]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/AST/Expr.cpp
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / AST / Expr.cpp
1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Expr class and subclasses.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/Attr.h"
16 #include "clang/AST/DeclCXX.h"
17 #include "clang/AST/DeclObjC.h"
18 #include "clang/AST/DeclTemplate.h"
19 #include "clang/AST/EvaluatedExprVisitor.h"
20 #include "clang/AST/Expr.h"
21 #include "clang/AST/ExprCXX.h"
22 #include "clang/AST/Mangle.h"
23 #include "clang/AST/RecordLayout.h"
24 #include "clang/AST/StmtVisitor.h"
25 #include "clang/Basic/Builtins.h"
26 #include "clang/Basic/CharInfo.h"
27 #include "clang/Basic/SourceManager.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "clang/Lex/Lexer.h"
30 #include "clang/Lex/LiteralSupport.h"
31 #include "clang/Sema/SemaDiagnostic.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include <algorithm>
35 #include <cstring>
36 using namespace clang;
37
38 const Expr *Expr::getBestDynamicClassTypeExpr() const {
39   const Expr *E = this;
40   while (true) {
41     E = E->ignoreParenBaseCasts();
42
43     // Follow the RHS of a comma operator.
44     if (auto *BO = dyn_cast<BinaryOperator>(E)) {
45       if (BO->getOpcode() == BO_Comma) {
46         E = BO->getRHS();
47         continue;
48       }
49     }
50
51     // Step into initializer for materialized temporaries.
52     if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E)) {
53       E = MTE->GetTemporaryExpr();
54       continue;
55     }
56
57     break;
58   }
59
60   return E;
61 }
62
63 const CXXRecordDecl *Expr::getBestDynamicClassType() const {
64   const Expr *E = getBestDynamicClassTypeExpr();
65   QualType DerivedType = E->getType();
66   if (const PointerType *PTy = DerivedType->getAs<PointerType>())
67     DerivedType = PTy->getPointeeType();
68
69   if (DerivedType->isDependentType())
70     return nullptr;
71
72   const RecordType *Ty = DerivedType->castAs<RecordType>();
73   Decl *D = Ty->getDecl();
74   return cast<CXXRecordDecl>(D);
75 }
76
77 const Expr *Expr::skipRValueSubobjectAdjustments(
78     SmallVectorImpl<const Expr *> &CommaLHSs,
79     SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
80   const Expr *E = this;
81   while (true) {
82     E = E->IgnoreParens();
83
84     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
85       if ((CE->getCastKind() == CK_DerivedToBase ||
86            CE->getCastKind() == CK_UncheckedDerivedToBase) &&
87           E->getType()->isRecordType()) {
88         E = CE->getSubExpr();
89         CXXRecordDecl *Derived
90           = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
91         Adjustments.push_back(SubobjectAdjustment(CE, Derived));
92         continue;
93       }
94
95       if (CE->getCastKind() == CK_NoOp) {
96         E = CE->getSubExpr();
97         continue;
98       }
99     } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
100       if (!ME->isArrow()) {
101         assert(ME->getBase()->getType()->isRecordType());
102         if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
103           if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
104             E = ME->getBase();
105             Adjustments.push_back(SubobjectAdjustment(Field));
106             continue;
107           }
108         }
109       }
110     } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
111       if (BO->getOpcode() == BO_PtrMemD) {
112         assert(BO->getRHS()->isRValue());
113         E = BO->getLHS();
114         const MemberPointerType *MPT =
115           BO->getRHS()->getType()->getAs<MemberPointerType>();
116         Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
117         continue;
118       } else if (BO->getOpcode() == BO_Comma) {
119         CommaLHSs.push_back(BO->getLHS());
120         E = BO->getRHS();
121         continue;
122       }
123     }
124
125     // Nothing changed.
126     break;
127   }
128   return E;
129 }
130
131 /// isKnownToHaveBooleanValue - Return true if this is an integer expression
132 /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
133 /// but also int expressions which are produced by things like comparisons in
134 /// C.
135 bool Expr::isKnownToHaveBooleanValue() const {
136   const Expr *E = IgnoreParens();
137
138   // If this value has _Bool type, it is obvious 0/1.
139   if (E->getType()->isBooleanType()) return true;
140   // If this is a non-scalar-integer type, we don't care enough to try.
141   if (!E->getType()->isIntegralOrEnumerationType()) return false;
142
143   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
144     switch (UO->getOpcode()) {
145     case UO_Plus:
146       return UO->getSubExpr()->isKnownToHaveBooleanValue();
147     case UO_LNot:
148       return true;
149     default:
150       return false;
151     }
152   }
153
154   // Only look through implicit casts.  If the user writes
155   // '(int) (a && b)' treat it as an arbitrary int.
156   if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
157     return CE->getSubExpr()->isKnownToHaveBooleanValue();
158
159   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
160     switch (BO->getOpcode()) {
161     default: return false;
162     case BO_LT:   // Relational operators.
163     case BO_GT:
164     case BO_LE:
165     case BO_GE:
166     case BO_EQ:   // Equality operators.
167     case BO_NE:
168     case BO_LAnd: // AND operator.
169     case BO_LOr:  // Logical OR operator.
170       return true;
171
172     case BO_And:  // Bitwise AND operator.
173     case BO_Xor:  // Bitwise XOR operator.
174     case BO_Or:   // Bitwise OR operator.
175       // Handle things like (x==2)|(y==12).
176       return BO->getLHS()->isKnownToHaveBooleanValue() &&
177              BO->getRHS()->isKnownToHaveBooleanValue();
178
179     case BO_Comma:
180     case BO_Assign:
181       return BO->getRHS()->isKnownToHaveBooleanValue();
182     }
183   }
184
185   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
186     return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
187            CO->getFalseExpr()->isKnownToHaveBooleanValue();
188
189   return false;
190 }
191
192 // Amusing macro metaprogramming hack: check whether a class provides
193 // a more specific implementation of getExprLoc().
194 //
195 // See also Stmt.cpp:{getLocStart(),getLocEnd()}.
196 namespace {
197   /// This implementation is used when a class provides a custom
198   /// implementation of getExprLoc.
199   template <class E, class T>
200   SourceLocation getExprLocImpl(const Expr *expr,
201                                 SourceLocation (T::*v)() const) {
202     return static_cast<const E*>(expr)->getExprLoc();
203   }
204
205   /// This implementation is used when a class doesn't provide
206   /// a custom implementation of getExprLoc.  Overload resolution
207   /// should pick it over the implementation above because it's
208   /// more specialized according to function template partial ordering.
209   template <class E>
210   SourceLocation getExprLocImpl(const Expr *expr,
211                                 SourceLocation (Expr::*v)() const) {
212     return static_cast<const E*>(expr)->getLocStart();
213   }
214 }
215
216 SourceLocation Expr::getExprLoc() const {
217   switch (getStmtClass()) {
218   case Stmt::NoStmtClass: llvm_unreachable("statement without class");
219 #define ABSTRACT_STMT(type)
220 #define STMT(type, base) \
221   case Stmt::type##Class: break;
222 #define EXPR(type, base) \
223   case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
224 #include "clang/AST/StmtNodes.inc"
225   }
226   llvm_unreachable("unknown expression kind");
227 }
228
229 //===----------------------------------------------------------------------===//
230 // Primary Expressions.
231 //===----------------------------------------------------------------------===//
232
233 /// Compute the type-, value-, and instantiation-dependence of a
234 /// declaration reference
235 /// based on the declaration being referenced.
236 static void computeDeclRefDependence(const ASTContext &Ctx, NamedDecl *D,
237                                      QualType T, bool &TypeDependent,
238                                      bool &ValueDependent,
239                                      bool &InstantiationDependent) {
240   TypeDependent = false;
241   ValueDependent = false;
242   InstantiationDependent = false;
243
244   // (TD) C++ [temp.dep.expr]p3:
245   //   An id-expression is type-dependent if it contains:
246   //
247   // and
248   //
249   // (VD) C++ [temp.dep.constexpr]p2:
250   //  An identifier is value-dependent if it is:
251
252   //  (TD)  - an identifier that was declared with dependent type
253   //  (VD)  - a name declared with a dependent type,
254   if (T->isDependentType()) {
255     TypeDependent = true;
256     ValueDependent = true;
257     InstantiationDependent = true;
258     return;
259   } else if (T->isInstantiationDependentType()) {
260     InstantiationDependent = true;
261   }
262
263   //  (TD)  - a conversion-function-id that specifies a dependent type
264   if (D->getDeclName().getNameKind()
265                                 == DeclarationName::CXXConversionFunctionName) {
266     QualType T = D->getDeclName().getCXXNameType();
267     if (T->isDependentType()) {
268       TypeDependent = true;
269       ValueDependent = true;
270       InstantiationDependent = true;
271       return;
272     }
273
274     if (T->isInstantiationDependentType())
275       InstantiationDependent = true;
276   }
277
278   //  (VD)  - the name of a non-type template parameter,
279   if (isa<NonTypeTemplateParmDecl>(D)) {
280     ValueDependent = true;
281     InstantiationDependent = true;
282     return;
283   }
284
285   //  (VD) - a constant with integral or enumeration type and is
286   //         initialized with an expression that is value-dependent.
287   //  (VD) - a constant with literal type and is initialized with an
288   //         expression that is value-dependent [C++11].
289   //  (VD) - FIXME: Missing from the standard:
290   //       -  an entity with reference type and is initialized with an
291   //          expression that is value-dependent [C++11]
292   if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
293     if ((Ctx.getLangOpts().CPlusPlus11 ?
294            Var->getType()->isLiteralType(Ctx) :
295            Var->getType()->isIntegralOrEnumerationType()) &&
296         (Var->getType().isConstQualified() ||
297          Var->getType()->isReferenceType())) {
298       if (const Expr *Init = Var->getAnyInitializer())
299         if (Init->isValueDependent()) {
300           ValueDependent = true;
301           InstantiationDependent = true;
302         }
303     }
304
305     // (VD) - FIXME: Missing from the standard:
306     //      -  a member function or a static data member of the current
307     //         instantiation
308     if (Var->isStaticDataMember() &&
309         Var->getDeclContext()->isDependentContext()) {
310       ValueDependent = true;
311       InstantiationDependent = true;
312       TypeSourceInfo *TInfo = Var->getFirstDecl()->getTypeSourceInfo();
313       if (TInfo->getType()->isIncompleteArrayType())
314         TypeDependent = true;
315     }
316
317     return;
318   }
319
320   // (VD) - FIXME: Missing from the standard:
321   //      -  a member function or a static data member of the current
322   //         instantiation
323   if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
324     ValueDependent = true;
325     InstantiationDependent = true;
326   }
327 }
328
329 void DeclRefExpr::computeDependence(const ASTContext &Ctx) {
330   bool TypeDependent = false;
331   bool ValueDependent = false;
332   bool InstantiationDependent = false;
333   computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent,
334                            ValueDependent, InstantiationDependent);
335
336   ExprBits.TypeDependent |= TypeDependent;
337   ExprBits.ValueDependent |= ValueDependent;
338   ExprBits.InstantiationDependent |= InstantiationDependent;
339
340   // Is the declaration a parameter pack?
341   if (getDecl()->isParameterPack())
342     ExprBits.ContainsUnexpandedParameterPack = true;
343 }
344
345 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
346                          NestedNameSpecifierLoc QualifierLoc,
347                          SourceLocation TemplateKWLoc,
348                          ValueDecl *D, bool RefersToEnclosingVariableOrCapture,
349                          const DeclarationNameInfo &NameInfo,
350                          NamedDecl *FoundD,
351                          const TemplateArgumentListInfo *TemplateArgs,
352                          QualType T, ExprValueKind VK)
353   : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
354     D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
355   DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
356   if (QualifierLoc) {
357     new (getTrailingObjects<NestedNameSpecifierLoc>())
358         NestedNameSpecifierLoc(QualifierLoc);
359     auto *NNS = QualifierLoc.getNestedNameSpecifier();
360     if (NNS->isInstantiationDependent())
361       ExprBits.InstantiationDependent = true;
362     if (NNS->containsUnexpandedParameterPack())
363       ExprBits.ContainsUnexpandedParameterPack = true;
364   }
365   DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
366   if (FoundD)
367     *getTrailingObjects<NamedDecl *>() = FoundD;
368   DeclRefExprBits.HasTemplateKWAndArgsInfo
369     = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
370   DeclRefExprBits.RefersToEnclosingVariableOrCapture =
371       RefersToEnclosingVariableOrCapture;
372   if (TemplateArgs) {
373     bool Dependent = false;
374     bool InstantiationDependent = false;
375     bool ContainsUnexpandedParameterPack = false;
376     getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
377         TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(),
378         Dependent, InstantiationDependent, ContainsUnexpandedParameterPack);
379     assert(!Dependent && "built a DeclRefExpr with dependent template args");
380     ExprBits.InstantiationDependent |= InstantiationDependent;
381     ExprBits.ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack;
382   } else if (TemplateKWLoc.isValid()) {
383     getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
384         TemplateKWLoc);
385   }
386   DeclRefExprBits.HadMultipleCandidates = 0;
387
388   computeDependence(Ctx);
389 }
390
391 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
392                                  NestedNameSpecifierLoc QualifierLoc,
393                                  SourceLocation TemplateKWLoc,
394                                  ValueDecl *D,
395                                  bool RefersToEnclosingVariableOrCapture,
396                                  SourceLocation NameLoc,
397                                  QualType T,
398                                  ExprValueKind VK,
399                                  NamedDecl *FoundD,
400                                  const TemplateArgumentListInfo *TemplateArgs) {
401   return Create(Context, QualifierLoc, TemplateKWLoc, D,
402                 RefersToEnclosingVariableOrCapture,
403                 DeclarationNameInfo(D->getDeclName(), NameLoc),
404                 T, VK, FoundD, TemplateArgs);
405 }
406
407 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
408                                  NestedNameSpecifierLoc QualifierLoc,
409                                  SourceLocation TemplateKWLoc,
410                                  ValueDecl *D,
411                                  bool RefersToEnclosingVariableOrCapture,
412                                  const DeclarationNameInfo &NameInfo,
413                                  QualType T,
414                                  ExprValueKind VK,
415                                  NamedDecl *FoundD,
416                                  const TemplateArgumentListInfo *TemplateArgs) {
417   // Filter out cases where the found Decl is the same as the value refenenced.
418   if (D == FoundD)
419     FoundD = nullptr;
420
421   bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
422   std::size_t Size =
423       totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
424                        ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
425           QualifierLoc ? 1 : 0, FoundD ? 1 : 0,
426           HasTemplateKWAndArgsInfo ? 1 : 0,
427           TemplateArgs ? TemplateArgs->size() : 0);
428
429   void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
430   return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
431                                RefersToEnclosingVariableOrCapture,
432                                NameInfo, FoundD, TemplateArgs, T, VK);
433 }
434
435 DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context,
436                                       bool HasQualifier,
437                                       bool HasFoundDecl,
438                                       bool HasTemplateKWAndArgsInfo,
439                                       unsigned NumTemplateArgs) {
440   assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo);
441   std::size_t Size =
442       totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
443                        ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
444           HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo,
445           NumTemplateArgs);
446   void *Mem = Context.Allocate(Size, alignof(DeclRefExpr));
447   return new (Mem) DeclRefExpr(EmptyShell());
448 }
449
450 SourceLocation DeclRefExpr::getBeginLoc() const {
451   if (hasQualifier())
452     return getQualifierLoc().getBeginLoc();
453   return getNameInfo().getLocStart();
454 }
455 SourceLocation DeclRefExpr::getEndLoc() const {
456   if (hasExplicitTemplateArgs())
457     return getRAngleLoc();
458   return getNameInfo().getLocEnd();
459 }
460
461 PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentType IT,
462                                StringLiteral *SL)
463     : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary,
464            FNTy->isDependentType(), FNTy->isDependentType(),
465            FNTy->isInstantiationDependentType(),
466            /*ContainsUnexpandedParameterPack=*/false),
467       Loc(L), Type(IT), FnName(SL) {}
468
469 StringLiteral *PredefinedExpr::getFunctionName() {
470   return cast_or_null<StringLiteral>(FnName);
471 }
472
473 StringRef PredefinedExpr::getIdentTypeName(PredefinedExpr::IdentType IT) {
474   switch (IT) {
475   case Func:
476     return "__func__";
477   case Function:
478     return "__FUNCTION__";
479   case FuncDName:
480     return "__FUNCDNAME__";
481   case LFunction:
482     return "L__FUNCTION__";
483   case PrettyFunction:
484     return "__PRETTY_FUNCTION__";
485   case FuncSig:
486     return "__FUNCSIG__";
487   case LFuncSig:
488     return "L__FUNCSIG__";
489   case PrettyFunctionNoVirtual:
490     break;
491   }
492   llvm_unreachable("Unknown ident type for PredefinedExpr");
493 }
494
495 // FIXME: Maybe this should use DeclPrinter with a special "print predefined
496 // expr" policy instead.
497 std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
498   ASTContext &Context = CurrentDecl->getASTContext();
499
500   if (IT == PredefinedExpr::FuncDName) {
501     if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) {
502       std::unique_ptr<MangleContext> MC;
503       MC.reset(Context.createMangleContext());
504
505       if (MC->shouldMangleDeclName(ND)) {
506         SmallString<256> Buffer;
507         llvm::raw_svector_ostream Out(Buffer);
508         if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND))
509           MC->mangleCXXCtor(CD, Ctor_Base, Out);
510         else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND))
511           MC->mangleCXXDtor(DD, Dtor_Base, Out);
512         else
513           MC->mangleName(ND, Out);
514
515         if (!Buffer.empty() && Buffer.front() == '\01')
516           return Buffer.substr(1);
517         return Buffer.str();
518       } else
519         return ND->getIdentifier()->getName();
520     }
521     return "";
522   }
523   if (isa<BlockDecl>(CurrentDecl)) {
524     // For blocks we only emit something if it is enclosed in a function
525     // For top-level block we'd like to include the name of variable, but we
526     // don't have it at this point.
527     auto DC = CurrentDecl->getDeclContext();
528     if (DC->isFileContext())
529       return "";
530
531     SmallString<256> Buffer;
532     llvm::raw_svector_ostream Out(Buffer);
533     if (auto *DCBlock = dyn_cast<BlockDecl>(DC))
534       // For nested blocks, propagate up to the parent.
