]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/AST/ExprConstant.cpp
Merge ^/head r293016 through r293035.
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / AST / ExprConstant.cpp
1 //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Expr constant evaluator.
11 //
12 // Constant expression evaluation produces four main results:
13 //
14 //  * A success/failure flag indicating whether constant folding was successful.
15 //    This is the 'bool' return value used by most of the code in this file. A
16 //    'false' return value indicates that constant folding has failed, and any
17 //    appropriate diagnostic has already been produced.
18 //
19 //  * An evaluated result, valid only if constant folding has not failed.
20 //
21 //  * A flag indicating if evaluation encountered (unevaluated) side-effects.
22 //    These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1),
23 //    where it is possible to determine the evaluated result regardless.
24 //
25 //  * A set of notes indicating why the evaluation was not a constant expression
26 //    (under the C++11 / C++1y rules only, at the moment), or, if folding failed
27 //    too, why the expression could not be folded.
28 //
29 // If we are checking for a potential constant expression, failure to constant
30 // fold a potential constant sub-expression will be indicated by a 'false'
31 // return value (the expression could not be folded) and no diagnostic (the
32 // expression is not necessarily non-constant).
33 //
34 //===----------------------------------------------------------------------===//
35
36 #include "clang/AST/APValue.h"
37 #include "clang/AST/ASTContext.h"
38 #include "clang/AST/ASTDiagnostic.h"
39 #include "clang/AST/CharUnits.h"
40 #include "clang/AST/Expr.h"
41 #include "clang/AST/RecordLayout.h"
42 #include "clang/AST/StmtVisitor.h"
43 #include "clang/AST/TypeLoc.h"
44 #include "clang/Basic/Builtins.h"
45 #include "clang/Basic/TargetInfo.h"
46 #include "llvm/ADT/SmallString.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include <cstring>
49 #include <functional>
50
51 using namespace clang;
52 using llvm::APSInt;
53 using llvm::APFloat;
54
55 static bool IsGlobalLValue(APValue::LValueBase B);
56
57 namespace {
58   struct LValue;
59   struct CallStackFrame;
60   struct EvalInfo;
61
62   static QualType getType(APValue::LValueBase B) {
63     if (!B) return QualType();
64     if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>())
65       return D->getType();
66
67     const Expr *Base = B.get<const Expr*>();
68
69     // For a materialized temporary, the type of the temporary we materialized
70     // may not be the type of the expression.
71     if (const MaterializeTemporaryExpr *MTE =
72             dyn_cast<MaterializeTemporaryExpr>(Base)) {
73       SmallVector<const Expr *, 2> CommaLHSs;
74       SmallVector<SubobjectAdjustment, 2> Adjustments;
75       const Expr *Temp = MTE->GetTemporaryExpr();
76       const Expr *Inner = Temp->skipRValueSubobjectAdjustments(CommaLHSs,
77                                                                Adjustments);
78       // Keep any cv-qualifiers from the reference if we generated a temporary
79       // for it.
80       if (Inner != Temp)
81         return Inner->getType();
82     }
83
84     return Base->getType();
85   }
86
87   /// Get an LValue path entry, which is known to not be an array index, as a
88   /// field or base class.
89   static
90   APValue::BaseOrMemberType getAsBaseOrMember(APValue::LValuePathEntry E) {
91     APValue::BaseOrMemberType Value;
92     Value.setFromOpaqueValue(E.BaseOrMember);
93     return Value;
94   }
95
96   /// Get an LValue path entry, which is known to not be an array index, as a
97   /// field declaration.
98   static const FieldDecl *getAsField(APValue::LValuePathEntry E) {
99     return dyn_cast<FieldDecl>(getAsBaseOrMember(E).getPointer());
100   }
101   /// Get an LValue path entry, which is known to not be an array index, as a
102   /// base class declaration.
103   static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) {
104     return dyn_cast<CXXRecordDecl>(getAsBaseOrMember(E).getPointer());
105   }
106   /// Determine whether this LValue path entry for a base class names a virtual
107   /// base class.
108   static bool isVirtualBaseClass(APValue::LValuePathEntry E) {
109     return getAsBaseOrMember(E).getInt();
110   }
111
112   /// Find the path length and type of the most-derived subobject in the given
113   /// path, and find the size of the containing array, if any.
114   static
115   unsigned findMostDerivedSubobject(ASTContext &Ctx, QualType Base,
116                                     ArrayRef<APValue::LValuePathEntry> Path,
117                                     uint64_t &ArraySize, QualType &Type,
118                                     bool &IsArray) {
119     unsigned MostDerivedLength = 0;
120     Type = Base;
121     for (unsigned I = 0, N = Path.size(); I != N; ++I) {
122       if (Type->isArrayType()) {
123         const ConstantArrayType *CAT =
124           cast<ConstantArrayType>(Ctx.getAsArrayType(Type));
125         Type = CAT->getElementType();
126         ArraySize = CAT->getSize().getZExtValue();
127         MostDerivedLength = I + 1;
128         IsArray = true;
129       } else if (Type->isAnyComplexType()) {
130         const ComplexType *CT = Type->castAs<ComplexType>();
131         Type = CT->getElementType();
132         ArraySize = 2;
133         MostDerivedLength = I + 1;
134         IsArray = true;
135       } else if (const FieldDecl *FD = getAsField(Path[I])) {
136         Type = FD->getType();
137         ArraySize = 0;
138         MostDerivedLength = I + 1;
139         IsArray = false;
140       } else {
141         // Path[I] describes a base class.
142         ArraySize = 0;
143         IsArray = false;
144       }
145     }
146     return MostDerivedLength;
147   }
148
149   // The order of this enum is important for diagnostics.
150   enum CheckSubobjectKind {
151     CSK_Base, CSK_Derived, CSK_Field, CSK_ArrayToPointer, CSK_ArrayIndex,
152     CSK_This, CSK_Real, CSK_Imag
153   };
154
155   /// A path from a glvalue to a subobject of that glvalue.
156   struct SubobjectDesignator {
157     /// True if the subobject was named in a manner not supported by C++11. Such
158     /// lvalues can still be folded, but they are not core constant expressions
159     /// and we cannot perform lvalue-to-rvalue conversions on them.
160     bool Invalid : 1;
161
162     /// Is this a pointer one past the end of an object?
163     bool IsOnePastTheEnd : 1;
164
165     /// Indicator of whether the most-derived object is an array element.
166     bool MostDerivedIsArrayElement : 1;
167
168     /// The length of the path to the most-derived object of which this is a
169     /// subobject.
170     unsigned MostDerivedPathLength : 29;
171
172     /// The size of the array of which the most-derived object is an element.
173     /// This will always be 0 if the most-derived object is not an array
174     /// element. 0 is not an indicator of whether or not the most-derived object
175     /// is an array, however, because 0-length arrays are allowed.
176     uint64_t MostDerivedArraySize;
177
178     /// The type of the most derived object referred to by this address.
179     QualType MostDerivedType;
180
181     typedef APValue::LValuePathEntry PathEntry;
182
183     /// The entries on the path from the glvalue to the designated subobject.
184     SmallVector<PathEntry, 8> Entries;
185
186     SubobjectDesignator() : Invalid(true) {}
187
188     explicit SubobjectDesignator(QualType T)
189         : Invalid(false), IsOnePastTheEnd(false),
190           MostDerivedIsArrayElement(false), MostDerivedPathLength(0),
191           MostDerivedArraySize(0), MostDerivedType(T) {}
192
193     SubobjectDesignator(ASTContext &Ctx, const APValue &V)
194         : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false),
195           MostDerivedIsArrayElement(false), MostDerivedPathLength(0),
196           MostDerivedArraySize(0) {
197       if (!Invalid) {
198         IsOnePastTheEnd = V.isLValueOnePastTheEnd();
199         ArrayRef<PathEntry> VEntries = V.getLValuePath();
200         Entries.insert(Entries.end(), VEntries.begin(), VEntries.end());
201         if (V.getLValueBase()) {
202           bool IsArray = false;
203           MostDerivedPathLength =
204               findMostDerivedSubobject(Ctx, getType(V.getLValueBase()),
205                                        V.getLValuePath(), MostDerivedArraySize,
206                                        MostDerivedType, IsArray);
207           MostDerivedIsArrayElement = IsArray;
208         }
209       }
210     }
211
212     void setInvalid() {
213       Invalid = true;
214       Entries.clear();
215     }
216
217     /// Determine whether this is a one-past-the-end pointer.
218     bool isOnePastTheEnd() const {
219       assert(!Invalid);
220       if (IsOnePastTheEnd)
221         return true;
222       if (MostDerivedIsArrayElement &&
223           Entries[MostDerivedPathLength - 1].ArrayIndex == MostDerivedArraySize)
224         return true;
225       return false;
226     }
227
228     /// Check that this refers to a valid subobject.
229     bool isValidSubobject() const {
230       if (Invalid)
231         return false;
232       return !isOnePastTheEnd();
233     }
234     /// Check that this refers to a valid subobject, and if not, produce a
235     /// relevant diagnostic and set the designator as invalid.
236     bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK);
237
238     /// Update this designator to refer to the first element within this array.
239     void addArrayUnchecked(const ConstantArrayType *CAT) {
240       PathEntry Entry;
241       Entry.ArrayIndex = 0;
242       Entries.push_back(Entry);
243
244       // This is a most-derived object.
245       MostDerivedType = CAT->getElementType();
246       MostDerivedIsArrayElement = true;
247       MostDerivedArraySize = CAT->getSize().getZExtValue();
248       MostDerivedPathLength = Entries.size();
249     }
250     /// Update this designator to refer to the given base or member of this
251     /// object.
252     void addDeclUnchecked(const Decl *D, bool Virtual = false) {
253       PathEntry Entry;
254       APValue::BaseOrMemberType Value(D, Virtual);
255       Entry.BaseOrMember = Value.getOpaqueValue();
256       Entries.push_back(Entry);
257
258       // If this isn't a base class, it's a new most-derived object.
259       if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
260         MostDerivedType = FD->getType();
261         MostDerivedIsArrayElement = false;
262         MostDerivedArraySize = 0;
263         MostDerivedPathLength = Entries.size();
264       }
265     }
266     /// Update this designator to refer to the given complex component.
267     void addComplexUnchecked(QualType EltTy, bool Imag) {
268       PathEntry Entry;
269       Entry.ArrayIndex = Imag;
270       Entries.push_back(Entry);
271
272       // This is technically a most-derived object, though in practice this
273       // is unlikely to matter.
274       MostDerivedType = EltTy;
275       MostDerivedIsArrayElement = true;
276       MostDerivedArraySize = 2;
277       MostDerivedPathLength = Entries.size();
278     }
279     void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E, uint64_t N);
280     /// Add N to the address of this subobject.
281     void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
282       if (Invalid) return;
283       if (MostDerivedPathLength == Entries.size() &&
284           MostDerivedIsArrayElement) {
285         Entries.back().ArrayIndex += N;
286         if (Entries.back().ArrayIndex > MostDerivedArraySize) {
287           diagnosePointerArithmetic(Info, E, Entries.back().ArrayIndex);
288           setInvalid();
289         }
290         return;
291       }
292       // [expr.add]p4: For the purposes of these operators, a pointer to a
293       // nonarray object behaves the same as a pointer to the first element of
294       // an array of length one with the type of the object as its element type.
295       if (IsOnePastTheEnd && N == (uint64_t)-1)
296         IsOnePastTheEnd = false;
297       else if (!IsOnePastTheEnd && N == 1)
298         IsOnePastTheEnd = true;
299       else if (N != 0) {
300         diagnosePointerArithmetic(Info, E, uint64_t(IsOnePastTheEnd) + N);
301         setInvalid();
302       }
303     }
304   };
305
306   /// A stack frame in the constexpr call stack.
307   struct CallStackFrame {
308     EvalInfo &Info;
309
310     /// Parent - The caller of this stack frame.
311     CallStackFrame *Caller;
312
313     /// CallLoc - The location of the call expression for this call.
314     SourceLocation CallLoc;
315
316     /// Callee - The function which was called.
317     const FunctionDecl *Callee;
318
319     /// Index - The call index of this call.
320     unsigned Index;
321
322     /// This - The binding for the this pointer in this call, if any.
323     const LValue *This;
324
325     /// Arguments - Parameter bindings for this function call, indexed by
326     /// parameters' function scope indices.
327     APValue *Arguments;
328
329     // Note that we intentionally use std::map here so that references to
330     // values are stable.
331     typedef std::map<const void*, APValue> MapTy;
332     typedef MapTy::const_iterator temp_iterator;
333     /// Temporaries - Temporary lvalues materialized within this stack frame.
334     MapTy Temporaries;
335
336     CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
337                    const FunctionDecl *Callee, const LValue *This,
338                    APValue *Arguments);
339     ~CallStackFrame();
340
341     APValue *getTemporary(const void *Key) {
342       MapTy::iterator I = Temporaries.find(Key);
343       return I == Temporaries.end() ? nullptr : &I->second;
344     }
345     APValue &createTemporary(const void *Key, bool IsLifetimeExtended);
346   };
347
348   /// Temporarily override 'this'.
349   class ThisOverrideRAII {
350   public:
351     ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable)
352         : Frame(Frame), OldThis(Frame.This) {
353       if (Enable)
354         Frame.This = NewThis;
355     }
356     ~ThisOverrideRAII() {
357       Frame.This = OldThis;
358     }
359   private:
360     CallStackFrame &Frame;
361     const LValue *OldThis;
362   };
363
364   /// A partial diagnostic which we might know in advance that we are not going
365   /// to emit.
366   class OptionalDiagnostic {
367     PartialDiagnostic *Diag;
368
369   public:
370     explicit OptionalDiagnostic(PartialDiagnostic *Diag = nullptr)
371       : Diag(Diag) {}
372
373     template<typename T>
374     OptionalDiagnostic &operator<<(const T &v) {
375       if (Diag)
376         *Diag << v;
377       return *this;
378     }
379
380     OptionalDiagnostic &operator<<(const APSInt &I) {
381       if (Diag) {
382         SmallVector<char, 32> Buffer;
383         I.toString(Buffer);
384         *Diag << StringRef(Buffer.data(), Buffer.size());
385       }
386       return *this;
387     }
388
389     OptionalDiagnostic &operator<<(const APFloat &F) {
390       if (Diag) {
391         // FIXME: Force the precision of the source value down so we don't
392         // print digits which are usually useless (we don't really care here if
393         // we truncate a digit by accident in edge cases).  Ideally,
394         // APFloat::toString would automatically print the shortest 
395         // representation which rounds to the correct value, but it's a bit
396         // tricky to implement.
397         unsigned precision =
398             llvm::APFloat::semanticsPrecision(F.getSemantics());
399         precision = (precision * 59 + 195) / 196;
400         SmallVector<char, 32> Buffer;
401         F.toString(Buffer, precision);
402         *Diag << StringRef(Buffer.data(), Buffer.size());
403       }
404       return *this;
405     }
406   };
407
408   /// A cleanup, and a flag indicating whether it is lifetime-extended.
409   class Cleanup {
410     llvm::PointerIntPair<APValue*, 1, bool> Value;
411
412   public:
413     Cleanup(APValue *Val, bool IsLifetimeExtended)
414         : Value(Val, IsLifetimeExtended) {}
415
416     bool isLifetimeExtended() const { return Value.getInt(); }
417     void endLifetime() {
418       *Value.getPointer() = APValue();
419     }
420   };
421
422   /// EvalInfo - This is a private struct used by the evaluator to capture
423   /// information about a subexpression as it is folded.  It retains information
424   /// about the AST context, but also maintains information about the folded
425   /// expression.
426   ///
427   /// If an expression could be evaluated, it is still possible it is not a C
428   /// "integer constant expression" or constant expression.  If not, this struct
429   /// captures information about how and why not.
430   ///
431   /// One bit of information passed *into* the request for constant folding
432   /// indicates whether the subexpression is "evaluated" or not according to C
433   /// rules.  For example, the RHS of (0 && foo()) is not evaluated.  We can
434   /// evaluate the expression regardless of what the RHS is, but C only allows
435   /// certain things in certain situations.
436   struct EvalInfo {
437     ASTContext &Ctx;
438
439     /// EvalStatus - Contains information about the evaluation.
440     Expr::EvalStatus &EvalStatus;
441
442     /// CurrentCall - The top of the constexpr call stack.
443     CallStackFrame *CurrentCall;
444
445     /// CallStackDepth - The number of calls in the call stack right now.
446     unsigned CallStackDepth;
447
448     /// NextCallIndex - The next call index to assign.
449     unsigned NextCallIndex;
450
451     /// StepsLeft - The remaining number of evaluation steps we're permitted
452     /// to perform. This is essentially a limit for the number of statements
453     /// we will evaluate.
454     unsigned StepsLeft;
455
456     /// BottomFrame - The frame in which evaluation started. This must be
457     /// initialized after CurrentCall and CallStackDepth.
458     CallStackFrame BottomFrame;
459
460     /// A stack of values whose lifetimes end at the end of some surrounding
461     /// evaluation frame.
462     llvm::SmallVector<Cleanup, 16> CleanupStack;
463
464     /// EvaluatingDecl - This is the declaration whose initializer is being
465     /// evaluated, if any.
466     APValue::LValueBase EvaluatingDecl;
467
468     /// EvaluatingDeclValue - This is the value being constructed for the
469     /// declaration whose initializer is being evaluated, if any.
470     APValue *EvaluatingDeclValue;
471
472     /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further
473     /// notes attached to it will also be stored, otherwise they will not be.
474     bool HasActiveDiagnostic;
475
476     /// \brief Have we emitted a diagnostic explaining why we couldn't constant
477     /// fold (not just why it's not strictly a constant expression)?
478     bool HasFoldFailureDiagnostic;
479
480     enum EvaluationMode {
481       /// Evaluate as a constant expression. Stop if we find that the expression
482       /// is not a constant expression.
483       EM_ConstantExpression,
484
485       /// Evaluate as a potential constant expression. Keep going if we hit a
486       /// construct that we can't evaluate yet (because we don't yet know the
487       /// value of something) but stop if we hit something that could never be
488       /// a constant expression.
489       EM_PotentialConstantExpression,
490
491       /// Fold the expression to a constant. Stop if we hit a side-effect that
492       /// we can't model.
493       EM_ConstantFold,
494
495       /// Evaluate the expression looking for integer overflow and similar
496       /// issues. Don't worry about side-effects, and try to visit all
497       /// subexpressions.
498       EM_EvaluateForOverflow,
499
500       /// Evaluate in any way we know how. Don't worry about side-effects that
501       /// can't be modeled.
502       EM_IgnoreSideEffects,
503
504       /// Evaluate as a constant expression. Stop if we find that the expression
505       /// is not a constant expression. Some expressions can be retried in the
506       /// optimizer if we don't constant fold them here, but in an unevaluated
507       /// context we try to fold them immediately since the optimizer never
508       /// gets a chance to look at it.
509       EM_ConstantExpressionUnevaluated,
510
511       /// Evaluate as a potential constant expression. Keep going if we hit a
512       /// construct that we can't evaluate yet (because we don't yet know the
513       /// value of something) but stop if we hit something that could never be
514       /// a constant expression. Some expressions can be retried in the
515       /// optimizer if we don't constant fold them here, but in an unevaluated
516       /// context we try to fold them immediately since the optimizer never
517       /// gets a chance to look at it.
518       EM_PotentialConstantExpressionUnevaluated,
519
520       /// Evaluate as a constant expression. Continue evaluating if we find a
521       /// MemberExpr with a base that can't be evaluated.
522       EM_DesignatorFold,
523     } EvalMode;
524
525     /// Are we checking whether the expression is a potential constant
526     /// expression?
527     bool checkingPotentialConstantExpression() const {
528       return EvalMode == EM_PotentialConstantExpression ||
529              EvalMode == EM_PotentialConstantExpressionUnevaluated;
530     }
531
532     /// Are we checking an expression for overflow?
533     // FIXME: We should check for any kind of undefined or suspicious behavior
534     // in such constructs, not just overflow.
535     bool checkingForOverflow() { return EvalMode == EM_EvaluateForOverflow; }
536
537     EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode)
538       : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr),
539         CallStackDepth(0), NextCallIndex(1),
540         StepsLeft(getLangOpts().ConstexprStepLimit),
541         BottomFrame(*this, SourceLocation(), nullptr, nullptr, nullptr),
542         EvaluatingDecl((const ValueDecl *)nullptr),
543         EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false),
544         HasFoldFailureDiagnostic(false), EvalMode(Mode) {}
545
546     void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value) {
547       EvaluatingDecl = Base;
548       EvaluatingDeclValue = &Value;
549     }
550
551     const LangOptions &getLangOpts() const { return Ctx.getLangOpts(); }
552
553     bool CheckCallLimit(SourceLocation Loc) {
554       // Don't perform any constexpr calls (other than the call we're checking)
555       // when checking a potential constant expression.
556       if (checkingPotentialConstantExpression() && CallStackDepth > 1)
557         return false;
558       if (NextCallIndex == 0) {
559         // NextCallIndex has wrapped around.
560         Diag(Loc, diag::note_constexpr_call_limit_exceeded);
561         return false;
562       }
563       if (CallStackDepth <= getLangOpts().ConstexprCallDepth)
564         return true;
565       Diag(Loc, diag::note_constexpr_depth_limit_exceeded)
566         << getLangOpts().ConstexprCallDepth;
567       return false;
568     }
569
570     CallStackFrame *getCallFrame(unsigned CallIndex) {
571       assert(CallIndex && "no call index in getCallFrame");
572       // We will eventually hit BottomFrame, which has Index 1, so Frame can't
573       // be null in this loop.
574       CallStackFrame *Frame = CurrentCall;
575       while (Frame->Index > CallIndex)
576         Frame = Frame->Caller;
577       return (Frame->Index == CallIndex) ? Frame : nullptr;
578     }
579
580     bool nextStep(const Stmt *S) {
581       if (!StepsLeft) {
582         Diag(S->getLocStart(), diag::note_constexpr_step_limit_exceeded);
583         return false;
584       }
585       --StepsLeft;
586       return true;
587     }
588
589   private:
590     /// Add a diagnostic to the diagnostics list.
591     PartialDiagnostic &addDiag(SourceLocation Loc, diag::kind DiagId) {
592       PartialDiagnostic PD(DiagId, Ctx.getDiagAllocator());
593       EvalStatus.Diag->push_back(std::make_pair(Loc, PD));
594       return EvalStatus.Diag->back().second;
595     }
596
597     /// Add notes containing a call stack to the current point of evaluation.
598     void addCallStack(unsigned Limit);
599
600   public:
601     /// Diagnose that the evaluation cannot be folded.
602     OptionalDiagnostic Diag(SourceLocation Loc, diag::kind DiagId
603                               = diag::note_invalid_subexpr_in_const_expr,
604                             unsigned ExtraNotes = 0, bool IsCCEDiag = false) {
605       if (EvalStatus.Diag) {
606         // If we have a prior diagnostic, it will be noting that the expression
607         // isn't a constant expression. This diagnostic is more important,
608         // unless we require this evaluation to produce a constant expression.
609         //
610         // FIXME: We might want to show both diagnostics to the user in
611         // EM_ConstantFold mode.
612         if (!EvalStatus.Diag->empty()) {
613           switch (EvalMode) {
614           case EM_ConstantFold:
615           case EM_IgnoreSideEffects:
616           case EM_EvaluateForOverflow:
617             if (!HasFoldFailureDiagnostic)
618               break;
619             // We've already failed to fold something. Keep that diagnostic.
620           case EM_ConstantExpression:
621           case EM_PotentialConstantExpression:
622           case EM_ConstantExpressionUnevaluated:
623           case EM_PotentialConstantExpressionUnevaluated:
624           case EM_DesignatorFold:
625             HasActiveDiagnostic = false;
626             return OptionalDiagnostic();
627           }
628         }
629
630         unsigned CallStackNotes = CallStackDepth - 1;
631         unsigned Limit = Ctx.getDiagnostics().getConstexprBacktraceLimit();
632         if (Limit)
633           CallStackNotes = std::min(CallStackNotes, Limit + 1);
634         if (checkingPotentialConstantExpression())
635           CallStackNotes = 0;
636
637         HasActiveDiagnostic = true;
638         HasFoldFailureDiagnostic = !IsCCEDiag;
639         EvalStatus.Diag->clear();
640         EvalStatus.Diag->reserve(1 + ExtraNotes + CallStackNotes);
641         addDiag(Loc, DiagId);
642         if (!checkingPotentialConstantExpression())
643           addCallStack(Limit);
644         return OptionalDiagnostic(&(*EvalStatus.Diag)[0].second);
645       }
646       HasActiveDiagnostic = false;
647       return OptionalDiagnostic();
648     }
649
650     OptionalDiagnostic Diag(const Expr *E, diag::kind DiagId
651                               = diag::note_invalid_subexpr_in_const_expr,
652                             unsigned ExtraNotes = 0, bool IsCCEDiag = false) {
653       if (EvalStatus.Diag)
654         return Diag(E->getExprLoc(), DiagId, ExtraNotes, IsCCEDiag);
655       HasActiveDiagnostic = false;
656       return OptionalDiagnostic();
657     }
658
659     /// Diagnose that the evaluation does not produce a C++11 core constant
660     /// expression.
661     ///
662     /// FIXME: Stop evaluating if we're in EM_ConstantExpression or
663     /// EM_PotentialConstantExpression mode and we produce one of these.
664     template<typename LocArg>
665     OptionalDiagnostic CCEDiag(LocArg Loc, diag::kind DiagId
666                                  = diag::note_invalid_subexpr_in_const_expr,
667                                unsigned ExtraNotes = 0) {
668       // Don't override a previous diagnostic. Don't bother collecting
669       // diagnostics if we're evaluating for overflow.
670       if (!EvalStatus.Diag || !EvalStatus.Diag->empty()) {
671         HasActiveDiagnostic = false;
672         return OptionalDiagnostic();
673       }
674       return Diag(Loc, DiagId, ExtraNotes, true);
675     }
676
677     /// Add a note to a prior diagnostic.
678     OptionalDiagnostic Note(SourceLocation Loc, diag::kind DiagId) {
679       if (!HasActiveDiagnostic)
680         return OptionalDiagnostic();
681       return OptionalDiagnostic(&addDiag(Loc, DiagId));
682     }
683
684     /// Add a stack of notes to a prior diagnostic.
685     void addNotes(ArrayRef<PartialDiagnosticAt> Diags) {
686       if (HasActiveDiagnostic) {
687         EvalStatus.Diag->insert(EvalStatus.Diag->end(),
688                                 Diags.begin(), Diags.end());
689       }
690     }
691
692     /// Should we continue evaluation after encountering a side-effect that we
693     /// couldn't model?
694     bool keepEvaluatingAfterSideEffect() {
695       switch (EvalMode) {
696       case EM_PotentialConstantExpression:
697       case EM_PotentialConstantExpressionUnevaluated:
698       case EM_EvaluateForOverflow:
699       case EM_IgnoreSideEffects:
700         return true;
701
702       case EM_ConstantExpression:
703       case EM_ConstantExpressionUnevaluated:
704       case EM_ConstantFold:
705       case EM_DesignatorFold:
706         return false;
707       }
708       llvm_unreachable("Missed EvalMode case");
709     }
710
711     /// Note that we have had a side-effect, and determine whether we should
712     /// keep evaluating.
713     bool noteSideEffect() {
714       EvalStatus.HasSideEffects = true;
715       return keepEvaluatingAfterSideEffect();
716     }
717
718     /// Should we continue evaluation after encountering undefined behavior?
719     bool keepEvaluatingAfterUndefinedBehavior() {
720       switch (EvalMode) {
721       case EM_EvaluateForOverflow:
722       case EM_IgnoreSideEffects:
723       case EM_ConstantFold:
724       case EM_DesignatorFold:
725         return true;
726
727       case EM_PotentialConstantExpression:
728       case EM_PotentialConstantExpressionUnevaluated:
729       case EM_ConstantExpression:
730       case EM_ConstantExpressionUnevaluated:
731         return false;
732       }
733       llvm_unreachable("Missed EvalMode case");
734     }
735
736     /// Note that we hit something that was technically undefined behavior, but
737     /// that we can evaluate past it (such as signed overflow or floating-point
738     /// division by zero.)
739     bool noteUndefinedBehavior() {
740       EvalStatus.HasUndefinedBehavior = true;
741       return keepEvaluatingAfterUndefinedBehavior();
742     }
743
744     /// Should we continue evaluation as much as possible after encountering a
745     /// construct which can't be reduced to a value?
746     bool keepEvaluatingAfterFailure() {
747       if (!StepsLeft)
748         return false;
749
750       switch (EvalMode) {
751       case EM_PotentialConstantExpression:
752       case EM_PotentialConstantExpressionUnevaluated:
753       case EM_EvaluateForOverflow:
754         return true;
755
756       case EM_ConstantExpression:
757       case EM_ConstantExpressionUnevaluated:
758       case EM_ConstantFold:
759       case EM_IgnoreSideEffects:
760       case EM_DesignatorFold:
761         return false;
762       }
763       llvm_unreachable("Missed EvalMode case");
764     }
765
766     bool allowInvalidBaseExpr() const {
767       return EvalMode == EM_DesignatorFold;
768     }
769   };
770
771   /// Object used to treat all foldable expressions as constant expressions.
772   struct FoldConstant {
773     EvalInfo &Info;
774     bool Enabled;
775     bool HadNoPriorDiags;
776     EvalInfo::EvaluationMode OldMode;
777
778     explicit FoldConstant(EvalInfo &Info, bool Enabled)
779       : Info(Info),
780         Enabled(Enabled),
781         HadNoPriorDiags(Info.EvalStatus.Diag &&
782                         Info.EvalStatus.Diag->empty() &&
783                         !Info.EvalStatus.HasSideEffects),
784         OldMode(Info.EvalMode) {
785       if (Enabled &&
786           (Info.EvalMode == EvalInfo::EM_ConstantExpression ||
787            Info.EvalMode == EvalInfo::EM_ConstantExpressionUnevaluated))
788         Info.EvalMode = EvalInfo::EM_ConstantFold;
789     }
790     void keepDiagnostics() { Enabled = false; }
791     ~FoldConstant() {
792       if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() &&
793           !Info.EvalStatus.HasSideEffects)
794         Info.EvalStatus.Diag->clear();
795       Info.EvalMode = OldMode;
796     }
797   };
798
799   /// RAII object used to treat the current evaluation as the correct pointer
800   /// offset fold for the current EvalMode
801   struct FoldOffsetRAII {
802     EvalInfo &Info;
803     EvalInfo::EvaluationMode OldMode;
804     explicit FoldOffsetRAII(EvalInfo &Info, bool Subobject)
805         : Info(Info), OldMode(Info.EvalMode) {
806       if (!Info.checkingPotentialConstantExpression())
807         Info.EvalMode = Subobject ? EvalInfo::EM_DesignatorFold
808                                   : EvalInfo::EM_ConstantFold;
809     }
810
811     ~FoldOffsetRAII() { Info.EvalMode = OldMode; }
812   };
813
814   /// RAII object used to suppress diagnostics and side-effects from a
815   /// speculative evaluation.
816   class SpeculativeEvaluationRAII {
817     EvalInfo &Info;
818     Expr::EvalStatus Old;
819
820   public:
821     SpeculativeEvaluationRAII(EvalInfo &Info,
822                         SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr)
823       : Info(Info), Old(Info.EvalStatus) {
824       Info.EvalStatus.Diag = NewDiag;
825       // If we're speculatively evaluating, we may have skipped over some
826       // evaluations and missed out a side effect.
827       Info.EvalStatus.HasSideEffects = true;
828     }
829     ~SpeculativeEvaluationRAII() {
830       Info.EvalStatus = Old;
831     }
832   };
833
834   /// RAII object wrapping a full-expression or block scope, and handling
835   /// the ending of the lifetime of temporaries created within it.
836   template<bool IsFullExpression>
837   class ScopeRAII {
838     EvalInfo &Info;
839     unsigned OldStackSize;
840   public:
841     ScopeRAII(EvalInfo &Info)
842         : Info(Info), OldStackSize(Info.CleanupStack.size()) {}
843     ~ScopeRAII() {
844       // Body moved to a static method to encourage the compiler to inline away
845       // instances of this class.
846       cleanup(Info, OldStackSize);
847     }
848   private:
849     static void cleanup(EvalInfo &Info, unsigned OldStackSize) {
850       unsigned NewEnd = OldStackSize;
851       for (unsigned I = OldStackSize, N = Info.CleanupStack.size();
852            I != N; ++I) {
853         if (IsFullExpression && Info.CleanupStack[I].isLifetimeExtended()) {
854           // Full-expression cleanup of a lifetime-extended temporary: nothing
855           // to do, just move this cleanup to the right place in the stack.
856           std::swap(Info.CleanupStack[I], Info.CleanupStack[NewEnd]);
857           ++NewEnd;
858         } else {
859           // End the lifetime of the object.
