]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/AST/Expr.cpp
Upgrade to OpenSSH 6.7p1, retaining libwrap support (which has been removed
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / AST / Expr.cpp
1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Expr class and subclasses.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/AST/APValue.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/EvaluatedExprVisitor.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/Mangle.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/AST/StmtVisitor.h"
26 #include "clang/Basic/Builtins.h"
27 #include "clang/Basic/CharInfo.h"
28 #include "clang/Basic/SourceManager.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Lex/Lexer.h"
31 #include "clang/Lex/LiteralSupport.h"
32 #include "clang/Sema/SemaDiagnostic.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <algorithm>
36 #include <cstring>
37 using namespace clang;
38
39 const CXXRecordDecl *Expr::getBestDynamicClassType() const {
40   const Expr *E = ignoreParenBaseCasts();
41
42   QualType DerivedType = E->getType();
43   if (const PointerType *PTy = DerivedType->getAs<PointerType>())
44     DerivedType = PTy->getPointeeType();
45
46   if (DerivedType->isDependentType())
47     return nullptr;
48
49   const RecordType *Ty = DerivedType->castAs<RecordType>();
50   Decl *D = Ty->getDecl();
51   return cast<CXXRecordDecl>(D);
52 }
53
54 const Expr *Expr::skipRValueSubobjectAdjustments(
55     SmallVectorImpl<const Expr *> &CommaLHSs,
56     SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
57   const Expr *E = this;
58   while (true) {
59     E = E->IgnoreParens();
60
61     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
62       if ((CE->getCastKind() == CK_DerivedToBase ||
63            CE->getCastKind() == CK_UncheckedDerivedToBase) &&
64           E->getType()->isRecordType()) {
65         E = CE->getSubExpr();
66         CXXRecordDecl *Derived
67           = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
68         Adjustments.push_back(SubobjectAdjustment(CE, Derived));
69         continue;
70       }
71
72       if (CE->getCastKind() == CK_NoOp) {
73         E = CE->getSubExpr();
74         continue;
75       }
76     } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
77       if (!ME->isArrow()) {
78         assert(ME->getBase()->getType()->isRecordType());
79         if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
80           if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
81             E = ME->getBase();
82             Adjustments.push_back(SubobjectAdjustment(Field));
83             continue;
84           }
85         }
86       }
87     } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
88       if (BO->isPtrMemOp()) {
89         assert(BO->getRHS()->isRValue());
90         E = BO->getLHS();
91         const MemberPointerType *MPT =
92           BO->getRHS()->getType()->getAs<MemberPointerType>();
93         Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
94         continue;
95       } else if (BO->getOpcode() == BO_Comma) {
96         CommaLHSs.push_back(BO->getLHS());
97         E = BO->getRHS();
98         continue;
99       }
100     }
101
102     // Nothing changed.
103     break;
104   }
105   return E;
106 }
107
108 /// isKnownToHaveBooleanValue - Return true if this is an integer expression
109 /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
110 /// but also int expressions which are produced by things like comparisons in
111 /// C.
112 bool Expr::isKnownToHaveBooleanValue() const {
113   const Expr *E = IgnoreParens();
114
115   // If this value has _Bool type, it is obvious 0/1.
116   if (E->getType()->isBooleanType()) return true;
117   // If this is a non-scalar-integer type, we don't care enough to try. 
118   if (!E->getType()->isIntegralOrEnumerationType()) return false;
119   
120   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
121     switch (UO->getOpcode()) {
122     case UO_Plus:
123       return UO->getSubExpr()->isKnownToHaveBooleanValue();
124     case UO_LNot:
125       return true;
126     default:
127       return false;
128     }
129   }
130   
131   // Only look through implicit casts.  If the user writes
132   // '(int) (a && b)' treat it as an arbitrary int.
133   if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
134     return CE->getSubExpr()->isKnownToHaveBooleanValue();
135   
136   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
137     switch (BO->getOpcode()) {
138     default: return false;
139     case BO_LT:   // Relational operators.
140     case BO_GT:
141     case BO_LE:
142     case BO_GE:
143     case BO_EQ:   // Equality operators.
144     case BO_NE:
145     case BO_LAnd: // AND operator.
146     case BO_LOr:  // Logical OR operator.
147       return true;
148         
149     case BO_And:  // Bitwise AND operator.
150     case BO_Xor:  // Bitwise XOR operator.
151     case BO_Or:   // Bitwise OR operator.
152       // Handle things like (x==2)|(y==12).
153       return BO->getLHS()->isKnownToHaveBooleanValue() &&
154              BO->getRHS()->isKnownToHaveBooleanValue();
155         
156     case BO_Comma:
157     case BO_Assign:
158       return BO->getRHS()->isKnownToHaveBooleanValue();
159     }
160   }
161   
162   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
163     return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
164            CO->getFalseExpr()->isKnownToHaveBooleanValue();
165   
166   return false;
167 }
168
169 // Amusing macro metaprogramming hack: check whether a class provides
170 // a more specific implementation of getExprLoc().
171 //
172 // See also Stmt.cpp:{getLocStart(),getLocEnd()}.
173 namespace {
174   /// This implementation is used when a class provides a custom
175   /// implementation of getExprLoc.
176   template <class E, class T>
177   SourceLocation getExprLocImpl(const Expr *expr,
178                                 SourceLocation (T::*v)() const) {
179     return static_cast<const E*>(expr)->getExprLoc();
180   }
181
182   /// This implementation is used when a class doesn't provide
183   /// a custom implementation of getExprLoc.  Overload resolution
184   /// should pick it over the implementation above because it's
185   /// more specialized according to function template partial ordering.
186   template <class E>
187   SourceLocation getExprLocImpl(const Expr *expr,
188                                 SourceLocation (Expr::*v)() const) {
189     return static_cast<const E*>(expr)->getLocStart();
190   }
191 }
192
193 SourceLocation Expr::getExprLoc() const {
194   switch (getStmtClass()) {
195   case Stmt::NoStmtClass: llvm_unreachable("statement without class");
196 #define ABSTRACT_STMT(type)
197 #define STMT(type, base) \
198   case Stmt::type##Class: break;
199 #define EXPR(type, base) \
200   case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
201 #include "clang/AST/StmtNodes.inc"
202   }
203   llvm_unreachable("unknown expression kind");
204 }
205
206 //===----------------------------------------------------------------------===//
207 // Primary Expressions.
208 //===----------------------------------------------------------------------===//
209
210 /// \brief Compute the type-, value-, and instantiation-dependence of a 
211 /// declaration reference
212 /// based on the declaration being referenced.
213 static void computeDeclRefDependence(const ASTContext &Ctx, NamedDecl *D,
214                                      QualType T, bool &TypeDependent,
215                                      bool &ValueDependent,
216                                      bool &InstantiationDependent) {
217   TypeDependent = false;
218   ValueDependent = false;
219   InstantiationDependent = false;
220
221   // (TD) C++ [temp.dep.expr]p3:
222   //   An id-expression is type-dependent if it contains:
223   //
224   // and
225   //
226   // (VD) C++ [temp.dep.constexpr]p2:
227   //  An identifier is value-dependent if it is:
228
229   //  (TD)  - an identifier that was declared with dependent type
230   //  (VD)  - a name declared with a dependent type,
231   if (T->isDependentType()) {
232     TypeDependent = true;
233     ValueDependent = true;
234     InstantiationDependent = true;
235     return;
236   } else if (T->isInstantiationDependentType()) {
237     InstantiationDependent = true;
238   }
239   
240   //  (TD)  - a conversion-function-id that specifies a dependent type
241   if (D->getDeclName().getNameKind() 
242                                 == DeclarationName::CXXConversionFunctionName) {
243     QualType T = D->getDeclName().getCXXNameType();
244     if (T->isDependentType()) {
245       TypeDependent = true;
246       ValueDependent = true;
247       InstantiationDependent = true;
248       return;
249     }
250     
251     if (T->isInstantiationDependentType())
252       InstantiationDependent = true;
253   }
254   
255   //  (VD)  - the name of a non-type template parameter,
256   if (isa<NonTypeTemplateParmDecl>(D)) {
257     ValueDependent = true;
258     InstantiationDependent = true;
259     return;
260   }
261   
262   //  (VD) - a constant with integral or enumeration type and is
263   //         initialized with an expression that is value-dependent.
264   //  (VD) - a constant with literal type and is initialized with an
265   //         expression that is value-dependent [C++11].
266   //  (VD) - FIXME: Missing from the standard:
267   //       -  an entity with reference type and is initialized with an
268   //          expression that is value-dependent [C++11]
269   if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
270     if ((Ctx.getLangOpts().CPlusPlus11 ?
271            Var->getType()->isLiteralType(Ctx) :
272            Var->getType()->isIntegralOrEnumerationType()) &&
273         (Var->getType().isConstQualified() ||
274          Var->getType()->isReferenceType())) {
275       if (const Expr *Init = Var->getAnyInitializer())
276         if (Init->isValueDependent()) {
277           ValueDependent = true;
278           InstantiationDependent = true;
279         }
280     }
281
282     // (VD) - FIXME: Missing from the standard: 
283     //      -  a member function or a static data member of the current 
284     //         instantiation
285     if (Var->isStaticDataMember() && 
286         Var->getDeclContext()->isDependentContext()) {
287       ValueDependent = true;
288       InstantiationDependent = true;
289       TypeSourceInfo *TInfo = Var->getFirstDecl()->getTypeSourceInfo();
290       if (TInfo->getType()->isIncompleteArrayType())
291         TypeDependent = true;
292     }
293     
294     return;
295   }
296   
297   // (VD) - FIXME: Missing from the standard: 
298   //      -  a member function or a static data member of the current 
299   //         instantiation
300   if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
301     ValueDependent = true;
302     InstantiationDependent = true;
303   }
304 }
305
306 void DeclRefExpr::computeDependence(const ASTContext &Ctx) {
307   bool TypeDependent = false;
308   bool ValueDependent = false;
309   bool InstantiationDependent = false;
310   computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent,
311                            ValueDependent, InstantiationDependent);
312
313   ExprBits.TypeDependent |= TypeDependent;
314   ExprBits.ValueDependent |= ValueDependent;
315   ExprBits.InstantiationDependent |= InstantiationDependent;
316
317   // Is the declaration a parameter pack?
318   if (getDecl()->isParameterPack())
319     ExprBits.ContainsUnexpandedParameterPack = true;
320 }
321
322 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
323                          NestedNameSpecifierLoc QualifierLoc,
324                          SourceLocation TemplateKWLoc,
325                          ValueDecl *D, bool RefersToEnclosingVariableOrCapture,
326                          const DeclarationNameInfo &NameInfo,
327                          NamedDecl *FoundD,
328                          const TemplateArgumentListInfo *TemplateArgs,
329                          QualType T, ExprValueKind VK)
330   : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
331     D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
332   DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
333   if (QualifierLoc) {
334     getInternalQualifierLoc() = QualifierLoc;
335     auto *NNS = QualifierLoc.getNestedNameSpecifier();
336     if (NNS->isInstantiationDependent())
337       ExprBits.InstantiationDependent = true;
338     if (NNS->containsUnexpandedParameterPack())
339       ExprBits.ContainsUnexpandedParameterPack = true;
340   }
341   DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
342   if (FoundD)
343     getInternalFoundDecl() = FoundD;
344   DeclRefExprBits.HasTemplateKWAndArgsInfo
345     = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
346   DeclRefExprBits.RefersToEnclosingVariableOrCapture =
347       RefersToEnclosingVariableOrCapture;
348   if (TemplateArgs) {
349     bool Dependent = false;
350     bool InstantiationDependent = false;
351     bool ContainsUnexpandedParameterPack = false;
352     getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *TemplateArgs,
353                                                Dependent,
354                                                InstantiationDependent,
355                                                ContainsUnexpandedParameterPack);
356     assert(!Dependent && "built a DeclRefExpr with dependent template args");
357     ExprBits.InstantiationDependent |= InstantiationDependent;
358     ExprBits.ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack;
359   } else if (TemplateKWLoc.isValid()) {
360     getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
361   }
362   DeclRefExprBits.HadMultipleCandidates = 0;
363
364   computeDependence(Ctx);
365 }
366
367 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
368                                  NestedNameSpecifierLoc QualifierLoc,
369                                  SourceLocation TemplateKWLoc,
370                                  ValueDecl *D,
371                                  bool RefersToEnclosingVariableOrCapture,
372                                  SourceLocation NameLoc,
373                                  QualType T,
374                                  ExprValueKind VK,
375                                  NamedDecl *FoundD,
376                                  const TemplateArgumentListInfo *TemplateArgs) {
377   return Create(Context, QualifierLoc, TemplateKWLoc, D,
378                 RefersToEnclosingVariableOrCapture,
379                 DeclarationNameInfo(D->getDeclName(), NameLoc),
380                 T, VK, FoundD, TemplateArgs);
381 }
382
383 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
384                                  NestedNameSpecifierLoc QualifierLoc,
385                                  SourceLocation TemplateKWLoc,
386                                  ValueDecl *D,
387                                  bool RefersToEnclosingVariableOrCapture,
388                                  const DeclarationNameInfo &NameInfo,
389                                  QualType T,
390                                  ExprValueKind VK,
391                                  NamedDecl *FoundD,
392                                  const TemplateArgumentListInfo *TemplateArgs) {
393   // Filter out cases where the found Decl is the same as the value refenenced.
394   if (D == FoundD)
395     FoundD = nullptr;
396
397   std::size_t Size = sizeof(DeclRefExpr);
398   if (QualifierLoc)
399     Size += sizeof(NestedNameSpecifierLoc);
400   if (FoundD)
401     Size += sizeof(NamedDecl *);
402   if (TemplateArgs)
403     Size += ASTTemplateKWAndArgsInfo::sizeFor(TemplateArgs->size());
404   else if (TemplateKWLoc.isValid())
405     Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
406
407   void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
408   return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
409                                RefersToEnclosingVariableOrCapture,
410                                NameInfo, FoundD, TemplateArgs, T, VK);
411 }
412
413 DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context,
414                                       bool HasQualifier,
415                                       bool HasFoundDecl,
416                                       bool HasTemplateKWAndArgsInfo,
417                                       unsigned NumTemplateArgs) {
418   std::size_t Size = sizeof(DeclRefExpr);
419   if (HasQualifier)
420     Size += sizeof(NestedNameSpecifierLoc);
421   if (HasFoundDecl)
422     Size += sizeof(NamedDecl *);
423   if (HasTemplateKWAndArgsInfo)
424     Size += ASTTemplateKWAndArgsInfo::sizeFor(NumTemplateArgs);
425
426   void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
427   return new (Mem) DeclRefExpr(EmptyShell());
428 }
429
430 SourceLocation DeclRefExpr::getLocStart() const {
431   if (hasQualifier())
432     return getQualifierLoc().getBeginLoc();
433   return getNameInfo().getLocStart();
434 }
435 SourceLocation DeclRefExpr::getLocEnd() const {
436   if (hasExplicitTemplateArgs())
437     return getRAngleLoc();
438   return getNameInfo().getLocEnd();
439 }
440
441 PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentType IT,
442                                StringLiteral *SL)
443     : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary,
444            FNTy->isDependentType(), FNTy->isDependentType(),
445            FNTy->isInstantiationDependentType(),
446            /*ContainsUnexpandedParameterPack=*/false),
447       Loc(L), Type(IT), FnName(SL) {}
448
449 StringLiteral *PredefinedExpr::getFunctionName() {
450   return cast_or_null<StringLiteral>(FnName);
451 }
452
453 StringRef PredefinedExpr::getIdentTypeName(PredefinedExpr::IdentType IT) {
454   switch (IT) {
455   case Func:
456     return "__func__";
457   case Function:
458     return "__FUNCTION__";
459   case FuncDName:
460     return "__FUNCDNAME__";
461   case LFunction:
462     return "L__FUNCTION__";
463   case PrettyFunction:
464     return "__PRETTY_FUNCTION__";
465   case FuncSig:
466     return "__FUNCSIG__";
467   case PrettyFunctionNoVirtual:
468     break;
469   }
470   llvm_unreachable("Unknown ident type for PredefinedExpr");
471 }
472
473 // FIXME: Maybe this should use DeclPrinter with a special "print predefined
474 // expr" policy instead.
475 std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
476   ASTContext &Context = CurrentDecl->getASTContext();
477
478   if (IT == PredefinedExpr::FuncDName) {
479     if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) {
480       std::unique_ptr<MangleContext> MC;
481       MC.reset(Context.createMangleContext());
482
483       if (MC->shouldMangleDeclName(ND)) {
484         SmallString<256> Buffer;
485         llvm::raw_svector_ostream Out(Buffer);
486         if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND))
487           MC->mangleCXXCtor(CD, Ctor_Base, Out);
488         else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND))
489           MC->mangleCXXDtor(DD, Dtor_Base, Out);
490         else
491           MC->mangleName(ND, Out);
492
493         Out.flush();
494         if (!Buffer.empty() && Buffer.front() == '\01')
495           return Buffer.substr(1);
496         return Buffer.str();
497       } else
498         return ND->getIdentifier()->getName();
499     }
500     return "";
501   }
502   if (auto *BD = dyn_cast<BlockDecl>(CurrentDecl)) {
503     std::unique_ptr<MangleContext> MC;
504     MC.reset(Context.createMangleContext());
505     SmallString<256> Buffer;
506     llvm::raw_svector_ostream Out(Buffer);
507     auto DC = CurrentDecl->getDeclContext();
508     if (DC->isFileContext())
509       MC->mangleGlobalBlock(BD, /*ID*/ nullptr, Out);
510     else if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
511       MC->mangleCtorBlock(CD, /*CT*/ Ctor_Complete, BD, Out);
512     else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
513       MC->mangleDtorBlock(DD, /*DT*/ Dtor_Complete, BD, Out);
514     else
515       MC->mangleBlock(DC, BD, Out);
516     return Out.str();
517   }
518   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
519     if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual && IT != FuncSig)
520       return FD->getNameAsString();
521
522     SmallString<256> Name;
523     llvm::raw_svector_ostream Out(Name);
524
525     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
526       if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
527         Out << "virtual ";
528       if (MD->isStatic())
529         Out << "static ";
530     }
531
532     PrintingPolicy Policy(Context.getLangOpts());
533     std::string Proto;
534     llvm::raw_string_ostream POut(Proto);
535
536     const FunctionDecl *Decl = FD;
537     if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
538       Decl = Pattern;
539     const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
540     const FunctionProtoType *FT = nullptr;
541     if (FD->hasWrittenPrototype())
542       FT = dyn_cast<FunctionProtoType>(AFT);
543
544     if (IT == FuncSig) {
545       switch (FT->getCallConv()) {
546       case CC_C: POut << "__cdecl "; break;
547       case CC_X86StdCall: POut << "__stdcall "; break;
548       case CC_X86FastCall: POut << "__fastcall "; break;
549       case CC_X86ThisCall: POut << "__thiscall "; break;
550       case CC_X86VectorCall: POut << "__vectorcall "; break;
551       // Only bother printing the conventions that MSVC knows about.