535       Out << ComputeName(IT, DCBlock);
536     else if (auto *DCDecl = dyn_cast<Decl>(DC))
537       Out << ComputeName(IT, DCDecl) << "_block_invoke";
538     return Out.str();
539   }
540   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
541     if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual &&
542         IT != FuncSig && IT != LFuncSig)
543       return FD->getNameAsString();
544
545     SmallString<256> Name;
546     llvm::raw_svector_ostream Out(Name);
547
548     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
549       if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
550         Out << "virtual ";
551       if (MD->isStatic())
552         Out << "static ";
553     }
554
555     PrintingPolicy Policy(Context.getLangOpts());
556     std::string Proto;
557     llvm::raw_string_ostream POut(Proto);
558
559     const FunctionDecl *Decl = FD;
560     if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
561       Decl = Pattern;
562     const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
563     const FunctionProtoType *FT = nullptr;
564     if (FD->hasWrittenPrototype())
565       FT = dyn_cast<FunctionProtoType>(AFT);
566
567     if (IT == FuncSig || IT == LFuncSig) {
568       switch (AFT->getCallConv()) {
569       case CC_C: POut << "__cdecl "; break;
570       case CC_X86StdCall: POut << "__stdcall "; break;
571       case CC_X86FastCall: POut << "__fastcall "; break;
572       case CC_X86ThisCall: POut << "__thiscall "; break;
573       case CC_X86VectorCall: POut << "__vectorcall "; break;
574       case CC_X86RegCall: POut << "__regcall "; break;
575       // Only bother printing the conventions that MSVC knows about.
576       default: break;
577       }
578     }
579
580     FD->printQualifiedName(POut, Policy);
581
582     POut << "(";
583     if (FT) {
584       for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
585         if (i) POut << ", ";
586         POut << Decl->getParamDecl(i)->getType().stream(Policy);
587       }
588
589       if (FT->isVariadic()) {
590         if (FD->getNumParams()) POut << ", ";
591         POut << "...";
592       } else if ((IT == FuncSig || IT == LFuncSig ||
593                   !Context.getLangOpts().CPlusPlus) &&
594                  !Decl->getNumParams()) {
595         POut << "void";
596       }
597     }
598     POut << ")";
599
600     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
601       assert(FT && "We must have a written prototype in this case.");
602       if (FT->isConst())
603         POut << " const";
604       if (FT->isVolatile())
605         POut << " volatile";
606       RefQualifierKind Ref = MD->getRefQualifier();
607       if (Ref == RQ_LValue)
608         POut << " &";
609       else if (Ref == RQ_RValue)
610         POut << " &&";
611     }
612
613     typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
614     SpecsTy Specs;
615     const DeclContext *Ctx = FD->getDeclContext();
616     while (Ctx && isa<NamedDecl>(Ctx)) {
617       const ClassTemplateSpecializationDecl *Spec
618                                = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
619       if (Spec && !Spec->isExplicitSpecialization())
620         Specs.push_back(Spec);
621       Ctx = Ctx->getParent();
622     }
623
624     std::string TemplateParams;
625     llvm::raw_string_ostream TOut(TemplateParams);
626     for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
627          I != E; ++I) {
628       const TemplateParameterList *Params
629                   = (*I)->getSpecializedTemplate()->getTemplateParameters();
630       const TemplateArgumentList &Args = (*I)->getTemplateArgs();
631       assert(Params->size() == Args.size());
632       for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
633         StringRef Param = Params->getParam(i)->getName();
634         if (Param.empty()) continue;
635         TOut << Param << " = ";
636         Args.get(i).print(Policy, TOut);
637         TOut << ", ";
638       }
639     }
640
641     FunctionTemplateSpecializationInfo *FSI
642                                           = FD->getTemplateSpecializationInfo();
643     if (FSI && !FSI->isExplicitSpecialization()) {
644       const TemplateParameterList* Params
645                                   = FSI->getTemplate()->getTemplateParameters();
646       const TemplateArgumentList* Args = FSI->TemplateArguments;
647       assert(Params->size() == Args->size());
648       for (unsigned i = 0, e = Params->size(); i != e; ++i) {
649         StringRef Param = Params->getParam(i)->getName();
650         if (Param.empty()) continue;
651         TOut << Param << " = ";
652         Args->get(i).print(Policy, TOut);
653         TOut << ", ";
654       }
655     }
656
657     TOut.flush();
658     if (!TemplateParams.empty()) {
659       // remove the trailing comma and space
660       TemplateParams.resize(TemplateParams.size() - 2);
661       POut << " [" << TemplateParams << "]";
662     }
663
664     POut.flush();
665
666     // Print "auto" for all deduced return types. This includes C++1y return
667     // type deduction and lambdas. For trailing return types resolve the
668     // decltype expression. Otherwise print the real type when this is
669     // not a constructor or destructor.
670     if (isa<CXXMethodDecl>(FD) &&
671          cast<CXXMethodDecl>(FD)->getParent()->isLambda())
672       Proto = "auto " + Proto;
673     else if (FT && FT->getReturnType()->getAs<DecltypeType>())
674       FT->getReturnType()
675           ->getAs<DecltypeType>()
676           ->getUnderlyingType()
677           .getAsStringInternal(Proto, Policy);
678     else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
679       AFT->getReturnType().getAsStringInternal(Proto, Policy);
680
681     Out << Proto;
682
683     return Name.str().str();
684   }
685   if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) {
686     for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
687       // Skip to its enclosing function or method, but not its enclosing
688       // CapturedDecl.
689       if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
690         const Decl *D = Decl::castFromDeclContext(DC);
691         return ComputeName(IT, D);
692       }
693     llvm_unreachable("CapturedDecl not inside a function or method");
694   }
695   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
696     SmallString<256> Name;
697     llvm::raw_svector_ostream Out(Name);
698     Out << (MD->isInstanceMethod() ? '-' : '+');
699     Out << '[';
700
701     // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
702     // a null check to avoid a crash.
703     if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
704       Out << *ID;
705
706     if (const ObjCCategoryImplDecl *CID =
707         dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
708       Out << '(' << *CID << ')';
709
710     Out <<  ' ';
711     MD->getSelector().print(Out);
712     Out <<  ']';
713
714     return Name.str().str();
715   }
716   if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
717     // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
718     return "top level";
719   }
720   return "";
721 }
722
723 void APNumericStorage::setIntValue(const ASTContext &C,
724                                    const llvm::APInt &Val) {
725   if (hasAllocation())
726     C.Deallocate(pVal);
727
728   BitWidth = Val.getBitWidth();
729   unsigned NumWords = Val.getNumWords();
730   const uint64_t* Words = Val.getRawData();
731   if (NumWords > 1) {
732     pVal = new (C) uint64_t[NumWords];
733     std::copy(Words, Words + NumWords, pVal);
734   } else if (NumWords == 1)
735     VAL = Words[0];
736   else
737     VAL = 0;
738 }
739
740 IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
741                                QualType type, SourceLocation l)
742   : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
743          false, false),
744     Loc(l) {
745   assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
746   assert(V.getBitWidth() == C.getIntWidth(type) &&
747          "Integer type is not the correct size for constant.");
748   setValue(C, V);
749 }
750
751 IntegerLiteral *
752 IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
753                        QualType type, SourceLocation l) {
754   return new (C) IntegerLiteral(C, V, type, l);
755 }
756
757 IntegerLiteral *
758 IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) {
759   return new (C) IntegerLiteral(Empty);
760 }
761
762 FixedPointLiteral::FixedPointLiteral(const ASTContext &C, const llvm::APInt &V,
763                                      QualType type, SourceLocation l,
764                                      unsigned Scale)
765     : Expr(FixedPointLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
766            false, false),
767       Loc(l), Scale(Scale) {
768   assert(type->isFixedPointType() && "Illegal type in FixedPointLiteral");
769   assert(V.getBitWidth() == C.getTypeInfo(type).Width &&
770          "Fixed point type is not the correct size for constant.");
771   setValue(C, V);
772 }
773
774 FixedPointLiteral *FixedPointLiteral::CreateFromRawInt(const ASTContext &C,
775                                                        const llvm::APInt &V,
776                                                        QualType type,
777                                                        SourceLocation l,
778                                                        unsigned Scale) {
779   return new (C) FixedPointLiteral(C, V, type, l, Scale);
780 }
781
782 std::string FixedPointLiteral::getValueAsString(unsigned Radix) const {
783   // Currently the longest decimal number that can be printed is the max for an
784   // unsigned long _Accum: 4294967295.99999999976716935634613037109375
785   // which is 43 characters.
786   SmallString<64> S;
787   FixedPointValueToString(
788       S, llvm::APSInt::getUnsigned(getValue().getZExtValue()), Scale, Radix);
789   return S.str();
790 }
791
792 FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
793                                  bool isexact, QualType Type, SourceLocation L)
794   : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
795          false, false), Loc(L) {
796   setSemantics(V.getSemantics());
797   FloatingLiteralBits.IsExact = isexact;
798   setValue(C, V);
799 }
800
801 FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
802   : Expr(FloatingLiteralClass, Empty) {
803   setRawSemantics(IEEEhalf);
804   FloatingLiteralBits.IsExact = false;
805 }
806
807 FloatingLiteral *
808 FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
809                         bool isexact, QualType Type, SourceLocation L) {
810   return new (C) FloatingLiteral(C, V, isexact, Type, L);
811 }
812
813 FloatingLiteral *
814 FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) {
815   return new (C) FloatingLiteral(C, Empty);
816 }
817
818 const llvm::fltSemantics &FloatingLiteral::getSemantics() const {
819   switch(FloatingLiteralBits.Semantics) {
820   case IEEEhalf:
821     return llvm::APFloat::IEEEhalf();
822   case IEEEsingle:
823     return llvm::APFloat::IEEEsingle();
824   case IEEEdouble:
825     return llvm::APFloat::IEEEdouble();
826   case x87DoubleExtended:
827     return llvm::APFloat::x87DoubleExtended();
828   case IEEEquad:
829     return llvm::APFloat::IEEEquad();
830   case PPCDoubleDouble:
831     return llvm::APFloat::PPCDoubleDouble();
832   }
833   llvm_unreachable("Unrecognised floating semantics");
834 }
835
836 void FloatingLiteral::setSemantics(const llvm::fltSemantics &Sem) {
837   if (&Sem == &llvm::APFloat::IEEEhalf())
838     FloatingLiteralBits.Semantics = IEEEhalf;
839   else if (&Sem == &llvm::APFloat::IEEEsingle())
840     FloatingLiteralBits.Semantics = IEEEsingle;
841   else if (&Sem == &llvm::APFloat::IEEEdouble())
842     FloatingLiteralBits.Semantics = IEEEdouble;
843   else if (&Sem == &llvm::APFloat::x87DoubleExtended())
844     FloatingLiteralBits.Semantics = x87DoubleExtended;
845   else if (&Sem == &llvm::APFloat::IEEEquad())
846     FloatingLiteralBits.Semantics = IEEEquad;
847   else if (&Sem == &llvm::APFloat::PPCDoubleDouble())
848     FloatingLiteralBits.Semantics = PPCDoubleDouble;
849   else
850     llvm_unreachable("Unknown floating semantics");
851 }
852
853 /// getValueAsApproximateDouble - This returns the value as an inaccurate
854 /// double.  Note that this may cause loss of precision, but is useful for
855 /// debugging dumps, etc.
856 double FloatingLiteral::getValueAsApproximateDouble() const {
857   llvm::APFloat V = getValue();
858   bool ignored;
859   V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven,
860             &ignored);
861   return V.convertToDouble();
862 }
863
864 int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) {
865   int CharByteWidth = 0;
866   switch(k) {
867     case Ascii:
868     case UTF8:
869       CharByteWidth = target.getCharWidth();
870       break;
871     case Wide:
872       CharByteWidth = target.getWCharWidth();
873       break;
874     case UTF16:
875       CharByteWidth = target.getChar16Width();
876       break;
877     case UTF32:
878       CharByteWidth = target.getChar32Width();
879       break;
880   }
881   assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
882   CharByteWidth /= 8;
883   assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4)
884          && "character byte widths supported are 1, 2, and 4 only");
885   return CharByteWidth;
886 }
887
888 StringLiteral *StringLiteral::Create(const ASTContext &C, StringRef Str,
889                                      StringKind Kind, bool Pascal, QualType Ty,
890                                      const SourceLocation *Loc,
891                                      unsigned NumStrs) {
892   assert(C.getAsConstantArrayType(Ty) &&
893          "StringLiteral must be of constant array type!");
894
895   // Allocate enough space for the StringLiteral plus an array of locations for
896   // any concatenated string tokens.
897   void *Mem =
898       C.Allocate(sizeof(StringLiteral) + sizeof(SourceLocation) * (NumStrs - 1),
899                  alignof(StringLiteral));
900   StringLiteral *SL = new (Mem) StringLiteral(Ty);
901
902   // OPTIMIZE: could allocate this appended to the StringLiteral.
903   SL->setString(C,Str,Kind,Pascal);
904
905   SL->TokLocs[0] = Loc[0];
906   SL->NumConcatenated = NumStrs;
907
908   if (NumStrs != 1)
909     memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
910   return SL;
911 }
912
913 StringLiteral *StringLiteral::CreateEmpty(const ASTContext &C,
914                                           unsigned NumStrs) {
915   void *Mem =
916       C.Allocate(sizeof(StringLiteral) + sizeof(SourceLocation) * (NumStrs - 1),
917                  alignof(StringLiteral));
918   StringLiteral *SL =
919       new (Mem) StringLiteral(C.adjustStringLiteralBaseType(QualType()));
920   SL->CharByteWidth = 0;
921   SL->Length = 0;
922   SL->NumConcatenated = NumStrs;
923   return SL;
924 }
925
926 void StringLiteral::outputString(raw_ostream &OS) const {
927   switch (getKind()) {
928   case Ascii: break; // no prefix.
929   case Wide:  OS << 'L'; break;
930   case UTF8:  OS << "u8"; break;
931   case UTF16: OS << 'u'; break;
932   case UTF32: OS << 'U'; break;
933   }
934   OS << '"';
935   static const char Hex[] = "0123456789ABCDEF";
936
937   unsigned LastSlashX = getLength();
938   for (unsigned I = 0, N = getLength(); I != N; ++I) {
939     switch (uint32_t Char = getCodeUnit(I)) {
940     default:
941       // FIXME: Convert UTF-8 back to codepoints before rendering.
942
943       // Convert UTF-16 surrogate pairs back to codepoints before rendering.
944       // Leave invalid surrogates alone; we'll use \x for those.
945       if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 &&
946           Char <= 0xdbff) {
947         uint32_t Trail = getCodeUnit(I + 1);
948         if (Trail >= 0xdc00 && Trail <= 0xdfff) {
949           Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
950           ++I;
951         }
952       }
953
954       if (Char > 0xff) {
955         // If this is a wide string, output characters over 0xff using \x
956         // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
957         // codepoint: use \x escapes for invalid codepoints.
958         if (getKind() == Wide ||
959             (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
960           // FIXME: Is this the best way to print wchar_t?
961           OS << "\\x";
962           int Shift = 28;
963           while ((Char >> Shift) == 0)
964             Shift -= 4;
965           for (/**/; Shift >= 0; Shift -= 4)
966             OS << Hex[(Char >> Shift) & 15];
967           LastSlashX = I;
968           break;
969         }
970
971         if (Char > 0xffff)
972           OS << "\\U00"
973              << Hex[(Char >> 20) & 15]
974              << Hex[(Char >> 16) & 15];
975         else
976           OS << "\\u";
977         OS << Hex[(Char >> 12) & 15]
978            << Hex[(Char >>  8) & 15]
979            << Hex[(Char >>  4) & 15]
980            << Hex[(Char >>  0) & 15];
981         break;
982       }
983
984       // If we used \x... for the previous character, and this character is a
985       // hexadecimal digit, prevent it being slurped as part of the \x.
986       if (LastSlashX + 1 == I) {
987         switch (Char) {
988           case '0': case '1': case '2': case '3': case '4':
989           case '5': case '6': case '7': case '8': case '9':
990           case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
991           case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
992             OS << "\"\"";
993         }
994       }
995
996       assert(Char <= 0xff &&
997              "Characters above 0xff should already have been handled.");
998
999       if (isPrintable(Char))
1000         OS << (char)Char;
1001       else  // Output anything hard as an octal escape.
1002         OS << '\\'
1003            << (char)('0' + ((Char >> 6) & 7))
1004            << (char)('0' + ((Char >> 3) & 7))
1005            << (char)('0' + ((Char >> 0) & 7));
1006       break;
1007     // Handle some common non-printable cases to make dumps prettier.
1008     case '\\': OS << "\\\\"; break;
1009     case '"': OS << "\\\""; break;
1010     case '\a': OS << "\\a"; break;
1011     case '\b': OS << "\\b"; break;
1012     case '\f': OS << "\\f"; break;
1013     case '\n': OS << "\\n"; break;
1014     case '\r': OS << "\\r"; break;
1015     case '\t': OS << "\\t"; break;
1016     case '\v': OS << "\\v"; break;
1017     }
1018   }
1019   OS << '"';
1020 }
1021
1022 void StringLiteral::setString(const ASTContext &C, StringRef Str,
1023                               StringKind Kind, bool IsPascal) {
1024   //FIXME: we assume that the string data comes from a target that uses the same
1025   // code unit size and endianness for the type of string.
1026   this->Kind = Kind;
1027   this->IsPascal = IsPascal;
1028
1029   CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind);
1030   assert((Str.size()%CharByteWidth == 0)
1031          && "size of data must be multiple of CharByteWidth");
1032   Length = Str.size()/CharByteWidth;
1033
1034   switch(CharByteWidth) {
1035     case 1: {
1036       char *AStrData = new (C) char[Length];
1037       std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
1038       StrData.asChar = AStrData;
1039       break;
1040     }
1041     case 2: {
1042       uint16_t *AStrData = new (C) uint16_t[Length];
1043       std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
1044       StrData.asUInt16 = AStrData;
1045       break;
1046     }
1047     case 4: {
1048       uint32_t *AStrData = new (C) uint32_t[Length];
1049       std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
1050       StrData.asUInt32 = AStrData;
1051       break;
1052     }
1053     default:
1054       llvm_unreachable("unsupported CharByteWidth");
1055   }
1056 }
1057
1058 /// getLocationOfByte - Return a source location that points to the specified
1059 /// byte of this string literal.
1060 ///
1061 /// Strings are amazingly complex.  They can be formed from multiple tokens and
1062 /// can have escape sequences in them in addition to the usual trigraph and
1063 /// escaped newline business.  This routine handles this complexity.
1064 ///
1065 /// The *StartToken sets the first token to be searched in this function and
1066 /// the *StartTokenByteOffset is the byte offset of the first token. Before
1067 /// returning, it updates the *StartToken to the TokNo of the token being found
1068 /// and sets *StartTokenByteOffset to the byte offset of the token in the
1069 /// string.
1070 /// Using these two parameters can reduce the time complexity from O(n^2) to
1071 /// O(n) if one wants to get the location of byte for all the tokens in a
1072 /// string.
