]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/AST/Expr.cpp
Upgrade our copies of clang, llvm, lldb, compiler-rt and libc++ to 3.9.0
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / AST / Expr.cpp
1 //===--- Expr.cpp - Expression AST Node Implementation --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Expr class and subclasses.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/AST/APValue.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/DeclCXX.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/EvaluatedExprVisitor.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/Mangle.h"
24 #include "clang/AST/RecordLayout.h"
25 #include "clang/AST/StmtVisitor.h"
26 #include "clang/Basic/Builtins.h"
27 #include "clang/Basic/CharInfo.h"
28 #include "clang/Basic/SourceManager.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Lex/Lexer.h"
31 #include "clang/Lex/LiteralSupport.h"
32 #include "clang/Sema/SemaDiagnostic.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <algorithm>
36 #include <cstring>
37 using namespace clang;
38
39 const CXXRecordDecl *Expr::getBestDynamicClassType() const {
40   const Expr *E = ignoreParenBaseCasts();
41
42   QualType DerivedType = E->getType();
43   if (const PointerType *PTy = DerivedType->getAs<PointerType>())
44     DerivedType = PTy->getPointeeType();
45
46   if (DerivedType->isDependentType())
47     return nullptr;
48
49   const RecordType *Ty = DerivedType->castAs<RecordType>();
50   Decl *D = Ty->getDecl();
51   return cast<CXXRecordDecl>(D);
52 }
53
54 const Expr *Expr::skipRValueSubobjectAdjustments(
55     SmallVectorImpl<const Expr *> &CommaLHSs,
56     SmallVectorImpl<SubobjectAdjustment> &Adjustments) const {
57   const Expr *E = this;
58   while (true) {
59     E = E->IgnoreParens();
60
61     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
62       if ((CE->getCastKind() == CK_DerivedToBase ||
63            CE->getCastKind() == CK_UncheckedDerivedToBase) &&
64           E->getType()->isRecordType()) {
65         E = CE->getSubExpr();
66         CXXRecordDecl *Derived
67           = cast<CXXRecordDecl>(E->getType()->getAs<RecordType>()->getDecl());
68         Adjustments.push_back(SubobjectAdjustment(CE, Derived));
69         continue;
70       }
71
72       if (CE->getCastKind() == CK_NoOp) {
73         E = CE->getSubExpr();
74         continue;
75       }
76     } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
77       if (!ME->isArrow()) {
78         assert(ME->getBase()->getType()->isRecordType());
79         if (FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
80           if (!Field->isBitField() && !Field->getType()->isReferenceType()) {
81             E = ME->getBase();
82             Adjustments.push_back(SubobjectAdjustment(Field));
83             continue;
84           }
85         }
86       }
87     } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
88       if (BO->isPtrMemOp()) {
89         assert(BO->getRHS()->isRValue());
90         E = BO->getLHS();
91         const MemberPointerType *MPT =
92           BO->getRHS()->getType()->getAs<MemberPointerType>();
93         Adjustments.push_back(SubobjectAdjustment(MPT, BO->getRHS()));
94         continue;
95       } else if (BO->getOpcode() == BO_Comma) {
96         CommaLHSs.push_back(BO->getLHS());
97         E = BO->getRHS();
98         continue;
99       }
100     }
101
102     // Nothing changed.
103     break;
104   }
105   return E;
106 }
107
108 /// isKnownToHaveBooleanValue - Return true if this is an integer expression
109 /// that is known to return 0 or 1.  This happens for _Bool/bool expressions
110 /// but also int expressions which are produced by things like comparisons in
111 /// C.
112 bool Expr::isKnownToHaveBooleanValue() const {
113   const Expr *E = IgnoreParens();
114
115   // If this value has _Bool type, it is obvious 0/1.
116   if (E->getType()->isBooleanType()) return true;
117   // If this is a non-scalar-integer type, we don't care enough to try. 
118   if (!E->getType()->isIntegralOrEnumerationType()) return false;
119   
120   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
121     switch (UO->getOpcode()) {
122     case UO_Plus:
123       return UO->getSubExpr()->isKnownToHaveBooleanValue();
124     case UO_LNot:
125       return true;
126     default:
127       return false;
128     }
129   }
130   
131   // Only look through implicit casts.  If the user writes
132   // '(int) (a && b)' treat it as an arbitrary int.
133   if (const ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E))
134     return CE->getSubExpr()->isKnownToHaveBooleanValue();
135   
136   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
137     switch (BO->getOpcode()) {
138     default: return false;
139     case BO_LT:   // Relational operators.
140     case BO_GT:
141     case BO_LE:
142     case BO_GE:
143     case BO_EQ:   // Equality operators.
144     case BO_NE:
145     case BO_LAnd: // AND operator.
146     case BO_LOr:  // Logical OR operator.
147       return true;
148         
149     case BO_And:  // Bitwise AND operator.
150     case BO_Xor:  // Bitwise XOR operator.
151     case BO_Or:   // Bitwise OR operator.
152       // Handle things like (x==2)|(y==12).
153       return BO->getLHS()->isKnownToHaveBooleanValue() &&
154              BO->getRHS()->isKnownToHaveBooleanValue();
155         
156     case BO_Comma:
157     case BO_Assign:
158       return BO->getRHS()->isKnownToHaveBooleanValue();
159     }
160   }
161   
162   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E))
163     return CO->getTrueExpr()->isKnownToHaveBooleanValue() &&
164            CO->getFalseExpr()->isKnownToHaveBooleanValue();
165   
166   return false;
167 }
168
169 // Amusing macro metaprogramming hack: check whether a class provides
170 // a more specific implementation of getExprLoc().
171 //
172 // See also Stmt.cpp:{getLocStart(),getLocEnd()}.
173 namespace {
174   /// This implementation is used when a class provides a custom
175   /// implementation of getExprLoc.
176   template <class E, class T>
177   SourceLocation getExprLocImpl(const Expr *expr,
178                                 SourceLocation (T::*v)() const) {
179     return static_cast<const E*>(expr)->getExprLoc();
180   }
181
182   /// This implementation is used when a class doesn't provide
183   /// a custom implementation of getExprLoc.  Overload resolution
184   /// should pick it over the implementation above because it's
185   /// more specialized according to function template partial ordering.
186   template <class E>
187   SourceLocation getExprLocImpl(const Expr *expr,
188                                 SourceLocation (Expr::*v)() const) {
189     return static_cast<const E*>(expr)->getLocStart();
190   }
191 }
192
193 SourceLocation Expr::getExprLoc() const {
194   switch (getStmtClass()) {
195   case Stmt::NoStmtClass: llvm_unreachable("statement without class");
196 #define ABSTRACT_STMT(type)
197 #define STMT(type, base) \
198   case Stmt::type##Class: break;
199 #define EXPR(type, base) \
200   case Stmt::type##Class: return getExprLocImpl<type>(this, &type::getExprLoc);
201 #include "clang/AST/StmtNodes.inc"
202   }
203   llvm_unreachable("unknown expression kind");
204 }
205
206 //===----------------------------------------------------------------------===//
207 // Primary Expressions.
208 //===----------------------------------------------------------------------===//
209
210 /// \brief Compute the type-, value-, and instantiation-dependence of a 
211 /// declaration reference
212 /// based on the declaration being referenced.
213 static void computeDeclRefDependence(const ASTContext &Ctx, NamedDecl *D,
214                                      QualType T, bool &TypeDependent,
215                                      bool &ValueDependent,
216                                      bool &InstantiationDependent) {
217   TypeDependent = false;
218   ValueDependent = false;
219   InstantiationDependent = false;
220
221   // (TD) C++ [temp.dep.expr]p3:
222   //   An id-expression is type-dependent if it contains:
223   //
224   // and
225   //
226   // (VD) C++ [temp.dep.constexpr]p2:
227   //  An identifier is value-dependent if it is:
228
229   //  (TD)  - an identifier that was declared with dependent type
230   //  (VD)  - a name declared with a dependent type,
231   if (T->isDependentType()) {
232     TypeDependent = true;
233     ValueDependent = true;
234     InstantiationDependent = true;
235     return;
236   } else if (T->isInstantiationDependentType()) {
237     InstantiationDependent = true;
238   }
239   
240   //  (TD)  - a conversion-function-id that specifies a dependent type
241   if (D->getDeclName().getNameKind() 
242                                 == DeclarationName::CXXConversionFunctionName) {
243     QualType T = D->getDeclName().getCXXNameType();
244     if (T->isDependentType()) {
245       TypeDependent = true;
246       ValueDependent = true;
247       InstantiationDependent = true;
248       return;
249     }
250     
251     if (T->isInstantiationDependentType())
252       InstantiationDependent = true;
253   }
254   
255   //  (VD)  - the name of a non-type template parameter,
256   if (isa<NonTypeTemplateParmDecl>(D)) {
257     ValueDependent = true;
258     InstantiationDependent = true;
259     return;
260   }
261   
262   //  (VD) - a constant with integral or enumeration type and is
263   //         initialized with an expression that is value-dependent.
264   //  (VD) - a constant with literal type and is initialized with an
265   //         expression that is value-dependent [C++11].
266   //  (VD) - FIXME: Missing from the standard:
267   //       -  an entity with reference type and is initialized with an
268   //          expression that is value-dependent [C++11]
269   if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
270     if ((Ctx.getLangOpts().CPlusPlus11 ?
271            Var->getType()->isLiteralType(Ctx) :
272            Var->getType()->isIntegralOrEnumerationType()) &&
273         (Var->getType().isConstQualified() ||
274          Var->getType()->isReferenceType())) {
275       if (const Expr *Init = Var->getAnyInitializer())
276         if (Init->isValueDependent()) {
277           ValueDependent = true;
278           InstantiationDependent = true;
279         }
280     }
281
282     // (VD) - FIXME: Missing from the standard: 
283     //      -  a member function or a static data member of the current 
284     //         instantiation
285     if (Var->isStaticDataMember() && 
286         Var->getDeclContext()->isDependentContext()) {
287       ValueDependent = true;
288       InstantiationDependent = true;
289       TypeSourceInfo *TInfo = Var->getFirstDecl()->getTypeSourceInfo();
290       if (TInfo->getType()->isIncompleteArrayType())
291         TypeDependent = true;
292     }
293     
294     return;
295   }
296   
297   // (VD) - FIXME: Missing from the standard: 
298   //      -  a member function or a static data member of the current 
299   //         instantiation
300   if (isa<CXXMethodDecl>(D) && D->getDeclContext()->isDependentContext()) {
301     ValueDependent = true;
302     InstantiationDependent = true;
303   }
304 }
305
306 void DeclRefExpr::computeDependence(const ASTContext &Ctx) {
307   bool TypeDependent = false;
308   bool ValueDependent = false;
309   bool InstantiationDependent = false;
310   computeDeclRefDependence(Ctx, getDecl(), getType(), TypeDependent,
311                            ValueDependent, InstantiationDependent);
312
313   ExprBits.TypeDependent |= TypeDependent;
314   ExprBits.ValueDependent |= ValueDependent;
315   ExprBits.InstantiationDependent |= InstantiationDependent;
316
317   // Is the declaration a parameter pack?
318   if (getDecl()->isParameterPack())
319     ExprBits.ContainsUnexpandedParameterPack = true;
320 }
321
322 DeclRefExpr::DeclRefExpr(const ASTContext &Ctx,
323                          NestedNameSpecifierLoc QualifierLoc,
324                          SourceLocation TemplateKWLoc,
325                          ValueDecl *D, bool RefersToEnclosingVariableOrCapture,
326                          const DeclarationNameInfo &NameInfo,
327                          NamedDecl *FoundD,
328                          const TemplateArgumentListInfo *TemplateArgs,
329                          QualType T, ExprValueKind VK)
330   : Expr(DeclRefExprClass, T, VK, OK_Ordinary, false, false, false, false),
331     D(D), Loc(NameInfo.getLoc()), DNLoc(NameInfo.getInfo()) {
332   DeclRefExprBits.HasQualifier = QualifierLoc ? 1 : 0;
333   if (QualifierLoc) {
334     new (getTrailingObjects<NestedNameSpecifierLoc>())
335         NestedNameSpecifierLoc(QualifierLoc);
336     auto *NNS = QualifierLoc.getNestedNameSpecifier();
337     if (NNS->isInstantiationDependent())
338       ExprBits.InstantiationDependent = true;
339     if (NNS->containsUnexpandedParameterPack())
340       ExprBits.ContainsUnexpandedParameterPack = true;
341   }
342   DeclRefExprBits.HasFoundDecl = FoundD ? 1 : 0;
343   if (FoundD)
344     *getTrailingObjects<NamedDecl *>() = FoundD;
345   DeclRefExprBits.HasTemplateKWAndArgsInfo
346     = (TemplateArgs || TemplateKWLoc.isValid()) ? 1 : 0;
347   DeclRefExprBits.RefersToEnclosingVariableOrCapture =
348       RefersToEnclosingVariableOrCapture;
349   if (TemplateArgs) {
350     bool Dependent = false;
351     bool InstantiationDependent = false;
352     bool ContainsUnexpandedParameterPack = false;
353     getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
354         TemplateKWLoc, *TemplateArgs, getTrailingObjects<TemplateArgumentLoc>(),
355         Dependent, InstantiationDependent, ContainsUnexpandedParameterPack);
356     assert(!Dependent && "built a DeclRefExpr with dependent template args");
357     ExprBits.InstantiationDependent |= InstantiationDependent;
358     ExprBits.ContainsUnexpandedParameterPack |= ContainsUnexpandedParameterPack;
359   } else if (TemplateKWLoc.isValid()) {
360     getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
361         TemplateKWLoc);
362   }
363   DeclRefExprBits.HadMultipleCandidates = 0;
364
365   computeDependence(Ctx);
366 }
367
368 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
369                                  NestedNameSpecifierLoc QualifierLoc,
370                                  SourceLocation TemplateKWLoc,
371                                  ValueDecl *D,
372                                  bool RefersToEnclosingVariableOrCapture,
373                                  SourceLocation NameLoc,
374                                  QualType T,
375                                  ExprValueKind VK,
376                                  NamedDecl *FoundD,
377                                  const TemplateArgumentListInfo *TemplateArgs) {
378   return Create(Context, QualifierLoc, TemplateKWLoc, D,
379                 RefersToEnclosingVariableOrCapture,
380                 DeclarationNameInfo(D->getDeclName(), NameLoc),
381                 T, VK, FoundD, TemplateArgs);
382 }
383
384 DeclRefExpr *DeclRefExpr::Create(const ASTContext &Context,
385                                  NestedNameSpecifierLoc QualifierLoc,
386                                  SourceLocation TemplateKWLoc,
387                                  ValueDecl *D,
388                                  bool RefersToEnclosingVariableOrCapture,
389                                  const DeclarationNameInfo &NameInfo,
390                                  QualType T,
391                                  ExprValueKind VK,
392                                  NamedDecl *FoundD,
393                                  const TemplateArgumentListInfo *TemplateArgs) {
394   // Filter out cases where the found Decl is the same as the value refenenced.
395   if (D == FoundD)
396     FoundD = nullptr;
397
398   bool HasTemplateKWAndArgsInfo = TemplateArgs || TemplateKWLoc.isValid();
399   std::size_t Size =
400       totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
401                        ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
402           QualifierLoc ? 1 : 0, FoundD ? 1 : 0,
403           HasTemplateKWAndArgsInfo ? 1 : 0,
404           TemplateArgs ? TemplateArgs->size() : 0);
405
406   void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
407   return new (Mem) DeclRefExpr(Context, QualifierLoc, TemplateKWLoc, D,
408                                RefersToEnclosingVariableOrCapture,
409                                NameInfo, FoundD, TemplateArgs, T, VK);
410 }
411
412 DeclRefExpr *DeclRefExpr::CreateEmpty(const ASTContext &Context,
413                                       bool HasQualifier,
414                                       bool HasFoundDecl,
415                                       bool HasTemplateKWAndArgsInfo,
416                                       unsigned NumTemplateArgs) {
417   assert(NumTemplateArgs == 0 || HasTemplateKWAndArgsInfo);
418   std::size_t Size =
419       totalSizeToAlloc<NestedNameSpecifierLoc, NamedDecl *,
420                        ASTTemplateKWAndArgsInfo, TemplateArgumentLoc>(
421           HasQualifier ? 1 : 0, HasFoundDecl ? 1 : 0, HasTemplateKWAndArgsInfo,
422           NumTemplateArgs);
423   void *Mem = Context.Allocate(Size, llvm::alignOf<DeclRefExpr>());
424   return new (Mem) DeclRefExpr(EmptyShell());
425 }
426
427 SourceLocation DeclRefExpr::getLocStart() const {
428   if (hasQualifier())
429     return getQualifierLoc().getBeginLoc();
430   return getNameInfo().getLocStart();
431 }
432 SourceLocation DeclRefExpr::getLocEnd() const {
433   if (hasExplicitTemplateArgs())
434     return getRAngleLoc();
435   return getNameInfo().getLocEnd();
436 }
437
438 PredefinedExpr::PredefinedExpr(SourceLocation L, QualType FNTy, IdentType IT,
439                                StringLiteral *SL)
440     : Expr(PredefinedExprClass, FNTy, VK_LValue, OK_Ordinary,
441            FNTy->isDependentType(), FNTy->isDependentType(),
442            FNTy->isInstantiationDependentType(),
443            /*ContainsUnexpandedParameterPack=*/false),
444       Loc(L), Type(IT), FnName(SL) {}
445
446 StringLiteral *PredefinedExpr::getFunctionName() {
447   return cast_or_null<StringLiteral>(FnName);
448 }
449
450 StringRef PredefinedExpr::getIdentTypeName(PredefinedExpr::IdentType IT) {
451   switch (IT) {
452   case Func:
453     return "__func__";
454   case Function:
455     return "__FUNCTION__";
456   case FuncDName:
457     return "__FUNCDNAME__";
458   case LFunction:
459     return "L__FUNCTION__";
460   case PrettyFunction:
461     return "__PRETTY_FUNCTION__";
462   case FuncSig:
463     return "__FUNCSIG__";
464   case PrettyFunctionNoVirtual:
465     break;
466   }
467   llvm_unreachable("Unknown ident type for PredefinedExpr");
468 }
469
470 // FIXME: Maybe this should use DeclPrinter with a special "print predefined
471 // expr" policy instead.
472 std::string PredefinedExpr::ComputeName(IdentType IT, const Decl *CurrentDecl) {
473   ASTContext &Context = CurrentDecl->getASTContext();
474
475   if (IT == PredefinedExpr::FuncDName) {
476     if (const NamedDecl *ND = dyn_cast<NamedDecl>(CurrentDecl)) {
477       std::unique_ptr<MangleContext> MC;
478       MC.reset(Context.createMangleContext());
479
480       if (MC->shouldMangleDeclName(ND)) {
481         SmallString<256> Buffer;
482         llvm::raw_svector_ostream Out(Buffer);
483         if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(ND))
484           MC->mangleCXXCtor(CD, Ctor_Base, Out);
485         else if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(ND))
486           MC->mangleCXXDtor(DD, Dtor_Base, Out);
487         else
488           MC->mangleName(ND, Out);
489
490         if (!Buffer.empty() && Buffer.front() == '\01')
491           return Buffer.substr(1);
492         return Buffer.str();
493       } else
494         return ND->getIdentifier()->getName();
495     }
496     return "";
497   }
498   if (auto *BD = dyn_cast<BlockDecl>(CurrentDecl)) {
499     std::unique_ptr<MangleContext> MC;
500     MC.reset(Context.createMangleContext());
501     SmallString<256> Buffer;
502     llvm::raw_svector_ostream Out(Buffer);
503     auto DC = CurrentDecl->getDeclContext();
504     if (DC->isFileContext())
505       MC->mangleGlobalBlock(BD, /*ID*/ nullptr, Out);
506     else if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
507       MC->mangleCtorBlock(CD, /*CT*/ Ctor_Complete, BD, Out);
508     else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
509       MC->mangleDtorBlock(DD, /*DT*/ Dtor_Complete, BD, Out);
510     else
511       MC->mangleBlock(DC, BD, Out);
512     return Out.str();
513   }
514   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CurrentDecl)) {
515     if (IT != PrettyFunction && IT != PrettyFunctionNoVirtual && IT != FuncSig)
516       return FD->getNameAsString();
517
518     SmallString<256> Name;
519     llvm::raw_svector_ostream Out(Name);
520
521     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
522       if (MD->isVirtual() && IT != PrettyFunctionNoVirtual)
523         Out << "virtual ";
524       if (MD->isStatic())
525         Out << "static ";
526     }
527
528     PrintingPolicy Policy(Context.getLangOpts());
529     std::string Proto;
530     llvm::raw_string_ostream POut(Proto);
531
532     const FunctionDecl *Decl = FD;
533     if (const FunctionDecl* Pattern = FD->getTemplateInstantiationPattern())
534       Decl = Pattern;
535     const FunctionType *AFT = Decl->getType()->getAs<FunctionType>();
536     const FunctionProtoType *FT = nullptr;
537     if (FD->hasWrittenPrototype())
538       FT = dyn_cast<FunctionProtoType>(AFT);
539
540     if (IT == FuncSig) {
541       switch (FT->getCallConv()) {
542       case CC_C: POut << "__cdecl "; break;
543       case CC_X86StdCall: POut << "__stdcall "; break;
544       case CC_X86FastCall: POut << "__fastcall "; break;
545       case CC_X86ThisCall: POut << "__thiscall "; break;
546       case CC_X86VectorCall: POut << "__vectorcall "; break;
547       // Only bother printing the conventions that MSVC knows about.