552       default: break;
553       }
554     }
555
556     FD->printQualifiedName(POut, Policy);
557
558     POut << "(";
559     if (FT) {
560       for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
561         if (i) POut << ", ";
562         POut << Decl->getParamDecl(i)->getType().stream(Policy);
563       }
564
565       if (FT->isVariadic()) {
566         if (FD->getNumParams()) POut << ", ";
567         POut << "...";
568       }
569     }
570     POut << ")";
571
572     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
573       const FunctionType *FT = MD->getType()->castAs<FunctionType>();
574       if (FT->isConst())
575         POut << " const";
576       if (FT->isVolatile())
577         POut << " volatile";
578       RefQualifierKind Ref = MD->getRefQualifier();
579       if (Ref == RQ_LValue)
580         POut << " &";
581       else if (Ref == RQ_RValue)
582         POut << " &&";
583     }
584
585     typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
586     SpecsTy Specs;
587     const DeclContext *Ctx = FD->getDeclContext();
588     while (Ctx && isa<NamedDecl>(Ctx)) {
589       const ClassTemplateSpecializationDecl *Spec
590                                = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
591       if (Spec && !Spec->isExplicitSpecialization())
592         Specs.push_back(Spec);
593       Ctx = Ctx->getParent();
594     }
595
596     std::string TemplateParams;
597     llvm::raw_string_ostream TOut(TemplateParams);
598     for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
599          I != E; ++I) {
600       const TemplateParameterList *Params 
601                   = (*I)->getSpecializedTemplate()->getTemplateParameters();
602       const TemplateArgumentList &Args = (*I)->getTemplateArgs();
603       assert(Params->size() == Args.size());
604       for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
605         StringRef Param = Params->getParam(i)->getName();
606         if (Param.empty()) continue;
607         TOut << Param << " = ";
608         Args.get(i).print(Policy, TOut);
609         TOut << ", ";
610       }
611     }
612
613     FunctionTemplateSpecializationInfo *FSI 
614                                           = FD->getTemplateSpecializationInfo();
615     if (FSI && !FSI->isExplicitSpecialization()) {
616       const TemplateParameterList* Params 
617                                   = FSI->getTemplate()->getTemplateParameters();
618       const TemplateArgumentList* Args = FSI->TemplateArguments;
619       assert(Params->size() == Args->size());
620       for (unsigned i = 0, e = Params->size(); i != e; ++i) {
621         StringRef Param = Params->getParam(i)->getName();
622         if (Param.empty()) continue;
623         TOut << Param << " = ";
624         Args->get(i).print(Policy, TOut);
625         TOut << ", ";
626       }
627     }
628
629     TOut.flush();
630     if (!TemplateParams.empty()) {
631       // remove the trailing comma and space
632       TemplateParams.resize(TemplateParams.size() - 2);
633       POut << " [" << TemplateParams << "]";
634     }
635
636     POut.flush();
637
638     // Print "auto" for all deduced return types. This includes C++1y return
639     // type deduction and lambdas. For trailing return types resolve the
640     // decltype expression. Otherwise print the real type when this is
641     // not a constructor or destructor.
642     if (isa<CXXMethodDecl>(FD) &&
643          cast<CXXMethodDecl>(FD)->getParent()->isLambda())
644       Proto = "auto " + Proto;
645     else if (FT && FT->getReturnType()->getAs<DecltypeType>())
646       FT->getReturnType()
647           ->getAs<DecltypeType>()
648           ->getUnderlyingType()
649           .getAsStringInternal(Proto, Policy);
650     else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
651       AFT->getReturnType().getAsStringInternal(Proto, Policy);
652
653     Out << Proto;
654
655     Out.flush();
656     return Name.str().str();
657   }
658   if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) {
659     for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
660       // Skip to its enclosing function or method, but not its enclosing
661       // CapturedDecl.
662       if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
663         const Decl *D = Decl::castFromDeclContext(DC);
664         return ComputeName(IT, D);
665       }
666     llvm_unreachable("CapturedDecl not inside a function or method");
667   }
668   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
669     SmallString<256> Name;
670     llvm::raw_svector_ostream Out(Name);
671     Out << (MD->isInstanceMethod() ? '-' : '+');
672     Out << '[';
673
674     // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
675     // a null check to avoid a crash.
676     if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
677       Out << *ID;
678
679     if (const ObjCCategoryImplDecl *CID =
680         dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
681       Out << '(' << *CID << ')';
682
683     Out <<  ' ';
684     MD->getSelector().print(Out);
685     Out <<  ']';
686
687     Out.flush();
688     return Name.str().str();
689   }
690   if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
691     // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
692     return "top level";
693   }
694   return "";
695 }
696
697 void APNumericStorage::setIntValue(const ASTContext &C,
698                                    const llvm::APInt &Val) {
699   if (hasAllocation())
700     C.Deallocate(pVal);
701
702   BitWidth = Val.getBitWidth();
703   unsigned NumWords = Val.getNumWords();
704   const uint64_t* Words = Val.getRawData();
705   if (NumWords > 1) {
706     pVal = new (C) uint64_t[NumWords];
707     std::copy(Words, Words + NumWords, pVal);
708   } else if (NumWords == 1)
709     VAL = Words[0];
710   else
711     VAL = 0;
712 }
713
714 IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
715                                QualType type, SourceLocation l)
716   : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
717          false, false),
718     Loc(l) {
719   assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
720   assert(V.getBitWidth() == C.getIntWidth(type) &&
721          "Integer type is not the correct size for constant.");
722   setValue(C, V);
723 }
724
725 IntegerLiteral *
726 IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
727                        QualType type, SourceLocation l) {
728   return new (C) IntegerLiteral(C, V, type, l);
729 }
730
731 IntegerLiteral *
732 IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) {
733   return new (C) IntegerLiteral(Empty);
734 }
735
736 FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
737                                  bool isexact, QualType Type, SourceLocation L)
738   : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
739          false, false), Loc(L) {
740   setSemantics(V.getSemantics());
741   FloatingLiteralBits.IsExact = isexact;
742   setValue(C, V);
743 }
744
745 FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
746   : Expr(FloatingLiteralClass, Empty) {
747   setRawSemantics(IEEEhalf);
748   FloatingLiteralBits.IsExact = false;
749 }
750
751 FloatingLiteral *
752 FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
753                         bool isexact, QualType Type, SourceLocation L) {
754   return new (C) FloatingLiteral(C, V, isexact, Type, L);
755 }
756
757 FloatingLiteral *
758 FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) {
759   return new (C) FloatingLiteral(C, Empty);
760 }
761
762 const llvm::fltSemantics &FloatingLiteral::getSemantics() const {
763   switch(FloatingLiteralBits.Semantics) {
764   case IEEEhalf:
765     return llvm::APFloat::IEEEhalf;
766   case IEEEsingle:
767     return llvm::APFloat::IEEEsingle;
768   case IEEEdouble:
769     return llvm::APFloat::IEEEdouble;
770   case x87DoubleExtended:
771     return llvm::APFloat::x87DoubleExtended;
772   case IEEEquad:
773     return llvm::APFloat::IEEEquad;
774   case PPCDoubleDouble:
775     return llvm::APFloat::PPCDoubleDouble;
776   }
777   llvm_unreachable("Unrecognised floating semantics");
778 }
779
780 void FloatingLiteral::setSemantics(const llvm::fltSemantics &Sem) {
781   if (&Sem == &llvm::APFloat::IEEEhalf)
782     FloatingLiteralBits.Semantics = IEEEhalf;
783   else if (&Sem == &llvm::APFloat::IEEEsingle)
784     FloatingLiteralBits.Semantics = IEEEsingle;
785   else if (&Sem == &llvm::APFloat::IEEEdouble)
786     FloatingLiteralBits.Semantics = IEEEdouble;
787   else if (&Sem == &llvm::APFloat::x87DoubleExtended)
788     FloatingLiteralBits.Semantics = x87DoubleExtended;
789   else if (&Sem == &llvm::APFloat::IEEEquad)
790     FloatingLiteralBits.Semantics = IEEEquad;
791   else if (&Sem == &llvm::APFloat::PPCDoubleDouble)
792     FloatingLiteralBits.Semantics = PPCDoubleDouble;
793   else
794     llvm_unreachable("Unknown floating semantics");
795 }
796
797 /// getValueAsApproximateDouble - This returns the value as an inaccurate
798 /// double.  Note that this may cause loss of precision, but is useful for
799 /// debugging dumps, etc.
800 double FloatingLiteral::getValueAsApproximateDouble() const {
801   llvm::APFloat V = getValue();
802   bool ignored;
803   V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
804             &ignored);
805   return V.convertToDouble();
806 }
807
808 int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) {
809   int CharByteWidth = 0;
810   switch(k) {
811     case Ascii:
812     case UTF8:
813       CharByteWidth = target.getCharWidth();
814       break;
815     case Wide:
816       CharByteWidth = target.getWCharWidth();
817       break;
818     case UTF16:
819       CharByteWidth = target.getChar16Width();
820       break;
821     case UTF32:
822       CharByteWidth = target.getChar32Width();
823       break;
824   }
825   assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
826   CharByteWidth /= 8;
827   assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4)
828          && "character byte widths supported are 1, 2, and 4 only");
829   return CharByteWidth;
830 }
831
832 StringLiteral *StringLiteral::Create(const ASTContext &C, StringRef Str,
833                                      StringKind Kind, bool Pascal, QualType Ty,
834                                      const SourceLocation *Loc,
835                                      unsigned NumStrs) {
836   assert(C.getAsConstantArrayType(Ty) &&
837          "StringLiteral must be of constant array type!");
838
839   // Allocate enough space for the StringLiteral plus an array of locations for
840   // any concatenated string tokens.
841   void *Mem = C.Allocate(sizeof(StringLiteral)+
842                          sizeof(SourceLocation)*(NumStrs-1),
843                          llvm::alignOf<StringLiteral>());
844   StringLiteral *SL = new (Mem) StringLiteral(Ty);
845
846   // OPTIMIZE: could allocate this appended to the StringLiteral.
847   SL->setString(C,Str,Kind,Pascal);
848
849   SL->TokLocs[0] = Loc[0];
850   SL->NumConcatenated = NumStrs;
851
852   if (NumStrs != 1)
853     memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
854   return SL;
855 }
856
857 StringLiteral *StringLiteral::CreateEmpty(const ASTContext &C,
858                                           unsigned NumStrs) {
859   void *Mem = C.Allocate(sizeof(StringLiteral)+
860                          sizeof(SourceLocation)*(NumStrs-1),
861                          llvm::alignOf<StringLiteral>());
862   StringLiteral *SL = new (Mem) StringLiteral(QualType());
863   SL->CharByteWidth = 0;
864   SL->Length = 0;
865   SL->NumConcatenated = NumStrs;
866   return SL;
867 }
868
869 void StringLiteral::outputString(raw_ostream &OS) const {
870   switch (getKind()) {
871   case Ascii: break; // no prefix.
872   case Wide:  OS << 'L'; break;
873   case UTF8:  OS << "u8"; break;
874   case UTF16: OS << 'u'; break;
875   case UTF32: OS << 'U'; break;
876   }
877   OS << '"';
878   static const char Hex[] = "0123456789ABCDEF";
879
880   unsigned LastSlashX = getLength();
881   for (unsigned I = 0, N = getLength(); I != N; ++I) {
882     switch (uint32_t Char = getCodeUnit(I)) {
883     default:
884       // FIXME: Convert UTF-8 back to codepoints before rendering.
885
886       // Convert UTF-16 surrogate pairs back to codepoints before rendering.
887       // Leave invalid surrogates alone; we'll use \x for those.
888       if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 && 
889           Char <= 0xdbff) {
890         uint32_t Trail = getCodeUnit(I + 1);
891         if (Trail >= 0xdc00 && Trail <= 0xdfff) {
892           Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
893           ++I;
894         }
895       }
896
897       if (Char > 0xff) {
898         // If this is a wide string, output characters over 0xff using \x
899         // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
900         // codepoint: use \x escapes for invalid codepoints.
901         if (getKind() == Wide ||
902             (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
903           // FIXME: Is this the best way to print wchar_t?
904           OS << "\\x";
905           int Shift = 28;
906           while ((Char >> Shift) == 0)
907             Shift -= 4;
908           for (/**/; Shift >= 0; Shift -= 4)
909             OS << Hex[(Char >> Shift) & 15];
910           LastSlashX = I;
911           break;
912         }
913
914         if (Char > 0xffff)
915           OS << "\\U00"
916              << Hex[(Char >> 20) & 15]
917              << Hex[(Char >> 16) & 15];
918         else
919           OS << "\\u";
920         OS << Hex[(Char >> 12) & 15]
921            << Hex[(Char >>  8) & 15]
922            << Hex[(Char >>  4) & 15]
923            << Hex[(Char >>  0) & 15];
924         break;
925       }
926
927       // If we used \x... for the previous character, and this character is a
928       // hexadecimal digit, prevent it being slurped as part of the \x.
929       if (LastSlashX + 1 == I) {
930         switch (Char) {
931           case '0': case '1': case '2': case '3': case '4':
932           case '5': case '6': case '7': case '8': case '9':
933           case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
934           case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
935             OS << "\"\"";
936         }
937       }
938
939       assert(Char <= 0xff &&
940              "Characters above 0xff should already have been handled.");
941
942       if (isPrintable(Char))
943         OS << (char)Char;
944       else  // Output anything hard as an octal escape.
945         OS << '\\'
946            << (char)('0' + ((Char >> 6) & 7))
947            << (char)('0' + ((Char >> 3) & 7))
948            << (char)('0' + ((Char >> 0) & 7));
949       break;
950     // Handle some common non-printable cases to make dumps prettier.
951     case '\\': OS << "\\\\"; break;
952     case '"': OS << "\\\""; break;
953     case '\n': OS << "\\n"; break;
954     case '\t': OS << "\\t"; break;
955     case '\a': OS << "\\a"; break;
956     case '\b': OS << "\\b"; break;
957     }
958   }
959   OS << '"';
960 }
961
962 void StringLiteral::setString(const ASTContext &C, StringRef Str,
963                               StringKind Kind, bool IsPascal) {
964   //FIXME: we assume that the string data comes from a target that uses the same
965   // code unit size and endianess for the type of string.
966   this->Kind = Kind;
967   this->IsPascal = IsPascal;
968   
969   CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind);
970   assert((Str.size()%CharByteWidth == 0)
971          && "size of data must be multiple of CharByteWidth");
972   Length = Str.size()/CharByteWidth;
973
974   switch(CharByteWidth) {
975     case 1: {
976       char *AStrData = new (C) char[Length];
977       std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
978       StrData.asChar = AStrData;
979       break;
980     }
981     case 2: {
982       uint16_t *AStrData = new (C) uint16_t[Length];
983       std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
984       StrData.asUInt16 = AStrData;
985       break;
986     }
987     case 4: {
988       uint32_t *AStrData = new (C) uint32_t[Length];
989       std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
990       StrData.asUInt32 = AStrData;
991       break;
992     }
993     default:
994       assert(false && "unsupported CharByteWidth");
995   }
996 }
997
998 /// getLocationOfByte - Return a source location that points to the specified
999 /// byte of this string literal.
1000 ///
1001 /// Strings are amazingly complex.  They can be formed from multiple tokens and
1002 /// can have escape sequences in them in addition to the usual trigraph and
1003 /// escaped newline business.  This routine handles this complexity.
1004 ///
1005 SourceLocation StringLiteral::
1006 getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1007                   const LangOptions &Features, const TargetInfo &Target) const {
1008   assert((Kind == StringLiteral::Ascii || Kind == StringLiteral::UTF8) &&
1009          "Only narrow string literals are currently supported");
1010
1011   // Loop over all of the tokens in this string until we find the one that
1012   // contains the byte we're looking for.
1013   unsigned TokNo = 0;
1014   while (1) {
1015     assert(TokNo < getNumConcatenated() && "Invalid byte number!");
1016     SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
1017     
1018     // Get the spelling of the string so that we can get the data that makes up
1019     // the string literal, not the identifier for the macro it is potentially
1020     // expanded through.
1021     SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
1022     
1023     // Re-lex the token to get its length and original spelling.
1024     std::pair<FileID, unsigned> LocInfo =SM.getDecomposedLoc(StrTokSpellingLoc);
1025     bool Invalid = false;
1026     StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
1027     if (Invalid)
1028       return StrTokSpellingLoc;
1029     
1030     const char *StrData = Buffer.data()+LocInfo.second;
1031     
1032     // Create a lexer starting at the beginning of this token.
1033     Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
1034                    Buffer.begin(), StrData, Buffer.end());
1035     Token TheTok;
1036     TheLexer.LexFromRawLexer(TheTok);
1037     
1038     // Use the StringLiteralParser to compute the length of the string in bytes.
1039     StringLiteralParser SLP(TheTok, SM, Features, Target);
1040     unsigned TokNumBytes = SLP.GetStringLength();
1041     
1042     // If the byte is in this token, return the location of the byte.
1043     if (ByteNo < TokNumBytes ||
1044         (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
1045       unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo); 
1046       
1047       // Now that we know the offset of the token in the spelling, use the
1048       // preprocessor to get the offset in the original source.
1049       return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
1050     }
1051     
1052     // Move to the next string token.
1053     ++TokNo;
1054     ByteNo -= TokNumBytes;
1055   }
1056 }
1057
1058
1059
1060 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1061 /// corresponds to, e.g. "sizeof" or "[pre]++".
1062 StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
1063   switch (Op) {
1064   case UO_PostInc: return "++";
1065   case UO_PostDec: return "--";
1066   case UO_PreInc:  return "++";
1067   case UO_PreDec:  return "--";
1068   case UO_AddrOf:  return "&";
1069   case UO_Deref:   return "*";
1070   case UO_Plus:    return "+";
1071   case UO_Minus:   return "-";
1072   case UO_Not:     return "~";
1073   case UO_LNot:    return "!";
1074   case UO_Real:    return "__real";
1075   case UO_Imag:    return "__imag";
1076   case UO_Extension: return "__extension__";
1077   }
1078   llvm_unreachable("Unknown unary operator");
1079 }
1080
1081 UnaryOperatorKind
1082 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
1083   switch (OO) {
1084   default: llvm_unreachable("No unary operator for overloaded function");
1085   case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc;
1086   case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
1087   case OO_Amp:        return UO_AddrOf;
1088   case OO_Star:       return UO_Deref;
1089   case OO_Plus:       return UO_Plus;
1090   case OO_Minus:      return UO_Minus;
1091   case OO_Tilde:      return UO_Not;
1092   case OO_Exclaim:    return UO_LNot;
1093   }
1094 }
1095
1096 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
1097   switch (Opc) {
1098   case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
1099   case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
1100   case UO_AddrOf: return OO_Amp;
1101   case UO_Deref: return OO_Star;
1102   case UO_Plus: return OO_Plus;
1103   case UO_Minus: return OO_Minus;
1104   case UO_Not: return OO_Tilde;
1105   case UO_LNot: return OO_Exclaim;
1106   default: return OO_None;
1107   }
1108 }
1109
1110
1111 //===----------------------------------------------------------------------===//
1112 // Postfix Operators.
1113 //===----------------------------------------------------------------------===//
1114
1115 CallExpr::CallExpr(const ASTContext& C, StmtClass SC, Expr *fn,
1116                    unsigned NumPreArgs, ArrayRef<Expr*> args, QualType t,
1117                    ExprValueKind VK, SourceLocation rparenloc)
1118   : Expr(SC, t, VK, OK_Ordinary,
1119          fn->isTypeDependent(),
1120          fn->isValueDependent(),
1121          fn->isInstantiationDependent(),
1122          fn->containsUnexpandedParameterPack()),
1123     NumArgs(args.size()) {
1124
1125   SubExprs = new (C) Stmt*[args.size()+PREARGS_START+NumPreArgs];
1126   SubExprs[FN] = fn;
1127   for (unsigned i = 0; i != args.size(); ++i) {
1128     if (args[i]->isTypeDependent())
1129       ExprBits.TypeDependent = true;
1130     if (args[i]->isValueDependent())
1131       ExprBits.ValueDependent = true;
1132     if (args[i]->isInstantiationDependent())
1133       ExprBits.InstantiationDependent = true;
1134     if (args[i]->containsUnexpandedParameterPack())
1135       ExprBits.ContainsUnexpandedParameterPack = true;
1136
1137     SubExprs[i+PREARGS_START+NumPreArgs] = args[i];
1138   }
1139
1140   CallExprBits.NumPreArgs = NumPreArgs;
1141   RParenLoc = rparenloc;
1142 }
1143
1144 CallExpr::CallExpr(const ASTContext &C, Expr *fn, ArrayRef<Expr *> args,
1145                    QualType t, ExprValueKind VK, SourceLocation rparenloc)
1146     : CallExpr(C, CallExprClass, fn, /*NumPreArgs=*/0, args, t, VK, rparenloc) {
1147 }
1148
1149 CallExpr::CallExpr(const ASTContext &C, StmtClass SC, EmptyShell Empty)
1150     : CallExpr(C, SC, /*NumPreArgs=*/0, Empty) {}
1151
1152 CallExpr::CallExpr(const ASTContext &C, StmtClass SC, unsigned NumPreArgs,
1153                    EmptyShell Empty)
1154   : Expr(SC, Empty), SubExprs(nullptr), NumArgs(0) {
1155   // FIXME: Why do we allocate this?