1073 ///
1074 SourceLocation
1075 StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1076                                  const LangOptions &Features,
1077                                  const TargetInfo &Target, unsigned *StartToken,
1078                                  unsigned *StartTokenByteOffset) const {
1079   assert((Kind == StringLiteral::Ascii || Kind == StringLiteral::UTF8) &&
1080          "Only narrow string literals are currently supported");
1081
1082   // Loop over all of the tokens in this string until we find the one that
1083   // contains the byte we're looking for.
1084   unsigned TokNo = 0;
1085   unsigned StringOffset = 0;
1086   if (StartToken)
1087     TokNo = *StartToken;
1088   if (StartTokenByteOffset) {
1089     StringOffset = *StartTokenByteOffset;
1090     ByteNo -= StringOffset;
1091   }
1092   while (1) {
1093     assert(TokNo < getNumConcatenated() && "Invalid byte number!");
1094     SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
1095
1096     // Get the spelling of the string so that we can get the data that makes up
1097     // the string literal, not the identifier for the macro it is potentially
1098     // expanded through.
1099     SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
1100
1101     // Re-lex the token to get its length and original spelling.
1102     std::pair<FileID, unsigned> LocInfo =
1103         SM.getDecomposedLoc(StrTokSpellingLoc);
1104     bool Invalid = false;
1105     StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
1106     if (Invalid) {
1107       if (StartTokenByteOffset != nullptr)
1108         *StartTokenByteOffset = StringOffset;
1109       if (StartToken != nullptr)
1110         *StartToken = TokNo;
1111       return StrTokSpellingLoc;
1112     }
1113
1114     const char *StrData = Buffer.data()+LocInfo.second;
1115
1116     // Create a lexer starting at the beginning of this token.
1117     Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
1118                    Buffer.begin(), StrData, Buffer.end());
1119     Token TheTok;
1120     TheLexer.LexFromRawLexer(TheTok);
1121
1122     // Use the StringLiteralParser to compute the length of the string in bytes.
1123     StringLiteralParser SLP(TheTok, SM, Features, Target);
1124     unsigned TokNumBytes = SLP.GetStringLength();
1125
1126     // If the byte is in this token, return the location of the byte.
1127     if (ByteNo < TokNumBytes ||
1128         (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
1129       unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
1130
1131       // Now that we know the offset of the token in the spelling, use the
1132       // preprocessor to get the offset in the original source.
1133       if (StartTokenByteOffset != nullptr)
1134         *StartTokenByteOffset = StringOffset;
1135       if (StartToken != nullptr)
1136         *StartToken = TokNo;
1137       return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
1138     }
1139
1140     // Move to the next string token.
1141     StringOffset += TokNumBytes;
1142     ++TokNo;
1143     ByteNo -= TokNumBytes;
1144   }
1145 }
1146
1147
1148
1149 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1150 /// corresponds to, e.g. "sizeof" or "[pre]++".
1151 StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
1152   switch (Op) {
1153 #define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling;
1154 #include "clang/AST/OperationKinds.def"
1155   }
1156   llvm_unreachable("Unknown unary operator");
1157 }
1158
1159 UnaryOperatorKind
1160 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
1161   switch (OO) {
1162   default: llvm_unreachable("No unary operator for overloaded function");
1163   case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc;
1164   case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
1165   case OO_Amp:        return UO_AddrOf;
1166   case OO_Star:       return UO_Deref;
1167   case OO_Plus:       return UO_Plus;
1168   case OO_Minus:      return UO_Minus;
1169   case OO_Tilde:      return UO_Not;
1170   case OO_Exclaim:    return UO_LNot;
1171   case OO_Coawait:    return UO_Coawait;
1172   }
1173 }
1174
1175 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
1176   switch (Opc) {
1177   case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
1178   case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
1179   case UO_AddrOf: return OO_Amp;
1180   case UO_Deref: return OO_Star;
1181   case UO_Plus: return OO_Plus;
1182   case UO_Minus: return OO_Minus;
1183   case UO_Not: return OO_Tilde;
1184   case UO_LNot: return OO_Exclaim;
1185   case UO_Coawait: return OO_Coawait;
1186   default: return OO_None;
1187   }
1188 }
1189
1190
1191 //===----------------------------------------------------------------------===//
1192 // Postfix Operators.
1193 //===----------------------------------------------------------------------===//
1194
1195 CallExpr::CallExpr(const ASTContext &C, StmtClass SC, Expr *fn,
1196                    ArrayRef<Expr *> preargs, ArrayRef<Expr *> args, QualType t,
1197                    ExprValueKind VK, SourceLocation rparenloc)
1198     : Expr(SC, t, VK, OK_Ordinary, fn->isTypeDependent(),
1199            fn->isValueDependent(), fn->isInstantiationDependent(),
1200            fn->containsUnexpandedParameterPack()),
1201       NumArgs(args.size()) {
1202
1203   unsigned NumPreArgs = preargs.size();
1204   SubExprs = new (C) Stmt *[args.size()+PREARGS_START+NumPreArgs];
1205   SubExprs[FN] = fn;
1206   for (unsigned i = 0; i != NumPreArgs; ++i) {
1207     updateDependenciesFromArg(preargs[i]);
1208     SubExprs[i+PREARGS_START] = preargs[i];
1209   }
1210   for (unsigned i = 0; i != args.size(); ++i) {
1211     updateDependenciesFromArg(args[i]);
1212     SubExprs[i+PREARGS_START+NumPreArgs] = args[i];
1213   }
1214
1215   CallExprBits.NumPreArgs = NumPreArgs;
1216   RParenLoc = rparenloc;
1217 }
1218
1219 CallExpr::CallExpr(const ASTContext &C, StmtClass SC, Expr *fn,
1220                    ArrayRef<Expr *> args, QualType t, ExprValueKind VK,
1221                    SourceLocation rparenloc)
1222     : CallExpr(C, SC, fn, ArrayRef<Expr *>(), args, t, VK, rparenloc) {}
1223
1224 CallExpr::CallExpr(const ASTContext &C, Expr *fn, ArrayRef<Expr *> args,
1225                    QualType t, ExprValueKind VK, SourceLocation rparenloc)
1226     : CallExpr(C, CallExprClass, fn, ArrayRef<Expr *>(), args, t, VK, rparenloc) {
1227 }
1228
1229 CallExpr::CallExpr(const ASTContext &C, StmtClass SC, EmptyShell Empty)
1230     : CallExpr(C, SC, /*NumPreArgs=*/0, Empty) {}
1231
1232 CallExpr::CallExpr(const ASTContext &C, StmtClass SC, unsigned NumPreArgs,
1233                    EmptyShell Empty)
1234   : Expr(SC, Empty), SubExprs(nullptr), NumArgs(0) {
1235   // FIXME: Why do we allocate this?
1236   SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs]();
1237   CallExprBits.NumPreArgs = NumPreArgs;
1238 }
1239
1240 void CallExpr::updateDependenciesFromArg(Expr *Arg) {
1241   if (Arg->isTypeDependent())
1242     ExprBits.TypeDependent = true;
1243   if (Arg->isValueDependent())
1244     ExprBits.ValueDependent = true;
1245   if (Arg->isInstantiationDependent())
1246     ExprBits.InstantiationDependent = true;
1247   if (Arg->containsUnexpandedParameterPack())
1248     ExprBits.ContainsUnexpandedParameterPack = true;
1249 }
1250
1251 FunctionDecl *CallExpr::getDirectCallee() {
1252   return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
1253 }
1254
1255 Decl *CallExpr::getCalleeDecl() {
1256   return getCallee()->getReferencedDeclOfCallee();
1257 }
1258
1259 Decl *Expr::getReferencedDeclOfCallee() {
1260   Expr *CEE = IgnoreParenImpCasts();
1261
1262   while (SubstNonTypeTemplateParmExpr *NTTP
1263                                 = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
1264     CEE = NTTP->getReplacement()->IgnoreParenCasts();
1265   }
1266
1267   // If we're calling a dereference, look at the pointer instead.
1268   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
1269     if (BO->isPtrMemOp())
1270       CEE = BO->getRHS()->IgnoreParenCasts();
1271   } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
1272     if (UO->getOpcode() == UO_Deref)
1273       CEE = UO->getSubExpr()->IgnoreParenCasts();
1274   }
1275   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
1276     return DRE->getDecl();
1277   if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
1278     return ME->getMemberDecl();
1279
1280   return nullptr;
1281 }
1282
1283 /// setNumArgs - This changes the number of arguments present in this call.
1284 /// Any orphaned expressions are deleted by this, and any new operands are set
1285 /// to null.
1286 void CallExpr::setNumArgs(const ASTContext& C, unsigned NumArgs) {
1287   // No change, just return.
1288   if (NumArgs == getNumArgs()) return;
1289
1290   // If shrinking # arguments, just delete the extras and forgot them.
1291   if (NumArgs < getNumArgs()) {
1292     this->NumArgs = NumArgs;
1293     return;
1294   }
1295
1296   // Otherwise, we are growing the # arguments.  New an bigger argument array.
1297   unsigned NumPreArgs = getNumPreArgs();
1298   Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs];
1299   // Copy over args.
1300   for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i)
1301     NewSubExprs[i] = SubExprs[i];
1302   // Null out new args.
1303   for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs;
1304        i != NumArgs+PREARGS_START+NumPreArgs; ++i)
1305     NewSubExprs[i] = nullptr;
1306
1307   if (SubExprs) C.Deallocate(SubExprs);
1308   SubExprs = NewSubExprs;
1309   this->NumArgs = NumArgs;
1310 }
1311
1312 /// getBuiltinCallee - If this is a call to a builtin, return the builtin ID. If
1313 /// not, return 0.
1314 unsigned CallExpr::getBuiltinCallee() const {
1315   // All simple function calls (e.g. func()) are implicitly cast to pointer to
1316   // function. As a result, we try and obtain the DeclRefExpr from the
1317   // ImplicitCastExpr.
1318   const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
1319   if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
1320     return 0;
1321
1322   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
1323   if (!DRE)
1324     return 0;
1325
1326   const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
1327   if (!FDecl)
1328     return 0;
1329
1330   if (!FDecl->getIdentifier())
1331     return 0;
1332
1333   return FDecl->getBuiltinID();
1334 }
1335
1336 bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const {
1337   if (unsigned BI = getBuiltinCallee())
1338     return Ctx.BuiltinInfo.isUnevaluated(BI);
1339   return false;
1340 }
1341
1342 QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const {
1343   const Expr *Callee = getCallee();
1344   QualType CalleeType = Callee->getType();
1345   if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) {
1346     CalleeType = FnTypePtr->getPointeeType();
1347   } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) {
1348     CalleeType = BPT->getPointeeType();
1349   } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
1350     if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens()))
1351       return Ctx.VoidTy;
1352
1353     // This should never be overloaded and so should never return null.
1354     CalleeType = Expr::findBoundMemberType(Callee);
1355   }
1356
1357   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
1358   return FnType->getReturnType();
1359 }
1360
1361 SourceLocation CallExpr::getBeginLoc() const {
1362   if (isa<CXXOperatorCallExpr>(this))
1363     return cast<CXXOperatorCallExpr>(this)->getLocStart();
1364
1365   SourceLocation begin = getCallee()->getLocStart();
1366   if (begin.isInvalid() && getNumArgs() > 0 && getArg(0))
1367     begin = getArg(0)->getLocStart();
1368   return begin;
1369 }
1370 SourceLocation CallExpr::getEndLoc() const {
1371   if (isa<CXXOperatorCallExpr>(this))
1372     return cast<CXXOperatorCallExpr>(this)->getLocEnd();
1373
1374   SourceLocation end = getRParenLoc();
1375   if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1))
1376     end = getArg(getNumArgs() - 1)->getLocEnd();
1377   return end;
1378 }
1379
1380 OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type,
1381                                    SourceLocation OperatorLoc,
1382                                    TypeSourceInfo *tsi,
1383                                    ArrayRef<OffsetOfNode> comps,
1384                                    ArrayRef<Expr*> exprs,
1385                                    SourceLocation RParenLoc) {
1386   void *Mem = C.Allocate(
1387       totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size()));
1388
1389   return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
1390                                 RParenLoc);
1391 }
1392
1393 OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C,
1394                                         unsigned numComps, unsigned numExprs) {
1395   void *Mem =
1396       C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs));
1397   return new (Mem) OffsetOfExpr(numComps, numExprs);
1398 }
1399
1400 OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
1401                            SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1402                            ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
1403                            SourceLocation RParenLoc)
1404   : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
1405          /*TypeDependent=*/false,
1406          /*ValueDependent=*/tsi->getType()->isDependentType(),
1407          tsi->getType()->isInstantiationDependentType(),
1408          tsi->getType()->containsUnexpandedParameterPack()),
1409     OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi),
1410     NumComps(comps.size()), NumExprs(exprs.size())
1411 {
1412   for (unsigned i = 0; i != comps.size(); ++i) {
1413     setComponent(i, comps[i]);
1414   }
1415
1416   for (unsigned i = 0; i != exprs.size(); ++i) {
1417     if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent())
1418       ExprBits.ValueDependent = true;
1419     if (exprs[i]->containsUnexpandedParameterPack())
1420       ExprBits.ContainsUnexpandedParameterPack = true;
1421
1422     setIndexExpr(i, exprs[i]);
1423   }
1424 }
1425
1426 IdentifierInfo *OffsetOfNode::getFieldName() const {
1427   assert(getKind() == Field || getKind() == Identifier);
1428   if (getKind() == Field)
1429     return getField()->getIdentifier();
1430
1431   return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1432 }
1433
1434 UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr(
1435     UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType,
1436     SourceLocation op, SourceLocation rp)
1437     : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1438            false, // Never type-dependent (C++ [temp.dep.expr]p3).
1439            // Value-dependent if the argument is type-dependent.
1440            E->isTypeDependent(), E->isInstantiationDependent(),
1441            E->containsUnexpandedParameterPack()),
1442       OpLoc(op), RParenLoc(rp) {
1443   UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1444   UnaryExprOrTypeTraitExprBits.IsType = false;
1445   Argument.Ex = E;
1446
1447   // Check to see if we are in the situation where alignof(decl) should be
1448   // dependent because decl's alignment is dependent.
1449   if (ExprKind == UETT_AlignOf) {
1450     if (!isValueDependent() || !isInstantiationDependent()) {
1451       E = E->IgnoreParens();
1452
1453       const ValueDecl *D = nullptr;
1454       if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
1455         D = DRE->getDecl();
1456       else if (const auto *ME = dyn_cast<MemberExpr>(E))
1457         D = ME->getMemberDecl();
1458
1459       if (D) {
1460         for (const auto *I : D->specific_attrs<AlignedAttr>()) {
1461           if (I->isAlignmentDependent()) {
1462             setValueDependent(true);
1463             setInstantiationDependent(true);
1464             break;
1465           }
1466         }
1467       }
1468     }
1469   }
1470 }
1471
1472 MemberExpr *MemberExpr::Create(
1473     const ASTContext &C, Expr *base, bool isarrow, SourceLocation OperatorLoc,
1474     NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
1475     ValueDecl *memberdecl, DeclAccessPair founddecl,
1476     DeclarationNameInfo nameinfo, const TemplateArgumentListInfo *targs,
1477     QualType ty, ExprValueKind vk, ExprObjectKind ok) {
1478
1479   bool hasQualOrFound = (QualifierLoc ||
1480                          founddecl.getDecl() != memberdecl ||
1481                          founddecl.getAccess() != memberdecl->getAccess());
1482
1483   bool HasTemplateKWAndArgsInfo = targs || TemplateKWLoc.isValid();
1484   std::size_t Size =
1485       totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo,
1486                        TemplateArgumentLoc>(hasQualOrFound ? 1 : 0,
1487                                             HasTemplateKWAndArgsInfo ? 1 : 0,
1488                                             targs ? targs->size() : 0);
1489
1490   void *Mem = C.Allocate(Size, alignof(MemberExpr));
1491   MemberExpr *E = new (Mem)
1492       MemberExpr(base, isarrow, OperatorLoc, memberdecl, nameinfo, ty, vk, ok);
1493
1494   if (hasQualOrFound) {
1495     // FIXME: Wrong. We should be looking at the member declaration we found.
1496     if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
1497       E->setValueDependent(true);
1498       E->setTypeDependent(true);
1499       E->setInstantiationDependent(true);
1500     }
1501     else if (QualifierLoc &&
1502              QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent())
1503       E->setInstantiationDependent(true);
1504
1505     E->HasQualifierOrFoundDecl = true;
1506
1507     MemberExprNameQualifier *NQ =
1508         E->getTrailingObjects<MemberExprNameQualifier>();
1509     NQ->QualifierLoc = QualifierLoc;
1510     NQ->FoundDecl = founddecl;
1511   }
1512
1513   E->HasTemplateKWAndArgsInfo = (targs || TemplateKWLoc.isValid());
1514
1515   if (targs) {
1516     bool Dependent = false;
1517     bool InstantiationDependent = false;
1518     bool ContainsUnexpandedParameterPack = false;
1519     E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1520         TemplateKWLoc, *targs, E->getTrailingObjects<TemplateArgumentLoc>(),
1521         Dependent, InstantiationDependent, ContainsUnexpandedParameterPack);
1522     if (InstantiationDependent)
1523       E->setInstantiationDependent(true);
1524   } else if (TemplateKWLoc.isValid()) {
1525     E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1526         TemplateKWLoc);
1527   }
1528
1529   return E;
1530 }
1531
1532 SourceLocation MemberExpr::getBeginLoc() const {
1533   if (isImplicitAccess()) {
1534     if (hasQualifier())
1535       return getQualifierLoc().getBeginLoc();
1536     return MemberLoc;
1537   }
1538
1539   // FIXME: We don't want this to happen. Rather, we should be able to
1540   // detect all kinds of implicit accesses more cleanly.