860           Info.CleanupStack[I].endLifetime();
861         }
862       }
863       Info.CleanupStack.erase(Info.CleanupStack.begin() + NewEnd,
864                               Info.CleanupStack.end());
865     }
866   };
867   typedef ScopeRAII<false> BlockScopeRAII;
868   typedef ScopeRAII<true> FullExpressionRAII;
869 }
870
871 bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E,
872                                          CheckSubobjectKind CSK) {
873   if (Invalid)
874     return false;
875   if (isOnePastTheEnd()) {
876     Info.CCEDiag(E, diag::note_constexpr_past_end_subobject)
877       << CSK;
878     setInvalid();
879     return false;
880   }
881   return true;
882 }
883
884 void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info,
885                                                     const Expr *E, uint64_t N) {
886   if (MostDerivedPathLength == Entries.size() && MostDerivedIsArrayElement)
887     Info.CCEDiag(E, diag::note_constexpr_array_index)
888       << static_cast<int>(N) << /*array*/ 0
889       << static_cast<unsigned>(MostDerivedArraySize);
890   else
891     Info.CCEDiag(E, diag::note_constexpr_array_index)
892       << static_cast<int>(N) << /*non-array*/ 1;
893   setInvalid();
894 }
895
896 CallStackFrame::CallStackFrame(EvalInfo &Info, SourceLocation CallLoc,
897                                const FunctionDecl *Callee, const LValue *This,
898                                APValue *Arguments)
899     : Info(Info), Caller(Info.CurrentCall), CallLoc(CallLoc), Callee(Callee),
900       Index(Info.NextCallIndex++), This(This), Arguments(Arguments) {
901   Info.CurrentCall = this;
902   ++Info.CallStackDepth;
903 }
904
905 CallStackFrame::~CallStackFrame() {
906   assert(Info.CurrentCall == this && "calls retired out of order");
907   --Info.CallStackDepth;
908   Info.CurrentCall = Caller;
909 }
910
911 APValue &CallStackFrame::createTemporary(const void *Key,
912                                          bool IsLifetimeExtended) {
913   APValue &Result = Temporaries[Key];
914   assert(Result.isUninit() && "temporary created multiple times");
915   Info.CleanupStack.push_back(Cleanup(&Result, IsLifetimeExtended));
916   return Result;
917 }
918
919 static void describeCall(CallStackFrame *Frame, raw_ostream &Out);
920
921 void EvalInfo::addCallStack(unsigned Limit) {
922   // Determine which calls to skip, if any.
923   unsigned ActiveCalls = CallStackDepth - 1;
924   unsigned SkipStart = ActiveCalls, SkipEnd = SkipStart;
925   if (Limit && Limit < ActiveCalls) {
926     SkipStart = Limit / 2 + Limit % 2;
927     SkipEnd = ActiveCalls - Limit / 2;
928   }
929
930   // Walk the call stack and add the diagnostics.
931   unsigned CallIdx = 0;
932   for (CallStackFrame *Frame = CurrentCall; Frame != &BottomFrame;
933        Frame = Frame->Caller, ++CallIdx) {
934     // Skip this call?
935     if (CallIdx >= SkipStart && CallIdx < SkipEnd) {
936       if (CallIdx == SkipStart) {
937         // Note that we're skipping calls.
938         addDiag(Frame->CallLoc, diag::note_constexpr_calls_suppressed)
939           << unsigned(ActiveCalls - Limit);
940       }
941       continue;
942     }
943
944     SmallVector<char, 128> Buffer;
945     llvm::raw_svector_ostream Out(Buffer);
946     describeCall(Frame, Out);
947     addDiag(Frame->CallLoc, diag::note_constexpr_call_here) << Out.str();
948   }
949 }
950
951 namespace {
952   struct ComplexValue {
953   private:
954     bool IsInt;
955
956   public:
957     APSInt IntReal, IntImag;
958     APFloat FloatReal, FloatImag;
959
960     ComplexValue() : FloatReal(APFloat::Bogus), FloatImag(APFloat::Bogus) {}
961
962     void makeComplexFloat() { IsInt = false; }
963     bool isComplexFloat() const { return !IsInt; }
964     APFloat &getComplexFloatReal() { return FloatReal; }
965     APFloat &getComplexFloatImag() { return FloatImag; }
966
967     void makeComplexInt() { IsInt = true; }
968     bool isComplexInt() const { return IsInt; }
969     APSInt &getComplexIntReal() { return IntReal; }
970     APSInt &getComplexIntImag() { return IntImag; }
971
972     void moveInto(APValue &v) const {
973       if (isComplexFloat())
974         v = APValue(FloatReal, FloatImag);
975       else
976         v = APValue(IntReal, IntImag);
977     }
978     void setFrom(const APValue &v) {
979       assert(v.isComplexFloat() || v.isComplexInt());
980       if (v.isComplexFloat()) {
981         makeComplexFloat();
982         FloatReal = v.getComplexFloatReal();
983         FloatImag = v.getComplexFloatImag();
984       } else {
985         makeComplexInt();
986         IntReal = v.getComplexIntReal();
987         IntImag = v.getComplexIntImag();
988       }
989     }
990   };
991
992   struct LValue {
993     APValue::LValueBase Base;
994     CharUnits Offset;
995     bool InvalidBase : 1;
996     unsigned CallIndex : 31;
997     SubobjectDesignator Designator;
998
999     const APValue::LValueBase getLValueBase() const { return Base; }
1000     CharUnits &getLValueOffset() { return Offset; }
1001     const CharUnits &getLValueOffset() const { return Offset; }
1002     unsigned getLValueCallIndex() const { return CallIndex; }
1003     SubobjectDesignator &getLValueDesignator() { return Designator; }
1004     const SubobjectDesignator &getLValueDesignator() const { return Designator;}
1005
1006     void moveInto(APValue &V) const {
1007       if (Designator.Invalid)
1008         V = APValue(Base, Offset, APValue::NoLValuePath(), CallIndex);
1009       else
1010         V = APValue(Base, Offset, Designator.Entries,
1011                     Designator.IsOnePastTheEnd, CallIndex);
1012     }
1013     void setFrom(ASTContext &Ctx, const APValue &V) {
1014       assert(V.isLValue());
1015       Base = V.getLValueBase();
1016       Offset = V.getLValueOffset();
1017       InvalidBase = false;
1018       CallIndex = V.getLValueCallIndex();
1019       Designator = SubobjectDesignator(Ctx, V);
1020     }
1021
1022     void set(APValue::LValueBase B, unsigned I = 0, bool BInvalid = false) {
1023       Base = B;
1024       Offset = CharUnits::Zero();
1025       InvalidBase = BInvalid;
1026       CallIndex = I;
1027       Designator = SubobjectDesignator(getType(B));
1028     }
1029
1030     void setInvalid(APValue::LValueBase B, unsigned I = 0) {
1031       set(B, I, true);
1032     }
1033
1034     // Check that this LValue is not based on a null pointer. If it is, produce
1035     // a diagnostic and mark the designator as invalid.
1036     bool checkNullPointer(EvalInfo &Info, const Expr *E,
1037                           CheckSubobjectKind CSK) {
1038       if (Designator.Invalid)
1039         return false;
1040       if (!Base) {
1041         Info.CCEDiag(E, diag::note_constexpr_null_subobject)
1042           << CSK;
1043         Designator.setInvalid();
1044         return false;
1045       }
1046       return true;
1047     }
1048
1049     // Check this LValue refers to an object. If not, set the designator to be
1050     // invalid and emit a diagnostic.
1051     bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) {
1052       return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) &&
1053              Designator.checkSubobject(Info, E, CSK);
1054     }
1055
1056     void addDecl(EvalInfo &Info, const Expr *E,
1057                  const Decl *D, bool Virtual = false) {
1058       if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base))
1059         Designator.addDeclUnchecked(D, Virtual);
1060     }
1061     void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) {
1062       if (checkSubobject(Info, E, CSK_ArrayToPointer))
1063         Designator.addArrayUnchecked(CAT);
1064     }
1065     void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) {
1066       if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real))
1067         Designator.addComplexUnchecked(EltTy, Imag);
1068     }
1069     void adjustIndex(EvalInfo &Info, const Expr *E, uint64_t N) {
1070       if (N && checkNullPointer(Info, E, CSK_ArrayIndex))
1071         Designator.adjustIndex(Info, E, N);
1072     }
1073   };
1074
1075   struct MemberPtr {
1076     MemberPtr() {}
1077     explicit MemberPtr(const ValueDecl *Decl) :
1078       DeclAndIsDerivedMember(Decl, false), Path() {}
1079
1080     /// The member or (direct or indirect) field referred to by this member
1081     /// pointer, or 0 if this is a null member pointer.
1082     const ValueDecl *getDecl() const {
1083       return DeclAndIsDerivedMember.getPointer();
1084     }
1085     /// Is this actually a member of some type derived from the relevant class?
1086     bool isDerivedMember() const {
1087       return DeclAndIsDerivedMember.getInt();
1088     }
1089     /// Get the class which the declaration actually lives in.
1090     const CXXRecordDecl *getContainingRecord() const {
1091       return cast<CXXRecordDecl>(
1092           DeclAndIsDerivedMember.getPointer()->getDeclContext());
1093     }
1094
1095     void moveInto(APValue &V) const {
1096       V = APValue(getDecl(), isDerivedMember(), Path);
1097     }
1098     void setFrom(const APValue &V) {
1099       assert(V.isMemberPointer());
1100       DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl());
1101       DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember());
1102       Path.clear();
1103       ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath();
1104       Path.insert(Path.end(), P.begin(), P.end());
1105     }
1106
1107     /// DeclAndIsDerivedMember - The member declaration, and a flag indicating
1108     /// whether the member is a member of some class derived from the class type
1109     /// of the member pointer.
1110     llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember;
1111     /// Path - The path of base/derived classes from the member declaration's
1112     /// class (exclusive) to the class type of the member pointer (inclusive).
1113     SmallVector<const CXXRecordDecl*, 4> Path;
1114
1115     /// Perform a cast towards the class of the Decl (either up or down the
1116     /// hierarchy).
1117     bool castBack(const CXXRecordDecl *Class) {
1118       assert(!Path.empty());
1119       const CXXRecordDecl *Expected;
1120       if (Path.size() >= 2)
1121         Expected = Path[Path.size() - 2];
1122       else
1123         Expected = getContainingRecord();
1124       if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) {
1125         // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*),
1126         // if B does not contain the original member and is not a base or
1127         // derived class of the class containing the original member, the result
1128         // of the cast is undefined.
1129         // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to
1130         // (D::*). We consider that to be a language defect.
1131         return false;
1132       }
1133       Path.pop_back();
1134       return true;
1135     }
1136     /// Perform a base-to-derived member pointer cast.
1137     bool castToDerived(const CXXRecordDecl *Derived) {
1138       if (!getDecl())
1139         return true;
1140       if (!isDerivedMember()) {
1141         Path.push_back(Derived);
1142         return true;
1143       }
1144       if (!castBack(Derived))
1145         return false;
1146       if (Path.empty())
1147         DeclAndIsDerivedMember.setInt(false);
1148       return true;
1149     }
1150     /// Perform a derived-to-base member pointer cast.
1151     bool castToBase(const CXXRecordDecl *Base) {
1152       if (!getDecl())
1153         return true;
1154       if (Path.empty())
1155         DeclAndIsDerivedMember.setInt(true);
1156       if (isDerivedMember()) {
1157         Path.push_back(Base);
1158         return true;
1159       }
1160       return castBack(Base);
1161     }
1162   };
1163
1164   /// Compare two member pointers, which are assumed to be of the same type.
1165   static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) {
1166     if (!LHS.getDecl() || !RHS.getDecl())
1167       return !LHS.getDecl() && !RHS.getDecl();
1168     if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl())
1169       return false;
1170     return LHS.Path == RHS.Path;
1171   }
1172 }
1173
1174 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E);
1175 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info,
1176                             const LValue &This, const Expr *E,
1177                             bool AllowNonLiteralTypes = false);
1178 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info);
1179 static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info);
1180 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
1181                                   EvalInfo &Info);
1182 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info);
1183 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info);
1184 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
1185                                     EvalInfo &Info);
1186 static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info);
1187 static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info);
1188 static bool EvaluateAtomic(const Expr *E, APValue &Result, EvalInfo &Info);
1189 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result);
1190
1191 //===----------------------------------------------------------------------===//
1192 // Misc utilities
1193 //===----------------------------------------------------------------------===//
1194
1195 /// Produce a string describing the given constexpr call.
1196 static void describeCall(CallStackFrame *Frame, raw_ostream &Out) {
1197   unsigned ArgIndex = 0;
1198   bool IsMemberCall = isa<CXXMethodDecl>(Frame->Callee) &&
1199                       !isa<CXXConstructorDecl>(Frame->Callee) &&
1200                       cast<CXXMethodDecl>(Frame->Callee)->isInstance();
1201
1202   if (!IsMemberCall)
1203     Out << *Frame->Callee << '(';
1204
1205   if (Frame->This && IsMemberCall) {
1206     APValue Val;
1207     Frame->This->moveInto(Val);
1208     Val.printPretty(Out, Frame->Info.Ctx,
1209                     Frame->This->Designator.MostDerivedType);
1210     // FIXME: Add parens around Val if needed.
1211     Out << "->" << *Frame->Callee << '(';
1212     IsMemberCall = false;
1213   }
1214
1215   for (FunctionDecl::param_const_iterator I = Frame->Callee->param_begin(),
1216        E = Frame->Callee->param_end(); I != E; ++I, ++ArgIndex) {
1217     if (ArgIndex > (unsigned)IsMemberCall)
1218       Out << ", ";
1219
1220     const ParmVarDecl *Param = *I;
1221     const APValue &Arg = Frame->Arguments[ArgIndex];
1222     Arg.printPretty(Out, Frame->Info.Ctx, Param->getType());
1223
1224     if (ArgIndex == 0 && IsMemberCall)
1225       Out << "->" << *Frame->Callee << '(';
1226   }
1227
1228   Out << ')';
1229 }
1230
1231 /// Evaluate an expression to see if it had side-effects, and discard its
1232 /// result.
1233 /// \return \c true if the caller should keep evaluating.
1234 static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) {
1235   APValue Scratch;
1236   if (!Evaluate(Scratch, Info, E))
1237     // We don't need the value, but we might have skipped a side effect here.
1238     return Info.noteSideEffect();
1239   return true;
1240 }
1241
1242 /// Sign- or zero-extend a value to 64 bits. If it's already 64 bits, just
1243 /// return its existing value.
1244 static int64_t getExtValue(const APSInt &Value) {
1245   return Value.isSigned() ? Value.getSExtValue()
1246                           : static_cast<int64_t>(Value.getZExtValue());
1247 }
1248
1249 /// Should this call expression be treated as a string literal?
1250 static bool IsStringLiteralCall(const CallExpr *E) {
1251   unsigned Builtin = E->getBuiltinCallee();
1252   return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString ||
1253           Builtin == Builtin::BI__builtin___NSStringMakeConstantString);
1254 }
1255
1256 static bool IsGlobalLValue(APValue::LValueBase B) {
1257   // C++11 [expr.const]p3 An address constant expression is a prvalue core
1258   // constant expression of pointer type that evaluates to...
1259
1260   // ... a null pointer value, or a prvalue core constant expression of type
1261   // std::nullptr_t.
1262   if (!B) return true;
1263
1264   if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
1265     // ... the address of an object with static storage duration,
1266     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1267       return VD->hasGlobalStorage();
1268     // ... the address of a function,
1269     return isa<FunctionDecl>(D);
1270   }
1271
1272   const Expr *E = B.get<const Expr*>();
1273   switch (E->getStmtClass()) {
1274   default:
1275     return false;
1276   case Expr::CompoundLiteralExprClass: {
1277     const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E);
1278     return CLE->isFileScope() && CLE->isLValue();
1279   }
1280   case Expr::MaterializeTemporaryExprClass:
1281     // A materialized temporary might have been lifetime-extended to static
1282     // storage duration.
1283     return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static;
1284   // A string literal has static storage duration.
1285   case Expr::StringLiteralClass:
1286   case Expr::PredefinedExprClass:
1287   case Expr::ObjCStringLiteralClass:
1288   case Expr::ObjCEncodeExprClass:
1289   case Expr::CXXTypeidExprClass:
1290   case Expr::CXXUuidofExprClass:
1291     return true;
1292   case Expr::CallExprClass:
1293     return IsStringLiteralCall(cast<CallExpr>(E));
1294   // For GCC compatibility, &&label has static storage duration.
1295   case Expr::AddrLabelExprClass:
1296     return true;
1297   // A Block literal expression may be used as the initialization value for
1298   // Block variables at global or local static scope.
1299   case Expr::BlockExprClass:
1300     return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures();
1301   case Expr::ImplicitValueInitExprClass:
1302     // FIXME:
1303     // We can never form an lvalue with an implicit value initialization as its
1304     // base through expression evaluation, so these only appear in one case: the
1305     // implicit variable declaration we invent when checking whether a constexpr
1306     // constructor can produce a constant expression. We must assume that such
1307     // an expression might be a global lvalue.
1308     return true;
1309   }
1310 }
1311
1312 static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) {
1313   assert(Base && "no location for a null lvalue");
1314   const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1315   if (VD)
1316     Info.Note(VD->getLocation(), diag::note_declared_at);
1317   else
1318     Info.Note(Base.get<const Expr*>()->getExprLoc(),
1319               diag::note_constexpr_temporary_here);
1320 }
1321
1322 /// Check that this reference or pointer core constant expression is a valid
1323 /// value for an address or reference constant expression. Return true if we
1324 /// can fold this expression, whether or not it's a constant expression.
1325 static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc,
1326                                           QualType Type, const LValue &LVal) {
1327   bool IsReferenceType = Type->isReferenceType();
1328
1329   APValue::LValueBase Base = LVal.getLValueBase();
1330   const SubobjectDesignator &Designator = LVal.getLValueDesignator();
1331
1332   // Check that the object is a global. Note that the fake 'this' object we
1333   // manufacture when checking potential constant expressions is conservatively
1334   // assumed to be global here.
1335   if (!IsGlobalLValue(Base)) {
1336     if (Info.getLangOpts().CPlusPlus11) {
1337       const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1338       Info.Diag(Loc, diag::note_constexpr_non_global, 1)
1339         << IsReferenceType << !Designator.Entries.empty()
1340         << !!VD << VD;
1341       NoteLValueLocation(Info, Base);
1342     } else {
1343       Info.Diag(Loc);
1344     }
1345     // Don't allow references to temporaries to escape.
1346     return false;
1347   }
1348   assert((Info.checkingPotentialConstantExpression() ||
1349           LVal.getLValueCallIndex() == 0) &&
1350          "have call index for global lvalue");
1351
1352   if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) {
1353     if (const VarDecl *Var = dyn_cast<const VarDecl>(VD)) {
1354       // Check if this is a thread-local variable.
1355       if (Var->getTLSKind())
1356         return false;
1357
1358       // A dllimport variable never acts like a constant.
1359       if (Var->hasAttr<DLLImportAttr>())
1360         return false;
1361     }
1362     if (const auto *FD = dyn_cast<const FunctionDecl>(VD)) {
1363       // __declspec(dllimport) must be handled very carefully:
1364       // We must never initialize an expression with the thunk in C++.
1365       // Doing otherwise would allow the same id-expression to yield
1366       // different addresses for the same function in different translation
1367       // units.  However, this means that we must dynamically initialize the
1368       // expression with the contents of the import address table at runtime.
1369       //
1370       // The C language has no notion of ODR; furthermore, it has no notion of
1371       // dynamic initialization.  This means that we are permitted to
1372       // perform initialization with the address of the thunk.
1373       if (Info.getLangOpts().CPlusPlus && FD->hasAttr<DLLImportAttr>())
1374         return false;
1375     }
1376   }
1377
1378   // Allow address constant expressions to be past-the-end pointers. This is
1379   // an extension: the standard requires them to point to an object.
1380   if (!IsReferenceType)
1381     return true;
1382
1383   // A reference constant expression must refer to an object.
1384   if (!Base) {
1385     // FIXME: diagnostic
1386     Info.CCEDiag(Loc);
1387     return true;
1388   }
1389
1390   // Does this refer one past the end of some object?
1391   if (!Designator.Invalid && Designator.isOnePastTheEnd()) {
1392     const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>();
1393     Info.Diag(Loc, diag::note_constexpr_past_end, 1)
1394       << !Designator.Entries.empty() << !!VD << VD;
1395     NoteLValueLocation(Info, Base);
1396   }
1397
1398   return true;
1399 }
1400
1401 /// Check that this core constant expression is of literal type, and if not,
1402 /// produce an appropriate diagnostic.
1403 static bool CheckLiteralType(EvalInfo &Info, const Expr *E,
1404                              const LValue *This = nullptr) {
1405   if (!E->isRValue() || E->getType()->isLiteralType(Info.Ctx))
1406     return true;
1407
1408   // C++1y: A constant initializer for an object o [...] may also invoke
1409   // constexpr constructors for o and its subobjects even if those objects
1410   // are of non-literal class types.
1411   if (Info.getLangOpts().CPlusPlus14 && This &&
1412       Info.EvaluatingDecl == This->getLValueBase())
1413     return true;
1414
1415   // Prvalue constant expressions must be of literal types.
1416   if (Info.getLangOpts().CPlusPlus11)
1417     Info.Diag(E, diag::note_constexpr_nonliteral)
1418       << E->getType();
1419   else
1420     Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1421   return false;
1422 }
1423
1424 /// Check that this core constant expression value is a valid value for a
1425 /// constant expression. If not, report an appropriate diagnostic. Does not
1426 /// check that the expression is of literal type.
1427 static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc,
1428                                     QualType Type, const APValue &Value) {
1429   if (Value.isUninit()) {
1430     Info.Diag(DiagLoc, diag::note_constexpr_uninitialized)
1431       << true << Type;
1432     return false;
1433   }
1434
1435   // We allow _Atomic(T) to be initialized from anything that T can be
1436   // initialized from.
1437   if (const AtomicType *AT = Type->getAs<AtomicType>())
1438     Type = AT->getValueType();
1439
1440   // Core issue 1454: For a literal constant expression of array or class type,
1441   // each subobject of its value shall have been initialized by a constant
1442   // expression.
1443   if (Value.isArray()) {
1444     QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType();
1445     for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) {
1446       if (!CheckConstantExpression(Info, DiagLoc, EltTy,
1447                                    Value.getArrayInitializedElt(I)))
1448         return false;
1449     }
1450     if (!Value.hasArrayFiller())
1451       return true;
1452     return CheckConstantExpression(Info, DiagLoc, EltTy,
1453                                    Value.getArrayFiller());
1454   }
1455   if (Value.isUnion() && Value.getUnionField()) {
1456     return CheckConstantExpression(Info, DiagLoc,
1457                                    Value.getUnionField()->getType(),
1458                                    Value.getUnionValue());
1459   }
1460   if (Value.isStruct()) {
1461     RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
1462     if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
1463       unsigned BaseIndex = 0;
1464       for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
1465              End = CD->bases_end(); I != End; ++I, ++BaseIndex) {
1466         if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
1467                                      Value.getStructBase(BaseIndex)))
1468           return false;
1469       }
1470     }
1471     for (const auto *I : RD->fields()) {
1472       if (!CheckConstantExpression(Info, DiagLoc, I->getType(),
1473                                    Value.getStructField(I->getFieldIndex())))
1474         return false;
1475     }
1476   }
1477
1478   if (Value.isLValue()) {
1479     LValue LVal;
1480     LVal.setFrom(Info.Ctx, Value);
1481     return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal);
1482   }
1483
1484   // Everything else is fine.
1485   return true;
1486 }
1487
1488 static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) {
1489   return LVal.Base.dyn_cast<const ValueDecl*>();
1490 }
1491
1492 static bool IsLiteralLValue(const LValue &Value) {
1493   if (Value.CallIndex)
1494     return false;
1495   const Expr *E = Value.Base.dyn_cast<const Expr*>();
1496   return E && !isa<MaterializeTemporaryExpr>(E);
1497 }
1498
1499 static bool IsWeakLValue(const LValue &Value) {
1500   const ValueDecl *Decl = GetLValueBaseDecl(Value);
1501   return Decl && Decl->isWeak();
1502 }
1503
1504 static bool isZeroSized(const LValue &Value) {
1505   const ValueDecl *Decl = GetLValueBaseDecl(Value);
1506   if (Decl && isa<VarDecl>(Decl)) {
1507     QualType Ty = Decl->getType();
1508     if (Ty->isArrayType())
1509       return Ty->isIncompleteType() ||
1510              Decl->getASTContext().getTypeSize(Ty) == 0;
1511   }
1512   return false;
1513 }
1514
1515 static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) {
1516   // A null base expression indicates a null pointer.  These are always
1517   // evaluatable, and they are false unless the offset is zero.
1518   if (!Value.getLValueBase()) {
1519     Result = !Value.getLValueOffset().isZero();
1520     return true;
1521   }
1522
1523   // We have a non-null base.  These are generally known to be true, but if it's
1524   // a weak declaration it can be null at runtime.
1525   Result = true;
1526   const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>();
1527   return !Decl || !Decl->isWeak();
1528 }
1529
1530 static bool HandleConversionToBool(const APValue &Val, bool &Result) {
1531   switch (Val.getKind()) {
1532   case APValue::Uninitialized:
1533     return false;
1534   case APValue::Int:
1535     Result = Val.getInt().getBoolValue();
1536     return true;
1537   case APValue::Float:
1538     Result = !Val.getFloat().isZero();
1539     return true;
1540   case APValue::ComplexInt:
1541     Result = Val.getComplexIntReal().getBoolValue() ||
1542              Val.getComplexIntImag().getBoolValue();
1543     return true;
1544   case APValue::ComplexFloat:
1545     Result = !Val.getComplexFloatReal().isZero() ||
1546              !Val.getComplexFloatImag().isZero();
1547     return true;
1548   case APValue::LValue:
1549     return EvalPointerValueAsBool(Val, Result);
1550   case APValue::MemberPointer:
1551     Result = Val.getMemberPointerDecl();
1552     return true;
1553   case APValue::Vector:
1554   case APValue::Array:
1555   case APValue::Struct:
1556   case APValue::Union:
1557   case APValue::AddrLabelDiff:
1558     return false;
1559   }
1560
1561   llvm_unreachable("unknown APValue kind");
1562 }
1563
1564 static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result,
1565                                        EvalInfo &Info) {
1566   assert(E->isRValue() && "missing lvalue-to-rvalue conv in bool condition");
1567   APValue Val;
1568   if (!Evaluate(Val, Info, E))
1569     return false;
1570   return HandleConversionToBool(Val, Result);
1571 }
1572
1573 template<typename T>
1574 static bool HandleOverflow(EvalInfo &Info, const Expr *E,
1575                            const T &SrcValue, QualType DestType) {
1576   Info.CCEDiag(E, diag::note_constexpr_overflow)
1577     << SrcValue << DestType;
1578   return Info.noteUndefinedBehavior();
1579 }
1580
1581 static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E,
1582                                  QualType SrcType, const APFloat &Value,
1583                                  QualType DestType, APSInt &Result) {
1584   unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
1585   // Determine whether we are converting to unsigned or signed.
1586   bool DestSigned = DestType->isSignedIntegerOrEnumerationType();
1587
1588   Result = APSInt(DestWidth, !DestSigned);
1589   bool ignored;
1590   if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored)
1591       & APFloat::opInvalidOp)
1592     return HandleOverflow(Info, E, Value, DestType);
1593   return true;
1594 }
1595
1596 static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E,
1597                                    QualType SrcType, QualType DestType,
1598                                    APFloat &Result) {
1599   APFloat Value = Result;
1600   bool ignored;
1601   if (Result.convert(Info.Ctx.getFloatTypeSemantics(DestType),
1602                      APFloat::rmNearestTiesToEven, &ignored)
1603       & APFloat::opOverflow)
1604     return HandleOverflow(Info, E, Value, DestType);
1605   return true;
1606 }
1607
1608 static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E,
1609                                  QualType DestType, QualType SrcType,
1610                                  const APSInt &Value) {
1611   unsigned DestWidth = Info.Ctx.getIntWidth(DestType);
1612   APSInt Result = Value;
1613   // Figure out if this is a truncate, extend or noop cast.
1614   // If the input is signed, do a sign extend, noop, or truncate.
1615   Result = Result.extOrTrunc(DestWidth);
1616   Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType());
1617   return Result;
1618 }
1619
1620 static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E,
1621                                  QualType SrcType, const APSInt &Value,
1622                                  QualType DestType, APFloat &Result) {
1623   Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1);
1624   if (Result.convertFromAPInt(Value, Value.isSigned(),
1625                               APFloat::rmNearestTiesToEven)
1626       & APFloat::opOverflow)
1627     return HandleOverflow(Info, E, Value, DestType);
1628   return true;
1629 }
1630
1631 static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E,
1632                                   APValue &Value, const FieldDecl *FD) {
1633   assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield");
1634
1635   if (!Value.isInt()) {
1636     // Trying to store a pointer-cast-to-integer into a bitfield.
1637     // FIXME: In this case, we should provide the diagnostic for casting
1638     // a pointer to an integer.
1639     assert(Value.isLValue() && "integral value neither int nor lvalue?");
1640     Info.Diag(E);
1641     return false;
1642   }
1643
1644   APSInt &Int = Value.getInt();
1645   unsigned OldBitWidth = Int.getBitWidth();
1646   unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx);
1647   if (NewBitWidth < OldBitWidth)
1648     Int = Int.trunc(NewBitWidth).extend(OldBitWidth);
1649   return true;
1650 }
1651
1652 static bool EvalAndBitcastToAPInt(EvalInfo &Info, const Expr *E,
1653                                   llvm::APInt &Res) {
1654   APValue SVal;
1655   if (!Evaluate(SVal, Info, E))
1656     return false;
1657   if (SVal.isInt()) {
1658     Res = SVal.getInt();
1659     return true;
1660   }
1661   if (SVal.isFloat()) {
1662     Res = SVal.getFloat().bitcastToAPInt();
1663     return true;
1664   }
1665   if (SVal.isVector()) {
1666     QualType VecTy = E->getType();
1667     unsigned VecSize = Info.Ctx.getTypeSize(VecTy);
1668     QualType EltTy = VecTy->castAs<VectorType>()->getElementType();
1669     unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
1670     bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
1671     Res = llvm::APInt::getNullValue(VecSize);
1672     for (unsigned i = 0; i < SVal.getVectorLength(); i++) {
1673       APValue &Elt = SVal.getVectorElt(i);
1674       llvm::APInt EltAsInt;
1675       if (Elt.isInt()) {
1676         EltAsInt = Elt.getInt();
1677       } else if (Elt.isFloat()) {
1678         EltAsInt = Elt.getFloat().bitcastToAPInt();
1679       } else {
1680         // Don't try to handle vectors of anything other than int or float
1681         // (not sure if it's possible to hit this case).
1682         Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1683         return false;
1684       }
1685       unsigned BaseEltSize = EltAsInt.getBitWidth();
1686       if (BigEndian)
1687         Res |= EltAsInt.zextOrTrunc(VecSize).rotr(i*EltSize+BaseEltSize);
1688       else
1689         Res |= EltAsInt.zextOrTrunc(VecSize).rotl(i*EltSize);
1690     }
1691     return true;
1692   }
1693   // Give up if the input isn't an int, float, or vector.  For example, we
1694   // reject "(v4i16)(intptr_t)&a".
1695   Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
1696   return false;
1697 }
1698
1699 /// Perform the given integer operation, which is known to need at most BitWidth
1700 /// bits, and check for overflow in the original type (if that type was not an
1701 /// unsigned type).
1702 template<typename Operation>
1703 static bool CheckedIntArithmetic(EvalInfo &Info, const Expr *E,
1704                                  const APSInt &LHS, const APSInt &RHS,
1705                                  unsigned BitWidth, Operation Op,
1706                                  APSInt &Result) {
1707   if (LHS.isUnsigned()) {
1708     Result = Op(LHS, RHS);
1709     return true;
1710   }
1711
1712   APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false);
1713   Result = Value.trunc(LHS.getBitWidth());
1714   if (Result.extend(BitWidth) != Value) {
1715     if (Info.checkingForOverflow())
1716       Info.Ctx.getDiagnostics().Report(E->getExprLoc(),
1717                                        diag::warn_integer_constant_overflow)
1718           << Result.toString(10) << E->getType();
1719     else
1720       return HandleOverflow(Info, E, Value, E->getType());
1721   }
1722   return true;
1723 }
1724
1725 /// Perform the given binary integer operation.
1726 static bool handleIntIntBinOp(EvalInfo &Info, const Expr *E, const APSInt &LHS,
1727                               BinaryOperatorKind Opcode, APSInt RHS,
1728                               APSInt &Result) {
1729   switch (Opcode) {
1730   default:
1731     Info.Diag(E);
1732     return false;
1733   case BO_Mul:
1734     return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2,
1735                                 std::multiplies<APSInt>(), Result);
1736   case BO_Add:
1737     return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
1738                                 std::plus<APSInt>(), Result);
1739   case BO_Sub:
1740     return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1,
1741                                 std::minus<APSInt>(), Result);
1742   case BO_And: Result = LHS & RHS; return true;
1743   case BO_Xor: Result = LHS ^ RHS; return true;
1744   case BO_Or:  Result = LHS | RHS; return true;
1745   case BO_Div:
1746   case BO_Rem:
1747     if (RHS == 0) {
1748       Info.Diag(E, diag::note_expr_divide_by_zero);
1749       return false;
1750     }
1751     Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS);
1752     // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. APSInt supports
1753     // this operation and gives the two's complement result.
1754     if (RHS.isNegative() && RHS.isAllOnesValue() &&
1755         LHS.isSigned() && LHS.isMinSignedValue())
1756       return HandleOverflow(Info, E, -LHS.extend(LHS.getBitWidth() + 1),
1757                             E->getType());
1758     return true;
1759   case BO_Shl: {
1760     if (Info.getLangOpts().OpenCL)
1761       // OpenCL 6.3j: shift values are effectively % word size of LHS.
1762       RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
1763                     static_cast<uint64_t>(LHS.getBitWidth() - 1)),
1764                     RHS.isUnsigned());
1765     else if (RHS.isSigned() && RHS.isNegative()) {
1766       // During constant-folding, a negative shift is an opposite shift. Such
1767       // a shift is not a constant expression.
1768       Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
1769       RHS = -RHS;
1770       goto shift_right;
1771     }
1772   shift_left:
1773     // C++11 [expr.shift]p1: Shift width must be less than the bit width of
1774     // the shifted type.