1156   SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs];
1157   CallExprBits.NumPreArgs = NumPreArgs;
1158 }
1159
1160 Decl *CallExpr::getCalleeDecl() {
1161   Expr *CEE = getCallee()->IgnoreParenImpCasts();
1162     
1163   while (SubstNonTypeTemplateParmExpr *NTTP
1164                                 = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
1165     CEE = NTTP->getReplacement()->IgnoreParenCasts();
1166   }
1167   
1168   // If we're calling a dereference, look at the pointer instead.
1169   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
1170     if (BO->isPtrMemOp())
1171       CEE = BO->getRHS()->IgnoreParenCasts();
1172   } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
1173     if (UO->getOpcode() == UO_Deref)
1174       CEE = UO->getSubExpr()->IgnoreParenCasts();
1175   }
1176   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
1177     return DRE->getDecl();
1178   if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
1179     return ME->getMemberDecl();
1180
1181   return nullptr;
1182 }
1183
1184 FunctionDecl *CallExpr::getDirectCallee() {
1185   return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
1186 }
1187
1188 /// setNumArgs - This changes the number of arguments present in this call.
1189 /// Any orphaned expressions are deleted by this, and any new operands are set
1190 /// to null.
1191 void CallExpr::setNumArgs(const ASTContext& C, unsigned NumArgs) {
1192   // No change, just return.
1193   if (NumArgs == getNumArgs()) return;
1194
1195   // If shrinking # arguments, just delete the extras and forgot them.
1196   if (NumArgs < getNumArgs()) {
1197     this->NumArgs = NumArgs;
1198     return;
1199   }
1200
1201   // Otherwise, we are growing the # arguments.  New an bigger argument array.
1202   unsigned NumPreArgs = getNumPreArgs();
1203   Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs];
1204   // Copy over args.
1205   for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i)
1206     NewSubExprs[i] = SubExprs[i];
1207   // Null out new args.
1208   for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs;
1209        i != NumArgs+PREARGS_START+NumPreArgs; ++i)
1210     NewSubExprs[i] = nullptr;
1211
1212   if (SubExprs) C.Deallocate(SubExprs);
1213   SubExprs = NewSubExprs;
1214   this->NumArgs = NumArgs;
1215 }
1216
1217 /// getBuiltinCallee - If this is a call to a builtin, return the builtin ID. If
1218 /// not, return 0.
1219 unsigned CallExpr::getBuiltinCallee() const {
1220   // All simple function calls (e.g. func()) are implicitly cast to pointer to
1221   // function. As a result, we try and obtain the DeclRefExpr from the
1222   // ImplicitCastExpr.
1223   const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
1224   if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
1225     return 0;
1226
1227   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
1228   if (!DRE)
1229     return 0;
1230
1231   const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
1232   if (!FDecl)
1233     return 0;
1234
1235   if (!FDecl->getIdentifier())
1236     return 0;
1237
1238   return FDecl->getBuiltinID();
1239 }
1240
1241 bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const {
1242   if (unsigned BI = getBuiltinCallee())
1243     return Ctx.BuiltinInfo.isUnevaluated(BI);
1244   return false;
1245 }
1246
1247 QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const {
1248   const Expr *Callee = getCallee();
1249   QualType CalleeType = Callee->getType();
1250   if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) {
1251     CalleeType = FnTypePtr->getPointeeType();
1252   } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) {
1253     CalleeType = BPT->getPointeeType();
1254   } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
1255     if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens()))
1256       return Ctx.VoidTy;
1257
1258     // This should never be overloaded and so should never return null.
1259     CalleeType = Expr::findBoundMemberType(Callee);
1260   }
1261
1262   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
1263   return FnType->getReturnType();
1264 }
1265
1266 SourceLocation CallExpr::getLocStart() const {
1267   if (isa<CXXOperatorCallExpr>(this))
1268     return cast<CXXOperatorCallExpr>(this)->getLocStart();
1269
1270   SourceLocation begin = getCallee()->getLocStart();
1271   if (begin.isInvalid() && getNumArgs() > 0 && getArg(0))
1272     begin = getArg(0)->getLocStart();
1273   return begin;
1274 }
1275 SourceLocation CallExpr::getLocEnd() const {
1276   if (isa<CXXOperatorCallExpr>(this))
1277     return cast<CXXOperatorCallExpr>(this)->getLocEnd();
1278
1279   SourceLocation end = getRParenLoc();
1280   if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1))
1281     end = getArg(getNumArgs() - 1)->getLocEnd();
1282   return end;
1283 }
1284
1285 OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type,
1286                                    SourceLocation OperatorLoc,
1287                                    TypeSourceInfo *tsi, 
1288                                    ArrayRef<OffsetOfNode> comps,
1289                                    ArrayRef<Expr*> exprs,
1290                                    SourceLocation RParenLoc) {
1291   void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
1292                          sizeof(OffsetOfNode) * comps.size() +
1293                          sizeof(Expr*) * exprs.size());
1294
1295   return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
1296                                 RParenLoc);
1297 }
1298
1299 OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C,
1300                                         unsigned numComps, unsigned numExprs) {
1301   void *Mem = C.Allocate(sizeof(OffsetOfExpr) +
1302                          sizeof(OffsetOfNode) * numComps +
1303                          sizeof(Expr*) * numExprs);
1304   return new (Mem) OffsetOfExpr(numComps, numExprs);
1305 }
1306
1307 OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
1308                            SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1309                            ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
1310                            SourceLocation RParenLoc)
1311   : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
1312          /*TypeDependent=*/false, 
1313          /*ValueDependent=*/tsi->getType()->isDependentType(),
1314          tsi->getType()->isInstantiationDependentType(),
1315          tsi->getType()->containsUnexpandedParameterPack()),
1316     OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi), 
1317     NumComps(comps.size()), NumExprs(exprs.size())
1318 {
1319   for (unsigned i = 0; i != comps.size(); ++i) {
1320     setComponent(i, comps[i]);
1321   }
1322   
1323   for (unsigned i = 0; i != exprs.size(); ++i) {
1324     if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent())
1325       ExprBits.ValueDependent = true;
1326     if (exprs[i]->containsUnexpandedParameterPack())
1327       ExprBits.ContainsUnexpandedParameterPack = true;
1328
1329     setIndexExpr(i, exprs[i]);
1330   }
1331 }
1332
1333 IdentifierInfo *OffsetOfExpr::OffsetOfNode::getFieldName() const {
1334   assert(getKind() == Field || getKind() == Identifier);
1335   if (getKind() == Field)
1336     return getField()->getIdentifier();
1337   
1338   return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1339 }
1340
1341 UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr(
1342     UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType,
1343     SourceLocation op, SourceLocation rp)
1344     : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1345            false, // Never type-dependent (C++ [temp.dep.expr]p3).
1346            // Value-dependent if the argument is type-dependent.
1347            E->isTypeDependent(), E->isInstantiationDependent(),
1348            E->containsUnexpandedParameterPack()),
1349       OpLoc(op), RParenLoc(rp) {
1350   UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1351   UnaryExprOrTypeTraitExprBits.IsType = false;
1352   Argument.Ex = E;
1353
1354   // Check to see if we are in the situation where alignof(decl) should be
1355   // dependent because decl's alignment is dependent.
1356   if (ExprKind == UETT_AlignOf) {
1357     if (!isValueDependent() || !isInstantiationDependent()) {
1358       E = E->IgnoreParens();
1359
1360       const ValueDecl *D = nullptr;
1361       if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
1362         D = DRE->getDecl();
1363       else if (const auto *ME = dyn_cast<MemberExpr>(E))
1364         D = ME->getMemberDecl();
1365
1366       if (D) {
1367         for (const auto *I : D->specific_attrs<AlignedAttr>()) {
1368           if (I->isAlignmentDependent()) {
1369             setValueDependent(true);
1370             setInstantiationDependent(true);
1371             break;
1372           }
1373         }
1374       }
1375     }
1376   }
1377 }
1378
1379 MemberExpr *MemberExpr::Create(
1380     const ASTContext &C, Expr *base, bool isarrow, SourceLocation OperatorLoc,
1381     NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
1382     ValueDecl *memberdecl, DeclAccessPair founddecl,
1383     DeclarationNameInfo nameinfo, const TemplateArgumentListInfo *targs,
1384     QualType ty, ExprValueKind vk, ExprObjectKind ok) {
1385   std::size_t Size = sizeof(MemberExpr);
1386
1387   bool hasQualOrFound = (QualifierLoc ||
1388                          founddecl.getDecl() != memberdecl ||
1389                          founddecl.getAccess() != memberdecl->getAccess());
1390   if (hasQualOrFound)
1391     Size += sizeof(MemberNameQualifier);
1392
1393   if (targs)
1394     Size += ASTTemplateKWAndArgsInfo::sizeFor(targs->size());
1395   else if (TemplateKWLoc.isValid())
1396     Size += ASTTemplateKWAndArgsInfo::sizeFor(0);
1397
1398   void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>());
1399   MemberExpr *E = new (Mem)
1400       MemberExpr(base, isarrow, OperatorLoc, memberdecl, nameinfo, ty, vk, ok);
1401
1402   if (hasQualOrFound) {
1403     // FIXME: Wrong. We should be looking at the member declaration we found.
1404     if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
1405       E->setValueDependent(true);
1406       E->setTypeDependent(true);
1407       E->setInstantiationDependent(true);
1408     } 
1409     else if (QualifierLoc && 
1410              QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent()) 
1411       E->setInstantiationDependent(true);
1412     
1413     E->HasQualifierOrFoundDecl = true;
1414
1415     MemberNameQualifier *NQ = E->getMemberQualifier();
1416     NQ->QualifierLoc = QualifierLoc;
1417     NQ->FoundDecl = founddecl;
1418   }
1419
1420   E->HasTemplateKWAndArgsInfo = (targs || TemplateKWLoc.isValid());
1421
1422   if (targs) {
1423     bool Dependent = false;
1424     bool InstantiationDependent = false;
1425     bool ContainsUnexpandedParameterPack = false;
1426     E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc, *targs,
1427                                                   Dependent,
1428                                                   InstantiationDependent,
1429                                              ContainsUnexpandedParameterPack);
1430     if (InstantiationDependent)
1431       E->setInstantiationDependent(true);
1432   } else if (TemplateKWLoc.isValid()) {
1433     E->getTemplateKWAndArgsInfo()->initializeFrom(TemplateKWLoc);
1434   }
1435
1436   return E;
1437 }
1438
1439 SourceLocation MemberExpr::getLocStart() const {
1440   if (isImplicitAccess()) {
1441     if (hasQualifier())
1442       return getQualifierLoc().getBeginLoc();
1443     return MemberLoc;
1444   }
1445
1446   // FIXME: We don't want this to happen. Rather, we should be able to
1447   // detect all kinds of implicit accesses more cleanly.
1448   SourceLocation BaseStartLoc = getBase()->getLocStart();
1449   if (BaseStartLoc.isValid())
1450     return BaseStartLoc;
1451   return MemberLoc;
1452 }
1453 SourceLocation MemberExpr::getLocEnd() const {
1454   SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
1455   if (hasExplicitTemplateArgs())
1456     EndLoc = getRAngleLoc();
1457   else if (EndLoc.isInvalid())
1458     EndLoc = getBase()->getLocEnd();
1459   return EndLoc;
1460 }
1461
1462 bool CastExpr::CastConsistency() const {
1463   switch (getCastKind()) {
1464   case CK_DerivedToBase:
1465   case CK_UncheckedDerivedToBase:
1466   case CK_DerivedToBaseMemberPointer:
1467   case CK_BaseToDerived:
1468   case CK_BaseToDerivedMemberPointer:
1469     assert(!path_empty() && "Cast kind should have a base path!");
1470     break;
1471
1472   case CK_CPointerToObjCPointerCast:
1473     assert(getType()->isObjCObjectPointerType());
1474     assert(getSubExpr()->getType()->isPointerType());
1475     goto CheckNoBasePath;
1476
1477   case CK_BlockPointerToObjCPointerCast:
1478     assert(getType()->isObjCObjectPointerType());
1479     assert(getSubExpr()->getType()->isBlockPointerType());
1480     goto CheckNoBasePath;
1481
1482   case CK_ReinterpretMemberPointer:
1483     assert(getType()->isMemberPointerType());
1484     assert(getSubExpr()->getType()->isMemberPointerType());
1485     goto CheckNoBasePath;
1486
1487   case CK_BitCast:
1488     // Arbitrary casts to C pointer types count as bitcasts.
1489     // Otherwise, we should only have block and ObjC pointer casts
1490     // here if they stay within the type kind.
1491     if (!getType()->isPointerType()) {
1492       assert(getType()->isObjCObjectPointerType() == 
1493              getSubExpr()->getType()->isObjCObjectPointerType());
1494       assert(getType()->isBlockPointerType() == 
1495              getSubExpr()->getType()->isBlockPointerType());
1496     }
1497     goto CheckNoBasePath;
1498
1499   case CK_AnyPointerToBlockPointerCast:
1500     assert(getType()->isBlockPointerType());
1501     assert(getSubExpr()->getType()->isAnyPointerType() &&
1502            !getSubExpr()->getType()->isBlockPointerType());
1503     goto CheckNoBasePath;
1504
1505   case CK_CopyAndAutoreleaseBlockObject:
1506     assert(getType()->isBlockPointerType());
1507     assert(getSubExpr()->getType()->isBlockPointerType());
1508     goto CheckNoBasePath;
1509
1510   case CK_FunctionToPointerDecay:
1511     assert(getType()->isPointerType());
1512     assert(getSubExpr()->getType()->isFunctionType());
1513     goto CheckNoBasePath;
1514
1515   case CK_AddressSpaceConversion:
1516     assert(getType()->isPointerType());
1517     assert(getSubExpr()->getType()->isPointerType());
1518     assert(getType()->getPointeeType().getAddressSpace() !=
1519            getSubExpr()->getType()->getPointeeType().getAddressSpace());
1520   // These should not have an inheritance path.
1521   case CK_Dynamic:
1522   case CK_ToUnion:
1523   case CK_ArrayToPointerDecay:
1524   case CK_NullToMemberPointer:
1525   case CK_NullToPointer:
1526   case CK_ConstructorConversion:
1527   case CK_IntegralToPointer:
1528   case CK_PointerToIntegral:
1529   case CK_ToVoid:
1530   case CK_VectorSplat:
1531   case CK_IntegralCast:
1532   case CK_IntegralToFloating:
1533   case CK_FloatingToIntegral:
1534   case CK_FloatingCast:
1535   case CK_ObjCObjectLValueCast:
1536   case CK_FloatingRealToComplex:
1537   case CK_FloatingComplexToReal:
1538   case CK_FloatingComplexCast:
1539   case CK_FloatingComplexToIntegralComplex:
1540   case CK_IntegralRealToComplex:
1541   case CK_IntegralComplexToReal:
1542   case CK_IntegralComplexCast:
1543   case CK_IntegralComplexToFloatingComplex:
1544   case CK_ARCProduceObject:
1545   case CK_ARCConsumeObject:
1546   case CK_ARCReclaimReturnedObject:
1547   case CK_ARCExtendBlockObject:
1548   case CK_ZeroToOCLEvent:
1549     assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1550     goto CheckNoBasePath;
1551
1552   case CK_Dependent:
1553   case CK_LValueToRValue:
1554   case CK_NoOp:
1555   case CK_AtomicToNonAtomic:
1556   case CK_NonAtomicToAtomic:
1557   case CK_PointerToBoolean:
1558   case CK_IntegralToBoolean:
1559   case CK_FloatingToBoolean:
1560   case CK_MemberPointerToBoolean:
1561   case CK_FloatingComplexToBoolean:
1562   case CK_IntegralComplexToBoolean:
1563   case CK_LValueBitCast:            // -> bool&
1564   case CK_UserDefinedConversion:    // operator bool()
1565   case CK_BuiltinFnToFnPtr:
1566   CheckNoBasePath:
1567     assert(path_empty() && "Cast kind should not have a base path!");
1568     break;
1569   }
1570   return true;
1571 }
1572
1573 const char *CastExpr::getCastKindName() const {
1574   switch (getCastKind()) {
1575   case CK_Dependent:
1576     return "Dependent";
1577   case CK_BitCast:
1578     return "BitCast";
1579   case CK_LValueBitCast:
1580     return "LValueBitCast";
1581   case CK_LValueToRValue:
1582     return "LValueToRValue";
1583   case CK_NoOp:
1584     return "NoOp";
1585   case CK_BaseToDerived:
1586     return "BaseToDerived";
1587   case CK_DerivedToBase:
1588     return "DerivedToBase";
1589   case CK_UncheckedDerivedToBase:
1590     return "UncheckedDerivedToBase";
1591   case CK_Dynamic:
1592     return "Dynamic";
1593   case CK_ToUnion:
1594     return "ToUnion";
1595   case CK_ArrayToPointerDecay:
1596     return "ArrayToPointerDecay";
1597   case CK_FunctionToPointerDecay:
1598     return "FunctionToPointerDecay";
1599   case CK_NullToMemberPointer:
1600     return "NullToMemberPointer";
1601   case CK_NullToPointer:
1602     return "NullToPointer";
1603   case CK_BaseToDerivedMemberPointer:
1604     return "BaseToDerivedMemberPointer";
1605   case CK_DerivedToBaseMemberPointer:
1606     return "DerivedToBaseMemberPointer";
1607   case CK_ReinterpretMemberPointer:
1608     return "ReinterpretMemberPointer";
1609   case CK_UserDefinedConversion:
1610     return "UserDefinedConversion";
1611   case CK_ConstructorConversion:
1612     return "ConstructorConversion";
1613   case CK_IntegralToPointer:
1614     return "IntegralToPointer";
1615   case CK_PointerToIntegral:
1616     return "PointerToIntegral";
1617   case CK_PointerToBoolean:
1618     return "PointerToBoolean";
1619   case CK_ToVoid:
1620     return "ToVoid";
1621   case CK_VectorSplat:
1622     return "VectorSplat";
1623   case CK_IntegralCast:
1624     return "IntegralCast";
1625   case CK_IntegralToBoolean:
1626     return "IntegralToBoolean";
1627   case CK_IntegralToFloating:
1628     return "IntegralToFloating";
1629   case CK_FloatingToIntegral:
1630     return "FloatingToIntegral";
1631   case CK_FloatingCast:
1632     return "FloatingCast";
1633   case CK_FloatingToBoolean:
1634     return "FloatingToBoolean";
1635   case CK_MemberPointerToBoolean:
1636     return "MemberPointerToBoolean";
1637   case CK_CPointerToObjCPointerCast:
1638     return "CPointerToObjCPointerCast";
1639   case CK_BlockPointerToObjCPointerCast:
1640     return "BlockPointerToObjCPointerCast";
1641   case CK_AnyPointerToBlockPointerCast:
1642     return "AnyPointerToBlockPointerCast";
1643   case CK_ObjCObjectLValueCast:
1644     return "ObjCObjectLValueCast";
1645   case CK_FloatingRealToComplex:
1646     return "FloatingRealToComplex";
1647   case CK_FloatingComplexToReal:
1648     return "FloatingComplexToReal";
1649   case CK_FloatingComplexToBoolean:
1650     return "FloatingComplexToBoolean";
1651   case CK_FloatingComplexCast:
1652     return "FloatingComplexCast";
1653   case CK_FloatingComplexToIntegralComplex:
1654     return "FloatingComplexToIntegralComplex";
1655   case CK_IntegralRealToComplex:
1656     return "IntegralRealToComplex";
1657   case CK_IntegralComplexToReal:
1658     return "IntegralComplexToReal";
1659   case CK_IntegralComplexToBoolean:
1660     return "IntegralComplexToBoolean";
1661   case CK_IntegralComplexCast:
1662     return "IntegralComplexCast";
1663   case CK_IntegralComplexToFloatingComplex:
1664     return "IntegralComplexToFloatingComplex";
1665   case CK_ARCConsumeObject:
1666     return "ARCConsumeObject";
1667   case CK_ARCProduceObject:
1668     return "ARCProduceObject";
1669   case CK_ARCReclaimReturnedObject:
1670     return "ARCReclaimReturnedObject";
1671   case CK_ARCExtendBlockObject:
1672     return "ARCExtendBlockObject";
1673   case CK_AtomicToNonAtomic:
1674     return "AtomicToNonAtomic";
1675   case CK_NonAtomicToAtomic:
1676     return "NonAtomicToAtomic";
1677   case CK_CopyAndAutoreleaseBlockObject:
1678     return "CopyAndAutoreleaseBlockObject";
1679   case CK_BuiltinFnToFnPtr:
1680     return "BuiltinFnToFnPtr";
1681   case CK_ZeroToOCLEvent:
1682     return "ZeroToOCLEvent";
1683   case CK_AddressSpaceConversion:
1684     return "AddressSpaceConversion";
1685   }
1686
1687   llvm_unreachable("Unhandled cast kind!");
1688 }
1689
1690 Expr *CastExpr::getSubExprAsWritten() {
1691   Expr *SubExpr = nullptr;
1692   CastExpr *E = this;
1693   do {
1694     SubExpr = E->getSubExpr();
1695
1696     // Skip through reference binding to temporary.