548       default: break;
549       }
550     }
551
552     FD->printQualifiedName(POut, Policy);
553
554     POut << "(";
555     if (FT) {
556       for (unsigned i = 0, e = Decl->getNumParams(); i != e; ++i) {
557         if (i) POut << ", ";
558         POut << Decl->getParamDecl(i)->getType().stream(Policy);
559       }
560
561       if (FT->isVariadic()) {
562         if (FD->getNumParams()) POut << ", ";
563         POut << "...";
564       }
565     }
566     POut << ")";
567
568     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
569       const FunctionType *FT = MD->getType()->castAs<FunctionType>();
570       if (FT->isConst())
571         POut << " const";
572       if (FT->isVolatile())
573         POut << " volatile";
574       RefQualifierKind Ref = MD->getRefQualifier();
575       if (Ref == RQ_LValue)
576         POut << " &";
577       else if (Ref == RQ_RValue)
578         POut << " &&";
579     }
580
581     typedef SmallVector<const ClassTemplateSpecializationDecl *, 8> SpecsTy;
582     SpecsTy Specs;
583     const DeclContext *Ctx = FD->getDeclContext();
584     while (Ctx && isa<NamedDecl>(Ctx)) {
585       const ClassTemplateSpecializationDecl *Spec
586                                = dyn_cast<ClassTemplateSpecializationDecl>(Ctx);
587       if (Spec && !Spec->isExplicitSpecialization())
588         Specs.push_back(Spec);
589       Ctx = Ctx->getParent();
590     }
591
592     std::string TemplateParams;
593     llvm::raw_string_ostream TOut(TemplateParams);
594     for (SpecsTy::reverse_iterator I = Specs.rbegin(), E = Specs.rend();
595          I != E; ++I) {
596       const TemplateParameterList *Params 
597                   = (*I)->getSpecializedTemplate()->getTemplateParameters();
598       const TemplateArgumentList &Args = (*I)->getTemplateArgs();
599       assert(Params->size() == Args.size());
600       for (unsigned i = 0, numParams = Params->size(); i != numParams; ++i) {
601         StringRef Param = Params->getParam(i)->getName();
602         if (Param.empty()) continue;
603         TOut << Param << " = ";
604         Args.get(i).print(Policy, TOut);
605         TOut << ", ";
606       }
607     }
608
609     FunctionTemplateSpecializationInfo *FSI 
610                                           = FD->getTemplateSpecializationInfo();
611     if (FSI && !FSI->isExplicitSpecialization()) {
612       const TemplateParameterList* Params 
613                                   = FSI->getTemplate()->getTemplateParameters();
614       const TemplateArgumentList* Args = FSI->TemplateArguments;
615       assert(Params->size() == Args->size());
616       for (unsigned i = 0, e = Params->size(); i != e; ++i) {
617         StringRef Param = Params->getParam(i)->getName();
618         if (Param.empty()) continue;
619         TOut << Param << " = ";
620         Args->get(i).print(Policy, TOut);
621         TOut << ", ";
622       }
623     }
624
625     TOut.flush();
626     if (!TemplateParams.empty()) {
627       // remove the trailing comma and space
628       TemplateParams.resize(TemplateParams.size() - 2);
629       POut << " [" << TemplateParams << "]";
630     }
631
632     POut.flush();
633
634     // Print "auto" for all deduced return types. This includes C++1y return
635     // type deduction and lambdas. For trailing return types resolve the
636     // decltype expression. Otherwise print the real type when this is
637     // not a constructor or destructor.
638     if (isa<CXXMethodDecl>(FD) &&
639          cast<CXXMethodDecl>(FD)->getParent()->isLambda())
640       Proto = "auto " + Proto;
641     else if (FT && FT->getReturnType()->getAs<DecltypeType>())
642       FT->getReturnType()
643           ->getAs<DecltypeType>()
644           ->getUnderlyingType()
645           .getAsStringInternal(Proto, Policy);
646     else if (!isa<CXXConstructorDecl>(FD) && !isa<CXXDestructorDecl>(FD))
647       AFT->getReturnType().getAsStringInternal(Proto, Policy);
648
649     Out << Proto;
650
651     return Name.str().str();
652   }
653   if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(CurrentDecl)) {
654     for (const DeclContext *DC = CD->getParent(); DC; DC = DC->getParent())
655       // Skip to its enclosing function or method, but not its enclosing
656       // CapturedDecl.
657       if (DC->isFunctionOrMethod() && (DC->getDeclKind() != Decl::Captured)) {
658         const Decl *D = Decl::castFromDeclContext(DC);
659         return ComputeName(IT, D);
660       }
661     llvm_unreachable("CapturedDecl not inside a function or method");
662   }
663   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(CurrentDecl)) {
664     SmallString<256> Name;
665     llvm::raw_svector_ostream Out(Name);
666     Out << (MD->isInstanceMethod() ? '-' : '+');
667     Out << '[';
668
669     // For incorrect code, there might not be an ObjCInterfaceDecl.  Do
670     // a null check to avoid a crash.
671     if (const ObjCInterfaceDecl *ID = MD->getClassInterface())
672       Out << *ID;
673
674     if (const ObjCCategoryImplDecl *CID =
675         dyn_cast<ObjCCategoryImplDecl>(MD->getDeclContext()))
676       Out << '(' << *CID << ')';
677
678     Out <<  ' ';
679     MD->getSelector().print(Out);
680     Out <<  ']';
681
682     return Name.str().str();
683   }
684   if (isa<TranslationUnitDecl>(CurrentDecl) && IT == PrettyFunction) {
685     // __PRETTY_FUNCTION__ -> "top level", the others produce an empty string.
686     return "top level";
687   }
688   return "";
689 }
690
691 void APNumericStorage::setIntValue(const ASTContext &C,
692                                    const llvm::APInt &Val) {
693   if (hasAllocation())
694     C.Deallocate(pVal);
695
696   BitWidth = Val.getBitWidth();
697   unsigned NumWords = Val.getNumWords();
698   const uint64_t* Words = Val.getRawData();
699   if (NumWords > 1) {
700     pVal = new (C) uint64_t[NumWords];
701     std::copy(Words, Words + NumWords, pVal);
702   } else if (NumWords == 1)
703     VAL = Words[0];
704   else
705     VAL = 0;
706 }
707
708 IntegerLiteral::IntegerLiteral(const ASTContext &C, const llvm::APInt &V,
709                                QualType type, SourceLocation l)
710   : Expr(IntegerLiteralClass, type, VK_RValue, OK_Ordinary, false, false,
711          false, false),
712     Loc(l) {
713   assert(type->isIntegerType() && "Illegal type in IntegerLiteral");
714   assert(V.getBitWidth() == C.getIntWidth(type) &&
715          "Integer type is not the correct size for constant.");
716   setValue(C, V);
717 }
718
719 IntegerLiteral *
720 IntegerLiteral::Create(const ASTContext &C, const llvm::APInt &V,
721                        QualType type, SourceLocation l) {
722   return new (C) IntegerLiteral(C, V, type, l);
723 }
724
725 IntegerLiteral *
726 IntegerLiteral::Create(const ASTContext &C, EmptyShell Empty) {
727   return new (C) IntegerLiteral(Empty);
728 }
729
730 FloatingLiteral::FloatingLiteral(const ASTContext &C, const llvm::APFloat &V,
731                                  bool isexact, QualType Type, SourceLocation L)
732   : Expr(FloatingLiteralClass, Type, VK_RValue, OK_Ordinary, false, false,
733          false, false), Loc(L) {
734   setSemantics(V.getSemantics());
735   FloatingLiteralBits.IsExact = isexact;
736   setValue(C, V);
737 }
738
739 FloatingLiteral::FloatingLiteral(const ASTContext &C, EmptyShell Empty)
740   : Expr(FloatingLiteralClass, Empty) {
741   setRawSemantics(IEEEhalf);
742   FloatingLiteralBits.IsExact = false;
743 }
744
745 FloatingLiteral *
746 FloatingLiteral::Create(const ASTContext &C, const llvm::APFloat &V,
747                         bool isexact, QualType Type, SourceLocation L) {
748   return new (C) FloatingLiteral(C, V, isexact, Type, L);
749 }
750
751 FloatingLiteral *
752 FloatingLiteral::Create(const ASTContext &C, EmptyShell Empty) {
753   return new (C) FloatingLiteral(C, Empty);
754 }
755
756 const llvm::fltSemantics &FloatingLiteral::getSemantics() const {
757   switch(FloatingLiteralBits.Semantics) {
758   case IEEEhalf:
759     return llvm::APFloat::IEEEhalf;
760   case IEEEsingle:
761     return llvm::APFloat::IEEEsingle;
762   case IEEEdouble:
763     return llvm::APFloat::IEEEdouble;
764   case x87DoubleExtended:
765     return llvm::APFloat::x87DoubleExtended;
766   case IEEEquad:
767     return llvm::APFloat::IEEEquad;
768   case PPCDoubleDouble:
769     return llvm::APFloat::PPCDoubleDouble;
770   }
771   llvm_unreachable("Unrecognised floating semantics");
772 }
773
774 void FloatingLiteral::setSemantics(const llvm::fltSemantics &Sem) {
775   if (&Sem == &llvm::APFloat::IEEEhalf)
776     FloatingLiteralBits.Semantics = IEEEhalf;
777   else if (&Sem == &llvm::APFloat::IEEEsingle)
778     FloatingLiteralBits.Semantics = IEEEsingle;
779   else if (&Sem == &llvm::APFloat::IEEEdouble)
780     FloatingLiteralBits.Semantics = IEEEdouble;
781   else if (&Sem == &llvm::APFloat::x87DoubleExtended)
782     FloatingLiteralBits.Semantics = x87DoubleExtended;
783   else if (&Sem == &llvm::APFloat::IEEEquad)
784     FloatingLiteralBits.Semantics = IEEEquad;
785   else if (&Sem == &llvm::APFloat::PPCDoubleDouble)
786     FloatingLiteralBits.Semantics = PPCDoubleDouble;
787   else
788     llvm_unreachable("Unknown floating semantics");
789 }
790
791 /// getValueAsApproximateDouble - This returns the value as an inaccurate
792 /// double.  Note that this may cause loss of precision, but is useful for
793 /// debugging dumps, etc.
794 double FloatingLiteral::getValueAsApproximateDouble() const {
795   llvm::APFloat V = getValue();
796   bool ignored;
797   V.convert(llvm::APFloat::IEEEdouble, llvm::APFloat::rmNearestTiesToEven,
798             &ignored);
799   return V.convertToDouble();
800 }
801
802 int StringLiteral::mapCharByteWidth(TargetInfo const &target,StringKind k) {
803   int CharByteWidth = 0;
804   switch(k) {
805     case Ascii:
806     case UTF8:
807       CharByteWidth = target.getCharWidth();
808       break;
809     case Wide:
810       CharByteWidth = target.getWCharWidth();
811       break;
812     case UTF16:
813       CharByteWidth = target.getChar16Width();
814       break;
815     case UTF32:
816       CharByteWidth = target.getChar32Width();
817       break;
818   }
819   assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
820   CharByteWidth /= 8;
821   assert((CharByteWidth==1 || CharByteWidth==2 || CharByteWidth==4)
822          && "character byte widths supported are 1, 2, and 4 only");
823   return CharByteWidth;
824 }
825
826 StringLiteral *StringLiteral::Create(const ASTContext &C, StringRef Str,
827                                      StringKind Kind, bool Pascal, QualType Ty,
828                                      const SourceLocation *Loc,
829                                      unsigned NumStrs) {
830   assert(C.getAsConstantArrayType(Ty) &&
831          "StringLiteral must be of constant array type!");
832
833   // Allocate enough space for the StringLiteral plus an array of locations for
834   // any concatenated string tokens.
835   void *Mem = C.Allocate(sizeof(StringLiteral)+
836                          sizeof(SourceLocation)*(NumStrs-1),
837                          llvm::alignOf<StringLiteral>());
838   StringLiteral *SL = new (Mem) StringLiteral(Ty);
839
840   // OPTIMIZE: could allocate this appended to the StringLiteral.
841   SL->setString(C,Str,Kind,Pascal);
842
843   SL->TokLocs[0] = Loc[0];
844   SL->NumConcatenated = NumStrs;
845
846   if (NumStrs != 1)
847     memcpy(&SL->TokLocs[1], Loc+1, sizeof(SourceLocation)*(NumStrs-1));
848   return SL;
849 }
850
851 StringLiteral *StringLiteral::CreateEmpty(const ASTContext &C,
852                                           unsigned NumStrs) {
853   void *Mem = C.Allocate(sizeof(StringLiteral)+
854                          sizeof(SourceLocation)*(NumStrs-1),
855                          llvm::alignOf<StringLiteral>());
856   StringLiteral *SL = new (Mem) StringLiteral(QualType());
857   SL->CharByteWidth = 0;
858   SL->Length = 0;
859   SL->NumConcatenated = NumStrs;
860   return SL;
861 }
862
863 void StringLiteral::outputString(raw_ostream &OS) const {
864   switch (getKind()) {
865   case Ascii: break; // no prefix.
866   case Wide:  OS << 'L'; break;
867   case UTF8:  OS << "u8"; break;
868   case UTF16: OS << 'u'; break;
869   case UTF32: OS << 'U'; break;
870   }
871   OS << '"';
872   static const char Hex[] = "0123456789ABCDEF";
873
874   unsigned LastSlashX = getLength();
875   for (unsigned I = 0, N = getLength(); I != N; ++I) {
876     switch (uint32_t Char = getCodeUnit(I)) {
877     default:
878       // FIXME: Convert UTF-8 back to codepoints before rendering.
879
880       // Convert UTF-16 surrogate pairs back to codepoints before rendering.
881       // Leave invalid surrogates alone; we'll use \x for those.
882       if (getKind() == UTF16 && I != N - 1 && Char >= 0xd800 && 
883           Char <= 0xdbff) {
884         uint32_t Trail = getCodeUnit(I + 1);
885         if (Trail >= 0xdc00 && Trail <= 0xdfff) {
886           Char = 0x10000 + ((Char - 0xd800) << 10) + (Trail - 0xdc00);
887           ++I;
888         }
889       }
890
891       if (Char > 0xff) {
892         // If this is a wide string, output characters over 0xff using \x
893         // escapes. Otherwise, this is a UTF-16 or UTF-32 string, and Char is a
894         // codepoint: use \x escapes for invalid codepoints.
895         if (getKind() == Wide ||
896             (Char >= 0xd800 && Char <= 0xdfff) || Char >= 0x110000) {
897           // FIXME: Is this the best way to print wchar_t?
898           OS << "\\x";
899           int Shift = 28;
900           while ((Char >> Shift) == 0)
901             Shift -= 4;
902           for (/**/; Shift >= 0; Shift -= 4)
903             OS << Hex[(Char >> Shift) & 15];
904           LastSlashX = I;
905           break;
906         }
907
908         if (Char > 0xffff)
909           OS << "\\U00"
910              << Hex[(Char >> 20) & 15]
911              << Hex[(Char >> 16) & 15];
912         else
913           OS << "\\u";
914         OS << Hex[(Char >> 12) & 15]
915            << Hex[(Char >>  8) & 15]
916            << Hex[(Char >>  4) & 15]
917            << Hex[(Char >>  0) & 15];
918         break;
919       }
920
921       // If we used \x... for the previous character, and this character is a
922       // hexadecimal digit, prevent it being slurped as part of the \x.
923       if (LastSlashX + 1 == I) {
924         switch (Char) {
925           case '0': case '1': case '2': case '3': case '4':
926           case '5': case '6': case '7': case '8': case '9':
927           case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
928           case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
929             OS << "\"\"";
930         }
931       }
932
933       assert(Char <= 0xff &&
934              "Characters above 0xff should already have been handled.");
935
936       if (isPrintable(Char))
937         OS << (char)Char;
938       else  // Output anything hard as an octal escape.
939         OS << '\\'
940            << (char)('0' + ((Char >> 6) & 7))
941            << (char)('0' + ((Char >> 3) & 7))
942            << (char)('0' + ((Char >> 0) & 7));
943       break;
944     // Handle some common non-printable cases to make dumps prettier.
945     case '\\': OS << "\\\\"; break;
946     case '"': OS << "\\\""; break;
947     case '\n': OS << "\\n"; break;
948     case '\t': OS << "\\t"; break;
949     case '\a': OS << "\\a"; break;
950     case '\b': OS << "\\b"; break;
951     }
952   }
953   OS << '"';
954 }
955
956 void StringLiteral::setString(const ASTContext &C, StringRef Str,
957                               StringKind Kind, bool IsPascal) {
958   //FIXME: we assume that the string data comes from a target that uses the same
959   // code unit size and endianess for the type of string.
960   this->Kind = Kind;
961   this->IsPascal = IsPascal;
962   
963   CharByteWidth = mapCharByteWidth(C.getTargetInfo(),Kind);
964   assert((Str.size()%CharByteWidth == 0)
965          && "size of data must be multiple of CharByteWidth");
966   Length = Str.size()/CharByteWidth;
967
968   switch(CharByteWidth) {
969     case 1: {
970       char *AStrData = new (C) char[Length];
971       std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
972       StrData.asChar = AStrData;
973       break;
974     }
975     case 2: {
976       uint16_t *AStrData = new (C) uint16_t[Length];
977       std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
978       StrData.asUInt16 = AStrData;
979       break;
980     }
981     case 4: {
982       uint32_t *AStrData = new (C) uint32_t[Length];
983       std::memcpy(AStrData,Str.data(),Length*sizeof(*AStrData));
984       StrData.asUInt32 = AStrData;
985       break;
986     }
987     default:
988       llvm_unreachable("unsupported CharByteWidth");
989   }
990 }
991
992 /// getLocationOfByte - Return a source location that points to the specified
993 /// byte of this string literal.
994 ///
995 /// Strings are amazingly complex.  They can be formed from multiple tokens and
996 /// can have escape sequences in them in addition to the usual trigraph and
997 /// escaped newline business.  This routine handles this complexity.
998 ///
999 /// The *StartToken sets the first token to be searched in this function and
1000 /// the *StartTokenByteOffset is the byte offset of the first token. Before
1001 /// returning, it updates the *StartToken to the TokNo of the token being found
1002 /// and sets *StartTokenByteOffset to the byte offset of the token in the
1003 /// string.
1004 /// Using these two parameters can reduce the time complexity from O(n^2) to
1005 /// O(n) if one wants to get the location of byte for all the tokens in a
1006 /// string.
1007 ///
1008 SourceLocation
1009 StringLiteral::getLocationOfByte(unsigned ByteNo, const SourceManager &SM,
1010                                  const LangOptions &Features,
1011                                  const TargetInfo &Target, unsigned *StartToken,
1012                                  unsigned *StartTokenByteOffset) const {
1013   assert((Kind == StringLiteral::Ascii || Kind == StringLiteral::UTF8) &&
1014          "Only narrow string literals are currently supported");
1015
1016   // Loop over all of the tokens in this string until we find the one that
1017   // contains the byte we're looking for.
1018   unsigned TokNo = 0;
1019   unsigned StringOffset = 0;
1020   if (StartToken)
1021     TokNo = *StartToken;
1022   if (StartTokenByteOffset) {
1023     StringOffset = *StartTokenByteOffset;
1024     ByteNo -= StringOffset;
1025   }
1026   while (1) {
1027     assert(TokNo < getNumConcatenated() && "Invalid byte number!");
1028     SourceLocation StrTokLoc = getStrTokenLoc(TokNo);
1029     
1030     // Get the spelling of the string so that we can get the data that makes up
1031     // the string literal, not the identifier for the macro it is potentially
1032     // expanded through.