1775     unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
1776     if (SA != RHS) {
1777       Info.CCEDiag(E, diag::note_constexpr_large_shift)
1778         << RHS << E->getType() << LHS.getBitWidth();
1779     } else if (LHS.isSigned()) {
1780       // C++11 [expr.shift]p2: A signed left shift must have a non-negative
1781       // operand, and must not overflow the corresponding unsigned type.
1782       if (LHS.isNegative())
1783         Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS;
1784       else if (LHS.countLeadingZeros() < SA)
1785         Info.CCEDiag(E, diag::note_constexpr_lshift_discards);
1786     }
1787     Result = LHS << SA;
1788     return true;
1789   }
1790   case BO_Shr: {
1791     if (Info.getLangOpts().OpenCL)
1792       // OpenCL 6.3j: shift values are effectively % word size of LHS.
1793       RHS &= APSInt(llvm::APInt(RHS.getBitWidth(),
1794                     static_cast<uint64_t>(LHS.getBitWidth() - 1)),
1795                     RHS.isUnsigned());
1796     else if (RHS.isSigned() && RHS.isNegative()) {
1797       // During constant-folding, a negative shift is an opposite shift. Such a
1798       // shift is not a constant expression.
1799       Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS;
1800       RHS = -RHS;
1801       goto shift_left;
1802     }
1803   shift_right:
1804     // C++11 [expr.shift]p1: Shift width must be less than the bit width of the
1805     // shifted type.
1806     unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1);
1807     if (SA != RHS)
1808       Info.CCEDiag(E, diag::note_constexpr_large_shift)
1809         << RHS << E->getType() << LHS.getBitWidth();
1810     Result = LHS >> SA;
1811     return true;
1812   }
1813
1814   case BO_LT: Result = LHS < RHS; return true;
1815   case BO_GT: Result = LHS > RHS; return true;
1816   case BO_LE: Result = LHS <= RHS; return true;
1817   case BO_GE: Result = LHS >= RHS; return true;
1818   case BO_EQ: Result = LHS == RHS; return true;
1819   case BO_NE: Result = LHS != RHS; return true;
1820   }
1821 }
1822
1823 /// Perform the given binary floating-point operation, in-place, on LHS.
1824 static bool handleFloatFloatBinOp(EvalInfo &Info, const Expr *E,
1825                                   APFloat &LHS, BinaryOperatorKind Opcode,
1826                                   const APFloat &RHS) {
1827   switch (Opcode) {
1828   default:
1829     Info.Diag(E);
1830     return false;
1831   case BO_Mul:
1832     LHS.multiply(RHS, APFloat::rmNearestTiesToEven);
1833     break;
1834   case BO_Add:
1835     LHS.add(RHS, APFloat::rmNearestTiesToEven);
1836     break;
1837   case BO_Sub:
1838     LHS.subtract(RHS, APFloat::rmNearestTiesToEven);
1839     break;
1840   case BO_Div:
1841     LHS.divide(RHS, APFloat::rmNearestTiesToEven);
1842     break;
1843   }
1844
1845   if (LHS.isInfinity() || LHS.isNaN()) {
1846     Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN();
1847     return Info.noteUndefinedBehavior();
1848   }
1849   return true;
1850 }
1851
1852 /// Cast an lvalue referring to a base subobject to a derived class, by
1853 /// truncating the lvalue's path to the given length.
1854 static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result,
1855                                const RecordDecl *TruncatedType,
1856                                unsigned TruncatedElements) {
1857   SubobjectDesignator &D = Result.Designator;
1858
1859   // Check we actually point to a derived class object.
1860   if (TruncatedElements == D.Entries.size())
1861     return true;
1862   assert(TruncatedElements >= D.MostDerivedPathLength &&
1863          "not casting to a derived class");
1864   if (!Result.checkSubobject(Info, E, CSK_Derived))
1865     return false;
1866
1867   // Truncate the path to the subobject, and remove any derived-to-base offsets.
1868   const RecordDecl *RD = TruncatedType;
1869   for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) {
1870     if (RD->isInvalidDecl()) return false;
1871     const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
1872     const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]);
1873     if (isVirtualBaseClass(D.Entries[I]))
1874       Result.Offset -= Layout.getVBaseClassOffset(Base);
1875     else
1876       Result.Offset -= Layout.getBaseClassOffset(Base);
1877     RD = Base;
1878   }
1879   D.Entries.resize(TruncatedElements);
1880   return true;
1881 }
1882
1883 static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj,
1884                                    const CXXRecordDecl *Derived,
1885                                    const CXXRecordDecl *Base,
1886                                    const ASTRecordLayout *RL = nullptr) {
1887   if (!RL) {
1888     if (Derived->isInvalidDecl()) return false;
1889     RL = &Info.Ctx.getASTRecordLayout(Derived);
1890   }
1891
1892   Obj.getLValueOffset() += RL->getBaseClassOffset(Base);
1893   Obj.addDecl(Info, E, Base, /*Virtual*/ false);
1894   return true;
1895 }
1896
1897 static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj,
1898                              const CXXRecordDecl *DerivedDecl,
1899                              const CXXBaseSpecifier *Base) {
1900   const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
1901
1902   if (!Base->isVirtual())
1903     return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl);
1904
1905   SubobjectDesignator &D = Obj.Designator;
1906   if (D.Invalid)
1907     return false;
1908
1909   // Extract most-derived object and corresponding type.
1910   DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl();
1911   if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength))
1912     return false;
1913
1914   // Find the virtual base class.
1915   if (DerivedDecl->isInvalidDecl()) return false;
1916   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl);
1917   Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl);
1918   Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true);
1919   return true;
1920 }
1921
1922 static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E,
1923                                  QualType Type, LValue &Result) {
1924   for (CastExpr::path_const_iterator PathI = E->path_begin(),
1925                                      PathE = E->path_end();
1926        PathI != PathE; ++PathI) {
1927     if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(),
1928                           *PathI))
1929       return false;
1930     Type = (*PathI)->getType();
1931   }
1932   return true;
1933 }
1934
1935 /// Update LVal to refer to the given field, which must be a member of the type
1936 /// currently described by LVal.
1937 static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal,
1938                                const FieldDecl *FD,
1939                                const ASTRecordLayout *RL = nullptr) {
1940   if (!RL) {
1941     if (FD->getParent()->isInvalidDecl()) return false;
1942     RL = &Info.Ctx.getASTRecordLayout(FD->getParent());
1943   }
1944
1945   unsigned I = FD->getFieldIndex();
1946   LVal.Offset += Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I));
1947   LVal.addDecl(Info, E, FD);
1948   return true;
1949 }
1950
1951 /// Update LVal to refer to the given indirect field.
1952 static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E,
1953                                        LValue &LVal,
1954                                        const IndirectFieldDecl *IFD) {
1955   for (const auto *C : IFD->chain())
1956     if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C)))
1957       return false;
1958   return true;
1959 }
1960
1961 /// Get the size of the given type in char units.
1962 static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc,
1963                          QualType Type, CharUnits &Size) {
1964   // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc
1965   // extension.
1966   if (Type->isVoidType() || Type->isFunctionType()) {
1967     Size = CharUnits::One();
1968     return true;
1969   }
1970
1971   if (!Type->isConstantSizeType()) {
1972     // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2.
1973     // FIXME: Better diagnostic.
1974     Info.Diag(Loc);
1975     return false;
1976   }
1977
1978   Size = Info.Ctx.getTypeSizeInChars(Type);
1979   return true;
1980 }
1981
1982 /// Update a pointer value to model pointer arithmetic.
1983 /// \param Info - Information about the ongoing evaluation.
1984 /// \param E - The expression being evaluated, for diagnostic purposes.
1985 /// \param LVal - The pointer value to be updated.
1986 /// \param EltTy - The pointee type represented by LVal.
1987 /// \param Adjustment - The adjustment, in objects of type EltTy, to add.
1988 static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E,
1989                                         LValue &LVal, QualType EltTy,
1990                                         int64_t Adjustment) {
1991   CharUnits SizeOfPointee;
1992   if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee))
1993     return false;
1994
1995   // Compute the new offset in the appropriate width.
1996   LVal.Offset += Adjustment * SizeOfPointee;
1997   LVal.adjustIndex(Info, E, Adjustment);
1998   return true;
1999 }
2000
2001 /// Update an lvalue to refer to a component of a complex number.
2002 /// \param Info - Information about the ongoing evaluation.
2003 /// \param LVal - The lvalue to be updated.
2004 /// \param EltTy - The complex number's component type.
2005 /// \param Imag - False for the real component, true for the imaginary.
2006 static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E,
2007                                        LValue &LVal, QualType EltTy,
2008                                        bool Imag) {
2009   if (Imag) {
2010     CharUnits SizeOfComponent;
2011     if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent))
2012       return false;
2013     LVal.Offset += SizeOfComponent;
2014   }
2015   LVal.addComplex(Info, E, EltTy, Imag);
2016   return true;
2017 }
2018
2019 /// Try to evaluate the initializer for a variable declaration.
2020 ///
2021 /// \param Info   Information about the ongoing evaluation.
2022 /// \param E      An expression to be used when printing diagnostics.
2023 /// \param VD     The variable whose initializer should be obtained.
2024 /// \param Frame  The frame in which the variable was created. Must be null
2025 ///               if this variable is not local to the evaluation.
2026 /// \param Result Filled in with a pointer to the value of the variable.
2027 static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E,
2028                                 const VarDecl *VD, CallStackFrame *Frame,
2029                                 APValue *&Result) {
2030   // If this is a parameter to an active constexpr function call, perform
2031   // argument substitution.
2032   if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) {
2033     // Assume arguments of a potential constant expression are unknown
2034     // constant expressions.
2035     if (Info.checkingPotentialConstantExpression())
2036       return false;
2037     if (!Frame || !Frame->Arguments) {
2038       Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
2039       return false;
2040     }
2041     Result = &Frame->Arguments[PVD->getFunctionScopeIndex()];
2042     return true;
2043   }
2044
2045   // If this is a local variable, dig out its value.
2046   if (Frame) {
2047     Result = Frame->getTemporary(VD);
2048     assert(Result && "missing value for local variable");
2049     return true;
2050   }
2051
2052   // Dig out the initializer, and use the declaration which it's attached to.
2053   const Expr *Init = VD->getAnyInitializer(VD);
2054   if (!Init || Init->isValueDependent()) {
2055     // If we're checking a potential constant expression, the variable could be
2056     // initialized later.
2057     if (!Info.checkingPotentialConstantExpression())
2058       Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
2059     return false;
2060   }
2061
2062   // If we're currently evaluating the initializer of this declaration, use that
2063   // in-flight value.
2064   if (Info.EvaluatingDecl.dyn_cast<const ValueDecl*>() == VD) {
2065     Result = Info.EvaluatingDeclValue;
2066     return true;
2067   }
2068
2069   // Never evaluate the initializer of a weak variable. We can't be sure that
2070   // this is the definition which will be used.
2071   if (VD->isWeak()) {
2072     Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
2073     return false;
2074   }
2075
2076   // Check that we can fold the initializer. In C++, we will have already done
2077   // this in the cases where it matters for conformance.
2078   SmallVector<PartialDiagnosticAt, 8> Notes;
2079   if (!VD->evaluateValue(Notes)) {
2080     Info.Diag(E, diag::note_constexpr_var_init_non_constant,
2081               Notes.size() + 1) << VD;
2082     Info.Note(VD->getLocation(), diag::note_declared_at);
2083     Info.addNotes(Notes);
2084     return false;
2085   } else if (!VD->checkInitIsICE()) {
2086     Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant,
2087                  Notes.size() + 1) << VD;
2088     Info.Note(VD->getLocation(), diag::note_declared_at);
2089     Info.addNotes(Notes);
2090   }
2091
2092   Result = VD->getEvaluatedValue();
2093   return true;
2094 }
2095
2096 static bool IsConstNonVolatile(QualType T) {
2097   Qualifiers Quals = T.getQualifiers();
2098   return Quals.hasConst() && !Quals.hasVolatile();
2099 }
2100
2101 /// Get the base index of the given base class within an APValue representing
2102 /// the given derived class.
2103 static unsigned getBaseIndex(const CXXRecordDecl *Derived,
2104                              const CXXRecordDecl *Base) {
2105   Base = Base->getCanonicalDecl();
2106   unsigned Index = 0;
2107   for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(),
2108          E = Derived->bases_end(); I != E; ++I, ++Index) {
2109     if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base)
2110       return Index;
2111   }
2112
2113   llvm_unreachable("base class missing from derived class's bases list");
2114 }
2115
2116 /// Extract the value of a character from a string literal.
2117 static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit,
2118                                             uint64_t Index) {
2119   // FIXME: Support ObjCEncodeExpr, MakeStringConstant
2120   if (auto PE = dyn_cast<PredefinedExpr>(Lit))
2121     Lit = PE->getFunctionName();
2122   const StringLiteral *S = cast<StringLiteral>(Lit);
2123   const ConstantArrayType *CAT =
2124       Info.Ctx.getAsConstantArrayType(S->getType());
2125   assert(CAT && "string literal isn't an array");
2126   QualType CharType = CAT->getElementType();
2127   assert(CharType->isIntegerType() && "unexpected character type");
2128
2129   APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
2130                CharType->isUnsignedIntegerType());
2131   if (Index < S->getLength())
2132     Value = S->getCodeUnit(Index);
2133   return Value;
2134 }
2135
2136 // Expand a string literal into an array of characters.
2137 static void expandStringLiteral(EvalInfo &Info, const Expr *Lit,
2138                                 APValue &Result) {
2139   const StringLiteral *S = cast<StringLiteral>(Lit);
2140   const ConstantArrayType *CAT =
2141       Info.Ctx.getAsConstantArrayType(S->getType());
2142   assert(CAT && "string literal isn't an array");
2143   QualType CharType = CAT->getElementType();
2144   assert(CharType->isIntegerType() && "unexpected character type");
2145
2146   unsigned Elts = CAT->getSize().getZExtValue();
2147   Result = APValue(APValue::UninitArray(),
2148                    std::min(S->getLength(), Elts), Elts);
2149   APSInt Value(S->getCharByteWidth() * Info.Ctx.getCharWidth(),
2150                CharType->isUnsignedIntegerType());
2151   if (Result.hasArrayFiller())
2152     Result.getArrayFiller() = APValue(Value);
2153   for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) {
2154     Value = S->getCodeUnit(I);
2155     Result.getArrayInitializedElt(I) = APValue(Value);
2156   }
2157 }
2158
2159 // Expand an array so that it has more than Index filled elements.
2160 static void expandArray(APValue &Array, unsigned Index) {
2161   unsigned Size = Array.getArraySize();
2162   assert(Index < Size);
2163
2164   // Always at least double the number of elements for which we store a value.
2165   unsigned OldElts = Array.getArrayInitializedElts();
2166   unsigned NewElts = std::max(Index+1, OldElts * 2);
2167   NewElts = std::min(Size, std::max(NewElts, 8u));
2168
2169   // Copy the data across.
2170   APValue NewValue(APValue::UninitArray(), NewElts, Size);
2171   for (unsigned I = 0; I != OldElts; ++I)
2172     NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I));
2173   for (unsigned I = OldElts; I != NewElts; ++I)
2174     NewValue.getArrayInitializedElt(I) = Array.getArrayFiller();
2175   if (NewValue.hasArrayFiller())
2176     NewValue.getArrayFiller() = Array.getArrayFiller();
2177   Array.swap(NewValue);
2178 }
2179
2180 /// Determine whether a type would actually be read by an lvalue-to-rvalue
2181 /// conversion. If it's of class type, we may assume that the copy operation
2182 /// is trivial. Note that this is never true for a union type with fields
2183 /// (because the copy always "reads" the active member) and always true for
2184 /// a non-class type.
2185 static bool isReadByLvalueToRvalueConversion(QualType T) {
2186   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2187   if (!RD || (RD->isUnion() && !RD->field_empty()))
2188     return true;
2189   if (RD->isEmpty())
2190     return false;
2191
2192   for (auto *Field : RD->fields())
2193     if (isReadByLvalueToRvalueConversion(Field->getType()))
2194       return true;
2195
2196   for (auto &BaseSpec : RD->bases())
2197     if (isReadByLvalueToRvalueConversion(BaseSpec.getType()))
2198       return true;
2199
2200   return false;
2201 }
2202
2203 /// Diagnose an attempt to read from any unreadable field within the specified
2204 /// type, which might be a class type.
2205 static bool diagnoseUnreadableFields(EvalInfo &Info, const Expr *E,
2206                                      QualType T) {
2207   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
2208   if (!RD)
2209     return false;
2210
2211   if (!RD->hasMutableFields())
2212     return false;
2213
2214   for (auto *Field : RD->fields()) {
2215     // If we're actually going to read this field in some way, then it can't
2216     // be mutable. If we're in a union, then assigning to a mutable field
2217     // (even an empty one) can change the active member, so that's not OK.
2218     // FIXME: Add core issue number for the union case.
2219     if (Field->isMutable() &&
2220         (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) {
2221       Info.Diag(E, diag::note_constexpr_ltor_mutable, 1) << Field;
2222       Info.Note(Field->getLocation(), diag::note_declared_at);
2223       return true;
2224     }
2225
2226     if (diagnoseUnreadableFields(Info, E, Field->getType()))
2227       return true;
2228   }
2229
2230   for (auto &BaseSpec : RD->bases())
2231     if (diagnoseUnreadableFields(Info, E, BaseSpec.getType()))
2232       return true;
2233
2234   // All mutable fields were empty, and thus not actually read.
2235   return false;
2236 }
2237
2238 /// Kinds of access we can perform on an object, for diagnostics.
2239 enum AccessKinds {
2240   AK_Read,
2241   AK_Assign,
2242   AK_Increment,
2243   AK_Decrement
2244 };
2245
2246 namespace {
2247 /// A handle to a complete object (an object that is not a subobject of
2248 /// another object).
2249 struct CompleteObject {
2250   /// The value of the complete object.
2251   APValue *Value;
2252   /// The type of the complete object.
2253   QualType Type;
2254
2255   CompleteObject() : Value(nullptr) {}
2256   CompleteObject(APValue *Value, QualType Type)
2257       : Value(Value), Type(Type) {
2258     assert(Value && "missing value for complete object");
2259   }
2260
2261   explicit operator bool() const { return Value; }
2262 };
2263 } // end anonymous namespace
2264
2265 /// Find the designated sub-object of an rvalue.
2266 template<typename SubobjectHandler>
2267 typename SubobjectHandler::result_type
2268 findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj,
2269               const SubobjectDesignator &Sub, SubobjectHandler &handler) {
2270   if (Sub.Invalid)
2271     // A diagnostic will have already been produced.
2272     return handler.failed();
2273   if (Sub.isOnePastTheEnd()) {
2274     if (Info.getLangOpts().CPlusPlus11)
2275       Info.Diag(E, diag::note_constexpr_access_past_end)
2276         << handler.AccessKind;
2277     else
2278       Info.Diag(E);
2279     return handler.failed();
2280   }
2281
2282   APValue *O = Obj.Value;
2283   QualType ObjType = Obj.Type;
2284   const FieldDecl *LastField = nullptr;
2285
2286   // Walk the designator's path to find the subobject.
2287   for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) {
2288     if (O->isUninit()) {
2289       if (!Info.checkingPotentialConstantExpression())
2290         Info.Diag(E, diag::note_constexpr_access_uninit) << handler.AccessKind;
2291       return handler.failed();
2292     }
2293
2294     if (I == N) {
2295       // If we are reading an object of class type, there may still be more
2296       // things we need to check: if there are any mutable subobjects, we
2297       // cannot perform this read. (This only happens when performing a trivial
2298       // copy or assignment.)
2299       if (ObjType->isRecordType() && handler.AccessKind == AK_Read &&
2300           diagnoseUnreadableFields(Info, E, ObjType))
2301         return handler.failed();
2302
2303       if (!handler.found(*O, ObjType))
2304         return false;
2305
2306       // If we modified a bit-field, truncate it to the right width.
2307       if (handler.AccessKind != AK_Read &&
2308           LastField && LastField->isBitField() &&
2309           !truncateBitfieldValue(Info, E, *O, LastField))
2310         return false;
2311
2312       return true;
2313     }
2314
2315     LastField = nullptr;
2316     if (ObjType->isArrayType()) {
2317       // Next subobject is an array element.
2318       const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType);
2319       assert(CAT && "vla in literal type?");
2320       uint64_t Index = Sub.Entries[I].ArrayIndex;
2321       if (CAT->getSize().ule(Index)) {
2322         // Note, it should not be possible to form a pointer with a valid
2323         // designator which points more than one past the end of the array.
2324         if (Info.getLangOpts().CPlusPlus11)
2325           Info.Diag(E, diag::note_constexpr_access_past_end)
2326             << handler.AccessKind;
2327         else
2328           Info.Diag(E);
2329         return handler.failed();
2330       }
2331
2332       ObjType = CAT->getElementType();
2333
2334       // An array object is represented as either an Array APValue or as an
2335       // LValue which refers to a string literal.
2336       if (O->isLValue()) {
2337         assert(I == N - 1 && "extracting subobject of character?");
2338         assert(!O->hasLValuePath() || O->getLValuePath().empty());
2339         if (handler.AccessKind != AK_Read)
2340           expandStringLiteral(Info, O->getLValueBase().get<const Expr *>(),
2341                               *O);
2342         else
2343           return handler.foundString(*O, ObjType, Index);
2344       }
2345
2346       if (O->getArrayInitializedElts() > Index)
2347         O = &O->getArrayInitializedElt(Index);
2348       else if (handler.AccessKind != AK_Read) {
2349         expandArray(*O, Index);
2350         O = &O->getArrayInitializedElt(Index);
2351       } else
2352         O = &O->getArrayFiller();
2353     } else if (ObjType->isAnyComplexType()) {
2354       // Next subobject is a complex number.
2355       uint64_t Index = Sub.Entries[I].ArrayIndex;
2356       if (Index > 1) {
2357         if (Info.getLangOpts().CPlusPlus11)
2358           Info.Diag(E, diag::note_constexpr_access_past_end)
2359             << handler.AccessKind;
2360         else
2361           Info.Diag(E);
2362         return handler.failed();
2363       }
2364
2365       bool WasConstQualified = ObjType.isConstQualified();
2366       ObjType = ObjType->castAs<ComplexType>()->getElementType();
2367       if (WasConstQualified)
2368         ObjType.addConst();
2369
2370       assert(I == N - 1 && "extracting subobject of scalar?");
2371       if (O->isComplexInt()) {
2372         return handler.found(Index ? O->getComplexIntImag()
2373                                    : O->getComplexIntReal(), ObjType);
2374       } else {
2375         assert(O->isComplexFloat());
2376         return handler.found(Index ? O->getComplexFloatImag()
2377                                    : O->getComplexFloatReal(), ObjType);
2378       }
2379     } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) {
2380       if (Field->isMutable() && handler.AccessKind == AK_Read) {
2381         Info.Diag(E, diag::note_constexpr_ltor_mutable, 1)
2382           << Field;
2383         Info.Note(Field->getLocation(), diag::note_declared_at);
2384         return handler.failed();
2385       }
2386
2387       // Next subobject is a class, struct or union field.
2388       RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl();
2389       if (RD->isUnion()) {
2390         const FieldDecl *UnionField = O->getUnionField();
2391         if (!UnionField ||
2392             UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) {
2393           Info.Diag(E, diag::note_constexpr_access_inactive_union_member)
2394             << handler.AccessKind << Field << !UnionField << UnionField;
2395           return handler.failed();
2396         }
2397         O = &O->getUnionValue();
2398       } else
2399         O = &O->getStructField(Field->getFieldIndex());
2400
2401       bool WasConstQualified = ObjType.isConstQualified();
2402       ObjType = Field->getType();
2403       if (WasConstQualified && !Field->isMutable())
2404         ObjType.addConst();
2405
2406       if (ObjType.isVolatileQualified()) {
2407         if (Info.getLangOpts().CPlusPlus) {
2408           // FIXME: Include a description of the path to the volatile subobject.
2409           Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
2410             << handler.AccessKind << 2 << Field;
2411           Info.Note(Field->getLocation(), diag::note_declared_at);
2412         } else {
2413           Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
2414         }
2415         return handler.failed();
2416       }
2417
2418       LastField = Field;
2419     } else {
2420       // Next subobject is a base class.
2421       const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl();
2422       const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]);
2423       O = &O->getStructBase(getBaseIndex(Derived, Base));
2424
2425       bool WasConstQualified = ObjType.isConstQualified();
2426       ObjType = Info.Ctx.getRecordType(Base);
2427       if (WasConstQualified)
2428         ObjType.addConst();
2429     }
2430   }
2431 }
2432
2433 namespace {
2434 struct ExtractSubobjectHandler {
2435   EvalInfo &Info;
2436   APValue &Result;
2437
2438   static const AccessKinds AccessKind = AK_Read;
2439
2440   typedef bool result_type;
2441   bool failed() { return false; }
2442   bool found(APValue &Subobj, QualType SubobjType) {
2443     Result = Subobj;
2444     return true;
2445   }
2446   bool found(APSInt &Value, QualType SubobjType) {
2447     Result = APValue(Value);
2448     return true;
2449   }
2450   bool found(APFloat &Value, QualType SubobjType) {
2451     Result = APValue(Value);
2452     return true;
2453   }
2454   bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
2455     Result = APValue(extractStringLiteralCharacter(
2456         Info, Subobj.getLValueBase().get<const Expr *>(), Character));
2457     return true;
2458   }
2459 };
2460 } // end anonymous namespace
2461
2462 const AccessKinds ExtractSubobjectHandler::AccessKind;
2463
2464 /// Extract the designated sub-object of an rvalue.
2465 static bool extractSubobject(EvalInfo &Info, const Expr *E,
2466                              const CompleteObject &Obj,
2467                              const SubobjectDesignator &Sub,
2468                              APValue &Result) {
2469   ExtractSubobjectHandler Handler = { Info, Result };
2470   return findSubobject(Info, E, Obj, Sub, Handler);
2471 }
2472
2473 namespace {
2474 struct ModifySubobjectHandler {
2475   EvalInfo &Info;
2476   APValue &NewVal;
2477   const Expr *E;
2478
2479   typedef bool result_type;
2480   static const AccessKinds AccessKind = AK_Assign;
2481
2482   bool checkConst(QualType QT) {
2483     // Assigning to a const object has undefined behavior.
2484     if (QT.isConstQualified()) {
2485       Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
2486       return false;
2487     }
2488     return true;
2489   }
2490
2491   bool failed() { return false; }
2492   bool found(APValue &Subobj, QualType SubobjType) {
2493     if (!checkConst(SubobjType))
2494       return false;
2495     // We've been given ownership of NewVal, so just swap it in.
2496     Subobj.swap(NewVal);
2497     return true;
2498   }
2499   bool found(APSInt &Value, QualType SubobjType) {
2500     if (!checkConst(SubobjType))
2501       return false;
2502     if (!NewVal.isInt()) {
2503       // Maybe trying to write a cast pointer value into a complex?
2504       Info.Diag(E);
2505       return false;
2506     }
2507     Value = NewVal.getInt();
2508     return true;
2509   }
2510   bool found(APFloat &Value, QualType SubobjType) {
2511     if (!checkConst(SubobjType))
2512       return false;
2513     Value = NewVal.getFloat();
2514     return true;
2515   }
2516   bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
2517     llvm_unreachable("shouldn't encounter string elements with ExpandArrays");
2518   }
2519 };
2520 } // end anonymous namespace
2521
2522 const AccessKinds ModifySubobjectHandler::AccessKind;
2523
2524 /// Update the designated sub-object of an rvalue to the given value.
2525 static bool modifySubobject(EvalInfo &Info, const Expr *E,
2526                             const CompleteObject &Obj,
2527                             const SubobjectDesignator &Sub,
2528                             APValue &NewVal) {
2529   ModifySubobjectHandler Handler = { Info, NewVal, E };
2530   return findSubobject(Info, E, Obj, Sub, Handler);
2531 }
2532
2533 /// Find the position where two subobject designators diverge, or equivalently
2534 /// the length of the common initial subsequence.
2535 static unsigned FindDesignatorMismatch(QualType ObjType,
2536                                        const SubobjectDesignator &A,
2537                                        const SubobjectDesignator &B,
2538                                        bool &WasArrayIndex) {
2539   unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size());
2540   for (/**/; I != N; ++I) {
2541     if (!ObjType.isNull() &&
2542         (ObjType->isArrayType() || ObjType->isAnyComplexType())) {
2543       // Next subobject is an array element.
2544       if (A.Entries[I].ArrayIndex != B.Entries[I].ArrayIndex) {
2545         WasArrayIndex = true;
2546         return I;
2547       }
2548       if (ObjType->isAnyComplexType())
2549         ObjType = ObjType->castAs<ComplexType>()->getElementType();
2550       else
2551         ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType();
2552     } else {
2553       if (A.Entries[I].BaseOrMember != B.Entries[I].BaseOrMember) {
2554         WasArrayIndex = false;
2555         return I;
2556       }
2557       if (const FieldDecl *FD = getAsField(A.Entries[I]))
2558         // Next subobject is a field.
2559         ObjType = FD->getType();
2560       else
2561         // Next subobject is a base class.
2562         ObjType = QualType();
2563     }
2564   }
2565   WasArrayIndex = false;
2566   return I;
2567 }
2568
2569 /// Determine whether the given subobject designators refer to elements of the
2570 /// same array object.
2571 static bool AreElementsOfSameArray(QualType ObjType,
2572                                    const SubobjectDesignator &A,
2573                                    const SubobjectDesignator &B) {
2574   if (A.Entries.size() != B.Entries.size())
2575     return false;
2576
2577   bool IsArray = A.MostDerivedIsArrayElement;
2578   if (IsArray && A.MostDerivedPathLength != A.Entries.size())
2579     // A is a subobject of the array element.
2580     return false;
2581
2582   // If A (and B) designates an array element, the last entry will be the array
2583   // index. That doesn't have to match. Otherwise, we're in the 'implicit array
2584   // of length 1' case, and the entire path must match.
2585   bool WasArrayIndex;
2586   unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex);
2587   return CommonLength >= A.Entries.size() - IsArray;
2588 }
2589
2590 /// Find the complete object to which an LValue refers.
2591 static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E,
2592                                          AccessKinds AK, const LValue &LVal,
2593                                          QualType LValType) {
2594   if (!LVal.Base) {
2595     Info.Diag(E, diag::note_constexpr_access_null) << AK;
2596     return CompleteObject();
2597   }
2598
2599   CallStackFrame *Frame = nullptr;
2600   if (LVal.CallIndex) {
2601     Frame = Info.getCallFrame(LVal.CallIndex);
2602     if (!Frame) {
2603       Info.Diag(E, diag::note_constexpr_lifetime_ended, 1)
2604         << AK << LVal.Base.is<const ValueDecl*>();
2605       NoteLValueLocation(Info, LVal.Base);
2606       return CompleteObject();
2607     }
2608   }
2609
2610   // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type
2611   // is not a constant expression (even if the object is non-volatile). We also
2612   // apply this rule to C++98, in order to conform to the expected 'volatile'
2613   // semantics.
2614   if (LValType.isVolatileQualified()) {
2615     if (Info.getLangOpts().CPlusPlus)
2616       Info.Diag(E, diag::note_constexpr_access_volatile_type)
2617         << AK << LValType;
2618     else
2619       Info.Diag(E);
2620     return CompleteObject();
2621   }
2622
2623   // Compute value storage location and type of base object.
2624   APValue *BaseVal = nullptr;
2625   QualType BaseType = getType(LVal.Base);
2626
2627   if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl*>()) {
2628     // In C++98, const, non-volatile integers initialized with ICEs are ICEs.
2629     // In C++11, constexpr, non-volatile variables initialized with constant
2630     // expressions are constant expressions too. Inside constexpr functions,
2631     // parameters are constant expressions even if they're non-const.
2632     // In C++1y, objects local to a constant expression (those with a Frame) are
2633     // both readable and writable inside constant expressions.
2634     // In C, such things can also be folded, although they are not ICEs.
2635     const VarDecl *VD = dyn_cast<VarDecl>(D);
2636     if (VD) {
2637       if (const VarDecl *VDef = VD->getDefinition(Info.Ctx))
2638         VD = VDef;
2639     }
2640     if (!VD || VD->isInvalidDecl()) {
2641       Info.Diag(E);
2642       return CompleteObject();
2643     }
2644
2645     // Accesses of volatile-qualified objects are not allowed.
2646     if (BaseType.isVolatileQualified()) {
2647       if (Info.getLangOpts().CPlusPlus) {
2648         Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
2649           << AK << 1 << VD;
2650         Info.Note(VD->getLocation(), diag::note_declared_at);
2651       } else {
2652         Info.Diag(E);
2653       }
2654       return CompleteObject();
2655     }
2656
2657     // Unless we're looking at a local variable or argument in a constexpr call,
2658     // the variable we're reading must be const.
2659     if (!Frame) {
2660       if (Info.getLangOpts().CPlusPlus14 &&
2661           VD == Info.EvaluatingDecl.dyn_cast<const ValueDecl *>()) {
2662         // OK, we can read and modify an object if we're in the process of
2663         // evaluating its initializer, because its lifetime began in this
2664         // evaluation.
2665       } else if (AK != AK_Read) {
2666         // All the remaining cases only permit reading.
2667         Info.Diag(E, diag::note_constexpr_modify_global);
2668         return CompleteObject();
2669       } else if (VD->isConstexpr()) {
2670         // OK, we can read this variable.