1697     if (MaterializeTemporaryExpr *Materialize 
1698                                   = dyn_cast<MaterializeTemporaryExpr>(SubExpr))
1699       SubExpr = Materialize->GetTemporaryExpr();
1700         
1701     // Skip any temporary bindings; they're implicit.
1702     if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
1703       SubExpr = Binder->getSubExpr();
1704     
1705     // Conversions by constructor and conversion functions have a
1706     // subexpression describing the call; strip it off.
1707     if (E->getCastKind() == CK_ConstructorConversion)
1708       SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
1709     else if (E->getCastKind() == CK_UserDefinedConversion)
1710       SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
1711     
1712     // If the subexpression we're left with is an implicit cast, look
1713     // through that, too.
1714   } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));  
1715   
1716   return SubExpr;
1717 }
1718
1719 CXXBaseSpecifier **CastExpr::path_buffer() {
1720   switch (getStmtClass()) {
1721 #define ABSTRACT_STMT(x)
1722 #define CASTEXPR(Type, Base) \
1723   case Stmt::Type##Class: \
1724     return reinterpret_cast<CXXBaseSpecifier**>(static_cast<Type*>(this)+1);
1725 #define STMT(Type, Base)
1726 #include "clang/AST/StmtNodes.inc"
1727   default:
1728     llvm_unreachable("non-cast expressions not possible here");
1729   }
1730 }
1731
1732 void CastExpr::setCastPath(const CXXCastPath &Path) {
1733   assert(Path.size() == path_size());
1734   memcpy(path_buffer(), Path.data(), Path.size() * sizeof(CXXBaseSpecifier*));
1735 }
1736
1737 ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T,
1738                                            CastKind Kind, Expr *Operand,
1739                                            const CXXCastPath *BasePath,
1740                                            ExprValueKind VK) {
1741   unsigned PathSize = (BasePath ? BasePath->size() : 0);
1742   void *Buffer =
1743     C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1744   ImplicitCastExpr *E =
1745     new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
1746   if (PathSize) E->setCastPath(*BasePath);
1747   return E;
1748 }
1749
1750 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C,
1751                                                 unsigned PathSize) {
1752   void *Buffer =
1753     C.Allocate(sizeof(ImplicitCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1754   return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
1755 }
1756
1757
1758 CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T,
1759                                        ExprValueKind VK, CastKind K, Expr *Op,
1760                                        const CXXCastPath *BasePath,
1761                                        TypeSourceInfo *WrittenTy,
1762                                        SourceLocation L, SourceLocation R) {
1763   unsigned PathSize = (BasePath ? BasePath->size() : 0);
1764   void *Buffer =
1765     C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1766   CStyleCastExpr *E =
1767     new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
1768   if (PathSize) E->setCastPath(*BasePath);
1769   return E;
1770 }
1771
1772 CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C,
1773                                             unsigned PathSize) {
1774   void *Buffer =
1775     C.Allocate(sizeof(CStyleCastExpr) + PathSize * sizeof(CXXBaseSpecifier*));
1776   return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
1777 }
1778
1779 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1780 /// corresponds to, e.g. "<<=".
1781 StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
1782   switch (Op) {
1783   case BO_PtrMemD:   return ".*";
1784   case BO_PtrMemI:   return "->*";
1785   case BO_Mul:       return "*";
1786   case BO_Div:       return "/";
1787   case BO_Rem:       return "%";
1788   case BO_Add:       return "+";
1789   case BO_Sub:       return "-";
1790   case BO_Shl:       return "<<";
1791   case BO_Shr:       return ">>";
1792   case BO_LT:        return "<";
1793   case BO_GT:        return ">";
1794   case BO_LE:        return "<=";
1795   case BO_GE:        return ">=";
1796   case BO_EQ:        return "==";
1797   case BO_NE:        return "!=";
1798   case BO_And:       return "&";
1799   case BO_Xor:       return "^";
1800   case BO_Or:        return "|";
1801   case BO_LAnd:      return "&&";
1802   case BO_LOr:       return "||";
1803   case BO_Assign:    return "=";
1804   case BO_MulAssign: return "*=";
1805   case BO_DivAssign: return "/=";
1806   case BO_RemAssign: return "%=";
1807   case BO_AddAssign: return "+=";
1808   case BO_SubAssign: return "-=";
1809   case BO_ShlAssign: return "<<=";
1810   case BO_ShrAssign: return ">>=";
1811   case BO_AndAssign: return "&=";
1812   case BO_XorAssign: return "^=";
1813   case BO_OrAssign:  return "|=";
1814   case BO_Comma:     return ",";
1815   }
1816
1817   llvm_unreachable("Invalid OpCode!");
1818 }
1819
1820 BinaryOperatorKind
1821 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
1822   switch (OO) {
1823   default: llvm_unreachable("Not an overloadable binary operator");
1824   case OO_Plus: return BO_Add;
1825   case OO_Minus: return BO_Sub;
1826   case OO_Star: return BO_Mul;
1827   case OO_Slash: return BO_Div;
1828   case OO_Percent: return BO_Rem;
1829   case OO_Caret: return BO_Xor;
1830   case OO_Amp: return BO_And;
1831   case OO_Pipe: return BO_Or;
1832   case OO_Equal: return BO_Assign;
1833   case OO_Less: return BO_LT;
1834   case OO_Greater: return BO_GT;
1835   case OO_PlusEqual: return BO_AddAssign;
1836   case OO_MinusEqual: return BO_SubAssign;
1837   case OO_StarEqual: return BO_MulAssign;
1838   case OO_SlashEqual: return BO_DivAssign;
1839   case OO_PercentEqual: return BO_RemAssign;
1840   case OO_CaretEqual: return BO_XorAssign;
1841   case OO_AmpEqual: return BO_AndAssign;
1842   case OO_PipeEqual: return BO_OrAssign;
1843   case OO_LessLess: return BO_Shl;
1844   case OO_GreaterGreater: return BO_Shr;
1845   case OO_LessLessEqual: return BO_ShlAssign;
1846   case OO_GreaterGreaterEqual: return BO_ShrAssign;
1847   case OO_EqualEqual: return BO_EQ;
1848   case OO_ExclaimEqual: return BO_NE;
1849   case OO_LessEqual: return BO_LE;
1850   case OO_GreaterEqual: return BO_GE;
1851   case OO_AmpAmp: return BO_LAnd;
1852   case OO_PipePipe: return BO_LOr;
1853   case OO_Comma: return BO_Comma;
1854   case OO_ArrowStar: return BO_PtrMemI;
1855   }
1856 }
1857
1858 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
1859   static const OverloadedOperatorKind OverOps[] = {
1860     /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
1861     OO_Star, OO_Slash, OO_Percent,
1862     OO_Plus, OO_Minus,
1863     OO_LessLess, OO_GreaterGreater,
1864     OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
1865     OO_EqualEqual, OO_ExclaimEqual,
1866     OO_Amp,
1867     OO_Caret,
1868     OO_Pipe,
1869     OO_AmpAmp,
1870     OO_PipePipe,
1871     OO_Equal, OO_StarEqual,
1872     OO_SlashEqual, OO_PercentEqual,
1873     OO_PlusEqual, OO_MinusEqual,
1874     OO_LessLessEqual, OO_GreaterGreaterEqual,
1875     OO_AmpEqual, OO_CaretEqual,
1876     OO_PipeEqual,
1877     OO_Comma
1878   };
1879   return OverOps[Opc];
1880 }
1881
1882 InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
1883                            ArrayRef<Expr*> initExprs, SourceLocation rbraceloc)
1884   : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
1885          false, false),
1886     InitExprs(C, initExprs.size()),
1887     LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(nullptr, true)
1888 {
1889   sawArrayRangeDesignator(false);
1890   for (unsigned I = 0; I != initExprs.size(); ++I) {
1891     if (initExprs[I]->isTypeDependent())
1892       ExprBits.TypeDependent = true;
1893     if (initExprs[I]->isValueDependent())
1894       ExprBits.ValueDependent = true;
1895     if (initExprs[I]->isInstantiationDependent())
1896       ExprBits.InstantiationDependent = true;
1897     if (initExprs[I]->containsUnexpandedParameterPack())
1898       ExprBits.ContainsUnexpandedParameterPack = true;
1899   }
1900       
1901   InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
1902 }
1903
1904 void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
1905   if (NumInits > InitExprs.size())
1906     InitExprs.reserve(C, NumInits);
1907 }
1908
1909 void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
1910   InitExprs.resize(C, NumInits, nullptr);
1911 }
1912
1913 Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
1914   if (Init >= InitExprs.size()) {
1915     InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr);
1916     setInit(Init, expr);
1917     return nullptr;
1918   }
1919
1920   Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
1921   setInit(Init, expr);
1922   return Result;
1923 }
1924
1925 void InitListExpr::setArrayFiller(Expr *filler) {
1926   assert(!hasArrayFiller() && "Filler already set!");
1927   ArrayFillerOrUnionFieldInit = filler;
1928   // Fill out any "holes" in the array due to designated initializers.
1929   Expr **inits = getInits();
1930   for (unsigned i = 0, e = getNumInits(); i != e; ++i)
1931     if (inits[i] == nullptr)
1932       inits[i] = filler;
1933 }
1934
1935 bool InitListExpr::isStringLiteralInit() const {
1936   if (getNumInits() != 1)
1937     return false;
1938   const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
1939   if (!AT || !AT->getElementType()->isIntegerType())
1940     return false;
1941   // It is possible for getInit() to return null.
1942   const Expr *Init = getInit(0);
1943   if (!Init)
1944     return false;
1945   Init = Init->IgnoreParens();
1946   return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
1947 }
1948
1949 SourceLocation InitListExpr::getLocStart() const {
1950   if (InitListExpr *SyntacticForm = getSyntacticForm())
1951     return SyntacticForm->getLocStart();
1952   SourceLocation Beg = LBraceLoc;
1953   if (Beg.isInvalid()) {
1954     // Find the first non-null initializer.
1955     for (InitExprsTy::const_iterator I = InitExprs.begin(),
1956                                      E = InitExprs.end(); 
1957       I != E; ++I) {
1958       if (Stmt *S = *I) {
1959         Beg = S->getLocStart();
1960         break;
1961       }  
1962     }
1963   }
1964   return Beg;
1965 }
1966
1967 SourceLocation InitListExpr::getLocEnd() const {
1968   if (InitListExpr *SyntacticForm = getSyntacticForm())
1969     return SyntacticForm->getLocEnd();
1970   SourceLocation End = RBraceLoc;
1971   if (End.isInvalid()) {
1972     // Find the first non-null initializer from the end.
1973     for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
1974          E = InitExprs.rend();
1975          I != E; ++I) {
1976       if (Stmt *S = *I) {
1977         End = S->getLocEnd();
1978         break;
1979       }
1980     }
1981   }
1982   return End;
1983 }
1984
1985 /// getFunctionType - Return the underlying function type for this block.
1986 ///
1987 const FunctionProtoType *BlockExpr::getFunctionType() const {
1988   // The block pointer is never sugared, but the function type might be.
1989   return cast<BlockPointerType>(getType())
1990            ->getPointeeType()->castAs<FunctionProtoType>();
1991 }
1992
1993 SourceLocation BlockExpr::getCaretLocation() const {
1994   return TheBlock->getCaretLocation();
1995 }
1996 const Stmt *BlockExpr::getBody() const {
1997   return TheBlock->getBody();
1998 }
1999 Stmt *BlockExpr::getBody() {
2000   return TheBlock->getBody();
2001 }
2002
2003
2004 //===----------------------------------------------------------------------===//
2005 // Generic Expression Routines
2006 //===----------------------------------------------------------------------===//
2007
2008 /// isUnusedResultAWarning - Return true if this immediate expression should
2009 /// be warned about if the result is unused.  If so, fill in Loc and Ranges
2010 /// with location to warn on and the source range[s] to report with the
2011 /// warning.
2012 bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc, 
2013                                   SourceRange &R1, SourceRange &R2,
2014                                   ASTContext &Ctx) const {
2015   // Don't warn if the expr is type dependent. The type could end up
2016   // instantiating to void.
2017   if (isTypeDependent())
2018     return false;
2019
2020   switch (getStmtClass()) {
2021   default:
2022     if (getType()->isVoidType())
2023       return false;
2024     WarnE = this;
2025     Loc = getExprLoc();
2026     R1 = getSourceRange();
2027     return true;
2028   case ParenExprClass:
2029     return cast<ParenExpr>(this)->getSubExpr()->
2030       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2031   case GenericSelectionExprClass:
2032     return cast<GenericSelectionExpr>(this)->getResultExpr()->
2033       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2034   case ChooseExprClass:
2035     return cast<ChooseExpr>(this)->getChosenSubExpr()->
2036       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2037   case UnaryOperatorClass: {
2038     const UnaryOperator *UO = cast<UnaryOperator>(this);
2039
2040     switch (UO->getOpcode()) {
2041     case UO_Plus:
2042     case UO_Minus:
2043     case UO_AddrOf:
2044     case UO_Not:
2045     case UO_LNot:
2046     case UO_Deref:
2047       break;
2048     case UO_PostInc:
2049     case UO_PostDec:
2050     case UO_PreInc:
2051     case UO_PreDec:                 // ++/--
2052       return false;  // Not a warning.
2053     case UO_Real:
2054     case UO_Imag:
2055       // accessing a piece of a volatile complex is a side-effect.
2056       if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
2057           .isVolatileQualified())
2058         return false;
2059       break;
2060     case UO_Extension:
2061       return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2062     }
2063     WarnE = this;
2064     Loc = UO->getOperatorLoc();
2065     R1 = UO->getSubExpr()->getSourceRange();
2066     return true;
2067   }
2068   case BinaryOperatorClass: {
2069     const BinaryOperator *BO = cast<BinaryOperator>(this);
2070     switch (BO->getOpcode()) {
2071       default:
2072         break;
2073       // Consider the RHS of comma for side effects. LHS was checked by
2074       // Sema::CheckCommaOperands.
2075       case BO_Comma:
2076         // ((foo = <blah>), 0) is an idiom for hiding the result (and
2077         // lvalue-ness) of an assignment written in a macro.
2078         if (IntegerLiteral *IE =
2079               dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
2080           if (IE->getValue() == 0)
2081             return false;
2082         return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2083       // Consider '||', '&&' to have side effects if the LHS or RHS does.
2084       case BO_LAnd:
2085       case BO_LOr:
2086         if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
2087             !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2088           return false;
2089         break;
2090     }
2091     if (BO->isAssignmentOp())
2092       return false;
2093     WarnE = this;
2094     Loc = BO->getOperatorLoc();
2095     R1 = BO->getLHS()->getSourceRange();
2096     R2 = BO->getRHS()->getSourceRange();
2097     return true;
2098   }
2099   case CompoundAssignOperatorClass:
2100   case VAArgExprClass:
2101   case AtomicExprClass:
2102     return false;
2103
2104   case ConditionalOperatorClass: {
2105     // If only one of the LHS or RHS is a warning, the operator might
2106     // be being used for control flow. Only warn if both the LHS and
2107     // RHS are warnings.
2108     const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
2109     if (!Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2110       return false;
2111     if (!Exp->getLHS())
2112       return true;
2113     return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2114   }
2115
2116   case MemberExprClass:
2117     WarnE = this;
2118     Loc = cast<MemberExpr>(this)->getMemberLoc();
2119     R1 = SourceRange(Loc, Loc);
2120     R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
2121     return true;
2122
2123   case ArraySubscriptExprClass:
2124     WarnE = this;
2125     Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
2126     R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
2127     R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
2128     return true;
2129
2130   case CXXOperatorCallExprClass: {
2131     // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
2132     // overloads as there is no reasonable way to define these such that they
2133     // have non-trivial, desirable side-effects. See the -Wunused-comparison
2134     // warning: operators == and != are commonly typo'ed, and so warning on them
2135     // provides additional value as well. If this list is updated,
2136     // DiagnoseUnusedComparison should be as well.
2137     const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
2138     switch (Op->getOperator()) {
2139     default:
2140       break;
2141     case OO_EqualEqual:
2142     case OO_ExclaimEqual:
2143     case OO_Less:
2144     case OO_Greater:
2145     case OO_GreaterEqual:
2146     case OO_LessEqual:
2147       if (Op->getCallReturnType(Ctx)->isReferenceType() ||
2148           Op->getCallReturnType(Ctx)->isVoidType())
2149         break;
2150       WarnE = this;
2151       Loc = Op->getOperatorLoc();
2152       R1 = Op->getSourceRange();
2153       return true;
2154     }
2155
2156     // Fallthrough for generic call handling.
2157   }
2158   case CallExprClass:
2159   case CXXMemberCallExprClass:
2160   case UserDefinedLiteralClass: {
2161     // If this is a direct call, get the callee.
2162     const CallExpr *CE = cast<CallExpr>(this);
2163     if (const Decl *FD = CE->getCalleeDecl()) {
2164       const FunctionDecl *Func = dyn_cast<FunctionDecl>(FD);
2165       bool HasWarnUnusedResultAttr = Func ? Func->hasUnusedResultAttr()
2166                                           : FD->hasAttr<WarnUnusedResultAttr>();
2167
2168       // If the callee has attribute pure, const, or warn_unused_result, warn
2169       // about it. void foo() { strlen("bar"); } should warn.
2170       //
2171       // Note: If new cases are added here, DiagnoseUnusedExprResult should be
2172       // updated to match for QoI.
2173       if (HasWarnUnusedResultAttr ||
2174           FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) {
2175         WarnE = this;
2176         Loc = CE->getCallee()->getLocStart();
2177         R1 = CE->getCallee()->getSourceRange();
2178
2179         if (unsigned NumArgs = CE->getNumArgs())
2180           R2 = SourceRange(CE->getArg(0)->getLocStart(),
2181                            CE->getArg(NumArgs-1)->getLocEnd());
2182         return true;
2183       }
2184     }
2185     return false;
2186   }
2187
2188   // If we don't know precisely what we're looking at, let's not warn.
