1351   ContextsTy Contexts;
1352
1353   // Collect contexts.
1354   while (Ctx && isa<NamedDecl>(Ctx)) {
1355     Contexts.push_back(Ctx);
1356     Ctx = Ctx->getParent();
1357   }
1358
1359   for (ContextsTy::reverse_iterator I = Contexts.rbegin(), E = Contexts.rend();
1360        I != E; ++I) {
1361     if (const ClassTemplateSpecializationDecl *Spec
1362           = dyn_cast<ClassTemplateSpecializationDecl>(*I)) {
1363       OS << Spec->getName();
1364       const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
1365       TemplateSpecializationType::PrintTemplateArgumentList(OS,
1366                                                             TemplateArgs.data(),
1367                                                             TemplateArgs.size(),
1368                                                             P);
1369     } else if (const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(*I)) {
1370       if (P.SuppressUnwrittenScope &&
1371           (ND->isAnonymousNamespace() || ND->isInline()))
1372         continue;
1373       if (ND->isAnonymousNamespace())
1374         OS << "(anonymous namespace)";
1375       else
1376         OS << *ND;
1377     } else if (const RecordDecl *RD = dyn_cast<RecordDecl>(*I)) {
1378       if (!RD->getIdentifier())
1379         OS << "(anonymous " << RD->getKindName() << ')';
1380       else
1381         OS << *RD;
1382     } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*I)) {
1383       const FunctionProtoType *FT = nullptr;
1384       if (FD->hasWrittenPrototype())
1385         FT = dyn_cast<FunctionProtoType>(FD->getType()->castAs<FunctionType>());
1386
1387       OS << *FD << '(';
1388       if (FT) {
1389         unsigned NumParams = FD->getNumParams();
1390         for (unsigned i = 0; i < NumParams; ++i) {
1391           if (i)
1392             OS << ", ";
1393           OS << FD->getParamDecl(i)->getType().stream(P);
1394         }
1395
1396         if (FT->isVariadic()) {
1397           if (NumParams > 0)
1398             OS << ", ";
1399           OS << "...";
1400         }
1401       }
1402       OS << ')';
1403     } else {
1404       OS << *cast<NamedDecl>(*I);
1405     }
1406     OS << "::";
1407   }
1408
1409   if (getDeclName())
1410     OS << *this;
1411   else
1412     OS << "(anonymous)";
1413 }
1414
1415 void NamedDecl::getNameForDiagnostic(raw_ostream &OS,
1416                                      const PrintingPolicy &Policy,
1417                                      bool Qualified) const {
1418   if (Qualified)
1419     printQualifiedName(OS, Policy);
1420   else
1421     printName(OS);
1422 }
1423
1424 bool NamedDecl::declarationReplaces(NamedDecl *OldD) const {
1425   assert(getDeclName() == OldD->getDeclName() && "Declaration name mismatch");
1426
1427   // UsingDirectiveDecl's are not really NamedDecl's, and all have same name.
1428   // We want to keep it, unless it nominates same namespace.
1429   if (getKind() == Decl::UsingDirective) {
1430     return cast<UsingDirectiveDecl>(this)->getNominatedNamespace()
1431              ->getOriginalNamespace() ==
1432            cast<UsingDirectiveDecl>(OldD)->getNominatedNamespace()
1433              ->getOriginalNamespace();
1434   }
1435
1436   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(this))
1437     // For function declarations, we keep track of redeclarations.
1438     return FD->getPreviousDecl() == OldD;
1439
1440   // For function templates, the underlying function declarations are linked.
1441   if (const FunctionTemplateDecl *FunctionTemplate
1442         = dyn_cast<FunctionTemplateDecl>(this))
1443     if (const FunctionTemplateDecl *OldFunctionTemplate
1444           = dyn_cast<FunctionTemplateDecl>(OldD))
1445       return FunctionTemplate->getTemplatedDecl()
1446                ->declarationReplaces(OldFunctionTemplate->getTemplatedDecl());
1447
1448   // For method declarations, we keep track of redeclarations.
1449   if (isa<ObjCMethodDecl>(this))
1450     return false;
1451
1452   // FIXME: Is this correct if one of the decls comes from an inline namespace?
1453   if (isa<ObjCInterfaceDecl>(this) && isa<ObjCCompatibleAliasDecl>(OldD))
1454     return true;
1455
1456   if (isa<UsingShadowDecl>(this) && isa<UsingShadowDecl>(OldD))
1457     return cast<UsingShadowDecl>(this)->getTargetDecl() ==
1458            cast<UsingShadowDecl>(OldD)->getTargetDecl();
1459
1460   if (isa<UsingDecl>(this) && isa<UsingDecl>(OldD)) {
1461     ASTContext &Context = getASTContext();
1462     return Context.getCanonicalNestedNameSpecifier(
1463                                      cast<UsingDecl>(this)->getQualifier()) ==
1464            Context.getCanonicalNestedNameSpecifier(
1465                                         cast<UsingDecl>(OldD)->getQualifier());
1466   }
1467
1468   if (isa<UnresolvedUsingValueDecl>(this) &&
1469       isa<UnresolvedUsingValueDecl>(OldD)) {
1470     ASTContext &Context = getASTContext();
1471     return Context.getCanonicalNestedNameSpecifier(
1472                       cast<UnresolvedUsingValueDecl>(this)->getQualifier()) ==
1473            Context.getCanonicalNestedNameSpecifier(
1474                         cast<UnresolvedUsingValueDecl>(OldD)->getQualifier());
1475   }
1476
1477   // A typedef of an Objective-C class type can replace an Objective-C class
1478   // declaration or definition, and vice versa.
1479   // FIXME: Is this correct if one of the decls comes from an inline namespace?
1480   if ((isa<TypedefNameDecl>(this) && isa<ObjCInterfaceDecl>(OldD)) ||
1481       (isa<ObjCInterfaceDecl>(this) && isa<TypedefNameDecl>(OldD)))
1482     return true;
1483
1484   // For non-function declarations, if the declarations are of the
1485   // same kind and have the same parent then this must be a redeclaration,
1486   // or semantic analysis would not have given us the new declaration.
1487   // Note that inline namespaces can give us two declarations with the same
1488   // name and kind in the same scope but different contexts.
1489   return this->getKind() == OldD->getKind() &&
1490          this->getDeclContext()->getRedeclContext()->Equals(
1491              OldD->getDeclContext()->getRedeclContext());
1492 }
1493
1494 bool NamedDecl::hasLinkage() const {
1495   return getFormalLinkage() != NoLinkage;
1496 }
1497
1498 NamedDecl *NamedDecl::getUnderlyingDeclImpl() {
1499   NamedDecl *ND = this;
1500   while (UsingShadowDecl *UD = dyn_cast<UsingShadowDecl>(ND))
1501     ND = UD->getTargetDecl();
1502
1503   if (ObjCCompatibleAliasDecl *AD = dyn_cast<ObjCCompatibleAliasDecl>(ND))
1504     return AD->getClassInterface();
1505
1506   return ND;
1507 }
1508
1509 bool NamedDecl::isCXXInstanceMember() const {
1510   if (!isCXXClassMember())
1511     return false;
1512   
1513   const NamedDecl *D = this;
1514   if (isa<UsingShadowDecl>(D))
1515     D = cast<UsingShadowDecl>(D)->getTargetDecl();
1516
1517   if (isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D) || isa<MSPropertyDecl>(D))
1518     return true;
1519   if (const CXXMethodDecl *MD =
1520           dyn_cast_or_null<CXXMethodDecl>(D->getAsFunction()))
1521     return MD->isInstance();
1522   return false;
1523 }
1524
1525 //===----------------------------------------------------------------------===//
1526 // DeclaratorDecl Implementation
1527 //===----------------------------------------------------------------------===//
1528
1529 template <typename DeclT>
1530 static SourceLocation getTemplateOrInnerLocStart(const DeclT *decl) {
1531   if (decl->getNumTemplateParameterLists() > 0)
1532     return decl->getTemplateParameterList(0)->getTemplateLoc();
1533   else
1534     return decl->getInnerLocStart();
1535 }
1536
1537 SourceLocation DeclaratorDecl::getTypeSpecStartLoc() const {
1538   TypeSourceInfo *TSI = getTypeSourceInfo();
1539   if (TSI) return TSI->getTypeLoc().getBeginLoc();
1540   return SourceLocation();
1541 }
1542
1543 void DeclaratorDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
1544   if (QualifierLoc) {
1545     // Make sure the extended decl info is allocated.
1546     if (!hasExtInfo()) {
1547       // Save (non-extended) type source info pointer.
1548       TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1549       // Allocate external info struct.
1550       DeclInfo = new (getASTContext()) ExtInfo;
1551       // Restore savedTInfo into (extended) decl info.
1552       getExtInfo()->TInfo = savedTInfo;
1553     }
1554     // Set qualifier info.
1555     getExtInfo()->QualifierLoc = QualifierLoc;
1556   } else {
1557     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
1558     if (hasExtInfo()) {
1559       if (getExtInfo()->NumTemplParamLists == 0) {
1560         // Save type source info pointer.
1561         TypeSourceInfo *savedTInfo = getExtInfo()->TInfo;
1562         // Deallocate the extended decl info.
1563         getASTContext().Deallocate(getExtInfo());
1564         // Restore savedTInfo into (non-extended) decl info.
1565         DeclInfo = savedTInfo;
1566       }
1567       else
1568         getExtInfo()->QualifierLoc = QualifierLoc;
1569     }
1570   }
1571 }
1572
1573 void
1574 DeclaratorDecl::setTemplateParameterListsInfo(ASTContext &Context,
1575                                               unsigned NumTPLists,
1576                                               TemplateParameterList **TPLists) {
1577   assert(NumTPLists > 0);
1578   // Make sure the extended decl info is allocated.
1579   if (!hasExtInfo()) {
1580     // Save (non-extended) type source info pointer.
1581     TypeSourceInfo *savedTInfo = DeclInfo.get<TypeSourceInfo*>();
1582     // Allocate external info struct.
1583     DeclInfo = new (getASTContext()) ExtInfo;
1584     // Restore savedTInfo into (extended) decl info.
1585     getExtInfo()->TInfo = savedTInfo;
1586   }
1587   // Set the template parameter lists info.
1588   getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
1589 }
1590
1591 SourceLocation DeclaratorDecl::getOuterLocStart() const {
1592   return getTemplateOrInnerLocStart(this);
1593 }
1594
1595 namespace {
1596
1597 // Helper function: returns true if QT is or contains a type
1598 // having a postfix component.
1599 bool typeIsPostfix(clang::QualType QT) {
1600   while (true) {
1601     const Type* T = QT.getTypePtr();
1602     switch (T->getTypeClass()) {
1603     default:
1604       return false;
1605     case Type::Pointer:
1606       QT = cast<PointerType>(T)->getPointeeType();
1607       break;
1608     case Type::BlockPointer:
1609       QT = cast<BlockPointerType>(T)->getPointeeType();
1610       break;
1611     case Type::MemberPointer:
1612       QT = cast<MemberPointerType>(T)->getPointeeType();
1613       break;
1614     case Type::LValueReference:
1615     case Type::RValueReference:
1616       QT = cast<ReferenceType>(T)->getPointeeType();
1617       break;
1618     case Type::PackExpansion:
1619       QT = cast<PackExpansionType>(T)->getPattern();
1620       break;
1621     case Type::Paren:
1622     case Type::ConstantArray:
1623     case Type::DependentSizedArray:
1624     case Type::IncompleteArray:
1625     case Type::VariableArray:
1626     case Type::FunctionProto:
1627     case Type::FunctionNoProto:
1628       return true;
1629     }
1630   }
1631 }
1632
1633 } // namespace
1634
1635 SourceRange DeclaratorDecl::getSourceRange() const {
1636   SourceLocation RangeEnd = getLocation();
1637   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
1638     // If the declaration has no name or the type extends past the name take the
1639     // end location of the type.
1640     if (!getDeclName() || typeIsPostfix(TInfo->getType()))
1641       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
1642   }
1643   return SourceRange(getOuterLocStart(), RangeEnd);
1644 }
1645
1646 void
1647 QualifierInfo::setTemplateParameterListsInfo(ASTContext &Context,
1648                                              unsigned NumTPLists,
1649                                              TemplateParameterList **TPLists) {
1650   assert((NumTPLists == 0 || TPLists != nullptr) &&
1651          "Empty array of template parameters with positive size!");
1652
1653   // Free previous template parameters (if any).
1654   if (NumTemplParamLists > 0) {
1655     Context.Deallocate(TemplParamLists);
1656     TemplParamLists = nullptr;
1657     NumTemplParamLists = 0;
1658   }
1659   // Set info on matched template parameter lists (if any).