1541   SourceLocation BaseStartLoc = getBase()->getLocStart();
1542   if (BaseStartLoc.isValid())
1543     return BaseStartLoc;
1544   return MemberLoc;
1545 }
1546 SourceLocation MemberExpr::getEndLoc() const {
1547   SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
1548   if (hasExplicitTemplateArgs())
1549     EndLoc = getRAngleLoc();
1550   else if (EndLoc.isInvalid())
1551     EndLoc = getBase()->getLocEnd();
1552   return EndLoc;
1553 }
1554
1555 bool CastExpr::CastConsistency() const {
1556   switch (getCastKind()) {
1557   case CK_DerivedToBase:
1558   case CK_UncheckedDerivedToBase:
1559   case CK_DerivedToBaseMemberPointer:
1560   case CK_BaseToDerived:
1561   case CK_BaseToDerivedMemberPointer:
1562     assert(!path_empty() && "Cast kind should have a base path!");
1563     break;
1564
1565   case CK_CPointerToObjCPointerCast:
1566     assert(getType()->isObjCObjectPointerType());
1567     assert(getSubExpr()->getType()->isPointerType());
1568     goto CheckNoBasePath;
1569
1570   case CK_BlockPointerToObjCPointerCast:
1571     assert(getType()->isObjCObjectPointerType());
1572     assert(getSubExpr()->getType()->isBlockPointerType());
1573     goto CheckNoBasePath;
1574
1575   case CK_ReinterpretMemberPointer:
1576     assert(getType()->isMemberPointerType());
1577     assert(getSubExpr()->getType()->isMemberPointerType());
1578     goto CheckNoBasePath;
1579
1580   case CK_BitCast:
1581     // Arbitrary casts to C pointer types count as bitcasts.
1582     // Otherwise, we should only have block and ObjC pointer casts
1583     // here if they stay within the type kind.
1584     if (!getType()->isPointerType()) {
1585       assert(getType()->isObjCObjectPointerType() ==
1586              getSubExpr()->getType()->isObjCObjectPointerType());
1587       assert(getType()->isBlockPointerType() ==
1588              getSubExpr()->getType()->isBlockPointerType());
1589     }
1590     goto CheckNoBasePath;
1591
1592   case CK_AnyPointerToBlockPointerCast:
1593     assert(getType()->isBlockPointerType());
1594     assert(getSubExpr()->getType()->isAnyPointerType() &&
1595            !getSubExpr()->getType()->isBlockPointerType());
1596     goto CheckNoBasePath;
1597
1598   case CK_CopyAndAutoreleaseBlockObject:
1599     assert(getType()->isBlockPointerType());
1600     assert(getSubExpr()->getType()->isBlockPointerType());
1601     goto CheckNoBasePath;
1602
1603   case CK_FunctionToPointerDecay:
1604     assert(getType()->isPointerType());
1605     assert(getSubExpr()->getType()->isFunctionType());
1606     goto CheckNoBasePath;
1607
1608   case CK_AddressSpaceConversion:
1609     assert(getType()->isPointerType() || getType()->isBlockPointerType());
1610     assert(getSubExpr()->getType()->isPointerType() ||
1611            getSubExpr()->getType()->isBlockPointerType());
1612     assert(getType()->getPointeeType().getAddressSpace() !=
1613            getSubExpr()->getType()->getPointeeType().getAddressSpace());
1614     LLVM_FALLTHROUGH;
1615   // These should not have an inheritance path.
1616   case CK_Dynamic:
1617   case CK_ToUnion:
1618   case CK_ArrayToPointerDecay:
1619   case CK_NullToMemberPointer:
1620   case CK_NullToPointer:
1621   case CK_ConstructorConversion:
1622   case CK_IntegralToPointer:
1623   case CK_PointerToIntegral:
1624   case CK_ToVoid:
1625   case CK_VectorSplat:
1626   case CK_IntegralCast:
1627   case CK_BooleanToSignedIntegral:
1628   case CK_IntegralToFloating:
1629   case CK_FloatingToIntegral:
1630   case CK_FloatingCast:
1631   case CK_ObjCObjectLValueCast:
1632   case CK_FloatingRealToComplex:
1633   case CK_FloatingComplexToReal:
1634   case CK_FloatingComplexCast:
1635   case CK_FloatingComplexToIntegralComplex:
1636   case CK_IntegralRealToComplex:
1637   case CK_IntegralComplexToReal:
1638   case CK_IntegralComplexCast:
1639   case CK_IntegralComplexToFloatingComplex:
1640   case CK_ARCProduceObject:
1641   case CK_ARCConsumeObject:
1642   case CK_ARCReclaimReturnedObject:
1643   case CK_ARCExtendBlockObject:
1644   case CK_ZeroToOCLEvent:
1645   case CK_ZeroToOCLQueue:
1646   case CK_IntToOCLSampler:
1647     assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1648     goto CheckNoBasePath;
1649
1650   case CK_Dependent:
1651   case CK_LValueToRValue:
1652   case CK_NoOp:
1653   case CK_AtomicToNonAtomic:
1654   case CK_NonAtomicToAtomic:
1655   case CK_PointerToBoolean:
1656   case CK_IntegralToBoolean:
1657   case CK_FloatingToBoolean:
1658   case CK_MemberPointerToBoolean:
1659   case CK_FloatingComplexToBoolean:
1660   case CK_IntegralComplexToBoolean:
1661   case CK_LValueBitCast:            // -> bool&
1662   case CK_UserDefinedConversion:    // operator bool()
1663   case CK_BuiltinFnToFnPtr:
1664   CheckNoBasePath:
1665     assert(path_empty() && "Cast kind should not have a base path!");
1666     break;
1667   }
1668   return true;
1669 }
1670
1671 const char *CastExpr::getCastKindName(CastKind CK) {
1672   switch (CK) {
1673 #define CAST_OPERATION(Name) case CK_##Name: return #Name;
1674 #include "clang/AST/OperationKinds.def"
1675   }
1676   llvm_unreachable("Unhandled cast kind!");
1677 }
1678
1679 namespace {
1680   const Expr *skipImplicitTemporary(const Expr *E) {
1681     // Skip through reference binding to temporary.
1682     if (auto *Materialize = dyn_cast<MaterializeTemporaryExpr>(E))
1683       E = Materialize->GetTemporaryExpr();
1684
1685     // Skip any temporary bindings; they're implicit.
1686     if (auto *Binder = dyn_cast<CXXBindTemporaryExpr>(E))
1687       E = Binder->getSubExpr();
1688
1689     return E;
1690   }
1691 }
1692
1693 Expr *CastExpr::getSubExprAsWritten() {
1694   const Expr *SubExpr = nullptr;
1695   const CastExpr *E = this;
1696   do {
1697     SubExpr = skipImplicitTemporary(E->getSubExpr());
1698
1699     // Conversions by constructor and conversion functions have a
1700     // subexpression describing the call; strip it off.
1701     if (E->getCastKind() == CK_ConstructorConversion)
1702       SubExpr =
1703         skipImplicitTemporary(cast<CXXConstructExpr>(SubExpr)->getArg(0));
1704     else if (E->getCastKind() == CK_UserDefinedConversion) {
1705       assert((isa<CXXMemberCallExpr>(SubExpr) ||
1706               isa<BlockExpr>(SubExpr)) &&
1707              "Unexpected SubExpr for CK_UserDefinedConversion.");
1708       if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
1709         SubExpr = MCE->getImplicitObjectArgument();
1710     }
1711
1712     // If the subexpression we're left with is an implicit cast, look
1713     // through that, too.
1714   } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));
1715
1716   return const_cast<Expr*>(SubExpr);
1717 }
1718
1719 NamedDecl *CastExpr::getConversionFunction() const {
1720   const Expr *SubExpr = nullptr;
1721
1722   for (const CastExpr *E = this; E; E = dyn_cast<ImplicitCastExpr>(SubExpr)) {
1723     SubExpr = skipImplicitTemporary(E->getSubExpr());
1724
1725     if (E->getCastKind() == CK_ConstructorConversion)
1726       return cast<CXXConstructExpr>(SubExpr)->getConstructor();
1727
1728     if (E->getCastKind() == CK_UserDefinedConversion) {
1729       if (auto *MCE = dyn_cast<CXXMemberCallExpr>(SubExpr))
1730         return MCE->getMethodDecl();
1731     }
1732   }
1733
1734   return nullptr;
1735 }
1736
1737 CastExpr::BasePathSizeTy *CastExpr::BasePathSize() {
1738   assert(!path_empty());
1739   switch (getStmtClass()) {
1740 #define ABSTRACT_STMT(x)
1741 #define CASTEXPR(Type, Base)                                                   \
1742   case Stmt::Type##Class:                                                      \
1743     return static_cast<Type *>(this)                                           \
1744         ->getTrailingObjects<CastExpr::BasePathSizeTy>();
1745 #define STMT(Type, Base)
1746 #include "clang/AST/StmtNodes.inc"
1747   default:
1748     llvm_unreachable("non-cast expressions not possible here");
1749   }
1750 }
1751
1752 CXXBaseSpecifier **CastExpr::path_buffer() {
1753   switch (getStmtClass()) {
1754 #define ABSTRACT_STMT(x)
1755 #define CASTEXPR(Type, Base)                                                   \
1756   case Stmt::Type##Class:                                                      \
1757     return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>();
1758 #define STMT(Type, Base)
1759 #include "clang/AST/StmtNodes.inc"
1760   default:
1761     llvm_unreachable("non-cast expressions not possible here");
1762   }
1763 }
1764
1765 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(QualType unionType,
1766                                                         QualType opType) {
1767   auto RD = unionType->castAs<RecordType>()->getDecl();
1768   return getTargetFieldForToUnionCast(RD, opType);
1769 }
1770
1771 const FieldDecl *CastExpr::getTargetFieldForToUnionCast(const RecordDecl *RD,
1772                                                         QualType OpType) {
1773   auto &Ctx = RD->getASTContext();
1774   RecordDecl::field_iterator Field, FieldEnd;
1775   for (Field = RD->field_begin(), FieldEnd = RD->field_end();
1776        Field != FieldEnd; ++Field) {
1777     if (Ctx.hasSameUnqualifiedType(Field->getType(), OpType) &&
1778         !Field->isUnnamedBitfield()) {
1779       return *Field;
1780     }
1781   }
1782   return nullptr;
1783 }
1784
1785 ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T,
1786                                            CastKind Kind, Expr *Operand,
1787                                            const CXXCastPath *BasePath,
1788                                            ExprValueKind VK) {
1789   unsigned PathSize = (BasePath ? BasePath->size() : 0);
1790   void *Buffer =
1791       C.Allocate(totalSizeToAlloc<CastExpr::BasePathSizeTy, CXXBaseSpecifier *>(
1792           PathSize ? 1 : 0, PathSize));
1793   ImplicitCastExpr *E =
1794     new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
1795   if (PathSize)
1796     std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
1797                               E->getTrailingObjects<CXXBaseSpecifier *>());
1798   return E;
1799 }
1800
1801 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C,
1802                                                 unsigned PathSize) {
1803   void *Buffer =
1804       C.Allocate(totalSizeToAlloc<CastExpr::BasePathSizeTy, CXXBaseSpecifier *>(
1805           PathSize ? 1 : 0, PathSize));
1806   return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
1807 }
1808
1809
1810 CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T,
1811                                        ExprValueKind VK, CastKind K, Expr *Op,
1812                                        const CXXCastPath *BasePath,
1813                                        TypeSourceInfo *WrittenTy,
1814                                        SourceLocation L, SourceLocation R) {
1815   unsigned PathSize = (BasePath ? BasePath->size() : 0);
1816   void *Buffer =
1817       C.Allocate(totalSizeToAlloc<CastExpr::BasePathSizeTy, CXXBaseSpecifier *>(
1818           PathSize ? 1 : 0, PathSize));
1819   CStyleCastExpr *E =
1820     new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
1821   if (PathSize)
1822     std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
1823                               E->getTrailingObjects<CXXBaseSpecifier *>());
1824   return E;
1825 }
1826
1827 CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C,
1828                                             unsigned PathSize) {
1829   void *Buffer =
1830       C.Allocate(totalSizeToAlloc<CastExpr::BasePathSizeTy, CXXBaseSpecifier *>(
1831           PathSize ? 1 : 0, PathSize));
1832   return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
1833 }
1834
1835 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1836 /// corresponds to, e.g. "<<=".
1837 StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
1838   switch (Op) {
1839 #define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling;
1840 #include "clang/AST/OperationKinds.def"
1841   }
1842   llvm_unreachable("Invalid OpCode!");
1843 }
1844
1845 BinaryOperatorKind
1846 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
1847   switch (OO) {
1848   default: llvm_unreachable("Not an overloadable binary operator");
1849   case OO_Plus: return BO_Add;
1850   case OO_Minus: return BO_Sub;
1851   case OO_Star: return BO_Mul;
1852   case OO_Slash: return BO_Div;
1853   case OO_Percent: return BO_Rem;
1854   case OO_Caret: return BO_Xor;
1855   case OO_Amp: return BO_And;
1856   case OO_Pipe: return BO_Or;
1857   case OO_Equal: return BO_Assign;
1858   case OO_Spaceship: return BO_Cmp;
1859   case OO_Less: return BO_LT;
1860   case OO_Greater: return BO_GT;
1861   case OO_PlusEqual: return BO_AddAssign;
1862   case OO_MinusEqual: return BO_SubAssign;
1863   case OO_StarEqual: return BO_MulAssign;
1864   case OO_SlashEqual: return BO_DivAssign;
1865   case OO_PercentEqual: return BO_RemAssign;
1866   case OO_CaretEqual: return BO_XorAssign;
1867   case OO_AmpEqual: return BO_AndAssign;
1868   case OO_PipeEqual: return BO_OrAssign;
1869   case OO_LessLess: return BO_Shl;
1870   case OO_GreaterGreater: return BO_Shr;
1871   case OO_LessLessEqual: return BO_ShlAssign;
1872   case OO_GreaterGreaterEqual: return BO_ShrAssign;
1873   case OO_EqualEqual: return BO_EQ;
1874   case OO_ExclaimEqual: return BO_NE;
1875   case OO_LessEqual: return BO_LE;
1876   case OO_GreaterEqual: return BO_GE;
1877   case OO_AmpAmp: return BO_LAnd;
1878   case OO_PipePipe: return BO_LOr;
1879   case OO_Comma: return BO_Comma;
1880   case OO_ArrowStar: return BO_PtrMemI;
1881   }
1882 }
1883
1884 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
1885   static const OverloadedOperatorKind OverOps[] = {
1886     /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
1887     OO_Star, OO_Slash, OO_Percent,
1888     OO_Plus, OO_Minus,
1889     OO_LessLess, OO_GreaterGreater,
1890     OO_Spaceship,
1891     OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
1892     OO_EqualEqual, OO_ExclaimEqual,
1893     OO_Amp,
1894     OO_Caret,
1895     OO_Pipe,
1896     OO_AmpAmp,
1897     OO_PipePipe,
1898     OO_Equal, OO_StarEqual,
1899     OO_SlashEqual, OO_PercentEqual,
1900     OO_PlusEqual, OO_MinusEqual,
1901     OO_LessLessEqual, OO_GreaterGreaterEqual,
1902     OO_AmpEqual, OO_CaretEqual,
1903     OO_PipeEqual,
1904     OO_Comma
1905   };
1906   return OverOps[Opc];
1907 }
1908
1909 bool BinaryOperator::isNullPointerArithmeticExtension(ASTContext &Ctx,
1910                                                       Opcode Opc,
1911                                                       Expr *LHS, Expr *RHS) {
1912   if (Opc != BO_Add)
1913     return false;
1914
1915   // Check that we have one pointer and one integer operand.
1916   Expr *PExp;
1917   if (LHS->getType()->isPointerType()) {
1918     if (!RHS->getType()->isIntegerType())
1919       return false;
1920     PExp = LHS;
1921   } else if (RHS->getType()->isPointerType()) {
1922     if (!LHS->getType()->isIntegerType())
1923       return false;
1924     PExp = RHS;
1925   } else {
1926     return false;
1927   }
1928
1929   // Check that the pointer is a nullptr.
1930   if (!PExp->IgnoreParenCasts()
1931           ->isNullPointerConstant(Ctx, Expr::NPC_ValueDependentIsNotNull))
1932     return false;
1933
1934   // Check that the pointee type is char-sized.
1935   const PointerType *PTy = PExp->getType()->getAs<PointerType>();
1936   if (!PTy || !PTy->getPointeeType()->isCharType())
1937     return false;
1938
1939   return true;
1940 }
1941 InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
1942                            ArrayRef<Expr*> initExprs, SourceLocation rbraceloc)
1943   : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
1944          false, false),
1945     InitExprs(C, initExprs.size()),
1946     LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(nullptr, true)
1947 {
1948   sawArrayRangeDesignator(false);
1949   for (unsigned I = 0; I != initExprs.size(); ++I) {
1950     if (initExprs[I]->isTypeDependent())
1951       ExprBits.TypeDependent = true;
1952     if (initExprs[I]->isValueDependent())
1953       ExprBits.ValueDependent = true;
1954     if (initExprs[I]->isInstantiationDependent())
1955       ExprBits.InstantiationDependent = true;
1956     if (initExprs[I]->containsUnexpandedParameterPack())
1957       ExprBits.ContainsUnexpandedParameterPack = true;
1958   }
1959
1960   InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
1961 }
1962
1963 void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
1964   if (NumInits > InitExprs.size())
1965     InitExprs.reserve(C, NumInits);
1966 }
1967
1968 void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
1969   InitExprs.resize(C, NumInits, nullptr);
1970 }
1971
1972 Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
1973   if (Init >= InitExprs.size()) {
1974     InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr);
1975     setInit(Init, expr);
1976     return nullptr;
1977   }
1978
1979   Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
1980   setInit(Init, expr);
1981   return Result;
1982 }
1983
1984 void InitListExpr::setArrayFiller(Expr *filler) {
1985   assert(!hasArrayFiller() && "Filler already set!");
1986   ArrayFillerOrUnionFieldInit = filler;
1987   // Fill out any "holes" in the array due to designated initializers.
1988   Expr **inits = getInits();
1989   for (unsigned i = 0, e = getNumInits(); i != e; ++i)
1990     if (inits[i] == nullptr)
1991       inits[i] = filler;
1992 }
1993
1994 bool InitListExpr::isStringLiteralInit() const {
1995   if (getNumInits() != 1)
1996     return false;
1997   const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
1998   if (!AT || !AT->getElementType()->isIntegerType())
1999     return false;
2000   // It is possible for getInit() to return null.
2001   const Expr *Init = getInit(0);
2002   if (!Init)
2003     return false;
2004   Init = Init->IgnoreParens();
2005   return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
2006 }
2007
2008 bool InitListExpr::isTransparent() const {
2009   assert(isSemanticForm() && "syntactic form never semantically transparent");
2010
2011   // A glvalue InitListExpr is always just sugar.
2012   if (isGLValue()) {
2013     assert(getNumInits() == 1 && "multiple inits in glvalue init list");
2014     return true;
2015   }
2016
2017   // Otherwise, we're sugar if and only if we have exactly one initializer that
2018   // is of the same type.
2019   if (getNumInits() != 1 || !getInit(0))
2020     return false;
2021
2022   // Don't confuse aggregate initialization of a struct X { X &x; }; with a
2023   // transparent struct copy.