2189   case UnresolvedLookupExprClass:
2190   case CXXUnresolvedConstructExprClass:
2191     return false;
2192
2193   case CXXTemporaryObjectExprClass:
2194   case CXXConstructExprClass: {
2195     if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
2196       if (Type->hasAttr<WarnUnusedAttr>()) {
2197         WarnE = this;
2198         Loc = getLocStart();
2199         R1 = getSourceRange();
2200         return true;
2201       }
2202     }
2203     return false;
2204   }
2205
2206   case ObjCMessageExprClass: {
2207     const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
2208     if (Ctx.getLangOpts().ObjCAutoRefCount &&
2209         ME->isInstanceMessage() &&
2210         !ME->getType()->isVoidType() &&
2211         ME->getMethodFamily() == OMF_init) {
2212       WarnE = this;
2213       Loc = getExprLoc();
2214       R1 = ME->getSourceRange();
2215       return true;
2216     }
2217
2218     if (const ObjCMethodDecl *MD = ME->getMethodDecl())
2219       if (MD->hasAttr<WarnUnusedResultAttr>()) {
2220         WarnE = this;
2221         Loc = getExprLoc();
2222         return true;
2223       }
2224
2225     return false;
2226   }
2227
2228   case ObjCPropertyRefExprClass:
2229     WarnE = this;
2230     Loc = getExprLoc();
2231     R1 = getSourceRange();
2232     return true;
2233
2234   case PseudoObjectExprClass: {
2235     const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
2236
2237     // Only complain about things that have the form of a getter.
2238     if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
2239         isa<BinaryOperator>(PO->getSyntacticForm()))
2240       return false;
2241
2242     WarnE = this;
2243     Loc = getExprLoc();
2244     R1 = getSourceRange();
2245     return true;
2246   }
2247
2248   case StmtExprClass: {
2249     // Statement exprs don't logically have side effects themselves, but are
2250     // sometimes used in macros in ways that give them a type that is unused.
2251     // For example ({ blah; foo(); }) will end up with a type if foo has a type.
2252     // however, if the result of the stmt expr is dead, we don't want to emit a
2253     // warning.
2254     const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
2255     if (!CS->body_empty()) {
2256       if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
2257         return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2258       if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
2259         if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
2260           return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2261     }
2262
2263     if (getType()->isVoidType())
2264       return false;
2265     WarnE = this;
2266     Loc = cast<StmtExpr>(this)->getLParenLoc();
2267     R1 = getSourceRange();
2268     return true;
2269   }
2270   case CXXFunctionalCastExprClass:
2271   case CStyleCastExprClass: {
2272     // Ignore an explicit cast to void unless the operand is a non-trivial
2273     // volatile lvalue.
2274     const CastExpr *CE = cast<CastExpr>(this);
2275     if (CE->getCastKind() == CK_ToVoid) {
2276       if (CE->getSubExpr()->isGLValue() &&
2277           CE->getSubExpr()->getType().isVolatileQualified()) {
2278         const DeclRefExpr *DRE =
2279             dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens());
2280         if (!(DRE && isa<VarDecl>(DRE->getDecl()) &&
2281               cast<VarDecl>(DRE->getDecl())->hasLocalStorage())) {
2282           return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc,
2283                                                           R1, R2, Ctx);
2284         }
2285       }
2286       return false;
2287     }
2288
2289     // If this is a cast to a constructor conversion, check the operand.
2290     // Otherwise, the result of the cast is unused.
2291     if (CE->getCastKind() == CK_ConstructorConversion)
2292       return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2293
2294     WarnE = this;
2295     if (const CXXFunctionalCastExpr *CXXCE =
2296             dyn_cast<CXXFunctionalCastExpr>(this)) {
2297       Loc = CXXCE->getLocStart();
2298       R1 = CXXCE->getSubExpr()->getSourceRange();
2299     } else {
2300       const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
2301       Loc = CStyleCE->getLParenLoc();
2302       R1 = CStyleCE->getSubExpr()->getSourceRange();
2303     }
2304     return true;
2305   }
2306   case ImplicitCastExprClass: {
2307     const CastExpr *ICE = cast<ImplicitCastExpr>(this);
2308
2309     // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2310     if (ICE->getCastKind() == CK_LValueToRValue &&
2311         ICE->getSubExpr()->getType().isVolatileQualified())
2312       return false;
2313
2314     return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2315   }
2316   case CXXDefaultArgExprClass:
2317     return (cast<CXXDefaultArgExpr>(this)
2318             ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2319   case CXXDefaultInitExprClass:
2320     return (cast<CXXDefaultInitExpr>(this)
2321             ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2322
2323   case CXXNewExprClass:
2324     // FIXME: In theory, there might be new expressions that don't have side
2325     // effects (e.g. a placement new with an uninitialized POD).
2326   case CXXDeleteExprClass:
2327     return false;
2328   case CXXBindTemporaryExprClass:
2329     return (cast<CXXBindTemporaryExpr>(this)
2330             ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2331   case ExprWithCleanupsClass:
2332     return (cast<ExprWithCleanups>(this)
2333             ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2334   }
2335 }
2336
2337 /// isOBJCGCCandidate - Check if an expression is objc gc'able.
2338 /// returns true, if it is; false otherwise.
2339 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
2340   const Expr *E = IgnoreParens();
2341   switch (E->getStmtClass()) {
2342   default:
2343     return false;
2344   case ObjCIvarRefExprClass:
2345     return true;
2346   case Expr::UnaryOperatorClass:
2347     return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2348   case ImplicitCastExprClass:
2349     return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2350   case MaterializeTemporaryExprClass:
2351     return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
2352                                                       ->isOBJCGCCandidate(Ctx);
2353   case CStyleCastExprClass:
2354     return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2355   case DeclRefExprClass: {
2356     const Decl *D = cast<DeclRefExpr>(E)->getDecl();
2357         
2358     if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2359       if (VD->hasGlobalStorage())
2360         return true;
2361       QualType T = VD->getType();
2362       // dereferencing to a  pointer is always a gc'able candidate,
2363       // unless it is __weak.
2364       return T->isPointerType() &&
2365              (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
2366     }
2367     return false;
2368   }
2369   case MemberExprClass: {
2370     const MemberExpr *M = cast<MemberExpr>(E);
2371     return M->getBase()->isOBJCGCCandidate(Ctx);
2372   }
2373   case ArraySubscriptExprClass:
2374     return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
2375   }
2376 }
2377
2378 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
2379   if (isTypeDependent())
2380     return false;
2381   return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
2382 }
2383
2384 QualType Expr::findBoundMemberType(const Expr *expr) {
2385   assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
2386
2387   // Bound member expressions are always one of these possibilities:
2388   //   x->m      x.m      x->*y      x.*y
2389   // (possibly parenthesized)
2390
2391   expr = expr->IgnoreParens();
2392   if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
2393     assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
2394     return mem->getMemberDecl()->getType();
2395   }
2396
2397   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
2398     QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
2399                       ->getPointeeType();
2400     assert(type->isFunctionType());
2401     return type;
2402   }
2403
2404   assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr));
2405   return QualType();
2406 }
2407
2408 Expr* Expr::IgnoreParens() {
2409   Expr* E = this;
2410   while (true) {
2411     if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
2412       E = P->getSubExpr();
2413       continue;
2414     }
2415     if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2416       if (P->getOpcode() == UO_Extension) {
2417         E = P->getSubExpr();
2418         continue;
2419       }
2420     }
2421     if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2422       if (!P->isResultDependent()) {
2423         E = P->getResultExpr();
2424         continue;
2425       }
2426     }
2427     if (ChooseExpr* P = dyn_cast<ChooseExpr>(E)) {
2428       if (!P->isConditionDependent()) {
2429         E = P->getChosenSubExpr();
2430         continue;
2431       }
2432     }
2433     return E;
2434   }
2435 }
2436
2437 /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
2438 /// or CastExprs or ImplicitCastExprs, returning their operand.
2439 Expr *Expr::IgnoreParenCasts() {
2440   Expr *E = this;
2441   while (true) {
2442     E = E->IgnoreParens();
2443     if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2444       E = P->getSubExpr();
2445       continue;
2446     }
2447     if (MaterializeTemporaryExpr *Materialize 
2448                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
2449       E = Materialize->GetTemporaryExpr();
2450       continue;
2451     }
2452     if (SubstNonTypeTemplateParmExpr *NTTP
2453                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2454       E = NTTP->getReplacement();
2455       continue;
2456     }      
2457     return E;
2458   }
2459 }
2460
2461 Expr *Expr::IgnoreCasts() {
2462   Expr *E = this;
2463   while (true) {
2464     if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2465       E = P->getSubExpr();
2466       continue;
2467     }
2468     if (MaterializeTemporaryExpr *Materialize
2469         = dyn_cast<MaterializeTemporaryExpr>(E)) {
2470       E = Materialize->GetTemporaryExpr();
2471       continue;
2472     }
2473     if (SubstNonTypeTemplateParmExpr *NTTP
2474         = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2475       E = NTTP->getReplacement();
2476       continue;
2477     }
2478     return E;
2479   }
2480 }
2481
2482 /// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
2483 /// casts.  This is intended purely as a temporary workaround for code
2484 /// that hasn't yet been rewritten to do the right thing about those
2485 /// casts, and may disappear along with the last internal use.
2486 Expr *Expr::IgnoreParenLValueCasts() {
2487   Expr *E = this;
2488   while (true) {
2489     E = E->IgnoreParens();
2490     if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2491       if (P->getCastKind() == CK_LValueToRValue) {
2492         E = P->getSubExpr();
2493         continue;
2494       }
2495     } else if (MaterializeTemporaryExpr *Materialize 
2496                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
2497       E = Materialize->GetTemporaryExpr();
2498       continue;
2499     } else if (SubstNonTypeTemplateParmExpr *NTTP
2500                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2501       E = NTTP->getReplacement();
2502       continue;
2503     }
2504     break;
2505   }
2506   return E;
2507 }
2508
2509 Expr *Expr::ignoreParenBaseCasts() {
2510   Expr *E = this;
2511   while (true) {
2512     E = E->IgnoreParens();
2513     if (CastExpr *CE = dyn_cast<CastExpr>(E)) {
2514       if (CE->getCastKind() == CK_DerivedToBase ||
2515           CE->getCastKind() == CK_UncheckedDerivedToBase ||
2516           CE->getCastKind() == CK_NoOp) {
2517         E = CE->getSubExpr();
2518         continue;
2519       }
2520     }
2521
2522     return E;
2523   }
2524 }
2525
2526 Expr *Expr::IgnoreParenImpCasts() {
2527   Expr *E = this;
2528   while (true) {
2529     E = E->IgnoreParens();
2530     if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
2531       E = P->getSubExpr();
2532       continue;
2533     }
2534     if (MaterializeTemporaryExpr *Materialize 
2535                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
2536       E = Materialize->GetTemporaryExpr();
2537       continue;
2538     }
2539     if (SubstNonTypeTemplateParmExpr *NTTP
2540                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2541       E = NTTP->getReplacement();
2542       continue;
2543     }
2544     return E;
2545   }
2546 }
2547
2548 Expr *Expr::IgnoreConversionOperator() {
2549   if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
2550     if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
2551       return MCE->getImplicitObjectArgument();
2552   }
2553   return this;
2554 }
2555
2556 /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
2557 /// value (including ptr->int casts of the same size).  Strip off any
2558 /// ParenExpr or CastExprs, returning their operand.
2559 Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
2560   Expr *E = this;
2561   while (true) {
2562     E = E->IgnoreParens();
2563
2564     if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2565       // We ignore integer <-> casts that are of the same width, ptr<->ptr and
2566       // ptr<->int casts of the same width.  We also ignore all identity casts.
2567       Expr *SE = P->getSubExpr();
2568
2569       if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
2570         E = SE;
2571         continue;
2572       }
2573
2574       if ((E->getType()->isPointerType() ||
2575            E->getType()->isIntegralType(Ctx)) &&
2576           (SE->getType()->isPointerType() ||
2577            SE->getType()->isIntegralType(Ctx)) &&
2578           Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
2579         E = SE;
2580         continue;
2581       }
2582     }
2583
2584     if (SubstNonTypeTemplateParmExpr *NTTP
2585                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2586       E = NTTP->getReplacement();
2587       continue;
2588     }
2589     
2590     return E;
2591   }
2592 }
2593
2594 bool Expr::isDefaultArgument() const {
2595   const Expr *E = this;
2596   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2597     E = M->GetTemporaryExpr();
2598
2599   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
2600     E = ICE->getSubExprAsWritten();
2601   
2602   return isa<CXXDefaultArgExpr>(E);
2603 }
2604
2605 /// \brief Skip over any no-op casts and any temporary-binding
2606 /// expressions.
2607 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
2608   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2609     E = M->GetTemporaryExpr();
2610
2611   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2612     if (ICE->getCastKind() == CK_NoOp)
2613       E = ICE->getSubExpr();
2614     else
2615       break;
2616   }
2617
2618   while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
2619     E = BE->getSubExpr();
2620
2621   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2622     if (ICE->getCastKind() == CK_NoOp)
2623       E = ICE->getSubExpr();
2624     else
2625       break;
2626   }
2627
2628   return E->IgnoreParens();
2629 }
2630
2631 /// isTemporaryObject - Determines if this expression produces a
2632 /// temporary of the given class type.
2633 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
2634   if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
2635     return false;
2636
2637   const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
2638
2639   // Temporaries are by definition pr-values of class type.
2640   if (!E->Classify(C).isPRValue()) {
2641     // In this context, property reference is a message call and is pr-value.
2642     if (!isa<ObjCPropertyRefExpr>(E))
2643       return false;
2644   }
2645
2646   // Black-list a few cases which yield pr-values of class type that don't
2647   // refer to temporaries of that type:
2648
2649   // - implicit derived-to-base conversions
2650   if (isa<ImplicitCastExpr>(E)) {
2651     switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
2652     case CK_DerivedToBase:
2653     case CK_UncheckedDerivedToBase:
2654       return false;
2655     default:
2656       break;
2657     }
2658   }
2659
2660   // - member expressions (all)
2661   if (isa<MemberExpr>(E))
2662     return false;
2663
2664   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
2665     if (BO->isPtrMemOp())
2666       return false;
2667
2668   // - opaque values (all)
2669   if (isa<OpaqueValueExpr>(E))
2670     return false;
2671
2672   return true;
2673 }
2674
2675 bool Expr::isImplicitCXXThis() const {
2676   const Expr *E = this;
2677   
2678   // Strip away parentheses and casts we don't care about.
2679   while (true) {
2680     if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
2681       E = Paren->getSubExpr();
2682       continue;
2683     }
2684     
2685     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2686       if (ICE->getCastKind() == CK_NoOp ||
2687           ICE->getCastKind() == CK_LValueToRValue ||
2688           ICE->getCastKind() == CK_DerivedToBase || 
2689           ICE->getCastKind() == CK_UncheckedDerivedToBase) {
2690         E = ICE->getSubExpr();
2691         continue;
2692       }
2693     }
2694     
2695     if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
2696       if (UnOp->getOpcode() == UO_Extension) {
2697         E = UnOp->getSubExpr();
2698         continue;
2699       }
2700     }
2701     
2702     if (const MaterializeTemporaryExpr *M
2703                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
2704       E = M->GetTemporaryExpr();
2705       continue;
2706     }
2707     
2708     break;
2709   }
2710   
2711   if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
2712     return This->isImplicit();
2713   
2714   return false;
2715 }
2716
2717 /// hasAnyTypeDependentArguments - Determines if any of the expressions
2718 /// in Exprs is type-dependent.
2719 bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
2720   for (unsigned I = 0; I < Exprs.size(); ++I)
2721     if (Exprs[I]->isTypeDependent())
2722       return true;
2723
2724   return false;
2725 }
2726
2727 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef,
2728                                  const Expr **Culprit) const {
2729   // This function is attempting whether an expression is an initializer
2730   // which can be evaluated at compile-time. It very closely parallels
2731   // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
2732   // will lead to unexpected results.  Like ConstExprEmitter, it falls back
2733   // to isEvaluatable most of the time.
2734   //
2735   // If we ever capture reference-binding directly in the AST, we can
2736   // kill the second parameter.
2737
2738   if (IsForRef) {
2739     EvalResult Result;
2740     if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects)
2741       return true;
2742     if (Culprit)
2743       *Culprit = this;
2744     return false;
2745   }
2746
2747   switch (getStmtClass()) {
2748   default: break;
2749   case StringLiteralClass:
2750   case ObjCEncodeExprClass:
2751     return true;
2752   case CXXTemporaryObjectExprClass:
2753   case CXXConstructExprClass: {
2754     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
2755
2756     if (CE->getConstructor()->isTrivial() &&
2757         CE->getConstructor()->getParent()->hasTrivialDestructor()) {
2758       // Trivial default constructor
2759       if (!CE->getNumArgs()) return true;
2760
2761       // Trivial copy constructor
2762       assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
2763       return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit);
2764     }
2765
2766     break;
2767   }
2768   case CompoundLiteralExprClass: {
2769     // This handles gcc's extension that allows global initializers like
2770     // "struct x {int x;} x = (struct x) {};".
2771     // FIXME: This accepts other cases it shouldn't!
2772     const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
2773     return Exp->isConstantInitializer(Ctx, false, Culprit);
2774   }
2775   case DesignatedInitUpdateExprClass: {
2776     const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this);
2777     return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) &&
2778            DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit);
2779   }
2780   case InitListExprClass: {
2781     const InitListExpr *ILE = cast<InitListExpr>(this);
2782     if (ILE->getType()->isArrayType()) {
2783       unsigned numInits = ILE->getNumInits();
2784       for (unsigned i = 0; i < numInits; i++) {
2785         if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit))
2786           return false;
2787       }
2788       return true;
2789     }
2790
2791     if (ILE->getType()->isRecordType()) {
2792       unsigned ElementNo = 0;
2793       RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl();
2794       for (const auto *Field : RD->fields()) {
2795         // If this is a union, skip all the fields that aren't being initialized.
2796         if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field)
2797           continue;
2798
2799         // Don't emit anonymous bitfields, they just affect layout.
2800         if (Field->isUnnamedBitfield())
2801           continue;
2802
2803         if (ElementNo < ILE->getNumInits()) {
2804           const Expr *Elt = ILE->getInit(ElementNo++);
2805           if (Field->isBitField()) {
2806             // Bitfields have to evaluate to an integer.
2807             llvm::APSInt ResultTmp;
2808             if (!Elt->EvaluateAsInt(ResultTmp, Ctx)) {
2809               if (Culprit)
2810                 *Culprit = Elt;
2811               return false;
2812             }
2813           } else {
2814             bool RefType = Field->getType()->isReferenceType();
2815             if (!Elt->isConstantInitializer(Ctx, RefType, Culprit))
2816               return false;
2817           }
2818         }
2819       }
2820       return true;
2821     }
2822
2823     break;
2824   }
2825   case ImplicitValueInitExprClass:
2826   case NoInitExprClass:
2827     return true;
2828   case ParenExprClass:
2829     return cast<ParenExpr>(this)->getSubExpr()
2830       ->isConstantInitializer(Ctx, IsForRef, Culprit);
2831   case GenericSelectionExprClass:
2832     return cast<GenericSelectionExpr>(this)->getResultExpr()
2833       ->isConstantInitializer(Ctx, IsForRef, Culprit);
2834   case ChooseExprClass:
2835     if (cast<ChooseExpr>(this)->isConditionDependent()) {
2836       if (Culprit)
2837         *Culprit = this;
2838       return false;
2839     }
2840     return cast<ChooseExpr>(this)->getChosenSubExpr()
2841       ->isConstantInitializer(Ctx, IsForRef, Culprit);
2842   case UnaryOperatorClass: {
2843     const UnaryOperator* Exp = cast<UnaryOperator>(this);
2844     if (Exp->getOpcode() == UO_Extension)
2845       return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
2846     break;
2847   }
2848   case CXXFunctionalCastExprClass:
2849   case CXXStaticCastExprClass:
2850   case ImplicitCastExprClass:
2851   case CStyleCastExprClass:
2852   case ObjCBridgedCastExprClass:
2853   case CXXDynamicCastExprClass:
2854   case CXXReinterpretCastExprClass:
2855   case CXXConstCastExprClass: {
2856     const CastExpr *CE = cast<CastExpr>(this);
2857
2858     // Handle misc casts we want to ignore.