2671       } else if (BaseType->isIntegralOrEnumerationType()) {
2672         if (!BaseType.isConstQualified()) {
2673           if (Info.getLangOpts().CPlusPlus) {
2674             Info.Diag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD;
2675             Info.Note(VD->getLocation(), diag::note_declared_at);
2676           } else {
2677             Info.Diag(E);
2678           }
2679           return CompleteObject();
2680         }
2681       } else if (BaseType->isFloatingType() && BaseType.isConstQualified()) {
2682         // We support folding of const floating-point types, in order to make
2683         // static const data members of such types (supported as an extension)
2684         // more useful.
2685         if (Info.getLangOpts().CPlusPlus11) {
2686           Info.CCEDiag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
2687           Info.Note(VD->getLocation(), diag::note_declared_at);
2688         } else {
2689           Info.CCEDiag(E);
2690         }
2691       } else {
2692         // FIXME: Allow folding of values of any literal type in all languages.
2693         if (Info.getLangOpts().CPlusPlus11) {
2694           Info.Diag(E, diag::note_constexpr_ltor_non_constexpr, 1) << VD;
2695           Info.Note(VD->getLocation(), diag::note_declared_at);
2696         } else {
2697           Info.Diag(E);
2698         }
2699         return CompleteObject();
2700       }
2701     }
2702
2703     if (!evaluateVarDeclInit(Info, E, VD, Frame, BaseVal))
2704       return CompleteObject();
2705   } else {
2706     const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
2707
2708     if (!Frame) {
2709       if (const MaterializeTemporaryExpr *MTE =
2710               dyn_cast<MaterializeTemporaryExpr>(Base)) {
2711         assert(MTE->getStorageDuration() == SD_Static &&
2712                "should have a frame for a non-global materialized temporary");
2713
2714         // Per C++1y [expr.const]p2:
2715         //  an lvalue-to-rvalue conversion [is not allowed unless it applies to]
2716         //   - a [...] glvalue of integral or enumeration type that refers to
2717         //     a non-volatile const object [...]
2718         //   [...]
2719         //   - a [...] glvalue of literal type that refers to a non-volatile
2720         //     object whose lifetime began within the evaluation of e.
2721         //
2722         // C++11 misses the 'began within the evaluation of e' check and
2723         // instead allows all temporaries, including things like:
2724         //   int &&r = 1;
2725         //   int x = ++r;
2726         //   constexpr int k = r;
2727         // Therefore we use the C++1y rules in C++11 too.
2728         const ValueDecl *VD = Info.EvaluatingDecl.dyn_cast<const ValueDecl*>();
2729         const ValueDecl *ED = MTE->getExtendingDecl();
2730         if (!(BaseType.isConstQualified() &&
2731               BaseType->isIntegralOrEnumerationType()) &&
2732             !(VD && VD->getCanonicalDecl() == ED->getCanonicalDecl())) {
2733           Info.Diag(E, diag::note_constexpr_access_static_temporary, 1) << AK;
2734           Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here);
2735           return CompleteObject();
2736         }
2737
2738         BaseVal = Info.Ctx.getMaterializedTemporaryValue(MTE, false);
2739         assert(BaseVal && "got reference to unevaluated temporary");
2740       } else {
2741         Info.Diag(E);
2742         return CompleteObject();
2743       }
2744     } else {
2745       BaseVal = Frame->getTemporary(Base);
2746       assert(BaseVal && "missing value for temporary");
2747     }
2748
2749     // Volatile temporary objects cannot be accessed in constant expressions.
2750     if (BaseType.isVolatileQualified()) {
2751       if (Info.getLangOpts().CPlusPlus) {
2752         Info.Diag(E, diag::note_constexpr_access_volatile_obj, 1)
2753           << AK << 0;
2754         Info.Note(Base->getExprLoc(), diag::note_constexpr_temporary_here);
2755       } else {
2756         Info.Diag(E);
2757       }
2758       return CompleteObject();
2759     }
2760   }
2761
2762   // During the construction of an object, it is not yet 'const'.
2763   // FIXME: We don't set up EvaluatingDecl for local variables or temporaries,
2764   // and this doesn't do quite the right thing for const subobjects of the
2765   // object under construction.
2766   if (LVal.getLValueBase() == Info.EvaluatingDecl) {
2767     BaseType = Info.Ctx.getCanonicalType(BaseType);
2768     BaseType.removeLocalConst();
2769   }
2770
2771   // In C++1y, we can't safely access any mutable state when we might be
2772   // evaluating after an unmodeled side effect or an evaluation failure.
2773   //
2774   // FIXME: Not all local state is mutable. Allow local constant subobjects
2775   // to be read here (but take care with 'mutable' fields).
2776   if (Frame && Info.getLangOpts().CPlusPlus14 &&
2777       (Info.EvalStatus.HasSideEffects || Info.keepEvaluatingAfterFailure()))
2778     return CompleteObject();
2779
2780   return CompleteObject(BaseVal, BaseType);
2781 }
2782
2783 /// \brief Perform an lvalue-to-rvalue conversion on the given glvalue. This
2784 /// can also be used for 'lvalue-to-lvalue' conversions for looking up the
2785 /// glvalue referred to by an entity of reference type.
2786 ///
2787 /// \param Info - Information about the ongoing evaluation.
2788 /// \param Conv - The expression for which we are performing the conversion.
2789 ///               Used for diagnostics.
2790 /// \param Type - The type of the glvalue (before stripping cv-qualifiers in the
2791 ///               case of a non-class type).
2792 /// \param LVal - The glvalue on which we are attempting to perform this action.
2793 /// \param RVal - The produced value will be placed here.
2794 static bool handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv,
2795                                            QualType Type,
2796                                            const LValue &LVal, APValue &RVal) {
2797   if (LVal.Designator.Invalid)
2798     return false;
2799
2800   // Check for special cases where there is no existing APValue to look at.
2801   const Expr *Base = LVal.Base.dyn_cast<const Expr*>();
2802   if (Base && !LVal.CallIndex && !Type.isVolatileQualified()) {
2803     if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) {
2804       // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the
2805       // initializer until now for such expressions. Such an expression can't be
2806       // an ICE in C, so this only matters for fold.
2807       assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
2808       if (Type.isVolatileQualified()) {
2809         Info.Diag(Conv);
2810         return false;
2811       }
2812       APValue Lit;
2813       if (!Evaluate(Lit, Info, CLE->getInitializer()))
2814         return false;
2815       CompleteObject LitObj(&Lit, Base->getType());
2816       return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal);
2817     } else if (isa<StringLiteral>(Base) || isa<PredefinedExpr>(Base)) {
2818       // We represent a string literal array as an lvalue pointing at the
2819       // corresponding expression, rather than building an array of chars.
2820       // FIXME: Support ObjCEncodeExpr, MakeStringConstant
2821       APValue Str(Base, CharUnits::Zero(), APValue::NoLValuePath(), 0);
2822       CompleteObject StrObj(&Str, Base->getType());
2823       return extractSubobject(Info, Conv, StrObj, LVal.Designator, RVal);
2824     }
2825   }
2826
2827   CompleteObject Obj = findCompleteObject(Info, Conv, AK_Read, LVal, Type);
2828   return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal);
2829 }
2830
2831 /// Perform an assignment of Val to LVal. Takes ownership of Val.
2832 static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal,
2833                              QualType LValType, APValue &Val) {
2834   if (LVal.Designator.Invalid)
2835     return false;
2836
2837   if (!Info.getLangOpts().CPlusPlus14) {
2838     Info.Diag(E);
2839     return false;
2840   }
2841
2842   CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
2843   return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val);
2844 }
2845
2846 static bool isOverflowingIntegerType(ASTContext &Ctx, QualType T) {
2847   return T->isSignedIntegerType() &&
2848          Ctx.getIntWidth(T) >= Ctx.getIntWidth(Ctx.IntTy);
2849 }
2850
2851 namespace {
2852 struct CompoundAssignSubobjectHandler {
2853   EvalInfo &Info;
2854   const Expr *E;
2855   QualType PromotedLHSType;
2856   BinaryOperatorKind Opcode;
2857   const APValue &RHS;
2858
2859   static const AccessKinds AccessKind = AK_Assign;
2860
2861   typedef bool result_type;
2862
2863   bool checkConst(QualType QT) {
2864     // Assigning to a const object has undefined behavior.
2865     if (QT.isConstQualified()) {
2866       Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
2867       return false;
2868     }
2869     return true;
2870   }
2871
2872   bool failed() { return false; }
2873   bool found(APValue &Subobj, QualType SubobjType) {
2874     switch (Subobj.getKind()) {
2875     case APValue::Int:
2876       return found(Subobj.getInt(), SubobjType);
2877     case APValue::Float:
2878       return found(Subobj.getFloat(), SubobjType);
2879     case APValue::ComplexInt:
2880     case APValue::ComplexFloat:
2881       // FIXME: Implement complex compound assignment.
2882       Info.Diag(E);
2883       return false;
2884     case APValue::LValue:
2885       return foundPointer(Subobj, SubobjType);
2886     default:
2887       // FIXME: can this happen?
2888       Info.Diag(E);
2889       return false;
2890     }
2891   }
2892   bool found(APSInt &Value, QualType SubobjType) {
2893     if (!checkConst(SubobjType))
2894       return false;
2895
2896     if (!SubobjType->isIntegerType() || !RHS.isInt()) {
2897       // We don't support compound assignment on integer-cast-to-pointer
2898       // values.
2899       Info.Diag(E);
2900       return false;
2901     }
2902
2903     APSInt LHS = HandleIntToIntCast(Info, E, PromotedLHSType,
2904                                     SubobjType, Value);
2905     if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS))
2906       return false;
2907     Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS);
2908     return true;
2909   }
2910   bool found(APFloat &Value, QualType SubobjType) {
2911     return checkConst(SubobjType) &&
2912            HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType,
2913                                   Value) &&
2914            handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) &&
2915            HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value);
2916   }
2917   bool foundPointer(APValue &Subobj, QualType SubobjType) {
2918     if (!checkConst(SubobjType))
2919       return false;
2920
2921     QualType PointeeType;
2922     if (const PointerType *PT = SubobjType->getAs<PointerType>())
2923       PointeeType = PT->getPointeeType();
2924
2925     if (PointeeType.isNull() || !RHS.isInt() ||
2926         (Opcode != BO_Add && Opcode != BO_Sub)) {
2927       Info.Diag(E);
2928       return false;
2929     }
2930
2931     int64_t Offset = getExtValue(RHS.getInt());
2932     if (Opcode == BO_Sub)
2933       Offset = -Offset;
2934
2935     LValue LVal;
2936     LVal.setFrom(Info.Ctx, Subobj);
2937     if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset))
2938       return false;
2939     LVal.moveInto(Subobj);
2940     return true;
2941   }
2942   bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
2943     llvm_unreachable("shouldn't encounter string elements here");
2944   }
2945 };
2946 } // end anonymous namespace
2947
2948 const AccessKinds CompoundAssignSubobjectHandler::AccessKind;
2949
2950 /// Perform a compound assignment of LVal <op>= RVal.
2951 static bool handleCompoundAssignment(
2952     EvalInfo &Info, const Expr *E,
2953     const LValue &LVal, QualType LValType, QualType PromotedLValType,
2954     BinaryOperatorKind Opcode, const APValue &RVal) {
2955   if (LVal.Designator.Invalid)
2956     return false;
2957
2958   if (!Info.getLangOpts().CPlusPlus14) {
2959     Info.Diag(E);
2960     return false;
2961   }
2962
2963   CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType);
2964   CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode,
2965                                              RVal };
2966   return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
2967 }
2968
2969 namespace {
2970 struct IncDecSubobjectHandler {
2971   EvalInfo &Info;
2972   const Expr *E;
2973   AccessKinds AccessKind;
2974   APValue *Old;
2975
2976   typedef bool result_type;
2977
2978   bool checkConst(QualType QT) {
2979     // Assigning to a const object has undefined behavior.
2980     if (QT.isConstQualified()) {
2981       Info.Diag(E, diag::note_constexpr_modify_const_type) << QT;
2982       return false;
2983     }
2984     return true;
2985   }
2986
2987   bool failed() { return false; }
2988   bool found(APValue &Subobj, QualType SubobjType) {
2989     // Stash the old value. Also clear Old, so we don't clobber it later
2990     // if we're post-incrementing a complex.
2991     if (Old) {
2992       *Old = Subobj;
2993       Old = nullptr;
2994     }
2995
2996     switch (Subobj.getKind()) {
2997     case APValue::Int:
2998       return found(Subobj.getInt(), SubobjType);
2999     case APValue::Float:
3000       return found(Subobj.getFloat(), SubobjType);
3001     case APValue::ComplexInt:
3002       return found(Subobj.getComplexIntReal(),
3003                    SubobjType->castAs<ComplexType>()->getElementType()
3004                      .withCVRQualifiers(SubobjType.getCVRQualifiers()));
3005     case APValue::ComplexFloat:
3006       return found(Subobj.getComplexFloatReal(),
3007                    SubobjType->castAs<ComplexType>()->getElementType()
3008                      .withCVRQualifiers(SubobjType.getCVRQualifiers()));
3009     case APValue::LValue:
3010       return foundPointer(Subobj, SubobjType);
3011     default:
3012       // FIXME: can this happen?
3013       Info.Diag(E);
3014       return false;
3015     }
3016   }
3017   bool found(APSInt &Value, QualType SubobjType) {
3018     if (!checkConst(SubobjType))
3019       return false;
3020
3021     if (!SubobjType->isIntegerType()) {
3022       // We don't support increment / decrement on integer-cast-to-pointer
3023       // values.
3024       Info.Diag(E);
3025       return false;
3026     }
3027
3028     if (Old) *Old = APValue(Value);
3029
3030     // bool arithmetic promotes to int, and the conversion back to bool
3031     // doesn't reduce mod 2^n, so special-case it.
3032     if (SubobjType->isBooleanType()) {
3033       if (AccessKind == AK_Increment)
3034         Value = 1;
3035       else
3036         Value = !Value;
3037       return true;
3038     }
3039
3040     bool WasNegative = Value.isNegative();
3041     if (AccessKind == AK_Increment) {
3042       ++Value;
3043
3044       if (!WasNegative && Value.isNegative() &&
3045           isOverflowingIntegerType(Info.Ctx, SubobjType)) {
3046         APSInt ActualValue(Value, /*IsUnsigned*/true);
3047         return HandleOverflow(Info, E, ActualValue, SubobjType);
3048       }
3049     } else {
3050       --Value;
3051
3052       if (WasNegative && !Value.isNegative() &&
3053           isOverflowingIntegerType(Info.Ctx, SubobjType)) {
3054         unsigned BitWidth = Value.getBitWidth();
3055         APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false);
3056         ActualValue.setBit(BitWidth);
3057         return HandleOverflow(Info, E, ActualValue, SubobjType);
3058       }
3059     }
3060     return true;
3061   }
3062   bool found(APFloat &Value, QualType SubobjType) {
3063     if (!checkConst(SubobjType))
3064       return false;
3065
3066     if (Old) *Old = APValue(Value);
3067
3068     APFloat One(Value.getSemantics(), 1);
3069     if (AccessKind == AK_Increment)
3070       Value.add(One, APFloat::rmNearestTiesToEven);
3071     else
3072       Value.subtract(One, APFloat::rmNearestTiesToEven);
3073     return true;
3074   }
3075   bool foundPointer(APValue &Subobj, QualType SubobjType) {
3076     if (!checkConst(SubobjType))
3077       return false;
3078
3079     QualType PointeeType;
3080     if (const PointerType *PT = SubobjType->getAs<PointerType>())
3081       PointeeType = PT->getPointeeType();
3082     else {
3083       Info.Diag(E);
3084       return false;
3085     }
3086
3087     LValue LVal;
3088     LVal.setFrom(Info.Ctx, Subobj);
3089     if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType,
3090                                      AccessKind == AK_Increment ? 1 : -1))
3091       return false;
3092     LVal.moveInto(Subobj);
3093     return true;
3094   }
3095   bool foundString(APValue &Subobj, QualType SubobjType, uint64_t Character) {
3096     llvm_unreachable("shouldn't encounter string elements here");
3097   }
3098 };
3099 } // end anonymous namespace
3100
3101 /// Perform an increment or decrement on LVal.
3102 static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal,
3103                          QualType LValType, bool IsIncrement, APValue *Old) {
3104   if (LVal.Designator.Invalid)
3105     return false;
3106
3107   if (!Info.getLangOpts().CPlusPlus14) {
3108     Info.Diag(E);
3109     return false;
3110   }
3111
3112   AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement;
3113   CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType);
3114   IncDecSubobjectHandler Handler = { Info, E, AK, Old };
3115   return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler);
3116 }
3117
3118 /// Build an lvalue for the object argument of a member function call.
3119 static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object,
3120                                    LValue &This) {
3121   if (Object->getType()->isPointerType())
3122     return EvaluatePointer(Object, This, Info);
3123
3124   if (Object->isGLValue())
3125     return EvaluateLValue(Object, This, Info);
3126
3127   if (Object->getType()->isLiteralType(Info.Ctx))
3128     return EvaluateTemporary(Object, This, Info);
3129
3130   Info.Diag(Object, diag::note_constexpr_nonliteral) << Object->getType();
3131   return false;
3132 }
3133
3134 /// HandleMemberPointerAccess - Evaluate a member access operation and build an
3135 /// lvalue referring to the result.
3136 ///
3137 /// \param Info - Information about the ongoing evaluation.
3138 /// \param LV - An lvalue referring to the base of the member pointer.
3139 /// \param RHS - The member pointer expression.
3140 /// \param IncludeMember - Specifies whether the member itself is included in
3141 ///        the resulting LValue subobject designator. This is not possible when
3142 ///        creating a bound member function.
3143 /// \return The field or method declaration to which the member pointer refers,
3144 ///         or 0 if evaluation fails.
3145 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
3146                                                   QualType LVType,
3147                                                   LValue &LV,
3148                                                   const Expr *RHS,
3149                                                   bool IncludeMember = true) {
3150   MemberPtr MemPtr;
3151   if (!EvaluateMemberPointer(RHS, MemPtr, Info))
3152     return nullptr;
3153
3154   // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to
3155   // member value, the behavior is undefined.
3156   if (!MemPtr.getDecl()) {
3157     // FIXME: Specific diagnostic.
3158     Info.Diag(RHS);
3159     return nullptr;
3160   }
3161
3162   if (MemPtr.isDerivedMember()) {
3163     // This is a member of some derived class. Truncate LV appropriately.
3164     // The end of the derived-to-base path for the base object must match the
3165     // derived-to-base path for the member pointer.
3166     if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() >
3167         LV.Designator.Entries.size()) {
3168       Info.Diag(RHS);
3169       return nullptr;
3170     }
3171     unsigned PathLengthToMember =
3172         LV.Designator.Entries.size() - MemPtr.Path.size();
3173     for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) {
3174       const CXXRecordDecl *LVDecl = getAsBaseClass(
3175           LV.Designator.Entries[PathLengthToMember + I]);
3176       const CXXRecordDecl *MPDecl = MemPtr.Path[I];
3177       if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) {
3178         Info.Diag(RHS);
3179         return nullptr;
3180       }
3181     }
3182
3183     // Truncate the lvalue to the appropriate derived class.
3184     if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(),
3185                             PathLengthToMember))
3186       return nullptr;
3187   } else if (!MemPtr.Path.empty()) {
3188     // Extend the LValue path with the member pointer's path.
3189     LV.Designator.Entries.reserve(LV.Designator.Entries.size() +
3190                                   MemPtr.Path.size() + IncludeMember);
3191
3192     // Walk down to the appropriate base class.
3193     if (const PointerType *PT = LVType->getAs<PointerType>())
3194       LVType = PT->getPointeeType();
3195     const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl();
3196     assert(RD && "member pointer access on non-class-type expression");
3197     // The first class in the path is that of the lvalue.
3198     for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) {
3199       const CXXRecordDecl *Base = MemPtr.Path[N - I - 1];
3200       if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base))
3201         return nullptr;
3202       RD = Base;
3203     }
3204     // Finally cast to the class containing the member.
3205     if (!HandleLValueDirectBase(Info, RHS, LV, RD,
3206                                 MemPtr.getContainingRecord()))
3207       return nullptr;
3208   }
3209
3210   // Add the member. Note that we cannot build bound member functions here.
3211   if (IncludeMember) {
3212     if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) {
3213       if (!HandleLValueMember(Info, RHS, LV, FD))
3214         return nullptr;
3215     } else if (const IndirectFieldDecl *IFD =
3216                  dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) {
3217       if (!HandleLValueIndirectMember(Info, RHS, LV, IFD))
3218         return nullptr;
3219     } else {
3220       llvm_unreachable("can't construct reference to bound member function");
3221     }
3222   }
3223
3224   return MemPtr.getDecl();
3225 }
3226
3227 static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info,
3228                                                   const BinaryOperator *BO,
3229                                                   LValue &LV,
3230                                                   bool IncludeMember = true) {
3231   assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI);
3232
3233   if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) {
3234     if (Info.keepEvaluatingAfterFailure()) {
3235       MemberPtr MemPtr;
3236       EvaluateMemberPointer(BO->getRHS(), MemPtr, Info);
3237     }
3238     return nullptr;
3239   }
3240
3241   return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV,
3242                                    BO->getRHS(), IncludeMember);
3243 }
3244
3245 /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on
3246 /// the provided lvalue, which currently refers to the base object.
3247 static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E,
3248                                     LValue &Result) {
3249   SubobjectDesignator &D = Result.Designator;
3250   if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived))
3251     return false;
3252
3253   QualType TargetQT = E->getType();
3254   if (const PointerType *PT = TargetQT->getAs<PointerType>())
3255     TargetQT = PT->getPointeeType();
3256
3257   // Check this cast lands within the final derived-to-base subobject path.
3258   if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) {
3259     Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
3260       << D.MostDerivedType << TargetQT;
3261     return false;
3262   }
3263
3264   // Check the type of the final cast. We don't need to check the path,
3265   // since a cast can only be formed if the path is unique.
3266   unsigned NewEntriesSize = D.Entries.size() - E->path_size();
3267   const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl();
3268   const CXXRecordDecl *FinalType;
3269   if (NewEntriesSize == D.MostDerivedPathLength)
3270     FinalType = D.MostDerivedType->getAsCXXRecordDecl();
3271   else
3272     FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]);
3273   if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) {
3274     Info.CCEDiag(E, diag::note_constexpr_invalid_downcast)
3275       << D.MostDerivedType << TargetQT;
3276     return false;
3277   }
3278
3279   // Truncate the lvalue to the appropriate derived class.
3280   return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize);
3281 }
3282
3283 namespace {
3284 enum EvalStmtResult {
3285   /// Evaluation failed.
3286   ESR_Failed,
3287   /// Hit a 'return' statement.
3288   ESR_Returned,
3289   /// Evaluation succeeded.
3290   ESR_Succeeded,
3291   /// Hit a 'continue' statement.
3292   ESR_Continue,
3293   /// Hit a 'break' statement.
3294   ESR_Break,
3295   /// Still scanning for 'case' or 'default' statement.
3296   ESR_CaseNotFound
3297 };
3298 }
3299
3300 static bool EvaluateDecl(EvalInfo &Info, const Decl *D) {
3301   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
3302     // We don't need to evaluate the initializer for a static local.
3303     if (!VD->hasLocalStorage())
3304       return true;
3305
3306     LValue Result;
3307     Result.set(VD, Info.CurrentCall->Index);
3308     APValue &Val = Info.CurrentCall->createTemporary(VD, true);
3309
3310     const Expr *InitE = VD->getInit();
3311     if (!InitE) {
3312       Info.Diag(D->getLocStart(), diag::note_constexpr_uninitialized)
3313         << false << VD->getType();
3314       Val = APValue();
3315       return false;
3316     }
3317
3318     if (InitE->isValueDependent())
3319       return false;
3320
3321     if (!EvaluateInPlace(Val, Info, Result, InitE)) {
3322       // Wipe out any partially-computed value, to allow tracking that this
3323       // evaluation failed.
3324       Val = APValue();
3325       return false;
3326     }
3327   }
3328
3329   return true;
3330 }
3331
3332 /// Evaluate a condition (either a variable declaration or an expression).
3333 static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl,
3334                          const Expr *Cond, bool &Result) {
3335   FullExpressionRAII Scope(Info);
3336   if (CondDecl && !EvaluateDecl(Info, CondDecl))
3337     return false;
3338   return EvaluateAsBooleanCondition(Cond, Result, Info);
3339 }
3340
3341 /// \brief A location where the result (returned value) of evaluating a
3342 /// statement should be stored.
3343 struct StmtResult {
3344   /// The APValue that should be filled in with the returned value.
3345   APValue &Value;
3346   /// The location containing the result, if any (used to support RVO).
3347   const LValue *Slot;
3348 };
3349
3350 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
3351                                    const Stmt *S,
3352                                    const SwitchCase *SC = nullptr);
3353
3354 /// Evaluate the body of a loop, and translate the result as appropriate.
3355 static EvalStmtResult EvaluateLoopBody(StmtResult &Result, EvalInfo &Info,
3356                                        const Stmt *Body,
3357                                        const SwitchCase *Case = nullptr) {
3358   BlockScopeRAII Scope(Info);
3359   switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case)) {
3360   case ESR_Break:
3361     return ESR_Succeeded;
3362   case ESR_Succeeded:
3363   case ESR_Continue:
3364     return ESR_Continue;
3365   case ESR_Failed:
3366   case ESR_Returned:
3367   case ESR_CaseNotFound:
3368     return ESR;
3369   }
3370   llvm_unreachable("Invalid EvalStmtResult!");
3371 }
3372
3373 /// Evaluate a switch statement.
3374 static EvalStmtResult EvaluateSwitch(StmtResult &Result, EvalInfo &Info,
3375                                      const SwitchStmt *SS) {
3376   BlockScopeRAII Scope(Info);
3377
3378   // Evaluate the switch condition.
3379   APSInt Value;
3380   {
3381     FullExpressionRAII Scope(Info);
3382     if (SS->getConditionVariable() &&
3383         !EvaluateDecl(Info, SS->getConditionVariable()))
3384       return ESR_Failed;
3385     if (!EvaluateInteger(SS->getCond(), Value, Info))
3386       return ESR_Failed;
3387   }
3388
3389   // Find the switch case corresponding to the value of the condition.
3390   // FIXME: Cache this lookup.
3391   const SwitchCase *Found = nullptr;
3392   for (const SwitchCase *SC = SS->getSwitchCaseList(); SC;
3393        SC = SC->getNextSwitchCase()) {
3394     if (isa<DefaultStmt>(SC)) {
3395       Found = SC;
3396       continue;
3397     }
3398
3399     const CaseStmt *CS = cast<CaseStmt>(SC);
3400     APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx);
3401     APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx)
3402                               : LHS;
3403     if (LHS <= Value && Value <= RHS) {
3404       Found = SC;
3405       break;
3406     }
3407   }
3408
3409   if (!Found)
3410     return ESR_Succeeded;
3411
3412   // Search the switch body for the switch case and evaluate it from there.
3413   switch (EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found)) {
3414   case ESR_Break:
3415     return ESR_Succeeded;
3416   case ESR_Succeeded:
3417   case ESR_Continue:
3418   case ESR_Failed:
3419   case ESR_Returned:
3420     return ESR;
3421   case ESR_CaseNotFound:
3422     // This can only happen if the switch case is nested within a statement
3423     // expression. We have no intention of supporting that.
3424     Info.Diag(Found->getLocStart(), diag::note_constexpr_stmt_expr_unsupported);
3425     return ESR_Failed;
3426   }
3427   llvm_unreachable("Invalid EvalStmtResult!");
3428 }
3429
3430 // Evaluate a statement.
3431 static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info,
3432                                    const Stmt *S, const SwitchCase *Case) {
3433   if (!Info.nextStep(S))
3434     return ESR_Failed;
3435
3436   // If we're hunting down a 'case' or 'default' label, recurse through
3437   // substatements until we hit the label.
3438   if (Case) {
3439     // FIXME: We don't start the lifetime of objects whose initialization we
3440     // jump over. However, such objects must be of class type with a trivial
3441     // default constructor that initialize all subobjects, so must be empty,
3442     // so this almost never matters.
3443     switch (S->getStmtClass()) {
3444     case Stmt::CompoundStmtClass:
3445       // FIXME: Precompute which substatement of a compound statement we
3446       // would jump to, and go straight there rather than performing a
3447       // linear scan each time.
3448     case Stmt::LabelStmtClass:
3449     case Stmt::AttributedStmtClass:
3450     case Stmt::DoStmtClass:
3451       break;
3452
3453     case Stmt::CaseStmtClass:
3454     case Stmt::DefaultStmtClass:
3455       if (Case == S)
3456         Case = nullptr;
3457       break;
3458
3459     case Stmt::IfStmtClass: {
3460       // FIXME: Precompute which side of an 'if' we would jump to, and go
3461       // straight there rather than scanning both sides.
3462       const IfStmt *IS = cast<IfStmt>(S);
3463
3464       // Wrap the evaluation in a block scope, in case it's a DeclStmt
3465       // preceded by our switch label.
3466       BlockScopeRAII Scope(Info);
3467
3468       EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case);
3469       if (ESR != ESR_CaseNotFound || !IS->getElse())
3470         return ESR;
3471       return EvaluateStmt(Result, Info, IS->getElse(), Case);
3472     }
3473
3474     case Stmt::WhileStmtClass: {
3475       EvalStmtResult ESR =
3476           EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case);
3477       if (ESR != ESR_Continue)
3478         return ESR;
3479       break;
3480     }
3481
3482     case Stmt::ForStmtClass: {
3483       const ForStmt *FS = cast<ForStmt>(S);
3484       EvalStmtResult ESR =
3485           EvaluateLoopBody(Result, Info, FS->getBody(), Case);
3486       if (ESR != ESR_Continue)
3487         return ESR;
3488       if (FS->getInc()) {
3489         FullExpressionRAII IncScope(Info);
3490         if (!EvaluateIgnoredValue(Info, FS->getInc()))
3491           return ESR_Failed;
3492       }
3493       break;
3494     }
3495
3496     case Stmt::DeclStmtClass:
3497       // FIXME: If the variable has initialization that can't be jumped over,
3498       // bail out of any immediately-surrounding compound-statement too.
3499     default:
3500       return ESR_CaseNotFound;
3501     }
3502   }
3503
3504   switch (S->getStmtClass()) {
3505   default:
3506     if (const Expr *E = dyn_cast<Expr>(S)) {
3507       // Don't bother evaluating beyond an expression-statement which couldn't
3508       // be evaluated.
3509       FullExpressionRAII Scope(Info);
3510       if (!EvaluateIgnoredValue(Info, E))
3511         return ESR_Failed;
3512       return ESR_Succeeded;
3513     }
3514
3515     Info.Diag(S->getLocStart());
3516     return ESR_Failed;
3517
3518   case Stmt::NullStmtClass:
3519     return ESR_Succeeded;
3520
3521   case Stmt::DeclStmtClass: {
3522     const DeclStmt *DS = cast<DeclStmt>(S);
3523     for (const auto *DclIt : DS->decls()) {
3524       // Each declaration initialization is its own full-expression.
3525       // FIXME: This isn't quite right; if we're performing aggregate
3526       // initialization, each braced subexpression is its own full-expression.
3527       FullExpressionRAII Scope(Info);
3528       if (!EvaluateDecl(Info, DclIt) && !Info.keepEvaluatingAfterFailure())
3529         return ESR_Failed;
3530     }
3531     return ESR_Succeeded;
3532   }
3533
3534   case Stmt::ReturnStmtClass: {
3535     const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue();
3536     FullExpressionRAII Scope(Info);
3537     if (RetExpr &&
3538         !(Result.Slot
3539               ? EvaluateInPlace(Result.Value, Info, *Result.Slot, RetExpr)
3540               : Evaluate(Result.Value, Info, RetExpr)))
3541       return ESR_Failed;
3542     return ESR_Returned;
3543   }
3544
3545   case Stmt::CompoundStmtClass: {
3546     BlockScopeRAII Scope(Info);
3547
3548     const CompoundStmt *CS = cast<CompoundStmt>(S);
3549     for (const auto *BI : CS->body()) {
3550       EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case);
3551       if (ESR == ESR_Succeeded)
3552         Case = nullptr;
3553       else if (ESR != ESR_CaseNotFound)
3554         return ESR;
3555     }
3556     return Case ? ESR_CaseNotFound : ESR_Succeeded;
3557   }
3558
3559   case Stmt::IfStmtClass: {
3560     const IfStmt *IS = cast<IfStmt>(S);
3561
3562     // Evaluate the condition, as either a var decl or as an expression.
3563     BlockScopeRAII Scope(Info);
3564     bool Cond;
3565     if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(), Cond))
3566       return ESR_Failed;
3567
3568     if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) {
3569       EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt);
3570       if (ESR != ESR_Succeeded)
3571         return ESR;
3572     }
3573     return ESR_Succeeded;
3574   }
3575
3576   case Stmt::WhileStmtClass: {
3577     const WhileStmt *WS = cast<WhileStmt>(S);
3578     while (true) {
3579       BlockScopeRAII Scope(Info);
3580       bool Continue;
3581       if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(),
3582                         Continue))
3583         return ESR_Failed;
3584       if (!Continue)
3585         break;
3586
3587       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody());
3588       if (ESR != ESR_Continue)
3589         return ESR;
3590     }
3591     return ESR_Succeeded;
3592   }
3593
3594   case Stmt::DoStmtClass: {
3595     const DoStmt *DS = cast<DoStmt>(S);
3596     bool Continue;
3597     do {
3598       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case);
3599       if (ESR != ESR_Continue)
3600         return ESR;
3601       Case = nullptr;
3602
3603       FullExpressionRAII CondScope(Info);
3604       if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info))
3605         return ESR_Failed;
3606     } while (Continue);
3607     return ESR_Succeeded;
3608   }
3609
3610   case Stmt::ForStmtClass: {
3611     const ForStmt *FS = cast<ForStmt>(S);
3612     BlockScopeRAII Scope(Info);
3613     if (FS->getInit()) {
3614       EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit());
3615       if (ESR != ESR_Succeeded)
3616         return ESR;
3617     }
3618     while (true) {
3619       BlockScopeRAII Scope(Info);
3620       bool Continue = true;
3621       if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(),
3622                                          FS->getCond(), Continue))
3623         return ESR_Failed;
3624       if (!Continue)
3625         break;
3626
3627       EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody());
3628       if (ESR != ESR_Continue)
3629         return ESR;
3630
3631       if (FS->getInc()) {
3632         FullExpressionRAII IncScope(Info);
3633         if (!EvaluateIgnoredValue(Info, FS->getInc()))
3634           return ESR_Failed;
3635       }
3636     }
3637     return ESR_Succeeded;
3638   }
3639
3640   case Stmt::CXXForRangeStmtClass: {
3641     const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S);
3642     BlockScopeRAII Scope(Info);
3643
3644     // Initialize the __range variable.