1033     SourceLocation StrTokSpellingLoc = SM.getSpellingLoc(StrTokLoc);
1034
1035     // Re-lex the token to get its length and original spelling.
1036     std::pair<FileID, unsigned> LocInfo =
1037         SM.getDecomposedLoc(StrTokSpellingLoc);
1038     bool Invalid = false;
1039     StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
1040     if (Invalid) {
1041       if (StartTokenByteOffset != nullptr)
1042         *StartTokenByteOffset = StringOffset;
1043       if (StartToken != nullptr)
1044         *StartToken = TokNo;
1045       return StrTokSpellingLoc;
1046     }
1047
1048     const char *StrData = Buffer.data()+LocInfo.second;
1049     
1050     // Create a lexer starting at the beginning of this token.
1051     Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), Features,
1052                    Buffer.begin(), StrData, Buffer.end());
1053     Token TheTok;
1054     TheLexer.LexFromRawLexer(TheTok);
1055     
1056     // Use the StringLiteralParser to compute the length of the string in bytes.
1057     StringLiteralParser SLP(TheTok, SM, Features, Target);
1058     unsigned TokNumBytes = SLP.GetStringLength();
1059     
1060     // If the byte is in this token, return the location of the byte.
1061     if (ByteNo < TokNumBytes ||
1062         (ByteNo == TokNumBytes && TokNo == getNumConcatenated() - 1)) {
1063       unsigned Offset = SLP.getOffsetOfStringByte(TheTok, ByteNo);
1064
1065       // Now that we know the offset of the token in the spelling, use the
1066       // preprocessor to get the offset in the original source.
1067       if (StartTokenByteOffset != nullptr)
1068         *StartTokenByteOffset = StringOffset;
1069       if (StartToken != nullptr)
1070         *StartToken = TokNo;
1071       return Lexer::AdvanceToTokenCharacter(StrTokLoc, Offset, SM, Features);
1072     }
1073
1074     // Move to the next string token.
1075     StringOffset += TokNumBytes;
1076     ++TokNo;
1077     ByteNo -= TokNumBytes;
1078   }
1079 }
1080
1081
1082
1083 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1084 /// corresponds to, e.g. "sizeof" or "[pre]++".
1085 StringRef UnaryOperator::getOpcodeStr(Opcode Op) {
1086   switch (Op) {
1087 #define UNARY_OPERATION(Name, Spelling) case UO_##Name: return Spelling;
1088 #include "clang/AST/OperationKinds.def"
1089   }
1090   llvm_unreachable("Unknown unary operator");
1091 }
1092
1093 UnaryOperatorKind
1094 UnaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO, bool Postfix) {
1095   switch (OO) {
1096   default: llvm_unreachable("No unary operator for overloaded function");
1097   case OO_PlusPlus:   return Postfix ? UO_PostInc : UO_PreInc;
1098   case OO_MinusMinus: return Postfix ? UO_PostDec : UO_PreDec;
1099   case OO_Amp:        return UO_AddrOf;
1100   case OO_Star:       return UO_Deref;
1101   case OO_Plus:       return UO_Plus;
1102   case OO_Minus:      return UO_Minus;
1103   case OO_Tilde:      return UO_Not;
1104   case OO_Exclaim:    return UO_LNot;
1105   case OO_Coawait:    return UO_Coawait;
1106   }
1107 }
1108
1109 OverloadedOperatorKind UnaryOperator::getOverloadedOperator(Opcode Opc) {
1110   switch (Opc) {
1111   case UO_PostInc: case UO_PreInc: return OO_PlusPlus;
1112   case UO_PostDec: case UO_PreDec: return OO_MinusMinus;
1113   case UO_AddrOf: return OO_Amp;
1114   case UO_Deref: return OO_Star;
1115   case UO_Plus: return OO_Plus;
1116   case UO_Minus: return OO_Minus;
1117   case UO_Not: return OO_Tilde;
1118   case UO_LNot: return OO_Exclaim;
1119   case UO_Coawait: return OO_Coawait;
1120   default: return OO_None;
1121   }
1122 }
1123
1124
1125 //===----------------------------------------------------------------------===//
1126 // Postfix Operators.
1127 //===----------------------------------------------------------------------===//
1128
1129 CallExpr::CallExpr(const ASTContext &C, StmtClass SC, Expr *fn,
1130                    ArrayRef<Expr *> preargs, ArrayRef<Expr *> args, QualType t,
1131                    ExprValueKind VK, SourceLocation rparenloc)
1132     : Expr(SC, t, VK, OK_Ordinary, fn->isTypeDependent(),
1133            fn->isValueDependent(), fn->isInstantiationDependent(),
1134            fn->containsUnexpandedParameterPack()),
1135       NumArgs(args.size()) {
1136
1137   unsigned NumPreArgs = preargs.size();
1138   SubExprs = new (C) Stmt *[args.size()+PREARGS_START+NumPreArgs];
1139   SubExprs[FN] = fn;
1140   for (unsigned i = 0; i != NumPreArgs; ++i) {
1141     updateDependenciesFromArg(preargs[i]);
1142     SubExprs[i+PREARGS_START] = preargs[i];
1143   }
1144   for (unsigned i = 0; i != args.size(); ++i) {
1145     updateDependenciesFromArg(args[i]);
1146     SubExprs[i+PREARGS_START+NumPreArgs] = args[i];
1147   }
1148
1149   CallExprBits.NumPreArgs = NumPreArgs;
1150   RParenLoc = rparenloc;
1151 }
1152
1153 CallExpr::CallExpr(const ASTContext &C, StmtClass SC, Expr *fn,
1154                    ArrayRef<Expr *> args, QualType t, ExprValueKind VK,
1155                    SourceLocation rparenloc)
1156     : CallExpr(C, SC, fn, ArrayRef<Expr *>(), args, t, VK, rparenloc) {}
1157
1158 CallExpr::CallExpr(const ASTContext &C, Expr *fn, ArrayRef<Expr *> args,
1159                    QualType t, ExprValueKind VK, SourceLocation rparenloc)
1160     : CallExpr(C, CallExprClass, fn, ArrayRef<Expr *>(), args, t, VK, rparenloc) {
1161 }
1162
1163 CallExpr::CallExpr(const ASTContext &C, StmtClass SC, EmptyShell Empty)
1164     : CallExpr(C, SC, /*NumPreArgs=*/0, Empty) {}
1165
1166 CallExpr::CallExpr(const ASTContext &C, StmtClass SC, unsigned NumPreArgs,
1167                    EmptyShell Empty)
1168   : Expr(SC, Empty), SubExprs(nullptr), NumArgs(0) {
1169   // FIXME: Why do we allocate this?
1170   SubExprs = new (C) Stmt*[PREARGS_START+NumPreArgs]();
1171   CallExprBits.NumPreArgs = NumPreArgs;
1172 }
1173
1174 void CallExpr::updateDependenciesFromArg(Expr *Arg) {
1175   if (Arg->isTypeDependent())
1176     ExprBits.TypeDependent = true;
1177   if (Arg->isValueDependent())
1178     ExprBits.ValueDependent = true;
1179   if (Arg->isInstantiationDependent())
1180     ExprBits.InstantiationDependent = true;
1181   if (Arg->containsUnexpandedParameterPack())
1182     ExprBits.ContainsUnexpandedParameterPack = true;
1183 }
1184
1185 Decl *CallExpr::getCalleeDecl() {
1186   Expr *CEE = getCallee()->IgnoreParenImpCasts();
1187     
1188   while (SubstNonTypeTemplateParmExpr *NTTP
1189                                 = dyn_cast<SubstNonTypeTemplateParmExpr>(CEE)) {
1190     CEE = NTTP->getReplacement()->IgnoreParenCasts();
1191   }
1192   
1193   // If we're calling a dereference, look at the pointer instead.
1194   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CEE)) {
1195     if (BO->isPtrMemOp())
1196       CEE = BO->getRHS()->IgnoreParenCasts();
1197   } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(CEE)) {
1198     if (UO->getOpcode() == UO_Deref)
1199       CEE = UO->getSubExpr()->IgnoreParenCasts();
1200   }
1201   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE))
1202     return DRE->getDecl();
1203   if (MemberExpr *ME = dyn_cast<MemberExpr>(CEE))
1204     return ME->getMemberDecl();
1205
1206   return nullptr;
1207 }
1208
1209 FunctionDecl *CallExpr::getDirectCallee() {
1210   return dyn_cast_or_null<FunctionDecl>(getCalleeDecl());
1211 }
1212
1213 /// setNumArgs - This changes the number of arguments present in this call.
1214 /// Any orphaned expressions are deleted by this, and any new operands are set
1215 /// to null.
1216 void CallExpr::setNumArgs(const ASTContext& C, unsigned NumArgs) {
1217   // No change, just return.
1218   if (NumArgs == getNumArgs()) return;
1219
1220   // If shrinking # arguments, just delete the extras and forgot them.
1221   if (NumArgs < getNumArgs()) {
1222     this->NumArgs = NumArgs;
1223     return;
1224   }
1225
1226   // Otherwise, we are growing the # arguments.  New an bigger argument array.
1227   unsigned NumPreArgs = getNumPreArgs();
1228   Stmt **NewSubExprs = new (C) Stmt*[NumArgs+PREARGS_START+NumPreArgs];
1229   // Copy over args.
1230   for (unsigned i = 0; i != getNumArgs()+PREARGS_START+NumPreArgs; ++i)
1231     NewSubExprs[i] = SubExprs[i];
1232   // Null out new args.
1233   for (unsigned i = getNumArgs()+PREARGS_START+NumPreArgs;
1234        i != NumArgs+PREARGS_START+NumPreArgs; ++i)
1235     NewSubExprs[i] = nullptr;
1236
1237   if (SubExprs) C.Deallocate(SubExprs);
1238   SubExprs = NewSubExprs;
1239   this->NumArgs = NumArgs;
1240 }
1241
1242 /// getBuiltinCallee - If this is a call to a builtin, return the builtin ID. If
1243 /// not, return 0.
1244 unsigned CallExpr::getBuiltinCallee() const {
1245   // All simple function calls (e.g. func()) are implicitly cast to pointer to
1246   // function. As a result, we try and obtain the DeclRefExpr from the
1247   // ImplicitCastExpr.
1248   const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(getCallee());
1249   if (!ICE) // FIXME: deal with more complex calls (e.g. (func)(), (*func)()).
1250     return 0;
1251
1252   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
1253   if (!DRE)
1254     return 0;
1255
1256   const FunctionDecl *FDecl = dyn_cast<FunctionDecl>(DRE->getDecl());
1257   if (!FDecl)
1258     return 0;
1259
1260   if (!FDecl->getIdentifier())
1261     return 0;
1262
1263   return FDecl->getBuiltinID();
1264 }
1265
1266 bool CallExpr::isUnevaluatedBuiltinCall(const ASTContext &Ctx) const {
1267   if (unsigned BI = getBuiltinCallee())
1268     return Ctx.BuiltinInfo.isUnevaluated(BI);
1269   return false;
1270 }
1271
1272 QualType CallExpr::getCallReturnType(const ASTContext &Ctx) const {
1273   const Expr *Callee = getCallee();
1274   QualType CalleeType = Callee->getType();
1275   if (const auto *FnTypePtr = CalleeType->getAs<PointerType>()) {
1276     CalleeType = FnTypePtr->getPointeeType();
1277   } else if (const auto *BPT = CalleeType->getAs<BlockPointerType>()) {
1278     CalleeType = BPT->getPointeeType();
1279   } else if (CalleeType->isSpecificPlaceholderType(BuiltinType::BoundMember)) {
1280     if (isa<CXXPseudoDestructorExpr>(Callee->IgnoreParens()))
1281       return Ctx.VoidTy;
1282
1283     // This should never be overloaded and so should never return null.
1284     CalleeType = Expr::findBoundMemberType(Callee);
1285   }
1286
1287   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
1288   return FnType->getReturnType();
1289 }
1290
1291 SourceLocation CallExpr::getLocStart() const {
1292   if (isa<CXXOperatorCallExpr>(this))
1293     return cast<CXXOperatorCallExpr>(this)->getLocStart();
1294
1295   SourceLocation begin = getCallee()->getLocStart();
1296   if (begin.isInvalid() && getNumArgs() > 0 && getArg(0))
1297     begin = getArg(0)->getLocStart();
1298   return begin;
1299 }
1300 SourceLocation CallExpr::getLocEnd() const {
1301   if (isa<CXXOperatorCallExpr>(this))
1302     return cast<CXXOperatorCallExpr>(this)->getLocEnd();
1303
1304   SourceLocation end = getRParenLoc();
1305   if (end.isInvalid() && getNumArgs() > 0 && getArg(getNumArgs() - 1))
1306     end = getArg(getNumArgs() - 1)->getLocEnd();
1307   return end;
1308 }
1309
1310 OffsetOfExpr *OffsetOfExpr::Create(const ASTContext &C, QualType type,
1311                                    SourceLocation OperatorLoc,
1312                                    TypeSourceInfo *tsi, 
1313                                    ArrayRef<OffsetOfNode> comps,
1314                                    ArrayRef<Expr*> exprs,
1315                                    SourceLocation RParenLoc) {
1316   void *Mem = C.Allocate(
1317       totalSizeToAlloc<OffsetOfNode, Expr *>(comps.size(), exprs.size()));
1318
1319   return new (Mem) OffsetOfExpr(C, type, OperatorLoc, tsi, comps, exprs,
1320                                 RParenLoc);
1321 }
1322
1323 OffsetOfExpr *OffsetOfExpr::CreateEmpty(const ASTContext &C,
1324                                         unsigned numComps, unsigned numExprs) {
1325   void *Mem =
1326       C.Allocate(totalSizeToAlloc<OffsetOfNode, Expr *>(numComps, numExprs));
1327   return new (Mem) OffsetOfExpr(numComps, numExprs);
1328 }
1329
1330 OffsetOfExpr::OffsetOfExpr(const ASTContext &C, QualType type,
1331                            SourceLocation OperatorLoc, TypeSourceInfo *tsi,
1332                            ArrayRef<OffsetOfNode> comps, ArrayRef<Expr*> exprs,
1333                            SourceLocation RParenLoc)
1334   : Expr(OffsetOfExprClass, type, VK_RValue, OK_Ordinary,
1335          /*TypeDependent=*/false, 
1336          /*ValueDependent=*/tsi->getType()->isDependentType(),
1337          tsi->getType()->isInstantiationDependentType(),
1338          tsi->getType()->containsUnexpandedParameterPack()),
1339     OperatorLoc(OperatorLoc), RParenLoc(RParenLoc), TSInfo(tsi), 
1340     NumComps(comps.size()), NumExprs(exprs.size())
1341 {
1342   for (unsigned i = 0; i != comps.size(); ++i) {
1343     setComponent(i, comps[i]);
1344   }
1345   
1346   for (unsigned i = 0; i != exprs.size(); ++i) {
1347     if (exprs[i]->isTypeDependent() || exprs[i]->isValueDependent())
1348       ExprBits.ValueDependent = true;
1349     if (exprs[i]->containsUnexpandedParameterPack())
1350       ExprBits.ContainsUnexpandedParameterPack = true;
1351
1352     setIndexExpr(i, exprs[i]);
1353   }
1354 }
1355
1356 IdentifierInfo *OffsetOfNode::getFieldName() const {
1357   assert(getKind() == Field || getKind() == Identifier);
1358   if (getKind() == Field)
1359     return getField()->getIdentifier();
1360   
1361   return reinterpret_cast<IdentifierInfo *> (Data & ~(uintptr_t)Mask);
1362 }
1363
1364 UnaryExprOrTypeTraitExpr::UnaryExprOrTypeTraitExpr(
1365     UnaryExprOrTypeTrait ExprKind, Expr *E, QualType resultType,
1366     SourceLocation op, SourceLocation rp)
1367     : Expr(UnaryExprOrTypeTraitExprClass, resultType, VK_RValue, OK_Ordinary,
1368            false, // Never type-dependent (C++ [temp.dep.expr]p3).
1369            // Value-dependent if the argument is type-dependent.
1370            E->isTypeDependent(), E->isInstantiationDependent(),
1371            E->containsUnexpandedParameterPack()),
1372       OpLoc(op), RParenLoc(rp) {
1373   UnaryExprOrTypeTraitExprBits.Kind = ExprKind;
1374   UnaryExprOrTypeTraitExprBits.IsType = false;
1375   Argument.Ex = E;
1376
1377   // Check to see if we are in the situation where alignof(decl) should be
1378   // dependent because decl's alignment is dependent.
1379   if (ExprKind == UETT_AlignOf) {
1380     if (!isValueDependent() || !isInstantiationDependent()) {
1381       E = E->IgnoreParens();
1382
1383       const ValueDecl *D = nullptr;
1384       if (const auto *DRE = dyn_cast<DeclRefExpr>(E))
1385         D = DRE->getDecl();
1386       else if (const auto *ME = dyn_cast<MemberExpr>(E))
1387         D = ME->getMemberDecl();
1388
1389       if (D) {
1390         for (const auto *I : D->specific_attrs<AlignedAttr>()) {
1391           if (I->isAlignmentDependent()) {
1392             setValueDependent(true);
1393             setInstantiationDependent(true);
1394             break;
1395           }
1396         }
1397       }
1398     }
1399   }
1400 }
1401
1402 MemberExpr *MemberExpr::Create(
1403     const ASTContext &C, Expr *base, bool isarrow, SourceLocation OperatorLoc,
1404     NestedNameSpecifierLoc QualifierLoc, SourceLocation TemplateKWLoc,
1405     ValueDecl *memberdecl, DeclAccessPair founddecl,
1406     DeclarationNameInfo nameinfo, const TemplateArgumentListInfo *targs,
1407     QualType ty, ExprValueKind vk, ExprObjectKind ok) {
1408
1409   bool hasQualOrFound = (QualifierLoc ||
1410                          founddecl.getDecl() != memberdecl ||
1411                          founddecl.getAccess() != memberdecl->getAccess());
1412
1413   bool HasTemplateKWAndArgsInfo = targs || TemplateKWLoc.isValid();
1414   std::size_t Size =
1415       totalSizeToAlloc<MemberExprNameQualifier, ASTTemplateKWAndArgsInfo,
1416                        TemplateArgumentLoc>(hasQualOrFound ? 1 : 0,
1417                                             HasTemplateKWAndArgsInfo ? 1 : 0,
1418                                             targs ? targs->size() : 0);
1419
1420   void *Mem = C.Allocate(Size, llvm::alignOf<MemberExpr>());
1421   MemberExpr *E = new (Mem)
1422       MemberExpr(base, isarrow, OperatorLoc, memberdecl, nameinfo, ty, vk, ok);
1423
1424   if (hasQualOrFound) {
1425     // FIXME: Wrong. We should be looking at the member declaration we found.
1426     if (QualifierLoc && QualifierLoc.getNestedNameSpecifier()->isDependent()) {
1427       E->setValueDependent(true);
1428       E->setTypeDependent(true);
1429       E->setInstantiationDependent(true);
1430     } 
1431     else if (QualifierLoc && 
1432              QualifierLoc.getNestedNameSpecifier()->isInstantiationDependent()) 
1433       E->setInstantiationDependent(true);
1434     
1435     E->HasQualifierOrFoundDecl = true;
1436
1437     MemberExprNameQualifier *NQ =
1438         E->getTrailingObjects<MemberExprNameQualifier>();
1439     NQ->QualifierLoc = QualifierLoc;
1440     NQ->FoundDecl = founddecl;
1441   }
1442
1443   E->HasTemplateKWAndArgsInfo = (targs || TemplateKWLoc.isValid());
1444
1445   if (targs) {
1446     bool Dependent = false;
1447     bool InstantiationDependent = false;
1448     bool ContainsUnexpandedParameterPack = false;
1449     E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1450         TemplateKWLoc, *targs, E->getTrailingObjects<TemplateArgumentLoc>(),
1451         Dependent, InstantiationDependent, ContainsUnexpandedParameterPack);
1452     if (InstantiationDependent)
1453       E->setInstantiationDependent(true);
1454   } else if (TemplateKWLoc.isValid()) {
1455     E->getTrailingObjects<ASTTemplateKWAndArgsInfo>()->initializeFrom(
1456         TemplateKWLoc);
1457   }
1458
1459   return E;
1460 }
1461
1462 SourceLocation MemberExpr::getLocStart() const {
1463   if (isImplicitAccess()) {
1464     if (hasQualifier())
1465       return getQualifierLoc().getBeginLoc();
1466     return MemberLoc;
1467   }
1468
1469   // FIXME: We don't want this to happen. Rather, we should be able to
1470   // detect all kinds of implicit accesses more cleanly.