2859     if (CE->getCastKind() == CK_NoOp ||
2860         CE->getCastKind() == CK_LValueToRValue ||
2861         CE->getCastKind() == CK_ToUnion ||
2862         CE->getCastKind() == CK_ConstructorConversion ||
2863         CE->getCastKind() == CK_NonAtomicToAtomic ||
2864         CE->getCastKind() == CK_AtomicToNonAtomic)
2865       return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
2866
2867     break;
2868   }
2869   case MaterializeTemporaryExprClass:
2870     return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
2871       ->isConstantInitializer(Ctx, false, Culprit);
2872
2873   case SubstNonTypeTemplateParmExprClass:
2874     return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
2875       ->isConstantInitializer(Ctx, false, Culprit);
2876   case CXXDefaultArgExprClass:
2877     return cast<CXXDefaultArgExpr>(this)->getExpr()
2878       ->isConstantInitializer(Ctx, false, Culprit);
2879   case CXXDefaultInitExprClass:
2880     return cast<CXXDefaultInitExpr>(this)->getExpr()
2881       ->isConstantInitializer(Ctx, false, Culprit);
2882   }
2883   if (isEvaluatable(Ctx))
2884     return true;
2885   if (Culprit)
2886     *Culprit = this;
2887   return false;
2888 }
2889
2890 namespace {
2891   /// \brief Look for any side effects within a Stmt.
2892   class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> {
2893     typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited;
2894     const bool IncludePossibleEffects;
2895     bool HasSideEffects;
2896
2897   public:
2898     explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible)
2899       : Inherited(Context),
2900         IncludePossibleEffects(IncludePossible), HasSideEffects(false) { }
2901
2902     bool hasSideEffects() const { return HasSideEffects; }
2903
2904     void VisitExpr(const Expr *E) {
2905       if (!HasSideEffects &&
2906           E->HasSideEffects(Context, IncludePossibleEffects))
2907         HasSideEffects = true;
2908     }
2909   };
2910 }
2911
2912 bool Expr::HasSideEffects(const ASTContext &Ctx,
2913                           bool IncludePossibleEffects) const {
2914   // In circumstances where we care about definite side effects instead of
2915   // potential side effects, we want to ignore expressions that are part of a
2916   // macro expansion as a potential side effect.
2917   if (!IncludePossibleEffects && getExprLoc().isMacroID())
2918     return false;
2919
2920   if (isInstantiationDependent())
2921     return IncludePossibleEffects;
2922
2923   switch (getStmtClass()) {
2924   case NoStmtClass:
2925   #define ABSTRACT_STMT(Type)
2926   #define STMT(Type, Base) case Type##Class:
2927   #define EXPR(Type, Base)
2928   #include "clang/AST/StmtNodes.inc"
2929     llvm_unreachable("unexpected Expr kind");
2930
2931   case DependentScopeDeclRefExprClass:
2932   case CXXUnresolvedConstructExprClass:
2933   case CXXDependentScopeMemberExprClass:
2934   case UnresolvedLookupExprClass:
2935   case UnresolvedMemberExprClass:
2936   case PackExpansionExprClass:
2937   case SubstNonTypeTemplateParmPackExprClass:
2938   case FunctionParmPackExprClass:
2939   case TypoExprClass:
2940   case CXXFoldExprClass:
2941     llvm_unreachable("shouldn't see dependent / unresolved nodes here");
2942
2943   case DeclRefExprClass:
2944   case ObjCIvarRefExprClass:
2945   case PredefinedExprClass:
2946   case IntegerLiteralClass:
2947   case FloatingLiteralClass:
2948   case ImaginaryLiteralClass:
2949   case StringLiteralClass:
2950   case CharacterLiteralClass:
2951   case OffsetOfExprClass:
2952   case ImplicitValueInitExprClass:
2953   case UnaryExprOrTypeTraitExprClass:
2954   case AddrLabelExprClass:
2955   case GNUNullExprClass:
2956   case NoInitExprClass:
2957   case CXXBoolLiteralExprClass:
2958   case CXXNullPtrLiteralExprClass:
2959   case CXXThisExprClass:
2960   case CXXScalarValueInitExprClass:
2961   case TypeTraitExprClass:
2962   case ArrayTypeTraitExprClass:
2963   case ExpressionTraitExprClass:
2964   case CXXNoexceptExprClass:
2965   case SizeOfPackExprClass:
2966   case ObjCStringLiteralClass:
2967   case ObjCEncodeExprClass:
2968   case ObjCBoolLiteralExprClass:
2969   case CXXUuidofExprClass:
2970   case OpaqueValueExprClass:
2971     // These never have a side-effect.
2972     return false;
2973
2974   case CallExprClass:
2975   case CXXOperatorCallExprClass:
2976   case CXXMemberCallExprClass:
2977   case CUDAKernelCallExprClass:
2978   case UserDefinedLiteralClass: {
2979     // We don't know a call definitely has side effects, except for calls
2980     // to pure/const functions that definitely don't.
2981     // If the call itself is considered side-effect free, check the operands.
2982     const Decl *FD = cast<CallExpr>(this)->getCalleeDecl();
2983     bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>());
2984     if (IsPure || !IncludePossibleEffects)
2985       break;
2986     return true;
2987   }
2988
2989   case BlockExprClass:
2990   case CXXBindTemporaryExprClass:
2991     if (!IncludePossibleEffects)
2992       break;
2993     return true;
2994
2995   case MSPropertyRefExprClass:
2996   case CompoundAssignOperatorClass:
2997   case VAArgExprClass:
2998   case AtomicExprClass:
2999   case CXXThrowExprClass:
3000   case CXXNewExprClass:
3001   case CXXDeleteExprClass:
3002   case ExprWithCleanupsClass:
3003     // These always have a side-effect.
3004     return true;
3005
3006   case StmtExprClass: {
3007     // StmtExprs have a side-effect if any substatement does.
3008     SideEffectFinder Finder(Ctx, IncludePossibleEffects);
3009     Finder.Visit(cast<StmtExpr>(this)->getSubStmt());
3010     return Finder.hasSideEffects();
3011   }
3012
3013   case ParenExprClass:
3014   case ArraySubscriptExprClass:
3015   case MemberExprClass:
3016   case ConditionalOperatorClass:
3017   case BinaryConditionalOperatorClass:
3018   case CompoundLiteralExprClass:
3019   case ExtVectorElementExprClass:
3020   case DesignatedInitExprClass:
3021   case DesignatedInitUpdateExprClass:
3022   case ParenListExprClass:
3023   case CXXPseudoDestructorExprClass:
3024   case CXXStdInitializerListExprClass:
3025   case SubstNonTypeTemplateParmExprClass:
3026   case MaterializeTemporaryExprClass:
3027   case ShuffleVectorExprClass:
3028   case ConvertVectorExprClass:
3029   case AsTypeExprClass:
3030     // These have a side-effect if any subexpression does.
3031     break;
3032
3033   case UnaryOperatorClass:
3034     if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
3035       return true;
3036     break;
3037
3038   case BinaryOperatorClass:
3039     if (cast<BinaryOperator>(this)->isAssignmentOp())
3040       return true;
3041     break;
3042
3043   case InitListExprClass:
3044     // FIXME: The children for an InitListExpr doesn't include the array filler.
3045     if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
3046       if (E->HasSideEffects(Ctx, IncludePossibleEffects))
3047         return true;
3048     break;
3049
3050   case GenericSelectionExprClass:
3051     return cast<GenericSelectionExpr>(this)->getResultExpr()->
3052         HasSideEffects(Ctx, IncludePossibleEffects);
3053
3054   case ChooseExprClass:
3055     return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(
3056         Ctx, IncludePossibleEffects);
3057
3058   case CXXDefaultArgExprClass:
3059     return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(
3060         Ctx, IncludePossibleEffects);
3061
3062   case CXXDefaultInitExprClass: {
3063     const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField();
3064     if (const Expr *E = FD->getInClassInitializer())
3065       return E->HasSideEffects(Ctx, IncludePossibleEffects);
3066     // If we've not yet parsed the initializer, assume it has side-effects.
3067     return true;
3068   }
3069
3070   case CXXDynamicCastExprClass: {
3071     // A dynamic_cast expression has side-effects if it can throw.
3072     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
3073     if (DCE->getTypeAsWritten()->isReferenceType() &&
3074         DCE->getCastKind() == CK_Dynamic)
3075       return true;
3076   } // Fall through.
3077   case ImplicitCastExprClass:
3078   case CStyleCastExprClass:
3079   case CXXStaticCastExprClass:
3080   case CXXReinterpretCastExprClass:
3081   case CXXConstCastExprClass:
3082   case CXXFunctionalCastExprClass: {
3083     // While volatile reads are side-effecting in both C and C++, we treat them
3084     // as having possible (not definite) side-effects. This allows idiomatic
3085     // code to behave without warning, such as sizeof(*v) for a volatile-
3086     // qualified pointer.
3087     if (!IncludePossibleEffects)
3088       break;
3089
3090     const CastExpr *CE = cast<CastExpr>(this);
3091     if (CE->getCastKind() == CK_LValueToRValue &&
3092         CE->getSubExpr()->getType().isVolatileQualified())
3093       return true;
3094     break;
3095   }
3096
3097   case CXXTypeidExprClass:
3098     // typeid might throw if its subexpression is potentially-evaluated, so has
3099     // side-effects in that case whether or not its subexpression does.
3100     return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
3101
3102   case CXXConstructExprClass:
3103   case CXXTemporaryObjectExprClass: {
3104     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3105     if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects)
3106       return true;
3107     // A trivial constructor does not add any side-effects of its own. Just look
3108     // at its arguments.
3109     break;
3110   }
3111
3112   case LambdaExprClass: {
3113     const LambdaExpr *LE = cast<LambdaExpr>(this);
3114     for (LambdaExpr::capture_iterator I = LE->capture_begin(),
3115                                       E = LE->capture_end(); I != E; ++I)
3116       if (I->getCaptureKind() == LCK_ByCopy)
3117         // FIXME: Only has a side-effect if the variable is volatile or if
3118         // the copy would invoke a non-trivial copy constructor.
3119         return true;
3120     return false;
3121   }
3122
3123   case PseudoObjectExprClass: {
3124     // Only look for side-effects in the semantic form, and look past
3125     // OpaqueValueExpr bindings in that form.
3126     const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
3127     for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
3128                                                     E = PO->semantics_end();
3129          I != E; ++I) {
3130       const Expr *Subexpr = *I;
3131       if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
3132         Subexpr = OVE->getSourceExpr();
3133       if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects))
3134         return true;
3135     }
3136     return false;
3137   }
3138
3139   case ObjCBoxedExprClass:
3140   case ObjCArrayLiteralClass:
3141   case ObjCDictionaryLiteralClass:
3142   case ObjCSelectorExprClass:
3143   case ObjCProtocolExprClass:
3144   case ObjCIsaExprClass:
3145   case ObjCIndirectCopyRestoreExprClass:
3146   case ObjCSubscriptRefExprClass:
3147   case ObjCBridgedCastExprClass:
3148   case ObjCMessageExprClass:
3149   case ObjCPropertyRefExprClass:
3150   // FIXME: Classify these cases better.
3151     if (IncludePossibleEffects)
3152       return true;
3153     break;
3154   }
3155
3156   // Recurse to children.
3157   for (const Stmt *SubStmt : children())
3158     if (SubStmt &&
3159         cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects))
3160       return true;
3161
3162   return false;
3163 }
3164
3165 namespace {
3166   /// \brief Look for a call to a non-trivial function within an expression.
3167   class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder>
3168   {
3169     typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
3170
3171     bool NonTrivial;
3172     
3173   public:
3174     explicit NonTrivialCallFinder(const ASTContext &Context)
3175       : Inherited(Context), NonTrivial(false) { }
3176     
3177     bool hasNonTrivialCall() const { return NonTrivial; }
3178
3179     void VisitCallExpr(const CallExpr *E) {
3180       if (const CXXMethodDecl *Method
3181           = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) {
3182         if (Method->isTrivial()) {
3183           // Recurse to children of the call.
3184           Inherited::VisitStmt(E);
3185           return;
3186         }
3187       }
3188       
3189       NonTrivial = true;
3190     }
3191
3192     void VisitCXXConstructExpr(const CXXConstructExpr *E) {
3193       if (E->getConstructor()->isTrivial()) {
3194         // Recurse to children of the call.
3195         Inherited::VisitStmt(E);
3196         return;
3197       }
3198       
3199       NonTrivial = true;
3200     }
3201
3202     void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
3203       if (E->getTemporary()->getDestructor()->isTrivial()) {
3204         Inherited::VisitStmt(E);
3205         return;
3206       }
3207       
3208       NonTrivial = true;
3209     }
3210   };
3211 }
3212
3213 bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const {
3214   NonTrivialCallFinder Finder(Ctx);
3215   Finder.Visit(this);
3216   return Finder.hasNonTrivialCall();  
3217 }
3218
3219 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null 
3220 /// pointer constant or not, as well as the specific kind of constant detected.
3221 /// Null pointer constants can be integer constant expressions with the
3222 /// value zero, casts of zero to void*, nullptr (C++0X), or __null
3223 /// (a GNU extension).
3224 Expr::NullPointerConstantKind
3225 Expr::isNullPointerConstant(ASTContext &Ctx,
3226                             NullPointerConstantValueDependence NPC) const {
3227   if (isValueDependent() &&
3228       (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) {
3229     switch (NPC) {
3230     case NPC_NeverValueDependent:
3231       llvm_unreachable("Unexpected value dependent expression!");
3232     case NPC_ValueDependentIsNull:
3233       if (isTypeDependent() || getType()->isIntegralType(Ctx))
3234         return NPCK_ZeroExpression;
3235       else
3236         return NPCK_NotNull;
3237         
3238     case NPC_ValueDependentIsNotNull:
3239       return NPCK_NotNull;
3240     }
3241   }
3242
3243   // Strip off a cast to void*, if it exists. Except in C++.
3244   if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
3245     if (!Ctx.getLangOpts().CPlusPlus) {
3246       // Check that it is a cast to void*.
3247       if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
3248         QualType Pointee = PT->getPointeeType();
3249         if (!Pointee.hasQualifiers() &&
3250             Pointee->isVoidType() &&                              // to void*
3251             CE->getSubExpr()->getType()->isIntegerType())         // from int.
3252           return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3253       }
3254     }
3255   } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
3256     // Ignore the ImplicitCastExpr type entirely.
3257     return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3258   } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
3259     // Accept ((void*)0) as a null pointer constant, as many other
3260     // implementations do.
3261     return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3262   } else if (const GenericSelectionExpr *GE =
3263                dyn_cast<GenericSelectionExpr>(this)) {
3264     if (GE->isResultDependent())
3265       return NPCK_NotNull;
3266     return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
3267   } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
3268     if (CE->isConditionDependent())
3269       return NPCK_NotNull;
3270     return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
3271   } else if (const CXXDefaultArgExpr *DefaultArg
3272                = dyn_cast<CXXDefaultArgExpr>(this)) {
3273     // See through default argument expressions.
3274     return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
3275   } else if (const CXXDefaultInitExpr *DefaultInit
3276                = dyn_cast<CXXDefaultInitExpr>(this)) {
3277     // See through default initializer expressions.
3278     return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
3279   } else if (isa<GNUNullExpr>(this)) {
3280     // The GNU __null extension is always a null pointer constant.
3281     return NPCK_GNUNull;
3282   } else if (const MaterializeTemporaryExpr *M 
3283                                    = dyn_cast<MaterializeTemporaryExpr>(this)) {
3284     return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
3285   } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
3286     if (const Expr *Source = OVE->getSourceExpr())
3287       return Source->isNullPointerConstant(Ctx, NPC);
3288   }
3289
3290   // C++11 nullptr_t is always a null pointer constant.
3291   if (getType()->isNullPtrType())
3292     return NPCK_CXX11_nullptr;
3293
3294   if (const RecordType *UT = getType()->getAsUnionType())
3295     if (!Ctx.getLangOpts().CPlusPlus11 &&
3296         UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
3297       if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
3298         const Expr *InitExpr = CLE->getInitializer();
3299         if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
3300           return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
3301       }
3302   // This expression must be an integer type.
3303   if (!getType()->isIntegerType() || 
3304       (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
3305     return NPCK_NotNull;
3306
3307   if (Ctx.getLangOpts().CPlusPlus11) {
3308     // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
3309     // value zero or a prvalue of type std::nullptr_t.
3310     // Microsoft mode permits C++98 rules reflecting MSVC behavior.
3311     const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
3312     if (Lit && !Lit->getValue())
3313       return NPCK_ZeroLiteral;
3314     else if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx))
3315       return NPCK_NotNull;
3316   } else {
3317     // If we have an integer constant expression, we need to *evaluate* it and
3318     // test for the value 0.
3319     if (!isIntegerConstantExpr(Ctx))
3320       return NPCK_NotNull;
3321   }
3322
3323   if (EvaluateKnownConstInt(Ctx) != 0)
3324     return NPCK_NotNull;
3325
3326   if (isa<IntegerLiteral>(this))
3327     return NPCK_ZeroLiteral;
3328   return NPCK_ZeroExpression;
3329 }
3330
3331 /// \brief If this expression is an l-value for an Objective C
3332 /// property, find the underlying property reference expression.
3333 const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
3334   const Expr *E = this;
3335   while (true) {
3336     assert((E->getValueKind() == VK_LValue &&
3337             E->getObjectKind() == OK_ObjCProperty) &&
3338            "expression is not a property reference");
3339     E = E->IgnoreParenCasts();
3340     if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3341       if (BO->getOpcode() == BO_Comma) {
3342         E = BO->getRHS();
3343         continue;
3344       }
3345     }
3346
3347     break;
3348   }
3349
3350   return cast<ObjCPropertyRefExpr>(E);
3351 }
3352
3353 bool Expr::isObjCSelfExpr() const {
3354   const Expr *E = IgnoreParenImpCasts();
3355
3356   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
3357   if (!DRE)
3358     return false;
3359
3360   const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
3361   if (!Param)
3362     return false;
3363
3364   const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
3365   if (!M)
3366     return false;
3367
3368   return M->getSelfDecl() == Param;
3369 }
3370
3371 FieldDecl *Expr::getSourceBitField() {
3372   Expr *E = this->IgnoreParens();
3373
3374   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3375     if (ICE->getCastKind() == CK_LValueToRValue ||
3376         (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
3377       E = ICE->getSubExpr()->IgnoreParens();
3378     else
3379       break;
3380   }
3381
3382   if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
3383     if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
3384       if (Field->isBitField())
3385         return Field;
3386
3387   if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E))
3388     if (FieldDecl *Ivar = dyn_cast<FieldDecl>(IvarRef->getDecl()))
3389       if (Ivar->isBitField())
3390         return Ivar;
3391
3392   if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E))
3393     if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
3394       if (Field->isBitField())
3395         return Field;
3396
3397   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
3398     if (BinOp->isAssignmentOp() && BinOp->getLHS())
3399       return BinOp->getLHS()->getSourceBitField();
3400
3401     if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
3402       return BinOp->getRHS()->getSourceBitField();
3403   }
3404
3405   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E))
3406     if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp())
3407       return UnOp->getSubExpr()->getSourceBitField();
3408
3409   return nullptr;
3410 }
3411
3412 bool Expr::refersToVectorElement() const {
3413   const Expr *E = this->IgnoreParens();
3414   
3415   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3416     if (ICE->getValueKind() != VK_RValue &&
3417         ICE->getCastKind() == CK_NoOp)
3418       E = ICE->getSubExpr()->IgnoreParens();
3419     else
3420       break;
3421   }
3422   
3423   if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
3424     return ASE->getBase()->getType()->isVectorType();
3425
3426   if (isa<ExtVectorElementExpr>(E))
3427     return true;
3428
3429   return false;
3430 }
3431
3432 /// isArrow - Return true if the base expression is a pointer to vector,
3433 /// return false if the base expression is a vector.