1660   if (NumTPLists > 0) {
1661     TemplParamLists = new (Context) TemplateParameterList*[NumTPLists];
1662     NumTemplParamLists = NumTPLists;
1663     for (unsigned i = NumTPLists; i-- > 0; )
1664       TemplParamLists[i] = TPLists[i];
1665   }
1666 }
1667
1668 //===----------------------------------------------------------------------===//
1669 // VarDecl Implementation
1670 //===----------------------------------------------------------------------===//
1671
1672 const char *VarDecl::getStorageClassSpecifierString(StorageClass SC) {
1673   switch (SC) {
1674   case SC_None:                 break;
1675   case SC_Auto:                 return "auto";
1676   case SC_Extern:               return "extern";
1677   case SC_OpenCLWorkGroupLocal: return "<<work-group-local>>";
1678   case SC_PrivateExtern:        return "__private_extern__";
1679   case SC_Register:             return "register";
1680   case SC_Static:               return "static";
1681   }
1682
1683   llvm_unreachable("Invalid storage class");
1684 }
1685
1686 VarDecl::VarDecl(Kind DK, ASTContext &C, DeclContext *DC,
1687                  SourceLocation StartLoc, SourceLocation IdLoc,
1688                  IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1689                  StorageClass SC)
1690     : DeclaratorDecl(DK, DC, IdLoc, Id, T, TInfo, StartLoc),
1691       redeclarable_base(C), Init() {
1692   static_assert(sizeof(VarDeclBitfields) <= sizeof(unsigned),
1693                 "VarDeclBitfields too large!");
1694   static_assert(sizeof(ParmVarDeclBitfields) <= sizeof(unsigned),
1695                 "ParmVarDeclBitfields too large!");
1696   AllBits = 0;
1697   VarDeclBits.SClass = SC;
1698   // Everything else is implicitly initialized to false.
1699 }
1700
1701 VarDecl *VarDecl::Create(ASTContext &C, DeclContext *DC,
1702                          SourceLocation StartL, SourceLocation IdL,
1703                          IdentifierInfo *Id, QualType T, TypeSourceInfo *TInfo,
1704                          StorageClass S) {
1705   return new (C, DC) VarDecl(Var, C, DC, StartL, IdL, Id, T, TInfo, S);
1706 }
1707
1708 VarDecl *VarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
1709   return new (C, ID)
1710       VarDecl(Var, C, nullptr, SourceLocation(), SourceLocation(), nullptr,
1711               QualType(), nullptr, SC_None);
1712 }
1713
1714 void VarDecl::setStorageClass(StorageClass SC) {
1715   assert(isLegalForVariable(SC));
1716   VarDeclBits.SClass = SC;
1717 }
1718
1719 VarDecl::TLSKind VarDecl::getTLSKind() const {
1720   switch (VarDeclBits.TSCSpec) {
1721   case TSCS_unspecified:
1722     if (hasAttr<ThreadAttr>())
1723       return TLS_Static;
1724     return TLS_None;
1725   case TSCS___thread: // Fall through.
1726   case TSCS__Thread_local:
1727       return TLS_Static;
1728   case TSCS_thread_local:
1729     return TLS_Dynamic;
1730   }
1731   llvm_unreachable("Unknown thread storage class specifier!");
1732 }
1733
1734 SourceRange VarDecl::getSourceRange() const {
1735   if (const Expr *Init = getInit()) {
1736     SourceLocation InitEnd = Init->getLocEnd();
1737     // If Init is implicit, ignore its source range and fallback on 
1738     // DeclaratorDecl::getSourceRange() to handle postfix elements.
1739     if (InitEnd.isValid() && InitEnd != getLocation())
1740       return SourceRange(getOuterLocStart(), InitEnd);
1741   }
1742   return DeclaratorDecl::getSourceRange();
1743 }
1744
1745 template<typename T>
1746 static LanguageLinkage getDeclLanguageLinkage(const T &D) {
1747   // C++ [dcl.link]p1: All function types, function names with external linkage,
1748   // and variable names with external linkage have a language linkage.
1749   if (!D.hasExternalFormalLinkage())
1750     return NoLanguageLinkage;
1751
1752   // Language linkage is a C++ concept, but saying that everything else in C has
1753   // C language linkage fits the implementation nicely.
1754   ASTContext &Context = D.getASTContext();
1755   if (!Context.getLangOpts().CPlusPlus)
1756     return CLanguageLinkage;
1757
1758   // C++ [dcl.link]p4: A C language linkage is ignored in determining the
1759   // language linkage of the names of class members and the function type of
1760   // class member functions.
1761   const DeclContext *DC = D.getDeclContext();
1762   if (DC->isRecord())
1763     return CXXLanguageLinkage;
1764
1765   // If the first decl is in an extern "C" context, any other redeclaration
1766   // will have C language linkage. If the first one is not in an extern "C"
1767   // context, we would have reported an error for any other decl being in one.
1768   if (isFirstInExternCContext(&D))
1769     return CLanguageLinkage;
1770   return CXXLanguageLinkage;
1771 }
1772
1773 template<typename T>
1774 static bool isDeclExternC(const T &D) {
1775   // Since the context is ignored for class members, they can only have C++
1776   // language linkage or no language linkage.
1777   const DeclContext *DC = D.getDeclContext();
1778   if (DC->isRecord()) {
1779     assert(D.getASTContext().getLangOpts().CPlusPlus);
1780     return false;
1781   }
1782
1783   return D.getLanguageLinkage() == CLanguageLinkage;
1784 }
1785
1786 LanguageLinkage VarDecl::getLanguageLinkage() const {
1787   return getDeclLanguageLinkage(*this);
1788 }
1789
1790 bool VarDecl::isExternC() const {
1791   return isDeclExternC(*this);
1792 }
1793
1794 bool VarDecl::isInExternCContext() const {
1795   return getLexicalDeclContext()->isExternCContext();
1796 }
1797
1798 bool VarDecl::isInExternCXXContext() const {
1799   return getLexicalDeclContext()->isExternCXXContext();
1800 }
1801
1802 VarDecl *VarDecl::getCanonicalDecl() { return getFirstDecl(); }
1803
1804 VarDecl::DefinitionKind VarDecl::isThisDeclarationADefinition(
1805   ASTContext &C) const
1806 {
1807   // C++ [basic.def]p2:
1808   //   A declaration is a definition unless [...] it contains the 'extern'
1809   //   specifier or a linkage-specification and neither an initializer [...],
1810   //   it declares a static data member in a class declaration [...].
1811   // C++1y [temp.expl.spec]p15:
1812   //   An explicit specialization of a static data member or an explicit
1813   //   specialization of a static data member template is a definition if the
1814   //   declaration includes an initializer; otherwise, it is a declaration.
1815   //
1816   // FIXME: How do you declare (but not define) a partial specialization of
1817   // a static data member template outside the containing class?
1818   if (isStaticDataMember()) {
1819     if (isOutOfLine() &&
1820         (hasInit() ||
1821          // If the first declaration is out-of-line, this may be an
1822          // instantiation of an out-of-line partial specialization of a variable
1823          // template for which we have not yet instantiated the initializer.
1824          (getFirstDecl()->isOutOfLine()
1825               ? getTemplateSpecializationKind() == TSK_Undeclared
1826               : getTemplateSpecializationKind() !=
1827                     TSK_ExplicitSpecialization) ||
1828          isa<VarTemplatePartialSpecializationDecl>(this)))
1829       return Definition;
1830     else
1831       return DeclarationOnly;
1832   }
1833   // C99 6.7p5:
1834   //   A definition of an identifier is a declaration for that identifier that
1835   //   [...] causes storage to be reserved for that object.
1836   // Note: that applies for all non-file-scope objects.
1837   // C99 6.9.2p1:
1838   //   If the declaration of an identifier for an object has file scope and an
1839   //   initializer, the declaration is an external definition for the identifier
1840   if (hasInit())
1841     return Definition;
1842
1843   if (hasAttr<AliasAttr>())
1844     return Definition;
1845
1846   // A variable template specialization (other than a static data member
1847   // template or an explicit specialization) is a declaration until we
1848   // instantiate its initializer.
1849   if (isa<VarTemplateSpecializationDecl>(this) &&
1850       getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
1851     return DeclarationOnly;
1852
1853   if (hasExternalStorage())
1854     return DeclarationOnly;
1855
1856   // [dcl.link] p7:
1857   //   A declaration directly contained in a linkage-specification is treated
1858   //   as if it contains the extern specifier for the purpose of determining
1859   //   the linkage of the declared name and whether it is a definition.
1860   if (isSingleLineLanguageLinkage(*this))
1861     return DeclarationOnly;
1862
1863   // C99 6.9.2p2:
1864   //   A declaration of an object that has file scope without an initializer,
1865   //   and without a storage class specifier or the scs 'static', constitutes
1866   //   a tentative definition.
1867   // No such thing in C++.
1868   if (!C.getLangOpts().CPlusPlus && isFileVarDecl())
1869     return TentativeDefinition;
1870
1871   // What's left is (in C, block-scope) declarations without initializers or
1872   // external storage. These are definitions.
1873   return Definition;
1874 }
1875
1876 VarDecl *VarDecl::getActingDefinition() {
1877   DefinitionKind Kind = isThisDeclarationADefinition();
1878   if (Kind != TentativeDefinition)
1879     return nullptr;
1880
1881   VarDecl *LastTentative = nullptr;
1882   VarDecl *First = getFirstDecl();
1883   for (auto I : First->redecls()) {
1884     Kind = I->isThisDeclarationADefinition();
1885     if (Kind == Definition)
1886       return nullptr;
1887     else if (Kind == TentativeDefinition)
1888       LastTentative = I;
1889   }
1890   return LastTentative;
1891 }
1892
1893 VarDecl *VarDecl::getDefinition(ASTContext &C) {
1894   VarDecl *First = getFirstDecl();
1895   for (auto I : First->redecls()) {
1896     if (I->isThisDeclarationADefinition(C) == Definition)
1897       return I;
1898   }
1899   return nullptr;
1900 }
1901
1902 VarDecl::DefinitionKind VarDecl::hasDefinition(ASTContext &C) const {
1903   DefinitionKind Kind = DeclarationOnly;
1904   
1905   const VarDecl *First = getFirstDecl();
1906   for (auto I : First->redecls()) {
1907     Kind = std::max(Kind, I->isThisDeclarationADefinition(C));
1908     if (Kind == Definition)
1909       break;
1910   }
1911
1912   return Kind;
1913 }
1914
1915 const Expr *VarDecl::getAnyInitializer(const VarDecl *&D) const {
1916   for (auto I : redecls()) {
1917     if (auto Expr = I->getInit()) {
1918       D = I;
1919       return Expr;
1920     }
1921   }
1922   return nullptr;
1923 }
1924
1925 bool VarDecl::isOutOfLine() const {
1926   if (Decl::isOutOfLine())
1927     return true;
1928
1929   if (!isStaticDataMember())
1930     return false;
1931
1932   // If this static data member was instantiated from a static data member of
1933   // a class template, check whether that static data member was defined 
1934   // out-of-line.
1935   if (VarDecl *VD = getInstantiatedFromStaticDataMember())
1936     return VD->isOutOfLine();
1937   
1938   return false;
1939 }
1940
1941 VarDecl *VarDecl::getOutOfLineDefinition() {
1942   if (!isStaticDataMember())
1943     return nullptr;
1944
1945   for (auto RD : redecls()) {
1946     if (RD->getLexicalDeclContext()->isFileContext())
1947       return RD;
1948   }
1949
1950   return nullptr;
1951 }
1952
1953 void VarDecl::setInit(Expr *I) {
1954   if (EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>()) {
1955     Eval->~EvaluatedStmt();
1956     getASTContext().Deallocate(Eval);
1957   }
1958
1959   Init = I;
1960 }
1961
1962 bool VarDecl::isUsableInConstantExpressions(ASTContext &C) const {
1963   const LangOptions &Lang = C.getLangOpts();
1964
1965   if (!Lang.CPlusPlus)
1966     return false;
1967
1968   // In C++11, any variable of reference type can be used in a constant
1969   // expression if it is initialized by a constant expression.
1970   if (Lang.CPlusPlus11 && getType()->isReferenceType())
1971     return true;
1972
1973   // Only const objects can be used in constant expressions in C++. C++98 does
1974   // not require the variable to be non-volatile, but we consider this to be a
1975   // defect.
1976   if (!getType().isConstQualified() || getType().isVolatileQualified())
1977     return false;
1978
1979   // In C++, const, non-volatile variables of integral or enumeration types
1980   // can be used in constant expressions.
1981   if (getType()->isIntegralOrEnumerationType())
1982     return true;
1983
1984   // Additionally, in C++11, non-volatile constexpr variables can be used in
1985   // constant expressions.
1986   return Lang.CPlusPlus11 && isConstexpr();
1987 }
1988
1989 /// Convert the initializer for this declaration to the elaborated EvaluatedStmt
1990 /// form, which contains extra information on the evaluated value of the
1991 /// initializer.
1992 EvaluatedStmt *VarDecl::ensureEvaluatedStmt() const {
1993   EvaluatedStmt *Eval = Init.dyn_cast<EvaluatedStmt *>();
1994   if (!Eval) {
1995     Stmt *S = Init.get<Stmt *>();
1996     // Note: EvaluatedStmt contains an APValue, which usually holds
1997     // resources not allocated from the ASTContext.  We need to do some
1998     // work to avoid leaking those, but we do so in VarDecl::evaluateValue
1999     // where we can detect whether there's anything to clean up or not.
2000     Eval = new (getASTContext()) EvaluatedStmt;
2001     Eval->Value = S;
2002     Init = Eval;
2003   }
2004   return Eval;
2005 }
2006
2007 APValue *VarDecl::evaluateValue() const {
2008   SmallVector<PartialDiagnosticAt, 8> Notes;
2009   return evaluateValue(Notes);
2010 }
2011
2012 namespace {
2013 // Destroy an APValue that was allocated in an ASTContext.