1471   SourceLocation BaseStartLoc = getBase()->getLocStart();
1472   if (BaseStartLoc.isValid())
1473     return BaseStartLoc;
1474   return MemberLoc;
1475 }
1476 SourceLocation MemberExpr::getLocEnd() const {
1477   SourceLocation EndLoc = getMemberNameInfo().getEndLoc();
1478   if (hasExplicitTemplateArgs())
1479     EndLoc = getRAngleLoc();
1480   else if (EndLoc.isInvalid())
1481     EndLoc = getBase()->getLocEnd();
1482   return EndLoc;
1483 }
1484
1485 bool CastExpr::CastConsistency() const {
1486   switch (getCastKind()) {
1487   case CK_DerivedToBase:
1488   case CK_UncheckedDerivedToBase:
1489   case CK_DerivedToBaseMemberPointer:
1490   case CK_BaseToDerived:
1491   case CK_BaseToDerivedMemberPointer:
1492     assert(!path_empty() && "Cast kind should have a base path!");
1493     break;
1494
1495   case CK_CPointerToObjCPointerCast:
1496     assert(getType()->isObjCObjectPointerType());
1497     assert(getSubExpr()->getType()->isPointerType());
1498     goto CheckNoBasePath;
1499
1500   case CK_BlockPointerToObjCPointerCast:
1501     assert(getType()->isObjCObjectPointerType());
1502     assert(getSubExpr()->getType()->isBlockPointerType());
1503     goto CheckNoBasePath;
1504
1505   case CK_ReinterpretMemberPointer:
1506     assert(getType()->isMemberPointerType());
1507     assert(getSubExpr()->getType()->isMemberPointerType());
1508     goto CheckNoBasePath;
1509
1510   case CK_BitCast:
1511     // Arbitrary casts to C pointer types count as bitcasts.
1512     // Otherwise, we should only have block and ObjC pointer casts
1513     // here if they stay within the type kind.
1514     if (!getType()->isPointerType()) {
1515       assert(getType()->isObjCObjectPointerType() == 
1516              getSubExpr()->getType()->isObjCObjectPointerType());
1517       assert(getType()->isBlockPointerType() == 
1518              getSubExpr()->getType()->isBlockPointerType());
1519     }
1520     goto CheckNoBasePath;
1521
1522   case CK_AnyPointerToBlockPointerCast:
1523     assert(getType()->isBlockPointerType());
1524     assert(getSubExpr()->getType()->isAnyPointerType() &&
1525            !getSubExpr()->getType()->isBlockPointerType());
1526     goto CheckNoBasePath;
1527
1528   case CK_CopyAndAutoreleaseBlockObject:
1529     assert(getType()->isBlockPointerType());
1530     assert(getSubExpr()->getType()->isBlockPointerType());
1531     goto CheckNoBasePath;
1532
1533   case CK_FunctionToPointerDecay:
1534     assert(getType()->isPointerType());
1535     assert(getSubExpr()->getType()->isFunctionType());
1536     goto CheckNoBasePath;
1537
1538   case CK_AddressSpaceConversion:
1539     assert(getType()->isPointerType());
1540     assert(getSubExpr()->getType()->isPointerType());
1541     assert(getType()->getPointeeType().getAddressSpace() !=
1542            getSubExpr()->getType()->getPointeeType().getAddressSpace());
1543   // These should not have an inheritance path.
1544   case CK_Dynamic:
1545   case CK_ToUnion:
1546   case CK_ArrayToPointerDecay:
1547   case CK_NullToMemberPointer:
1548   case CK_NullToPointer:
1549   case CK_ConstructorConversion:
1550   case CK_IntegralToPointer:
1551   case CK_PointerToIntegral:
1552   case CK_ToVoid:
1553   case CK_VectorSplat:
1554   case CK_IntegralCast:
1555   case CK_BooleanToSignedIntegral:
1556   case CK_IntegralToFloating:
1557   case CK_FloatingToIntegral:
1558   case CK_FloatingCast:
1559   case CK_ObjCObjectLValueCast:
1560   case CK_FloatingRealToComplex:
1561   case CK_FloatingComplexToReal:
1562   case CK_FloatingComplexCast:
1563   case CK_FloatingComplexToIntegralComplex:
1564   case CK_IntegralRealToComplex:
1565   case CK_IntegralComplexToReal:
1566   case CK_IntegralComplexCast:
1567   case CK_IntegralComplexToFloatingComplex:
1568   case CK_ARCProduceObject:
1569   case CK_ARCConsumeObject:
1570   case CK_ARCReclaimReturnedObject:
1571   case CK_ARCExtendBlockObject:
1572   case CK_ZeroToOCLEvent:
1573     assert(!getType()->isBooleanType() && "unheralded conversion to bool");
1574     goto CheckNoBasePath;
1575
1576   case CK_Dependent:
1577   case CK_LValueToRValue:
1578   case CK_NoOp:
1579   case CK_AtomicToNonAtomic:
1580   case CK_NonAtomicToAtomic:
1581   case CK_PointerToBoolean:
1582   case CK_IntegralToBoolean:
1583   case CK_FloatingToBoolean:
1584   case CK_MemberPointerToBoolean:
1585   case CK_FloatingComplexToBoolean:
1586   case CK_IntegralComplexToBoolean:
1587   case CK_LValueBitCast:            // -> bool&
1588   case CK_UserDefinedConversion:    // operator bool()
1589   case CK_BuiltinFnToFnPtr:
1590   CheckNoBasePath:
1591     assert(path_empty() && "Cast kind should not have a base path!");
1592     break;
1593   }
1594   return true;
1595 }
1596
1597 const char *CastExpr::getCastKindName() const {
1598   switch (getCastKind()) {
1599 #define CAST_OPERATION(Name) case CK_##Name: return #Name;
1600 #include "clang/AST/OperationKinds.def"
1601   }
1602   llvm_unreachable("Unhandled cast kind!");
1603 }
1604
1605 Expr *CastExpr::getSubExprAsWritten() {
1606   Expr *SubExpr = nullptr;
1607   CastExpr *E = this;
1608   do {
1609     SubExpr = E->getSubExpr();
1610
1611     // Skip through reference binding to temporary.
1612     if (MaterializeTemporaryExpr *Materialize 
1613                                   = dyn_cast<MaterializeTemporaryExpr>(SubExpr))
1614       SubExpr = Materialize->GetTemporaryExpr();
1615         
1616     // Skip any temporary bindings; they're implicit.
1617     if (CXXBindTemporaryExpr *Binder = dyn_cast<CXXBindTemporaryExpr>(SubExpr))
1618       SubExpr = Binder->getSubExpr();
1619     
1620     // Conversions by constructor and conversion functions have a
1621     // subexpression describing the call; strip it off.
1622     if (E->getCastKind() == CK_ConstructorConversion)
1623       SubExpr = cast<CXXConstructExpr>(SubExpr)->getArg(0);
1624     else if (E->getCastKind() == CK_UserDefinedConversion) {
1625       assert((isa<CXXMemberCallExpr>(SubExpr) ||
1626               isa<BlockExpr>(SubExpr)) &&
1627              "Unexpected SubExpr for CK_UserDefinedConversion.");
1628       if (isa<CXXMemberCallExpr>(SubExpr))
1629         SubExpr = cast<CXXMemberCallExpr>(SubExpr)->getImplicitObjectArgument();
1630     }
1631     
1632     // If the subexpression we're left with is an implicit cast, look
1633     // through that, too.
1634   } while ((E = dyn_cast<ImplicitCastExpr>(SubExpr)));  
1635   
1636   return SubExpr;
1637 }
1638
1639 CXXBaseSpecifier **CastExpr::path_buffer() {
1640   switch (getStmtClass()) {
1641 #define ABSTRACT_STMT(x)
1642 #define CASTEXPR(Type, Base)                                                   \
1643   case Stmt::Type##Class:                                                      \
1644     return static_cast<Type *>(this)->getTrailingObjects<CXXBaseSpecifier *>();
1645 #define STMT(Type, Base)
1646 #include "clang/AST/StmtNodes.inc"
1647   default:
1648     llvm_unreachable("non-cast expressions not possible here");
1649   }
1650 }
1651
1652 ImplicitCastExpr *ImplicitCastExpr::Create(const ASTContext &C, QualType T,
1653                                            CastKind Kind, Expr *Operand,
1654                                            const CXXCastPath *BasePath,
1655                                            ExprValueKind VK) {
1656   unsigned PathSize = (BasePath ? BasePath->size() : 0);
1657   void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
1658   ImplicitCastExpr *E =
1659     new (Buffer) ImplicitCastExpr(T, Kind, Operand, PathSize, VK);
1660   if (PathSize)
1661     std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
1662                               E->getTrailingObjects<CXXBaseSpecifier *>());
1663   return E;
1664 }
1665
1666 ImplicitCastExpr *ImplicitCastExpr::CreateEmpty(const ASTContext &C,
1667                                                 unsigned PathSize) {
1668   void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
1669   return new (Buffer) ImplicitCastExpr(EmptyShell(), PathSize);
1670 }
1671
1672
1673 CStyleCastExpr *CStyleCastExpr::Create(const ASTContext &C, QualType T,
1674                                        ExprValueKind VK, CastKind K, Expr *Op,
1675                                        const CXXCastPath *BasePath,
1676                                        TypeSourceInfo *WrittenTy,
1677                                        SourceLocation L, SourceLocation R) {
1678   unsigned PathSize = (BasePath ? BasePath->size() : 0);
1679   void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
1680   CStyleCastExpr *E =
1681     new (Buffer) CStyleCastExpr(T, VK, K, Op, PathSize, WrittenTy, L, R);
1682   if (PathSize)
1683     std::uninitialized_copy_n(BasePath->data(), BasePath->size(),
1684                               E->getTrailingObjects<CXXBaseSpecifier *>());
1685   return E;
1686 }
1687
1688 CStyleCastExpr *CStyleCastExpr::CreateEmpty(const ASTContext &C,
1689                                             unsigned PathSize) {
1690   void *Buffer = C.Allocate(totalSizeToAlloc<CXXBaseSpecifier *>(PathSize));
1691   return new (Buffer) CStyleCastExpr(EmptyShell(), PathSize);
1692 }
1693
1694 /// getOpcodeStr - Turn an Opcode enum value into the punctuation char it
1695 /// corresponds to, e.g. "<<=".
1696 StringRef BinaryOperator::getOpcodeStr(Opcode Op) {
1697   switch (Op) {
1698 #define BINARY_OPERATION(Name, Spelling) case BO_##Name: return Spelling;
1699 #include "clang/AST/OperationKinds.def"
1700   }
1701   llvm_unreachable("Invalid OpCode!");
1702 }
1703
1704 BinaryOperatorKind
1705 BinaryOperator::getOverloadedOpcode(OverloadedOperatorKind OO) {
1706   switch (OO) {
1707   default: llvm_unreachable("Not an overloadable binary operator");
1708   case OO_Plus: return BO_Add;
1709   case OO_Minus: return BO_Sub;
1710   case OO_Star: return BO_Mul;
1711   case OO_Slash: return BO_Div;
1712   case OO_Percent: return BO_Rem;
1713   case OO_Caret: return BO_Xor;
1714   case OO_Amp: return BO_And;
1715   case OO_Pipe: return BO_Or;
1716   case OO_Equal: return BO_Assign;
1717   case OO_Less: return BO_LT;
1718   case OO_Greater: return BO_GT;
1719   case OO_PlusEqual: return BO_AddAssign;
1720   case OO_MinusEqual: return BO_SubAssign;
1721   case OO_StarEqual: return BO_MulAssign;
1722   case OO_SlashEqual: return BO_DivAssign;
1723   case OO_PercentEqual: return BO_RemAssign;
1724   case OO_CaretEqual: return BO_XorAssign;
1725   case OO_AmpEqual: return BO_AndAssign;
1726   case OO_PipeEqual: return BO_OrAssign;
1727   case OO_LessLess: return BO_Shl;
1728   case OO_GreaterGreater: return BO_Shr;
1729   case OO_LessLessEqual: return BO_ShlAssign;
1730   case OO_GreaterGreaterEqual: return BO_ShrAssign;
1731   case OO_EqualEqual: return BO_EQ;
1732   case OO_ExclaimEqual: return BO_NE;
1733   case OO_LessEqual: return BO_LE;
1734   case OO_GreaterEqual: return BO_GE;
1735   case OO_AmpAmp: return BO_LAnd;
1736   case OO_PipePipe: return BO_LOr;
1737   case OO_Comma: return BO_Comma;
1738   case OO_ArrowStar: return BO_PtrMemI;
1739   }
1740 }
1741
1742 OverloadedOperatorKind BinaryOperator::getOverloadedOperator(Opcode Opc) {
1743   static const OverloadedOperatorKind OverOps[] = {
1744     /* .* Cannot be overloaded */OO_None, OO_ArrowStar,
1745     OO_Star, OO_Slash, OO_Percent,
1746     OO_Plus, OO_Minus,
1747     OO_LessLess, OO_GreaterGreater,
1748     OO_Less, OO_Greater, OO_LessEqual, OO_GreaterEqual,
1749     OO_EqualEqual, OO_ExclaimEqual,
1750     OO_Amp,
1751     OO_Caret,
1752     OO_Pipe,
1753     OO_AmpAmp,
1754     OO_PipePipe,
1755     OO_Equal, OO_StarEqual,
1756     OO_SlashEqual, OO_PercentEqual,
1757     OO_PlusEqual, OO_MinusEqual,
1758     OO_LessLessEqual, OO_GreaterGreaterEqual,
1759     OO_AmpEqual, OO_CaretEqual,
1760     OO_PipeEqual,
1761     OO_Comma
1762   };
1763   return OverOps[Opc];
1764 }
1765
1766 InitListExpr::InitListExpr(const ASTContext &C, SourceLocation lbraceloc,
1767                            ArrayRef<Expr*> initExprs, SourceLocation rbraceloc)
1768   : Expr(InitListExprClass, QualType(), VK_RValue, OK_Ordinary, false, false,
1769          false, false),
1770     InitExprs(C, initExprs.size()),
1771     LBraceLoc(lbraceloc), RBraceLoc(rbraceloc), AltForm(nullptr, true)
1772 {
1773   sawArrayRangeDesignator(false);
1774   for (unsigned I = 0; I != initExprs.size(); ++I) {
1775     if (initExprs[I]->isTypeDependent())
1776       ExprBits.TypeDependent = true;
1777     if (initExprs[I]->isValueDependent())
1778       ExprBits.ValueDependent = true;
1779     if (initExprs[I]->isInstantiationDependent())
1780       ExprBits.InstantiationDependent = true;
1781     if (initExprs[I]->containsUnexpandedParameterPack())
1782       ExprBits.ContainsUnexpandedParameterPack = true;
1783   }
1784       
1785   InitExprs.insert(C, InitExprs.end(), initExprs.begin(), initExprs.end());
1786 }
1787
1788 void InitListExpr::reserveInits(const ASTContext &C, unsigned NumInits) {
1789   if (NumInits > InitExprs.size())
1790     InitExprs.reserve(C, NumInits);
1791 }
1792
1793 void InitListExpr::resizeInits(const ASTContext &C, unsigned NumInits) {
1794   InitExprs.resize(C, NumInits, nullptr);
1795 }
1796
1797 Expr *InitListExpr::updateInit(const ASTContext &C, unsigned Init, Expr *expr) {
1798   if (Init >= InitExprs.size()) {
1799     InitExprs.insert(C, InitExprs.end(), Init - InitExprs.size() + 1, nullptr);
1800     setInit(Init, expr);
1801     return nullptr;
1802   }
1803
1804   Expr *Result = cast_or_null<Expr>(InitExprs[Init]);
1805   setInit(Init, expr);
1806   return Result;
1807 }
1808
1809 void InitListExpr::setArrayFiller(Expr *filler) {
1810   assert(!hasArrayFiller() && "Filler already set!");
1811   ArrayFillerOrUnionFieldInit = filler;
1812   // Fill out any "holes" in the array due to designated initializers.
1813   Expr **inits = getInits();
1814   for (unsigned i = 0, e = getNumInits(); i != e; ++i)
1815     if (inits[i] == nullptr)
1816       inits[i] = filler;
1817 }
1818
1819 bool InitListExpr::isStringLiteralInit() const {
1820   if (getNumInits() != 1)
1821     return false;
1822   const ArrayType *AT = getType()->getAsArrayTypeUnsafe();
1823   if (!AT || !AT->getElementType()->isIntegerType())
1824     return false;
1825   // It is possible for getInit() to return null.
1826   const Expr *Init = getInit(0);
1827   if (!Init)
1828     return false;
1829   Init = Init->IgnoreParens();
1830   return isa<StringLiteral>(Init) || isa<ObjCEncodeExpr>(Init);
1831 }
1832
1833 SourceLocation InitListExpr::getLocStart() const {
1834   if (InitListExpr *SyntacticForm = getSyntacticForm())
1835     return SyntacticForm->getLocStart();
1836   SourceLocation Beg = LBraceLoc;
1837   if (Beg.isInvalid()) {
1838     // Find the first non-null initializer.
1839     for (InitExprsTy::const_iterator I = InitExprs.begin(),
1840                                      E = InitExprs.end(); 
1841       I != E; ++I) {
1842       if (Stmt *S = *I) {
1843         Beg = S->getLocStart();
1844         break;
1845       }  
1846     }
1847   }
1848   return Beg;
1849 }
1850
1851 SourceLocation InitListExpr::getLocEnd() const {
1852   if (InitListExpr *SyntacticForm = getSyntacticForm())
1853     return SyntacticForm->getLocEnd();
1854   SourceLocation End = RBraceLoc;
1855   if (End.isInvalid()) {
1856     // Find the first non-null initializer from the end.
1857     for (InitExprsTy::const_reverse_iterator I = InitExprs.rbegin(),
1858          E = InitExprs.rend();
1859          I != E; ++I) {
1860       if (Stmt *S = *I) {
1861         End = S->getLocEnd();
1862         break;
1863       }
1864     }
1865   }
1866   return End;
1867 }
1868
1869 /// getFunctionType - Return the underlying function type for this block.
1870 ///
1871 const FunctionProtoType *BlockExpr::getFunctionType() const {
1872   // The block pointer is never sugared, but the function type might be.
1873   return cast<BlockPointerType>(getType())
1874            ->getPointeeType()->castAs<FunctionProtoType>();
1875 }
1876
1877 SourceLocation BlockExpr::getCaretLocation() const {
1878   return TheBlock->getCaretLocation();
1879 }
1880 const Stmt *BlockExpr::getBody() const {
1881   return TheBlock->getBody();
1882 }
1883 Stmt *BlockExpr::getBody() {
1884   return TheBlock->getBody();
1885 }
1886
1887
1888 //===----------------------------------------------------------------------===//
1889 // Generic Expression Routines
1890 //===----------------------------------------------------------------------===//
1891
1892 /// isUnusedResultAWarning - Return true if this immediate expression should
1893 /// be warned about if the result is unused.  If so, fill in Loc and Ranges
1894 /// with location to warn on and the source range[s] to report with the
1895 /// warning.
1896 bool Expr::isUnusedResultAWarning(const Expr *&WarnE, SourceLocation &Loc, 
1897                                   SourceRange &R1, SourceRange &R2,
1898                                   ASTContext &Ctx) const {
1899   // Don't warn if the expr is type dependent. The type could end up
1900   // instantiating to void.
1901   if (isTypeDependent())
1902     return false;
1903
1904   switch (getStmtClass()) {
1905   default:
1906     if (getType()->isVoidType())
1907       return false;
1908     WarnE = this;
1909     Loc = getExprLoc();
1910     R1 = getSourceRange();
1911     return true;
1912   case ParenExprClass:
1913     return cast<ParenExpr>(this)->getSubExpr()->
1914       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1915   case GenericSelectionExprClass:
1916     return cast<GenericSelectionExpr>(this)->getResultExpr()->
1917       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1918   case ChooseExprClass:
1919     return cast<ChooseExpr>(this)->getChosenSubExpr()->
1920       isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1921   case UnaryOperatorClass: {
1922     const UnaryOperator *UO = cast<UnaryOperator>(this);
1923
1924     switch (UO->getOpcode()) {
1925     case UO_Plus:
1926     case UO_Minus:
1927     case UO_AddrOf:
1928     case UO_Not:
1929     case UO_LNot:
1930     case UO_Deref:
1931       break;
1932     case UO_Coawait:
1933       // This is just the 'operator co_await' call inside the guts of a
1934       // dependent co_await call.