3645     EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt());
3646     if (ESR != ESR_Succeeded)
3647       return ESR;
3648
3649     // Create the __begin and __end iterators.
3650     ESR = EvaluateStmt(Result, Info, FS->getBeginEndStmt());
3651     if (ESR != ESR_Succeeded)
3652       return ESR;
3653
3654     while (true) {
3655       // Condition: __begin != __end.
3656       {
3657         bool Continue = true;
3658         FullExpressionRAII CondExpr(Info);
3659         if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info))
3660           return ESR_Failed;
3661         if (!Continue)
3662           break;
3663       }
3664
3665       // User's variable declaration, initialized by *__begin.
3666       BlockScopeRAII InnerScope(Info);
3667       ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt());
3668       if (ESR != ESR_Succeeded)
3669         return ESR;
3670
3671       // Loop body.
3672       ESR = EvaluateLoopBody(Result, Info, FS->getBody());
3673       if (ESR != ESR_Continue)
3674         return ESR;
3675
3676       // Increment: ++__begin
3677       if (!EvaluateIgnoredValue(Info, FS->getInc()))
3678         return ESR_Failed;
3679     }
3680
3681     return ESR_Succeeded;
3682   }
3683
3684   case Stmt::SwitchStmtClass:
3685     return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S));
3686
3687   case Stmt::ContinueStmtClass:
3688     return ESR_Continue;
3689
3690   case Stmt::BreakStmtClass:
3691     return ESR_Break;
3692
3693   case Stmt::LabelStmtClass:
3694     return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case);
3695
3696   case Stmt::AttributedStmtClass:
3697     // As a general principle, C++11 attributes can be ignored without
3698     // any semantic impact.
3699     return EvaluateStmt(Result, Info, cast<AttributedStmt>(S)->getSubStmt(),
3700                         Case);
3701
3702   case Stmt::CaseStmtClass:
3703   case Stmt::DefaultStmtClass:
3704     return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case);
3705   }
3706 }
3707
3708 /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial
3709 /// default constructor. If so, we'll fold it whether or not it's marked as
3710 /// constexpr. If it is marked as constexpr, we will never implicitly define it,
3711 /// so we need special handling.
3712 static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc,
3713                                            const CXXConstructorDecl *CD,
3714                                            bool IsValueInitialization) {
3715   if (!CD->isTrivial() || !CD->isDefaultConstructor())
3716     return false;
3717
3718   // Value-initialization does not call a trivial default constructor, so such a
3719   // call is a core constant expression whether or not the constructor is
3720   // constexpr.
3721   if (!CD->isConstexpr() && !IsValueInitialization) {
3722     if (Info.getLangOpts().CPlusPlus11) {
3723       // FIXME: If DiagDecl is an implicitly-declared special member function,
3724       // we should be much more explicit about why it's not constexpr.
3725       Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1)
3726         << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD;
3727       Info.Note(CD->getLocation(), diag::note_declared_at);
3728     } else {
3729       Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr);
3730     }
3731   }
3732   return true;
3733 }
3734
3735 /// CheckConstexprFunction - Check that a function can be called in a constant
3736 /// expression.
3737 static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc,
3738                                    const FunctionDecl *Declaration,
3739                                    const FunctionDecl *Definition) {
3740   // Potential constant expressions can contain calls to declared, but not yet
3741   // defined, constexpr functions.
3742   if (Info.checkingPotentialConstantExpression() && !Definition &&
3743       Declaration->isConstexpr())
3744     return false;
3745
3746   // Bail out with no diagnostic if the function declaration itself is invalid.
3747   // We will have produced a relevant diagnostic while parsing it.
3748   if (Declaration->isInvalidDecl())
3749     return false;
3750
3751   // Can we evaluate this function call?
3752   if (Definition && Definition->isConstexpr() && !Definition->isInvalidDecl())
3753     return true;
3754
3755   if (Info.getLangOpts().CPlusPlus11) {
3756     const FunctionDecl *DiagDecl = Definition ? Definition : Declaration;
3757     // FIXME: If DiagDecl is an implicitly-declared special member function, we
3758     // should be much more explicit about why it's not constexpr.
3759     Info.Diag(CallLoc, diag::note_constexpr_invalid_function, 1)
3760       << DiagDecl->isConstexpr() << isa<CXXConstructorDecl>(DiagDecl)
3761       << DiagDecl;
3762     Info.Note(DiagDecl->getLocation(), diag::note_declared_at);
3763   } else {
3764     Info.Diag(CallLoc, diag::note_invalid_subexpr_in_const_expr);
3765   }
3766   return false;
3767 }
3768
3769 /// Determine if a class has any fields that might need to be copied by a
3770 /// trivial copy or move operation.
3771 static bool hasFields(const CXXRecordDecl *RD) {
3772   if (!RD || RD->isEmpty())
3773     return false;
3774   for (auto *FD : RD->fields()) {
3775     if (FD->isUnnamedBitfield())
3776       continue;
3777     return true;
3778   }
3779   for (auto &Base : RD->bases())
3780     if (hasFields(Base.getType()->getAsCXXRecordDecl()))
3781       return true;
3782   return false;
3783 }
3784
3785 namespace {
3786 typedef SmallVector<APValue, 8> ArgVector;
3787 }
3788
3789 /// EvaluateArgs - Evaluate the arguments to a function call.
3790 static bool EvaluateArgs(ArrayRef<const Expr*> Args, ArgVector &ArgValues,
3791                          EvalInfo &Info) {
3792   bool Success = true;
3793   for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
3794        I != E; ++I) {
3795     if (!Evaluate(ArgValues[I - Args.begin()], Info, *I)) {
3796       // If we're checking for a potential constant expression, evaluate all
3797       // initializers even if some of them fail.
3798       if (!Info.keepEvaluatingAfterFailure())
3799         return false;
3800       Success = false;
3801     }
3802   }
3803   return Success;
3804 }
3805
3806 /// Evaluate a function call.
3807 static bool HandleFunctionCall(SourceLocation CallLoc,
3808                                const FunctionDecl *Callee, const LValue *This,
3809                                ArrayRef<const Expr*> Args, const Stmt *Body,
3810                                EvalInfo &Info, APValue &Result,
3811                                const LValue *ResultSlot) {
3812   ArgVector ArgValues(Args.size());
3813   if (!EvaluateArgs(Args, ArgValues, Info))
3814     return false;
3815
3816   if (!Info.CheckCallLimit(CallLoc))
3817     return false;
3818
3819   CallStackFrame Frame(Info, CallLoc, Callee, This, ArgValues.data());
3820
3821   // For a trivial copy or move assignment, perform an APValue copy. This is
3822   // essential for unions, where the operations performed by the assignment
3823   // operator cannot be represented as statements.
3824   //
3825   // Skip this for non-union classes with no fields; in that case, the defaulted
3826   // copy/move does not actually read the object.
3827   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee);
3828   if (MD && MD->isDefaulted() &&
3829       (MD->getParent()->isUnion() ||
3830        (MD->isTrivial() && hasFields(MD->getParent())))) {
3831     assert(This &&
3832            (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()));
3833     LValue RHS;
3834     RHS.setFrom(Info.Ctx, ArgValues[0]);
3835     APValue RHSValue;
3836     if (!handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
3837                                         RHS, RHSValue))
3838       return false;
3839     if (!handleAssignment(Info, Args[0], *This, MD->getThisType(Info.Ctx),
3840                           RHSValue))
3841       return false;
3842     This->moveInto(Result);
3843     return true;
3844   }
3845
3846   StmtResult Ret = {Result, ResultSlot};
3847   EvalStmtResult ESR = EvaluateStmt(Ret, Info, Body);
3848   if (ESR == ESR_Succeeded) {
3849     if (Callee->getReturnType()->isVoidType())
3850       return true;
3851     Info.Diag(Callee->getLocEnd(), diag::note_constexpr_no_return);
3852   }
3853   return ESR == ESR_Returned;
3854 }
3855
3856 /// Evaluate a constructor call.
3857 static bool HandleConstructorCall(SourceLocation CallLoc, const LValue &This,
3858                                   ArrayRef<const Expr*> Args,
3859                                   const CXXConstructorDecl *Definition,
3860                                   EvalInfo &Info, APValue &Result) {
3861   ArgVector ArgValues(Args.size());
3862   if (!EvaluateArgs(Args, ArgValues, Info))
3863     return false;
3864
3865   if (!Info.CheckCallLimit(CallLoc))
3866     return false;
3867
3868   const CXXRecordDecl *RD = Definition->getParent();
3869   if (RD->getNumVBases()) {
3870     Info.Diag(CallLoc, diag::note_constexpr_virtual_base) << RD;
3871     return false;
3872   }
3873
3874   CallStackFrame Frame(Info, CallLoc, Definition, &This, ArgValues.data());
3875
3876   // FIXME: Creating an APValue just to hold a nonexistent return value is
3877   // wasteful.
3878   APValue RetVal;
3879   StmtResult Ret = {RetVal, nullptr};
3880
3881   // If it's a delegating constructor, just delegate.
3882   if (Definition->isDelegatingConstructor()) {
3883     CXXConstructorDecl::init_const_iterator I = Definition->init_begin();
3884     {
3885       FullExpressionRAII InitScope(Info);
3886       if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()))
3887         return false;
3888     }
3889     return EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed;
3890   }
3891
3892   // For a trivial copy or move constructor, perform an APValue copy. This is
3893   // essential for unions (or classes with anonymous union members), where the
3894   // operations performed by the constructor cannot be represented by
3895   // ctor-initializers.
3896   //
3897   // Skip this for empty non-union classes; we should not perform an
3898   // lvalue-to-rvalue conversion on them because their copy constructor does not
3899   // actually read them.
3900   if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() &&
3901       (Definition->getParent()->isUnion() ||
3902        (Definition->isTrivial() && hasFields(Definition->getParent())))) {
3903     LValue RHS;
3904     RHS.setFrom(Info.Ctx, ArgValues[0]);
3905     return handleLValueToRValueConversion(Info, Args[0], Args[0]->getType(),
3906                                           RHS, Result);
3907   }
3908
3909   // Reserve space for the struct members.
3910   if (!RD->isUnion() && Result.isUninit())
3911     Result = APValue(APValue::UninitStruct(), RD->getNumBases(),
3912                      std::distance(RD->field_begin(), RD->field_end()));
3913
3914   if (RD->isInvalidDecl()) return false;
3915   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
3916
3917   // A scope for temporaries lifetime-extended by reference members.
3918   BlockScopeRAII LifetimeExtendedScope(Info);
3919
3920   bool Success = true;
3921   unsigned BasesSeen = 0;
3922 #ifndef NDEBUG
3923   CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin();
3924 #endif
3925   for (const auto *I : Definition->inits()) {
3926     LValue Subobject = This;
3927     APValue *Value = &Result;
3928
3929     // Determine the subobject to initialize.
3930     FieldDecl *FD = nullptr;
3931     if (I->isBaseInitializer()) {
3932       QualType BaseType(I->getBaseClass(), 0);
3933 #ifndef NDEBUG
3934       // Non-virtual base classes are initialized in the order in the class
3935       // definition. We have already checked for virtual base classes.
3936       assert(!BaseIt->isVirtual() && "virtual base for literal type");
3937       assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) &&
3938              "base class initializers not in expected order");
3939       ++BaseIt;
3940 #endif
3941       if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD,
3942                                   BaseType->getAsCXXRecordDecl(), &Layout))
3943         return false;
3944       Value = &Result.getStructBase(BasesSeen++);
3945     } else if ((FD = I->getMember())) {
3946       if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout))
3947         return false;
3948       if (RD->isUnion()) {
3949         Result = APValue(FD);
3950         Value = &Result.getUnionValue();
3951       } else {
3952         Value = &Result.getStructField(FD->getFieldIndex());
3953       }
3954     } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) {
3955       // Walk the indirect field decl's chain to find the object to initialize,
3956       // and make sure we've initialized every step along it.
3957       for (auto *C : IFD->chain()) {
3958         FD = cast<FieldDecl>(C);
3959         CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent());
3960         // Switch the union field if it differs. This happens if we had
3961         // preceding zero-initialization, and we're now initializing a union
3962         // subobject other than the first.
3963         // FIXME: In this case, the values of the other subobjects are
3964         // specified, since zero-initialization sets all padding bits to zero.
3965         if (Value->isUninit() ||
3966             (Value->isUnion() && Value->getUnionField() != FD)) {
3967           if (CD->isUnion())
3968             *Value = APValue(FD);
3969           else
3970             *Value = APValue(APValue::UninitStruct(), CD->getNumBases(),
3971                              std::distance(CD->field_begin(), CD->field_end()));
3972         }
3973         if (!HandleLValueMember(Info, I->getInit(), Subobject, FD))
3974           return false;
3975         if (CD->isUnion())
3976           Value = &Value->getUnionValue();
3977         else
3978           Value = &Value->getStructField(FD->getFieldIndex());
3979       }
3980     } else {
3981       llvm_unreachable("unknown base initializer kind");
3982     }
3983
3984     FullExpressionRAII InitScope(Info);
3985     if (!EvaluateInPlace(*Value, Info, Subobject, I->getInit()) ||
3986         (FD && FD->isBitField() && !truncateBitfieldValue(Info, I->getInit(),
3987                                                           *Value, FD))) {
3988       // If we're checking for a potential constant expression, evaluate all
3989       // initializers even if some of them fail.
3990       if (!Info.keepEvaluatingAfterFailure())
3991         return false;
3992       Success = false;
3993     }
3994   }
3995
3996   return Success &&
3997          EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed;
3998 }
3999
4000 //===----------------------------------------------------------------------===//
4001 // Generic Evaluation
4002 //===----------------------------------------------------------------------===//
4003 namespace {
4004
4005 template <class Derived>
4006 class ExprEvaluatorBase
4007   : public ConstStmtVisitor<Derived, bool> {
4008 private:
4009   Derived &getDerived() { return static_cast<Derived&>(*this); }
4010   bool DerivedSuccess(const APValue &V, const Expr *E) {
4011     return getDerived().Success(V, E);
4012   }
4013   bool DerivedZeroInitialization(const Expr *E) {
4014     return getDerived().ZeroInitialization(E);
4015   }
4016
4017   // Check whether a conditional operator with a non-constant condition is a
4018   // potential constant expression. If neither arm is a potential constant
4019   // expression, then the conditional operator is not either.
4020   template<typename ConditionalOperator>
4021   void CheckPotentialConstantConditional(const ConditionalOperator *E) {
4022     assert(Info.checkingPotentialConstantExpression());
4023
4024     // Speculatively evaluate both arms.
4025     {
4026       SmallVector<PartialDiagnosticAt, 8> Diag;
4027       SpeculativeEvaluationRAII Speculate(Info, &Diag);
4028
4029       StmtVisitorTy::Visit(E->getFalseExpr());
4030       if (Diag.empty())
4031         return;
4032
4033       Diag.clear();
4034       StmtVisitorTy::Visit(E->getTrueExpr());
4035       if (Diag.empty())
4036         return;
4037     }
4038
4039     Error(E, diag::note_constexpr_conditional_never_const);
4040   }
4041
4042
4043   template<typename ConditionalOperator>
4044   bool HandleConditionalOperator(const ConditionalOperator *E) {
4045     bool BoolResult;
4046     if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) {
4047       if (Info.checkingPotentialConstantExpression())
4048         CheckPotentialConstantConditional(E);
4049       return false;
4050     }
4051
4052     Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr();
4053     return StmtVisitorTy::Visit(EvalExpr);
4054   }
4055
4056 protected:
4057   EvalInfo &Info;
4058   typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy;
4059   typedef ExprEvaluatorBase ExprEvaluatorBaseTy;
4060
4061   OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
4062     return Info.CCEDiag(E, D);
4063   }
4064
4065   bool ZeroInitialization(const Expr *E) { return Error(E); }
4066
4067 public:
4068   ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {}
4069
4070   EvalInfo &getEvalInfo() { return Info; }
4071
4072   /// Report an evaluation error. This should only be called when an error is
4073   /// first discovered. When propagating an error, just return false.
4074   bool Error(const Expr *E, diag::kind D) {
4075     Info.Diag(E, D);
4076     return false;
4077   }
4078   bool Error(const Expr *E) {
4079     return Error(E, diag::note_invalid_subexpr_in_const_expr);
4080   }
4081
4082   bool VisitStmt(const Stmt *) {
4083     llvm_unreachable("Expression evaluator should not be called on stmts");
4084   }
4085   bool VisitExpr(const Expr *E) {
4086     return Error(E);
4087   }
4088
4089   bool VisitParenExpr(const ParenExpr *E)
4090     { return StmtVisitorTy::Visit(E->getSubExpr()); }
4091   bool VisitUnaryExtension(const UnaryOperator *E)
4092     { return StmtVisitorTy::Visit(E->getSubExpr()); }
4093   bool VisitUnaryPlus(const UnaryOperator *E)
4094     { return StmtVisitorTy::Visit(E->getSubExpr()); }
4095   bool VisitChooseExpr(const ChooseExpr *E)
4096     { return StmtVisitorTy::Visit(E->getChosenSubExpr()); }
4097   bool VisitGenericSelectionExpr(const GenericSelectionExpr *E)
4098     { return StmtVisitorTy::Visit(E->getResultExpr()); }
4099   bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E)
4100     { return StmtVisitorTy::Visit(E->getReplacement()); }
4101   bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E)
4102     { return StmtVisitorTy::Visit(E->getExpr()); }
4103   bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) {
4104     // The initializer may not have been parsed yet, or might be erroneous.
4105     if (!E->getExpr())
4106       return Error(E);
4107     return StmtVisitorTy::Visit(E->getExpr());
4108   }
4109   // We cannot create any objects for which cleanups are required, so there is
4110   // nothing to do here; all cleanups must come from unevaluated subexpressions.
4111   bool VisitExprWithCleanups(const ExprWithCleanups *E)
4112     { return StmtVisitorTy::Visit(E->getSubExpr()); }
4113
4114   bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) {
4115     CCEDiag(E, diag::note_constexpr_invalid_cast) << 0;
4116     return static_cast<Derived*>(this)->VisitCastExpr(E);
4117   }
4118   bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) {
4119     CCEDiag(E, diag::note_constexpr_invalid_cast) << 1;
4120     return static_cast<Derived*>(this)->VisitCastExpr(E);
4121   }
4122
4123   bool VisitBinaryOperator(const BinaryOperator *E) {
4124     switch (E->getOpcode()) {
4125     default:
4126       return Error(E);
4127
4128     case BO_Comma:
4129       VisitIgnoredValue(E->getLHS());
4130       return StmtVisitorTy::Visit(E->getRHS());
4131
4132     case BO_PtrMemD:
4133     case BO_PtrMemI: {
4134       LValue Obj;
4135       if (!HandleMemberPointerAccess(Info, E, Obj))
4136         return false;
4137       APValue Result;
4138       if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result))
4139         return false;
4140       return DerivedSuccess(Result, E);
4141     }
4142     }
4143   }
4144
4145   bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) {
4146     // Evaluate and cache the common expression. We treat it as a temporary,
4147     // even though it's not quite the same thing.
4148     if (!Evaluate(Info.CurrentCall->createTemporary(E->getOpaqueValue(), false),
4149                   Info, E->getCommon()))
4150       return false;
4151
4152     return HandleConditionalOperator(E);
4153   }
4154
4155   bool VisitConditionalOperator(const ConditionalOperator *E) {
4156     bool IsBcpCall = false;
4157     // If the condition (ignoring parens) is a __builtin_constant_p call,
4158     // the result is a constant expression if it can be folded without
4159     // side-effects. This is an important GNU extension. See GCC PR38377
4160     // for discussion.
4161     if (const CallExpr *CallCE =
4162           dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts()))
4163       if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
4164         IsBcpCall = true;
4165
4166     // Always assume __builtin_constant_p(...) ? ... : ... is a potential
4167     // constant expression; we can't check whether it's potentially foldable.
4168     if (Info.checkingPotentialConstantExpression() && IsBcpCall)
4169       return false;
4170
4171     FoldConstant Fold(Info, IsBcpCall);
4172     if (!HandleConditionalOperator(E)) {
4173       Fold.keepDiagnostics();
4174       return false;
4175     }
4176
4177     return true;
4178   }
4179
4180   bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) {
4181     if (APValue *Value = Info.CurrentCall->getTemporary(E))
4182       return DerivedSuccess(*Value, E);
4183
4184     const Expr *Source = E->getSourceExpr();
4185     if (!Source)
4186       return Error(E);
4187     if (Source == E) { // sanity checking.
4188       assert(0 && "OpaqueValueExpr recursively refers to itself");
4189       return Error(E);
4190     }
4191     return StmtVisitorTy::Visit(Source);
4192   }
4193
4194   bool VisitCallExpr(const CallExpr *E) {
4195     APValue Result;
4196     if (!handleCallExpr(E, Result, nullptr))
4197       return false;
4198     return DerivedSuccess(Result, E);
4199   }
4200
4201   bool handleCallExpr(const CallExpr *E, APValue &Result,
4202                      const LValue *ResultSlot) {
4203     const Expr *Callee = E->getCallee()->IgnoreParens();
4204     QualType CalleeType = Callee->getType();
4205
4206     const FunctionDecl *FD = nullptr;
4207     LValue *This = nullptr, ThisVal;
4208     auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
4209     bool HasQualifier = false;
4210
4211     // Extract function decl and 'this' pointer from the callee.
4212     if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) {
4213       const ValueDecl *Member = nullptr;
4214       if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) {
4215         // Explicit bound member calls, such as x.f() or p->g();
4216         if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal))
4217           return false;
4218         Member = ME->getMemberDecl();
4219         This = &ThisVal;
4220         HasQualifier = ME->hasQualifier();
4221       } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) {
4222         // Indirect bound member calls ('.*' or '->*').
4223         Member = HandleMemberPointerAccess(Info, BE, ThisVal, false);
4224         if (!Member) return false;
4225         This = &ThisVal;
4226       } else
4227         return Error(Callee);
4228
4229       FD = dyn_cast<FunctionDecl>(Member);
4230       if (!FD)
4231         return Error(Callee);
4232     } else if (CalleeType->isFunctionPointerType()) {
4233       LValue Call;
4234       if (!EvaluatePointer(Callee, Call, Info))
4235         return false;
4236
4237       if (!Call.getLValueOffset().isZero())
4238         return Error(Callee);
4239       FD = dyn_cast_or_null<FunctionDecl>(
4240                              Call.getLValueBase().dyn_cast<const ValueDecl*>());
4241       if (!FD)
4242         return Error(Callee);
4243
4244       // Overloaded operator calls to member functions are represented as normal
4245       // calls with '*this' as the first argument.
4246       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
4247       if (MD && !MD->isStatic()) {
4248         // FIXME: When selecting an implicit conversion for an overloaded
4249         // operator delete, we sometimes try to evaluate calls to conversion
4250         // operators without a 'this' parameter!
4251         if (Args.empty())
4252           return Error(E);
4253
4254         if (!EvaluateObjectArgument(Info, Args[0], ThisVal))
4255           return false;
4256         This = &ThisVal;
4257         Args = Args.slice(1);
4258       }
4259
4260       // Don't call function pointers which have been cast to some other type.
4261       if (!Info.Ctx.hasSameType(CalleeType->getPointeeType(), FD->getType()))
4262         return Error(E);
4263     } else
4264       return Error(E);
4265
4266     if (This && !This->checkSubobject(Info, E, CSK_This))
4267       return false;
4268
4269     // DR1358 allows virtual constexpr functions in some cases. Don't allow
4270     // calls to such functions in constant expressions.
4271     if (This && !HasQualifier &&
4272         isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isVirtual())
4273       return Error(E, diag::note_constexpr_virtual_call);
4274
4275     const FunctionDecl *Definition = nullptr;
4276     Stmt *Body = FD->getBody(Definition);
4277
4278     if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition) ||
4279         !HandleFunctionCall(E->getExprLoc(), Definition, This, Args, Body, Info,
4280                             Result, ResultSlot))
4281       return false;
4282
4283     return true;
4284   }
4285
4286   bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
4287     return StmtVisitorTy::Visit(E->getInitializer());
4288   }
4289   bool VisitInitListExpr(const InitListExpr *E) {
4290     if (E->getNumInits() == 0)
4291       return DerivedZeroInitialization(E);
4292     if (E->getNumInits() == 1)
4293       return StmtVisitorTy::Visit(E->getInit(0));
4294     return Error(E);
4295   }
4296   bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
4297     return DerivedZeroInitialization(E);
4298   }
4299   bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
4300     return DerivedZeroInitialization(E);
4301   }
4302   bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
4303     return DerivedZeroInitialization(E);
4304   }
4305
4306   /// A member expression where the object is a prvalue is itself a prvalue.
4307   bool VisitMemberExpr(const MemberExpr *E) {
4308     assert(!E->isArrow() && "missing call to bound member function?");
4309
4310     APValue Val;
4311     if (!Evaluate(Val, Info, E->getBase()))
4312       return false;
4313
4314     QualType BaseTy = E->getBase()->getType();
4315
4316     const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl());
4317     if (!FD) return Error(E);
4318     assert(!FD->getType()->isReferenceType() && "prvalue reference?");
4319     assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() ==
4320            FD->getParent()->getCanonicalDecl() && "record / field mismatch");
4321
4322     CompleteObject Obj(&Val, BaseTy);
4323     SubobjectDesignator Designator(BaseTy);
4324     Designator.addDeclUnchecked(FD);
4325
4326     APValue Result;
4327     return extractSubobject(Info, E, Obj, Designator, Result) &&
4328            DerivedSuccess(Result, E);
4329   }
4330
4331   bool VisitCastExpr(const CastExpr *E) {
4332     switch (E->getCastKind()) {
4333     default:
4334       break;
4335
4336     case CK_AtomicToNonAtomic: {
4337       APValue AtomicVal;
4338       if (!EvaluateAtomic(E->getSubExpr(), AtomicVal, Info))
4339         return false;
4340       return DerivedSuccess(AtomicVal, E);
4341     }
4342
4343     case CK_NoOp:
4344     case CK_UserDefinedConversion:
4345       return StmtVisitorTy::Visit(E->getSubExpr());
4346
4347     case CK_LValueToRValue: {
4348       LValue LVal;
4349       if (!EvaluateLValue(E->getSubExpr(), LVal, Info))
4350         return false;
4351       APValue RVal;
4352       // Note, we use the subexpression's type in order to retain cv-qualifiers.
4353       if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(),
4354                                           LVal, RVal))
4355         return false;
4356       return DerivedSuccess(RVal, E);
4357     }
4358     }
4359
4360     return Error(E);
4361   }
4362
4363   bool VisitUnaryPostInc(const UnaryOperator *UO) {
4364     return VisitUnaryPostIncDec(UO);
4365   }
4366   bool VisitUnaryPostDec(const UnaryOperator *UO) {
4367     return VisitUnaryPostIncDec(UO);
4368   }
4369   bool VisitUnaryPostIncDec(const UnaryOperator *UO) {
4370     if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
4371       return Error(UO);
4372
4373     LValue LVal;
4374     if (!EvaluateLValue(UO->getSubExpr(), LVal, Info))
4375       return false;
4376     APValue RVal;
4377     if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(),
4378                       UO->isIncrementOp(), &RVal))
4379       return false;
4380     return DerivedSuccess(RVal, UO);
4381   }
4382
4383   bool VisitStmtExpr(const StmtExpr *E) {
4384     // We will have checked the full-expressions inside the statement expression
4385     // when they were completed, and don't need to check them again now.
4386     if (Info.checkingForOverflow())
4387       return Error(E);
4388
4389     BlockScopeRAII Scope(Info);
4390     const CompoundStmt *CS = E->getSubStmt();
4391     if (CS->body_empty())
4392       return true;
4393
4394     for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
4395                                            BE = CS->body_end();
4396          /**/; ++BI) {
4397       if (BI + 1 == BE) {
4398         const Expr *FinalExpr = dyn_cast<Expr>(*BI);
4399         if (!FinalExpr) {
4400           Info.Diag((*BI)->getLocStart(),
4401                     diag::note_constexpr_stmt_expr_unsupported);
4402           return false;
4403         }
4404         return this->Visit(FinalExpr);
4405       }
4406
4407       APValue ReturnValue;
4408       StmtResult Result = { ReturnValue, nullptr };
4409       EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI);
4410       if (ESR != ESR_Succeeded) {
4411         // FIXME: If the statement-expression terminated due to 'return',
4412         // 'break', or 'continue', it would be nice to propagate that to
4413         // the outer statement evaluation rather than bailing out.
4414         if (ESR != ESR_Failed)
4415           Info.Diag((*BI)->getLocStart(),
4416                     diag::note_constexpr_stmt_expr_unsupported);
4417         return false;
4418       }
4419     }
4420
4421     llvm_unreachable("Return from function from the loop above.");
4422   }
4423
4424   /// Visit a value which is evaluated, but whose value is ignored.
4425   void VisitIgnoredValue(const Expr *E) {
4426     EvaluateIgnoredValue(Info, E);
4427   }
4428 };
4429
4430 }
4431
4432 //===----------------------------------------------------------------------===//
4433 // Common base class for lvalue and temporary evaluation.
4434 //===----------------------------------------------------------------------===//
4435 namespace {
4436 template<class Derived>
4437 class LValueExprEvaluatorBase
4438   : public ExprEvaluatorBase<Derived> {
4439 protected:
4440   LValue &Result;
4441   typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy;
4442   typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy;
4443
4444   bool Success(APValue::LValueBase B) {
4445     Result.set(B);
4446     return true;
4447   }
4448
4449 public:
4450   LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result) :
4451     ExprEvaluatorBaseTy(Info), Result(Result) {}
4452
4453   bool Success(const APValue &V, const Expr *E) {
4454     Result.setFrom(this->Info.Ctx, V);
4455     return true;
4456   }
4457
4458   bool VisitMemberExpr(const MemberExpr *E) {
4459     // Handle non-static data members.
4460     QualType BaseTy;
4461     bool EvalOK;
4462     if (E->isArrow()) {
4463       EvalOK = EvaluatePointer(E->getBase(), Result, this->Info);
4464       BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType();
4465     } else if (E->getBase()->isRValue()) {
4466       assert(E->getBase()->getType()->isRecordType());
4467       EvalOK = EvaluateTemporary(E->getBase(), Result, this->Info);
4468       BaseTy = E->getBase()->getType();
4469     } else {
4470       EvalOK = this->Visit(E->getBase());
4471       BaseTy = E->getBase()->getType();
4472     }
4473     if (!EvalOK) {
4474       if (!this->Info.allowInvalidBaseExpr())
4475         return false;
4476       Result.setInvalid(E);
4477       return true;
4478     }
4479
4480     const ValueDecl *MD = E->getMemberDecl();
4481     if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) {
4482       assert(BaseTy->getAs<RecordType>()->getDecl()->getCanonicalDecl() ==
4483              FD->getParent()->getCanonicalDecl() && "record / field mismatch");
4484       (void)BaseTy;
4485       if (!HandleLValueMember(this->Info, E, Result, FD))
4486         return false;
4487     } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) {
4488       if (!HandleLValueIndirectMember(this->Info, E, Result, IFD))
4489         return false;
4490     } else
4491       return this->Error(E);
4492
4493     if (MD->getType()->isReferenceType()) {
4494       APValue RefValue;
4495       if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result,
4496                                           RefValue))
4497         return false;
4498       return Success(RefValue, E);
4499     }
4500     return true;
4501   }
4502
4503   bool VisitBinaryOperator(const BinaryOperator *E) {
4504     switch (E->getOpcode()) {
4505     default:
4506       return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
4507
4508     case BO_PtrMemD:
4509     case BO_PtrMemI:
4510       return HandleMemberPointerAccess(this->Info, E, Result);
4511     }
4512   }
4513
4514   bool VisitCastExpr(const CastExpr *E) {
4515     switch (E->getCastKind()) {
4516     default:
4517       return ExprEvaluatorBaseTy::VisitCastExpr(E);
4518
4519     case CK_DerivedToBase:
4520     case CK_UncheckedDerivedToBase:
4521       if (!this->Visit(E->getSubExpr()))
4522         return false;
4523
4524       // Now figure out the necessary offset to add to the base LV to get from
4525       // the derived class to the base class.
4526       return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(),
4527                                   Result);
4528     }
4529   }
4530 };
4531 }
4532
4533 //===----------------------------------------------------------------------===//
4534 // LValue Evaluation
4535 //
4536 // This is used for evaluating lvalues (in C and C++), xvalues (in C++11),
4537 // function designators (in C), decl references to void objects (in C), and
4538 // temporaries (if building with -Wno-address-of-temporary).