2014 void DestroyAPValue(void* UntypedValue) {
2015   static_cast<APValue*>(UntypedValue)->~APValue();
2016 }
2017 } // namespace
2018
2019 APValue *VarDecl::evaluateValue(
2020     SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
2021   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2022
2023   // We only produce notes indicating why an initializer is non-constant the
2024   // first time it is evaluated. FIXME: The notes won't always be emitted the
2025   // first time we try evaluation, so might not be produced at all.
2026   if (Eval->WasEvaluated)
2027     return Eval->Evaluated.isUninit() ? nullptr : &Eval->Evaluated;
2028
2029   const Expr *Init = cast<Expr>(Eval->Value);
2030   assert(!Init->isValueDependent());
2031
2032   if (Eval->IsEvaluating) {
2033     // FIXME: Produce a diagnostic for self-initialization.
2034     Eval->CheckedICE = true;
2035     Eval->IsICE = false;
2036     return nullptr;
2037   }
2038
2039   Eval->IsEvaluating = true;
2040
2041   bool Result = Init->EvaluateAsInitializer(Eval->Evaluated, getASTContext(),
2042                                             this, Notes);
2043
2044   // Ensure the computed APValue is cleaned up later if evaluation succeeded,
2045   // or that it's empty (so that there's nothing to clean up) if evaluation
2046   // failed.
2047   if (!Result)
2048     Eval->Evaluated = APValue();
2049   else if (Eval->Evaluated.needsCleanup())
2050     getASTContext().AddDeallocation(DestroyAPValue, &Eval->Evaluated);
2051
2052   Eval->IsEvaluating = false;
2053   Eval->WasEvaluated = true;
2054
2055   // In C++11, we have determined whether the initializer was a constant
2056   // expression as a side-effect.
2057   if (getASTContext().getLangOpts().CPlusPlus11 && !Eval->CheckedICE) {
2058     Eval->CheckedICE = true;
2059     Eval->IsICE = Result && Notes.empty();
2060   }
2061
2062   return Result ? &Eval->Evaluated : nullptr;
2063 }
2064
2065 bool VarDecl::checkInitIsICE() const {
2066   // Initializers of weak variables are never ICEs.
2067   if (isWeak())
2068     return false;
2069
2070   EvaluatedStmt *Eval = ensureEvaluatedStmt();
2071   if (Eval->CheckedICE)
2072     // We have already checked whether this subexpression is an
2073     // integral constant expression.
2074     return Eval->IsICE;
2075
2076   const Expr *Init = cast<Expr>(Eval->Value);
2077   assert(!Init->isValueDependent());
2078
2079   // In C++11, evaluate the initializer to check whether it's a constant
2080   // expression.
2081   if (getASTContext().getLangOpts().CPlusPlus11) {
2082     SmallVector<PartialDiagnosticAt, 8> Notes;
2083     evaluateValue(Notes);
2084     return Eval->IsICE;
2085   }
2086
2087   // It's an ICE whether or not the definition we found is
2088   // out-of-line.  See DR 721 and the discussion in Clang PR
2089   // 6206 for details.
2090
2091   if (Eval->CheckingICE)
2092     return false;
2093   Eval->CheckingICE = true;
2094
2095   Eval->IsICE = Init->isIntegerConstantExpr(getASTContext());
2096   Eval->CheckingICE = false;
2097   Eval->CheckedICE = true;
2098   return Eval->IsICE;
2099 }
2100
2101 VarDecl *VarDecl::getInstantiatedFromStaticDataMember() const {
2102   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2103     return cast<VarDecl>(MSI->getInstantiatedFrom());
2104
2105   return nullptr;
2106 }
2107
2108 TemplateSpecializationKind VarDecl::getTemplateSpecializationKind() const {
2109   if (const VarTemplateSpecializationDecl *Spec =
2110           dyn_cast<VarTemplateSpecializationDecl>(this))
2111     return Spec->getSpecializationKind();
2112
2113   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2114     return MSI->getTemplateSpecializationKind();
2115
2116   return TSK_Undeclared;
2117 }
2118
2119 SourceLocation VarDecl::getPointOfInstantiation() const {
2120   if (const VarTemplateSpecializationDecl *Spec =
2121           dyn_cast<VarTemplateSpecializationDecl>(this))
2122     return Spec->getPointOfInstantiation();
2123
2124   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
2125     return MSI->getPointOfInstantiation();
2126
2127   return SourceLocation();
2128 }
2129
2130 VarTemplateDecl *VarDecl::getDescribedVarTemplate() const {
2131   return getASTContext().getTemplateOrSpecializationInfo(this)
2132       .dyn_cast<VarTemplateDecl *>();
2133 }
2134
2135 void VarDecl::setDescribedVarTemplate(VarTemplateDecl *Template) {
2136   getASTContext().setTemplateOrSpecializationInfo(this, Template);
2137 }
2138
2139 MemberSpecializationInfo *VarDecl::getMemberSpecializationInfo() const {
2140   if (isStaticDataMember())
2141     // FIXME: Remove ?
2142     // return getASTContext().getInstantiatedFromStaticDataMember(this);
2143     return getASTContext().getTemplateOrSpecializationInfo(this)
2144         .dyn_cast<MemberSpecializationInfo *>();
2145   return nullptr;
2146 }
2147
2148 void VarDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
2149                                          SourceLocation PointOfInstantiation) {
2150   assert((isa<VarTemplateSpecializationDecl>(this) ||
2151           getMemberSpecializationInfo()) &&
2152          "not a variable or static data member template specialization");
2153
2154   if (VarTemplateSpecializationDecl *Spec =
2155           dyn_cast<VarTemplateSpecializationDecl>(this)) {
2156     Spec->setSpecializationKind(TSK);
2157     if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2158         Spec->getPointOfInstantiation().isInvalid())
2159       Spec->setPointOfInstantiation(PointOfInstantiation);
2160   }
2161
2162   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo()) {
2163     MSI->setTemplateSpecializationKind(TSK);
2164     if (TSK != TSK_ExplicitSpecialization && PointOfInstantiation.isValid() &&
2165         MSI->getPointOfInstantiation().isInvalid())
2166       MSI->setPointOfInstantiation(PointOfInstantiation);
2167   }
2168 }
2169
2170 void
2171 VarDecl::setInstantiationOfStaticDataMember(VarDecl *VD,
2172                                             TemplateSpecializationKind TSK) {
2173   assert(getASTContext().getTemplateOrSpecializationInfo(this).isNull() &&
2174          "Previous template or instantiation?");
2175   getASTContext().setInstantiatedFromStaticDataMember(this, VD, TSK);
2176 }
2177
2178 //===----------------------------------------------------------------------===//
2179 // ParmVarDecl Implementation
2180 //===----------------------------------------------------------------------===//
2181
2182 ParmVarDecl *ParmVarDecl::Create(ASTContext &C, DeclContext *DC,
2183                                  SourceLocation StartLoc,
2184                                  SourceLocation IdLoc, IdentifierInfo *Id,
2185                                  QualType T, TypeSourceInfo *TInfo,
2186                                  StorageClass S, Expr *DefArg) {
2187   return new (C, DC) ParmVarDecl(ParmVar, C, DC, StartLoc, IdLoc, Id, T, TInfo,
2188                                  S, DefArg);
2189 }
2190
2191 QualType ParmVarDecl::getOriginalType() const {
2192   TypeSourceInfo *TSI = getTypeSourceInfo();
2193   QualType T = TSI ? TSI->getType() : getType();
2194   if (const DecayedType *DT = dyn_cast<DecayedType>(T))
2195     return DT->getOriginalType();
2196   return T;
2197 }
2198
2199 ParmVarDecl *ParmVarDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
2200   return new (C, ID)
2201       ParmVarDecl(ParmVar, C, nullptr, SourceLocation(), SourceLocation(),
2202                   nullptr, QualType(), nullptr, SC_None, nullptr);
2203 }
2204
2205 SourceRange ParmVarDecl::getSourceRange() const {
2206   if (!hasInheritedDefaultArg()) {
2207     SourceRange ArgRange = getDefaultArgRange();
2208     if (ArgRange.isValid())
2209       return SourceRange(getOuterLocStart(), ArgRange.getEnd());
2210   }
2211
2212   // DeclaratorDecl considers the range of postfix types as overlapping with the
2213   // declaration name, but this is not the case with parameters in ObjC methods.
2214   if (isa<ObjCMethodDecl>(getDeclContext()))
2215     return SourceRange(DeclaratorDecl::getLocStart(), getLocation());
2216
2217   return DeclaratorDecl::getSourceRange();
2218 }
2219
2220 Expr *ParmVarDecl::getDefaultArg() {
2221   assert(!hasUnparsedDefaultArg() && "Default argument is not yet parsed!");
2222   assert(!hasUninstantiatedDefaultArg() &&
2223          "Default argument is not yet instantiated!");
2224   
2225   Expr *Arg = getInit();
2226   if (ExprWithCleanups *E = dyn_cast_or_null<ExprWithCleanups>(Arg))
2227     return E->getSubExpr();
2228
2229   return Arg;
2230 }
2231
2232 SourceRange ParmVarDecl::getDefaultArgRange() const {
2233   if (const Expr *E = getInit())
2234     return E->getSourceRange();
2235
2236   if (hasUninstantiatedDefaultArg())
2237     return getUninstantiatedDefaultArg()->getSourceRange();
2238
2239   return SourceRange();
2240 }
2241
2242 bool ParmVarDecl::isParameterPack() const {
2243   return isa<PackExpansionType>(getType());
2244 }
2245
2246 void ParmVarDecl::setParameterIndexLarge(unsigned parameterIndex) {
2247   getASTContext().setParameterIndex(this, parameterIndex);
2248   ParmVarDeclBits.ParameterIndex = ParameterIndexSentinel;
2249 }
2250
2251 unsigned ParmVarDecl::getParameterIndexLarge() const {
2252   return getASTContext().getParameterIndex(this);
2253 }
2254
2255 //===----------------------------------------------------------------------===//
2256 // FunctionDecl Implementation
2257 //===----------------------------------------------------------------------===//
2258
2259 void FunctionDecl::getNameForDiagnostic(
2260     raw_ostream &OS, const PrintingPolicy &Policy, bool Qualified) const {
2261   NamedDecl::getNameForDiagnostic(OS, Policy, Qualified);
2262   const TemplateArgumentList *TemplateArgs = getTemplateSpecializationArgs();
2263   if (TemplateArgs)
2264     TemplateSpecializationType::PrintTemplateArgumentList(
2265         OS, TemplateArgs->data(), TemplateArgs->size(), Policy);
2266 }
2267
2268 bool FunctionDecl::isVariadic() const {
2269   if (const FunctionProtoType *FT = getType()->getAs<FunctionProtoType>())
2270     return FT->isVariadic();
2271   return false;
2272 }
2273
2274 bool FunctionDecl::hasBody(const FunctionDecl *&Definition) const {
2275   for (auto I : redecls()) {
2276     if (I->Body || I->IsLateTemplateParsed) {
2277       Definition = I;
2278       return true;
2279     }
2280   }
2281
2282   return false;
2283 }
2284
2285 bool FunctionDecl::hasTrivialBody() const
2286 {
2287   Stmt *S = getBody();
2288   if (!S) {
2289     // Since we don't have a body for this function, we don't know if it's
2290     // trivial or not.
2291     return false;
2292   }
2293
2294   if (isa<CompoundStmt>(S) && cast<CompoundStmt>(S)->body_empty())
2295     return true;
2296   return false;
2297 }
2298
2299 bool FunctionDecl::isDefined(const FunctionDecl *&Definition) const {
2300   for (auto I : redecls()) {
2301     if (I->IsDeleted || I->IsDefaulted || I->Body || I->IsLateTemplateParsed ||
2302         I->hasAttr<AliasAttr>()) {
2303       Definition = I->IsDeleted ? I->getCanonicalDecl() : I;
2304       return true;
2305     }
2306   }
2307
2308   return false;
2309 }
2310
2311 Stmt *FunctionDecl::getBody(const FunctionDecl *&Definition) const {
2312   if (!hasBody(Definition))
2313     return nullptr;
2314
2315   if (Definition->Body)
2316     return Definition->Body.get(getASTContext().getExternalSource());
2317
2318   return nullptr;
2319 }
2320
2321 void FunctionDecl::setBody(Stmt *B) {
2322   Body = B;
2323   if (B)
2324     EndRangeLoc = B->getLocEnd();
2325 }
2326
2327 void FunctionDecl::setPure(bool P) {
2328   IsPure = P;
2329   if (P)
2330     if (CXXRecordDecl *Parent = dyn_cast<CXXRecordDecl>(getDeclContext()))
2331       Parent->markedVirtualFunctionPure();
2332 }
2333
2334 template<std::size_t Len>
2335 static bool isNamed(const NamedDecl *ND, const char (&Str)[Len]) {
2336   IdentifierInfo *II = ND->getIdentifier();
2337   return II && II->isStr(Str);
2338 }
2339
2340 bool FunctionDecl::isMain() const {
2341   const TranslationUnitDecl *tunit =
2342     dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
2343   return tunit &&
2344          !tunit->getASTContext().getLangOpts().Freestanding &&
2345          isNamed(this, "main");
2346 }
2347
2348 bool FunctionDecl::isMSVCRTEntryPoint() const {
2349   const TranslationUnitDecl *TUnit =
2350       dyn_cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext());
2351   if (!TUnit)
2352     return false;
2353
2354   // Even though we aren't really targeting MSVCRT if we are freestanding,
2355   // semantic analysis for these functions remains the same.