1935     case UO_PostInc:
1936     case UO_PostDec:
1937     case UO_PreInc:
1938     case UO_PreDec:                 // ++/--
1939       return false;  // Not a warning.
1940     case UO_Real:
1941     case UO_Imag:
1942       // accessing a piece of a volatile complex is a side-effect.
1943       if (Ctx.getCanonicalType(UO->getSubExpr()->getType())
1944           .isVolatileQualified())
1945         return false;
1946       break;
1947     case UO_Extension:
1948       return UO->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1949     }
1950     WarnE = this;
1951     Loc = UO->getOperatorLoc();
1952     R1 = UO->getSubExpr()->getSourceRange();
1953     return true;
1954   }
1955   case BinaryOperatorClass: {
1956     const BinaryOperator *BO = cast<BinaryOperator>(this);
1957     switch (BO->getOpcode()) {
1958       default:
1959         break;
1960       // Consider the RHS of comma for side effects. LHS was checked by
1961       // Sema::CheckCommaOperands.
1962       case BO_Comma:
1963         // ((foo = <blah>), 0) is an idiom for hiding the result (and
1964         // lvalue-ness) of an assignment written in a macro.
1965         if (IntegerLiteral *IE =
1966               dyn_cast<IntegerLiteral>(BO->getRHS()->IgnoreParens()))
1967           if (IE->getValue() == 0)
1968             return false;
1969         return BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
1970       // Consider '||', '&&' to have side effects if the LHS or RHS does.
1971       case BO_LAnd:
1972       case BO_LOr:
1973         if (!BO->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx) ||
1974             !BO->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
1975           return false;
1976         break;
1977     }
1978     if (BO->isAssignmentOp())
1979       return false;
1980     WarnE = this;
1981     Loc = BO->getOperatorLoc();
1982     R1 = BO->getLHS()->getSourceRange();
1983     R2 = BO->getRHS()->getSourceRange();
1984     return true;
1985   }
1986   case CompoundAssignOperatorClass:
1987   case VAArgExprClass:
1988   case AtomicExprClass:
1989     return false;
1990
1991   case ConditionalOperatorClass: {
1992     // If only one of the LHS or RHS is a warning, the operator might
1993     // be being used for control flow. Only warn if both the LHS and
1994     // RHS are warnings.
1995     const ConditionalOperator *Exp = cast<ConditionalOperator>(this);
1996     if (!Exp->getRHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx))
1997       return false;
1998     if (!Exp->getLHS())
1999       return true;
2000     return Exp->getLHS()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2001   }
2002
2003   case MemberExprClass:
2004     WarnE = this;
2005     Loc = cast<MemberExpr>(this)->getMemberLoc();
2006     R1 = SourceRange(Loc, Loc);
2007     R2 = cast<MemberExpr>(this)->getBase()->getSourceRange();
2008     return true;
2009
2010   case ArraySubscriptExprClass:
2011     WarnE = this;
2012     Loc = cast<ArraySubscriptExpr>(this)->getRBracketLoc();
2013     R1 = cast<ArraySubscriptExpr>(this)->getLHS()->getSourceRange();
2014     R2 = cast<ArraySubscriptExpr>(this)->getRHS()->getSourceRange();
2015     return true;
2016
2017   case CXXOperatorCallExprClass: {
2018     // Warn about operator ==,!=,<,>,<=, and >= even when user-defined operator
2019     // overloads as there is no reasonable way to define these such that they
2020     // have non-trivial, desirable side-effects. See the -Wunused-comparison
2021     // warning: operators == and != are commonly typo'ed, and so warning on them
2022     // provides additional value as well. If this list is updated,
2023     // DiagnoseUnusedComparison should be as well.
2024     const CXXOperatorCallExpr *Op = cast<CXXOperatorCallExpr>(this);
2025     switch (Op->getOperator()) {
2026     default:
2027       break;
2028     case OO_EqualEqual:
2029     case OO_ExclaimEqual:
2030     case OO_Less:
2031     case OO_Greater:
2032     case OO_GreaterEqual:
2033     case OO_LessEqual:
2034       if (Op->getCallReturnType(Ctx)->isReferenceType() ||
2035           Op->getCallReturnType(Ctx)->isVoidType())
2036         break;
2037       WarnE = this;
2038       Loc = Op->getOperatorLoc();
2039       R1 = Op->getSourceRange();
2040       return true;
2041     }
2042
2043     // Fallthrough for generic call handling.
2044   }
2045   case CallExprClass:
2046   case CXXMemberCallExprClass:
2047   case UserDefinedLiteralClass: {
2048     // If this is a direct call, get the callee.
2049     const CallExpr *CE = cast<CallExpr>(this);
2050     if (const Decl *FD = CE->getCalleeDecl()) {
2051       const FunctionDecl *Func = dyn_cast<FunctionDecl>(FD);
2052       bool HasWarnUnusedResultAttr = Func ? Func->hasUnusedResultAttr()
2053                                           : FD->hasAttr<WarnUnusedResultAttr>();
2054
2055       // If the callee has attribute pure, const, or warn_unused_result, warn
2056       // about it. void foo() { strlen("bar"); } should warn.
2057       //
2058       // Note: If new cases are added here, DiagnoseUnusedExprResult should be
2059       // updated to match for QoI.
2060       if (HasWarnUnusedResultAttr ||
2061           FD->hasAttr<PureAttr>() || FD->hasAttr<ConstAttr>()) {
2062         WarnE = this;
2063         Loc = CE->getCallee()->getLocStart();
2064         R1 = CE->getCallee()->getSourceRange();
2065
2066         if (unsigned NumArgs = CE->getNumArgs())
2067           R2 = SourceRange(CE->getArg(0)->getLocStart(),
2068                            CE->getArg(NumArgs-1)->getLocEnd());
2069         return true;
2070       }
2071     }
2072     return false;
2073   }
2074
2075   // If we don't know precisely what we're looking at, let's not warn.
2076   case UnresolvedLookupExprClass:
2077   case CXXUnresolvedConstructExprClass:
2078     return false;
2079
2080   case CXXTemporaryObjectExprClass:
2081   case CXXConstructExprClass: {
2082     if (const CXXRecordDecl *Type = getType()->getAsCXXRecordDecl()) {
2083       if (Type->hasAttr<WarnUnusedAttr>()) {
2084         WarnE = this;
2085         Loc = getLocStart();
2086         R1 = getSourceRange();
2087         return true;
2088       }
2089     }
2090     return false;
2091   }
2092
2093   case ObjCMessageExprClass: {
2094     const ObjCMessageExpr *ME = cast<ObjCMessageExpr>(this);
2095     if (Ctx.getLangOpts().ObjCAutoRefCount &&
2096         ME->isInstanceMessage() &&
2097         !ME->getType()->isVoidType() &&
2098         ME->getMethodFamily() == OMF_init) {
2099       WarnE = this;
2100       Loc = getExprLoc();
2101       R1 = ME->getSourceRange();
2102       return true;
2103     }
2104
2105     if (const ObjCMethodDecl *MD = ME->getMethodDecl())
2106       if (MD->hasAttr<WarnUnusedResultAttr>()) {
2107         WarnE = this;
2108         Loc = getExprLoc();
2109         return true;
2110       }
2111
2112     return false;
2113   }
2114
2115   case ObjCPropertyRefExprClass:
2116     WarnE = this;
2117     Loc = getExprLoc();
2118     R1 = getSourceRange();
2119     return true;
2120
2121   case PseudoObjectExprClass: {
2122     const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
2123
2124     // Only complain about things that have the form of a getter.
2125     if (isa<UnaryOperator>(PO->getSyntacticForm()) ||
2126         isa<BinaryOperator>(PO->getSyntacticForm()))
2127       return false;
2128
2129     WarnE = this;
2130     Loc = getExprLoc();
2131     R1 = getSourceRange();
2132     return true;
2133   }
2134
2135   case StmtExprClass: {
2136     // Statement exprs don't logically have side effects themselves, but are
2137     // sometimes used in macros in ways that give them a type that is unused.
2138     // For example ({ blah; foo(); }) will end up with a type if foo has a type.
2139     // however, if the result of the stmt expr is dead, we don't want to emit a
2140     // warning.
2141     const CompoundStmt *CS = cast<StmtExpr>(this)->getSubStmt();
2142     if (!CS->body_empty()) {
2143       if (const Expr *E = dyn_cast<Expr>(CS->body_back()))
2144         return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2145       if (const LabelStmt *Label = dyn_cast<LabelStmt>(CS->body_back()))
2146         if (const Expr *E = dyn_cast<Expr>(Label->getSubStmt()))
2147           return E->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2148     }
2149
2150     if (getType()->isVoidType())
2151       return false;
2152     WarnE = this;
2153     Loc = cast<StmtExpr>(this)->getLParenLoc();
2154     R1 = getSourceRange();
2155     return true;
2156   }
2157   case CXXFunctionalCastExprClass:
2158   case CStyleCastExprClass: {
2159     // Ignore an explicit cast to void unless the operand is a non-trivial
2160     // volatile lvalue.
2161     const CastExpr *CE = cast<CastExpr>(this);
2162     if (CE->getCastKind() == CK_ToVoid) {
2163       if (CE->getSubExpr()->isGLValue() &&
2164           CE->getSubExpr()->getType().isVolatileQualified()) {
2165         const DeclRefExpr *DRE =
2166             dyn_cast<DeclRefExpr>(CE->getSubExpr()->IgnoreParens());
2167         if (!(DRE && isa<VarDecl>(DRE->getDecl()) &&
2168               cast<VarDecl>(DRE->getDecl())->hasLocalStorage())) {
2169           return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc,
2170                                                           R1, R2, Ctx);
2171         }
2172       }
2173       return false;
2174     }
2175
2176     // If this is a cast to a constructor conversion, check the operand.
2177     // Otherwise, the result of the cast is unused.
2178     if (CE->getCastKind() == CK_ConstructorConversion)
2179       return CE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2180
2181     WarnE = this;
2182     if (const CXXFunctionalCastExpr *CXXCE =
2183             dyn_cast<CXXFunctionalCastExpr>(this)) {
2184       Loc = CXXCE->getLocStart();
2185       R1 = CXXCE->getSubExpr()->getSourceRange();
2186     } else {
2187       const CStyleCastExpr *CStyleCE = cast<CStyleCastExpr>(this);
2188       Loc = CStyleCE->getLParenLoc();
2189       R1 = CStyleCE->getSubExpr()->getSourceRange();
2190     }
2191     return true;
2192   }
2193   case ImplicitCastExprClass: {
2194     const CastExpr *ICE = cast<ImplicitCastExpr>(this);
2195
2196     // lvalue-to-rvalue conversion on a volatile lvalue is a side-effect.
2197     if (ICE->getCastKind() == CK_LValueToRValue &&
2198         ICE->getSubExpr()->getType().isVolatileQualified())
2199       return false;
2200
2201     return ICE->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx);
2202   }
2203   case CXXDefaultArgExprClass:
2204     return (cast<CXXDefaultArgExpr>(this)
2205             ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2206   case CXXDefaultInitExprClass:
2207     return (cast<CXXDefaultInitExpr>(this)
2208             ->getExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2209
2210   case CXXNewExprClass:
2211     // FIXME: In theory, there might be new expressions that don't have side
2212     // effects (e.g. a placement new with an uninitialized POD).
2213   case CXXDeleteExprClass:
2214     return false;
2215   case CXXBindTemporaryExprClass:
2216     return (cast<CXXBindTemporaryExpr>(this)
2217             ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2218   case ExprWithCleanupsClass:
2219     return (cast<ExprWithCleanups>(this)
2220             ->getSubExpr()->isUnusedResultAWarning(WarnE, Loc, R1, R2, Ctx));
2221   }
2222 }
2223
2224 /// isOBJCGCCandidate - Check if an expression is objc gc'able.
2225 /// returns true, if it is; false otherwise.
2226 bool Expr::isOBJCGCCandidate(ASTContext &Ctx) const {
2227   const Expr *E = IgnoreParens();
2228   switch (E->getStmtClass()) {
2229   default:
2230     return false;
2231   case ObjCIvarRefExprClass:
2232     return true;
2233   case Expr::UnaryOperatorClass:
2234     return cast<UnaryOperator>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2235   case ImplicitCastExprClass:
2236     return cast<ImplicitCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2237   case MaterializeTemporaryExprClass:
2238     return cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr()
2239                                                       ->isOBJCGCCandidate(Ctx);
2240   case CStyleCastExprClass:
2241     return cast<CStyleCastExpr>(E)->getSubExpr()->isOBJCGCCandidate(Ctx);
2242   case DeclRefExprClass: {
2243     const Decl *D = cast<DeclRefExpr>(E)->getDecl();
2244         
2245     if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2246       if (VD->hasGlobalStorage())
2247         return true;
2248       QualType T = VD->getType();
2249       // dereferencing to a  pointer is always a gc'able candidate,
2250       // unless it is __weak.
2251       return T->isPointerType() &&
2252              (Ctx.getObjCGCAttrKind(T) != Qualifiers::Weak);
2253     }
2254     return false;
2255   }
2256   case MemberExprClass: {
2257     const MemberExpr *M = cast<MemberExpr>(E);
2258     return M->getBase()->isOBJCGCCandidate(Ctx);
2259   }
2260   case ArraySubscriptExprClass:
2261     return cast<ArraySubscriptExpr>(E)->getBase()->isOBJCGCCandidate(Ctx);
2262   }
2263 }
2264
2265 bool Expr::isBoundMemberFunction(ASTContext &Ctx) const {
2266   if (isTypeDependent())
2267     return false;
2268   return ClassifyLValue(Ctx) == Expr::LV_MemberFunction;
2269 }
2270
2271 QualType Expr::findBoundMemberType(const Expr *expr) {
2272   assert(expr->hasPlaceholderType(BuiltinType::BoundMember));
2273
2274   // Bound member expressions are always one of these possibilities:
2275   //   x->m      x.m      x->*y      x.*y
2276   // (possibly parenthesized)
2277
2278   expr = expr->IgnoreParens();
2279   if (const MemberExpr *mem = dyn_cast<MemberExpr>(expr)) {
2280     assert(isa<CXXMethodDecl>(mem->getMemberDecl()));
2281     return mem->getMemberDecl()->getType();
2282   }
2283
2284   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(expr)) {
2285     QualType type = op->getRHS()->getType()->castAs<MemberPointerType>()
2286                       ->getPointeeType();
2287     assert(type->isFunctionType());
2288     return type;
2289   }
2290
2291   assert(isa<UnresolvedMemberExpr>(expr) || isa<CXXPseudoDestructorExpr>(expr));
2292   return QualType();
2293 }
2294
2295 Expr* Expr::IgnoreParens() {
2296   Expr* E = this;
2297   while (true) {
2298     if (ParenExpr* P = dyn_cast<ParenExpr>(E)) {
2299       E = P->getSubExpr();
2300       continue;
2301     }
2302     if (UnaryOperator* P = dyn_cast<UnaryOperator>(E)) {
2303       if (P->getOpcode() == UO_Extension) {
2304         E = P->getSubExpr();
2305         continue;
2306       }
2307     }
2308     if (GenericSelectionExpr* P = dyn_cast<GenericSelectionExpr>(E)) {
2309       if (!P->isResultDependent()) {
2310         E = P->getResultExpr();
2311         continue;
2312       }
2313     }
2314     if (ChooseExpr* P = dyn_cast<ChooseExpr>(E)) {
2315       if (!P->isConditionDependent()) {
2316         E = P->getChosenSubExpr();
2317         continue;
2318       }
2319     }
2320     return E;
2321   }
2322 }
2323
2324 /// IgnoreParenCasts - Ignore parentheses and casts.  Strip off any ParenExpr
2325 /// or CastExprs or ImplicitCastExprs, returning their operand.
2326 Expr *Expr::IgnoreParenCasts() {
2327   Expr *E = this;
2328   while (true) {
2329     E = E->IgnoreParens();
2330     if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2331       E = P->getSubExpr();
2332       continue;
2333     }
2334     if (MaterializeTemporaryExpr *Materialize 
2335                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
2336       E = Materialize->GetTemporaryExpr();
2337       continue;
2338     }
2339     if (SubstNonTypeTemplateParmExpr *NTTP
2340                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2341       E = NTTP->getReplacement();
2342       continue;
2343     }      
2344     return E;
2345   }
2346 }
2347
2348 Expr *Expr::IgnoreCasts() {
2349   Expr *E = this;
2350   while (true) {
2351     if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2352       E = P->getSubExpr();
2353       continue;
2354     }
2355     if (MaterializeTemporaryExpr *Materialize
2356         = dyn_cast<MaterializeTemporaryExpr>(E)) {
2357       E = Materialize->GetTemporaryExpr();
2358       continue;
2359     }
2360     if (SubstNonTypeTemplateParmExpr *NTTP
2361         = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2362       E = NTTP->getReplacement();
2363       continue;
2364     }
2365     return E;
2366   }
2367 }
2368
2369 /// IgnoreParenLValueCasts - Ignore parentheses and lvalue-to-rvalue
2370 /// casts.  This is intended purely as a temporary workaround for code
2371 /// that hasn't yet been rewritten to do the right thing about those
2372 /// casts, and may disappear along with the last internal use.
2373 Expr *Expr::IgnoreParenLValueCasts() {
2374   Expr *E = this;
2375   while (true) {
2376     E = E->IgnoreParens();
2377     if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2378       if (P->getCastKind() == CK_LValueToRValue) {
2379         E = P->getSubExpr();
2380         continue;
2381       }
2382     } else if (MaterializeTemporaryExpr *Materialize 
2383                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
2384       E = Materialize->GetTemporaryExpr();
2385       continue;
2386     } else if (SubstNonTypeTemplateParmExpr *NTTP
2387                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2388       E = NTTP->getReplacement();
2389       continue;
2390     }
2391     break;
2392   }
2393   return E;
2394 }
2395
2396 Expr *Expr::ignoreParenBaseCasts() {
2397   Expr *E = this;
2398   while (true) {
2399     E = E->IgnoreParens();
2400     if (CastExpr *CE = dyn_cast<CastExpr>(E)) {
2401       if (CE->getCastKind() == CK_DerivedToBase ||
2402           CE->getCastKind() == CK_UncheckedDerivedToBase ||
2403           CE->getCastKind() == CK_NoOp) {
2404         E = CE->getSubExpr();
2405         continue;
2406       }
2407     }
2408
2409     return E;
2410   }
2411 }
2412
2413 Expr *Expr::IgnoreParenImpCasts() {
2414   Expr *E = this;
2415   while (true) {
2416     E = E->IgnoreParens();
2417     if (ImplicitCastExpr *P = dyn_cast<ImplicitCastExpr>(E)) {
2418       E = P->getSubExpr();
2419       continue;
2420     }
2421     if (MaterializeTemporaryExpr *Materialize 
2422                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
2423       E = Materialize->GetTemporaryExpr();
2424       continue;
2425     }
2426     if (SubstNonTypeTemplateParmExpr *NTTP
2427                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2428       E = NTTP->getReplacement();
2429       continue;
2430     }
2431     return E;
2432   }
2433 }
2434
2435 Expr *Expr::IgnoreConversionOperator() {
2436   if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(this)) {
2437     if (MCE->getMethodDecl() && isa<CXXConversionDecl>(MCE->getMethodDecl()))
2438       return MCE->getImplicitObjectArgument();
2439   }
2440   return this;
2441 }
2442
2443 /// IgnoreParenNoopCasts - Ignore parentheses and casts that do not change the
2444 /// value (including ptr->int casts of the same size).  Strip off any
2445 /// ParenExpr or CastExprs, returning their operand.
2446 Expr *Expr::IgnoreParenNoopCasts(ASTContext &Ctx) {
2447   Expr *E = this;
2448   while (true) {
2449     E = E->IgnoreParens();
2450
2451     if (CastExpr *P = dyn_cast<CastExpr>(E)) {
2452       // We ignore integer <-> casts that are of the same width, ptr<->ptr and
2453       // ptr<->int casts of the same width.  We also ignore all identity casts.
2454       Expr *SE = P->getSubExpr();
2455
2456       if (Ctx.hasSameUnqualifiedType(E->getType(), SE->getType())) {
2457         E = SE;
2458         continue;
2459       }
2460
2461       if ((E->getType()->isPointerType() ||
2462            E->getType()->isIntegralType(Ctx)) &&
2463           (SE->getType()->isPointerType() ||
2464            SE->getType()->isIntegralType(Ctx)) &&
2465           Ctx.getTypeSize(E->getType()) == Ctx.getTypeSize(SE->getType())) {
2466         E = SE;
2467         continue;
2468       }
2469     }
2470
2471     if (SubstNonTypeTemplateParmExpr *NTTP
2472                                   = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
2473       E = NTTP->getReplacement();
2474       continue;
2475     }
2476     
2477     return E;
2478   }
2479 }
2480
2481 bool Expr::isDefaultArgument() const {
2482   const Expr *E = this;
2483   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2484     E = M->GetTemporaryExpr();
2485
2486   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
2487     E = ICE->getSubExprAsWritten();
2488   
2489   return isa<CXXDefaultArgExpr>(E);
2490 }
2491
2492 /// \brief Skip over any no-op casts and any temporary-binding
2493 /// expressions.