4539 //
4540 // LValue evaluation produces values comprising a base expression of one of the
4541 // following types:
4542 // - Declarations
4543 //  * VarDecl
4544 //  * FunctionDecl
4545 // - Literals
4546 //  * CompoundLiteralExpr in C
4547 //  * StringLiteral
4548 //  * CXXTypeidExpr
4549 //  * PredefinedExpr
4550 //  * ObjCStringLiteralExpr
4551 //  * ObjCEncodeExpr
4552 //  * AddrLabelExpr
4553 //  * BlockExpr
4554 //  * CallExpr for a MakeStringConstant builtin
4555 // - Locals and temporaries
4556 //  * MaterializeTemporaryExpr
4557 //  * Any Expr, with a CallIndex indicating the function in which the temporary
4558 //    was evaluated, for cases where the MaterializeTemporaryExpr is missing
4559 //    from the AST (FIXME).
4560 //  * A MaterializeTemporaryExpr that has static storage duration, with no
4561 //    CallIndex, for a lifetime-extended temporary.
4562 // plus an offset in bytes.
4563 //===----------------------------------------------------------------------===//
4564 namespace {
4565 class LValueExprEvaluator
4566   : public LValueExprEvaluatorBase<LValueExprEvaluator> {
4567 public:
4568   LValueExprEvaluator(EvalInfo &Info, LValue &Result) :
4569     LValueExprEvaluatorBaseTy(Info, Result) {}
4570
4571   bool VisitVarDecl(const Expr *E, const VarDecl *VD);
4572   bool VisitUnaryPreIncDec(const UnaryOperator *UO);
4573
4574   bool VisitDeclRefExpr(const DeclRefExpr *E);
4575   bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); }
4576   bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
4577   bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
4578   bool VisitMemberExpr(const MemberExpr *E);
4579   bool VisitStringLiteral(const StringLiteral *E) { return Success(E); }
4580   bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); }
4581   bool VisitCXXTypeidExpr(const CXXTypeidExpr *E);
4582   bool VisitCXXUuidofExpr(const CXXUuidofExpr *E);
4583   bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E);
4584   bool VisitUnaryDeref(const UnaryOperator *E);
4585   bool VisitUnaryReal(const UnaryOperator *E);
4586   bool VisitUnaryImag(const UnaryOperator *E);
4587   bool VisitUnaryPreInc(const UnaryOperator *UO) {
4588     return VisitUnaryPreIncDec(UO);
4589   }
4590   bool VisitUnaryPreDec(const UnaryOperator *UO) {
4591     return VisitUnaryPreIncDec(UO);
4592   }
4593   bool VisitBinAssign(const BinaryOperator *BO);
4594   bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO);
4595
4596   bool VisitCastExpr(const CastExpr *E) {
4597     switch (E->getCastKind()) {
4598     default:
4599       return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
4600
4601     case CK_LValueBitCast:
4602       this->CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
4603       if (!Visit(E->getSubExpr()))
4604         return false;
4605       Result.Designator.setInvalid();
4606       return true;
4607
4608     case CK_BaseToDerived:
4609       if (!Visit(E->getSubExpr()))
4610         return false;
4611       return HandleBaseToDerivedCast(Info, E, Result);
4612     }
4613   }
4614 };
4615 } // end anonymous namespace
4616
4617 /// Evaluate an expression as an lvalue. This can be legitimately called on
4618 /// expressions which are not glvalues, in three cases:
4619 ///  * function designators in C, and
4620 ///  * "extern void" objects
4621 ///  * @selector() expressions in Objective-C
4622 static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info) {
4623   assert(E->isGLValue() || E->getType()->isFunctionType() ||
4624          E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E));
4625   return LValueExprEvaluator(Info, Result).Visit(E);
4626 }
4627
4628 bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) {
4629   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(E->getDecl()))
4630     return Success(FD);
4631   if (const VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
4632     return VisitVarDecl(E, VD);
4633   return Error(E);
4634 }
4635
4636 bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) {
4637   CallStackFrame *Frame = nullptr;
4638   if (VD->hasLocalStorage() && Info.CurrentCall->Index > 1)
4639     Frame = Info.CurrentCall;
4640
4641   if (!VD->getType()->isReferenceType()) {
4642     if (Frame) {
4643       Result.set(VD, Frame->Index);
4644       return true;
4645     }
4646     return Success(VD);
4647   }
4648
4649   APValue *V;
4650   if (!evaluateVarDeclInit(Info, E, VD, Frame, V))
4651     return false;
4652   if (V->isUninit()) {
4653     if (!Info.checkingPotentialConstantExpression())
4654       Info.Diag(E, diag::note_constexpr_use_uninit_reference);
4655     return false;
4656   }
4657   return Success(*V, E);
4658 }
4659
4660 bool LValueExprEvaluator::VisitMaterializeTemporaryExpr(
4661     const MaterializeTemporaryExpr *E) {
4662   // Walk through the expression to find the materialized temporary itself.
4663   SmallVector<const Expr *, 2> CommaLHSs;
4664   SmallVector<SubobjectAdjustment, 2> Adjustments;
4665   const Expr *Inner = E->GetTemporaryExpr()->
4666       skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
4667
4668   // If we passed any comma operators, evaluate their LHSs.
4669   for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
4670     if (!EvaluateIgnoredValue(Info, CommaLHSs[I]))
4671       return false;
4672
4673   // A materialized temporary with static storage duration can appear within the
4674   // result of a constant expression evaluation, so we need to preserve its
4675   // value for use outside this evaluation.
4676   APValue *Value;
4677   if (E->getStorageDuration() == SD_Static) {
4678     Value = Info.Ctx.getMaterializedTemporaryValue(E, true);
4679     *Value = APValue();
4680     Result.set(E);
4681   } else {
4682     Value = &Info.CurrentCall->
4683         createTemporary(E, E->getStorageDuration() == SD_Automatic);
4684     Result.set(E, Info.CurrentCall->Index);
4685   }
4686
4687   QualType Type = Inner->getType();
4688
4689   // Materialize the temporary itself.
4690   if (!EvaluateInPlace(*Value, Info, Result, Inner) ||
4691       (E->getStorageDuration() == SD_Static &&
4692        !CheckConstantExpression(Info, E->getExprLoc(), Type, *Value))) {
4693     *Value = APValue();
4694     return false;
4695   }
4696
4697   // Adjust our lvalue to refer to the desired subobject.
4698   for (unsigned I = Adjustments.size(); I != 0; /**/) {
4699     --I;
4700     switch (Adjustments[I].Kind) {
4701     case SubobjectAdjustment::DerivedToBaseAdjustment:
4702       if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath,
4703                                 Type, Result))
4704         return false;
4705       Type = Adjustments[I].DerivedToBase.BasePath->getType();
4706       break;
4707
4708     case SubobjectAdjustment::FieldAdjustment:
4709       if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field))
4710         return false;
4711       Type = Adjustments[I].Field->getType();
4712       break;
4713
4714     case SubobjectAdjustment::MemberPointerAdjustment:
4715       if (!HandleMemberPointerAccess(this->Info, Type, Result,
4716                                      Adjustments[I].Ptr.RHS))
4717         return false;
4718       Type = Adjustments[I].Ptr.MPT->getPointeeType();
4719       break;
4720     }
4721   }
4722
4723   return true;
4724 }
4725
4726 bool
4727 LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
4728   assert(!Info.getLangOpts().CPlusPlus && "lvalue compound literal in c++?");
4729   // Defer visiting the literal until the lvalue-to-rvalue conversion. We can
4730   // only see this when folding in C, so there's no standard to follow here.
4731   return Success(E);
4732 }
4733
4734 bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
4735   if (!E->isPotentiallyEvaluated())
4736     return Success(E);
4737
4738   Info.Diag(E, diag::note_constexpr_typeid_polymorphic)
4739     << E->getExprOperand()->getType()
4740     << E->getExprOperand()->getSourceRange();
4741   return false;
4742 }
4743
4744 bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) {
4745   return Success(E);
4746 }
4747
4748 bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) {
4749   // Handle static data members.
4750   if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) {
4751     VisitIgnoredValue(E->getBase());
4752     return VisitVarDecl(E, VD);
4753   }
4754
4755   // Handle static member functions.
4756   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) {
4757     if (MD->isStatic()) {
4758       VisitIgnoredValue(E->getBase());
4759       return Success(MD);
4760     }
4761   }
4762
4763   // Handle non-static data members.
4764   return LValueExprEvaluatorBaseTy::VisitMemberExpr(E);
4765 }
4766
4767 bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
4768   // FIXME: Deal with vectors as array subscript bases.
4769   if (E->getBase()->getType()->isVectorType())
4770     return Error(E);
4771
4772   if (!EvaluatePointer(E->getBase(), Result, Info))
4773     return false;
4774
4775   APSInt Index;
4776   if (!EvaluateInteger(E->getIdx(), Index, Info))
4777     return false;
4778
4779   return HandleLValueArrayAdjustment(Info, E, Result, E->getType(),
4780                                      getExtValue(Index));
4781 }
4782
4783 bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) {
4784   return EvaluatePointer(E->getSubExpr(), Result, Info);
4785 }
4786
4787 bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
4788   if (!Visit(E->getSubExpr()))
4789     return false;
4790   // __real is a no-op on scalar lvalues.
4791   if (E->getSubExpr()->getType()->isAnyComplexType())
4792     HandleLValueComplexElement(Info, E, Result, E->getType(), false);
4793   return true;
4794 }
4795
4796 bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
4797   assert(E->getSubExpr()->getType()->isAnyComplexType() &&
4798          "lvalue __imag__ on scalar?");
4799   if (!Visit(E->getSubExpr()))
4800     return false;
4801   HandleLValueComplexElement(Info, E, Result, E->getType(), true);
4802   return true;
4803 }
4804
4805 bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) {
4806   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
4807     return Error(UO);
4808
4809   if (!this->Visit(UO->getSubExpr()))
4810     return false;
4811
4812   return handleIncDec(
4813       this->Info, UO, Result, UO->getSubExpr()->getType(),
4814       UO->isIncrementOp(), nullptr);
4815 }
4816
4817 bool LValueExprEvaluator::VisitCompoundAssignOperator(
4818     const CompoundAssignOperator *CAO) {
4819   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
4820     return Error(CAO);
4821
4822   APValue RHS;
4823
4824   // The overall lvalue result is the result of evaluating the LHS.
4825   if (!this->Visit(CAO->getLHS())) {
4826     if (Info.keepEvaluatingAfterFailure())
4827       Evaluate(RHS, this->Info, CAO->getRHS());
4828     return false;
4829   }
4830
4831   if (!Evaluate(RHS, this->Info, CAO->getRHS()))
4832     return false;
4833
4834   return handleCompoundAssignment(
4835       this->Info, CAO,
4836       Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(),
4837       CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS);
4838 }
4839
4840 bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) {
4841   if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure())
4842     return Error(E);
4843
4844   APValue NewVal;
4845
4846   if (!this->Visit(E->getLHS())) {
4847     if (Info.keepEvaluatingAfterFailure())
4848       Evaluate(NewVal, this->Info, E->getRHS());
4849     return false;
4850   }
4851
4852   if (!Evaluate(NewVal, this->Info, E->getRHS()))
4853     return false;
4854
4855   return handleAssignment(this->Info, E, Result, E->getLHS()->getType(),
4856                           NewVal);
4857 }
4858
4859 //===----------------------------------------------------------------------===//
4860 // Pointer Evaluation
4861 //===----------------------------------------------------------------------===//
4862
4863 namespace {
4864 class PointerExprEvaluator
4865   : public ExprEvaluatorBase<PointerExprEvaluator> {
4866   LValue &Result;
4867
4868   bool Success(const Expr *E) {
4869     Result.set(E);
4870     return true;
4871   }
4872 public:
4873
4874   PointerExprEvaluator(EvalInfo &info, LValue &Result)
4875     : ExprEvaluatorBaseTy(info), Result(Result) {}
4876
4877   bool Success(const APValue &V, const Expr *E) {
4878     Result.setFrom(Info.Ctx, V);
4879     return true;
4880   }
4881   bool ZeroInitialization(const Expr *E) {
4882     return Success((Expr*)nullptr);
4883   }
4884
4885   bool VisitBinaryOperator(const BinaryOperator *E);
4886   bool VisitCastExpr(const CastExpr* E);
4887   bool VisitUnaryAddrOf(const UnaryOperator *E);
4888   bool VisitObjCStringLiteral(const ObjCStringLiteral *E)
4889       { return Success(E); }
4890   bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E)
4891       { return Success(E); }
4892   bool VisitAddrLabelExpr(const AddrLabelExpr *E)
4893       { return Success(E); }
4894   bool VisitCallExpr(const CallExpr *E);
4895   bool VisitBlockExpr(const BlockExpr *E) {
4896     if (!E->getBlockDecl()->hasCaptures())
4897       return Success(E);
4898     return Error(E);
4899   }
4900   bool VisitCXXThisExpr(const CXXThisExpr *E) {
4901     // Can't look at 'this' when checking a potential constant expression.
4902     if (Info.checkingPotentialConstantExpression())
4903       return false;
4904     if (!Info.CurrentCall->This) {
4905       if (Info.getLangOpts().CPlusPlus11)
4906         Info.Diag(E, diag::note_constexpr_this) << E->isImplicit();
4907       else
4908         Info.Diag(E);
4909       return false;
4910     }
4911     Result = *Info.CurrentCall->This;
4912     return true;
4913   }
4914
4915   // FIXME: Missing: @protocol, @selector
4916 };
4917 } // end anonymous namespace
4918
4919 static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info) {
4920   assert(E->isRValue() && E->getType()->hasPointerRepresentation());
4921   return PointerExprEvaluator(Info, Result).Visit(E);
4922 }
4923
4924 bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
4925   if (E->getOpcode() != BO_Add &&
4926       E->getOpcode() != BO_Sub)
4927     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
4928
4929   const Expr *PExp = E->getLHS();
4930   const Expr *IExp = E->getRHS();
4931   if (IExp->getType()->isPointerType())
4932     std::swap(PExp, IExp);
4933
4934   bool EvalPtrOK = EvaluatePointer(PExp, Result, Info);
4935   if (!EvalPtrOK && !Info.keepEvaluatingAfterFailure())
4936     return false;
4937
4938   llvm::APSInt Offset;
4939   if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK)
4940     return false;
4941
4942   int64_t AdditionalOffset = getExtValue(Offset);
4943   if (E->getOpcode() == BO_Sub)
4944     AdditionalOffset = -AdditionalOffset;
4945
4946   QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType();
4947   return HandleLValueArrayAdjustment(Info, E, Result, Pointee,
4948                                      AdditionalOffset);
4949 }
4950
4951 bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
4952   return EvaluateLValue(E->getSubExpr(), Result, Info);
4953 }
4954
4955 bool PointerExprEvaluator::VisitCastExpr(const CastExpr* E) {
4956   const Expr* SubExpr = E->getSubExpr();
4957
4958   switch (E->getCastKind()) {
4959   default:
4960     break;
4961
4962   case CK_BitCast:
4963   case CK_CPointerToObjCPointerCast:
4964   case CK_BlockPointerToObjCPointerCast:
4965   case CK_AnyPointerToBlockPointerCast:
4966   case CK_AddressSpaceConversion:
4967     if (!Visit(SubExpr))
4968       return false;
4969     // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are
4970     // permitted in constant expressions in C++11. Bitcasts from cv void* are
4971     // also static_casts, but we disallow them as a resolution to DR1312.
4972     if (!E->getType()->isVoidPointerType()) {
4973       Result.Designator.setInvalid();
4974       if (SubExpr->getType()->isVoidPointerType())
4975         CCEDiag(E, diag::note_constexpr_invalid_cast)
4976           << 3 << SubExpr->getType();
4977       else
4978         CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
4979     }
4980     return true;
4981
4982   case CK_DerivedToBase:
4983   case CK_UncheckedDerivedToBase:
4984     if (!EvaluatePointer(E->getSubExpr(), Result, Info))
4985       return false;
4986     if (!Result.Base && Result.Offset.isZero())
4987       return true;
4988
4989     // Now figure out the necessary offset to add to the base LV to get from
4990     // the derived class to the base class.
4991     return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()->
4992                                   castAs<PointerType>()->getPointeeType(),
4993                                 Result);
4994
4995   case CK_BaseToDerived:
4996     if (!Visit(E->getSubExpr()))
4997       return false;
4998     if (!Result.Base && Result.Offset.isZero())
4999       return true;
5000     return HandleBaseToDerivedCast(Info, E, Result);
5001
5002   case CK_NullToPointer:
5003     VisitIgnoredValue(E->getSubExpr());
5004     return ZeroInitialization(E);
5005
5006   case CK_IntegralToPointer: {
5007     CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
5008
5009     APValue Value;
5010     if (!EvaluateIntegerOrLValue(SubExpr, Value, Info))
5011       break;
5012
5013     if (Value.isInt()) {
5014       unsigned Size = Info.Ctx.getTypeSize(E->getType());
5015       uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue();
5016       Result.Base = (Expr*)nullptr;
5017       Result.InvalidBase = false;
5018       Result.Offset = CharUnits::fromQuantity(N);
5019       Result.CallIndex = 0;
5020       Result.Designator.setInvalid();
5021       return true;
5022     } else {
5023       // Cast is of an lvalue, no need to change value.
5024       Result.setFrom(Info.Ctx, Value);
5025       return true;
5026     }
5027   }
5028   case CK_ArrayToPointerDecay:
5029     if (SubExpr->isGLValue()) {
5030       if (!EvaluateLValue(SubExpr, Result, Info))
5031         return false;
5032     } else {
5033       Result.set(SubExpr, Info.CurrentCall->Index);
5034       if (!EvaluateInPlace(Info.CurrentCall->createTemporary(SubExpr, false),
5035                            Info, Result, SubExpr))
5036         return false;
5037     }
5038     // The result is a pointer to the first element of the array.
5039     if (const ConstantArrayType *CAT
5040           = Info.Ctx.getAsConstantArrayType(SubExpr->getType()))
5041       Result.addArray(Info, E, CAT);
5042     else
5043       Result.Designator.setInvalid();
5044     return true;
5045
5046   case CK_FunctionToPointerDecay:
5047     return EvaluateLValue(SubExpr, Result, Info);
5048   }
5049
5050   return ExprEvaluatorBaseTy::VisitCastExpr(E);
5051 }
5052
5053 static CharUnits GetAlignOfType(EvalInfo &Info, QualType T) {
5054   // C++ [expr.alignof]p3:
5055   //     When alignof is applied to a reference type, the result is the
5056   //     alignment of the referenced type.
5057   if (const ReferenceType *Ref = T->getAs<ReferenceType>())
5058     T = Ref->getPointeeType();
5059
5060   // __alignof is defined to return the preferred alignment.
5061   return Info.Ctx.toCharUnitsFromBits(
5062     Info.Ctx.getPreferredTypeAlign(T.getTypePtr()));
5063 }
5064
5065 static CharUnits GetAlignOfExpr(EvalInfo &Info, const Expr *E) {
5066   E = E->IgnoreParens();
5067
5068   // The kinds of expressions that we have special-case logic here for
5069   // should be kept up to date with the special checks for those
5070   // expressions in Sema.
5071
5072   // alignof decl is always accepted, even if it doesn't make sense: we default
5073   // to 1 in those cases.
5074   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
5075     return Info.Ctx.getDeclAlign(DRE->getDecl(),
5076                                  /*RefAsPointee*/true);
5077
5078   if (const MemberExpr *ME = dyn_cast<MemberExpr>(E))
5079     return Info.Ctx.getDeclAlign(ME->getMemberDecl(),
5080                                  /*RefAsPointee*/true);
5081
5082   return GetAlignOfType(Info, E->getType());
5083 }
5084
5085 bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) {
5086   if (IsStringLiteralCall(E))
5087     return Success(E);
5088
5089   switch (E->getBuiltinCallee()) {
5090   case Builtin::BI__builtin_addressof:
5091     return EvaluateLValue(E->getArg(0), Result, Info);
5092   case Builtin::BI__builtin_assume_aligned: {
5093     // We need to be very careful here because: if the pointer does not have the
5094     // asserted alignment, then the behavior is undefined, and undefined
5095     // behavior is non-constant.
5096     if (!EvaluatePointer(E->getArg(0), Result, Info))
5097       return false;
5098
5099     LValue OffsetResult(Result);
5100     APSInt Alignment;
5101     if (!EvaluateInteger(E->getArg(1), Alignment, Info))
5102       return false;
5103     CharUnits Align = CharUnits::fromQuantity(getExtValue(Alignment));
5104
5105     if (E->getNumArgs() > 2) {
5106       APSInt Offset;
5107       if (!EvaluateInteger(E->getArg(2), Offset, Info))
5108         return false;
5109
5110       int64_t AdditionalOffset = -getExtValue(Offset);
5111       OffsetResult.Offset += CharUnits::fromQuantity(AdditionalOffset);
5112     }
5113
5114     // If there is a base object, then it must have the correct alignment.
5115     if (OffsetResult.Base) {
5116       CharUnits BaseAlignment;
5117       if (const ValueDecl *VD =
5118           OffsetResult.Base.dyn_cast<const ValueDecl*>()) {
5119         BaseAlignment = Info.Ctx.getDeclAlign(VD);
5120       } else {
5121         BaseAlignment =
5122           GetAlignOfExpr(Info, OffsetResult.Base.get<const Expr*>());
5123       }
5124
5125       if (BaseAlignment < Align) {
5126         Result.Designator.setInvalid();
5127         // FIXME: Quantities here cast to integers because the plural modifier
5128         // does not work on APSInts yet.
5129         CCEDiag(E->getArg(0),
5130                 diag::note_constexpr_baa_insufficient_alignment) << 0
5131           << (int) BaseAlignment.getQuantity()
5132           << (unsigned) getExtValue(Alignment);
5133         return false;
5134       }
5135     }
5136
5137     // The offset must also have the correct alignment.
5138     if (OffsetResult.Offset.RoundUpToAlignment(Align) != OffsetResult.Offset) {
5139       Result.Designator.setInvalid();
5140       APSInt Offset(64, false);
5141       Offset = OffsetResult.Offset.getQuantity();
5142
5143       if (OffsetResult.Base)
5144         CCEDiag(E->getArg(0),
5145                 diag::note_constexpr_baa_insufficient_alignment) << 1
5146           << (int) getExtValue(Offset) << (unsigned) getExtValue(Alignment);
5147       else
5148         CCEDiag(E->getArg(0),
5149                 diag::note_constexpr_baa_value_insufficient_alignment)
5150           << Offset << (unsigned) getExtValue(Alignment);
5151
5152       return false;
5153     }
5154
5155     return true;
5156   }
5157   default:
5158     return ExprEvaluatorBaseTy::VisitCallExpr(E);
5159   }
5160 }
5161
5162 //===----------------------------------------------------------------------===//
5163 // Member Pointer Evaluation
5164 //===----------------------------------------------------------------------===//
5165
5166 namespace {
5167 class MemberPointerExprEvaluator
5168   : public ExprEvaluatorBase<MemberPointerExprEvaluator> {
5169   MemberPtr &Result;
5170
5171   bool Success(const ValueDecl *D) {
5172     Result = MemberPtr(D);
5173     return true;
5174   }
5175 public:
5176
5177   MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result)
5178     : ExprEvaluatorBaseTy(Info), Result(Result) {}
5179
5180   bool Success(const APValue &V, const Expr *E) {
5181     Result.setFrom(V);
5182     return true;
5183   }
5184   bool ZeroInitialization(const Expr *E) {
5185     return Success((const ValueDecl*)nullptr);
5186   }
5187
5188   bool VisitCastExpr(const CastExpr *E);
5189   bool VisitUnaryAddrOf(const UnaryOperator *E);
5190 };
5191 } // end anonymous namespace
5192
5193 static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result,
5194                                   EvalInfo &Info) {
5195   assert(E->isRValue() && E->getType()->isMemberPointerType());
5196   return MemberPointerExprEvaluator(Info, Result).Visit(E);
5197 }
5198
5199 bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) {
5200   switch (E->getCastKind()) {
5201   default:
5202     return ExprEvaluatorBaseTy::VisitCastExpr(E);
5203
5204   case CK_NullToMemberPointer:
5205     VisitIgnoredValue(E->getSubExpr());
5206     return ZeroInitialization(E);
5207
5208   case CK_BaseToDerivedMemberPointer: {
5209     if (!Visit(E->getSubExpr()))
5210       return false;
5211     if (E->path_empty())
5212       return true;
5213     // Base-to-derived member pointer casts store the path in derived-to-base
5214     // order, so iterate backwards. The CXXBaseSpecifier also provides us with
5215     // the wrong end of the derived->base arc, so stagger the path by one class.
5216     typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter;
5217     for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin());
5218          PathI != PathE; ++PathI) {
5219       assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
5220       const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl();
5221       if (!Result.castToDerived(Derived))
5222         return Error(E);
5223     }
5224     const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass();
5225     if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl()))
5226       return Error(E);
5227     return true;
5228   }
5229
5230   case CK_DerivedToBaseMemberPointer:
5231     if (!Visit(E->getSubExpr()))
5232       return false;
5233     for (CastExpr::path_const_iterator PathI = E->path_begin(),
5234          PathE = E->path_end(); PathI != PathE; ++PathI) {
5235       assert(!(*PathI)->isVirtual() && "memptr cast through vbase");
5236       const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
5237       if (!Result.castToBase(Base))
5238         return Error(E);
5239     }
5240     return true;
5241   }
5242 }
5243
5244 bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) {
5245   // C++11 [expr.unary.op]p3 has very strict rules on how the address of a
5246   // member can be formed.
5247   return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl());
5248 }
5249
5250 //===----------------------------------------------------------------------===//
5251 // Record Evaluation
5252 //===----------------------------------------------------------------------===//
5253
5254 namespace {
5255   class RecordExprEvaluator
5256   : public ExprEvaluatorBase<RecordExprEvaluator> {
5257     const LValue &This;
5258     APValue &Result;
5259   public:
5260
5261     RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result)
5262       : ExprEvaluatorBaseTy(info), This(This), Result(Result) {}
5263
5264     bool Success(const APValue &V, const Expr *E) {
5265       Result = V;
5266       return true;
5267     }
5268     bool ZeroInitialization(const Expr *E);
5269
5270     bool VisitCallExpr(const CallExpr *E) {
5271       return handleCallExpr(E, Result, &This);
5272     }
5273     bool VisitCastExpr(const CastExpr *E);
5274     bool VisitInitListExpr(const InitListExpr *E);
5275     bool VisitCXXConstructExpr(const CXXConstructExpr *E);
5276     bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E);
5277   };
5278 }
5279
5280 /// Perform zero-initialization on an object of non-union class type.
5281 /// C++11 [dcl.init]p5:
5282 ///  To zero-initialize an object or reference of type T means:
5283 ///    [...]
5284 ///    -- if T is a (possibly cv-qualified) non-union class type,
5285 ///       each non-static data member and each base-class subobject is
5286 ///       zero-initialized
5287 static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E,
5288                                           const RecordDecl *RD,
5289                                           const LValue &This, APValue &Result) {
5290   assert(!RD->isUnion() && "Expected non-union class type");
5291   const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
5292   Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0,
5293                    std::distance(RD->field_begin(), RD->field_end()));
5294
5295   if (RD->isInvalidDecl()) return false;
5296   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
5297
5298   if (CD) {
5299     unsigned Index = 0;
5300     for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(),
5301            End = CD->bases_end(); I != End; ++I, ++Index) {
5302       const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl();
5303       LValue Subobject = This;
5304       if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout))
5305         return false;
5306       if (!HandleClassZeroInitialization(Info, E, Base, Subobject,
5307                                          Result.getStructBase(Index)))
5308         return false;
5309     }
5310   }
5311
5312   for (const auto *I : RD->fields()) {
5313     // -- if T is a reference type, no initialization is performed.
5314     if (I->getType()->isReferenceType())
5315       continue;
5316
5317     LValue Subobject = This;
5318     if (!HandleLValueMember(Info, E, Subobject, I, &Layout))
5319       return false;
5320
5321     ImplicitValueInitExpr VIE(I->getType());
5322     if (!EvaluateInPlace(
5323           Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE))
5324       return false;
5325   }
5326
5327   return true;
5328 }
5329
5330 bool RecordExprEvaluator::ZeroInitialization(const Expr *E) {
5331   const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
5332   if (RD->isInvalidDecl()) return false;
5333   if (RD->isUnion()) {
5334     // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the
5335     // object's first non-static named data member is zero-initialized
5336     RecordDecl::field_iterator I = RD->field_begin();
5337     if (I == RD->field_end()) {
5338       Result = APValue((const FieldDecl*)nullptr);
5339       return true;
5340     }
5341
5342     LValue Subobject = This;
5343     if (!HandleLValueMember(Info, E, Subobject, *I))
5344       return false;
5345     Result = APValue(*I);
5346     ImplicitValueInitExpr VIE(I->getType());
5347     return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE);
5348   }
5349
5350   if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) {
5351     Info.Diag(E, diag::note_constexpr_virtual_base) << RD;
5352     return false;
5353   }
5354
5355   return HandleClassZeroInitialization(Info, E, RD, This, Result);
5356 }
5357
5358 bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) {
5359   switch (E->getCastKind()) {
5360   default:
5361     return ExprEvaluatorBaseTy::VisitCastExpr(E);
5362
5363   case CK_ConstructorConversion:
5364     return Visit(E->getSubExpr());
5365
5366   case CK_DerivedToBase:
5367   case CK_UncheckedDerivedToBase: {
5368     APValue DerivedObject;
5369     if (!Evaluate(DerivedObject, Info, E->getSubExpr()))
5370       return false;
5371     if (!DerivedObject.isStruct())
5372       return Error(E->getSubExpr());
5373
5374     // Derived-to-base rvalue conversion: just slice off the derived part.
5375     APValue *Value = &DerivedObject;
5376     const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl();
5377     for (CastExpr::path_const_iterator PathI = E->path_begin(),
5378          PathE = E->path_end(); PathI != PathE; ++PathI) {
5379       assert(!(*PathI)->isVirtual() && "record rvalue with virtual base");
5380       const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl();
5381       Value = &Value->getStructBase(getBaseIndex(RD, Base));
5382       RD = Base;
5383     }
5384     Result = *Value;
5385     return true;
5386   }
5387   }
5388 }
5389
5390 bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
5391   const RecordDecl *RD = E->getType()->castAs<RecordType>()->getDecl();
5392   if (RD->isInvalidDecl()) return false;
5393   const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD);
5394
5395   if (RD->isUnion()) {
5396     const FieldDecl *Field = E->getInitializedFieldInUnion();
5397     Result = APValue(Field);
5398     if (!Field)
5399       return true;
5400
5401     // If the initializer list for a union does not contain any elements, the
5402     // first element of the union is value-initialized.
5403     // FIXME: The element should be initialized from an initializer list.
5404     //        Is this difference ever observable for initializer lists which
5405     //        we don't build?
5406     ImplicitValueInitExpr VIE(Field->getType());
5407     const Expr *InitExpr = E->getNumInits() ? E->getInit(0) : &VIE;
5408
5409     LValue Subobject = This;
5410     if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout))
5411       return false;
5412
5413     // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
5414     ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
5415                                   isa<CXXDefaultInitExpr>(InitExpr));
5416
5417     return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr);
5418   }
5419
5420   assert((!isa<CXXRecordDecl>(RD) || !cast<CXXRecordDecl>(RD)->getNumBases()) &&
5421          "initializer list for class with base classes");
5422   Result = APValue(APValue::UninitStruct(), 0,
5423                    std::distance(RD->field_begin(), RD->field_end()));
5424   unsigned ElementNo = 0;
5425   bool Success = true;
5426   for (const auto *Field : RD->fields()) {
5427     // Anonymous bit-fields are not considered members of the class for
5428     // purposes of aggregate initialization.
5429     if (Field->isUnnamedBitfield())
5430       continue;
5431
5432     LValue Subobject = This;
5433
5434     bool HaveInit = ElementNo < E->getNumInits();
5435
5436     // FIXME: Diagnostics here should point to the end of the initializer
5437     // list, not the start.
5438     if (!HandleLValueMember(Info, HaveInit ? E->getInit(ElementNo) : E,
5439                             Subobject, Field, &Layout))
5440       return false;
5441
5442     // Perform an implicit value-initialization for members beyond the end of
5443     // the initializer list.
5444     ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType());
5445     const Expr *Init = HaveInit ? E->getInit(ElementNo++) : &VIE;
5446
5447     // Temporarily override This, in case there's a CXXDefaultInitExpr in here.
5448     ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This,
5449                                   isa<CXXDefaultInitExpr>(Init));
5450
5451     APValue &FieldVal = Result.getStructField(Field->getFieldIndex());
5452     if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) ||
5453         (Field->isBitField() && !truncateBitfieldValue(Info, Init,
5454                                                        FieldVal, Field))) {
5455       if (!Info.keepEvaluatingAfterFailure())
5456         return false;
5457       Success = false;
5458     }
5459   }
5460
5461   return Success;
5462 }
5463
5464 bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
5465   const CXXConstructorDecl *FD = E->getConstructor();
5466   if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false;
5467
5468   bool ZeroInit = E->requiresZeroInitialization();
5469   if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
5470     // If we've already performed zero-initialization, we're already done.
5471     if (!Result.isUninit())
5472       return true;
5473
5474     // We can get here in two different ways:
5475     //  1) We're performing value-initialization, and should zero-initialize
5476     //     the object, or
5477     //  2) We're performing default-initialization of an object with a trivial
5478     //     constexpr default constructor, in which case we should start the
5479     //     lifetimes of all the base subobjects (there can be no data member
5480     //     subobjects in this case) per [basic.life]p1.