2356
2357   // MSVCRT entry points only exist on MSVCRT targets.
2358   if (!TUnit->getASTContext().getTargetInfo().getTriple().isOSMSVCRT())
2359     return false;
2360
2361   // Nameless functions like constructors cannot be entry points.
2362   if (!getIdentifier())
2363     return false;
2364
2365   return llvm::StringSwitch<bool>(getName())
2366       .Cases("main",     // an ANSI console app
2367              "wmain",    // a Unicode console App
2368              "WinMain",  // an ANSI GUI app
2369              "wWinMain", // a Unicode GUI app
2370              "DllMain",  // a DLL
2371              true)
2372       .Default(false);
2373 }
2374
2375 bool FunctionDecl::isReservedGlobalPlacementOperator() const {
2376   assert(getDeclName().getNameKind() == DeclarationName::CXXOperatorName);
2377   assert(getDeclName().getCXXOverloadedOperator() == OO_New ||
2378          getDeclName().getCXXOverloadedOperator() == OO_Delete ||
2379          getDeclName().getCXXOverloadedOperator() == OO_Array_New ||
2380          getDeclName().getCXXOverloadedOperator() == OO_Array_Delete);
2381
2382   if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
2383     return false;
2384
2385   const FunctionProtoType *proto = getType()->castAs<FunctionProtoType>();
2386   if (proto->getNumParams() != 2 || proto->isVariadic())
2387     return false;
2388
2389   ASTContext &Context =
2390     cast<TranslationUnitDecl>(getDeclContext()->getRedeclContext())
2391       ->getASTContext();
2392
2393   // The result type and first argument type are constant across all
2394   // these operators.  The second argument must be exactly void*.
2395   return (proto->getParamType(1).getCanonicalType() == Context.VoidPtrTy);
2396 }
2397
2398 bool FunctionDecl::isReplaceableGlobalAllocationFunction() const {
2399   if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
2400     return false;
2401   if (getDeclName().getCXXOverloadedOperator() != OO_New &&
2402       getDeclName().getCXXOverloadedOperator() != OO_Delete &&
2403       getDeclName().getCXXOverloadedOperator() != OO_Array_New &&
2404       getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
2405     return false;
2406
2407   if (isa<CXXRecordDecl>(getDeclContext()))
2408     return false;
2409
2410   // This can only fail for an invalid 'operator new' declaration.
2411   if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
2412     return false;
2413
2414   const FunctionProtoType *FPT = getType()->castAs<FunctionProtoType>();
2415   if (FPT->getNumParams() == 0 || FPT->getNumParams() > 2 || FPT->isVariadic())
2416     return false;
2417
2418   // If this is a single-parameter function, it must be a replaceable global
2419   // allocation or deallocation function.
2420   if (FPT->getNumParams() == 1)
2421     return true;
2422
2423   // Otherwise, we're looking for a second parameter whose type is
2424   // 'const std::nothrow_t &', or, in C++1y, 'std::size_t'.
2425   QualType Ty = FPT->getParamType(1);
2426   ASTContext &Ctx = getASTContext();
2427   if (Ctx.getLangOpts().SizedDeallocation &&
2428       Ctx.hasSameType(Ty, Ctx.getSizeType()))
2429     return true;
2430   if (!Ty->isReferenceType())
2431     return false;
2432   Ty = Ty->getPointeeType();
2433   if (Ty.getCVRQualifiers() != Qualifiers::Const)
2434     return false;
2435   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
2436   return RD && isNamed(RD, "nothrow_t") && RD->isInStdNamespace();
2437 }
2438
2439 FunctionDecl *
2440 FunctionDecl::getCorrespondingUnsizedGlobalDeallocationFunction() const {
2441   ASTContext &Ctx = getASTContext();
2442   if (!Ctx.getLangOpts().SizedDeallocation)
2443     return nullptr;
2444
2445   if (getDeclName().getNameKind() != DeclarationName::CXXOperatorName)
2446     return nullptr;
2447   if (getDeclName().getCXXOverloadedOperator() != OO_Delete &&
2448       getDeclName().getCXXOverloadedOperator() != OO_Array_Delete)
2449     return nullptr;
2450   if (isa<CXXRecordDecl>(getDeclContext()))
2451     return nullptr;
2452
2453   if (!getDeclContext()->getRedeclContext()->isTranslationUnit())
2454     return nullptr;
2455
2456   if (getNumParams() != 2 || isVariadic() ||
2457       !Ctx.hasSameType(getType()->castAs<FunctionProtoType>()->getParamType(1),
2458                        Ctx.getSizeType()))
2459     return nullptr;
2460
2461   // This is a sized deallocation function. Find the corresponding unsized
2462   // deallocation function.
2463   lookup_const_result R = getDeclContext()->lookup(getDeclName());
2464   for (lookup_const_result::iterator RI = R.begin(), RE = R.end(); RI != RE;
2465        ++RI)
2466     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*RI))
2467       if (FD->getNumParams() == 1 && !FD->isVariadic())
2468         return FD;
2469   return nullptr;
2470 }
2471
2472 LanguageLinkage FunctionDecl::getLanguageLinkage() const {
2473   return getDeclLanguageLinkage(*this);
2474 }
2475
2476 bool FunctionDecl::isExternC() const {
2477   return isDeclExternC(*this);
2478 }
2479
2480 bool FunctionDecl::isInExternCContext() const {
2481   return getLexicalDeclContext()->isExternCContext();
2482 }
2483
2484 bool FunctionDecl::isInExternCXXContext() const {
2485   return getLexicalDeclContext()->isExternCXXContext();
2486 }
2487
2488 bool FunctionDecl::isGlobal() const {
2489   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(this))
2490     return Method->isStatic();
2491
2492   if (getCanonicalDecl()->getStorageClass() == SC_Static)
2493     return false;
2494
2495   for (const DeclContext *DC = getDeclContext();
2496        DC->isNamespace();
2497        DC = DC->getParent()) {
2498     if (const NamespaceDecl *Namespace = cast<NamespaceDecl>(DC)) {
2499       if (!Namespace->getDeclName())
2500         return false;
2501       break;
2502     }
2503   }
2504
2505   return true;
2506 }
2507
2508 bool FunctionDecl::isNoReturn() const {
2509   return hasAttr<NoReturnAttr>() || hasAttr<CXX11NoReturnAttr>() ||
2510          hasAttr<C11NoReturnAttr>() ||
2511          getType()->getAs<FunctionType>()->getNoReturnAttr();
2512 }
2513
2514 void
2515 FunctionDecl::setPreviousDeclaration(FunctionDecl *PrevDecl) {
2516   redeclarable_base::setPreviousDecl(PrevDecl);
2517
2518   if (FunctionTemplateDecl *FunTmpl = getDescribedFunctionTemplate()) {
2519     FunctionTemplateDecl *PrevFunTmpl
2520       = PrevDecl? PrevDecl->getDescribedFunctionTemplate() : nullptr;
2521     assert((!PrevDecl || PrevFunTmpl) && "Function/function template mismatch");
2522     FunTmpl->setPreviousDecl(PrevFunTmpl);
2523   }
2524   
2525   if (PrevDecl && PrevDecl->IsInline)
2526     IsInline = true;
2527 }
2528
2529 const FunctionDecl *FunctionDecl::getCanonicalDecl() const {
2530   return getFirstDecl();
2531 }
2532
2533 FunctionDecl *FunctionDecl::getCanonicalDecl() { return getFirstDecl(); }
2534
2535 /// \brief Returns a value indicating whether this function
2536 /// corresponds to a builtin function.
2537 ///
2538 /// The function corresponds to a built-in function if it is
2539 /// declared at translation scope or within an extern "C" block and
2540 /// its name matches with the name of a builtin. The returned value
2541 /// will be 0 for functions that do not correspond to a builtin, a
2542 /// value of type \c Builtin::ID if in the target-independent range
2543 /// \c [1,Builtin::First), or a target-specific builtin value.
2544 unsigned FunctionDecl::getBuiltinID() const {
2545   if (!getIdentifier())
2546     return 0;
2547
2548   unsigned BuiltinID = getIdentifier()->getBuiltinID();
2549   if (!BuiltinID)
2550     return 0;
2551
2552   ASTContext &Context = getASTContext();
2553   if (Context.getLangOpts().CPlusPlus) {
2554     const LinkageSpecDecl *LinkageDecl = dyn_cast<LinkageSpecDecl>(
2555         getFirstDecl()->getDeclContext());
2556     // In C++, the first declaration of a builtin is always inside an implicit
2557     // extern "C".
2558     // FIXME: A recognised library function may not be directly in an extern "C"
2559     // declaration, for instance "extern "C" { namespace std { decl } }".
2560     if (!LinkageDecl || LinkageDecl->getLanguage() != LinkageSpecDecl::lang_c)
2561       return 0;
2562   }
2563
2564   // If the function is marked "overloadable", it has a different mangled name
2565   // and is not the C library function.
2566   if (hasAttr<OverloadableAttr>())
2567     return 0;
2568
2569   if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))
2570     return BuiltinID;
2571
2572   // This function has the name of a known C library
2573   // function. Determine whether it actually refers to the C library
2574   // function or whether it just has the same name.
2575
2576   // If this is a static function, it's not a builtin.
2577   if (getStorageClass() == SC_Static)
2578     return 0;
2579
2580   return BuiltinID;
2581 }
2582
2583
2584 /// getNumParams - Return the number of parameters this function must have
2585 /// based on its FunctionType.  This is the length of the ParamInfo array
2586 /// after it has been created.
2587 unsigned FunctionDecl::getNumParams() const {
2588   const FunctionProtoType *FPT = getType()->getAs<FunctionProtoType>();
2589   return FPT ? FPT->getNumParams() : 0;
2590 }
2591
2592 void FunctionDecl::setParams(ASTContext &C,
2593                              ArrayRef<ParmVarDecl *> NewParamInfo) {
2594   assert(!ParamInfo && "Already has param info!");
2595   assert(NewParamInfo.size() == getNumParams() && "Parameter count mismatch!");
2596
2597   // Zero params -> null pointer.
2598   if (!NewParamInfo.empty()) {
2599     ParamInfo = new (C) ParmVarDecl*[NewParamInfo.size()];
2600     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
2601   }
2602 }
2603
2604 void FunctionDecl::setDeclsInPrototypeScope(ArrayRef<NamedDecl *> NewDecls) {
2605   assert(DeclsInPrototypeScope.empty() && "Already has prototype decls!");
2606
2607   if (!NewDecls.empty()) {
2608     NamedDecl **A = new (getASTContext()) NamedDecl*[NewDecls.size()];
2609     std::copy(NewDecls.begin(), NewDecls.end(), A);
2610     DeclsInPrototypeScope = ArrayRef<NamedDecl *>(A, NewDecls.size());
2611     // Move declarations introduced in prototype to the function context.
2612     for (auto I : NewDecls) {
2613       DeclContext *DC = I->getDeclContext();
2614       // Forward-declared reference to an enumeration is not added to
2615       // declaration scope, so skip declaration that is absent from its
2616       // declaration contexts.
2617       if (DC->containsDecl(I)) {
2618           DC->removeDecl(I);
2619           I->setDeclContext(this);
2620           addDecl(I);
2621       }
2622     }
2623   }
2624 }
2625
2626 /// getMinRequiredArguments - Returns the minimum number of arguments
2627 /// needed to call this function. This may be fewer than the number of
2628 /// function parameters, if some of the parameters have default
2629 /// arguments (in C++) or are parameter packs (C++11).
2630 unsigned FunctionDecl::getMinRequiredArguments() const {
2631   if (!getASTContext().getLangOpts().CPlusPlus)
2632     return getNumParams();
2633
2634   unsigned NumRequiredArgs = 0;
2635   for (auto *Param : params())
2636     if (!Param->isParameterPack() && !Param->hasDefaultArg())
2637       ++NumRequiredArgs;
2638   return NumRequiredArgs;
2639 }
2640
2641 /// \brief The combination of the extern and inline keywords under MSVC forces
2642 /// the function to be required.
2643 ///
2644 /// Note: This function assumes that we will only get called when isInlined()
2645 /// would return true for this FunctionDecl.
2646 bool FunctionDecl::isMSExternInline() const {
2647   assert(isInlined() && "expected to get called on an inlined function!");
2648
2649   const ASTContext &Context = getASTContext();
2650   if (!Context.getLangOpts().MSVCCompat && !hasAttr<DLLExportAttr>())
2651     return false;
2652
2653   for (const FunctionDecl *FD = this; FD; FD = FD->getPreviousDecl())
2654     if (FD->getStorageClass() == SC_Extern)
2655       return true;
2656
2657   return false;
2658 }
2659
2660 static bool redeclForcesDefMSVC(const FunctionDecl *Redecl) {
2661   if (Redecl->getStorageClass() != SC_Extern)
2662     return false;
2663
2664   for (const FunctionDecl *FD = Redecl->getPreviousDecl(); FD;
2665        FD = FD->getPreviousDecl())
2666     if (FD->getStorageClass() == SC_Extern)
2667       return false;
2668
2669   return true;
2670 }
2671
2672 static bool RedeclForcesDefC99(const FunctionDecl *Redecl) {
2673   // Only consider file-scope declarations in this test.