2494 static const Expr *skipTemporaryBindingsNoOpCastsAndParens(const Expr *E) {
2495   if (const MaterializeTemporaryExpr *M = dyn_cast<MaterializeTemporaryExpr>(E))
2496     E = M->GetTemporaryExpr();
2497
2498   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2499     if (ICE->getCastKind() == CK_NoOp)
2500       E = ICE->getSubExpr();
2501     else
2502       break;
2503   }
2504
2505   while (const CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(E))
2506     E = BE->getSubExpr();
2507
2508   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2509     if (ICE->getCastKind() == CK_NoOp)
2510       E = ICE->getSubExpr();
2511     else
2512       break;
2513   }
2514
2515   return E->IgnoreParens();
2516 }
2517
2518 /// isTemporaryObject - Determines if this expression produces a
2519 /// temporary of the given class type.
2520 bool Expr::isTemporaryObject(ASTContext &C, const CXXRecordDecl *TempTy) const {
2521   if (!C.hasSameUnqualifiedType(getType(), C.getTypeDeclType(TempTy)))
2522     return false;
2523
2524   const Expr *E = skipTemporaryBindingsNoOpCastsAndParens(this);
2525
2526   // Temporaries are by definition pr-values of class type.
2527   if (!E->Classify(C).isPRValue()) {
2528     // In this context, property reference is a message call and is pr-value.
2529     if (!isa<ObjCPropertyRefExpr>(E))
2530       return false;
2531   }
2532
2533   // Black-list a few cases which yield pr-values of class type that don't
2534   // refer to temporaries of that type:
2535
2536   // - implicit derived-to-base conversions
2537   if (isa<ImplicitCastExpr>(E)) {
2538     switch (cast<ImplicitCastExpr>(E)->getCastKind()) {
2539     case CK_DerivedToBase:
2540     case CK_UncheckedDerivedToBase:
2541       return false;
2542     default:
2543       break;
2544     }
2545   }
2546
2547   // - member expressions (all)
2548   if (isa<MemberExpr>(E))
2549     return false;
2550
2551   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E))
2552     if (BO->isPtrMemOp())
2553       return false;
2554
2555   // - opaque values (all)
2556   if (isa<OpaqueValueExpr>(E))
2557     return false;
2558
2559   return true;
2560 }
2561
2562 bool Expr::isImplicitCXXThis() const {
2563   const Expr *E = this;
2564   
2565   // Strip away parentheses and casts we don't care about.
2566   while (true) {
2567     if (const ParenExpr *Paren = dyn_cast<ParenExpr>(E)) {
2568       E = Paren->getSubExpr();
2569       continue;
2570     }
2571     
2572     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
2573       if (ICE->getCastKind() == CK_NoOp ||
2574           ICE->getCastKind() == CK_LValueToRValue ||
2575           ICE->getCastKind() == CK_DerivedToBase || 
2576           ICE->getCastKind() == CK_UncheckedDerivedToBase) {
2577         E = ICE->getSubExpr();
2578         continue;
2579       }
2580     }
2581     
2582     if (const UnaryOperator* UnOp = dyn_cast<UnaryOperator>(E)) {
2583       if (UnOp->getOpcode() == UO_Extension) {
2584         E = UnOp->getSubExpr();
2585         continue;
2586       }
2587     }
2588     
2589     if (const MaterializeTemporaryExpr *M
2590                                       = dyn_cast<MaterializeTemporaryExpr>(E)) {
2591       E = M->GetTemporaryExpr();
2592       continue;
2593     }
2594     
2595     break;
2596   }
2597   
2598   if (const CXXThisExpr *This = dyn_cast<CXXThisExpr>(E))
2599     return This->isImplicit();
2600   
2601   return false;
2602 }
2603
2604 /// hasAnyTypeDependentArguments - Determines if any of the expressions
2605 /// in Exprs is type-dependent.
2606 bool Expr::hasAnyTypeDependentArguments(ArrayRef<Expr *> Exprs) {
2607   for (unsigned I = 0; I < Exprs.size(); ++I)
2608     if (Exprs[I]->isTypeDependent())
2609       return true;
2610
2611   return false;
2612 }
2613
2614 bool Expr::isConstantInitializer(ASTContext &Ctx, bool IsForRef,
2615                                  const Expr **Culprit) const {
2616   // This function is attempting whether an expression is an initializer
2617   // which can be evaluated at compile-time. It very closely parallels
2618   // ConstExprEmitter in CGExprConstant.cpp; if they don't match, it
2619   // will lead to unexpected results.  Like ConstExprEmitter, it falls back
2620   // to isEvaluatable most of the time.
2621   //
2622   // If we ever capture reference-binding directly in the AST, we can
2623   // kill the second parameter.
2624
2625   if (IsForRef) {
2626     EvalResult Result;
2627     if (EvaluateAsLValue(Result, Ctx) && !Result.HasSideEffects)
2628       return true;
2629     if (Culprit)
2630       *Culprit = this;
2631     return false;
2632   }
2633
2634   switch (getStmtClass()) {
2635   default: break;
2636   case StringLiteralClass:
2637   case ObjCEncodeExprClass:
2638     return true;
2639   case CXXTemporaryObjectExprClass:
2640   case CXXConstructExprClass: {
2641     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
2642
2643     if (CE->getConstructor()->isTrivial() &&
2644         CE->getConstructor()->getParent()->hasTrivialDestructor()) {
2645       // Trivial default constructor
2646       if (!CE->getNumArgs()) return true;
2647
2648       // Trivial copy constructor
2649       assert(CE->getNumArgs() == 1 && "trivial ctor with > 1 argument");
2650       return CE->getArg(0)->isConstantInitializer(Ctx, false, Culprit);
2651     }
2652
2653     break;
2654   }
2655   case CompoundLiteralExprClass: {
2656     // This handles gcc's extension that allows global initializers like
2657     // "struct x {int x;} x = (struct x) {};".
2658     // FIXME: This accepts other cases it shouldn't!
2659     const Expr *Exp = cast<CompoundLiteralExpr>(this)->getInitializer();
2660     return Exp->isConstantInitializer(Ctx, false, Culprit);
2661   }
2662   case DesignatedInitUpdateExprClass: {
2663     const DesignatedInitUpdateExpr *DIUE = cast<DesignatedInitUpdateExpr>(this);
2664     return DIUE->getBase()->isConstantInitializer(Ctx, false, Culprit) &&
2665            DIUE->getUpdater()->isConstantInitializer(Ctx, false, Culprit);
2666   }
2667   case InitListExprClass: {
2668     const InitListExpr *ILE = cast<InitListExpr>(this);
2669     if (ILE->getType()->isArrayType()) {
2670       unsigned numInits = ILE->getNumInits();
2671       for (unsigned i = 0; i < numInits; i++) {
2672         if (!ILE->getInit(i)->isConstantInitializer(Ctx, false, Culprit))
2673           return false;
2674       }
2675       return true;
2676     }
2677
2678     if (ILE->getType()->isRecordType()) {
2679       unsigned ElementNo = 0;
2680       RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl();
2681       for (const auto *Field : RD->fields()) {
2682         // If this is a union, skip all the fields that aren't being initialized.
2683         if (RD->isUnion() && ILE->getInitializedFieldInUnion() != Field)
2684           continue;
2685
2686         // Don't emit anonymous bitfields, they just affect layout.
2687         if (Field->isUnnamedBitfield())
2688           continue;
2689
2690         if (ElementNo < ILE->getNumInits()) {
2691           const Expr *Elt = ILE->getInit(ElementNo++);
2692           if (Field->isBitField()) {
2693             // Bitfields have to evaluate to an integer.
2694             llvm::APSInt ResultTmp;
2695             if (!Elt->EvaluateAsInt(ResultTmp, Ctx)) {
2696               if (Culprit)
2697                 *Culprit = Elt;
2698               return false;
2699             }
2700           } else {
2701             bool RefType = Field->getType()->isReferenceType();
2702             if (!Elt->isConstantInitializer(Ctx, RefType, Culprit))
2703               return false;
2704           }
2705         }
2706       }
2707       return true;
2708     }
2709
2710     break;
2711   }
2712   case ImplicitValueInitExprClass:
2713   case NoInitExprClass:
2714     return true;
2715   case ParenExprClass:
2716     return cast<ParenExpr>(this)->getSubExpr()
2717       ->isConstantInitializer(Ctx, IsForRef, Culprit);
2718   case GenericSelectionExprClass:
2719     return cast<GenericSelectionExpr>(this)->getResultExpr()
2720       ->isConstantInitializer(Ctx, IsForRef, Culprit);
2721   case ChooseExprClass:
2722     if (cast<ChooseExpr>(this)->isConditionDependent()) {
2723       if (Culprit)
2724         *Culprit = this;
2725       return false;
2726     }
2727     return cast<ChooseExpr>(this)->getChosenSubExpr()
2728       ->isConstantInitializer(Ctx, IsForRef, Culprit);
2729   case UnaryOperatorClass: {
2730     const UnaryOperator* Exp = cast<UnaryOperator>(this);
2731     if (Exp->getOpcode() == UO_Extension)
2732       return Exp->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
2733     break;
2734   }
2735   case CXXFunctionalCastExprClass:
2736   case CXXStaticCastExprClass:
2737   case ImplicitCastExprClass:
2738   case CStyleCastExprClass:
2739   case ObjCBridgedCastExprClass:
2740   case CXXDynamicCastExprClass:
2741   case CXXReinterpretCastExprClass:
2742   case CXXConstCastExprClass: {
2743     const CastExpr *CE = cast<CastExpr>(this);
2744
2745     // Handle misc casts we want to ignore.
2746     if (CE->getCastKind() == CK_NoOp ||
2747         CE->getCastKind() == CK_LValueToRValue ||
2748         CE->getCastKind() == CK_ToUnion ||
2749         CE->getCastKind() == CK_ConstructorConversion ||
2750         CE->getCastKind() == CK_NonAtomicToAtomic ||
2751         CE->getCastKind() == CK_AtomicToNonAtomic)
2752       return CE->getSubExpr()->isConstantInitializer(Ctx, false, Culprit);
2753
2754     break;
2755   }
2756   case MaterializeTemporaryExprClass:
2757     return cast<MaterializeTemporaryExpr>(this)->GetTemporaryExpr()
2758       ->isConstantInitializer(Ctx, false, Culprit);
2759
2760   case SubstNonTypeTemplateParmExprClass:
2761     return cast<SubstNonTypeTemplateParmExpr>(this)->getReplacement()
2762       ->isConstantInitializer(Ctx, false, Culprit);
2763   case CXXDefaultArgExprClass:
2764     return cast<CXXDefaultArgExpr>(this)->getExpr()
2765       ->isConstantInitializer(Ctx, false, Culprit);
2766   case CXXDefaultInitExprClass:
2767     return cast<CXXDefaultInitExpr>(this)->getExpr()
2768       ->isConstantInitializer(Ctx, false, Culprit);
2769   }
2770   // Allow certain forms of UB in constant initializers: signed integer
2771   // overflow and floating-point division by zero. We'll give a warning on
2772   // these, but they're common enough that we have to accept them.
2773   if (isEvaluatable(Ctx, SE_AllowUndefinedBehavior))
2774     return true;
2775   if (Culprit)
2776     *Culprit = this;
2777   return false;
2778 }
2779
2780 namespace {
2781   /// \brief Look for any side effects within a Stmt.
2782   class SideEffectFinder : public ConstEvaluatedExprVisitor<SideEffectFinder> {
2783     typedef ConstEvaluatedExprVisitor<SideEffectFinder> Inherited;
2784     const bool IncludePossibleEffects;
2785     bool HasSideEffects;
2786
2787   public:
2788     explicit SideEffectFinder(const ASTContext &Context, bool IncludePossible)
2789       : Inherited(Context),
2790         IncludePossibleEffects(IncludePossible), HasSideEffects(false) { }
2791
2792     bool hasSideEffects() const { return HasSideEffects; }
2793
2794     void VisitExpr(const Expr *E) {
2795       if (!HasSideEffects &&
2796           E->HasSideEffects(Context, IncludePossibleEffects))
2797         HasSideEffects = true;
2798     }
2799   };
2800 }
2801
2802 bool Expr::HasSideEffects(const ASTContext &Ctx,
2803                           bool IncludePossibleEffects) const {
2804   // In circumstances where we care about definite side effects instead of
2805   // potential side effects, we want to ignore expressions that are part of a
2806   // macro expansion as a potential side effect.
2807   if (!IncludePossibleEffects && getExprLoc().isMacroID())
2808     return false;
2809
2810   if (isInstantiationDependent())
2811     return IncludePossibleEffects;
2812
2813   switch (getStmtClass()) {
2814   case NoStmtClass:
2815   #define ABSTRACT_STMT(Type)
2816   #define STMT(Type, Base) case Type##Class:
2817   #define EXPR(Type, Base)
2818   #include "clang/AST/StmtNodes.inc"
2819     llvm_unreachable("unexpected Expr kind");
2820
2821   case DependentScopeDeclRefExprClass:
2822   case CXXUnresolvedConstructExprClass:
2823   case CXXDependentScopeMemberExprClass:
2824   case UnresolvedLookupExprClass:
2825   case UnresolvedMemberExprClass:
2826   case PackExpansionExprClass:
2827   case SubstNonTypeTemplateParmPackExprClass:
2828   case FunctionParmPackExprClass:
2829   case TypoExprClass:
2830   case CXXFoldExprClass:
2831     llvm_unreachable("shouldn't see dependent / unresolved nodes here");
2832
2833   case DeclRefExprClass:
2834   case ObjCIvarRefExprClass:
2835   case PredefinedExprClass:
2836   case IntegerLiteralClass:
2837   case FloatingLiteralClass:
2838   case ImaginaryLiteralClass:
2839   case StringLiteralClass:
2840   case CharacterLiteralClass:
2841   case OffsetOfExprClass:
2842   case ImplicitValueInitExprClass:
2843   case UnaryExprOrTypeTraitExprClass:
2844   case AddrLabelExprClass:
2845   case GNUNullExprClass:
2846   case NoInitExprClass:
2847   case CXXBoolLiteralExprClass:
2848   case CXXNullPtrLiteralExprClass:
2849   case CXXThisExprClass:
2850   case CXXScalarValueInitExprClass:
2851   case TypeTraitExprClass:
2852   case ArrayTypeTraitExprClass:
2853   case ExpressionTraitExprClass:
2854   case CXXNoexceptExprClass:
2855   case SizeOfPackExprClass:
2856   case ObjCStringLiteralClass:
2857   case ObjCEncodeExprClass:
2858   case ObjCBoolLiteralExprClass:
2859   case ObjCAvailabilityCheckExprClass:
2860   case CXXUuidofExprClass:
2861   case OpaqueValueExprClass:
2862     // These never have a side-effect.
2863     return false;
2864
2865   case CallExprClass:
2866   case CXXOperatorCallExprClass:
2867   case CXXMemberCallExprClass:
2868   case CUDAKernelCallExprClass:
2869   case UserDefinedLiteralClass: {
2870     // We don't know a call definitely has side effects, except for calls
2871     // to pure/const functions that definitely don't.
2872     // If the call itself is considered side-effect free, check the operands.
2873     const Decl *FD = cast<CallExpr>(this)->getCalleeDecl();
2874     bool IsPure = FD && (FD->hasAttr<ConstAttr>() || FD->hasAttr<PureAttr>());
2875     if (IsPure || !IncludePossibleEffects)
2876       break;
2877     return true;
2878   }
2879
2880   case BlockExprClass:
2881   case CXXBindTemporaryExprClass:
2882     if (!IncludePossibleEffects)
2883       break;
2884     return true;
2885
2886   case MSPropertyRefExprClass:
2887   case MSPropertySubscriptExprClass:
2888   case CompoundAssignOperatorClass:
2889   case VAArgExprClass:
2890   case AtomicExprClass:
2891   case CXXThrowExprClass:
2892   case CXXNewExprClass:
2893   case CXXDeleteExprClass:
2894   case CoawaitExprClass:
2895   case CoyieldExprClass:
2896     // These always have a side-effect.
2897     return true;
2898
2899   case StmtExprClass: {
2900     // StmtExprs have a side-effect if any substatement does.
2901     SideEffectFinder Finder(Ctx, IncludePossibleEffects);
2902     Finder.Visit(cast<StmtExpr>(this)->getSubStmt());
2903     return Finder.hasSideEffects();
2904   }
2905
2906   case ExprWithCleanupsClass:
2907     if (IncludePossibleEffects)
2908       if (cast<ExprWithCleanups>(this)->cleanupsHaveSideEffects())
2909         return true;
2910     break;
2911
2912   case ParenExprClass:
2913   case ArraySubscriptExprClass:
2914   case OMPArraySectionExprClass:
2915   case MemberExprClass:
2916   case ConditionalOperatorClass:
2917   case BinaryConditionalOperatorClass:
2918   case CompoundLiteralExprClass:
2919   case ExtVectorElementExprClass:
2920   case DesignatedInitExprClass:
2921   case DesignatedInitUpdateExprClass:
2922   case ParenListExprClass:
2923   case CXXPseudoDestructorExprClass:
2924   case CXXStdInitializerListExprClass:
2925   case SubstNonTypeTemplateParmExprClass:
2926   case MaterializeTemporaryExprClass:
2927   case ShuffleVectorExprClass:
2928   case ConvertVectorExprClass:
2929   case AsTypeExprClass:
2930     // These have a side-effect if any subexpression does.
2931     break;
2932
2933   case UnaryOperatorClass:
2934     if (cast<UnaryOperator>(this)->isIncrementDecrementOp())
2935       return true;
2936     break;
2937
2938   case BinaryOperatorClass:
2939     if (cast<BinaryOperator>(this)->isAssignmentOp())
2940       return true;
2941     break;
2942
2943   case InitListExprClass:
2944     // FIXME: The children for an InitListExpr doesn't include the array filler.
2945     if (const Expr *E = cast<InitListExpr>(this)->getArrayFiller())
2946       if (E->HasSideEffects(Ctx, IncludePossibleEffects))
2947         return true;
2948     break;
2949
2950   case GenericSelectionExprClass:
2951     return cast<GenericSelectionExpr>(this)->getResultExpr()->
2952         HasSideEffects(Ctx, IncludePossibleEffects);
2953
2954   case ChooseExprClass:
2955     return cast<ChooseExpr>(this)->getChosenSubExpr()->HasSideEffects(
2956         Ctx, IncludePossibleEffects);
2957
2958   case CXXDefaultArgExprClass:
2959     return cast<CXXDefaultArgExpr>(this)->getExpr()->HasSideEffects(
2960         Ctx, IncludePossibleEffects);
2961
2962   case CXXDefaultInitExprClass: {
2963     const FieldDecl *FD = cast<CXXDefaultInitExpr>(this)->getField();
2964     if (const Expr *E = FD->getInClassInitializer())
2965       return E->HasSideEffects(Ctx, IncludePossibleEffects);
2966     // If we've not yet parsed the initializer, assume it has side-effects.
2967     return true;
2968   }
2969
2970   case CXXDynamicCastExprClass: {
2971     // A dynamic_cast expression has side-effects if it can throw.
2972     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(this);
2973     if (DCE->getTypeAsWritten()->isReferenceType() &&
2974         DCE->getCastKind() == CK_Dynamic)
2975       return true;
2976   } // Fall through.
2977   case ImplicitCastExprClass:
2978   case CStyleCastExprClass:
2979   case CXXStaticCastExprClass:
2980   case CXXReinterpretCastExprClass:
2981   case CXXConstCastExprClass:
2982   case CXXFunctionalCastExprClass: {
2983     // While volatile reads are side-effecting in both C and C++, we treat them
2984     // as having possible (not definite) side-effects. This allows idiomatic
2985     // code to behave without warning, such as sizeof(*v) for a volatile-
2986     // qualified pointer.
2987     if (!IncludePossibleEffects)
2988       break;
2989
2990     const CastExpr *CE = cast<CastExpr>(this);
2991     if (CE->getCastKind() == CK_LValueToRValue &&
2992         CE->getSubExpr()->getType().isVolatileQualified())
2993       return true;
2994     break;
2995   }
2996
2997   case CXXTypeidExprClass:
2998     // typeid might throw if its subexpression is potentially-evaluated, so has
2999     // side-effects in that case whether or not its subexpression does.