2024   if (!getInit(0)->isRValue() && getType()->isRecordType())
2025     return false;
2026
2027   return getType().getCanonicalType() ==
2028          getInit(0)->getType().getCanonicalType();
2029 }
2030
2031 bool InitListExpr::isIdiomaticZeroInitializer(const LangOptions &LangOpts) const {
2032   assert(isSyntacticForm() && "only test syntactic form as zero initializer");
2033
2034   if (LangOpts.CPlusPlus || getNumInits() != 1) {
2035     return false;
2036   }
2037
2038   const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(getInit(0));
2039   return Lit && Lit->getValue() == 0;
2040 }
2041
2042 SourceLocation InitListExpr::getBeginLoc() const {
2043   if (InitListExpr *SyntacticForm = getSyntacticForm())
2044     return SyntacticForm->getLocStart();
2045   SourceLocation Beg = LBraceLoc;
2046   if (Beg.isInvalid()) {
2047     // Find the first non-null initializer.
2048     for (InitExprsTy::const_iterator I = InitExprs.begin(),
2049                                      E = InitExprs.end();
2050       I != E; ++I) {
2051       if (Stmt *S = *I) {
2052         Beg = S->getLocStart();
2053         break;
2054       }
2055     }
2056   }
2057   return Beg;
2058 }
2059
2060 SourceLocation InitListExpr::getEndLoc() const {
2061   if (InitListExpr *SyntacticForm = getSyntacticForm())
2062     return SyntacticForm->getLocEnd();
2063   SourceLocation End = RBraceLoc;
2064   if (End.isInvalid()) {
2065     // Find the first non-null initializer from the end.
2066     for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
2067          E = InitExprs.rend();
2068          I != E; ++I) {
2069       if (Stmt *S = *I) {
2070         End = S->getLocEnd();
2071         break;
2072       }
2073     }
2074   }
2075   return End;
2076 }
2077
2078 /// getFunctionType - Return the underlying function type for this block.
2079 ///
2080 const FunctionProtoType *BlockExpr::getFunctionType() const {
2081   // The block pointer is never sugared, but the function type might be.
2082   return cast<BlockPointerType>(getType())
2083            ->getPointeeType()->castAs<FunctionProtoType>();
2084 }
2085
2086 SourceLocation BlockExpr::getCaretLocation() const {
2087   return TheBlock->getCaretLocation();
2088 }
2089 const Stmt *BlockExpr::getBody() const {
2090   return TheBlock->getBody();
2091 }
2092 Stmt *BlockExpr::getBody() {
2093   return TheBlock->getBody();
2094 }
2095
2096
2097 //===----------------------------------------------------------------------===//
2098 // Generic Expression Routines
2099 //===----------------------------------------------------------------------===//
2100
2101 /// isUnusedResultAWarning - Return true if this immediate expression should
2102 /// be warned about if the result is unused.  If so, fill in Loc and Ranges
2103 /// with location to warn on and the source range[s] to report with the
2104 /// warning.
2105 bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc,
2106                                   SourceRange &R1, SourceRange &R2,
2107                                   ASTContext &Ctx) const {
2108   // Don't warn if the expr is type dependent. The type could end up
2109   // instantiating to void.
2110   if (isTypeDependent())
2111     return false;
2112
2113   switch (getStmtClass()) {
2114   default:
2115     if (getType()->isVoidType())
2116       return false;
2117     WarnE = this;
2118     Loc = getExprLoc();
2119     R1 = getSourceRange();
2120     return true;
2121   case ParenExprClass:
2122     return cast<ParenExpr>(this)->getSubExpr()->
2123       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2124   case GenericSelectionExprClass:
2125     return cast<GenericSelectionExpr>(this)->getResultExpr()->
2126       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2127   case CoawaitExprClass:
2128   case CoyieldExprClass:
2129     return cast<CoroutineSuspendExpr>(this)->getResumeExpr()->
2130       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2131   case ChooseExprClass:
2132     return cast<ChooseExpr>(this)->getChosenSubExpr()->
2133       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2134   case UnaryOperatorClass: {
2135     const UnaryOperator *UO = cast<UnaryOperator>(this);
2136
2137     switch (UO->getOpcode()) {
2138     case UO_Plus:
2139     case UO_Minus:
2140     case UO_AddrOf:
2141     case UO_Not:
2142     case UO_LNot:
2143     case UO_Deref:
2144       break;
2145     case UO_Coawait:
2146       // This is just the 'operator co_await' call inside the guts of a
2147       // dependent co_await call.
2148     case UO_PostInc:
2149     case UO_PostDec:
2150     case UO_PreInc:
2151     case UO_PreDec:                 // ++/--
2152       return false;  // Not a warning.
2153     case UO_Real:
2154     case UO_Imag:
2155       // accessing a piece of a volatile complex is a side-effect.
2156       if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
2157           .isVolatileQualified())
2158         return false;
2159       break;
2160     case UO_Extension:
2161       return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2162     }
2163     WarnE = this;
2164     Loc = UO->getOperatorLoc();
2165     R1 = UO->getSubExpr()->getSourceRange();
2166     return true;
2167   }
2168   case BinaryOperatorClass: {
2169     const BinaryOperator *BO = cast<BinaryOperator>(this);
2170     switch (BO->getOpcode()) {
2171       default:
2172         break;
2173       // Consider the RHS of comma for side effects. LHS was checked by
2174       // Sema::CheckCommaOperands.
2175       case BO_Comma:
2176         // ((foo = <blah>), 0) is an idiom for hiding the result (and
2177         // lvalue-ness) of an assignment written in a macro.
2178         if (IntegerLiteral *IE =
2179               dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
2180           if (IE->getValue() == 0)
2181             return false;
2182         return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2183       // Consider '||', '&&' to have side effects if the LHS or RHS does.
2184       case BO_LAnd:
2185       case BO_LOr:
2186         if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
2187             !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2188           return false;
2189         break;
2190     }
2191     if (BO->isAssignmentOp())
2192       return false;
2193     WarnE = this;
2194     Loc = BO->getOperatorLoc();
2195     R1 = BO->getLHS()->getSourceRange();
2196     R2 = BO->getRHS()->getSourceRange();
2197     return true;
2198   }
2199   case CompoundAssignOperatorClass:
2200   case VAArgExprClass:
2201   case AtomicExprClass:
2202     return false;
2203
2204   case ConditionalOperatorClass: {
2205     // If only one of the LHS or RHS is a warning, the operator might
2206     // be being used for control flow. Only warn if both the LHS and
2207     // RHS are warnings.
2208     const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
2209     if (!Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
2210       return false;
2211     if (!Exp->getLHS())
2212       return true;
2213     return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2214   }
2215
2216   case MemberExprClass:
2217     WarnE = this;
2218     Loc = cast<MemberExpr>(this)->getMemberLoc();
2219     R1 = SourceRange(Loc, Loc);
2220     R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
2221     return true;
2222
2223   case ArraySubscriptExprClass:
2224     WarnE = this;
2225     Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
2226     R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
2227     R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
2228     return true;
2229
2230   case CXXOperatorCallExprClass: {
2231     // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
2232     // overloads as there is no reasonable way to define these such that they
2233     // have non-trivial, desirable side-effects. See the -Wunused-comparison
2234     // warning: operators == and != are commonly typo'ed, and so warning on them
2235     // provides additional value as well. If this list is updated,
2236     // DiagnoseUnusedComparison should be as well.
2237     const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
2238     switch (Op->getOperator()) {
2239     default:
2240       break;
2241     case OO_EqualEqual:
2242     case OO_ExclaimEqual:
2243     case OO_Less:
2244     case OO_Greater:
2245     case OO_GreaterEqual:
2246     case OO_LessEqual:
2247       if (Op->getCallReturnType(Ctx)->isReferenceType() ||
2248           Op->getCallReturnType(Ctx)->isVoidType())
2249         break;
2250       WarnE = this;
2251       Loc = Op->getOperatorLoc();
2252       R1 = Op->getSourceRange();
2253       return true;
2254     }
2255
2256     // Fallthrough for generic call handling.
2257     LLVM_FALLTHROUGH;
2258   }
2259   case CallExprClass:
2260   case CXXMemberCallExprClass:
2261   case UserDefinedLiteralClass: {
2262     // If this is a direct call, get the callee.
2263     const CallExpr *CE = cast<CallExpr>(this);
2264     if (const Decl *FD = CE->getCalleeDecl()) {
2265       const FunctionDecl *Func = dyn_cast<FunctionDecl>(FD);
2266       bool HasWarnUnusedResultAttr = Func ? Func->hasUnusedResultAttr()
2267                                           : FD->hasAttr<WarnUnusedResultAttr>();
2268
2269       // If the callee has attribute pure, const, or warn_unused_result, warn
2270       // about it. void foo() { strlen("bar"); } should warn.
2271       //
2272       // Note: If new cases are added here, DiagnoseUnusedExprResult should be
2273       // updated to match for QoI.
2274       if (HasWarnUnusedResultAttr ||
2275           FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) {
2276         WarnE = this;
2277         Loc = CE->getCallee()->getLocStart();
2278         R1 = CE->getCallee()->getSourceRange();
2279
2280         if (unsigned NumArgs = CE->getNumArgs())
2281           R2 = SourceRange(CE->getArg(0)->getLocStart(),
2282                            CE->getArg(NumArgs-1)->getLocEnd());
2283         return true;
2284       }
2285     }
2286     return false;
2287   }
2288
2289   // If we don't know precisely what we're looking at, let's not warn.
2290   case UnresolvedLookupExprClass:
2291   case CXXUnresolvedConstructExprClass:
2292     return false;
2293
2294   case CXXTemporaryObjectExprClass:
2295   case CXXConstructExprClass: {
2296     if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
2297       if (Type->hasAttr<WarnUnusedAttr>()) {
2298         WarnE = this;
2299         Loc = getLocStart();
2300         R1 = getSourceRange();
2301         return true;
2302       }
2303     }
2304     return false;
2305   }
2306
2307   case ObjCMessageExprClass: {
2308     const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
2309     if (Ctx.getLangOpts().ObjCAutoRefCount &&
2310         ME->isInstanceMessage() &&
2311         !ME->getType()->isVoidType() &&
2312         ME->getMethodFamily() == OMF_init) {
2313       WarnE = this;
2314       Loc = getExprLoc();
2315       R1 = ME->getSourceRange();
2316       return true;
2317     }
2318
2319     if (const ObjCMethodDecl *MD = ME->getMethodDecl())
2320       if (MD->hasAttr<WarnUnusedResultAttr>()) {
2321         WarnE = this;
2322         Loc = getExprLoc();
2323         return true;
2324       }
2325
2326     return false;
2327   }
2328
2329   case ObjCPropertyRefExprClass:
2330     WarnE = this;
2331     Loc = getExprLoc();
2332     R1 = getSourceRange();
2333     return true;
2334
2335   case PseudoObjectExprClass: {
2336     const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
2337
2338     // Only complain about things that have the form of a getter.
2339     if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
2340         isa<BinaryOperator>(PO->getSyntacticForm()))
2341       return false;
2342
2343     WarnE = this;
2344     Loc = getExprLoc();
2345     R1 = getSourceRange();
2346     return true;
2347   }
2348
2349   case StmtExprClass: {
2350     // Statement exprs don't logically have side effects themselves, but are
2351     // sometimes used in macros in ways that give them a type that is unused.
2352     // For example ({ blah; foo(); }) will end up with a type if foo has a type.
2353     // however, if the result of the stmt expr is dead, we don't want to emit a
2354     // warning.
2355     const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
2356     if (!CS->body_empty()) {
2357       if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
2358         return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2359       if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
2360         if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
2361           return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2362     }
2363
2364     if (getType()->isVoidType())
2365       return false;
2366     WarnE = this;
2367     Loc = cast<StmtExpr>(this)->getLParenLoc();
2368     R1 = getSourceRange();
2369     return true;
2370   }
2371   case CXXFunctionalCastExprClass:
2372   case CStyleCastExprClass: {
2373     // Ignore an explicit cast to void unless the operand is a non-trivial
2374     // volatile lvalue.
2375     const CastExpr *CE = cast<CastExpr>(this);
2376     if (CE->getCastKind() == CK_ToVoid) {
2377       if (CE->getSubExpr()->isGLValue() &&
2378           CE->getSubExpr()->getType().isVolatileQualified()) {
2379         const DeclRefExpr *DRE =
2380             dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens());
2381         if (!(DRE && isa<VarDecl>(DRE->getDecl()) &&
2382               cast<VarDecl>(DRE->getDecl())->hasLocalStorage()) &&
2383             !isa<CallExpr>(CE->getSubExpr()->IgnoreParens())) {
2384           return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc,
2385                                                           R1, R2, Ctx);
2386         }
2387       }
2388       return false;
2389     }
2390
2391     // If this is a cast to a constructor conversion, check the operand.
2392     // Otherwise, the result of the cast is unused.
2393     if (CE->getCastKind() == CK_ConstructorConversion)
2394       return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2395
2396     WarnE = this;
2397     if (const CXXFunctionalCastExpr *CXXCE =
2398             dyn_cast<CXXFunctionalCastExpr>(this)) {
2399       Loc = CXXCE->getLocStart();
2400       R1 = CXXCE->getSubExpr()->getSourceRange();
2401     } else {
2402       const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
2403       Loc = CStyleCE->getLParenLoc();
2404       R1 = CStyleCE->getSubExpr()->getSourceRange();
2405     }
2406     return true;
2407   }
2408   case ImplicitCastExprClass: {
2409     const CastExpr *ICE = cast<ImplicitCastExpr>(this);
2410
2411     // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2412     if (ICE->getCastKind() == CK_LValueToRValue &&
2413         ICE->getSubExpr()->getType().isVolatileQualified())
2414       return false;
2415
2416     return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2417   }
2418   case CXXDefaultArgExprClass:
2419     return (cast<CXXDefaultArgExpr>(this)
2420             ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2421   case CXXDefaultInitExprClass:
2422     return (cast<CXXDefaultInitExpr>(this)
2423             ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2424
2425   case CXXNewExprClass:
2426     // FIXME: In theory, there might be new expressions that don't have side
2427     // effects (e.g. a placement new with an uninitialized POD).
2428   case CXXDeleteExprClass:
2429     return false;
2430   case MaterializeTemporaryExprClass:
2431     return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
2432                ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2433   case CXXBindTemporaryExprClass:
2434     return cast<CXXBindTemporaryExpr>(this)->getSubExpr()
2435                ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2436   case ExprWithCleanupsClass:
2437     return cast<ExprWithCleanups>(this)->getSubExpr()
2438                ->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2439   }
2440 }
2441
2442 /// isOBJCGCCandidate - Check if an expression is objc gc'able.
2443 /// returns true, if it is; false otherwise.
2444 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
2445   const Expr *E = IgnoreParens();
2446   switch (E->getStmtClass()) {
2447   default:
2448     return false;
2449   case ObjCIvarRefExprClass:
2450     return true;
2451   case Expr::UnaryOperatorClass:
2452     return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2453   case ImplicitCastExprClass:
2454     return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2455   case MaterializeTemporaryExprClass:
2456     return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
2457                                                       ->isOBJCGCCandidate(Ctx);
2458   case CStyleCastExprClass:
2459     return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2460   case DeclRefExprClass: {
2461     const Decl *D = cast<DeclRefExpr>(E)->getDecl();
2462
2463     if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2464       if (VD->hasGlobalStorage())
2465         return true;
2466       QualType T = VD->getType();
2467       // dereferencing to a  pointer is always a gc'able candidate,
2468       // unless it is __weak.
2469       return T->isPointerType() &&
2470              (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
2471     }
2472     return false;
2473   }
2474   case MemberExprClass: {
2475     const MemberExpr *M = cast<MemberExpr>(E);
2476     return M->getBase()->isOBJCGCCandidate(Ctx);
2477   }
2478   case ArraySubscriptExprClass:
2479     return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
2480   }
2481 }
2482
2483 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
2484   if (isTypeDependent())
2485     return false;
2486   return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
2487 }
2488
2489 QualType Expr::findBoundMemberType(const Expr *expr) {
2490   assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
2491
2492   // Bound member expressions are always one of these possibilities:
2493   //   x->m      x.m      x->*y      x.*y
2494   // (possibly parenthesized)
2495
2496   expr = expr->IgnoreParens();
2497   if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
2498     assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
2499     return mem->getMemberDecl()->getType();
2500   }
2501
2502   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
2503     QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
2504                       ->getPointeeType();
2505     assert(type->isFunctionType());
2506     return type;
2507   }
2508
2509   assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr));
2510   return QualType();
2511 }
2512
2513 Expr* Expr::IgnoreParens() {
2514   Expr* E = this;
2515   while (true) {
2516     if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
2517       E = P->getSubExpr();
2518       continue;
2519     }
2520     if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2521       if (P->getOpcode() == UO_Extension) {
2522         E = P->getSubExpr();
2523         continue;
2524       }
2525     }
2526     if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2527       if (!P->isResultDependent()) {
2528         E = P->getResultExpr();
2529         continue;
2530       }
2531     }
2532     if (ChooseExpr* P = dyn_cast<ChooseExpr>(E)) {
2533       if (!P->isConditionDependent()) {
2534         E = P->getChosenSubExpr();
2535         continue;
2536       }
2537     }
2538     return E;
2539   }
2540 }
2541
2542 /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
2543 /// or CastExprs or ImplicitCastExprs, returning their operand.
2544 Expr *Expr::IgnoreParenCasts() {
2545   Expr *E = this;
2546   while (true) {
2547     E = E->IgnoreParens();
2548     if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2549       E = P->getSubExpr();
2550       continue;
2551     }
2552     if (MaterializeTemporaryExpr *Materialize
2553                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
2554       E = Materialize->GetTemporaryExpr();
2555       continue;
2556     }
2557     if (SubstNonTypeTemplateParmExpr *NTTP
2558                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2559       E = NTTP->getReplacement();
2560       continue;
2561     }
2562     return E;
2563   }
2564 }
2565
2566 Expr *Expr::IgnoreCasts() {
2567   Expr *E = this;
2568   while (true) {
2569     if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2570       E = P->getSubExpr();
2571       continue;
2572     }
2573     if (MaterializeTemporaryExpr *Materialize
2574         = dyn_cast<MaterializeTemporaryExpr>(E)) {
2575       E = Materialize->GetTemporaryExpr();
2576       continue;
2577     }
2578     if (SubstNonTypeTemplateParmExpr *NTTP
2579         = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2580       E = NTTP->getReplacement();
2581       continue;
2582     }
2583     return E;
2584   }
2585 }
2586
2587 /// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
2588 /// casts.  This is intended purely as a temporary workaround for code
2589 /// that hasn't yet been rewritten to do the right thing about those
2590 /// casts, and may disappear along with the last internal use.