3434 bool ExtVectorElementExpr::isArrow() const {
3435   return getBase()->getType()->isPointerType();
3436 }
3437
3438 unsigned ExtVectorElementExpr::getNumElements() const {
3439   if (const VectorType *VT = getType()->getAs<VectorType>())
3440     return VT->getNumElements();
3441   return 1;
3442 }
3443
3444 /// containsDuplicateElements - Return true if any element access is repeated.
3445 bool ExtVectorElementExpr::containsDuplicateElements() const {
3446   // FIXME: Refactor this code to an accessor on the AST node which returns the
3447   // "type" of component access, and share with code below and in Sema.
3448   StringRef Comp = Accessor->getName();
3449
3450   // Halving swizzles do not contain duplicate elements.
3451   if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
3452     return false;
3453
3454   // Advance past s-char prefix on hex swizzles.
3455   if (Comp[0] == 's' || Comp[0] == 'S')
3456     Comp = Comp.substr(1);
3457
3458   for (unsigned i = 0, e = Comp.size(); i != e; ++i)
3459     if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
3460         return true;
3461
3462   return false;
3463 }
3464
3465 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
3466 void ExtVectorElementExpr::getEncodedElementAccess(
3467                                   SmallVectorImpl<unsigned> &Elts) const {
3468   StringRef Comp = Accessor->getName();
3469   if (Comp[0] == 's' || Comp[0] == 'S')
3470     Comp = Comp.substr(1);
3471
3472   bool isHi =   Comp == "hi";
3473   bool isLo =   Comp == "lo";
3474   bool isEven = Comp == "even";
3475   bool isOdd  = Comp == "odd";
3476
3477   for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
3478     uint64_t Index;
3479
3480     if (isHi)
3481       Index = e + i;
3482     else if (isLo)
3483       Index = i;
3484     else if (isEven)
3485       Index = 2 * i;
3486     else if (isOdd)
3487       Index = 2 * i + 1;
3488     else
3489       Index = ExtVectorType::getAccessorIdx(Comp[i]);
3490
3491     Elts.push_back(Index);
3492   }
3493 }
3494
3495 ObjCMessageExpr::ObjCMessageExpr(QualType T,
3496                                  ExprValueKind VK,
3497                                  SourceLocation LBracLoc,
3498                                  SourceLocation SuperLoc,
3499                                  bool IsInstanceSuper,
3500                                  QualType SuperType,
3501                                  Selector Sel, 
3502                                  ArrayRef<SourceLocation> SelLocs,
3503                                  SelectorLocationsKind SelLocsK,
3504                                  ObjCMethodDecl *Method,
3505                                  ArrayRef<Expr *> Args,
3506                                  SourceLocation RBracLoc,
3507                                  bool isImplicit)
3508   : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary,
3509          /*TypeDependent=*/false, /*ValueDependent=*/false,
3510          /*InstantiationDependent=*/false,
3511          /*ContainsUnexpandedParameterPack=*/false),
3512     SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3513                                                        : Sel.getAsOpaquePtr())),
3514     Kind(IsInstanceSuper? SuperInstance : SuperClass),
3515     HasMethod(Method != nullptr), IsDelegateInitCall(false),
3516     IsImplicit(isImplicit), SuperLoc(SuperLoc), LBracLoc(LBracLoc),
3517     RBracLoc(RBracLoc)
3518 {
3519   initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3520   setReceiverPointer(SuperType.getAsOpaquePtr());
3521 }
3522
3523 ObjCMessageExpr::ObjCMessageExpr(QualType T,
3524                                  ExprValueKind VK,
3525                                  SourceLocation LBracLoc,
3526                                  TypeSourceInfo *Receiver,
3527                                  Selector Sel,
3528                                  ArrayRef<SourceLocation> SelLocs,
3529                                  SelectorLocationsKind SelLocsK,
3530                                  ObjCMethodDecl *Method,
3531                                  ArrayRef<Expr *> Args,
3532                                  SourceLocation RBracLoc,
3533                                  bool isImplicit)
3534   : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, T->isDependentType(),
3535          T->isDependentType(), T->isInstantiationDependentType(),
3536          T->containsUnexpandedParameterPack()),
3537     SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3538                                                        : Sel.getAsOpaquePtr())),
3539     Kind(Class),
3540     HasMethod(Method != nullptr), IsDelegateInitCall(false),
3541     IsImplicit(isImplicit), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
3542 {
3543   initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3544   setReceiverPointer(Receiver);
3545 }
3546
3547 ObjCMessageExpr::ObjCMessageExpr(QualType T,
3548                                  ExprValueKind VK,
3549                                  SourceLocation LBracLoc,
3550                                  Expr *Receiver,
3551                                  Selector Sel, 
3552                                  ArrayRef<SourceLocation> SelLocs,
3553                                  SelectorLocationsKind SelLocsK,
3554                                  ObjCMethodDecl *Method,
3555                                  ArrayRef<Expr *> Args,
3556                                  SourceLocation RBracLoc,
3557                                  bool isImplicit)
3558   : Expr(ObjCMessageExprClass, T, VK, OK_Ordinary, Receiver->isTypeDependent(),
3559          Receiver->isTypeDependent(),
3560          Receiver->isInstantiationDependent(),
3561          Receiver->containsUnexpandedParameterPack()),
3562     SelectorOrMethod(reinterpret_cast<uintptr_t>(Method? Method
3563                                                        : Sel.getAsOpaquePtr())),
3564     Kind(Instance),
3565     HasMethod(Method != nullptr), IsDelegateInitCall(false),
3566     IsImplicit(isImplicit), LBracLoc(LBracLoc), RBracLoc(RBracLoc)
3567 {
3568   initArgsAndSelLocs(Args, SelLocs, SelLocsK);
3569   setReceiverPointer(Receiver);
3570 }
3571
3572 void ObjCMessageExpr::initArgsAndSelLocs(ArrayRef<Expr *> Args,
3573                                          ArrayRef<SourceLocation> SelLocs,
3574                                          SelectorLocationsKind SelLocsK) {
3575   setNumArgs(Args.size());
3576   Expr **MyArgs = getArgs();
3577   for (unsigned I = 0; I != Args.size(); ++I) {
3578     if (Args[I]->isTypeDependent())
3579       ExprBits.TypeDependent = true;
3580     if (Args[I]->isValueDependent())
3581       ExprBits.ValueDependent = true;
3582     if (Args[I]->isInstantiationDependent())
3583       ExprBits.InstantiationDependent = true;
3584     if (Args[I]->containsUnexpandedParameterPack())
3585       ExprBits.ContainsUnexpandedParameterPack = true;
3586   
3587     MyArgs[I] = Args[I];
3588   }
3589
3590   SelLocsKind = SelLocsK;
3591   if (!isImplicit()) {
3592     if (SelLocsK == SelLoc_NonStandard)
3593       std::copy(SelLocs.begin(), SelLocs.end(), getStoredSelLocs());
3594   }
3595 }
3596
3597 ObjCMessageExpr *ObjCMessageExpr::Create(const ASTContext &Context, QualType T,
3598                                          ExprValueKind VK,
3599                                          SourceLocation LBracLoc,
3600                                          SourceLocation SuperLoc,
3601                                          bool IsInstanceSuper,
3602                                          QualType SuperType,
3603                                          Selector Sel, 
3604                                          ArrayRef<SourceLocation> SelLocs,
3605                                          ObjCMethodDecl *Method,
3606                                          ArrayRef<Expr *> Args,
3607                                          SourceLocation RBracLoc,
3608                                          bool isImplicit) {
3609   assert((!SelLocs.empty() || isImplicit) &&
3610          "No selector locs for non-implicit message");
3611   ObjCMessageExpr *Mem;
3612   SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3613   if (isImplicit)
3614     Mem = alloc(Context, Args.size(), 0);
3615   else
3616     Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3617   return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, SuperLoc, IsInstanceSuper,
3618                                    SuperType, Sel, SelLocs, SelLocsK,
3619                                    Method, Args, RBracLoc, isImplicit);
3620 }
3621
3622 ObjCMessageExpr *ObjCMessageExpr::Create(const ASTContext &Context, QualType T,
3623                                          ExprValueKind VK,
3624                                          SourceLocation LBracLoc,
3625                                          TypeSourceInfo *Receiver,
3626                                          Selector Sel, 
3627                                          ArrayRef<SourceLocation> SelLocs,
3628                                          ObjCMethodDecl *Method,
3629                                          ArrayRef<Expr *> Args,
3630                                          SourceLocation RBracLoc,
3631                                          bool isImplicit) {
3632   assert((!SelLocs.empty() || isImplicit) &&
3633          "No selector locs for non-implicit message");
3634   ObjCMessageExpr *Mem;
3635   SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3636   if (isImplicit)
3637     Mem = alloc(Context, Args.size(), 0);
3638   else
3639     Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3640   return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
3641                                    SelLocs, SelLocsK, Method, Args, RBracLoc,
3642                                    isImplicit);
3643 }
3644
3645 ObjCMessageExpr *ObjCMessageExpr::Create(const ASTContext &Context, QualType T,
3646                                          ExprValueKind VK,
3647                                          SourceLocation LBracLoc,
3648                                          Expr *Receiver,
3649                                          Selector Sel,
3650                                          ArrayRef<SourceLocation> SelLocs,
3651                                          ObjCMethodDecl *Method,
3652                                          ArrayRef<Expr *> Args,
3653                                          SourceLocation RBracLoc,
3654                                          bool isImplicit) {
3655   assert((!SelLocs.empty() || isImplicit) &&
3656          "No selector locs for non-implicit message");
3657   ObjCMessageExpr *Mem;
3658   SelectorLocationsKind SelLocsK = SelectorLocationsKind();
3659   if (isImplicit)
3660     Mem = alloc(Context, Args.size(), 0);
3661   else
3662     Mem = alloc(Context, Args, RBracLoc, SelLocs, Sel, SelLocsK);
3663   return new (Mem) ObjCMessageExpr(T, VK, LBracLoc, Receiver, Sel,
3664                                    SelLocs, SelLocsK, Method, Args, RBracLoc,
3665                                    isImplicit);
3666 }
3667
3668 ObjCMessageExpr *ObjCMessageExpr::CreateEmpty(const ASTContext &Context,
3669                                               unsigned NumArgs,
3670                                               unsigned NumStoredSelLocs) {
3671   ObjCMessageExpr *Mem = alloc(Context, NumArgs, NumStoredSelLocs);
3672   return new (Mem) ObjCMessageExpr(EmptyShell(), NumArgs);
3673 }
3674
3675 ObjCMessageExpr *ObjCMessageExpr::alloc(const ASTContext &C,
3676                                         ArrayRef<Expr *> Args,
3677                                         SourceLocation RBraceLoc,
3678                                         ArrayRef<SourceLocation> SelLocs,
3679                                         Selector Sel,
3680                                         SelectorLocationsKind &SelLocsK) {
3681   SelLocsK = hasStandardSelectorLocs(Sel, SelLocs, Args, RBraceLoc);
3682   unsigned NumStoredSelLocs = (SelLocsK == SelLoc_NonStandard) ? SelLocs.size()
3683                                                                : 0;
3684   return alloc(C, Args.size(), NumStoredSelLocs);
3685 }
3686
3687 ObjCMessageExpr *ObjCMessageExpr::alloc(const ASTContext &C,
3688                                         unsigned NumArgs,
3689                                         unsigned NumStoredSelLocs) {
3690   unsigned Size = sizeof(ObjCMessageExpr) + sizeof(void *) + 
3691     NumArgs * sizeof(Expr *) + NumStoredSelLocs * sizeof(SourceLocation);
3692   return (ObjCMessageExpr *)C.Allocate(Size,
3693                                      llvm::AlignOf<ObjCMessageExpr>::Alignment);
3694 }
3695
3696 void ObjCMessageExpr::getSelectorLocs(
3697                                SmallVectorImpl<SourceLocation> &SelLocs) const {
3698   for (unsigned i = 0, e = getNumSelectorLocs(); i != e; ++i)
3699     SelLocs.push_back(getSelectorLoc(i));
3700 }
3701
3702 SourceRange ObjCMessageExpr::getReceiverRange() const {
3703   switch (getReceiverKind()) {
3704   case Instance:
3705     return getInstanceReceiver()->getSourceRange();
3706
3707   case Class:
3708     return getClassReceiverTypeInfo()->getTypeLoc().getSourceRange();
3709
3710   case SuperInstance:
3711   case SuperClass:
3712     return getSuperLoc();
3713   }
3714
3715   llvm_unreachable("Invalid ReceiverKind!");
3716 }
3717
3718 Selector ObjCMessageExpr::getSelector() const {
3719   if (HasMethod)
3720     return reinterpret_cast<const ObjCMethodDecl *>(SelectorOrMethod)
3721                                                                ->getSelector();
3722   return Selector(SelectorOrMethod); 
3723 }
3724
3725 QualType ObjCMessageExpr::getReceiverType() const {
3726   switch (getReceiverKind()) {
3727   case Instance:
3728     return getInstanceReceiver()->getType();
3729   case Class:
3730     return getClassReceiver();
3731   case SuperInstance:
3732   case SuperClass:
3733     return getSuperType();
3734   }
3735
3736   llvm_unreachable("unexpected receiver kind");
3737 }
3738
3739 ObjCInterfaceDecl *ObjCMessageExpr::getReceiverInterface() const {
3740   QualType T = getReceiverType();
3741
3742   if (const ObjCObjectPointerType *Ptr = T->getAs<ObjCObjectPointerType>())
3743     return Ptr->getInterfaceDecl();
3744
3745   if (const ObjCObjectType *Ty = T->getAs<ObjCObjectType>())
3746     return Ty->getInterface();
3747
3748   return nullptr;
3749 }
3750
3751 QualType ObjCPropertyRefExpr::getReceiverType(const ASTContext &ctx) const {
3752   if (isClassReceiver())
3753     return ctx.getObjCInterfaceType(getClassReceiver());
3754
3755   if (isSuperReceiver())
3756     return getSuperReceiverType();
3757
3758   return getBase()->getType();
3759 }
3760
3761 StringRef ObjCBridgedCastExpr::getBridgeKindName() const {
3762   switch (getBridgeKind()) {
3763   case OBC_Bridge:
3764     return "__bridge";
3765   case OBC_BridgeTransfer:
3766     return "__bridge_transfer";
3767   case OBC_BridgeRetained:
3768     return "__bridge_retained";
3769   }
3770
3771   llvm_unreachable("Invalid BridgeKind!");
3772 }
3773
3774 ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args,
3775                                      QualType Type, SourceLocation BLoc,
3776                                      SourceLocation RP) 
3777    : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
3778           Type->isDependentType(), Type->isDependentType(),
3779           Type->isInstantiationDependentType(),
3780           Type->containsUnexpandedParameterPack()),
3781      BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size())
3782 {
3783   SubExprs = new (C) Stmt*[args.size()];
3784   for (unsigned i = 0; i != args.size(); i++) {
3785     if (args[i]->isTypeDependent())
3786       ExprBits.TypeDependent = true;
3787     if (args[i]->isValueDependent())
3788       ExprBits.ValueDependent = true;
3789     if (args[i]->isInstantiationDependent())
3790       ExprBits.InstantiationDependent = true;
3791     if (args[i]->containsUnexpandedParameterPack())
3792       ExprBits.ContainsUnexpandedParameterPack = true;
3793
3794     SubExprs[i] = args[i];
3795   }
3796 }
3797
3798 void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) {
3799   if (SubExprs) C.Deallocate(SubExprs);
3800
3801   this->NumExprs = Exprs.size();
3802   SubExprs = new (C) Stmt*[NumExprs];
3803   memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size());
3804 }
3805
3806 GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context,
3807                                SourceLocation GenericLoc, Expr *ControllingExpr,
3808                                ArrayRef<TypeSourceInfo*> AssocTypes,
3809                                ArrayRef<Expr*> AssocExprs,
3810                                SourceLocation DefaultLoc,
3811                                SourceLocation RParenLoc,
3812                                bool ContainsUnexpandedParameterPack,
3813                                unsigned ResultIndex)
3814   : Expr(GenericSelectionExprClass,
3815          AssocExprs[ResultIndex]->getType(),
3816          AssocExprs[ResultIndex]->getValueKind(),
3817          AssocExprs[ResultIndex]->getObjectKind(),
3818          AssocExprs[ResultIndex]->isTypeDependent(),
3819          AssocExprs[ResultIndex]->isValueDependent(),
3820          AssocExprs[ResultIndex]->isInstantiationDependent(),
3821          ContainsUnexpandedParameterPack),
3822     AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
3823     SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
3824     NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
3825     GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
3826   SubExprs[CONTROLLING] = ControllingExpr;
3827   assert(AssocTypes.size() == AssocExprs.size());
3828   std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
3829   std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
3830 }
3831
3832 GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context,
3833                                SourceLocation GenericLoc, Expr *ControllingExpr,
3834                                ArrayRef<TypeSourceInfo*> AssocTypes,
3835                                ArrayRef<Expr*> AssocExprs,
3836                                SourceLocation DefaultLoc,
3837                                SourceLocation RParenLoc,
3838                                bool ContainsUnexpandedParameterPack)
3839   : Expr(GenericSelectionExprClass,
3840          Context.DependentTy,
3841          VK_RValue,
3842          OK_Ordinary,
3843          /*isTypeDependent=*/true,
3844          /*isValueDependent=*/true,
3845          /*isInstantiationDependent=*/true,
3846          ContainsUnexpandedParameterPack),
3847     AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
3848     SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
3849     NumAssocs(AssocExprs.size()), ResultIndex(-1U), GenericLoc(GenericLoc),
3850     DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
3851   SubExprs[CONTROLLING] = ControllingExpr;
3852   assert(AssocTypes.size() == AssocExprs.size());
3853   std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
3854   std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
3855 }
3856
3857 //===----------------------------------------------------------------------===//
3858 //  DesignatedInitExpr
3859 //===----------------------------------------------------------------------===//
3860
3861 IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
3862   assert(Kind == FieldDesignator && "Only valid on a field designator");
3863   if (Field.NameOrField & 0x01)
3864     return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
3865   else
3866     return getField()->getIdentifier();
3867 }
3868
3869 DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
3870                                        unsigned NumDesignators,
3871                                        const Designator *Designators,
3872                                        SourceLocation EqualOrColonLoc,
3873                                        bool GNUSyntax,
3874                                        ArrayRef<Expr*> IndexExprs,
3875                                        Expr *Init)
3876   : Expr(DesignatedInitExprClass, Ty,
3877          Init->getValueKind(), Init->getObjectKind(),
3878          Init->isTypeDependent(), Init->isValueDependent(),
3879          Init->isInstantiationDependent(),
3880          Init->containsUnexpandedParameterPack()),
3881     EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
3882     NumDesignators(NumDesignators), NumSubExprs(IndexExprs.size() + 1) {
3883   this->Designators = new (C) Designator[NumDesignators];
3884
3885   // Record the initializer itself.
3886   child_range Child = children();
3887   *Child++ = Init;
3888
3889   // Copy the designators and their subexpressions, computing
3890   // value-dependence along the way.
3891   unsigned IndexIdx = 0;
3892   for (unsigned I = 0; I != NumDesignators; ++I) {
3893     this->Designators[I] = Designators[I];
3894
3895     if (this->Designators[I].isArrayDesignator()) {
3896       // Compute type- and value-dependence.
3897       Expr *Index = IndexExprs[IndexIdx];
3898       if (Index->isTypeDependent() || Index->isValueDependent())
3899         ExprBits.TypeDependent = ExprBits.ValueDependent = true;
3900       if (Index->isInstantiationDependent())
3901         ExprBits.InstantiationDependent = true;
3902       // Propagate unexpanded parameter packs.
3903       if (Index->containsUnexpandedParameterPack())
3904         ExprBits.ContainsUnexpandedParameterPack = true;
3905
3906       // Copy the index expressions into permanent storage.