2674   if (!Redecl->getLexicalDeclContext()->isTranslationUnit())
2675     return false;
2676
2677   // Only consider explicit declarations; the presence of a builtin for a
2678   // libcall shouldn't affect whether a definition is externally visible.
2679   if (Redecl->isImplicit())
2680     return false;
2681
2682   if (!Redecl->isInlineSpecified() || Redecl->getStorageClass() == SC_Extern) 
2683     return true; // Not an inline definition
2684
2685   return false;
2686 }
2687
2688 /// \brief For a function declaration in C or C++, determine whether this
2689 /// declaration causes the definition to be externally visible.
2690 ///
2691 /// For instance, this determines if adding the current declaration to the set
2692 /// of redeclarations of the given functions causes
2693 /// isInlineDefinitionExternallyVisible to change from false to true.
2694 bool FunctionDecl::doesDeclarationForceExternallyVisibleDefinition() const {
2695   assert(!doesThisDeclarationHaveABody() &&
2696          "Must have a declaration without a body.");
2697
2698   ASTContext &Context = getASTContext();
2699
2700   if (Context.getLangOpts().MSVCCompat) {
2701     const FunctionDecl *Definition;
2702     if (hasBody(Definition) && Definition->isInlined() &&
2703         redeclForcesDefMSVC(this))
2704       return true;
2705   }
2706
2707   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
2708     // With GNU inlining, a declaration with 'inline' but not 'extern', forces
2709     // an externally visible definition.
2710     //
2711     // FIXME: What happens if gnu_inline gets added on after the first
2712     // declaration?
2713     if (!isInlineSpecified() || getStorageClass() == SC_Extern)
2714       return false;
2715
2716     const FunctionDecl *Prev = this;
2717     bool FoundBody = false;
2718     while ((Prev = Prev->getPreviousDecl())) {
2719       FoundBody |= Prev->Body.isValid();
2720
2721       if (Prev->Body) {
2722         // If it's not the case that both 'inline' and 'extern' are
2723         // specified on the definition, then it is always externally visible.
2724         if (!Prev->isInlineSpecified() ||
2725             Prev->getStorageClass() != SC_Extern)
2726           return false;
2727       } else if (Prev->isInlineSpecified() && 
2728                  Prev->getStorageClass() != SC_Extern) {
2729         return false;
2730       }
2731     }
2732     return FoundBody;
2733   }
2734
2735   if (Context.getLangOpts().CPlusPlus)
2736     return false;
2737
2738   // C99 6.7.4p6:
2739   //   [...] If all of the file scope declarations for a function in a 
2740   //   translation unit include the inline function specifier without extern, 
2741   //   then the definition in that translation unit is an inline definition.
2742   if (isInlineSpecified() && getStorageClass() != SC_Extern)
2743     return false;
2744   const FunctionDecl *Prev = this;
2745   bool FoundBody = false;
2746   while ((Prev = Prev->getPreviousDecl())) {
2747     FoundBody |= Prev->Body.isValid();
2748     if (RedeclForcesDefC99(Prev))
2749       return false;
2750   }
2751   return FoundBody;
2752 }
2753
2754 SourceRange FunctionDecl::getReturnTypeSourceRange() const {
2755   const TypeSourceInfo *TSI = getTypeSourceInfo();
2756   if (!TSI)
2757     return SourceRange();
2758   FunctionTypeLoc FTL =
2759       TSI->getTypeLoc().IgnoreParens().getAs<FunctionTypeLoc>();
2760   if (!FTL)
2761     return SourceRange();
2762
2763   // Skip self-referential return types.
2764   const SourceManager &SM = getASTContext().getSourceManager();
2765   SourceRange RTRange = FTL.getReturnLoc().getSourceRange();
2766   SourceLocation Boundary = getNameInfo().getLocStart();
2767   if (RTRange.isInvalid() || Boundary.isInvalid() ||
2768       !SM.isBeforeInTranslationUnit(RTRange.getEnd(), Boundary))
2769     return SourceRange();
2770
2771   return RTRange;
2772 }
2773
2774 /// \brief For an inline function definition in C, or for a gnu_inline function
2775 /// in C++, determine whether the definition will be externally visible.
2776 ///
2777 /// Inline function definitions are always available for inlining optimizations.
2778 /// However, depending on the language dialect, declaration specifiers, and
2779 /// attributes, the definition of an inline function may or may not be
2780 /// "externally" visible to other translation units in the program.
2781 ///
2782 /// In C99, inline definitions are not externally visible by default. However,
2783 /// if even one of the global-scope declarations is marked "extern inline", the
2784 /// inline definition becomes externally visible (C99 6.7.4p6).
2785 ///
2786 /// In GNU89 mode, or if the gnu_inline attribute is attached to the function
2787 /// definition, we use the GNU semantics for inline, which are nearly the 
2788 /// opposite of C99 semantics. In particular, "inline" by itself will create 
2789 /// an externally visible symbol, but "extern inline" will not create an 
2790 /// externally visible symbol.
2791 bool FunctionDecl::isInlineDefinitionExternallyVisible() const {
2792   assert(doesThisDeclarationHaveABody() && "Must have the function definition");
2793   assert(isInlined() && "Function must be inline");
2794   ASTContext &Context = getASTContext();
2795   
2796   if (Context.getLangOpts().GNUInline || hasAttr<GNUInlineAttr>()) {
2797     // Note: If you change the logic here, please change
2798     // doesDeclarationForceExternallyVisibleDefinition as well.
2799     //
2800     // If it's not the case that both 'inline' and 'extern' are
2801     // specified on the definition, then this inline definition is
2802     // externally visible.
2803     if (!(isInlineSpecified() && getStorageClass() == SC_Extern))
2804       return true;
2805     
2806     // If any declaration is 'inline' but not 'extern', then this definition
2807     // is externally visible.
2808     for (auto Redecl : redecls()) {
2809       if (Redecl->isInlineSpecified() && 
2810           Redecl->getStorageClass() != SC_Extern)
2811         return true;
2812     }    
2813     
2814     return false;
2815   }
2816
2817   // The rest of this function is C-only.
2818   assert(!Context.getLangOpts().CPlusPlus &&
2819          "should not use C inline rules in C++");
2820
2821   // C99 6.7.4p6:
2822   //   [...] If all of the file scope declarations for a function in a 
2823   //   translation unit include the inline function specifier without extern, 
2824   //   then the definition in that translation unit is an inline definition.
2825   for (auto Redecl : redecls()) {
2826     if (RedeclForcesDefC99(Redecl))
2827       return true;
2828   }
2829   
2830   // C99 6.7.4p6:
2831   //   An inline definition does not provide an external definition for the 
2832   //   function, and does not forbid an external definition in another 
2833   //   translation unit.
2834   return false;
2835 }
2836
2837 /// getOverloadedOperator - Which C++ overloaded operator this
2838 /// function represents, if any.
2839 OverloadedOperatorKind FunctionDecl::getOverloadedOperator() const {
2840   if (getDeclName().getNameKind() == DeclarationName::CXXOperatorName)
2841     return getDeclName().getCXXOverloadedOperator();
2842   else
2843     return OO_None;
2844 }
2845
2846 /// getLiteralIdentifier - The literal suffix identifier this function
2847 /// represents, if any.
2848 const IdentifierInfo *FunctionDecl::getLiteralIdentifier() const {
2849   if (getDeclName().getNameKind() == DeclarationName::CXXLiteralOperatorName)
2850     return getDeclName().getCXXLiteralIdentifier();
2851   else
2852     return nullptr;
2853 }
2854
2855 FunctionDecl::TemplatedKind FunctionDecl::getTemplatedKind() const {
2856   if (TemplateOrSpecialization.isNull())
2857     return TK_NonTemplate;
2858   if (TemplateOrSpecialization.is<FunctionTemplateDecl *>())
2859     return TK_FunctionTemplate;
2860   if (TemplateOrSpecialization.is<MemberSpecializationInfo *>())
2861     return TK_MemberSpecialization;
2862   if (TemplateOrSpecialization.is<FunctionTemplateSpecializationInfo *>())
2863     return TK_FunctionTemplateSpecialization;
2864   if (TemplateOrSpecialization.is
2865                                <DependentFunctionTemplateSpecializationInfo*>())
2866     return TK_DependentFunctionTemplateSpecialization;
2867
2868   llvm_unreachable("Did we miss a TemplateOrSpecialization type?");
2869 }
2870
2871 FunctionDecl *FunctionDecl::getInstantiatedFromMemberFunction() const {
2872   if (MemberSpecializationInfo *Info = getMemberSpecializationInfo())
2873     return cast<FunctionDecl>(Info->getInstantiatedFrom());
2874
2875   return nullptr;
2876 }
2877
2878 void 
2879 FunctionDecl::setInstantiationOfMemberFunction(ASTContext &C,
2880                                                FunctionDecl *FD,
2881                                                TemplateSpecializationKind TSK) {
2882   assert(TemplateOrSpecialization.isNull() && 
2883          "Member function is already a specialization");
2884   MemberSpecializationInfo *Info 
2885     = new (C) MemberSpecializationInfo(FD, TSK);
2886   TemplateOrSpecialization = Info;
2887 }
2888
2889 bool FunctionDecl::isImplicitlyInstantiable() const {
2890   // If the function is invalid, it can't be implicitly instantiated.
2891   if (isInvalidDecl())
2892     return false;
2893   
2894   switch (getTemplateSpecializationKind()) {
2895   case TSK_Undeclared:
2896   case TSK_ExplicitInstantiationDefinition:
2897     return false;
2898       
2899   case TSK_ImplicitInstantiation:
2900     return true;
2901
2902   // It is possible to instantiate TSK_ExplicitSpecialization kind
2903   // if the FunctionDecl has a class scope specialization pattern.
2904   case TSK_ExplicitSpecialization:
2905     return getClassScopeSpecializationPattern() != nullptr;
2906
2907   case TSK_ExplicitInstantiationDeclaration:
2908     // Handled below.
2909     break;
2910   }
2911
2912   // Find the actual template from which we will instantiate.
2913   const FunctionDecl *PatternDecl = getTemplateInstantiationPattern();
2914   bool HasPattern = false;
2915   if (PatternDecl)
2916     HasPattern = PatternDecl->hasBody(PatternDecl);
2917   
2918   // C++0x [temp.explicit]p9:
2919   //   Except for inline functions, other explicit instantiation declarations
2920   //   have the effect of suppressing the implicit instantiation of the entity
2921   //   to which they refer. 
2922   if (!HasPattern || !PatternDecl) 
2923     return true;
2924
2925   return PatternDecl->isInlined();
2926 }
2927
2928 bool FunctionDecl::isTemplateInstantiation() const {
2929   switch (getTemplateSpecializationKind()) {
2930     case TSK_Undeclared:
2931     case TSK_ExplicitSpecialization:
2932       return false;      
2933     case TSK_ImplicitInstantiation:
2934     case TSK_ExplicitInstantiationDeclaration:
2935     case TSK_ExplicitInstantiationDefinition:
2936       return true;
2937   }
2938   llvm_unreachable("All TSK values handled.");
2939 }
2940    
2941 FunctionDecl *FunctionDecl::getTemplateInstantiationPattern() const {
2942   // Handle class scope explicit specialization special case.
2943   if (getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
2944     return getClassScopeSpecializationPattern();
2945   
2946   // If this is a generic lambda call operator specialization, its 
2947   // instantiation pattern is always its primary template's pattern
2948   // even if its primary template was instantiated from another 
2949   // member template (which happens with nested generic lambdas).
2950   // Since a lambda's call operator's body is transformed eagerly, 
2951   // we don't have to go hunting for a prototype definition template 
2952   // (i.e. instantiated-from-member-template) to use as an instantiation 
2953   // pattern.
2954
2955   if (isGenericLambdaCallOperatorSpecialization(
2956           dyn_cast<CXXMethodDecl>(this))) {
2957     assert(getPrimaryTemplate() && "A generic lambda specialization must be "
2958                                    "generated from a primary call operator "
2959                                    "template");
2960     assert(getPrimaryTemplate()->getTemplatedDecl()->getBody() &&
2961            "A generic lambda call operator template must always have a body - "
2962            "even if instantiated from a prototype (i.e. as written) member "
2963            "template");
2964     return getPrimaryTemplate()->getTemplatedDecl();
2965   }
2966   
2967   if (FunctionTemplateDecl *Primary = getPrimaryTemplate()) {
2968     while (Primary->getInstantiatedFromMemberTemplate()) {
2969       // If we have hit a point where the user provided a specialization of
2970       // this template, we're done looking.