2591 Expr *Expr::IgnoreParenLValueCasts() {
2592   Expr *E = this;
2593   while (true) {
2594     E = E->IgnoreParens();
2595     if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2596       if (P->getCastKind() == CK_LValueToRValue) {
2597         E = P->getSubExpr();
2598         continue;
2599       }
2600     } else if (MaterializeTemporaryExpr *Materialize
2601                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
2602       E = Materialize->GetTemporaryExpr();
2603       continue;
2604     } else if (SubstNonTypeTemplateParmExpr *NTTP
2605                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2606       E = NTTP->getReplacement();
2607       continue;
2608     }
2609     break;
2610   }
2611   return E;
2612 }
2613
2614 Expr *Expr::ignoreParenBaseCasts() {
2615   Expr *E = this;
2616   while (true) {
2617     E = E->IgnoreParens();
2618     if (CastExpr *CE = dyn_cast<CastExpr>(E)) {
2619       if (CE->getCastKind() == CK_DerivedToBase ||
2620           CE->getCastKind() == CK_UncheckedDerivedToBase ||
2621           CE->getCastKind() == CK_NoOp) {
2622         E = CE->getSubExpr();
2623         continue;
2624       }
2625     }
2626
2627     return E;
2628   }
2629 }
2630
2631 Expr *Expr::IgnoreParenImpCasts() {
2632   Expr *E = this;
2633   while (true) {
2634     E = E->IgnoreParens();
2635     if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
2636       E = P->getSubExpr();
2637       continue;
2638     }
2639     if (MaterializeTemporaryExpr *Materialize
2640                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
2641       E = Materialize->GetTemporaryExpr();
2642       continue;
2643     }
2644     if (SubstNonTypeTemplateParmExpr *NTTP
2645                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2646       E = NTTP->getReplacement();
2647       continue;
2648     }
2649     return E;
2650   }
2651 }
2652
2653 Expr *Expr::IgnoreConversionOperator() {
2654   if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
2655     if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
2656       return MCE->getImplicitObjectArgument();
2657   }
2658   return this;
2659 }
2660
2661 /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
2662 /// value (including ptr->int casts of the same size).  Strip off any
2663 /// ParenExpr or CastExprs, returning their operand.
2664 Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
2665   Expr *E = this;
2666   while (true) {
2667     E = E->IgnoreParens();
2668
2669     if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2670       // We ignore integer <-> casts that are of the same width, ptr<->ptr and
2671       // ptr<->int casts of the same width.  We also ignore all identity casts.
2672       Expr *SE = P->getSubExpr();
2673
2674       if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
2675         E = SE;
2676         continue;
2677       }
2678
2679       if ((E->getType()->isPointerType() ||
2680            E->getType()->isIntegralType(Ctx)) &&
2681           (SE->getType()->isPointerType() ||
2682            SE->getType()->isIntegralType(Ctx)) &&
2683           Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
2684         E = SE;
2685         continue;
2686       }
2687     }
2688
2689     if (SubstNonTypeTemplateParmExpr *NTTP
2690                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2691       E = NTTP->getReplacement();
2692       continue;
2693     }
2694
2695     return E;
2696   }
2697 }
2698
2699 bool Expr::isDefaultArgument() const {
2700   const Expr *E = this;
2701   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2702     E = M->GetTemporaryExpr();
2703
2704   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
2705     E = ICE->getSubExprAsWritten();
2706
2707   return isa<CXXDefaultArgExpr>(E);
2708 }
2709
2710 /// Skip over any no-op casts and any temporary-binding
2711 /// expressions.
2712 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
2713   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2714     E = M->GetTemporaryExpr();
2715
2716   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2717     if (ICE->getCastKind() == CK_NoOp)
2718       E = ICE->getSubExpr();
2719     else
2720       break;
2721   }
2722
2723   while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
2724     E = BE->getSubExpr();
2725
2726   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2727     if (ICE->getCastKind() == CK_NoOp)
2728       E = ICE->getSubExpr();
2729     else
2730       break;
2731   }
2732
2733   return E->IgnoreParens();
2734 }
2735
2736 /// isTemporaryObject - Determines if this expression produces a
2737 /// temporary of the given class type.
2738 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
2739   if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
2740     return false;
2741
2742   const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
2743
2744   // Temporaries are by definition pr-values of class type.
2745   if (!E->Classify(C).isPRValue()) {
2746     // In this context, property reference is a message call and is pr-value.
2747     if (!isa<ObjCPropertyRefExpr>(E))
2748       return false;
2749   }
2750
2751   // Black-list a few cases which yield pr-values of class type that don't
2752   // refer to temporaries of that type:
2753
2754   // - implicit derived-to-base conversions
2755   if (isa<ImplicitCastExpr>(E)) {
2756     switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
2757     case CK_DerivedToBase:
2758     case CK_UncheckedDerivedToBase:
2759       return false;
2760     default:
2761       break;
2762     }
2763   }
2764
2765   // - member expressions (all)
2766   if (isa<MemberExpr>(E))
2767     return false;
2768
2769   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
2770     if (BO->isPtrMemOp())
2771       return false;
2772
2773   // - opaque values (all)
2774   if (isa<OpaqueValueExpr>(E))
2775     return false;
2776
2777   return true;
2778 }
2779
2780 bool Expr::isImplicitCXXThis() const {
2781   const Expr *E = this;
2782
2783   // Strip away parentheses and casts we don't care about.
2784   while (true) {
2785     if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
2786       E = Paren->getSubExpr();
2787       continue;
2788     }
2789
2790     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2791       if (ICE->getCastKind() == CK_NoOp ||
2792           ICE->getCastKind() == CK_LValueToRValue ||
2793           ICE->getCastKind() == CK_DerivedToBase ||
2794           ICE->getCastKind() == CK_UncheckedDerivedToBase) {
2795         E = ICE->getSubExpr();
2796         continue;
2797       }
2798     }
2799
2800     if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
2801       if (UnOp->getOpcode() == UO_Extension) {
2802         E = UnOp->getSubExpr();
2803         continue;
2804       }
2805     }
2806
2807     if (const MaterializeTemporaryExpr *M
2808                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
2809       E = M->GetTemporaryExpr();
2810       continue;
2811     }
2812
2813     break;
2814   }
2815
2816   if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
2817     return This->isImplicit();
2818
2819   return false;
2820 }
2821
2822 /// hasAnyTypeDependentArguments - Determines if any of the expressions
2823 /// in Exprs is type-dependent.
2824 bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
2825   for (unsigned I = 0; I < Exprs.size(); ++I)
2826     if (Exprs[I]->isTypeDependent())
2827       return true;
2828
2829   return false;
2830 }
2831
2832 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef,
2833                                  const Expr **Culprit) const {
2834   // This function is attempting whether an expression is an initializer
2835   // which can be evaluated at compile-time. It very closely parallels
2836   // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
2837   // will lead to unexpected results.  Like ConstExprEmitter, it falls back
2838   // to isEvaluatable most of the time.
2839   //
2840   // If we ever capture reference-binding directly in the AST, we can
2841   // kill the second parameter.
2842
2843   if (IsForRef) {
2844     EvalResult Result;
2845     if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects)
2846       return true;
2847     if (Culprit)
2848       *Culprit = this;
2849     return false;
2850   }
2851
2852   switch (getStmtClass()) {
2853   default: break;
2854   case StringLiteralClass:
2855   case ObjCEncodeExprClass:
2856     return true;
2857   case CXXTemporaryObjectExprClass:
2858   case CXXConstructExprClass: {
2859     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
2860
2861     if (CE->getConstructor()->isTrivial() &&
2862         CE->getConstructor()->getParent()->hasTrivialDestructor()) {
2863       // Trivial default constructor
2864       if (!CE->getNumArgs()) return true;
2865
2866       // Trivial copy constructor
2867       assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
2868       return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit);
2869     }
2870
2871     break;
2872   }
2873   case CompoundLiteralExprClass: {
2874     // This handles gcc's extension that allows global initializers like
2875     // "struct x {int x;} x = (struct x) {};".
2876     // FIXME: This accepts other cases it shouldn't!
2877     const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
2878     return Exp->isConstantInitializer(Ctx, false, Culprit);
2879   }
2880   case DesignatedInitUpdateExprClass: {
2881     const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this);
2882     return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) &&
2883            DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit);
2884   }
2885   case InitListExprClass: {
2886     const InitListExpr *ILE = cast<InitListExpr>(this);
2887     if (ILE->getType()->isArrayType()) {
2888       unsigned numInits = ILE->getNumInits();
2889       for (unsigned i = 0; i < numInits; i++) {
2890         if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit))
2891           return false;
2892       }
2893       return true;
2894     }
2895
2896     if (ILE->getType()->isRecordType()) {
2897       unsigned ElementNo = 0;
2898       RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl();
2899       for (const auto *Field : RD->fields()) {
2900         // If this is a union, skip all the fields that aren't being initialized.
2901         if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field)
2902           continue;
2903
2904         // Don't emit anonymous bitfields, they just affect layout.
2905         if (Field->isUnnamedBitfield())
2906           continue;
2907
2908         if (ElementNo < ILE->getNumInits()) {
2909           const Expr *Elt = ILE->getInit(ElementNo++);
2910           if (Field->isBitField()) {
2911             // Bitfields have to evaluate to an integer.
2912             llvm::APSInt ResultTmp;
2913             if (!Elt->EvaluateAsInt(ResultTmp, Ctx)) {
2914               if (Culprit)
2915                 *Culprit = Elt;
2916               return false;
2917             }
2918           } else {
2919             bool RefType = Field->getType()->isReferenceType();
2920             if (!Elt->isConstantInitializer(Ctx, RefType, Culprit))
2921               return false;
2922           }
2923         }
2924       }
2925       return true;
2926     }
2927
2928     break;
2929   }
2930   case ImplicitValueInitExprClass:
2931   case NoInitExprClass:
2932     return true;
2933   case ParenExprClass:
2934     return cast<ParenExpr>(this)->getSubExpr()
2935       ->isConstantInitializer(Ctx, IsForRef, Culprit);
2936   case GenericSelectionExprClass:
2937     return cast<GenericSelectionExpr>(this)->getResultExpr()
2938       ->isConstantInitializer(Ctx, IsForRef, Culprit);
2939   case ChooseExprClass:
2940     if (cast<ChooseExpr>(this)->isConditionDependent()) {
2941       if (Culprit)
2942         *Culprit = this;
2943       return false;
2944     }
2945     return cast<ChooseExpr>(this)->getChosenSubExpr()
2946       ->isConstantInitializer(Ctx, IsForRef, Culprit);
2947   case UnaryOperatorClass: {
2948     const UnaryOperator* Exp = cast<UnaryOperator>(this);
2949     if (Exp->getOpcode() == UO_Extension)
2950       return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
2951     break;
2952   }
2953   case CXXFunctionalCastExprClass:
2954   case CXXStaticCastExprClass:
2955   case ImplicitCastExprClass:
2956   case CStyleCastExprClass:
2957   case ObjCBridgedCastExprClass:
2958   case CXXDynamicCastExprClass:
2959   case CXXReinterpretCastExprClass:
2960   case CXXConstCastExprClass: {
2961     const CastExpr *CE = cast<CastExpr>(this);
2962
2963     // Handle misc casts we want to ignore.
2964     if (CE->getCastKind() == CK_NoOp ||
2965         CE->getCastKind() == CK_LValueToRValue ||
2966         CE->getCastKind() == CK_ToUnion ||
2967         CE->getCastKind() == CK_ConstructorConversion ||
2968         CE->getCastKind() == CK_NonAtomicToAtomic ||
2969         CE->getCastKind() == CK_AtomicToNonAtomic ||
2970         CE->getCastKind() == CK_IntToOCLSampler)
2971       return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
2972
2973     break;
2974   }
2975   case MaterializeTemporaryExprClass:
2976     return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
2977       ->isConstantInitializer(Ctx, false, Culprit);
2978
2979   case SubstNonTypeTemplateParmExprClass:
2980     return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
2981       ->isConstantInitializer(Ctx, false, Culprit);
2982   case CXXDefaultArgExprClass:
2983     return cast<CXXDefaultArgExpr>(this)->getExpr()
2984       ->isConstantInitializer(Ctx, false, Culprit);
2985   case CXXDefaultInitExprClass:
2986     return cast<CXXDefaultInitExpr>(this)->getExpr()
2987       ->isConstantInitializer(Ctx, false, Culprit);
2988   }
2989   // Allow certain forms of UB in constant initializers: signed integer
2990   // overflow and floating-point division by zero. We'll give a warning on
2991   // these, but they're common enough that we have to accept them.
2992   if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior))
2993     return true;
2994   if (Culprit)
2995     *Culprit = this;
2996   return false;
2997 }
2998
2999 bool CallExpr::isBuiltinAssumeFalse(const ASTContext &Ctx) const {
3000   const FunctionDecl* FD = getDirectCallee();
3001   if (!FD || (FD->getBuiltinID() != Builtin::BI__assume &&
3002               FD->getBuiltinID() != Builtin::BI__builtin_assume))
3003     return false;
3004
3005   const Expr* Arg = getArg(0);
3006   bool ArgVal;
3007   return !Arg->isValueDependent() &&
3008          Arg->EvaluateAsBooleanCondition(ArgVal, Ctx) && !ArgVal;
3009 }
3010
3011 namespace {
3012   /// Look for any side effects within a Stmt.
3013   class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> {
3014     typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited;
3015     const bool IncludePossibleEffects;
3016     bool HasSideEffects;
3017
3018   public:
3019     explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible)
3020       : Inherited(Context),
3021         IncludePossibleEffects(IncludePossible), HasSideEffects(false) { }
3022
3023     bool hasSideEffects() const { return HasSideEffects; }
3024
3025     void VisitExpr(const Expr *E) {
3026       if (!HasSideEffects &&
3027           E->HasSideEffects(Context, IncludePossibleEffects))
3028         HasSideEffects = true;
3029     }
3030   };
3031 }
3032
3033 bool Expr::HasSideEffects(const ASTContext &Ctx,
3034                           bool IncludePossibleEffects) const {
3035   // In circumstances where we care about definite side effects instead of
3036   // potential side effects, we want to ignore expressions that are part of a
3037   // macro expansion as a potential side effect.
3038   if (!IncludePossibleEffects && getExprLoc().isMacroID())
3039     return false;
3040
3041   if (isInstantiationDependent())
3042     return IncludePossibleEffects;
3043
3044   switch (getStmtClass()) {
3045   case NoStmtClass:
3046   #define ABSTRACT_STMT(Type)
3047   #define STMT(Type, Base) case Type##Class:
3048   #define EXPR(Type, Base)
3049   #include "clang/AST/StmtNodes.inc"
3050     llvm_unreachable("unexpected Expr kind");
3051
3052   case DependentScopeDeclRefExprClass:
3053   case CXXUnresolvedConstructExprClass:
3054   case CXXDependentScopeMemberExprClass:
3055   case UnresolvedLookupExprClass:
3056   case UnresolvedMemberExprClass:
3057   case PackExpansionExprClass:
3058   case SubstNonTypeTemplateParmPackExprClass:
3059   case FunctionParmPackExprClass:
3060   case TypoExprClass:
3061   case CXXFoldExprClass:
3062     llvm_unreachable("shouldn't see dependent / unresolved nodes here");
3063
3064   case DeclRefExprClass:
3065   case ObjCIvarRefExprClass:
3066   case PredefinedExprClass:
3067   case IntegerLiteralClass:
3068   case FixedPointLiteralClass:
3069   case FloatingLiteralClass:
3070   case ImaginaryLiteralClass:
3071   case StringLiteralClass:
3072   case CharacterLiteralClass:
3073   case OffsetOfExprClass:
3074   case ImplicitValueInitExprClass:
3075   case UnaryExprOrTypeTraitExprClass:
3076   case AddrLabelExprClass:
3077   case GNUNullExprClass:
3078   case ArrayInitIndexExprClass:
3079   case NoInitExprClass:
3080   case CXXBoolLiteralExprClass:
3081   case CXXNullPtrLiteralExprClass:
3082   case CXXThisExprClass:
3083   case CXXScalarValueInitExprClass:
3084   case TypeTraitExprClass:
3085   case ArrayTypeTraitExprClass:
3086   case ExpressionTraitExprClass:
3087   case CXXNoexceptExprClass:
3088   case SizeOfPackExprClass:
3089   case ObjCStringLiteralClass:
3090   case ObjCEncodeExprClass:
3091   case ObjCBoolLiteralExprClass:
3092   case ObjCAvailabilityCheckExprClass:
3093   case CXXUuidofExprClass:
3094   case OpaqueValueExprClass:
3095     // These never have a side-effect.
3096     return false;
3097
3098   case CallExprClass:
3099   case CXXOperatorCallExprClass:
3100   case CXXMemberCallExprClass:
3101   case CUDAKernelCallExprClass:
3102   case UserDefinedLiteralClass: {
3103     // We don't know a call definitely has side effects, except for calls
3104     // to pure/const functions that definitely don't.
3105     // If the call itself is considered side-effect free, check the operands.
3106     const Decl *FD = cast<CallExpr>(this)->getCalleeDecl();
3107     bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>());
3108     if (IsPure || !IncludePossibleEffects)
3109       break;
3110     return true;
3111   }
3112
3113   case BlockExprClass:
3114   case CXXBindTemporaryExprClass:
3115     if (!IncludePossibleEffects)
3116       break;
3117     return true;
3118
3119   case MSPropertyRefExprClass:
3120   case MSPropertySubscriptExprClass:
3121   case CompoundAssignOperatorClass:
3122   case VAArgExprClass:
3123   case AtomicExprClass:
3124   case CXXThrowExprClass:
3125   case CXXNewExprClass:
3126   case CXXDeleteExprClass:
3127   case CoawaitExprClass:
3128   case DependentCoawaitExprClass:
3129   case CoyieldExprClass:
3130     // These always have a side-effect.
3131     return true;
3132
3133   case StmtExprClass: {
3134     // StmtExprs have a side-effect if any substatement does.
3135     SideEffectFinder Finder(Ctx, IncludePossibleEffects);
3136     Finder.Visit(cast<StmtExpr>(this)->getSubStmt());
3137     return Finder.hasSideEffects();
3138   }
3139
3140   case ExprWithCleanupsClass:
3141     if (IncludePossibleEffects)
3142       if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects())
3143         return true;
3144     break;
3145
3146   case ParenExprClass:
3147   case ArraySubscriptExprClass:
3148   case OMPArraySectionExprClass:
3149   case MemberExprClass:
3150   case ConditionalOperatorClass:
3151   case BinaryConditionalOperatorClass:
3152   case CompoundLiteralExprClass:
3153   case ExtVectorElementExprClass:
3154   case DesignatedInitExprClass:
3155   case DesignatedInitUpdateExprClass:
3156   case ArrayInitLoopExprClass:
3157   case ParenListExprClass:
3158   case CXXPseudoDestructorExprClass:
3159   case CXXStdInitializerListExprClass:
3160   case SubstNonTypeTemplateParmExprClass:
3161   case MaterializeTemporaryExprClass:
3162   case ShuffleVectorExprClass:
3163   case ConvertVectorExprClass:
3164   case AsTypeExprClass:
3165     // These have a side-effect if any subexpression does.