5481     // Either way, ZeroInitialization is appropriate.
5482     return ZeroInitialization(E);
5483   }
5484
5485   const FunctionDecl *Definition = nullptr;
5486   FD->getBody(Definition);
5487
5488   if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
5489     return false;
5490
5491   // Avoid materializing a temporary for an elidable copy/move constructor.
5492   if (E->isElidable() && !ZeroInit)
5493     if (const MaterializeTemporaryExpr *ME
5494           = dyn_cast<MaterializeTemporaryExpr>(E->getArg(0)))
5495       return Visit(ME->GetTemporaryExpr());
5496
5497   if (ZeroInit && !ZeroInitialization(E))
5498     return false;
5499
5500   auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
5501   return HandleConstructorCall(E->getExprLoc(), This, Args,
5502                                cast<CXXConstructorDecl>(Definition), Info,
5503                                Result);
5504 }
5505
5506 bool RecordExprEvaluator::VisitCXXStdInitializerListExpr(
5507     const CXXStdInitializerListExpr *E) {
5508   const ConstantArrayType *ArrayType =
5509       Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
5510
5511   LValue Array;
5512   if (!EvaluateLValue(E->getSubExpr(), Array, Info))
5513     return false;
5514
5515   // Get a pointer to the first element of the array.
5516   Array.addArray(Info, E, ArrayType);
5517
5518   // FIXME: Perform the checks on the field types in SemaInit.
5519   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
5520   RecordDecl::field_iterator Field = Record->field_begin();
5521   if (Field == Record->field_end())
5522     return Error(E);
5523
5524   // Start pointer.
5525   if (!Field->getType()->isPointerType() ||
5526       !Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
5527                             ArrayType->getElementType()))
5528     return Error(E);
5529
5530   // FIXME: What if the initializer_list type has base classes, etc?
5531   Result = APValue(APValue::UninitStruct(), 0, 2);
5532   Array.moveInto(Result.getStructField(0));
5533
5534   if (++Field == Record->field_end())
5535     return Error(E);
5536
5537   if (Field->getType()->isPointerType() &&
5538       Info.Ctx.hasSameType(Field->getType()->getPointeeType(),
5539                            ArrayType->getElementType())) {
5540     // End pointer.
5541     if (!HandleLValueArrayAdjustment(Info, E, Array,
5542                                      ArrayType->getElementType(),
5543                                      ArrayType->getSize().getZExtValue()))
5544       return false;
5545     Array.moveInto(Result.getStructField(1));
5546   } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType()))
5547     // Length.
5548     Result.getStructField(1) = APValue(APSInt(ArrayType->getSize()));
5549   else
5550     return Error(E);
5551
5552   if (++Field != Record->field_end())
5553     return Error(E);
5554
5555   return true;
5556 }
5557
5558 static bool EvaluateRecord(const Expr *E, const LValue &This,
5559                            APValue &Result, EvalInfo &Info) {
5560   assert(E->isRValue() && E->getType()->isRecordType() &&
5561          "can't evaluate expression as a record rvalue");
5562   return RecordExprEvaluator(Info, This, Result).Visit(E);
5563 }
5564
5565 //===----------------------------------------------------------------------===//
5566 // Temporary Evaluation
5567 //
5568 // Temporaries are represented in the AST as rvalues, but generally behave like
5569 // lvalues. The full-object of which the temporary is a subobject is implicitly
5570 // materialized so that a reference can bind to it.
5571 //===----------------------------------------------------------------------===//
5572 namespace {
5573 class TemporaryExprEvaluator
5574   : public LValueExprEvaluatorBase<TemporaryExprEvaluator> {
5575 public:
5576   TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) :
5577     LValueExprEvaluatorBaseTy(Info, Result) {}
5578
5579   /// Visit an expression which constructs the value of this temporary.
5580   bool VisitConstructExpr(const Expr *E) {
5581     Result.set(E, Info.CurrentCall->Index);
5582     return EvaluateInPlace(Info.CurrentCall->createTemporary(E, false),
5583                            Info, Result, E);
5584   }
5585
5586   bool VisitCastExpr(const CastExpr *E) {
5587     switch (E->getCastKind()) {
5588     default:
5589       return LValueExprEvaluatorBaseTy::VisitCastExpr(E);
5590
5591     case CK_ConstructorConversion:
5592       return VisitConstructExpr(E->getSubExpr());
5593     }
5594   }
5595   bool VisitInitListExpr(const InitListExpr *E) {
5596     return VisitConstructExpr(E);
5597   }
5598   bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
5599     return VisitConstructExpr(E);
5600   }
5601   bool VisitCallExpr(const CallExpr *E) {
5602     return VisitConstructExpr(E);
5603   }
5604   bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) {
5605     return VisitConstructExpr(E);
5606   }
5607 };
5608 } // end anonymous namespace
5609
5610 /// Evaluate an expression of record type as a temporary.
5611 static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) {
5612   assert(E->isRValue() && E->getType()->isRecordType());
5613   return TemporaryExprEvaluator(Info, Result).Visit(E);
5614 }
5615
5616 //===----------------------------------------------------------------------===//
5617 // Vector Evaluation
5618 //===----------------------------------------------------------------------===//
5619
5620 namespace {
5621   class VectorExprEvaluator
5622   : public ExprEvaluatorBase<VectorExprEvaluator> {
5623     APValue &Result;
5624   public:
5625
5626     VectorExprEvaluator(EvalInfo &info, APValue &Result)
5627       : ExprEvaluatorBaseTy(info), Result(Result) {}
5628
5629     bool Success(ArrayRef<APValue> V, const Expr *E) {
5630       assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements());
5631       // FIXME: remove this APValue copy.
5632       Result = APValue(V.data(), V.size());
5633       return true;
5634     }
5635     bool Success(const APValue &V, const Expr *E) {
5636       assert(V.isVector());
5637       Result = V;
5638       return true;
5639     }
5640     bool ZeroInitialization(const Expr *E);
5641
5642     bool VisitUnaryReal(const UnaryOperator *E)
5643       { return Visit(E->getSubExpr()); }
5644     bool VisitCastExpr(const CastExpr* E);
5645     bool VisitInitListExpr(const InitListExpr *E);
5646     bool VisitUnaryImag(const UnaryOperator *E);
5647     // FIXME: Missing: unary -, unary ~, binary add/sub/mul/div,
5648     //                 binary comparisons, binary and/or/xor,
5649     //                 shufflevector, ExtVectorElementExpr
5650   };
5651 } // end anonymous namespace
5652
5653 static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) {
5654   assert(E->isRValue() && E->getType()->isVectorType() &&"not a vector rvalue");
5655   return VectorExprEvaluator(Info, Result).Visit(E);
5656 }
5657
5658 bool VectorExprEvaluator::VisitCastExpr(const CastExpr *E) {
5659   const VectorType *VTy = E->getType()->castAs<VectorType>();
5660   unsigned NElts = VTy->getNumElements();
5661
5662   const Expr *SE = E->getSubExpr();
5663   QualType SETy = SE->getType();
5664
5665   switch (E->getCastKind()) {
5666   case CK_VectorSplat: {
5667     APValue Val = APValue();
5668     if (SETy->isIntegerType()) {
5669       APSInt IntResult;
5670       if (!EvaluateInteger(SE, IntResult, Info))
5671         return false;
5672       Val = APValue(std::move(IntResult));
5673     } else if (SETy->isRealFloatingType()) {
5674       APFloat FloatResult(0.0);
5675       if (!EvaluateFloat(SE, FloatResult, Info))
5676         return false;
5677       Val = APValue(std::move(FloatResult));
5678     } else {
5679       return Error(E);
5680     }
5681
5682     // Splat and create vector APValue.
5683     SmallVector<APValue, 4> Elts(NElts, Val);
5684     return Success(Elts, E);
5685   }
5686   case CK_BitCast: {
5687     // Evaluate the operand into an APInt we can extract from.
5688     llvm::APInt SValInt;
5689     if (!EvalAndBitcastToAPInt(Info, SE, SValInt))
5690       return false;
5691     // Extract the elements
5692     QualType EltTy = VTy->getElementType();
5693     unsigned EltSize = Info.Ctx.getTypeSize(EltTy);
5694     bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian();
5695     SmallVector<APValue, 4> Elts;
5696     if (EltTy->isRealFloatingType()) {
5697       const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(EltTy);
5698       unsigned FloatEltSize = EltSize;
5699       if (&Sem == &APFloat::x87DoubleExtended)
5700         FloatEltSize = 80;
5701       for (unsigned i = 0; i < NElts; i++) {
5702         llvm::APInt Elt;
5703         if (BigEndian)
5704           Elt = SValInt.rotl(i*EltSize+FloatEltSize).trunc(FloatEltSize);
5705         else
5706           Elt = SValInt.rotr(i*EltSize).trunc(FloatEltSize);
5707         Elts.push_back(APValue(APFloat(Sem, Elt)));
5708       }
5709     } else if (EltTy->isIntegerType()) {
5710       for (unsigned i = 0; i < NElts; i++) {
5711         llvm::APInt Elt;
5712         if (BigEndian)
5713           Elt = SValInt.rotl(i*EltSize+EltSize).zextOrTrunc(EltSize);
5714         else
5715           Elt = SValInt.rotr(i*EltSize).zextOrTrunc(EltSize);
5716         Elts.push_back(APValue(APSInt(Elt, EltTy->isSignedIntegerType())));
5717       }
5718     } else {
5719       return Error(E);
5720     }
5721     return Success(Elts, E);
5722   }
5723   default:
5724     return ExprEvaluatorBaseTy::VisitCastExpr(E);
5725   }
5726 }
5727
5728 bool
5729 VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
5730   const VectorType *VT = E->getType()->castAs<VectorType>();
5731   unsigned NumInits = E->getNumInits();
5732   unsigned NumElements = VT->getNumElements();
5733
5734   QualType EltTy = VT->getElementType();
5735   SmallVector<APValue, 4> Elements;
5736
5737   // The number of initializers can be less than the number of
5738   // vector elements. For OpenCL, this can be due to nested vector
5739   // initialization. For GCC compatibility, missing trailing elements 
5740   // should be initialized with zeroes.
5741   unsigned CountInits = 0, CountElts = 0;
5742   while (CountElts < NumElements) {
5743     // Handle nested vector initialization.
5744     if (CountInits < NumInits 
5745         && E->getInit(CountInits)->getType()->isVectorType()) {
5746       APValue v;
5747       if (!EvaluateVector(E->getInit(CountInits), v, Info))
5748         return Error(E);
5749       unsigned vlen = v.getVectorLength();
5750       for (unsigned j = 0; j < vlen; j++) 
5751         Elements.push_back(v.getVectorElt(j));
5752       CountElts += vlen;
5753     } else if (EltTy->isIntegerType()) {
5754       llvm::APSInt sInt(32);
5755       if (CountInits < NumInits) {
5756         if (!EvaluateInteger(E->getInit(CountInits), sInt, Info))
5757           return false;
5758       } else // trailing integer zero.
5759         sInt = Info.Ctx.MakeIntValue(0, EltTy);
5760       Elements.push_back(APValue(sInt));
5761       CountElts++;
5762     } else {
5763       llvm::APFloat f(0.0);
5764       if (CountInits < NumInits) {
5765         if (!EvaluateFloat(E->getInit(CountInits), f, Info))
5766           return false;
5767       } else // trailing float zero.
5768         f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy));
5769       Elements.push_back(APValue(f));
5770       CountElts++;
5771     }
5772     CountInits++;
5773   }
5774   return Success(Elements, E);
5775 }
5776
5777 bool
5778 VectorExprEvaluator::ZeroInitialization(const Expr *E) {
5779   const VectorType *VT = E->getType()->getAs<VectorType>();
5780   QualType EltTy = VT->getElementType();
5781   APValue ZeroElement;
5782   if (EltTy->isIntegerType())
5783     ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy));
5784   else
5785     ZeroElement =
5786         APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)));
5787
5788   SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement);
5789   return Success(Elements, E);
5790 }
5791
5792 bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
5793   VisitIgnoredValue(E->getSubExpr());
5794   return ZeroInitialization(E);
5795 }
5796
5797 //===----------------------------------------------------------------------===//
5798 // Array Evaluation
5799 //===----------------------------------------------------------------------===//
5800
5801 namespace {
5802   class ArrayExprEvaluator
5803   : public ExprEvaluatorBase<ArrayExprEvaluator> {
5804     const LValue &This;
5805     APValue &Result;
5806   public:
5807
5808     ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result)
5809       : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {}
5810
5811     bool Success(const APValue &V, const Expr *E) {
5812       assert((V.isArray() || V.isLValue()) &&
5813              "expected array or string literal");
5814       Result = V;
5815       return true;
5816     }
5817
5818     bool ZeroInitialization(const Expr *E) {
5819       const ConstantArrayType *CAT =
5820           Info.Ctx.getAsConstantArrayType(E->getType());
5821       if (!CAT)
5822         return Error(E);
5823
5824       Result = APValue(APValue::UninitArray(), 0,
5825                        CAT->getSize().getZExtValue());
5826       if (!Result.hasArrayFiller()) return true;
5827
5828       // Zero-initialize all elements.
5829       LValue Subobject = This;
5830       Subobject.addArray(Info, E, CAT);
5831       ImplicitValueInitExpr VIE(CAT->getElementType());
5832       return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE);
5833     }
5834
5835     bool VisitCallExpr(const CallExpr *E) {
5836       return handleCallExpr(E, Result, &This);
5837     }
5838     bool VisitInitListExpr(const InitListExpr *E);
5839     bool VisitCXXConstructExpr(const CXXConstructExpr *E);
5840     bool VisitCXXConstructExpr(const CXXConstructExpr *E,
5841                                const LValue &Subobject,
5842                                APValue *Value, QualType Type);
5843   };
5844 } // end anonymous namespace
5845
5846 static bool EvaluateArray(const Expr *E, const LValue &This,
5847                           APValue &Result, EvalInfo &Info) {
5848   assert(E->isRValue() && E->getType()->isArrayType() && "not an array rvalue");
5849   return ArrayExprEvaluator(Info, This, Result).Visit(E);
5850 }
5851
5852 bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
5853   const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(E->getType());
5854   if (!CAT)
5855     return Error(E);
5856
5857   // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...]
5858   // an appropriately-typed string literal enclosed in braces.
5859   if (E->isStringLiteralInit()) {
5860     LValue LV;
5861     if (!EvaluateLValue(E->getInit(0), LV, Info))
5862       return false;
5863     APValue Val;
5864     LV.moveInto(Val);
5865     return Success(Val, E);
5866   }
5867
5868   bool Success = true;
5869
5870   assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) &&
5871          "zero-initialized array shouldn't have any initialized elts");
5872   APValue Filler;
5873   if (Result.isArray() && Result.hasArrayFiller())
5874     Filler = Result.getArrayFiller();
5875
5876   unsigned NumEltsToInit = E->getNumInits();
5877   unsigned NumElts = CAT->getSize().getZExtValue();
5878   const Expr *FillerExpr = E->hasArrayFiller() ? E->getArrayFiller() : nullptr;
5879
5880   // If the initializer might depend on the array index, run it for each
5881   // array element. For now, just whitelist non-class value-initialization.
5882   if (NumEltsToInit != NumElts && !isa<ImplicitValueInitExpr>(FillerExpr))
5883     NumEltsToInit = NumElts;
5884
5885   Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts);
5886
5887   // If the array was previously zero-initialized, preserve the
5888   // zero-initialized values.
5889   if (!Filler.isUninit()) {
5890     for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I)
5891       Result.getArrayInitializedElt(I) = Filler;
5892     if (Result.hasArrayFiller())
5893       Result.getArrayFiller() = Filler;
5894   }
5895
5896   LValue Subobject = This;
5897   Subobject.addArray(Info, E, CAT);
5898   for (unsigned Index = 0; Index != NumEltsToInit; ++Index) {
5899     const Expr *Init =
5900         Index < E->getNumInits() ? E->getInit(Index) : FillerExpr;
5901     if (!EvaluateInPlace(Result.getArrayInitializedElt(Index),
5902                          Info, Subobject, Init) ||
5903         !HandleLValueArrayAdjustment(Info, Init, Subobject,
5904                                      CAT->getElementType(), 1)) {
5905       if (!Info.keepEvaluatingAfterFailure())
5906         return false;
5907       Success = false;
5908     }
5909   }
5910
5911   if (!Result.hasArrayFiller())
5912     return Success;
5913
5914   // If we get here, we have a trivial filler, which we can just evaluate
5915   // once and splat over the rest of the array elements.
5916   assert(FillerExpr && "no array filler for incomplete init list");
5917   return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject,
5918                          FillerExpr) && Success;
5919 }
5920
5921 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) {
5922   return VisitCXXConstructExpr(E, This, &Result, E->getType());
5923 }
5924
5925 bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E,
5926                                                const LValue &Subobject,
5927                                                APValue *Value,
5928                                                QualType Type) {
5929   bool HadZeroInit = !Value->isUninit();
5930
5931   if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) {
5932     unsigned N = CAT->getSize().getZExtValue();
5933
5934     // Preserve the array filler if we had prior zero-initialization.
5935     APValue Filler =
5936       HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller()
5937                                              : APValue();
5938
5939     *Value = APValue(APValue::UninitArray(), N, N);
5940
5941     if (HadZeroInit)
5942       for (unsigned I = 0; I != N; ++I)
5943         Value->getArrayInitializedElt(I) = Filler;
5944
5945     // Initialize the elements.
5946     LValue ArrayElt = Subobject;
5947     ArrayElt.addArray(Info, E, CAT);
5948     for (unsigned I = 0; I != N; ++I)
5949       if (!VisitCXXConstructExpr(E, ArrayElt, &Value->getArrayInitializedElt(I),
5950                                  CAT->getElementType()) ||
5951           !HandleLValueArrayAdjustment(Info, E, ArrayElt,
5952                                        CAT->getElementType(), 1))
5953         return false;
5954
5955     return true;
5956   }
5957
5958   if (!Type->isRecordType())
5959     return Error(E);
5960
5961   const CXXConstructorDecl *FD = E->getConstructor();
5962
5963   bool ZeroInit = E->requiresZeroInitialization();
5964   if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) {
5965     if (HadZeroInit)
5966       return true;
5967
5968     // See RecordExprEvaluator::VisitCXXConstructExpr for explanation.
5969     ImplicitValueInitExpr VIE(Type);
5970     return EvaluateInPlace(*Value, Info, Subobject, &VIE);
5971   }
5972
5973   const FunctionDecl *Definition = nullptr;
5974   FD->getBody(Definition);
5975
5976   if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition))
5977     return false;
5978
5979   if (ZeroInit && !HadZeroInit) {
5980     ImplicitValueInitExpr VIE(Type);
5981     if (!EvaluateInPlace(*Value, Info, Subobject, &VIE))
5982       return false;
5983   }
5984
5985   auto Args = llvm::makeArrayRef(E->getArgs(), E->getNumArgs());
5986   return HandleConstructorCall(E->getExprLoc(), Subobject, Args,
5987                                cast<CXXConstructorDecl>(Definition),
5988                                Info, *Value);
5989 }
5990
5991 //===----------------------------------------------------------------------===//
5992 // Integer Evaluation
5993 //
5994 // As a GNU extension, we support casting pointers to sufficiently-wide integer
5995 // types and back in constant folding. Integer values are thus represented
5996 // either as an integer-valued APValue, or as an lvalue-valued APValue.
5997 //===----------------------------------------------------------------------===//
5998
5999 namespace {
6000 class IntExprEvaluator
6001   : public ExprEvaluatorBase<IntExprEvaluator> {
6002   APValue &Result;
6003 public:
6004   IntExprEvaluator(EvalInfo &info, APValue &result)
6005     : ExprEvaluatorBaseTy(info), Result(result) {}
6006
6007   bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) {
6008     assert(E->getType()->isIntegralOrEnumerationType() &&
6009            "Invalid evaluation result.");
6010     assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() &&
6011            "Invalid evaluation result.");
6012     assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
6013            "Invalid evaluation result.");
6014     Result = APValue(SI);
6015     return true;
6016   }
6017   bool Success(const llvm::APSInt &SI, const Expr *E) {
6018     return Success(SI, E, Result);
6019   }
6020
6021   bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) {
6022     assert(E->getType()->isIntegralOrEnumerationType() && 
6023            "Invalid evaluation result.");
6024     assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) &&
6025            "Invalid evaluation result.");
6026     Result = APValue(APSInt(I));
6027     Result.getInt().setIsUnsigned(
6028                             E->getType()->isUnsignedIntegerOrEnumerationType());
6029     return true;
6030   }
6031   bool Success(const llvm::APInt &I, const Expr *E) {
6032     return Success(I, E, Result);
6033   }
6034
6035   bool Success(uint64_t Value, const Expr *E, APValue &Result) {
6036     assert(E->getType()->isIntegralOrEnumerationType() && 
6037            "Invalid evaluation result.");
6038     Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType()));
6039     return true;
6040   }
6041   bool Success(uint64_t Value, const Expr *E) {
6042     return Success(Value, E, Result);
6043   }
6044
6045   bool Success(CharUnits Size, const Expr *E) {
6046     return Success(Size.getQuantity(), E);
6047   }
6048
6049   bool Success(const APValue &V, const Expr *E) {
6050     if (V.isLValue() || V.isAddrLabelDiff()) {
6051       Result = V;
6052       return true;
6053     }
6054     return Success(V.getInt(), E);
6055   }
6056
6057   bool ZeroInitialization(const Expr *E) { return Success(0, E); }
6058
6059   //===--------------------------------------------------------------------===//
6060   //                            Visitor Methods
6061   //===--------------------------------------------------------------------===//
6062
6063   bool VisitIntegerLiteral(const IntegerLiteral *E) {
6064     return Success(E->getValue(), E);
6065   }
6066   bool VisitCharacterLiteral(const CharacterLiteral *E) {
6067     return Success(E->getValue(), E);
6068   }
6069
6070   bool CheckReferencedDecl(const Expr *E, const Decl *D);
6071   bool VisitDeclRefExpr(const DeclRefExpr *E) {
6072     if (CheckReferencedDecl(E, E->getDecl()))
6073       return true;
6074
6075     return ExprEvaluatorBaseTy::VisitDeclRefExpr(E);
6076   }
6077   bool VisitMemberExpr(const MemberExpr *E) {
6078     if (CheckReferencedDecl(E, E->getMemberDecl())) {
6079       VisitIgnoredValue(E->getBase());
6080       return true;
6081     }
6082
6083     return ExprEvaluatorBaseTy::VisitMemberExpr(E);
6084   }
6085
6086   bool VisitCallExpr(const CallExpr *E);
6087   bool VisitBinaryOperator(const BinaryOperator *E);
6088   bool VisitOffsetOfExpr(const OffsetOfExpr *E);
6089   bool VisitUnaryOperator(const UnaryOperator *E);
6090
6091   bool VisitCastExpr(const CastExpr* E);
6092   bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
6093
6094   bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
6095     return Success(E->getValue(), E);
6096   }
6097
6098   bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
6099     return Success(E->getValue(), E);
6100   }
6101     
6102   // Note, GNU defines __null as an integer, not a pointer.
6103   bool VisitGNUNullExpr(const GNUNullExpr *E) {
6104     return ZeroInitialization(E);
6105   }
6106
6107   bool VisitTypeTraitExpr(const TypeTraitExpr *E) {
6108     return Success(E->getValue(), E);
6109   }
6110
6111   bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
6112     return Success(E->getValue(), E);
6113   }
6114
6115   bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
6116     return Success(E->getValue(), E);
6117   }
6118
6119   bool VisitUnaryReal(const UnaryOperator *E);
6120   bool VisitUnaryImag(const UnaryOperator *E);
6121
6122   bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E);
6123   bool VisitSizeOfPackExpr(const SizeOfPackExpr *E);
6124
6125 private:
6126   bool TryEvaluateBuiltinObjectSize(const CallExpr *E, unsigned Type);
6127   // FIXME: Missing: array subscript of vector, member of vector
6128 };
6129 } // end anonymous namespace
6130
6131 /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and
6132 /// produce either the integer value or a pointer.
6133 ///
6134 /// GCC has a heinous extension which folds casts between pointer types and
6135 /// pointer-sized integral types. We support this by allowing the evaluation of
6136 /// an integer rvalue to produce a pointer (represented as an lvalue) instead.
6137 /// Some simple arithmetic on such values is supported (they are treated much
6138 /// like char*).
6139 static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result,
6140                                     EvalInfo &Info) {
6141   assert(E->isRValue() && E->getType()->isIntegralOrEnumerationType());
6142   return IntExprEvaluator(Info, Result).Visit(E);
6143 }
6144
6145 static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) {
6146   APValue Val;
6147   if (!EvaluateIntegerOrLValue(E, Val, Info))
6148     return false;
6149   if (!Val.isInt()) {
6150     // FIXME: It would be better to produce the diagnostic for casting
6151     //        a pointer to an integer.
6152     Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
6153     return false;
6154   }
6155   Result = Val.getInt();
6156   return true;
6157 }
6158
6159 /// Check whether the given declaration can be directly converted to an integral
6160 /// rvalue. If not, no diagnostic is produced; there are other things we can
6161 /// try.
6162 bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) {
6163   // Enums are integer constant exprs.
6164   if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) {
6165     // Check for signedness/width mismatches between E type and ECD value.
6166     bool SameSign = (ECD->getInitVal().isSigned()
6167                      == E->getType()->isSignedIntegerOrEnumerationType());
6168     bool SameWidth = (ECD->getInitVal().getBitWidth()
6169                       == Info.Ctx.getIntWidth(E->getType()));
6170     if (SameSign && SameWidth)
6171       return Success(ECD->getInitVal(), E);
6172     else {
6173       // Get rid of mismatch (otherwise Success assertions will fail)
6174       // by computing a new value matching the type of E.
6175       llvm::APSInt Val = ECD->getInitVal();
6176       if (!SameSign)
6177         Val.setIsSigned(!ECD->getInitVal().isSigned());
6178       if (!SameWidth)
6179         Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType()));
6180       return Success(Val, E);
6181     }
6182   }
6183   return false;
6184 }
6185
6186 /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way
6187 /// as GCC.
6188 static int EvaluateBuiltinClassifyType(const CallExpr *E) {
6189   // The following enum mimics the values returned by GCC.
6190   // FIXME: Does GCC differ between lvalue and rvalue references here?
6191   enum gcc_type_class {
6192     no_type_class = -1,
6193     void_type_class, integer_type_class, char_type_class,
6194     enumeral_type_class, boolean_type_class,
6195     pointer_type_class, reference_type_class, offset_type_class,
6196     real_type_class, complex_type_class,
6197     function_type_class, method_type_class,
6198     record_type_class, union_type_class,
6199     array_type_class, string_type_class,
6200     lang_type_class
6201   };
6202
6203   // If no argument was supplied, default to "no_type_class". This isn't
6204   // ideal, however it is what gcc does.
6205   if (E->getNumArgs() == 0)
6206     return no_type_class;
6207
6208   QualType ArgTy = E->getArg(0)->getType();
6209   if (ArgTy->isVoidType())
6210     return void_type_class;
6211   else if (ArgTy->isEnumeralType())
6212     return enumeral_type_class;
6213   else if (ArgTy->isBooleanType())
6214     return boolean_type_class;
6215   else if (ArgTy->isCharType())
6216     return string_type_class; // gcc doesn't appear to use char_type_class
6217   else if (ArgTy->isIntegerType())
6218     return integer_type_class;
6219   else if (ArgTy->isPointerType())
6220     return pointer_type_class;
6221   else if (ArgTy->isReferenceType())
6222     return reference_type_class;
6223   else if (ArgTy->isRealType())
6224     return real_type_class;
6225   else if (ArgTy->isComplexType())
6226     return complex_type_class;
6227   else if (ArgTy->isFunctionType())
6228     return function_type_class;
6229   else if (ArgTy->isStructureOrClassType())
6230     return record_type_class;
6231   else if (ArgTy->isUnionType())
6232     return union_type_class;
6233   else if (ArgTy->isArrayType())
6234     return array_type_class;
6235   else if (ArgTy->isUnionType())
6236     return union_type_class;
6237   else  // FIXME: offset_type_class, method_type_class, & lang_type_class?
6238     llvm_unreachable("CallExpr::isBuiltinClassifyType(): unimplemented type");
6239 }
6240
6241 /// EvaluateBuiltinConstantPForLValue - Determine the result of
6242 /// __builtin_constant_p when applied to the given lvalue.
6243 ///
6244 /// An lvalue is only "constant" if it is a pointer or reference to the first
6245 /// character of a string literal.
6246 template<typename LValue>
6247 static bool EvaluateBuiltinConstantPForLValue(const LValue &LV) {
6248   const Expr *E = LV.getLValueBase().template dyn_cast<const Expr*>();
6249   return E && isa<StringLiteral>(E) && LV.getLValueOffset().isZero();
6250 }
6251
6252 /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to
6253 /// GCC as we can manage.
6254 static bool EvaluateBuiltinConstantP(ASTContext &Ctx, const Expr *Arg) {
6255   QualType ArgType = Arg->getType();
6256
6257   // __builtin_constant_p always has one operand. The rules which gcc follows
6258   // are not precisely documented, but are as follows:
6259   //
6260   //  - If the operand is of integral, floating, complex or enumeration type,
6261   //    and can be folded to a known value of that type, it returns 1.
6262   //  - If the operand and can be folded to a pointer to the first character
6263   //    of a string literal (or such a pointer cast to an integral type), it
6264   //    returns 1.
6265   //
6266   // Otherwise, it returns 0.
6267   //
6268   // FIXME: GCC also intends to return 1 for literals of aggregate types, but
6269   // its support for this does not currently work.
6270   if (ArgType->isIntegralOrEnumerationType()) {
6271     Expr::EvalResult Result;
6272     if (!Arg->EvaluateAsRValue(Result, Ctx) || Result.HasSideEffects)
6273       return false;
6274
6275     APValue &V = Result.Val;
6276     if (V.getKind() == APValue::Int)
6277       return true;
6278     if (V.getKind() == APValue::LValue)
6279       return EvaluateBuiltinConstantPForLValue(V);
6280   } else if (ArgType->isFloatingType() || ArgType->isAnyComplexType()) {
6281     return Arg->isEvaluatable(Ctx);
6282   } else if (ArgType->isPointerType() || Arg->isGLValue()) {
6283     LValue LV;
6284     Expr::EvalStatus Status;
6285     EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
6286     if ((Arg->isGLValue() ? EvaluateLValue(Arg, LV, Info)
6287                           : EvaluatePointer(Arg, LV, Info)) &&
6288         !Status.HasSideEffects)
6289       return EvaluateBuiltinConstantPForLValue(LV);
6290   }
6291
6292   // Anything else isn't considered to be sufficiently constant.
6293   return false;
6294 }
6295
6296 /// Retrieves the "underlying object type" of the given expression,
6297 /// as used by __builtin_object_size.
6298 static QualType getObjectType(APValue::LValueBase B) {
6299   if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) {
6300     if (const VarDecl *VD = dyn_cast<VarDecl>(D))
6301       return VD->getType();
6302   } else if (const Expr *E = B.get<const Expr*>()) {
6303     if (isa<CompoundLiteralExpr>(E))
6304       return E->getType();
6305   }
6306
6307   return QualType();
6308 }
6309
6310 /// A more selective version of E->IgnoreParenCasts for
6311 /// TryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only
6312 /// to change the type of E.
6313 /// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo`
6314 ///
6315 /// Always returns an RValue with a pointer representation.
6316 static const Expr *ignorePointerCastsAndParens(const Expr *E) {
6317   assert(E->isRValue() && E->getType()->hasPointerRepresentation());
6318
6319   auto *NoParens = E->IgnoreParens();
6320   auto *Cast = dyn_cast<CastExpr>(NoParens);
6321   if (Cast == nullptr)
6322     return NoParens;
6323
6324   // We only conservatively allow a few kinds of casts, because this code is
6325   // inherently a simple solution that seeks to support the common case.
6326   auto CastKind = Cast->getCastKind();
6327   if (CastKind != CK_NoOp && CastKind != CK_BitCast &&
6328       CastKind != CK_AddressSpaceConversion)
6329     return NoParens;
6330
6331   auto *SubExpr = Cast->getSubExpr();
6332   if (!SubExpr->getType()->hasPointerRepresentation() || !SubExpr->isRValue())
6333     return NoParens;
6334   return ignorePointerCastsAndParens(SubExpr);
6335 }
6336
6337 /// Checks to see if the given LValue's Designator is at the end of the LValue's
6338 /// record layout. e.g.
6339 ///   struct { struct { int a, b; } fst, snd; } obj;
6340 ///   obj.fst   // no
6341 ///   obj.snd   // yes
6342 ///   obj.fst.a // no
6343 ///   obj.fst.b // no
6344 ///   obj.snd.a // no
6345 ///   obj.snd.b // yes
6346 ///
6347 /// Please note: this function is specialized for how __builtin_object_size
6348 /// views "objects".
6349 static bool isDesignatorAtObjectEnd(const ASTContext &Ctx, const LValue &LVal) {
6350   assert(!LVal.Designator.Invalid);
6351
6352   auto IsLastFieldDecl = [&Ctx](const FieldDecl *FD) {
6353     if (FD->getParent()->isUnion())
6354       return true;
6355     const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(FD->getParent());
6356     return FD->getFieldIndex() + 1 == Layout.getFieldCount();
6357   };
6358
6359   auto &Base = LVal.getLValueBase();
6360   if (auto *ME = dyn_cast_or_null<MemberExpr>(Base.dyn_cast<const Expr *>())) {
6361     if (auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
6362       if (!IsLastFieldDecl(FD))
6363         return false;
6364     } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(ME->getMemberDecl())) {
6365       for (auto *FD : IFD->chain())
6366         if (!IsLastFieldDecl(cast<FieldDecl>(FD)))
6367           return false;
6368     }
6369   }
6370
6371   QualType BaseType = getType(Base);
6372   for (int I = 0, E = LVal.Designator.Entries.size(); I != E; ++I) {
6373     if (BaseType->isArrayType()) {
6374       // Because __builtin_object_size treats arrays as objects, we can ignore
6375       // the index iff this is the last array in the Designator.