2971       if (Primary->isMemberSpecialization())
2972         break;
2973       Primary = Primary->getInstantiatedFromMemberTemplate();
2974     }
2975     
2976     return Primary->getTemplatedDecl();
2977   } 
2978     
2979   return getInstantiatedFromMemberFunction();
2980 }
2981
2982 FunctionTemplateDecl *FunctionDecl::getPrimaryTemplate() const {
2983   if (FunctionTemplateSpecializationInfo *Info
2984         = TemplateOrSpecialization
2985             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
2986     return Info->Template.getPointer();
2987   }
2988   return nullptr;
2989 }
2990
2991 FunctionDecl *FunctionDecl::getClassScopeSpecializationPattern() const {
2992     return getASTContext().getClassScopeSpecializationPattern(this);
2993 }
2994
2995 const TemplateArgumentList *
2996 FunctionDecl::getTemplateSpecializationArgs() const {
2997   if (FunctionTemplateSpecializationInfo *Info
2998         = TemplateOrSpecialization
2999             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3000     return Info->TemplateArguments;
3001   }
3002   return nullptr;
3003 }
3004
3005 const ASTTemplateArgumentListInfo *
3006 FunctionDecl::getTemplateSpecializationArgsAsWritten() const {
3007   if (FunctionTemplateSpecializationInfo *Info
3008         = TemplateOrSpecialization
3009             .dyn_cast<FunctionTemplateSpecializationInfo*>()) {
3010     return Info->TemplateArgumentsAsWritten;
3011   }
3012   return nullptr;
3013 }
3014
3015 void
3016 FunctionDecl::setFunctionTemplateSpecialization(ASTContext &C,
3017                                                 FunctionTemplateDecl *Template,
3018                                      const TemplateArgumentList *TemplateArgs,
3019                                                 void *InsertPos,
3020                                                 TemplateSpecializationKind TSK,
3021                         const TemplateArgumentListInfo *TemplateArgsAsWritten,
3022                                           SourceLocation PointOfInstantiation) {
3023   assert(TSK != TSK_Undeclared && 
3024          "Must specify the type of function template specialization");
3025   FunctionTemplateSpecializationInfo *Info
3026     = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
3027   if (!Info)
3028     Info = FunctionTemplateSpecializationInfo::Create(C, this, Template, TSK,
3029                                                       TemplateArgs,
3030                                                       TemplateArgsAsWritten,
3031                                                       PointOfInstantiation);
3032   TemplateOrSpecialization = Info;
3033   Template->addSpecialization(Info, InsertPos);
3034 }
3035
3036 void
3037 FunctionDecl::setDependentTemplateSpecialization(ASTContext &Context,
3038                                     const UnresolvedSetImpl &Templates,
3039                              const TemplateArgumentListInfo &TemplateArgs) {
3040   assert(TemplateOrSpecialization.isNull());
3041   size_t Size = sizeof(DependentFunctionTemplateSpecializationInfo);
3042   Size += Templates.size() * sizeof(FunctionTemplateDecl*);
3043   Size += TemplateArgs.size() * sizeof(TemplateArgumentLoc);
3044   void *Buffer = Context.Allocate(Size);
3045   DependentFunctionTemplateSpecializationInfo *Info =
3046     new (Buffer) DependentFunctionTemplateSpecializationInfo(Templates,
3047                                                              TemplateArgs);
3048   TemplateOrSpecialization = Info;
3049 }
3050
3051 DependentFunctionTemplateSpecializationInfo::
3052 DependentFunctionTemplateSpecializationInfo(const UnresolvedSetImpl &Ts,
3053                                       const TemplateArgumentListInfo &TArgs)
3054   : AngleLocs(TArgs.getLAngleLoc(), TArgs.getRAngleLoc()) {
3055
3056   d.NumTemplates = Ts.size();
3057   d.NumArgs = TArgs.size();
3058
3059   FunctionTemplateDecl **TsArray =
3060     const_cast<FunctionTemplateDecl**>(getTemplates());
3061   for (unsigned I = 0, E = Ts.size(); I != E; ++I)
3062     TsArray[I] = cast<FunctionTemplateDecl>(Ts[I]->getUnderlyingDecl());
3063
3064   TemplateArgumentLoc *ArgsArray =
3065     const_cast<TemplateArgumentLoc*>(getTemplateArgs());
3066   for (unsigned I = 0, E = TArgs.size(); I != E; ++I)
3067     new (&ArgsArray[I]) TemplateArgumentLoc(TArgs[I]);
3068 }
3069
3070 TemplateSpecializationKind FunctionDecl::getTemplateSpecializationKind() const {
3071   // For a function template specialization, query the specialization
3072   // information object.
3073   FunctionTemplateSpecializationInfo *FTSInfo
3074     = TemplateOrSpecialization.dyn_cast<FunctionTemplateSpecializationInfo*>();
3075   if (FTSInfo)
3076     return FTSInfo->getTemplateSpecializationKind();
3077
3078   MemberSpecializationInfo *MSInfo
3079     = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>();
3080   if (MSInfo)
3081     return MSInfo->getTemplateSpecializationKind();
3082   
3083   return TSK_Undeclared;
3084 }
3085
3086 void
3087 FunctionDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3088                                           SourceLocation PointOfInstantiation) {
3089   if (FunctionTemplateSpecializationInfo *FTSInfo
3090         = TemplateOrSpecialization.dyn_cast<
3091                                     FunctionTemplateSpecializationInfo*>()) {
3092     FTSInfo->setTemplateSpecializationKind(TSK);
3093     if (TSK != TSK_ExplicitSpecialization &&
3094         PointOfInstantiation.isValid() &&
3095         FTSInfo->getPointOfInstantiation().isInvalid())
3096       FTSInfo->setPointOfInstantiation(PointOfInstantiation);
3097   } else if (MemberSpecializationInfo *MSInfo
3098              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>()) {
3099     MSInfo->setTemplateSpecializationKind(TSK);
3100     if (TSK != TSK_ExplicitSpecialization &&
3101         PointOfInstantiation.isValid() &&
3102         MSInfo->getPointOfInstantiation().isInvalid())
3103       MSInfo->setPointOfInstantiation(PointOfInstantiation);
3104   } else
3105     llvm_unreachable("Function cannot have a template specialization kind");
3106 }
3107
3108 SourceLocation FunctionDecl::getPointOfInstantiation() const {
3109   if (FunctionTemplateSpecializationInfo *FTSInfo
3110         = TemplateOrSpecialization.dyn_cast<
3111                                         FunctionTemplateSpecializationInfo*>())
3112     return FTSInfo->getPointOfInstantiation();
3113   else if (MemberSpecializationInfo *MSInfo
3114              = TemplateOrSpecialization.dyn_cast<MemberSpecializationInfo*>())
3115     return MSInfo->getPointOfInstantiation();
3116   
3117   return SourceLocation();
3118 }
3119
3120 bool FunctionDecl::isOutOfLine() const {
3121   if (Decl::isOutOfLine())
3122     return true;
3123   
3124   // If this function was instantiated from a member function of a 
3125   // class template, check whether that member function was defined out-of-line.
3126   if (FunctionDecl *FD = getInstantiatedFromMemberFunction()) {
3127     const FunctionDecl *Definition;
3128     if (FD->hasBody(Definition))
3129       return Definition->isOutOfLine();
3130   }
3131   
3132   // If this function was instantiated from a function template,
3133   // check whether that function template was defined out-of-line.
3134   if (FunctionTemplateDecl *FunTmpl = getPrimaryTemplate()) {
3135     const FunctionDecl *Definition;
3136     if (FunTmpl->getTemplatedDecl()->hasBody(Definition))
3137       return Definition->isOutOfLine();
3138   }
3139   
3140   return false;
3141 }
3142
3143 SourceRange FunctionDecl::getSourceRange() const {
3144   return SourceRange(getOuterLocStart(), EndRangeLoc);
3145 }
3146
3147 unsigned FunctionDecl::getMemoryFunctionKind() const {
3148   IdentifierInfo *FnInfo = getIdentifier();
3149
3150   if (!FnInfo)
3151     return 0;
3152     
3153   // Builtin handling.
3154   switch (getBuiltinID()) {
3155   case Builtin::BI__builtin_memset:
3156   case Builtin::BI__builtin___memset_chk:
3157   case Builtin::BImemset:
3158     return Builtin::BImemset;
3159
3160   case Builtin::BI__builtin_memcpy:
3161   case Builtin::BI__builtin___memcpy_chk:
3162   case Builtin::BImemcpy:
3163     return Builtin::BImemcpy;
3164
3165   case Builtin::BI__builtin_memmove:
3166   case Builtin::BI__builtin___memmove_chk:
3167   case Builtin::BImemmove:
3168     return Builtin::BImemmove;
3169
3170   case Builtin::BIstrlcpy:
3171     return Builtin::BIstrlcpy;
3172   case Builtin::BIstrlcat:
3173     return Builtin::BIstrlcat;
3174
3175   case Builtin::BI__builtin_memcmp:
3176   case Builtin::BImemcmp:
3177     return Builtin::BImemcmp;
3178
3179   case Builtin::BI__builtin_strncpy:
3180   case Builtin::BI__builtin___strncpy_chk:
3181   case Builtin::BIstrncpy:
3182     return Builtin::BIstrncpy;
3183
3184   case Builtin::BI__builtin_strncmp:
3185   case Builtin::BIstrncmp:
3186     return Builtin::BIstrncmp;
3187
3188   case Builtin::BI__builtin_strncasecmp:
3189   case Builtin::BIstrncasecmp:
3190     return Builtin::BIstrncasecmp;
3191
3192   case Builtin::BI__builtin_strncat:
3193   case Builtin::BI__builtin___strncat_chk:
3194   case Builtin::BIstrncat:
3195     return Builtin::BIstrncat;
3196
3197   case Builtin::BI__builtin_strndup:
3198   case Builtin::BIstrndup:
3199     return Builtin::BIstrndup;
3200
3201   case Builtin::BI__builtin_strlen:
3202   case Builtin::BIstrlen:
3203     return Builtin::BIstrlen;
3204
3205   default:
3206     if (isExternC()) {
3207       if (FnInfo->isStr("memset"))
3208         return Builtin::BImemset;
3209       else if (FnInfo->isStr("memcpy"))
3210         return Builtin::BImemcpy;
3211       else if (FnInfo->isStr("memmove"))
3212         return Builtin::BImemmove;
3213       else if (FnInfo->isStr("memcmp"))
3214         return Builtin::BImemcmp;
3215       else if (FnInfo->isStr("strncpy"))
3216         return Builtin::BIstrncpy;
3217       else if (FnInfo->isStr("strncmp"))
3218         return Builtin::BIstrncmp;
3219       else if (FnInfo->isStr("strncasecmp"))
3220         return Builtin::BIstrncasecmp;
3221       else if (FnInfo->isStr("strncat"))
3222         return Builtin::BIstrncat;
3223       else if (FnInfo->isStr("strndup"))
3224         return Builtin::BIstrndup;
3225       else if (FnInfo->isStr("strlen"))
3226         return Builtin::BIstrlen;
3227     }
3228     break;
3229   }
3230   return 0;
3231 }
3232
3233 //===----------------------------------------------------------------------===//
3234 // FieldDecl Implementation
3235 //===----------------------------------------------------------------------===//
3236
3237 FieldDecl *FieldDecl::Create(const ASTContext &C, DeclContext *DC,
3238                              SourceLocation StartLoc, SourceLocation IdLoc,
3239                              IdentifierInfo *Id, QualType T,
3240                              TypeSourceInfo *TInfo, Expr *BW, bool Mutable,
3241                              InClassInitStyle InitStyle) {
3242   return new (C, DC) FieldDecl(Decl::Field, DC, StartLoc, IdLoc, Id, T, TInfo,
3243                                BW, Mutable, InitStyle);
3244 }
3245
3246 FieldDecl *FieldDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3247   return new (C, ID) FieldDecl(Field, nullptr, SourceLocation(),
3248                                SourceLocation(), nullptr, QualType(), nullptr,
3249                                nullptr, false, ICIS_NoInit);
3250 }
3251
3252 bool FieldDecl::isAnonymousStructOrUnion() const {
3253   if (!isImplicit() || getDeclName())
3254     return false;
3255
3256   if (const RecordType *Record = getType()->getAs<RecordType>())
3257     return Record->getDecl()->isAnonymousStructOrUnion();
3258
3259   return false;
3260 }
3261
3262 unsigned FieldDecl::getBitWidthValue(const ASTContext &Ctx) const {
3263   assert(isBitField() && "not a bitfield");
3264   Expr *BitWidth = InitializerOrBitWidth.getPointer();
3265   return BitWidth->EvaluateKnownConstInt(Ctx).getZExtValue();
3266 }
3267
3268 unsigned FieldDecl::getFieldIndex() const {
3269   const FieldDecl *Canonical = getCanonicalDecl();
3270   if (Canonical != this)
3271     return Canonical->getFieldIndex();
3272
3273   if (CachedFieldIndex) return CachedFieldIndex - 1;
3274
3275   unsigned Index = 0;
3276   const RecordDecl *RD = getParent();
3277
3278   for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
3279        I != E; ++I, ++Index)
3280     I->getCanonicalDecl()->CachedFieldIndex = Index + 1;
3281
3282   assert(CachedFieldIndex && "failed to find field in parent");
3283   return CachedFieldIndex - 1;
3284 }
3285
3286 SourceRange FieldDecl::getSourceRange() const {
3287   if (const Expr *E = InitializerOrBitWidth.getPointer())
3288     return SourceRange(getInnerLocStart(), E->getLocEnd());
3289   return DeclaratorDecl::getSourceRange();
3290 }
3291
3292 void FieldDecl::setBitWidth(Expr *Width) {
3293   assert(!InitializerOrBitWidth.getPointer() && !hasInClassInitializer() &&
3294          "bit width or initializer already set");
3295   InitializerOrBitWidth.setPointer(Width);
3296 }
3297
3298 void FieldDecl::setInClassInitializer(Expr *Init) {
3299   assert(!InitializerOrBitWidth.getPointer() && hasInClassInitializer() &&
3300          "bit width or initializer already set");
3301   InitializerOrBitWidth.setPointer(Init);
3302 }
3303
3304 //===----------------------------------------------------------------------===//
3305 // TagDecl Implementation
3306 //===----------------------------------------------------------------------===//
3307
3308 SourceLocation TagDecl::getOuterLocStart() const {
3309   return getTemplateOrInnerLocStart(this);
3310 }
3311
3312 SourceRange TagDecl::getSourceRange() const {
3313   SourceLocation E = RBraceLoc.isValid() ? RBraceLoc : getLocation();
3314   return SourceRange(getOuterLocStart(), E);
3315 }
3316
3317 TagDecl *TagDecl::getCanonicalDecl() { return getFirstDecl(); }
3318
3319 void TagDecl::setTypedefNameForAnonDecl(TypedefNameDecl *TDD) {
3320   NamedDeclOrQualifier = TDD;
3321   if (const Type *T = getTypeForDecl()) {
3322     (void)T;
3323     assert(T->isLinkageValid());
3324   }
3325   assert(isLinkageValid());
3326 }
3327
3328 void TagDecl::startDefinition() {
3329   IsBeingDefined = true;
3330
3331   if (CXXRecordDecl *D = dyn_cast<CXXRecordDecl>(this)) {
3332     struct CXXRecordDecl::DefinitionData *Data =
3333       new (getASTContext()) struct CXXRecordDecl::DefinitionData(D);
3334     for (auto I : redecls())
3335       cast<CXXRecordDecl>(I)->DefinitionData = Data;
3336   }
3337 }
3338
3339 void TagDecl::completeDefinition() {
3340   assert((!isa<CXXRecordDecl>(this) ||
3341           cast<CXXRecordDecl>(this)->hasDefinition()) &&
3342          "definition completed but not started");
3343
3344   IsCompleteDefinition = true;
3345   IsBeingDefined = false;
3346
3347   if (ASTMutationListener *L = getASTMutationListener())
3348     L->CompletedTagDefinition(this);
3349 }
3350
3351 TagDecl *TagDecl::getDefinition() const {
3352   if (isCompleteDefinition())
3353     return const_cast<TagDecl *>(this);
3354
3355   // If it's possible for us to have an out-of-date definition, check now.