3166     break;
3167
3168   case UnaryOperatorClass:
3169     if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
3170       return true;
3171     break;
3172
3173   case BinaryOperatorClass:
3174     if (cast<BinaryOperator>(this)->isAssignmentOp())
3175       return true;
3176     break;
3177
3178   case InitListExprClass:
3179     // FIXME: The children for an InitListExpr doesn't include the array filler.
3180     if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
3181       if (E->HasSideEffects(Ctx, IncludePossibleEffects))
3182         return true;
3183     break;
3184
3185   case GenericSelectionExprClass:
3186     return cast<GenericSelectionExpr>(this)->getResultExpr()->
3187         HasSideEffects(Ctx, IncludePossibleEffects);
3188
3189   case ChooseExprClass:
3190     return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(
3191         Ctx, IncludePossibleEffects);
3192
3193   case CXXDefaultArgExprClass:
3194     return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(
3195         Ctx, IncludePossibleEffects);
3196
3197   case CXXDefaultInitExprClass: {
3198     const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField();
3199     if (const Expr *E = FD->getInClassInitializer())
3200       return E->HasSideEffects(Ctx, IncludePossibleEffects);
3201     // If we've not yet parsed the initializer, assume it has side-effects.
3202     return true;
3203   }
3204
3205   case CXXDynamicCastExprClass: {
3206     // A dynamic_cast expression has side-effects if it can throw.
3207     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
3208     if (DCE->getTypeAsWritten()->isReferenceType() &&
3209         DCE->getCastKind() == CK_Dynamic)
3210       return true;
3211     }
3212     LLVM_FALLTHROUGH;
3213   case ImplicitCastExprClass:
3214   case CStyleCastExprClass:
3215   case CXXStaticCastExprClass:
3216   case CXXReinterpretCastExprClass:
3217   case CXXConstCastExprClass:
3218   case CXXFunctionalCastExprClass: {
3219     // While volatile reads are side-effecting in both C and C++, we treat them
3220     // as having possible (not definite) side-effects. This allows idiomatic
3221     // code to behave without warning, such as sizeof(*v) for a volatile-
3222     // qualified pointer.
3223     if (!IncludePossibleEffects)
3224       break;
3225
3226     const CastExpr *CE = cast<CastExpr>(this);
3227     if (CE->getCastKind() == CK_LValueToRValue &&
3228         CE->getSubExpr()->getType().isVolatileQualified())
3229       return true;
3230     break;
3231   }
3232
3233   case CXXTypeidExprClass:
3234     // typeid might throw if its subexpression is potentially-evaluated, so has
3235     // side-effects in that case whether or not its subexpression does.
3236     return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
3237
3238   case CXXConstructExprClass:
3239   case CXXTemporaryObjectExprClass: {
3240     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3241     if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects)
3242       return true;
3243     // A trivial constructor does not add any side-effects of its own. Just look
3244     // at its arguments.
3245     break;
3246   }
3247
3248   case CXXInheritedCtorInitExprClass: {
3249     const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this);
3250     if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects)
3251       return true;
3252     break;
3253   }
3254
3255   case LambdaExprClass: {
3256     const LambdaExpr *LE = cast<LambdaExpr>(this);
3257     for (LambdaExpr::capture_iterator I = LE->capture_begin(),
3258                                       E = LE->capture_end(); I != E; ++I)
3259       if (I->getCaptureKind() == LCK_ByCopy)
3260         // FIXME: Only has a side-effect if the variable is volatile or if
3261         // the copy would invoke a non-trivial copy constructor.
3262         return true;
3263     return false;
3264   }
3265
3266   case PseudoObjectExprClass: {
3267     // Only look for side-effects in the semantic form, and look past
3268     // OpaqueValueExpr bindings in that form.
3269     const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
3270     for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
3271                                                     E = PO->semantics_end();
3272          I != E; ++I) {
3273       const Expr *Subexpr = *I;
3274       if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
3275         Subexpr = OVE->getSourceExpr();
3276       if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects))
3277         return true;
3278     }
3279     return false;
3280   }
3281
3282   case ObjCBoxedExprClass:
3283   case ObjCArrayLiteralClass:
3284   case ObjCDictionaryLiteralClass:
3285   case ObjCSelectorExprClass:
3286   case ObjCProtocolExprClass:
3287   case ObjCIsaExprClass:
3288   case ObjCIndirectCopyRestoreExprClass:
3289   case ObjCSubscriptRefExprClass:
3290   case ObjCBridgedCastExprClass:
3291   case ObjCMessageExprClass:
3292   case ObjCPropertyRefExprClass:
3293   // FIXME: Classify these cases better.
3294     if (IncludePossibleEffects)
3295       return true;
3296     break;
3297   }
3298
3299   // Recurse to children.
3300   for (const Stmt *SubStmt : children())
3301     if (SubStmt &&
3302         cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects))
3303       return true;
3304
3305   return false;
3306 }
3307
3308 namespace {
3309   /// Look for a call to a non-trivial function within an expression.
3310   class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder>
3311   {
3312     typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
3313
3314     bool NonTrivial;
3315
3316   public:
3317     explicit NonTrivialCallFinder(const ASTContext &Context)
3318       : Inherited(Context), NonTrivial(false) { }
3319
3320     bool hasNonTrivialCall() const { return NonTrivial; }
3321
3322     void VisitCallExpr(const CallExpr *E) {
3323       if (const CXXMethodDecl *Method
3324           = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) {
3325         if (Method->isTrivial()) {
3326           // Recurse to children of the call.
3327           Inherited::VisitStmt(E);
3328           return;
3329         }
3330       }
3331
3332       NonTrivial = true;
3333     }
3334
3335     void VisitCXXConstructExpr(const CXXConstructExpr *E) {
3336       if (E->getConstructor()->isTrivial()) {
3337         // Recurse to children of the call.
3338         Inherited::VisitStmt(E);
3339         return;
3340       }
3341
3342       NonTrivial = true;
3343     }
3344
3345     void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
3346       if (E->getTemporary()->getDestructor()->isTrivial()) {
3347         Inherited::VisitStmt(E);
3348         return;
3349       }
3350
3351       NonTrivial = true;
3352     }
3353   };
3354 }
3355
3356 bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const {
3357   NonTrivialCallFinder Finder(Ctx);
3358   Finder.Visit(this);
3359   return Finder.hasNonTrivialCall();
3360 }
3361
3362 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null
3363 /// pointer constant or not, as well as the specific kind of constant detected.
3364 /// Null pointer constants can be integer constant expressions with the
3365 /// value zero, casts of zero to void*, nullptr (C++0X), or __null
3366 /// (a GNU extension).
3367 Expr::NullPointerConstantKind
3368 Expr::isNullPointerConstant(ASTContext &Ctx,
3369                             NullPointerConstantValueDependence NPC) const {
3370   if (isValueDependent() &&
3371       (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) {
3372     switch (NPC) {
3373     case NPC_NeverValueDependent:
3374       llvm_unreachable("Unexpected value dependent expression!");
3375     case NPC_ValueDependentIsNull:
3376       if (isTypeDependent() || getType()->isIntegralType(Ctx))
3377         return NPCK_ZeroExpression;
3378       else
3379         return NPCK_NotNull;
3380
3381     case NPC_ValueDependentIsNotNull:
3382       return NPCK_NotNull;
3383     }
3384   }
3385
3386   // Strip off a cast to void*, if it exists. Except in C++.
3387   if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
3388     if (!Ctx.getLangOpts().CPlusPlus) {
3389       // Check that it is a cast to void*.
3390       if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
3391         QualType Pointee = PT->getPointeeType();
3392         // Only (void*)0 or equivalent are treated as nullptr. If pointee type
3393         // has non-default address space it is not treated as nullptr.
3394         // (__generic void*)0 in OpenCL 2.0 should not be treated as nullptr
3395         // since it cannot be assigned to a pointer to constant address space.
3396         bool PointeeHasDefaultAS =
3397             Pointee.getAddressSpace() == LangAS::Default ||
3398             (Ctx.getLangOpts().OpenCLVersion >= 200 &&
3399              Pointee.getAddressSpace() == LangAS::opencl_generic) ||
3400             (Ctx.getLangOpts().OpenCL &&
3401              Ctx.getLangOpts().OpenCLVersion < 200 &&
3402              Pointee.getAddressSpace() == LangAS::opencl_private);
3403
3404         if (PointeeHasDefaultAS && Pointee->isVoidType() && // to void*
3405             CE->getSubExpr()->getType()->isIntegerType())   // from int.
3406           return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3407       }
3408     }
3409   } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
3410     // Ignore the ImplicitCastExpr type entirely.
3411     return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3412   } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
3413     // Accept ((void*)0) as a null pointer constant, as many other
3414     // implementations do.
3415     return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3416   } else if (const GenericSelectionExpr *GE =
3417                dyn_cast<GenericSelectionExpr>(this)) {
3418     if (GE->isResultDependent())
3419       return NPCK_NotNull;
3420     return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
3421   } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
3422     if (CE->isConditionDependent())
3423       return NPCK_NotNull;
3424     return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
3425   } else if (const CXXDefaultArgExpr *DefaultArg
3426                = dyn_cast<CXXDefaultArgExpr>(this)) {
3427     // See through default argument expressions.
3428     return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
3429   } else if (const CXXDefaultInitExpr *DefaultInit
3430                = dyn_cast<CXXDefaultInitExpr>(this)) {
3431     // See through default initializer expressions.
3432     return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
3433   } else if (isa<GNUNullExpr>(this)) {
3434     // The GNU __null extension is always a null pointer constant.
3435     return NPCK_GNUNull;
3436   } else if (const MaterializeTemporaryExpr *M
3437                                    = dyn_cast<MaterializeTemporaryExpr>(this)) {
3438     return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
3439   } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
3440     if (const Expr *Source = OVE->getSourceExpr())
3441       return Source->isNullPointerConstant(Ctx, NPC);
3442   }
3443
3444   // C++11 nullptr_t is always a null pointer constant.
3445   if (getType()->isNullPtrType())
3446     return NPCK_CXX11_nullptr;
3447
3448   if (const RecordType *UT = getType()->getAsUnionType())
3449     if (!Ctx.getLangOpts().CPlusPlus11 &&
3450         UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
3451       if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
3452         const Expr *InitExpr = CLE->getInitializer();
3453         if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
3454           return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
3455       }
3456   // This expression must be an integer type.
3457   if (!getType()->isIntegerType() ||
3458       (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
3459     return NPCK_NotNull;
3460
3461   if (Ctx.getLangOpts().CPlusPlus11) {
3462     // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
3463     // value zero or a prvalue of type std::nullptr_t.
3464     // Microsoft mode permits C++98 rules reflecting MSVC behavior.
3465     const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
3466     if (Lit && !Lit->getValue())
3467       return NPCK_ZeroLiteral;
3468     else if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx))
3469       return NPCK_NotNull;
3470   } else {
3471     // If we have an integer constant expression, we need to *evaluate* it and
3472     // test for the value 0.
3473     if (!isIntegerConstantExpr(Ctx))
3474       return NPCK_NotNull;
3475   }
3476
3477   if (EvaluateKnownConstInt(Ctx) != 0)
3478     return NPCK_NotNull;
3479
3480   if (isa<IntegerLiteral>(this))
3481     return NPCK_ZeroLiteral;
3482   return NPCK_ZeroExpression;
3483 }
3484
3485 /// If this expression is an l-value for an Objective C
3486 /// property, find the underlying property reference expression.
3487 const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
3488   const Expr *E = this;
3489   while (true) {
3490     assert((E->getValueKind() == VK_LValue &&
3491             E->getObjectKind() == OK_ObjCProperty) &&
3492            "expression is not a property reference");
3493     E = E->IgnoreParenCasts();
3494     if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3495       if (BO->getOpcode() == BO_Comma) {
3496         E = BO->getRHS();
3497         continue;
3498       }
3499     }
3500
3501     break;
3502   }
3503
3504   return cast<ObjCPropertyRefExpr>(E);
3505 }
3506
3507 bool Expr::isObjCSelfExpr() const {
3508   const Expr *E = IgnoreParenImpCasts();
3509
3510   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
3511   if (!DRE)
3512     return false;
3513
3514   const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
3515   if (!Param)
3516     return false;
3517
3518   const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
3519   if (!M)
3520     return false;
3521
3522   return M->getSelfDecl() == Param;
3523 }
3524
3525 FieldDecl *Expr::getSourceBitField() {
3526   Expr *E = this->IgnoreParens();
3527
3528   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3529     if (ICE->getCastKind() == CK_LValueToRValue ||
3530         (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
3531       E = ICE->getSubExpr()->IgnoreParens();
3532     else
3533       break;
3534   }
3535
3536   if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
3537     if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
3538       if (Field->isBitField())
3539         return Field;
3540
3541   if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E)) {
3542     FieldDecl *Ivar = IvarRef->getDecl();
3543     if (Ivar->isBitField())
3544       return Ivar;
3545   }
3546
3547   if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E)) {
3548     if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
3549       if (Field->isBitField())
3550         return Field;
3551
3552     if (BindingDecl *BD = dyn_cast<BindingDecl>(DeclRef->getDecl()))
3553       if (Expr *E = BD->getBinding())
3554         return E->getSourceBitField();
3555   }
3556
3557   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
3558     if (BinOp->isAssignmentOp() && BinOp->getLHS())
3559       return BinOp->getLHS()->getSourceBitField();
3560
3561     if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
3562       return BinOp->getRHS()->getSourceBitField();
3563   }
3564
3565   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E))
3566     if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp())
3567       return UnOp->getSubExpr()->getSourceBitField();
3568
3569   return nullptr;
3570 }
3571
3572 bool Expr::refersToVectorElement() const {
3573   // FIXME: Why do we not just look at the ObjectKind here?
3574   const Expr *E = this->IgnoreParens();
3575
3576   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3577     if (ICE->getValueKind() != VK_RValue &&
3578         ICE->getCastKind() == CK_NoOp)
3579       E = ICE->getSubExpr()->IgnoreParens();
3580     else
3581       break;
3582   }
3583
3584   if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
3585     return ASE->getBase()->getType()->isVectorType();
3586
3587   if (isa<ExtVectorElementExpr>(E))
3588     return true;
3589
3590   if (auto *DRE = dyn_cast<DeclRefExpr>(E))
3591     if (auto *BD = dyn_cast<BindingDecl>(DRE->getDecl()))
3592       if (auto *E = BD->getBinding())
3593         return E->refersToVectorElement();
3594
3595   return false;
3596 }
3597
3598 bool Expr::refersToGlobalRegisterVar() const {
3599   const Expr *E = this->IgnoreParenImpCasts();
3600
3601   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
3602     if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
3603       if (VD->getStorageClass() == SC_Register &&
3604           VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
3605         return true;
3606
3607   return false;
3608 }
3609
3610 /// isArrow - Return true if the base expression is a pointer to vector,
3611 /// return false if the base expression is a vector.
3612 bool ExtVectorElementExpr::isArrow() const {
3613   return getBase()->getType()->isPointerType();
3614 }
3615
3616 unsigned ExtVectorElementExpr::getNumElements() const {
3617   if (const VectorType *VT = getType()->getAs<VectorType>())
3618     return VT->getNumElements();
3619   return 1;
3620 }
3621
3622 /// containsDuplicateElements - Return true if any element access is repeated.
3623 bool ExtVectorElementExpr::containsDuplicateElements() const {
3624   // FIXME: Refactor this code to an accessor on the AST node which returns the
3625   // "type" of component access, and share with code below and in Sema.
3626   StringRef Comp = Accessor->getName();
3627
3628   // Halving swizzles do not contain duplicate elements.
3629   if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
3630     return false;
3631
3632   // Advance past s-char prefix on hex swizzles.