3000     return cast<CXXTypeidExpr>(this)->isPotentiallyEvaluated();
3001
3002   case CXXConstructExprClass:
3003   case CXXTemporaryObjectExprClass: {
3004     const CXXConstructExpr *CE = cast<CXXConstructExpr>(this);
3005     if (!CE->getConstructor()->isTrivial() && IncludePossibleEffects)
3006       return true;
3007     // A trivial constructor does not add any side-effects of its own. Just look
3008     // at its arguments.
3009     break;
3010   }
3011
3012   case CXXInheritedCtorInitExprClass: {
3013     const auto *ICIE = cast<CXXInheritedCtorInitExpr>(this);
3014     if (!ICIE->getConstructor()->isTrivial() && IncludePossibleEffects)
3015       return true;
3016     break;
3017   }
3018
3019   case LambdaExprClass: {
3020     const LambdaExpr *LE = cast<LambdaExpr>(this);
3021     for (LambdaExpr::capture_iterator I = LE->capture_begin(),
3022                                       E = LE->capture_end(); I != E; ++I)
3023       if (I->getCaptureKind() == LCK_ByCopy)
3024         // FIXME: Only has a side-effect if the variable is volatile or if
3025         // the copy would invoke a non-trivial copy constructor.
3026         return true;
3027     return false;
3028   }
3029
3030   case PseudoObjectExprClass: {
3031     // Only look for side-effects in the semantic form, and look past
3032     // OpaqueValueExpr bindings in that form.
3033     const PseudoObjectExpr *PO = cast<PseudoObjectExpr>(this);
3034     for (PseudoObjectExpr::const_semantics_iterator I = PO->semantics_begin(),
3035                                                     E = PO->semantics_end();
3036          I != E; ++I) {
3037       const Expr *Subexpr = *I;
3038       if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Subexpr))
3039         Subexpr = OVE->getSourceExpr();
3040       if (Subexpr->HasSideEffects(Ctx, IncludePossibleEffects))
3041         return true;
3042     }
3043     return false;
3044   }
3045
3046   case ObjCBoxedExprClass:
3047   case ObjCArrayLiteralClass:
3048   case ObjCDictionaryLiteralClass:
3049   case ObjCSelectorExprClass:
3050   case ObjCProtocolExprClass:
3051   case ObjCIsaExprClass:
3052   case ObjCIndirectCopyRestoreExprClass:
3053   case ObjCSubscriptRefExprClass:
3054   case ObjCBridgedCastExprClass:
3055   case ObjCMessageExprClass:
3056   case ObjCPropertyRefExprClass:
3057   // FIXME: Classify these cases better.
3058     if (IncludePossibleEffects)
3059       return true;
3060     break;
3061   }
3062
3063   // Recurse to children.
3064   for (const Stmt *SubStmt : children())
3065     if (SubStmt &&
3066         cast<Expr>(SubStmt)->HasSideEffects(Ctx, IncludePossibleEffects))
3067       return true;
3068
3069   return false;
3070 }
3071
3072 namespace {
3073   /// \brief Look for a call to a non-trivial function within an expression.
3074   class NonTrivialCallFinder : public ConstEvaluatedExprVisitor<NonTrivialCallFinder>
3075   {
3076     typedef ConstEvaluatedExprVisitor<NonTrivialCallFinder> Inherited;
3077
3078     bool NonTrivial;
3079     
3080   public:
3081     explicit NonTrivialCallFinder(const ASTContext &Context)
3082       : Inherited(Context), NonTrivial(false) { }
3083     
3084     bool hasNonTrivialCall() const { return NonTrivial; }
3085
3086     void VisitCallExpr(const CallExpr *E) {
3087       if (const CXXMethodDecl *Method
3088           = dyn_cast_or_null<const CXXMethodDecl>(E->getCalleeDecl())) {
3089         if (Method->isTrivial()) {
3090           // Recurse to children of the call.
3091           Inherited::VisitStmt(E);
3092           return;
3093         }
3094       }
3095       
3096       NonTrivial = true;
3097     }
3098
3099     void VisitCXXConstructExpr(const CXXConstructExpr *E) {
3100       if (E->getConstructor()->isTrivial()) {
3101         // Recurse to children of the call.
3102         Inherited::VisitStmt(E);
3103         return;
3104       }
3105       
3106       NonTrivial = true;
3107     }
3108
3109     void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) {
3110       if (E->getTemporary()->getDestructor()->isTrivial()) {
3111         Inherited::VisitStmt(E);
3112         return;
3113       }
3114       
3115       NonTrivial = true;
3116     }
3117   };
3118 }
3119
3120 bool Expr::hasNonTrivialCall(const ASTContext &Ctx) const {
3121   NonTrivialCallFinder Finder(Ctx);
3122   Finder.Visit(this);
3123   return Finder.hasNonTrivialCall();  
3124 }
3125
3126 /// isNullPointerConstant - C99 6.3.2.3p3 - Return whether this is a null 
3127 /// pointer constant or not, as well as the specific kind of constant detected.
3128 /// Null pointer constants can be integer constant expressions with the
3129 /// value zero, casts of zero to void*, nullptr (C++0X), or __null
3130 /// (a GNU extension).
3131 Expr::NullPointerConstantKind
3132 Expr::isNullPointerConstant(ASTContext &Ctx,
3133                             NullPointerConstantValueDependence NPC) const {
3134   if (isValueDependent() &&
3135       (!Ctx.getLangOpts().CPlusPlus11 || Ctx.getLangOpts().MSVCCompat)) {
3136     switch (NPC) {
3137     case NPC_NeverValueDependent:
3138       llvm_unreachable("Unexpected value dependent expression!");
3139     case NPC_ValueDependentIsNull:
3140       if (isTypeDependent() || getType()->isIntegralType(Ctx))
3141         return NPCK_ZeroExpression;
3142       else
3143         return NPCK_NotNull;
3144         
3145     case NPC_ValueDependentIsNotNull:
3146       return NPCK_NotNull;
3147     }
3148   }
3149
3150   // Strip off a cast to void*, if it exists. Except in C++.
3151   if (const ExplicitCastExpr *CE = dyn_cast<ExplicitCastExpr>(this)) {
3152     if (!Ctx.getLangOpts().CPlusPlus) {
3153       // Check that it is a cast to void*.
3154       if (const PointerType *PT = CE->getType()->getAs<PointerType>()) {
3155         QualType Pointee = PT->getPointeeType();
3156         Qualifiers Q = Pointee.getQualifiers();
3157         // In OpenCL v2.0 generic address space acts as a placeholder
3158         // and should be ignored.
3159         bool IsASValid = true;
3160         if (Ctx.getLangOpts().OpenCLVersion >= 200) {
3161           if (Pointee.getAddressSpace() == LangAS::opencl_generic)
3162             Q.removeAddressSpace();
3163           else
3164             IsASValid = false;
3165         }
3166
3167         if (IsASValid && !Q.hasQualifiers() &&
3168             Pointee->isVoidType() &&                      // to void*
3169             CE->getSubExpr()->getType()->isIntegerType()) // from int.
3170           return CE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3171       }
3172     }
3173   } else if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(this)) {
3174     // Ignore the ImplicitCastExpr type entirely.
3175     return ICE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3176   } else if (const ParenExpr *PE = dyn_cast<ParenExpr>(this)) {
3177     // Accept ((void*)0) as a null pointer constant, as many other
3178     // implementations do.
3179     return PE->getSubExpr()->isNullPointerConstant(Ctx, NPC);
3180   } else if (const GenericSelectionExpr *GE =
3181                dyn_cast<GenericSelectionExpr>(this)) {
3182     if (GE->isResultDependent())
3183       return NPCK_NotNull;
3184     return GE->getResultExpr()->isNullPointerConstant(Ctx, NPC);
3185   } else if (const ChooseExpr *CE = dyn_cast<ChooseExpr>(this)) {
3186     if (CE->isConditionDependent())
3187       return NPCK_NotNull;
3188     return CE->getChosenSubExpr()->isNullPointerConstant(Ctx, NPC);
3189   } else if (const CXXDefaultArgExpr *DefaultArg
3190                = dyn_cast<CXXDefaultArgExpr>(this)) {
3191     // See through default argument expressions.
3192     return DefaultArg->getExpr()->isNullPointerConstant(Ctx, NPC);
3193   } else if (const CXXDefaultInitExpr *DefaultInit
3194                = dyn_cast<CXXDefaultInitExpr>(this)) {
3195     // See through default initializer expressions.
3196     return DefaultInit->getExpr()->isNullPointerConstant(Ctx, NPC);
3197   } else if (isa<GNUNullExpr>(this)) {
3198     // The GNU __null extension is always a null pointer constant.
3199     return NPCK_GNUNull;
3200   } else if (const MaterializeTemporaryExpr *M 
3201                                    = dyn_cast<MaterializeTemporaryExpr>(this)) {
3202     return M->GetTemporaryExpr()->isNullPointerConstant(Ctx, NPC);
3203   } else if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(this)) {
3204     if (const Expr *Source = OVE->getSourceExpr())
3205       return Source->isNullPointerConstant(Ctx, NPC);
3206   }
3207
3208   // C++11 nullptr_t is always a null pointer constant.
3209   if (getType()->isNullPtrType())
3210     return NPCK_CXX11_nullptr;
3211
3212   if (const RecordType *UT = getType()->getAsUnionType())
3213     if (!Ctx.getLangOpts().CPlusPlus11 &&
3214         UT && UT->getDecl()->hasAttr<TransparentUnionAttr>())
3215       if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(this)){
3216         const Expr *InitExpr = CLE->getInitializer();
3217         if (const InitListExpr *ILE = dyn_cast<InitListExpr>(InitExpr))
3218           return ILE->getInit(0)->isNullPointerConstant(Ctx, NPC);
3219       }
3220   // This expression must be an integer type.
3221   if (!getType()->isIntegerType() || 
3222       (Ctx.getLangOpts().CPlusPlus && getType()->isEnumeralType()))
3223     return NPCK_NotNull;
3224
3225   if (Ctx.getLangOpts().CPlusPlus11) {
3226     // C++11 [conv.ptr]p1: A null pointer constant is an integer literal with
3227     // value zero or a prvalue of type std::nullptr_t.
3228     // Microsoft mode permits C++98 rules reflecting MSVC behavior.
3229     const IntegerLiteral *Lit = dyn_cast<IntegerLiteral>(this);
3230     if (Lit && !Lit->getValue())
3231       return NPCK_ZeroLiteral;
3232     else if (!Ctx.getLangOpts().MSVCCompat || !isCXX98IntegralConstantExpr(Ctx))
3233       return NPCK_NotNull;
3234   } else {
3235     // If we have an integer constant expression, we need to *evaluate* it and
3236     // test for the value 0.
3237     if (!isIntegerConstantExpr(Ctx))
3238       return NPCK_NotNull;
3239   }
3240
3241   if (EvaluateKnownConstInt(Ctx) != 0)
3242     return NPCK_NotNull;
3243
3244   if (isa<IntegerLiteral>(this))
3245     return NPCK_ZeroLiteral;
3246   return NPCK_ZeroExpression;
3247 }
3248
3249 /// \brief If this expression is an l-value for an Objective C
3250 /// property, find the underlying property reference expression.
3251 const ObjCPropertyRefExpr *Expr::getObjCProperty() const {
3252   const Expr *E = this;
3253   while (true) {
3254     assert((E->getValueKind() == VK_LValue &&
3255             E->getObjectKind() == OK_ObjCProperty) &&
3256            "expression is not a property reference");
3257     E = E->IgnoreParenCasts();
3258     if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3259       if (BO->getOpcode() == BO_Comma) {
3260         E = BO->getRHS();
3261         continue;
3262       }
3263     }
3264
3265     break;
3266   }
3267
3268   return cast<ObjCPropertyRefExpr>(E);
3269 }
3270
3271 bool Expr::isObjCSelfExpr() const {
3272   const Expr *E = IgnoreParenImpCasts();
3273
3274   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
3275   if (!DRE)
3276     return false;
3277
3278   const ImplicitParamDecl *Param = dyn_cast<ImplicitParamDecl>(DRE->getDecl());
3279   if (!Param)
3280     return false;
3281
3282   const ObjCMethodDecl *M = dyn_cast<ObjCMethodDecl>(Param->getDeclContext());
3283   if (!M)
3284     return false;
3285
3286   return M->getSelfDecl() == Param;
3287 }
3288
3289 FieldDecl *Expr::getSourceBitField() {
3290   Expr *E = this->IgnoreParens();
3291
3292   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3293     if (ICE->getCastKind() == CK_LValueToRValue ||
3294         (ICE->getValueKind() != VK_RValue && ICE->getCastKind() == CK_NoOp))
3295       E = ICE->getSubExpr()->IgnoreParens();
3296     else
3297       break;
3298   }
3299
3300   if (MemberExpr *MemRef = dyn_cast<MemberExpr>(E))
3301     if (FieldDecl *Field = dyn_cast<FieldDecl>(MemRef->getMemberDecl()))
3302       if (Field->isBitField())
3303         return Field;
3304
3305   if (ObjCIvarRefExpr *IvarRef = dyn_cast<ObjCIvarRefExpr>(E))
3306     if (FieldDecl *Ivar = dyn_cast<FieldDecl>(IvarRef->getDecl()))
3307       if (Ivar->isBitField())
3308         return Ivar;
3309
3310   if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E))
3311     if (FieldDecl *Field = dyn_cast<FieldDecl>(DeclRef->getDecl()))
3312       if (Field->isBitField())
3313         return Field;
3314
3315   if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(E)) {
3316     if (BinOp->isAssignmentOp() && BinOp->getLHS())
3317       return BinOp->getLHS()->getSourceBitField();
3318
3319     if (BinOp->getOpcode() == BO_Comma && BinOp->getRHS())
3320       return BinOp->getRHS()->getSourceBitField();
3321   }
3322
3323   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(E))
3324     if (UnOp->isPrefix() && UnOp->isIncrementDecrementOp())
3325       return UnOp->getSubExpr()->getSourceBitField();
3326
3327   return nullptr;
3328 }
3329
3330 bool Expr::refersToVectorElement() const {
3331   const Expr *E = this->IgnoreParens();
3332   
3333   while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
3334     if (ICE->getValueKind() != VK_RValue &&
3335         ICE->getCastKind() == CK_NoOp)
3336       E = ICE->getSubExpr()->IgnoreParens();
3337     else
3338       break;
3339   }
3340   
3341   if (const ArraySubscriptExpr *ASE = dyn_cast<ArraySubscriptExpr>(E))
3342     return ASE->getBase()->getType()->isVectorType();
3343
3344   if (isa<ExtVectorElementExpr>(E))
3345     return true;
3346
3347   return false;
3348 }
3349
3350 bool Expr::refersToGlobalRegisterVar() const {
3351   const Expr *E = this->IgnoreParenImpCasts();
3352
3353   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
3354     if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()))
3355       if (VD->getStorageClass() == SC_Register &&
3356           VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
3357         return true;
3358
3359   return false;
3360 }
3361
3362 /// isArrow - Return true if the base expression is a pointer to vector,
3363 /// return false if the base expression is a vector.
3364 bool ExtVectorElementExpr::isArrow() const {
3365   return getBase()->getType()->isPointerType();
3366 }
3367
3368 unsigned ExtVectorElementExpr::getNumElements() const {
3369   if (const VectorType *VT = getType()->getAs<VectorType>())
3370     return VT->getNumElements();
3371   return 1;
3372 }
3373
3374 /// containsDuplicateElements - Return true if any element access is repeated.
3375 bool ExtVectorElementExpr::containsDuplicateElements() const {
3376   // FIXME: Refactor this code to an accessor on the AST node which returns the
3377   // "type" of component access, and share with code below and in Sema.
3378   StringRef Comp = Accessor->getName();
3379
3380   // Halving swizzles do not contain duplicate elements.
3381   if (Comp == "hi" || Comp == "lo" || Comp == "even" || Comp == "odd")
3382     return false;
3383
3384   // Advance past s-char prefix on hex swizzles.
3385   if (Comp[0] == 's' || Comp[0] == 'S')
3386     Comp = Comp.substr(1);
3387
3388   for (unsigned i = 0, e = Comp.size(); i != e; ++i)
3389     if (Comp.substr(i + 1).find(Comp[i]) != StringRef::npos)
3390         return true;
3391
3392   return false;
3393 }
3394
3395 /// getEncodedElementAccess - We encode the fields as a llvm ConstantArray.
3396 void ExtVectorElementExpr::getEncodedElementAccess(
3397     SmallVectorImpl<uint32_t> &Elts) const {
3398   StringRef Comp = Accessor->getName();
3399   if (Comp[0] == 's' || Comp[0] == 'S')
3400     Comp = Comp.substr(1);
3401
3402   bool isHi =   Comp == "hi";
3403   bool isLo =   Comp == "lo";
3404   bool isEven = Comp == "even";
3405   bool isOdd  = Comp == "odd";
3406
3407   for (unsigned i = 0, e = getNumElements(); i != e; ++i) {
3408     uint64_t Index;
3409
3410     if (isHi)
3411       Index = e + i;
3412     else if (isLo)
3413       Index = i;
3414     else if (isEven)
3415       Index = 2 * i;
3416     else if (isOdd)
3417       Index = 2 * i + 1;
3418     else
3419       Index = ExtVectorType::getAccessorIdx(Comp[i]);
3420
3421     Elts.push_back(Index);
3422   }
3423 }
3424
3425 ShuffleVectorExpr::ShuffleVectorExpr(const ASTContext &C, ArrayRef<Expr*> args,
3426                                      QualType Type, SourceLocation BLoc,
3427                                      SourceLocation RP) 
3428    : Expr(ShuffleVectorExprClass, Type, VK_RValue, OK_Ordinary,
3429           Type->isDependentType(), Type->isDependentType(),
3430           Type->isInstantiationDependentType(),
3431           Type->containsUnexpandedParameterPack()),
3432      BuiltinLoc(BLoc), RParenLoc(RP), NumExprs(args.size())
3433 {
3434   SubExprs = new (C) Stmt*[args.size()];
3435   for (unsigned i = 0; i != args.size(); i++) {
3436     if (args[i]->isTypeDependent())
3437       ExprBits.TypeDependent = true;
3438     if (args[i]->isValueDependent())
3439       ExprBits.ValueDependent = true;
3440     if (args[i]->isInstantiationDependent())
3441       ExprBits.InstantiationDependent = true;
3442     if (args[i]->containsUnexpandedParameterPack())
3443       ExprBits.ContainsUnexpandedParameterPack = true;
3444
3445     SubExprs[i] = args[i];
3446   }
3447 }
3448
3449 void ShuffleVectorExpr::setExprs(const ASTContext &C, ArrayRef<Expr *> Exprs) {
3450   if (SubExprs) C.Deallocate(SubExprs);
3451
3452   this->NumExprs = Exprs.size();
3453   SubExprs = new (C) Stmt*[NumExprs];
3454   memcpy(SubExprs, Exprs.data(), sizeof(Expr *) * Exprs.size());
3455 }
3456
3457 GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context,
3458                                SourceLocation GenericLoc, Expr *ControllingExpr,
3459                                ArrayRef<TypeSourceInfo*> AssocTypes,
3460                                ArrayRef<Expr*> AssocExprs,
3461                                SourceLocation DefaultLoc,
3462                                SourceLocation RParenLoc,
3463                                bool ContainsUnexpandedParameterPack,
3464                                unsigned ResultIndex)
3465   : Expr(GenericSelectionExprClass,
3466          AssocExprs[ResultIndex]->getType(),
3467          AssocExprs[ResultIndex]->getValueKind(),
3468          AssocExprs[ResultIndex]->getObjectKind(),
3469          AssocExprs[ResultIndex]->isTypeDependent(),
3470          AssocExprs[ResultIndex]->isValueDependent(),
3471          AssocExprs[ResultIndex]->isInstantiationDependent(),
3472          ContainsUnexpandedParameterPack),
3473     AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
3474     SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
3475     NumAssocs(AssocExprs.size()), ResultIndex(ResultIndex),
3476     GenericLoc(GenericLoc), DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
3477   SubExprs[CONTROLLING] = ControllingExpr;
3478   assert(AssocTypes.size() == AssocExprs.size());
3479   std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
3480   std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
3481 }
3482
3483 GenericSelectionExpr::GenericSelectionExpr(const ASTContext &Context,
3484                                SourceLocation GenericLoc, Expr *ControllingExpr,
3485                                ArrayRef<TypeSourceInfo*> AssocTypes,
3486                                ArrayRef<Expr*> AssocExprs,
3487                                SourceLocation DefaultLoc,
3488                                SourceLocation RParenLoc,
3489                                bool ContainsUnexpandedParameterPack)
3490   : Expr(GenericSelectionExprClass,
3491          Context.DependentTy,
3492          VK_RValue,
3493          OK_Ordinary,
3494          /*isTypeDependent=*/true,
3495          /*isValueDependent=*/true,
3496          /*isInstantiationDependent=*/true,
3497          ContainsUnexpandedParameterPack),
3498     AssocTypes(new (Context) TypeSourceInfo*[AssocTypes.size()]),
3499     SubExprs(new (Context) Stmt*[END_EXPR+AssocExprs.size()]),
3500     NumAssocs(AssocExprs.size()), ResultIndex(-1U), GenericLoc(GenericLoc),
3501     DefaultLoc(DefaultLoc), RParenLoc(RParenLoc) {
3502   SubExprs[CONTROLLING] = ControllingExpr;
3503   assert(AssocTypes.size() == AssocExprs.size());
3504   std::copy(AssocTypes.begin(), AssocTypes.end(), this->AssocTypes);
3505   std::copy(AssocExprs.begin(), AssocExprs.end(), SubExprs+END_EXPR);
3506 }
3507
3508 //===----------------------------------------------------------------------===//
3509 //  DesignatedInitExpr
3510 //===----------------------------------------------------------------------===//
3511
3512 IdentifierInfo *DesignatedInitExpr::Designator::getFieldName() const {
3513   assert(Kind == FieldDesignator && "Only valid on a field designator");
3514   if (Field.NameOrField & 0x01)
3515     return reinterpret_cast<IdentifierInfo *>(Field.NameOrField&~0x01);
3516   else
3517     return getField()->getIdentifier();
3518 }
3519
3520 DesignatedInitExpr::DesignatedInitExpr(const ASTContext &C, QualType Ty,
3521                                        llvm::ArrayRef<Designator> Designators,
3522                                        SourceLocation EqualOrColonLoc,
3523                                        bool GNUSyntax,
3524                                        ArrayRef<Expr*> IndexExprs,
3525                                        Expr *Init)
3526   : Expr(DesignatedInitExprClass, Ty,
3527          Init->getValueKind(), Init->getObjectKind(),
3528          Init->isTypeDependent(), Init->isValueDependent(),
3529          Init->isInstantiationDependent(),
3530          Init->containsUnexpandedParameterPack()),
3531     EqualOrColonLoc(EqualOrColonLoc), GNUSyntax(GNUSyntax),
3532     NumDesignators(Designators.size()), NumSubExprs(IndexExprs.size() + 1) {
3533   this->Designators = new (C) Designator[NumDesignators];
3534
3535   // Record the initializer itself.