3907       *Child++ = IndexExprs[IndexIdx++];
3908     } else if (this->Designators[I].isArrayRangeDesignator()) {
3909       // Compute type- and value-dependence.
3910       Expr *Start = IndexExprs[IndexIdx];
3911       Expr *End = IndexExprs[IndexIdx + 1];
3912       if (Start->isTypeDependent() || Start->isValueDependent() ||
3913           End->isTypeDependent() || End->isValueDependent()) {
3914         ExprBits.TypeDependent = ExprBits.ValueDependent = true;
3915         ExprBits.InstantiationDependent = true;
3916       } else if (Start->isInstantiationDependent() || 
3917                  End->isInstantiationDependent()) {
3918         ExprBits.InstantiationDependent = true;
3919       }
3920                  
3921       // Propagate unexpanded parameter packs.
3922       if (Start->containsUnexpandedParameterPack() ||
3923           End->containsUnexpandedParameterPack())
3924         ExprBits.ContainsUnexpandedParameterPack = true;
3925
3926       // Copy the start/end expressions into permanent storage.
3927       *Child++ = IndexExprs[IndexIdx++];
3928       *Child++ = IndexExprs[IndexIdx++];
3929     }
3930   }
3931
3932   assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
3933 }
3934
3935 DesignatedInitExpr *
3936 DesignatedInitExpr::Create(const ASTContext &C, Designator *Designators,
3937                            unsigned NumDesignators,
3938                            ArrayRef<Expr*> IndexExprs,
3939                            SourceLocation ColonOrEqualLoc,
3940                            bool UsesColonSyntax, Expr *Init) {
3941   void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3942                          sizeof(Stmt *) * (IndexExprs.size() + 1), 8);
3943   return new (Mem) DesignatedInitExpr(C, C.VoidTy, NumDesignators, Designators,
3944                                       ColonOrEqualLoc, UsesColonSyntax,
3945                                       IndexExprs, Init);
3946 }
3947
3948 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C,
3949                                                     unsigned NumIndexExprs) {
3950   void *Mem = C.Allocate(sizeof(DesignatedInitExpr) +
3951                          sizeof(Stmt *) * (NumIndexExprs + 1), 8);
3952   return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
3953 }
3954
3955 void DesignatedInitExpr::setDesignators(const ASTContext &C,
3956                                         const Designator *Desigs,
3957                                         unsigned NumDesigs) {
3958   Designators = new (C) Designator[NumDesigs];
3959   NumDesignators = NumDesigs;
3960   for (unsigned I = 0; I != NumDesigs; ++I)
3961     Designators[I] = Desigs[I];
3962 }
3963
3964 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
3965   DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
3966   if (size() == 1)
3967     return DIE->getDesignator(0)->getSourceRange();
3968   return SourceRange(DIE->getDesignator(0)->getLocStart(),
3969                      DIE->getDesignator(size()-1)->getLocEnd());
3970 }
3971
3972 SourceLocation DesignatedInitExpr::getLocStart() const {
3973   SourceLocation StartLoc;
3974   Designator &First =
3975     *const_cast<DesignatedInitExpr*>(this)->designators_begin();
3976   if (First.isFieldDesignator()) {
3977     if (GNUSyntax)
3978       StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
3979     else
3980       StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
3981   } else
3982     StartLoc =
3983       SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
3984   return StartLoc;
3985 }
3986
3987 SourceLocation DesignatedInitExpr::getLocEnd() const {
3988   return getInit()->getLocEnd();
3989 }
3990
3991 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const {
3992   assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
3993   Stmt *const *SubExprs = reinterpret_cast<Stmt *const *>(this + 1);
3994   return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
3995 }
3996
3997 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const {
3998   assert(D.Kind == Designator::ArrayRangeDesignator &&
3999          "Requires array range designator");
4000   Stmt *const *SubExprs = reinterpret_cast<Stmt *const *>(this + 1);
4001   return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 1));
4002 }
4003
4004 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const {
4005   assert(D.Kind == Designator::ArrayRangeDesignator &&
4006          "Requires array range designator");
4007   Stmt *const *SubExprs = reinterpret_cast<Stmt *const *>(this + 1);
4008   return cast<Expr>(*(SubExprs + D.ArrayOrRange.Index + 2));
4009 }
4010
4011 /// \brief Replaces the designator at index @p Idx with the series
4012 /// of designators in [First, Last).
4013 void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx,
4014                                           const Designator *First,
4015                                           const Designator *Last) {
4016   unsigned NumNewDesignators = Last - First;
4017   if (NumNewDesignators == 0) {
4018     std::copy_backward(Designators + Idx + 1,
4019                        Designators + NumDesignators,
4020                        Designators + Idx);
4021     --NumNewDesignators;
4022     return;
4023   } else if (NumNewDesignators == 1) {
4024     Designators[Idx] = *First;
4025     return;
4026   }
4027
4028   Designator *NewDesignators
4029     = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
4030   std::copy(Designators, Designators + Idx, NewDesignators);
4031   std::copy(First, Last, NewDesignators + Idx);
4032   std::copy(Designators + Idx + 1, Designators + NumDesignators,
4033             NewDesignators + Idx + NumNewDesignators);
4034   Designators = NewDesignators;
4035   NumDesignators = NumDesignators - 1 + NumNewDesignators;
4036 }
4037
4038 DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C,
4039     SourceLocation lBraceLoc, Expr *baseExpr, SourceLocation rBraceLoc)
4040   : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_RValue,
4041          OK_Ordinary, false, false, false, false) {
4042   BaseAndUpdaterExprs[0] = baseExpr;
4043
4044   InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, None, rBraceLoc);
4045   ILE->setType(baseExpr->getType());
4046   BaseAndUpdaterExprs[1] = ILE;
4047 }
4048
4049 SourceLocation DesignatedInitUpdateExpr::getLocStart() const {
4050   return getBase()->getLocStart();
4051 }
4052
4053 SourceLocation DesignatedInitUpdateExpr::getLocEnd() const {
4054   return getBase()->getLocEnd();
4055 }
4056
4057 ParenListExpr::ParenListExpr(const ASTContext& C, SourceLocation lparenloc,
4058                              ArrayRef<Expr*> exprs,
4059                              SourceLocation rparenloc)
4060   : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary,
4061          false, false, false, false),
4062     NumExprs(exprs.size()), LParenLoc(lparenloc), RParenLoc(rparenloc) {
4063   Exprs = new (C) Stmt*[exprs.size()];
4064   for (unsigned i = 0; i != exprs.size(); ++i) {
4065     if (exprs[i]->isTypeDependent())
4066       ExprBits.TypeDependent = true;
4067     if (exprs[i]->isValueDependent())
4068       ExprBits.ValueDependent = true;
4069     if (exprs[i]->isInstantiationDependent())
4070       ExprBits.InstantiationDependent = true;
4071     if (exprs[i]->containsUnexpandedParameterPack())
4072       ExprBits.ContainsUnexpandedParameterPack = true;
4073
4074     Exprs[i] = exprs[i];
4075   }
4076 }
4077
4078 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
4079   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
4080     e = ewc->getSubExpr();
4081   if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
4082     e = m->GetTemporaryExpr();
4083   e = cast<CXXConstructExpr>(e)->getArg(0);
4084   while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
4085     e = ice->getSubExpr();
4086   return cast<OpaqueValueExpr>(e);
4087 }
4088
4089 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context,
4090                                            EmptyShell sh,
4091                                            unsigned numSemanticExprs) {
4092   void *buffer = Context.Allocate(sizeof(PseudoObjectExpr) +
4093                                     (1 + numSemanticExprs) * sizeof(Expr*),
4094                                   llvm::alignOf<PseudoObjectExpr>());
4095   return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
4096 }
4097
4098 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
4099   : Expr(PseudoObjectExprClass, shell) {
4100   PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
4101 }
4102
4103 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax,
4104                                            ArrayRef<Expr*> semantics,
4105                                            unsigned resultIndex) {
4106   assert(syntax && "no syntactic expression!");
4107   assert(semantics.size() && "no semantic expressions!");
4108
4109   QualType type;
4110   ExprValueKind VK;
4111   if (resultIndex == NoResult) {
4112     type = C.VoidTy;
4113     VK = VK_RValue;
4114   } else {
4115     assert(resultIndex < semantics.size());
4116     type = semantics[resultIndex]->getType();
4117     VK = semantics[resultIndex]->getValueKind();
4118     assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
4119   }
4120
4121   void *buffer = C.Allocate(sizeof(PseudoObjectExpr) +
4122                               (1 + semantics.size()) * sizeof(Expr*),
4123                             llvm::alignOf<PseudoObjectExpr>());
4124   return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
4125                                       resultIndex);
4126 }
4127
4128 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
4129                                    Expr *syntax, ArrayRef<Expr*> semantics,
4130                                    unsigned resultIndex)
4131   : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
4132          /*filled in at end of ctor*/ false, false, false, false) {
4133   PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
4134   PseudoObjectExprBits.ResultIndex = resultIndex + 1;
4135
4136   for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
4137     Expr *E = (i == 0 ? syntax : semantics[i-1]);
4138     getSubExprsBuffer()[i] = E;
4139
4140     if (E->isTypeDependent())
4141       ExprBits.TypeDependent = true;
4142     if (E->isValueDependent())
4143       ExprBits.ValueDependent = true;
4144     if (E->isInstantiationDependent())
4145       ExprBits.InstantiationDependent = true;
4146     if (E->containsUnexpandedParameterPack())
4147       ExprBits.ContainsUnexpandedParameterPack = true;
4148
4149     if (isa<OpaqueValueExpr>(E))
4150       assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr &&
4151              "opaque-value semantic expressions for pseudo-object "
4152              "operations must have sources");
4153   }
4154 }
4155
4156 //===----------------------------------------------------------------------===//
4157 //  ExprIterator.
4158 //===----------------------------------------------------------------------===//
4159
4160 Expr* ExprIterator::operator[](size_t idx) { return cast<Expr>(I[idx]); }
4161 Expr* ExprIterator::operator*() const { return cast<Expr>(*I); }
4162 Expr* ExprIterator::operator->() const { return cast<Expr>(*I); }
4163 const Expr* ConstExprIterator::operator[](size_t idx) const {
4164   return cast<Expr>(I[idx]);
4165 }
4166 const Expr* ConstExprIterator::operator*() const { return cast<Expr>(*I); }
4167 const Expr* ConstExprIterator::operator->() const { return cast<Expr>(*I); }
4168
4169 //===----------------------------------------------------------------------===//
4170 //  Child Iterators for iterating over subexpressions/substatements
4171 //===----------------------------------------------------------------------===//
4172
4173 // UnaryExprOrTypeTraitExpr
4174 Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
4175   // If this is of a type and the type is a VLA type (and not a typedef), the
4176   // size expression of the VLA needs to be treated as an executable expression.
4177   // Why isn't this weirdness documented better in StmtIterator?
4178   if (isArgumentType()) {
4179     if (const VariableArrayType* T = dyn_cast<VariableArrayType>(
4180                                    getArgumentType().getTypePtr()))
4181       return child_range(child_iterator(T), child_iterator());
4182     return child_range();
4183   }
4184   return child_range(&Argument.Ex, &Argument.Ex + 1);
4185 }
4186
4187 // ObjCMessageExpr
4188 Stmt::child_range ObjCMessageExpr::children() {
4189   Stmt **begin;
4190   if (getReceiverKind() == Instance)
4191     begin = reinterpret_cast<Stmt **>(this + 1);
4192   else
4193     begin = reinterpret_cast<Stmt **>(getArgs());
4194   return child_range(begin,
4195                      reinterpret_cast<Stmt **>(getArgs() + getNumArgs()));
4196 }
4197
4198 ObjCArrayLiteral::ObjCArrayLiteral(ArrayRef<Expr *> Elements, 
4199                                    QualType T, ObjCMethodDecl *Method,
4200                                    SourceRange SR)
4201   : Expr(ObjCArrayLiteralClass, T, VK_RValue, OK_Ordinary, 
4202          false, false, false, false), 
4203     NumElements(Elements.size()), Range(SR), ArrayWithObjectsMethod(Method)
4204 {
4205   Expr **SaveElements = getElements();
4206   for (unsigned I = 0, N = Elements.size(); I != N; ++I) {
4207     if (Elements[I]->isTypeDependent() || Elements[I]->isValueDependent())
4208       ExprBits.ValueDependent = true;
4209     if (Elements[I]->isInstantiationDependent())
4210       ExprBits.InstantiationDependent = true;
4211     if (Elements[I]->containsUnexpandedParameterPack())
4212       ExprBits.ContainsUnexpandedParameterPack = true;
4213     
4214     SaveElements[I] = Elements[I];
4215   }
4216 }
4217
4218 ObjCArrayLiteral *ObjCArrayLiteral::Create(const ASTContext &C,
4219                                            ArrayRef<Expr *> Elements,
4220                                            QualType T, ObjCMethodDecl * Method,
4221                                            SourceRange SR) {
4222   void *Mem = C.Allocate(sizeof(ObjCArrayLiteral) 
4223                          + Elements.size() * sizeof(Expr *));
4224   return new (Mem) ObjCArrayLiteral(Elements, T, Method, SR);
4225 }
4226
4227 ObjCArrayLiteral *ObjCArrayLiteral::CreateEmpty(const ASTContext &C,
4228                                                 unsigned NumElements) {
4229   
4230   void *Mem = C.Allocate(sizeof(ObjCArrayLiteral) 
4231                          + NumElements * sizeof(Expr *));
4232   return new (Mem) ObjCArrayLiteral(EmptyShell(), NumElements);
4233 }
4234
4235 ObjCDictionaryLiteral::ObjCDictionaryLiteral(
4236                                              ArrayRef<ObjCDictionaryElement> VK, 
4237                                              bool HasPackExpansions,
4238                                              QualType T, ObjCMethodDecl *method,
4239                                              SourceRange SR)
4240   : Expr(ObjCDictionaryLiteralClass, T, VK_RValue, OK_Ordinary, false, false,
4241          false, false),
4242     NumElements(VK.size()), HasPackExpansions(HasPackExpansions), Range(SR), 
4243     DictWithObjectsMethod(method)
4244 {
4245   KeyValuePair *KeyValues = getKeyValues();
4246   ExpansionData *Expansions = getExpansionData();
4247   for (unsigned I = 0; I < NumElements; I++) {
4248     if (VK[I].Key->isTypeDependent() || VK[I].Key->isValueDependent() ||
4249         VK[I].Value->isTypeDependent() || VK[I].Value->isValueDependent())
4250       ExprBits.ValueDependent = true;
4251     if (VK[I].Key->isInstantiationDependent() ||
4252         VK[I].Value->isInstantiationDependent())
4253       ExprBits.InstantiationDependent = true;
4254     if (VK[I].EllipsisLoc.isInvalid() &&
4255         (VK[I].Key->containsUnexpandedParameterPack() ||
4256          VK[I].Value->containsUnexpandedParameterPack()))
4257       ExprBits.ContainsUnexpandedParameterPack = true;
4258
4259     KeyValues[I].Key = VK[I].Key;
4260     KeyValues[I].Value = VK[I].Value; 
4261     if (Expansions) {
4262       Expansions[I].EllipsisLoc = VK[I].EllipsisLoc;
4263       if (VK[I].NumExpansions)
4264         Expansions[I].NumExpansionsPlusOne = *VK[I].NumExpansions + 1;
4265       else
4266         Expansions[I].NumExpansionsPlusOne = 0;
4267     }
4268   }
4269 }
4270
4271 ObjCDictionaryLiteral *
4272 ObjCDictionaryLiteral::Create(const ASTContext &C,
4273                               ArrayRef<ObjCDictionaryElement> VK, 
4274                               bool HasPackExpansions,
4275                               QualType T, ObjCMethodDecl *method,
4276                               SourceRange SR) {
4277   unsigned ExpansionsSize = 0;
4278   if (HasPackExpansions)
4279     ExpansionsSize = sizeof(ExpansionData) * VK.size();
4280     
4281   void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) + 
4282                          sizeof(KeyValuePair) * VK.size() + ExpansionsSize);
4283   return new (Mem) ObjCDictionaryLiteral(VK, HasPackExpansions, T, method, SR);
4284 }
4285
4286 ObjCDictionaryLiteral *
4287 ObjCDictionaryLiteral::CreateEmpty(const ASTContext &C, unsigned NumElements,
4288                                    bool HasPackExpansions) {
4289   unsigned ExpansionsSize = 0;
4290   if (HasPackExpansions)
4291     ExpansionsSize = sizeof(ExpansionData) * NumElements;
4292   void *Mem = C.Allocate(sizeof(ObjCDictionaryLiteral) + 
4293                          sizeof(KeyValuePair) * NumElements + ExpansionsSize);
4294   return new (Mem) ObjCDictionaryLiteral(EmptyShell(), NumElements, 
4295                                          HasPackExpansions);
4296 }
4297
4298 ObjCSubscriptRefExpr *ObjCSubscriptRefExpr::Create(const ASTContext &C,
4299                                                    Expr *base,
4300                                                    Expr *key, QualType T, 
4301                                                    ObjCMethodDecl *getMethod,
4302                                                    ObjCMethodDecl *setMethod, 
4303                                                    SourceLocation RB) {
4304   void *Mem = C.Allocate(sizeof(ObjCSubscriptRefExpr));
4305   return new (Mem) ObjCSubscriptRefExpr(base, key, T, VK_LValue, 
4306                                         OK_ObjCSubscript,
4307                                         getMethod, setMethod, RB);
4308 }
4309
4310 AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args,
4311                        QualType t, AtomicOp op, SourceLocation RP)
4312   : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
4313          false, false, false, false),
4314     NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
4315 {
4316   assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
4317   for (unsigned i = 0; i != args.size(); i++) {
4318     if (args[i]->isTypeDependent())
4319       ExprBits.TypeDependent = true;
4320     if (args[i]->isValueDependent())
4321       ExprBits.ValueDependent = true;
4322     if (args[i]->isInstantiationDependent())
4323       ExprBits.InstantiationDependent = true;
4324     if (args[i]->containsUnexpandedParameterPack())
4325       ExprBits.ContainsUnexpandedParameterPack = true;
4326
4327     SubExprs[i] = args[i];
4328   }
4329 }
4330
4331 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
4332   switch (Op) {
4333   case AO__c11_atomic_init:
4334   case AO__c11_atomic_load:
4335   case AO__atomic_load_n:
4336     return 2;
4337
4338   case AO__c11_atomic_store:
4339   case AO__c11_atomic_exchange:
4340   case AO__atomic_load:
4341   case AO__atomic_store:
4342   case AO__atomic_store_n:
4343   case AO__atomic_exchange_n:
4344   case AO__c11_atomic_fetch_add:
4345   case AO__c11_atomic_fetch_sub:
4346   case AO__c11_atomic_fetch_and:
4347   case AO__c11_atomic_fetch_or:
4348   case AO__c11_atomic_fetch_xor:
4349   case AO__atomic_fetch_add:
4350   case AO__atomic_fetch_sub:
4351   case AO__atomic_fetch_and:
4352   case AO__atomic_fetch_or:
4353   case AO__atomic_fetch_xor:
4354   case AO__atomic_fetch_nand:
4355   case AO__atomic_add_fetch:
4356   case AO__atomic_sub_fetch:
4357   case AO__atomic_and_fetch:
4358   case AO__atomic_or_fetch:
4359   case AO__atomic_xor_fetch:
4360   case AO__atomic_nand_fetch:
4361     return 3;
4362
4363   case AO__atomic_exchange:
4364     return 4;
4365
4366   case AO__c11_atomic_compare_exchange_strong:
4367   case AO__c11_atomic_compare_exchange_weak:
4368     return 5;
4369
4370   case AO__atomic_compare_exchange:
4371   case AO__atomic_compare_exchange_n:
4372     return 6;
4373   }
4374   llvm_unreachable("unknown atomic op");
4375 }