3633   if (Comp[0] == 's' || Comp[0] == 'S')
3634     Comp = Comp.substr(1);
3635
3636   for (unsigned i = 0, e = Comp.size(); i != e; ++i)
3637     if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
3638         return true;
3639
3640   return false;
3641 }
3642
3643 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
3644 void ExtVectorElementExpr::getEncodedElementAccess(
3645     SmallVectorImpl<uint32_t> &Elts) const {
3646   StringRef Comp = Accessor->getName();
3647   bool isNumericAccessor = false;
3648   if (Comp[0] == 's' || Comp[0] == 'S') {
3649     Comp = Comp.substr(1);
3650     isNumericAccessor = true;
3651   }
3652
3653   bool isHi =   Comp == "hi";
3654   bool isLo =   Comp == "lo";
3655   bool isEven = Comp == "even";
3656   bool isOdd  = Comp == "odd";
3657
3658   for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
3659     uint64_t Index;
3660
3661     if (isHi)
3662       Index = e + i;
3663     else if (isLo)
3664       Index = i;
3665     else if (isEven)
3666       Index = 2 * i;
3667     else if (isOdd)
3668       Index = 2 * i + 1;
3669     else
3670       Index = ExtVectorType::getAccessorIdx(Comp[i], isNumericAccessor);
3671
3672     Elts.push_back(Index);
3673   }
3674 }
3675
3676 ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args,
3677                                      QualType Type, SourceLocation BLoc,
3678                                      SourceLocation RP)
3679    : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
3680           Type->isDependentType(), Type->isDependentType(),
3681           Type->isInstantiationDependentType(),
3682           Type->containsUnexpandedParameterPack()),
3683      BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size())
3684 {
3685   SubExprs = new (C) Stmt*[args.size()];
3686   for (unsigned i = 0; i != args.size(); i++) {
3687     if (args[i]->isTypeDependent())
3688       ExprBits.TypeDependent = true;
3689     if (args[i]->isValueDependent())
3690       ExprBits.ValueDependent = true;
3691     if (args[i]->isInstantiationDependent())
3692       ExprBits.InstantiationDependent = true;
3693     if (args[i]->containsUnexpandedParameterPack())
3694       ExprBits.ContainsUnexpandedParameterPack = true;
3695
3696     SubExprs[i] = args[i];
3697   }
3698 }
3699
3700 void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) {
3701   if (SubExprs) C.Deallocate(SubExprs);
3702
3703   this->NumExprs = Exprs.size();
3704   SubExprs = new (C) Stmt*[NumExprs];
3705   memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size());
3706 }
3707
3708 GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context,
3709                                SourceLocation GenericLoc, Expr *ControllingExpr,
3710                                ArrayRef<TypeSourceInfo*> AssocTypes,
3711                                ArrayRef<Expr*> AssocExprs,
3712                                SourceLocation DefaultLoc,
3713                                SourceLocation RParenLoc,
3714                                bool ContainsUnexpandedParameterPack,
3715                                unsigned ResultIndex)
3716   : Expr(GenericSelectionExprClass,
3717          AssocExprs[ResultIndex]->getType(),
3718          AssocExprs[ResultIndex]->getValueKind(),
3719          AssocExprs[ResultIndex]->getObjectKind(),
3720          AssocExprs[ResultIndex]->isTypeDependent(),
3721          AssocExprs[ResultIndex]->isValueDependent(),
3722          AssocExprs[ResultIndex]->isInstantiationDependent(),
3723          ContainsUnexpandedParameterPack),
3724     AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
3725     SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
3726     NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
3727     GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
3728   SubExprs[CONTROLLING] = ControllingExpr;
3729   assert(AssocTypes.size() == AssocExprs.size());
3730   std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
3731   std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
3732 }
3733
3734 GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context,
3735                                SourceLocation GenericLoc, Expr *ControllingExpr,
3736                                ArrayRef<TypeSourceInfo*> AssocTypes,
3737                                ArrayRef<Expr*> AssocExprs,
3738                                SourceLocation DefaultLoc,
3739                                SourceLocation RParenLoc,
3740                                bool ContainsUnexpandedParameterPack)
3741   : Expr(GenericSelectionExprClass,
3742          Context.DependentTy,
3743          VK_RValue,
3744          OK_Ordinary,
3745          /*isTypeDependent=*/true,
3746          /*isValueDependent=*/true,
3747          /*isInstantiationDependent=*/true,
3748          ContainsUnexpandedParameterPack),
3749     AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
3750     SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
3751     NumAssocs(AssocExprs.size()), ResultIndex(-1U), GenericLoc(GenericLoc),
3752     DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
3753   SubExprs[CONTROLLING] = ControllingExpr;
3754   assert(AssocTypes.size() == AssocExprs.size());
3755   std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
3756   std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
3757 }
3758
3759 //===----------------------------------------------------------------------===//
3760 //  DesignatedInitExpr
3761 //===----------------------------------------------------------------------===//
3762
3763 IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
3764   assert(Kind == FieldDesignator && "Only valid on a field designator");
3765   if (Field.NameOrField & 0x01)
3766     return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
3767   else
3768     return getField()->getIdentifier();
3769 }
3770
3771 DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
3772                                        llvm::ArrayRef<Designator> Designators,
3773                                        SourceLocation EqualOrColonLoc,
3774                                        bool GNUSyntax,
3775                                        ArrayRef<Expr*> IndexExprs,
3776                                        Expr *Init)
3777   : Expr(DesignatedInitExprClass, Ty,
3778          Init->getValueKind(), Init->getObjectKind(),
3779          Init->isTypeDependent(), Init->isValueDependent(),
3780          Init->isInstantiationDependent(),
3781          Init->containsUnexpandedParameterPack()),
3782     EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
3783     NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) {
3784   this->Designators = new (C) Designator[NumDesignators];
3785
3786   // Record the initializer itself.
3787   child_iterator Child = child_begin();
3788   *Child++ = Init;
3789
3790   // Copy the designators and their subexpressions, computing
3791   // value-dependence along the way.
3792   unsigned IndexIdx = 0;
3793   for (unsigned I = 0; I != NumDesignators; ++I) {
3794     this->Designators[I] = Designators[I];
3795
3796     if (this->Designators[I].isArrayDesignator()) {
3797       // Compute type- and value-dependence.
3798       Expr *Index = IndexExprs[IndexIdx];
3799       if (Index->isTypeDependent() || Index->isValueDependent())
3800         ExprBits.TypeDependent = ExprBits.ValueDependent = true;
3801       if (Index->isInstantiationDependent())
3802         ExprBits.InstantiationDependent = true;
3803       // Propagate unexpanded parameter packs.
3804       if (Index->containsUnexpandedParameterPack())
3805         ExprBits.ContainsUnexpandedParameterPack = true;
3806
3807       // Copy the index expressions into permanent storage.
3808       *Child++ = IndexExprs[IndexIdx++];
3809     } else if (this->Designators[I].isArrayRangeDesignator()) {
3810       // Compute type- and value-dependence.
3811       Expr *Start = IndexExprs[IndexIdx];
3812       Expr *End = IndexExprs[IndexIdx + 1];
3813       if (Start->isTypeDependent() || Start->isValueDependent() ||
3814           End->isTypeDependent() || End->isValueDependent()) {
3815         ExprBits.TypeDependent = ExprBits.ValueDependent = true;
3816         ExprBits.InstantiationDependent = true;
3817       } else if (Start->isInstantiationDependent() ||
3818                  End->isInstantiationDependent()) {
3819         ExprBits.InstantiationDependent = true;
3820       }
3821
3822       // Propagate unexpanded parameter packs.
3823       if (Start->containsUnexpandedParameterPack() ||
3824           End->containsUnexpandedParameterPack())
3825         ExprBits.ContainsUnexpandedParameterPack = true;
3826
3827       // Copy the start/end expressions into permanent storage.
3828       *Child++ = IndexExprs[IndexIdx++];
3829       *Child++ = IndexExprs[IndexIdx++];
3830     }
3831   }
3832
3833   assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
3834 }
3835
3836 DesignatedInitExpr *
3837 DesignatedInitExpr::Create(const ASTContext &C,
3838                            llvm::ArrayRef<Designator> Designators,
3839                            ArrayRef<Expr*> IndexExprs,
3840                            SourceLocation ColonOrEqualLoc,
3841                            bool UsesColonSyntax, Expr *Init) {
3842   void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1),
3843                          alignof(DesignatedInitExpr));
3844   return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators,
3845                                       ColonOrEqualLoc, UsesColonSyntax,
3846                                       IndexExprs, Init);
3847 }
3848
3849 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C,
3850                                                     unsigned NumIndexExprs) {
3851   void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1),
3852                          alignof(DesignatedInitExpr));
3853   return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
3854 }
3855
3856 void DesignatedInitExpr::setDesignators(const ASTContext &C,
3857                                         const Designator *Desigs,
3858                                         unsigned NumDesigs) {
3859   Designators = new (C) Designator[NumDesigs];
3860   NumDesignators = NumDesigs;
3861   for (unsigned I = 0; I != NumDesigs; ++I)
3862     Designators[I] = Desigs[I];
3863 }
3864
3865 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
3866   DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
3867   if (size() == 1)
3868     return DIE->getDesignator(0)->getSourceRange();
3869   return SourceRange(DIE->getDesignator(0)->getLocStart(),
3870                      DIE->getDesignator(size()-1)->getLocEnd());
3871 }
3872
3873 SourceLocation DesignatedInitExpr::getBeginLoc() const {
3874   SourceLocation StartLoc;
3875   auto *DIE = const_cast<DesignatedInitExpr *>(this);
3876   Designator &First = *DIE->getDesignator(0);
3877   if (First.isFieldDesignator()) {
3878     if (GNUSyntax)
3879       StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
3880     else
3881       StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
3882   } else
3883     StartLoc =
3884       SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
3885   return StartLoc;
3886 }
3887
3888 SourceLocation DesignatedInitExpr::getEndLoc() const {
3889   return getInit()->getLocEnd();
3890 }
3891
3892 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const {
3893   assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
3894   return getSubExpr(D.ArrayOrRange.Index + 1);
3895 }
3896
3897 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const {
3898   assert(D.Kind == Designator::ArrayRangeDesignator &&
3899          "Requires array range designator");
3900   return getSubExpr(D.ArrayOrRange.Index + 1);
3901 }
3902
3903 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const {
3904   assert(D.Kind == Designator::ArrayRangeDesignator &&
3905          "Requires array range designator");
3906   return getSubExpr(D.ArrayOrRange.Index + 2);
3907 }
3908
3909 /// Replaces the designator at index @p Idx with the series
3910 /// of designators in [First, Last).
3911 void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx,
3912                                           const Designator *First,
3913                                           const Designator *Last) {
3914   unsigned NumNewDesignators = Last - First;
3915   if (NumNewDesignators == 0) {
3916     std::copy_backward(Designators + Idx + 1,
3917                        Designators + NumDesignators,
3918                        Designators + Idx);
3919     --NumNewDesignators;
3920     return;
3921   } else if (NumNewDesignators == 1) {
3922     Designators[Idx] = *First;
3923     return;
3924   }
3925
3926   Designator *NewDesignators
3927     = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
3928   std::copy(Designators, Designators + Idx, NewDesignators);
3929   std::copy(First, Last, NewDesignators + Idx);
3930   std::copy(Designators + Idx + 1, Designators + NumDesignators,
3931             NewDesignators + Idx + NumNewDesignators);
3932   Designators = NewDesignators;
3933   NumDesignators = NumDesignators - 1 + NumNewDesignators;
3934 }
3935
3936 DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C,
3937     SourceLocation lBraceLoc, Expr *baseExpr, SourceLocation rBraceLoc)
3938   : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_RValue,
3939          OK_Ordinary, false, false, false, false) {
3940   BaseAndUpdaterExprs[0] = baseExpr;
3941
3942   InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, None, rBraceLoc);
3943   ILE->setType(baseExpr->getType());
3944   BaseAndUpdaterExprs[1] = ILE;
3945 }
3946
3947 SourceLocation DesignatedInitUpdateExpr::getBeginLoc() const {
3948   return getBase()->getLocStart();
3949 }
3950
3951 SourceLocation DesignatedInitUpdateExpr::getEndLoc() const {
3952   return getBase()->getLocEnd();
3953 }
3954
3955 ParenListExpr::ParenListExpr(const ASTContext& C, SourceLocation lparenloc,
3956                              ArrayRef<Expr*> exprs,
3957                              SourceLocation rparenloc)
3958   : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary,
3959          false, false, false, false),
3960     NumExprs(exprs.size()), LParenLoc(lparenloc), RParenLoc(rparenloc) {
3961   Exprs = new (C) Stmt*[exprs.size()];
3962   for (unsigned i = 0; i != exprs.size(); ++i) {
3963     if (exprs[i]->isTypeDependent())
3964       ExprBits.TypeDependent = true;
3965     if (exprs[i]->isValueDependent())
3966       ExprBits.ValueDependent = true;
3967     if (exprs[i]->isInstantiationDependent())
3968       ExprBits.InstantiationDependent = true;
3969     if (exprs[i]->containsUnexpandedParameterPack())
3970       ExprBits.ContainsUnexpandedParameterPack = true;
3971
3972     Exprs[i] = exprs[i];
3973   }
3974 }
3975
3976 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
3977   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
3978     e = ewc->getSubExpr();
3979   if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
3980     e = m->GetTemporaryExpr();
3981   e = cast<CXXConstructExpr>(e)->getArg(0);
3982   while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
3983     e = ice->getSubExpr();
3984   return cast<OpaqueValueExpr>(e);
3985 }
3986
3987 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context,
3988                                            EmptyShell sh,
3989                                            unsigned numSemanticExprs) {
3990   void *buffer =
3991       Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs),
3992                        alignof(PseudoObjectExpr));
3993   return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
3994 }
3995
3996 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
3997   : Expr(PseudoObjectExprClass, shell) {
3998   PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
3999 }
4000
4001 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax,
4002                                            ArrayRef<Expr*> semantics,
4003                                            unsigned resultIndex) {
4004   assert(syntax && "no syntactic expression!");
4005   assert(semantics.size() && "no semantic expressions!");
4006
4007   QualType type;
4008   ExprValueKind VK;
4009   if (resultIndex == NoResult) {
4010     type = C.VoidTy;
4011     VK = VK_RValue;
4012   } else {
4013     assert(resultIndex < semantics.size());
4014     type = semantics[resultIndex]->getType();
4015     VK = semantics[resultIndex]->getValueKind();
4016     assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
4017   }
4018
4019   void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1),
4020                             alignof(PseudoObjectExpr));
4021   return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
4022                                       resultIndex);
4023 }
4024
4025 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
4026                                    Expr *syntax, ArrayRef<Expr*> semantics,
4027                                    unsigned resultIndex)
4028   : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
4029          /*filled in at end of ctor*/ false, false, false, false) {
4030   PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
4031   PseudoObjectExprBits.ResultIndex = resultIndex + 1;
4032
4033   for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
4034     Expr *E = (i == 0 ? syntax : semantics[i-1]);
4035     getSubExprsBuffer()[i] = E;
4036
4037     if (E->isTypeDependent())
4038       ExprBits.TypeDependent = true;
4039     if (E->isValueDependent())
4040       ExprBits.ValueDependent = true;
4041     if (E->isInstantiationDependent())
4042       ExprBits.InstantiationDependent = true;
4043     if (E->containsUnexpandedParameterPack())
4044       ExprBits.ContainsUnexpandedParameterPack = true;
4045
4046     if (isa<OpaqueValueExpr>(E))
4047       assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr &&
4048              "opaque-value semantic expressions for pseudo-object "
4049              "operations must have sources");
4050   }
4051 }
4052
4053 //===----------------------------------------------------------------------===//
4054 //  Child Iterators for iterating over subexpressions/substatements
4055 //===----------------------------------------------------------------------===//
4056
4057 // UnaryExprOrTypeTraitExpr
4058 Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
4059   const_child_range CCR =
4060       const_cast<const UnaryExprOrTypeTraitExpr *>(this)->children();
4061   return child_range(cast_away_const(CCR.begin()), cast_away_const(CCR.end()));
4062 }
4063
4064 Stmt::const_child_range UnaryExprOrTypeTraitExpr::children() const {
4065   // If this is of a type and the type is a VLA type (and not a typedef), the
4066   // size expression of the VLA needs to be treated as an executable expression.
4067   // Why isn't this weirdness documented better in StmtIterator?
4068   if (isArgumentType()) {
4069     if (const VariableArrayType *T =
4070             dyn_cast<VariableArrayType>(getArgumentType().getTypePtr()))
4071       return const_child_range(const_child_iterator(T), const_child_iterator());
4072     return const_child_range(const_child_iterator(), const_child_iterator());
4073   }
4074   return const_child_range(&Argument.Ex, &Argument.Ex + 1);
4075 }
4076
4077 AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args,
4078                        QualType t, AtomicOp op, SourceLocation RP)
4079   : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
4080          false, false, false, false),
4081     NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
4082 {
4083   assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
4084   for (unsigned i = 0; i != args.size(); i++) {
4085     if (args[i]->isTypeDependent())
4086       ExprBits.TypeDependent = true;
4087     if (args[i]->isValueDependent())
4088       ExprBits.ValueDependent = true;
4089     if (args[i]->isInstantiationDependent())
4090       ExprBits.InstantiationDependent = true;
4091     if (args[i]->containsUnexpandedParameterPack())
4092       ExprBits.ContainsUnexpandedParameterPack = true;
4093
4094     SubExprs[i] = args[i];
4095   }
4096 }
4097
4098 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
4099   switch (Op) {
4100   case AO__c11_atomic_init:
4101   case AO__opencl_atomic_init:
4102   case AO__c11_atomic_load:
4103   case AO__atomic_load_n:
4104     return 2;
4105
4106   case AO__opencl_atomic_load:
4107   case AO__c11_atomic_store:
4108   case AO__c11_atomic_exchange:
4109   case AO__atomic_load:
4110   case AO__atomic_store:
4111   case AO__atomic_store_n:
4112   case AO__atomic_exchange_n:
4113   case AO__c11_atomic_fetch_add:
4114   case AO__c11_atomic_fetch_sub:
4115   case AO__c11_atomic_fetch_and:
4116   case AO__c11_atomic_fetch_or:
4117   case AO__c11_atomic_fetch_xor:
4118   case AO__atomic_fetch_add:
4119   case AO__atomic_fetch_sub:
4120   case AO__atomic_fetch_and:
4121   case AO__atomic_fetch_or:
4122   case AO__atomic_fetch_xor:
4123   case AO__atomic_fetch_nand:
4124   case AO__atomic_add_fetch:
4125   case AO__atomic_sub_fetch:
4126   case AO__atomic_and_fetch:
4127   case AO__atomic_or_fetch:
4128   case AO__atomic_xor_fetch:
4129   case AO__atomic_nand_fetch:
4130   case AO__atomic_fetch_min:
4131   case AO__atomic_fetch_max:
4132     return 3;
4133
4134   case AO__opencl_atomic_store:
4135   case AO__opencl_atomic_exchange:
4136   case AO__opencl_atomic_fetch_add:
4137   case AO__opencl_atomic_fetch_sub:
4138   case AO__opencl_atomic_fetch_and:
4139   case AO__opencl_atomic_fetch_or:
4140   case AO__opencl_atomic_fetch_xor:
4141   case AO__opencl_atomic_fetch_min:
4142   case AO__opencl_atomic_fetch_max:
4143   case AO__atomic_exchange:
4144     return 4;
4145
4146   case AO__c11_atomic_compare_exchange_strong:
4147   case AO__c11_atomic_compare_exchange_weak:
4148     return 5;
4149
4150   case AO__opencl_atomic_compare_exchange_strong:
4151   case AO__opencl_atomic_compare_exchange_weak:
4152   case AO__atomic_compare_exchange:
4153   case AO__atomic_compare_exchange_n:
4154     return 6;
4155   }
4156   llvm_unreachable("unknown atomic op");
4157 }
4158
4159 QualType AtomicExpr::getValueType() const {
4160   auto T = getPtr()->getType()->castAs<PointerType>()->getPointeeType();
4161   if (auto AT = T->getAs<AtomicType>())
4162     return AT->getValueType();
4163   return T;
4164 }
4165
4166 QualType OMPArraySectionExpr::getBaseOriginalType(const Expr *Base) {
4167   unsigned ArraySectionCount = 0;
4168   while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) {
4169     Base = OASE->getBase();
4170     ++ArraySectionCount;
4171   }
4172   while (auto *ASE =
4173              dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) {
4174     Base = ASE->getBase();
4175     ++ArraySectionCount;
4176   }
4177   Base = Base->IgnoreParenImpCasts();
4178   auto OriginalTy = Base->getType();
4179   if (auto *DRE = dyn_cast<DeclRefExpr>(Base))
4180     if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
4181       OriginalTy = PVD->getOriginalType().getNonReferenceType();
4182
4183   for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) {
4184     if (OriginalTy->isAnyPointerType())
4185       OriginalTy = OriginalTy->getPointeeType();
4186     else {
4187       assert (OriginalTy->isArrayType());
4188       OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType();
4189     }
4190   }
4191   return OriginalTy;
4192 }