3356   if (MayHaveOutOfDateDef) {
3357     if (IdentifierInfo *II = getIdentifier()) {
3358       if (II->isOutOfDate()) {
3359         updateOutOfDate(*II);
3360       }
3361     }
3362   }
3363
3364   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(this))
3365     return CXXRD->getDefinition();
3366
3367   for (auto R : redecls())
3368     if (R->isCompleteDefinition())
3369       return R;
3370
3371   return nullptr;
3372 }
3373
3374 void TagDecl::setQualifierInfo(NestedNameSpecifierLoc QualifierLoc) {
3375   if (QualifierLoc) {
3376     // Make sure the extended qualifier info is allocated.
3377     if (!hasExtInfo())
3378       NamedDeclOrQualifier = new (getASTContext()) ExtInfo;
3379     // Set qualifier info.
3380     getExtInfo()->QualifierLoc = QualifierLoc;
3381   } else {
3382     // Here Qualifier == 0, i.e., we are removing the qualifier (if any).
3383     if (hasExtInfo()) {
3384       if (getExtInfo()->NumTemplParamLists == 0) {
3385         getASTContext().Deallocate(getExtInfo());
3386         NamedDeclOrQualifier = (TypedefNameDecl*)nullptr;
3387       }
3388       else
3389         getExtInfo()->QualifierLoc = QualifierLoc;
3390     }
3391   }
3392 }
3393
3394 void TagDecl::setTemplateParameterListsInfo(ASTContext &Context,
3395                                             unsigned NumTPLists,
3396                                             TemplateParameterList **TPLists) {
3397   assert(NumTPLists > 0);
3398   // Make sure the extended decl info is allocated.
3399   if (!hasExtInfo())
3400     // Allocate external info struct.
3401     NamedDeclOrQualifier = new (getASTContext()) ExtInfo;
3402   // Set the template parameter lists info.
3403   getExtInfo()->setTemplateParameterListsInfo(Context, NumTPLists, TPLists);
3404 }
3405
3406 //===----------------------------------------------------------------------===//
3407 // EnumDecl Implementation
3408 //===----------------------------------------------------------------------===//
3409
3410 void EnumDecl::anchor() { }
3411
3412 EnumDecl *EnumDecl::Create(ASTContext &C, DeclContext *DC,
3413                            SourceLocation StartLoc, SourceLocation IdLoc,
3414                            IdentifierInfo *Id,
3415                            EnumDecl *PrevDecl, bool IsScoped,
3416                            bool IsScopedUsingClassTag, bool IsFixed) {
3417   EnumDecl *Enum = new (C, DC) EnumDecl(C, DC, StartLoc, IdLoc, Id, PrevDecl,
3418                                         IsScoped, IsScopedUsingClassTag,
3419                                         IsFixed);
3420   Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3421   C.getTypeDeclType(Enum, PrevDecl);
3422   return Enum;
3423 }
3424
3425 EnumDecl *EnumDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3426   EnumDecl *Enum =
3427       new (C, ID) EnumDecl(C, nullptr, SourceLocation(), SourceLocation(),
3428                            nullptr, nullptr, false, false, false);
3429   Enum->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3430   return Enum;
3431 }
3432
3433 SourceRange EnumDecl::getIntegerTypeRange() const {
3434   if (const TypeSourceInfo *TI = getIntegerTypeSourceInfo())
3435     return TI->getTypeLoc().getSourceRange();
3436   return SourceRange();
3437 }
3438
3439 void EnumDecl::completeDefinition(QualType NewType,
3440                                   QualType NewPromotionType,
3441                                   unsigned NumPositiveBits,
3442                                   unsigned NumNegativeBits) {
3443   assert(!isCompleteDefinition() && "Cannot redefine enums!");
3444   if (!IntegerType)
3445     IntegerType = NewType.getTypePtr();
3446   PromotionType = NewPromotionType;
3447   setNumPositiveBits(NumPositiveBits);
3448   setNumNegativeBits(NumNegativeBits);
3449   TagDecl::completeDefinition();
3450 }
3451
3452 TemplateSpecializationKind EnumDecl::getTemplateSpecializationKind() const {
3453   if (MemberSpecializationInfo *MSI = getMemberSpecializationInfo())
3454     return MSI->getTemplateSpecializationKind();
3455
3456   return TSK_Undeclared;
3457 }
3458
3459 void EnumDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK,
3460                                          SourceLocation PointOfInstantiation) {
3461   MemberSpecializationInfo *MSI = getMemberSpecializationInfo();
3462   assert(MSI && "Not an instantiated member enumeration?");
3463   MSI->setTemplateSpecializationKind(TSK);
3464   if (TSK != TSK_ExplicitSpecialization &&
3465       PointOfInstantiation.isValid() &&
3466       MSI->getPointOfInstantiation().isInvalid())
3467     MSI->setPointOfInstantiation(PointOfInstantiation);
3468 }
3469
3470 EnumDecl *EnumDecl::getInstantiatedFromMemberEnum() const {
3471   if (SpecializationInfo)
3472     return cast<EnumDecl>(SpecializationInfo->getInstantiatedFrom());
3473
3474   return nullptr;
3475 }
3476
3477 void EnumDecl::setInstantiationOfMemberEnum(ASTContext &C, EnumDecl *ED,
3478                                             TemplateSpecializationKind TSK) {
3479   assert(!SpecializationInfo && "Member enum is already a specialization");
3480   SpecializationInfo = new (C) MemberSpecializationInfo(ED, TSK);
3481 }
3482
3483 //===----------------------------------------------------------------------===//
3484 // RecordDecl Implementation
3485 //===----------------------------------------------------------------------===//
3486
3487 RecordDecl::RecordDecl(Kind DK, TagKind TK, const ASTContext &C,
3488                        DeclContext *DC, SourceLocation StartLoc,
3489                        SourceLocation IdLoc, IdentifierInfo *Id,
3490                        RecordDecl *PrevDecl)
3491     : TagDecl(DK, TK, C, DC, IdLoc, Id, PrevDecl, StartLoc) {
3492   HasFlexibleArrayMember = false;
3493   AnonymousStructOrUnion = false;
3494   HasObjectMember = false;
3495   HasVolatileMember = false;
3496   LoadedFieldsFromExternalStorage = false;
3497   assert(classof(static_cast<Decl*>(this)) && "Invalid Kind!");
3498 }
3499
3500 RecordDecl *RecordDecl::Create(const ASTContext &C, TagKind TK, DeclContext *DC,
3501                                SourceLocation StartLoc, SourceLocation IdLoc,
3502                                IdentifierInfo *Id, RecordDecl* PrevDecl) {
3503   RecordDecl *R = new (C, DC) RecordDecl(Record, TK, C, DC,
3504                                          StartLoc, IdLoc, Id, PrevDecl);
3505   R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3506
3507   C.getTypeDeclType(R, PrevDecl);
3508   return R;
3509 }
3510
3511 RecordDecl *RecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) {
3512   RecordDecl *R =
3513       new (C, ID) RecordDecl(Record, TTK_Struct, C, nullptr, SourceLocation(),
3514                              SourceLocation(), nullptr, nullptr);
3515   R->MayHaveOutOfDateDef = C.getLangOpts().Modules;
3516   return R;
3517 }
3518
3519 bool RecordDecl::isInjectedClassName() const {
3520   return isImplicit() && getDeclName() && getDeclContext()->isRecord() &&
3521     cast<RecordDecl>(getDeclContext())->getDeclName() == getDeclName();
3522 }
3523
3524 RecordDecl::field_iterator RecordDecl::field_begin() const {
3525   if (hasExternalLexicalStorage() && !LoadedFieldsFromExternalStorage)
3526     LoadFieldsFromExternalStorage();
3527
3528   return field_iterator(decl_iterator(FirstDecl));
3529 }
3530
3531 /// completeDefinition - Notes that the definition of this type is now
3532 /// complete.
3533 void RecordDecl::completeDefinition() {
3534   assert(!isCompleteDefinition() && "Cannot redefine record!");
3535   TagDecl::completeDefinition();
3536 }
3537
3538 /// isMsStruct - Get whether or not this record uses ms_struct layout.
3539 /// This which can be turned on with an attribute, pragma, or the
3540 /// -mms-bitfields command-line option.
3541 bool RecordDecl::isMsStruct(const ASTContext &C) const {
3542   return hasAttr<MsStructAttr>() || C.getLangOpts().MSBitfields == 1;
3543 }
3544
3545 static bool isFieldOrIndirectField(Decl::Kind K) {
3546   return FieldDecl::classofKind(K) || IndirectFieldDecl::classofKind(K);
3547 }
3548
3549 void RecordDecl::LoadFieldsFromExternalStorage() const {
3550   ExternalASTSource *Source = getASTContext().getExternalSource();
3551   assert(hasExternalLexicalStorage() && Source && "No external storage?");
3552
3553   // Notify that we have a RecordDecl doing some initialization.
3554   ExternalASTSource::Deserializing TheFields(Source);
3555
3556   SmallVector<Decl*, 64> Decls;
3557   LoadedFieldsFromExternalStorage = true;  
3558   switch (Source->FindExternalLexicalDecls(this, isFieldOrIndirectField,
3559                                            Decls)) {
3560   case ELR_Success:
3561     break;
3562     
3563   case ELR_AlreadyLoaded:
3564   case ELR_Failure:
3565     return;
3566   }
3567
3568 #ifndef NDEBUG
3569   // Check that all decls we got were FieldDecls.
3570   for (unsigned i=0, e=Decls.size(); i != e; ++i)
3571     assert(isa<FieldDecl>(Decls[i]) || isa<IndirectFieldDecl>(Decls[i]));
3572 #endif
3573
3574   if (Decls.empty())
3575     return;
3576
3577   std::tie(FirstDecl, LastDecl) = BuildDeclChain(Decls,
3578                                                  /*FieldsAlreadyLoaded=*/false);
3579 }
3580
3581 //===----------------------------------------------------------------------===//
3582 // BlockDecl Implementation
3583 //===----------------------------------------------------------------------===//
3584
3585 void BlockDecl::setParams(ArrayRef<ParmVarDecl *> NewParamInfo) {
3586   assert(!ParamInfo && "Already has param info!");
3587
3588   // Zero params -> null pointer.