3536   child_iterator Child = child_begin();
3537   *Child++ = Init;
3538
3539   // Copy the designators and their subexpressions, computing
3540   // value-dependence along the way.
3541   unsigned IndexIdx = 0;
3542   for (unsigned I = 0; I != NumDesignators; ++I) {
3543     this->Designators[I] = Designators[I];
3544
3545     if (this->Designators[I].isArrayDesignator()) {
3546       // Compute type- and value-dependence.
3547       Expr *Index = IndexExprs[IndexIdx];
3548       if (Index->isTypeDependent() || Index->isValueDependent())
3549         ExprBits.TypeDependent = ExprBits.ValueDependent = true;
3550       if (Index->isInstantiationDependent())
3551         ExprBits.InstantiationDependent = true;
3552       // Propagate unexpanded parameter packs.
3553       if (Index->containsUnexpandedParameterPack())
3554         ExprBits.ContainsUnexpandedParameterPack = true;
3555
3556       // Copy the index expressions into permanent storage.
3557       *Child++ = IndexExprs[IndexIdx++];
3558     } else if (this->Designators[I].isArrayRangeDesignator()) {
3559       // Compute type- and value-dependence.
3560       Expr *Start = IndexExprs[IndexIdx];
3561       Expr *End = IndexExprs[IndexIdx + 1];
3562       if (Start->isTypeDependent() || Start->isValueDependent() ||
3563           End->isTypeDependent() || End->isValueDependent()) {
3564         ExprBits.TypeDependent = ExprBits.ValueDependent = true;
3565         ExprBits.InstantiationDependent = true;
3566       } else if (Start->isInstantiationDependent() || 
3567                  End->isInstantiationDependent()) {
3568         ExprBits.InstantiationDependent = true;
3569       }
3570                  
3571       // Propagate unexpanded parameter packs.
3572       if (Start->containsUnexpandedParameterPack() ||
3573           End->containsUnexpandedParameterPack())
3574         ExprBits.ContainsUnexpandedParameterPack = true;
3575
3576       // Copy the start/end expressions into permanent storage.
3577       *Child++ = IndexExprs[IndexIdx++];
3578       *Child++ = IndexExprs[IndexIdx++];
3579     }
3580   }
3581
3582   assert(IndexIdx == IndexExprs.size() && "Wrong number of index expressions");
3583 }
3584
3585 DesignatedInitExpr *
3586 DesignatedInitExpr::Create(const ASTContext &C,
3587                            llvm::ArrayRef<Designator> Designators,
3588                            ArrayRef<Expr*> IndexExprs,
3589                            SourceLocation ColonOrEqualLoc,
3590                            bool UsesColonSyntax, Expr *Init) {
3591   void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(IndexExprs.size() + 1),
3592                          llvm::alignOf<DesignatedInitExpr>());
3593   return new (Mem) DesignatedInitExpr(C, C.VoidTy, Designators,
3594                                       ColonOrEqualLoc, UsesColonSyntax,
3595                                       IndexExprs, Init);
3596 }
3597
3598 DesignatedInitExpr *DesignatedInitExpr::CreateEmpty(const ASTContext &C,
3599                                                     unsigned NumIndexExprs) {
3600   void *Mem = C.Allocate(totalSizeToAlloc<Stmt *>(NumIndexExprs + 1),
3601                          llvm::alignOf<DesignatedInitExpr>());
3602   return new (Mem) DesignatedInitExpr(NumIndexExprs + 1);
3603 }
3604
3605 void DesignatedInitExpr::setDesignators(const ASTContext &C,
3606                                         const Designator *Desigs,
3607                                         unsigned NumDesigs) {
3608   Designators = new (C) Designator[NumDesigs];
3609   NumDesignators = NumDesigs;
3610   for (unsigned I = 0; I != NumDesigs; ++I)
3611     Designators[I] = Desigs[I];
3612 }
3613
3614 SourceRange DesignatedInitExpr::getDesignatorsSourceRange() const {
3615   DesignatedInitExpr *DIE = const_cast<DesignatedInitExpr*>(this);
3616   if (size() == 1)
3617     return DIE->getDesignator(0)->getSourceRange();
3618   return SourceRange(DIE->getDesignator(0)->getLocStart(),
3619                      DIE->getDesignator(size()-1)->getLocEnd());
3620 }
3621
3622 SourceLocation DesignatedInitExpr::getLocStart() const {
3623   SourceLocation StartLoc;
3624   auto *DIE = const_cast<DesignatedInitExpr *>(this);
3625   Designator &First = *DIE->getDesignator(0);
3626   if (First.isFieldDesignator()) {
3627     if (GNUSyntax)
3628       StartLoc = SourceLocation::getFromRawEncoding(First.Field.FieldLoc);
3629     else
3630       StartLoc = SourceLocation::getFromRawEncoding(First.Field.DotLoc);
3631   } else
3632     StartLoc =
3633       SourceLocation::getFromRawEncoding(First.ArrayOrRange.LBracketLoc);
3634   return StartLoc;
3635 }
3636
3637 SourceLocation DesignatedInitExpr::getLocEnd() const {
3638   return getInit()->getLocEnd();
3639 }
3640
3641 Expr *DesignatedInitExpr::getArrayIndex(const Designator& D) const {
3642   assert(D.Kind == Designator::ArrayDesignator && "Requires array designator");
3643   return getSubExpr(D.ArrayOrRange.Index + 1);
3644 }
3645
3646 Expr *DesignatedInitExpr::getArrayRangeStart(const Designator &D) const {
3647   assert(D.Kind == Designator::ArrayRangeDesignator &&
3648          "Requires array range designator");
3649   return getSubExpr(D.ArrayOrRange.Index + 1);
3650 }
3651
3652 Expr *DesignatedInitExpr::getArrayRangeEnd(const Designator &D) const {
3653   assert(D.Kind == Designator::ArrayRangeDesignator &&
3654          "Requires array range designator");
3655   return getSubExpr(D.ArrayOrRange.Index + 2);
3656 }
3657
3658 /// \brief Replaces the designator at index @p Idx with the series
3659 /// of designators in [First, Last).
3660 void DesignatedInitExpr::ExpandDesignator(const ASTContext &C, unsigned Idx,
3661                                           const Designator *First,
3662                                           const Designator *Last) {
3663   unsigned NumNewDesignators = Last - First;
3664   if (NumNewDesignators == 0) {
3665     std::copy_backward(Designators + Idx + 1,
3666                        Designators + NumDesignators,
3667                        Designators + Idx);
3668     --NumNewDesignators;
3669     return;
3670   } else if (NumNewDesignators == 1) {
3671     Designators[Idx] = *First;
3672     return;
3673   }
3674
3675   Designator *NewDesignators
3676     = new (C) Designator[NumDesignators - 1 + NumNewDesignators];
3677   std::copy(Designators, Designators + Idx, NewDesignators);
3678   std::copy(First, Last, NewDesignators + Idx);
3679   std::copy(Designators + Idx + 1, Designators + NumDesignators,
3680             NewDesignators + Idx + NumNewDesignators);
3681   Designators = NewDesignators;
3682   NumDesignators = NumDesignators - 1 + NumNewDesignators;
3683 }
3684
3685 DesignatedInitUpdateExpr::DesignatedInitUpdateExpr(const ASTContext &C,
3686     SourceLocation lBraceLoc, Expr *baseExpr, SourceLocation rBraceLoc)
3687   : Expr(DesignatedInitUpdateExprClass, baseExpr->getType(), VK_RValue,
3688          OK_Ordinary, false, false, false, false) {
3689   BaseAndUpdaterExprs[0] = baseExpr;
3690
3691   InitListExpr *ILE = new (C) InitListExpr(C, lBraceLoc, None, rBraceLoc);
3692   ILE->setType(baseExpr->getType());
3693   BaseAndUpdaterExprs[1] = ILE;
3694 }
3695
3696 SourceLocation DesignatedInitUpdateExpr::getLocStart() const {
3697   return getBase()->getLocStart();
3698 }
3699
3700 SourceLocation DesignatedInitUpdateExpr::getLocEnd() const {
3701   return getBase()->getLocEnd();
3702 }
3703
3704 ParenListExpr::ParenListExpr(const ASTContext& C, SourceLocation lparenloc,
3705                              ArrayRef<Expr*> exprs,
3706                              SourceLocation rparenloc)
3707   : Expr(ParenListExprClass, QualType(), VK_RValue, OK_Ordinary,
3708          false, false, false, false),
3709     NumExprs(exprs.size()), LParenLoc(lparenloc), RParenLoc(rparenloc) {
3710   Exprs = new (C) Stmt*[exprs.size()];
3711   for (unsigned i = 0; i != exprs.size(); ++i) {
3712     if (exprs[i]->isTypeDependent())
3713       ExprBits.TypeDependent = true;
3714     if (exprs[i]->isValueDependent())
3715       ExprBits.ValueDependent = true;
3716     if (exprs[i]->isInstantiationDependent())
3717       ExprBits.InstantiationDependent = true;
3718     if (exprs[i]->containsUnexpandedParameterPack())
3719       ExprBits.ContainsUnexpandedParameterPack = true;
3720
3721     Exprs[i] = exprs[i];
3722   }
3723 }
3724
3725 const OpaqueValueExpr *OpaqueValueExpr::findInCopyConstruct(const Expr *e) {
3726   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(e))
3727     e = ewc->getSubExpr();
3728   if (const MaterializeTemporaryExpr *m = dyn_cast<MaterializeTemporaryExpr>(e))
3729     e = m->GetTemporaryExpr();
3730   e = cast<CXXConstructExpr>(e)->getArg(0);
3731   while (const ImplicitCastExpr *ice = dyn_cast<ImplicitCastExpr>(e))
3732     e = ice->getSubExpr();
3733   return cast<OpaqueValueExpr>(e);
3734 }
3735
3736 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &Context,
3737                                            EmptyShell sh,
3738                                            unsigned numSemanticExprs) {
3739   void *buffer =
3740       Context.Allocate(totalSizeToAlloc<Expr *>(1 + numSemanticExprs),
3741                        llvm::alignOf<PseudoObjectExpr>());
3742   return new(buffer) PseudoObjectExpr(sh, numSemanticExprs);
3743 }
3744
3745 PseudoObjectExpr::PseudoObjectExpr(EmptyShell shell, unsigned numSemanticExprs)
3746   : Expr(PseudoObjectExprClass, shell) {
3747   PseudoObjectExprBits.NumSubExprs = numSemanticExprs + 1;
3748 }
3749
3750 PseudoObjectExpr *PseudoObjectExpr::Create(const ASTContext &C, Expr *syntax,
3751                                            ArrayRef<Expr*> semantics,
3752                                            unsigned resultIndex) {
3753   assert(syntax && "no syntactic expression!");
3754   assert(semantics.size() && "no semantic expressions!");
3755
3756   QualType type;
3757   ExprValueKind VK;
3758   if (resultIndex == NoResult) {
3759     type = C.VoidTy;
3760     VK = VK_RValue;
3761   } else {
3762     assert(resultIndex < semantics.size());
3763     type = semantics[resultIndex]->getType();
3764     VK = semantics[resultIndex]->getValueKind();
3765     assert(semantics[resultIndex]->getObjectKind() == OK_Ordinary);
3766   }
3767
3768   void *buffer = C.Allocate(totalSizeToAlloc<Expr *>(semantics.size() + 1),
3769                             llvm::alignOf<PseudoObjectExpr>());
3770   return new(buffer) PseudoObjectExpr(type, VK, syntax, semantics,
3771                                       resultIndex);
3772 }
3773
3774 PseudoObjectExpr::PseudoObjectExpr(QualType type, ExprValueKind VK,
3775                                    Expr *syntax, ArrayRef<Expr*> semantics,
3776                                    unsigned resultIndex)
3777   : Expr(PseudoObjectExprClass, type, VK, OK_Ordinary,
3778          /*filled in at end of ctor*/ false, false, false, false) {
3779   PseudoObjectExprBits.NumSubExprs = semantics.size() + 1;
3780   PseudoObjectExprBits.ResultIndex = resultIndex + 1;
3781
3782   for (unsigned i = 0, e = semantics.size() + 1; i != e; ++i) {
3783     Expr *E = (i == 0 ? syntax : semantics[i-1]);
3784     getSubExprsBuffer()[i] = E;
3785
3786     if (E->isTypeDependent())
3787       ExprBits.TypeDependent = true;
3788     if (E->isValueDependent())
3789       ExprBits.ValueDependent = true;
3790     if (E->isInstantiationDependent())
3791       ExprBits.InstantiationDependent = true;
3792     if (E->containsUnexpandedParameterPack())
3793       ExprBits.ContainsUnexpandedParameterPack = true;
3794
3795     if (isa<OpaqueValueExpr>(E))
3796       assert(cast<OpaqueValueExpr>(E)->getSourceExpr() != nullptr &&
3797              "opaque-value semantic expressions for pseudo-object "
3798              "operations must have sources");
3799   }
3800 }
3801
3802 //===----------------------------------------------------------------------===//
3803 //  Child Iterators for iterating over subexpressions/substatements
3804 //===----------------------------------------------------------------------===//
3805
3806 // UnaryExprOrTypeTraitExpr
3807 Stmt::child_range UnaryExprOrTypeTraitExpr::children() {
3808   // If this is of a type and the type is a VLA type (and not a typedef), the
3809   // size expression of the VLA needs to be treated as an executable expression.
3810   // Why isn't this weirdness documented better in StmtIterator?
3811   if (isArgumentType()) {
3812     if (const VariableArrayType* T = dyn_cast<VariableArrayType>(
3813                                    getArgumentType().getTypePtr()))
3814       return child_range(child_iterator(T), child_iterator());
3815     return child_range(child_iterator(), child_iterator());
3816   }
3817   return child_range(&Argument.Ex, &Argument.Ex + 1);
3818 }
3819
3820 AtomicExpr::AtomicExpr(SourceLocation BLoc, ArrayRef<Expr*> args,
3821                        QualType t, AtomicOp op, SourceLocation RP)
3822   : Expr(AtomicExprClass, t, VK_RValue, OK_Ordinary,
3823          false, false, false, false),
3824     NumSubExprs(args.size()), BuiltinLoc(BLoc), RParenLoc(RP), Op(op)
3825 {
3826   assert(args.size() == getNumSubExprs(op) && "wrong number of subexpressions");
3827   for (unsigned i = 0; i != args.size(); i++) {
3828     if (args[i]->isTypeDependent())
3829       ExprBits.TypeDependent = true;
3830     if (args[i]->isValueDependent())
3831       ExprBits.ValueDependent = true;
3832     if (args[i]->isInstantiationDependent())
3833       ExprBits.InstantiationDependent = true;
3834     if (args[i]->containsUnexpandedParameterPack())
3835       ExprBits.ContainsUnexpandedParameterPack = true;
3836
3837     SubExprs[i] = args[i];
3838   }
3839 }
3840
3841 unsigned AtomicExpr::getNumSubExprs(AtomicOp Op) {
3842   switch (Op) {
3843   case AO__c11_atomic_init:
3844   case AO__c11_atomic_load:
3845   case AO__atomic_load_n:
3846     return 2;
3847
3848   case AO__c11_atomic_store:
3849   case AO__c11_atomic_exchange:
3850   case AO__atomic_load:
3851   case AO__atomic_store:
3852   case AO__atomic_store_n:
3853   case AO__atomic_exchange_n:
3854   case AO__c11_atomic_fetch_add:
3855   case AO__c11_atomic_fetch_sub:
3856   case AO__c11_atomic_fetch_and:
3857   case AO__c11_atomic_fetch_or:
3858   case AO__c11_atomic_fetch_xor:
3859   case AO__atomic_fetch_add:
3860   case AO__atomic_fetch_sub:
3861   case AO__atomic_fetch_and:
3862   case AO__atomic_fetch_or:
3863   case AO__atomic_fetch_xor:
3864   case AO__atomic_fetch_nand:
3865   case AO__atomic_add_fetch:
3866   case AO__atomic_sub_fetch:
3867   case AO__atomic_and_fetch:
3868   case AO__atomic_or_fetch:
3869   case AO__atomic_xor_fetch:
3870   case AO__atomic_nand_fetch:
3871     return 3;
3872
3873   case AO__atomic_exchange:
3874     return 4;
3875
3876   case AO__c11_atomic_compare_exchange_strong:
3877   case AO__c11_atomic_compare_exchange_weak:
3878     return 5;
3879
3880   case AO__atomic_compare_exchange:
3881   case AO__atomic_compare_exchange_n:
3882     return 6;
3883   }
3884   llvm_unreachable("unknown atomic op");
3885 }
3886
3887 QualType OMPArraySectionExpr::getBaseOriginalType(const Expr *Base) {
3888   unsigned ArraySectionCount = 0;
3889   while (auto *OASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParens())) {
3890     Base = OASE->getBase();
3891     ++ArraySectionCount;
3892   }
3893   while (auto *ASE =
3894              dyn_cast<ArraySubscriptExpr>(Base->IgnoreParenImpCasts())) {
3895     Base = ASE->getBase();
3896     ++ArraySectionCount;
3897   }
3898   Base = Base->IgnoreParenImpCasts();
3899   auto OriginalTy = Base->getType();
3900   if (auto *DRE = dyn_cast<DeclRefExpr>(Base))
3901     if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
3902       OriginalTy = PVD->getOriginalType().getNonReferenceType();
3903
3904   for (unsigned Cnt = 0; Cnt < ArraySectionCount; ++Cnt) {
3905     if (OriginalTy->isAnyPointerType())
3906       OriginalTy = OriginalTy->getPointeeType();
3907     else {
3908       assert (OriginalTy->isArrayType());
3909       OriginalTy = OriginalTy->castAsArrayTypeUnsafe()->getElementType();
3910     }
3911   }
3912   return OriginalTy;
3913 }