3589   if (!NewParamInfo.empty()) {
3590     NumParams = NewParamInfo.size();
3591     ParamInfo = new (getASTContext()) ParmVarDecl*[NewParamInfo.size()];
3592     std::copy(NewParamInfo.begin(), NewParamInfo.end(), ParamInfo);
3593   }
3594 }
3595
3596 void BlockDecl::setCaptures(ASTContext &Context,
3597                             const Capture *begin,
3598                             const Capture *end,
3599                             bool capturesCXXThis) {
3600   CapturesCXXThis = capturesCXXThis;
3601
3602   if (begin == end) {
3603     NumCaptures = 0;
3604     Captures = nullptr;
3605     return;
3606   }
3607
3608   NumCaptures = end - begin;
3609
3610   // Avoid new Capture[] because we don't want to provide a default
3611   // constructor.
3612   size_t allocationSize = NumCaptures * sizeof(Capture);
3613   void *buffer = Context.Allocate(allocationSize, /*alignment*/sizeof(void*));
3614   memcpy(buffer, begin, allocationSize);
3615   Captures = static_cast<Capture*>(buffer);
3616 }
3617
3618 bool BlockDecl::capturesVariable(const VarDecl *variable) const {
3619   for (const auto &I : captures())
3620     // Only auto vars can be captured, so no redeclaration worries.
3621     if (I.getVariable() == variable)
3622       return true;
3623
3624   return false;
3625 }
3626
3627 SourceRange BlockDecl::getSourceRange() const {
3628   return SourceRange(getLocation(), Body? Body->getLocEnd() : getLocation());
3629 }
3630
3631 //===----------------------------------------------------------------------===//
3632 // Other Decl Allocation/Deallocation Method Implementations
3633 //===----------------------------------------------------------------------===//
3634
3635 void TranslationUnitDecl::anchor() { }
3636
3637 TranslationUnitDecl *TranslationUnitDecl::Create(ASTContext &C) {
3638   return new (C, (DeclContext *)nullptr) TranslationUnitDecl(C);
3639 }
3640
3641 void LabelDecl::anchor() { }
3642
3643 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
3644                              SourceLocation IdentL, IdentifierInfo *II) {
3645   return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, IdentL);
3646 }
3647
3648 LabelDecl *LabelDecl::Create(ASTContext &C, DeclContext *DC,
3649                              SourceLocation IdentL, IdentifierInfo *II,
3650                              SourceLocation GnuLabelL) {
3651   assert(GnuLabelL != IdentL && "Use this only for GNU local labels");
3652   return new (C, DC) LabelDecl(DC, IdentL, II, nullptr, GnuLabelL);
3653 }
3654
3655 LabelDecl *LabelDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3656   return new (C, ID) LabelDecl(nullptr, SourceLocation(), nullptr, nullptr,
3657                                SourceLocation());
3658 }
3659
3660 void ValueDecl::anchor() { }
3661
3662 bool ValueDecl::isWeak() const {
3663   for (const auto *I : attrs())
3664     if (isa<WeakAttr>(I) || isa<WeakRefAttr>(I))
3665       return true;
3666
3667   return isWeakImported();
3668 }
3669
3670 void ImplicitParamDecl::anchor() { }
3671
3672 ImplicitParamDecl *ImplicitParamDecl::Create(ASTContext &C, DeclContext *DC,
3673                                              SourceLocation IdLoc,
3674                                              IdentifierInfo *Id,
3675                                              QualType Type) {
3676   return new (C, DC) ImplicitParamDecl(C, DC, IdLoc, Id, Type);
3677 }
3678
3679 ImplicitParamDecl *ImplicitParamDecl::CreateDeserialized(ASTContext &C,
3680                                                          unsigned ID) {
3681   return new (C, ID) ImplicitParamDecl(C, nullptr, SourceLocation(), nullptr,
3682                                        QualType());
3683 }
3684
3685 FunctionDecl *FunctionDecl::Create(ASTContext &C, DeclContext *DC,
3686                                    SourceLocation StartLoc,
3687                                    const DeclarationNameInfo &NameInfo,
3688                                    QualType T, TypeSourceInfo *TInfo,
3689                                    StorageClass SC,
3690                                    bool isInlineSpecified,
3691                                    bool hasWrittenPrototype,
3692                                    bool isConstexprSpecified) {
3693   FunctionDecl *New =
3694       new (C, DC) FunctionDecl(Function, C, DC, StartLoc, NameInfo, T, TInfo,
3695                                SC, isInlineSpecified, isConstexprSpecified);
3696   New->HasWrittenPrototype = hasWrittenPrototype;
3697   return New;
3698 }
3699
3700 FunctionDecl *FunctionDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3701   return new (C, ID) FunctionDecl(Function, C, nullptr, SourceLocation(),
3702                                   DeclarationNameInfo(), QualType(), nullptr,
3703                                   SC_None, false, false);
3704 }
3705
3706 BlockDecl *BlockDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
3707   return new (C, DC) BlockDecl(DC, L);
3708 }
3709
3710 BlockDecl *BlockDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3711   return new (C, ID) BlockDecl(nullptr, SourceLocation());
3712 }
3713
3714 CapturedDecl *CapturedDecl::Create(ASTContext &C, DeclContext *DC,
3715                                    unsigned NumParams) {
3716   return new (C, DC, NumParams * sizeof(ImplicitParamDecl *))
3717       CapturedDecl(DC, NumParams);
3718 }
3719
3720 CapturedDecl *CapturedDecl::CreateDeserialized(ASTContext &C, unsigned ID,
3721                                                unsigned NumParams) {
3722   return new (C, ID, NumParams * sizeof(ImplicitParamDecl *))
3723       CapturedDecl(nullptr, NumParams);
3724 }
3725
3726 EnumConstantDecl *EnumConstantDecl::Create(ASTContext &C, EnumDecl *CD,
3727                                            SourceLocation L,
3728                                            IdentifierInfo *Id, QualType T,
3729                                            Expr *E, const llvm::APSInt &V) {
3730   return new (C, CD) EnumConstantDecl(CD, L, Id, T, E, V);
3731 }
3732
3733 EnumConstantDecl *
3734 EnumConstantDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3735   return new (C, ID) EnumConstantDecl(nullptr, SourceLocation(), nullptr,
3736                                       QualType(), nullptr, llvm::APSInt());
3737 }
3738
3739 void IndirectFieldDecl::anchor() { }
3740
3741 IndirectFieldDecl *
3742 IndirectFieldDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L,
3743                           IdentifierInfo *Id, QualType T, NamedDecl **CH,
3744                           unsigned CHS) {
3745   return new (C, DC) IndirectFieldDecl(DC, L, Id, T, CH, CHS);
3746 }
3747
3748 IndirectFieldDecl *IndirectFieldDecl::CreateDeserialized(ASTContext &C,
3749                                                          unsigned ID) {
3750   return new (C, ID) IndirectFieldDecl(nullptr, SourceLocation(),
3751                                        DeclarationName(), QualType(), nullptr,
3752                                        0);
3753 }
3754
3755 SourceRange EnumConstantDecl::getSourceRange() const {
3756   SourceLocation End = getLocation();
3757   if (Init)
3758     End = Init->getLocEnd();
3759   return SourceRange(getLocation(), End);
3760 }
3761
3762 void TypeDecl::anchor() { }
3763
3764 TypedefDecl *TypedefDecl::Create(ASTContext &C, DeclContext *DC,
3765                                  SourceLocation StartLoc, SourceLocation IdLoc,
3766                                  IdentifierInfo *Id, TypeSourceInfo *TInfo) {
3767   return new (C, DC) TypedefDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
3768 }
3769
3770 void TypedefNameDecl::anchor() { }
3771
3772 TypedefDecl *TypedefDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3773   return new (C, ID) TypedefDecl(C, nullptr, SourceLocation(), SourceLocation(),
3774                                  nullptr, nullptr);
3775 }
3776
3777 TypeAliasDecl *TypeAliasDecl::Create(ASTContext &C, DeclContext *DC,
3778                                      SourceLocation StartLoc,
3779                                      SourceLocation IdLoc, IdentifierInfo *Id,
3780                                      TypeSourceInfo *TInfo) {
3781   return new (C, DC) TypeAliasDecl(C, DC, StartLoc, IdLoc, Id, TInfo);
3782 }
3783
3784 TypeAliasDecl *TypeAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3785   return new (C, ID) TypeAliasDecl(C, nullptr, SourceLocation(),
3786                                    SourceLocation(), nullptr, nullptr);
3787 }
3788
3789 SourceRange TypedefDecl::getSourceRange() const {
3790   SourceLocation RangeEnd = getLocation();
3791   if (TypeSourceInfo *TInfo = getTypeSourceInfo()) {
3792     if (typeIsPostfix(TInfo->getType()))
3793       RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
3794   }
3795   return SourceRange(getLocStart(), RangeEnd);
3796 }
3797
3798 SourceRange TypeAliasDecl::getSourceRange() const {
3799   SourceLocation RangeEnd = getLocStart();
3800   if (TypeSourceInfo *TInfo = getTypeSourceInfo())
3801     RangeEnd = TInfo->getTypeLoc().getSourceRange().getEnd();
3802   return SourceRange(getLocStart(), RangeEnd);
3803 }
3804
3805 void FileScopeAsmDecl::anchor() { }
3806
3807 FileScopeAsmDecl *FileScopeAsmDecl::Create(ASTContext &C, DeclContext *DC,
3808                                            StringLiteral *Str,
3809                                            SourceLocation AsmLoc,
3810                                            SourceLocation RParenLoc) {
3811   return new (C, DC) FileScopeAsmDecl(DC, Str, AsmLoc, RParenLoc);
3812 }
3813
3814 FileScopeAsmDecl *FileScopeAsmDecl::CreateDeserialized(ASTContext &C,
3815                                                        unsigned ID) {
3816   return new (C, ID) FileScopeAsmDecl(nullptr, nullptr, SourceLocation(),
3817                                       SourceLocation());
3818 }
3819
3820 void EmptyDecl::anchor() {}
3821
3822 EmptyDecl *EmptyDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation L) {
3823   return new (C, DC) EmptyDecl(DC, L);
3824 }
3825
3826 EmptyDecl *EmptyDecl::CreateDeserialized(ASTContext &C, unsigned ID) {
3827   return new (C, ID) EmptyDecl(nullptr, SourceLocation());
3828 }
3829
3830 //===----------------------------------------------------------------------===//
3831 // ImportDecl Implementation
3832 //===----------------------------------------------------------------------===//
3833
3834 /// \brief Retrieve the number of module identifiers needed to name the given
3835 /// module.
3836 static unsigned getNumModuleIdentifiers(Module *Mod) {
3837   unsigned Result = 1;
3838   while (Mod->Parent) {
3839     Mod = Mod->Parent;
3840     ++Result;
3841   }
3842   return Result;
3843 }
3844
3845 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc, 
3846                        Module *Imported,
3847                        ArrayRef<SourceLocation> IdentifierLocs)
3848   : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, true),
3849     NextLocalImport()
3850 {
3851   assert(getNumModuleIdentifiers(Imported) == IdentifierLocs.size());
3852   SourceLocation *StoredLocs = reinterpret_cast<SourceLocation *>(this + 1);
3853   memcpy(StoredLocs, IdentifierLocs.data(), 
3854          IdentifierLocs.size() * sizeof(SourceLocation));
3855 }
3856
3857 ImportDecl::ImportDecl(DeclContext *DC, SourceLocation StartLoc, 
3858                        Module *Imported, SourceLocation EndLoc)
3859   : Decl(Import, DC, StartLoc), ImportedAndComplete(Imported, false),
3860     NextLocalImport()
3861 {
3862   *reinterpret_cast<SourceLocation *>(this + 1) = EndLoc;
3863 }
3864
3865 ImportDecl *ImportDecl::Create(ASTContext &C, DeclContext *DC,
3866                                SourceLocation StartLoc, Module *Imported,
3867                                ArrayRef<SourceLocation> IdentifierLocs) {
3868   return new (C, DC, IdentifierLocs.size() * sizeof(SourceLocation))
3869       ImportDecl(DC, StartLoc, Imported, IdentifierLocs);
3870 }
3871
3872 ImportDecl *ImportDecl::CreateImplicit(ASTContext &C, DeclContext *DC,
3873                                        SourceLocation StartLoc,
3874                                        Module *Imported,
3875                                        SourceLocation EndLoc) {
3876   ImportDecl *Import =
3877       new (C, DC, sizeof(SourceLocation)) ImportDecl(DC, StartLoc,
3878                                                      Imported, EndLoc);
3879   Import->setImplicit();
3880   return Import;
3881 }
3882
3883 ImportDecl *ImportDecl::CreateDeserialized(ASTContext &C, unsigned ID,
3884                                            unsigned NumLocations) {
3885   return new (C, ID, NumLocations * sizeof(SourceLocation))
3886       ImportDecl(EmptyShell());
3887 }
3888
3889 ArrayRef<SourceLocation> ImportDecl::getIdentifierLocs() const {
3890   if (!ImportedAndComplete.getInt())
3891     return None;
3892
3893   const SourceLocation *StoredLocs
3894     = reinterpret_cast<const SourceLocation *>(this + 1);
3895   return ArrayRef<SourceLocation>(StoredLocs, 
3896                                   getNumModuleIdentifiers(getImportedModule()));
3897 }
3898
3899 SourceRange ImportDecl::getSourceRange() const {
3900   if (!ImportedAndComplete.getInt())
3901     return SourceRange(getLocation(), 
3902                        *reinterpret_cast<const SourceLocation *>(this + 1));
3903   
3904   return SourceRange(getLocation(), getIdentifierLocs().back());
3905 }