6376       if (I + 1 == E)
6377         return true;
6378       auto *CAT = cast<ConstantArrayType>(Ctx.getAsArrayType(BaseType));
6379       uint64_t Index = LVal.Designator.Entries[I].ArrayIndex;
6380       if (Index + 1 != CAT->getSize())
6381         return false;
6382       BaseType = CAT->getElementType();
6383     } else if (BaseType->isAnyComplexType()) {
6384       auto *CT = BaseType->castAs<ComplexType>();
6385       uint64_t Index = LVal.Designator.Entries[I].ArrayIndex;
6386       if (Index != 1)
6387         return false;
6388       BaseType = CT->getElementType();
6389     } else if (auto *FD = getAsField(LVal.Designator.Entries[I])) {
6390       if (!IsLastFieldDecl(FD))
6391         return false;
6392       BaseType = FD->getType();
6393     } else {
6394       assert(getAsBaseClass(LVal.Designator.Entries[I]) != nullptr &&
6395              "Expecting cast to a base class");
6396       return false;
6397     }
6398   }
6399   return true;
6400 }
6401
6402 /// Tests to see if the LValue has a designator (that isn't necessarily valid).
6403 static bool refersToCompleteObject(const LValue &LVal) {
6404   if (LVal.Designator.Invalid || !LVal.Designator.Entries.empty())
6405     return false;
6406
6407   if (!LVal.InvalidBase)
6408     return true;
6409
6410   auto *E = LVal.Base.dyn_cast<const Expr *>();
6411   (void)E;
6412   assert(E != nullptr && isa<MemberExpr>(E));
6413   return false;
6414 }
6415
6416 /// Tries to evaluate the __builtin_object_size for @p E. If successful, returns
6417 /// true and stores the result in @p Size.
6418 ///
6419 /// If @p WasError is non-null, this will report whether the failure to evaluate
6420 /// is to be treated as an Error in IntExprEvaluator.
6421 static bool tryEvaluateBuiltinObjectSize(const Expr *E, unsigned Type,
6422                                          EvalInfo &Info, uint64_t &Size,
6423                                          bool *WasError = nullptr) {
6424   if (WasError != nullptr)
6425     *WasError = false;
6426
6427   auto Error = [&](const Expr *E) {
6428     if (WasError != nullptr)
6429       *WasError = true;
6430     return false;
6431   };
6432
6433   auto Success = [&](uint64_t S, const Expr *E) {
6434     Size = S;
6435     return true;
6436   };
6437
6438   // Determine the denoted object.
6439   LValue Base;
6440   {
6441     // The operand of __builtin_object_size is never evaluated for side-effects.
6442     // If there are any, but we can determine the pointed-to object anyway, then
6443     // ignore the side-effects.
6444     SpeculativeEvaluationRAII SpeculativeEval(Info);
6445     FoldOffsetRAII Fold(Info, Type & 1);
6446
6447     if (E->isGLValue()) {
6448       // It's possible for us to be given GLValues if we're called via
6449       // Expr::tryEvaluateObjectSize.
6450       APValue RVal;
6451       if (!EvaluateAsRValue(Info, E, RVal))
6452         return false;
6453       Base.setFrom(Info.Ctx, RVal);
6454     } else if (!EvaluatePointer(ignorePointerCastsAndParens(E), Base, Info))
6455       return false;
6456   }
6457
6458   CharUnits BaseOffset = Base.getLValueOffset();
6459   // If we point to before the start of the object, there are no accessible
6460   // bytes.
6461   if (BaseOffset.isNegative())
6462     return Success(0, E);
6463
6464   // In the case where we're not dealing with a subobject, we discard the
6465   // subobject bit.
6466   bool SubobjectOnly = (Type & 1) != 0 && !refersToCompleteObject(Base);
6467
6468   // If Type & 1 is 0, we need to be able to statically guarantee that the bytes
6469   // exist. If we can't verify the base, then we can't do that.
6470   //
6471   // As a special case, we produce a valid object size for an unknown object
6472   // with a known designator if Type & 1 is 1. For instance:
6473   //
6474   //   extern struct X { char buff[32]; int a, b, c; } *p;
6475   //   int a = __builtin_object_size(p->buff + 4, 3); // returns 28
6476   //   int b = __builtin_object_size(p->buff + 4, 2); // returns 0, not 40
6477   //
6478   // This matches GCC's behavior.
6479   if (Base.InvalidBase && !SubobjectOnly)
6480     return Error(E);
6481
6482   // If we're not examining only the subobject, then we reset to a complete
6483   // object designator
6484   //
6485   // If Type is 1 and we've lost track of the subobject, just find the complete
6486   // object instead. (If Type is 3, that's not correct behavior and we should
6487   // return 0 instead.)
6488   LValue End = Base;
6489   if (!SubobjectOnly || (End.Designator.Invalid && Type == 1)) {
6490     QualType T = getObjectType(End.getLValueBase());
6491     if (T.isNull())
6492       End.Designator.setInvalid();
6493     else {
6494       End.Designator = SubobjectDesignator(T);
6495       End.Offset = CharUnits::Zero();
6496     }
6497   }
6498
6499   // If it is not possible to determine which objects ptr points to at compile
6500   // time, __builtin_object_size should return (size_t) -1 for type 0 or 1
6501   // and (size_t) 0 for type 2 or 3.
6502   if (End.Designator.Invalid)
6503     return false;
6504
6505   // According to the GCC documentation, we want the size of the subobject
6506   // denoted by the pointer. But that's not quite right -- what we actually
6507   // want is the size of the immediately-enclosing array, if there is one.
6508   int64_t AmountToAdd = 1;
6509   if (End.Designator.MostDerivedIsArrayElement &&
6510       End.Designator.Entries.size() == End.Designator.MostDerivedPathLength) {
6511     // We got a pointer to an array. Step to its end.
6512     AmountToAdd = End.Designator.MostDerivedArraySize -
6513                   End.Designator.Entries.back().ArrayIndex;
6514   } else if (End.Designator.isOnePastTheEnd()) {
6515     // We're already pointing at the end of the object.
6516     AmountToAdd = 0;
6517   }
6518
6519   QualType PointeeType = End.Designator.MostDerivedType;
6520   assert(!PointeeType.isNull());
6521   if (PointeeType->isIncompleteType() || PointeeType->isFunctionType())
6522     return Error(E);
6523
6524   if (!HandleLValueArrayAdjustment(Info, E, End, End.Designator.MostDerivedType,
6525                                    AmountToAdd))
6526     return false;
6527
6528   auto EndOffset = End.getLValueOffset();
6529
6530   // The following is a moderately common idiom in C:
6531   //
6532   // struct Foo { int a; char c[1]; };
6533   // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar));
6534   // strcpy(&F->c[0], Bar);
6535   //
6536   // So, if we see that we're examining a 1-length (or 0-length) array at the
6537   // end of a struct with an unknown base, we give up instead of breaking code
6538   // that behaves this way. Note that we only do this when Type=1, because
6539   // Type=3 is a lower bound, so answering conservatively is fine.
6540   if (End.InvalidBase && SubobjectOnly && Type == 1 &&
6541       End.Designator.Entries.size() == End.Designator.MostDerivedPathLength &&
6542       End.Designator.MostDerivedIsArrayElement &&
6543       End.Designator.MostDerivedArraySize < 2 &&
6544       isDesignatorAtObjectEnd(Info.Ctx, End))
6545     return false;
6546
6547   if (BaseOffset > EndOffset)
6548     return Success(0, E);
6549
6550   return Success((EndOffset - BaseOffset).getQuantity(), E);
6551 }
6552
6553 bool IntExprEvaluator::TryEvaluateBuiltinObjectSize(const CallExpr *E,
6554                                                     unsigned Type) {
6555   uint64_t Size;
6556   bool WasError;
6557   if (::tryEvaluateBuiltinObjectSize(E->getArg(0), Type, Info, Size, &WasError))
6558     return Success(Size, E);
6559   if (WasError)
6560     return Error(E);
6561   return false;
6562 }
6563
6564 bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) {
6565   switch (unsigned BuiltinOp = E->getBuiltinCallee()) {
6566   default:
6567     return ExprEvaluatorBaseTy::VisitCallExpr(E);
6568
6569   case Builtin::BI__builtin_object_size: {
6570     // The type was checked when we built the expression.
6571     unsigned Type =
6572         E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
6573     assert(Type <= 3 && "unexpected type");
6574
6575     if (TryEvaluateBuiltinObjectSize(E, Type))
6576       return true;
6577
6578     if (E->getArg(0)->HasSideEffects(Info.Ctx))
6579       return Success((Type & 2) ? 0 : -1, E);
6580
6581     // Expression had no side effects, but we couldn't statically determine the
6582     // size of the referenced object.
6583     switch (Info.EvalMode) {
6584     case EvalInfo::EM_ConstantExpression:
6585     case EvalInfo::EM_PotentialConstantExpression:
6586     case EvalInfo::EM_ConstantFold:
6587     case EvalInfo::EM_EvaluateForOverflow:
6588     case EvalInfo::EM_IgnoreSideEffects:
6589     case EvalInfo::EM_DesignatorFold:
6590       // Leave it to IR generation.
6591       return Error(E);
6592     case EvalInfo::EM_ConstantExpressionUnevaluated:
6593     case EvalInfo::EM_PotentialConstantExpressionUnevaluated:
6594       // Reduce it to a constant now.
6595       return Success((Type & 2) ? 0 : -1, E);
6596     }
6597   }
6598
6599   case Builtin::BI__builtin_bswap16:
6600   case Builtin::BI__builtin_bswap32:
6601   case Builtin::BI__builtin_bswap64: {
6602     APSInt Val;
6603     if (!EvaluateInteger(E->getArg(0), Val, Info))
6604       return false;
6605
6606     return Success(Val.byteSwap(), E);
6607   }
6608
6609   case Builtin::BI__builtin_classify_type:
6610     return Success(EvaluateBuiltinClassifyType(E), E);
6611
6612   // FIXME: BI__builtin_clrsb
6613   // FIXME: BI__builtin_clrsbl
6614   // FIXME: BI__builtin_clrsbll
6615
6616   case Builtin::BI__builtin_clz:
6617   case Builtin::BI__builtin_clzl:
6618   case Builtin::BI__builtin_clzll:
6619   case Builtin::BI__builtin_clzs: {
6620     APSInt Val;
6621     if (!EvaluateInteger(E->getArg(0), Val, Info))
6622       return false;
6623     if (!Val)
6624       return Error(E);
6625
6626     return Success(Val.countLeadingZeros(), E);
6627   }
6628
6629   case Builtin::BI__builtin_constant_p:
6630     return Success(EvaluateBuiltinConstantP(Info.Ctx, E->getArg(0)), E);
6631
6632   case Builtin::BI__builtin_ctz:
6633   case Builtin::BI__builtin_ctzl:
6634   case Builtin::BI__builtin_ctzll:
6635   case Builtin::BI__builtin_ctzs: {
6636     APSInt Val;
6637     if (!EvaluateInteger(E->getArg(0), Val, Info))
6638       return false;
6639     if (!Val)
6640       return Error(E);
6641
6642     return Success(Val.countTrailingZeros(), E);
6643   }
6644
6645   case Builtin::BI__builtin_eh_return_data_regno: {
6646     int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue();
6647     Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand);
6648     return Success(Operand, E);
6649   }
6650
6651   case Builtin::BI__builtin_expect:
6652     return Visit(E->getArg(0));
6653
6654   case Builtin::BI__builtin_ffs:
6655   case Builtin::BI__builtin_ffsl:
6656   case Builtin::BI__builtin_ffsll: {
6657     APSInt Val;
6658     if (!EvaluateInteger(E->getArg(0), Val, Info))
6659       return false;
6660
6661     unsigned N = Val.countTrailingZeros();
6662     return Success(N == Val.getBitWidth() ? 0 : N + 1, E);
6663   }
6664
6665   case Builtin::BI__builtin_fpclassify: {
6666     APFloat Val(0.0);
6667     if (!EvaluateFloat(E->getArg(5), Val, Info))
6668       return false;
6669     unsigned Arg;
6670     switch (Val.getCategory()) {
6671     case APFloat::fcNaN: Arg = 0; break;
6672     case APFloat::fcInfinity: Arg = 1; break;
6673     case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break;
6674     case APFloat::fcZero: Arg = 4; break;
6675     }
6676     return Visit(E->getArg(Arg));
6677   }
6678
6679   case Builtin::BI__builtin_isinf_sign: {
6680     APFloat Val(0.0);
6681     return EvaluateFloat(E->getArg(0), Val, Info) &&
6682            Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E);
6683   }
6684
6685   case Builtin::BI__builtin_isinf: {
6686     APFloat Val(0.0);
6687     return EvaluateFloat(E->getArg(0), Val, Info) &&
6688            Success(Val.isInfinity() ? 1 : 0, E);
6689   }
6690
6691   case Builtin::BI__builtin_isfinite: {
6692     APFloat Val(0.0);
6693     return EvaluateFloat(E->getArg(0), Val, Info) &&
6694            Success(Val.isFinite() ? 1 : 0, E);
6695   }
6696
6697   case Builtin::BI__builtin_isnan: {
6698     APFloat Val(0.0);
6699     return EvaluateFloat(E->getArg(0), Val, Info) &&
6700            Success(Val.isNaN() ? 1 : 0, E);
6701   }
6702
6703   case Builtin::BI__builtin_isnormal: {
6704     APFloat Val(0.0);
6705     return EvaluateFloat(E->getArg(0), Val, Info) &&
6706            Success(Val.isNormal() ? 1 : 0, E);
6707   }
6708
6709   case Builtin::BI__builtin_parity:
6710   case Builtin::BI__builtin_parityl:
6711   case Builtin::BI__builtin_parityll: {
6712     APSInt Val;
6713     if (!EvaluateInteger(E->getArg(0), Val, Info))
6714       return false;
6715
6716     return Success(Val.countPopulation() % 2, E);
6717   }
6718
6719   case Builtin::BI__builtin_popcount:
6720   case Builtin::BI__builtin_popcountl:
6721   case Builtin::BI__builtin_popcountll: {
6722     APSInt Val;
6723     if (!EvaluateInteger(E->getArg(0), Val, Info))
6724       return false;
6725
6726     return Success(Val.countPopulation(), E);
6727   }
6728
6729   case Builtin::BIstrlen:
6730     // A call to strlen is not a constant expression.
6731     if (Info.getLangOpts().CPlusPlus11)
6732       Info.CCEDiag(E, diag::note_constexpr_invalid_function)
6733         << /*isConstexpr*/0 << /*isConstructor*/0 << "'strlen'";
6734     else
6735       Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr);
6736     // Fall through.
6737   case Builtin::BI__builtin_strlen: {
6738     // As an extension, we support __builtin_strlen() as a constant expression,
6739     // and support folding strlen() to a constant.
6740     LValue String;
6741     if (!EvaluatePointer(E->getArg(0), String, Info))
6742       return false;
6743
6744     // Fast path: if it's a string literal, search the string value.
6745     if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>(
6746             String.getLValueBase().dyn_cast<const Expr *>())) {
6747       // The string literal may have embedded null characters. Find the first
6748       // one and truncate there.
6749       StringRef Str = S->getBytes();
6750       int64_t Off = String.Offset.getQuantity();
6751       if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() &&
6752           S->getCharByteWidth() == 1) {
6753         Str = Str.substr(Off);
6754
6755         StringRef::size_type Pos = Str.find(0);
6756         if (Pos != StringRef::npos)
6757           Str = Str.substr(0, Pos);
6758
6759         return Success(Str.size(), E);
6760       }
6761
6762       // Fall through to slow path to issue appropriate diagnostic.
6763     }
6764
6765     // Slow path: scan the bytes of the string looking for the terminating 0.
6766     QualType CharTy = E->getArg(0)->getType()->getPointeeType();
6767     for (uint64_t Strlen = 0; /**/; ++Strlen) {
6768       APValue Char;
6769       if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) ||
6770           !Char.isInt())
6771         return false;
6772       if (!Char.getInt())
6773         return Success(Strlen, E);
6774       if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1))
6775         return false;
6776     }
6777   }
6778
6779   case Builtin::BI__atomic_always_lock_free:
6780   case Builtin::BI__atomic_is_lock_free:
6781   case Builtin::BI__c11_atomic_is_lock_free: {
6782     APSInt SizeVal;
6783     if (!EvaluateInteger(E->getArg(0), SizeVal, Info))
6784       return false;
6785
6786     // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power
6787     // of two less than the maximum inline atomic width, we know it is
6788     // lock-free.  If the size isn't a power of two, or greater than the
6789     // maximum alignment where we promote atomics, we know it is not lock-free
6790     // (at least not in the sense of atomic_is_lock_free).  Otherwise,
6791     // the answer can only be determined at runtime; for example, 16-byte
6792     // atomics have lock-free implementations on some, but not all,
6793     // x86-64 processors.
6794
6795     // Check power-of-two.
6796     CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue());
6797     if (Size.isPowerOfTwo()) {
6798       // Check against inlining width.
6799       unsigned InlineWidthBits =
6800           Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth();
6801       if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) {
6802         if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free ||
6803             Size == CharUnits::One() ||
6804             E->getArg(1)->isNullPointerConstant(Info.Ctx,
6805                                                 Expr::NPC_NeverValueDependent))
6806           // OK, we will inline appropriately-aligned operations of this size,
6807           // and _Atomic(T) is appropriately-aligned.
6808           return Success(1, E);
6809
6810         QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()->
6811           castAs<PointerType>()->getPointeeType();
6812         if (!PointeeType->isIncompleteType() &&
6813             Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) {
6814           // OK, we will inline operations on this object.
6815           return Success(1, E);
6816         }
6817       }
6818     }
6819
6820     return BuiltinOp == Builtin::BI__atomic_always_lock_free ?
6821         Success(0, E) : Error(E);
6822   }
6823   }
6824 }
6825
6826 static bool HasSameBase(const LValue &A, const LValue &B) {
6827   if (!A.getLValueBase())
6828     return !B.getLValueBase();
6829   if (!B.getLValueBase())
6830     return false;
6831
6832   if (A.getLValueBase().getOpaqueValue() !=
6833       B.getLValueBase().getOpaqueValue()) {
6834     const Decl *ADecl = GetLValueBaseDecl(A);
6835     if (!ADecl)
6836       return false;
6837     const Decl *BDecl = GetLValueBaseDecl(B);
6838     if (!BDecl || ADecl->getCanonicalDecl() != BDecl->getCanonicalDecl())
6839       return false;
6840   }
6841
6842   return IsGlobalLValue(A.getLValueBase()) ||
6843          A.getLValueCallIndex() == B.getLValueCallIndex();
6844 }
6845
6846 /// \brief Determine whether this is a pointer past the end of the complete
6847 /// object referred to by the lvalue.
6848 static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx,
6849                                             const LValue &LV) {
6850   // A null pointer can be viewed as being "past the end" but we don't
6851   // choose to look at it that way here.
6852   if (!LV.getLValueBase())
6853     return false;
6854
6855   // If the designator is valid and refers to a subobject, we're not pointing
6856   // past the end.
6857   if (!LV.getLValueDesignator().Invalid &&
6858       !LV.getLValueDesignator().isOnePastTheEnd())
6859     return false;
6860
6861   // A pointer to an incomplete type might be past-the-end if the type's size is
6862   // zero.  We cannot tell because the type is incomplete.
6863   QualType Ty = getType(LV.getLValueBase());
6864   if (Ty->isIncompleteType())
6865     return true;
6866
6867   // We're a past-the-end pointer if we point to the byte after the object,
6868   // no matter what our type or path is.
6869   auto Size = Ctx.getTypeSizeInChars(Ty);
6870   return LV.getLValueOffset() == Size;
6871 }
6872
6873 namespace {
6874
6875 /// \brief Data recursive integer evaluator of certain binary operators.
6876 ///
6877 /// We use a data recursive algorithm for binary operators so that we are able
6878 /// to handle extreme cases of chained binary operators without causing stack
6879 /// overflow.
6880 class DataRecursiveIntBinOpEvaluator {
6881   struct EvalResult {
6882     APValue Val;
6883     bool Failed;
6884
6885     EvalResult() : Failed(false) { }
6886
6887     void swap(EvalResult &RHS) {
6888       Val.swap(RHS.Val);
6889       Failed = RHS.Failed;
6890       RHS.Failed = false;
6891     }
6892   };
6893
6894   struct Job {
6895     const Expr *E;
6896     EvalResult LHSResult; // meaningful only for binary operator expression.
6897     enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind;
6898
6899     Job() = default;
6900     Job(Job &&J)
6901         : E(J.E), LHSResult(J.LHSResult), Kind(J.Kind),
6902           StoredInfo(J.StoredInfo), OldEvalStatus(J.OldEvalStatus) {
6903       J.StoredInfo = nullptr;
6904     }
6905
6906     void startSpeculativeEval(EvalInfo &Info) {
6907       OldEvalStatus = Info.EvalStatus;
6908       Info.EvalStatus.Diag = nullptr;
6909       StoredInfo = &Info;
6910     }
6911     ~Job() {
6912       if (StoredInfo) {
6913         StoredInfo->EvalStatus = OldEvalStatus;
6914       }
6915     }
6916   private:
6917     EvalInfo *StoredInfo = nullptr; // non-null if status changed.
6918     Expr::EvalStatus OldEvalStatus;
6919   };
6920
6921   SmallVector<Job, 16> Queue;
6922
6923   IntExprEvaluator &IntEval;
6924   EvalInfo &Info;
6925   APValue &FinalResult;
6926
6927 public:
6928   DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result)
6929     : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { }
6930
6931   /// \brief True if \param E is a binary operator that we are going to handle
6932   /// data recursively.
6933   /// We handle binary operators that are comma, logical, or that have operands
6934   /// with integral or enumeration type.
6935   static bool shouldEnqueue(const BinaryOperator *E) {
6936     return E->getOpcode() == BO_Comma ||
6937            E->isLogicalOp() ||
6938            (E->getLHS()->getType()->isIntegralOrEnumerationType() &&
6939             E->getRHS()->getType()->isIntegralOrEnumerationType());
6940   }
6941
6942   bool Traverse(const BinaryOperator *E) {
6943     enqueue(E);
6944     EvalResult PrevResult;
6945     while (!Queue.empty())
6946       process(PrevResult);
6947
6948     if (PrevResult.Failed) return false;
6949
6950     FinalResult.swap(PrevResult.Val);
6951     return true;
6952   }
6953
6954 private:
6955   bool Success(uint64_t Value, const Expr *E, APValue &Result) {
6956     return IntEval.Success(Value, E, Result);
6957   }
6958   bool Success(const APSInt &Value, const Expr *E, APValue &Result) {
6959     return IntEval.Success(Value, E, Result);
6960   }
6961   bool Error(const Expr *E) {
6962     return IntEval.Error(E);
6963   }
6964   bool Error(const Expr *E, diag::kind D) {
6965     return IntEval.Error(E, D);
6966   }
6967
6968   OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) {
6969     return Info.CCEDiag(E, D);
6970   }
6971
6972   // \brief Returns true if visiting the RHS is necessary, false otherwise.
6973   bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
6974                          bool &SuppressRHSDiags);
6975
6976   bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
6977                   const BinaryOperator *E, APValue &Result);
6978
6979   void EvaluateExpr(const Expr *E, EvalResult &Result) {
6980     Result.Failed = !Evaluate(Result.Val, Info, E);
6981     if (Result.Failed)
6982       Result.Val = APValue();
6983   }
6984
6985   void process(EvalResult &Result);
6986
6987   void enqueue(const Expr *E) {
6988     E = E->IgnoreParens();
6989     Queue.resize(Queue.size()+1);
6990     Queue.back().E = E;
6991     Queue.back().Kind = Job::AnyExprKind;
6992   }
6993 };
6994
6995 }
6996
6997 bool DataRecursiveIntBinOpEvaluator::
6998        VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E,
6999                          bool &SuppressRHSDiags) {
7000   if (E->getOpcode() == BO_Comma) {
7001     // Ignore LHS but note if we could not evaluate it.
7002     if (LHSResult.Failed)
7003       return Info.noteSideEffect();
7004     return true;
7005   }
7006
7007   if (E->isLogicalOp()) {
7008     bool LHSAsBool;
7009     if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) {
7010       // We were able to evaluate the LHS, see if we can get away with not
7011       // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
7012       if (LHSAsBool == (E->getOpcode() == BO_LOr)) {
7013         Success(LHSAsBool, E, LHSResult.Val);
7014         return false; // Ignore RHS
7015       }
7016     } else {
7017       LHSResult.Failed = true;
7018
7019       // Since we weren't able to evaluate the left hand side, it
7020       // must have had side effects.
7021       if (!Info.noteSideEffect())
7022         return false;
7023
7024       // We can't evaluate the LHS; however, sometimes the result
7025       // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
7026       // Don't ignore RHS and suppress diagnostics from this arm.
7027       SuppressRHSDiags = true;
7028     }
7029
7030     return true;
7031   }
7032
7033   assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
7034          E->getRHS()->getType()->isIntegralOrEnumerationType());
7035
7036   if (LHSResult.Failed && !Info.keepEvaluatingAfterFailure())
7037     return false; // Ignore RHS;
7038
7039   return true;
7040 }
7041
7042 bool DataRecursiveIntBinOpEvaluator::
7043        VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult,
7044                   const BinaryOperator *E, APValue &Result) {
7045   if (E->getOpcode() == BO_Comma) {
7046     if (RHSResult.Failed)
7047       return false;
7048     Result = RHSResult.Val;
7049     return true;
7050   }
7051   
7052   if (E->isLogicalOp()) {
7053     bool lhsResult, rhsResult;
7054     bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult);
7055     bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult);
7056     
7057     if (LHSIsOK) {
7058       if (RHSIsOK) {
7059         if (E->getOpcode() == BO_LOr)
7060           return Success(lhsResult || rhsResult, E, Result);
7061         else
7062           return Success(lhsResult && rhsResult, E, Result);
7063       }
7064     } else {
7065       if (RHSIsOK) {
7066         // We can't evaluate the LHS; however, sometimes the result
7067         // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
7068         if (rhsResult == (E->getOpcode() == BO_LOr))
7069           return Success(rhsResult, E, Result);
7070       }
7071     }
7072     
7073     return false;
7074   }
7075   
7076   assert(E->getLHS()->getType()->isIntegralOrEnumerationType() &&
7077          E->getRHS()->getType()->isIntegralOrEnumerationType());
7078   
7079   if (LHSResult.Failed || RHSResult.Failed)
7080     return false;
7081   
7082   const APValue &LHSVal = LHSResult.Val;
7083   const APValue &RHSVal = RHSResult.Val;
7084   
7085   // Handle cases like (unsigned long)&a + 4.
7086   if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) {
7087     Result = LHSVal;
7088     CharUnits AdditionalOffset =
7089         CharUnits::fromQuantity(RHSVal.getInt().getZExtValue());
7090     if (E->getOpcode() == BO_Add)
7091       Result.getLValueOffset() += AdditionalOffset;
7092     else
7093       Result.getLValueOffset() -= AdditionalOffset;
7094     return true;
7095   }
7096   
7097   // Handle cases like 4 + (unsigned long)&a
7098   if (E->getOpcode() == BO_Add &&
7099       RHSVal.isLValue() && LHSVal.isInt()) {
7100     Result = RHSVal;
7101     Result.getLValueOffset() +=
7102         CharUnits::fromQuantity(LHSVal.getInt().getZExtValue());
7103     return true;
7104   }
7105   
7106   if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) {
7107     // Handle (intptr_t)&&A - (intptr_t)&&B.
7108     if (!LHSVal.getLValueOffset().isZero() ||
7109         !RHSVal.getLValueOffset().isZero())
7110       return false;
7111     const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>();
7112     const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>();
7113     if (!LHSExpr || !RHSExpr)
7114       return false;
7115     const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
7116     const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
7117     if (!LHSAddrExpr || !RHSAddrExpr)
7118       return false;
7119     // Make sure both labels come from the same function.
7120     if (LHSAddrExpr->getLabel()->getDeclContext() !=
7121         RHSAddrExpr->getLabel()->getDeclContext())
7122       return false;
7123     Result = APValue(LHSAddrExpr, RHSAddrExpr);
7124     return true;
7125   }
7126
7127   // All the remaining cases expect both operands to be an integer
7128   if (!LHSVal.isInt() || !RHSVal.isInt())
7129     return Error(E);
7130
7131   // Set up the width and signedness manually, in case it can't be deduced
7132   // from the operation we're performing.
7133   // FIXME: Don't do this in the cases where we can deduce it.
7134   APSInt Value(Info.Ctx.getIntWidth(E->getType()),
7135                E->getType()->isUnsignedIntegerOrEnumerationType());
7136   if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(),
7137                          RHSVal.getInt(), Value))
7138     return false;
7139   return Success(Value, E, Result);
7140 }
7141
7142 void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) {
7143   Job &job = Queue.back();
7144   
7145   switch (job.Kind) {
7146     case Job::AnyExprKind: {
7147       if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) {
7148         if (shouldEnqueue(Bop)) {
7149           job.Kind = Job::BinOpKind;
7150           enqueue(Bop->getLHS());
7151           return;
7152         }
7153       }
7154       
7155       EvaluateExpr(job.E, Result);
7156       Queue.pop_back();
7157       return;
7158     }
7159       
7160     case Job::BinOpKind: {
7161       const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
7162       bool SuppressRHSDiags = false;
7163       if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) {
7164         Queue.pop_back();
7165         return;
7166       }
7167       if (SuppressRHSDiags)
7168         job.startSpeculativeEval(Info);
7169       job.LHSResult.swap(Result);
7170       job.Kind = Job::BinOpVisitedLHSKind;
7171       enqueue(Bop->getRHS());
7172       return;
7173     }
7174       
7175     case Job::BinOpVisitedLHSKind: {
7176       const BinaryOperator *Bop = cast<BinaryOperator>(job.E);
7177       EvalResult RHS;
7178       RHS.swap(Result);
7179       Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val);
7180       Queue.pop_back();
7181       return;
7182     }
7183   }
7184   
7185   llvm_unreachable("Invalid Job::Kind!");
7186 }
7187
7188 bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
7189   if (!Info.keepEvaluatingAfterFailure() && E->isAssignmentOp())
7190     return Error(E);
7191
7192   if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E))
7193     return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E);
7194
7195   QualType LHSTy = E->getLHS()->getType();
7196   QualType RHSTy = E->getRHS()->getType();
7197
7198   if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) {
7199     ComplexValue LHS, RHS;
7200     bool LHSOK;
7201     if (E->isAssignmentOp()) {
7202       LValue LV;
7203       EvaluateLValue(E->getLHS(), LV, Info);
7204       LHSOK = false;
7205     } else if (LHSTy->isRealFloatingType()) {
7206       LHSOK = EvaluateFloat(E->getLHS(), LHS.FloatReal, Info);
7207       if (LHSOK) {
7208         LHS.makeComplexFloat();
7209         LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics());
7210       }
7211     } else {
7212       LHSOK = EvaluateComplex(E->getLHS(), LHS, Info);
7213     }
7214     if (!LHSOK && !Info.keepEvaluatingAfterFailure())
7215       return false;
7216
7217     if (E->getRHS()->getType()->isRealFloatingType()) {
7218       if (!EvaluateFloat(E->getRHS(), RHS.FloatReal, Info) || !LHSOK)
7219         return false;
7220       RHS.makeComplexFloat();
7221       RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics());
7222     } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
7223       return false;
7224
7225     if (LHS.isComplexFloat()) {
7226       APFloat::cmpResult CR_r =
7227         LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal());
7228       APFloat::cmpResult CR_i =
7229         LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag());
7230
7231       if (E->getOpcode() == BO_EQ)
7232         return Success((CR_r == APFloat::cmpEqual &&
7233                         CR_i == APFloat::cmpEqual), E);
7234       else {
7235         assert(E->getOpcode() == BO_NE &&
7236                "Invalid complex comparison.");
7237         return Success(((CR_r == APFloat::cmpGreaterThan ||
7238                          CR_r == APFloat::cmpLessThan ||
7239                          CR_r == APFloat::cmpUnordered) ||
7240                         (CR_i == APFloat::cmpGreaterThan ||
7241                          CR_i == APFloat::cmpLessThan ||
7242                          CR_i == APFloat::cmpUnordered)), E);
7243       }
7244     } else {
7245       if (E->getOpcode() == BO_EQ)
7246         return Success((LHS.getComplexIntReal() == RHS.getComplexIntReal() &&
7247                         LHS.getComplexIntImag() == RHS.getComplexIntImag()), E);
7248       else {
7249         assert(E->getOpcode() == BO_NE &&
7250                "Invalid compex comparison.");
7251         return Success((LHS.getComplexIntReal() != RHS.getComplexIntReal() ||
7252                         LHS.getComplexIntImag() != RHS.getComplexIntImag()), E);
7253       }
7254     }
7255   }
7256
7257   if (LHSTy->isRealFloatingType() &&
7258       RHSTy->isRealFloatingType()) {
7259     APFloat RHS(0.0), LHS(0.0);
7260
7261     bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info);
7262     if (!LHSOK && !Info.keepEvaluatingAfterFailure())
7263       return false;
7264
7265     if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK)
7266       return false;
7267
7268     APFloat::cmpResult CR = LHS.compare(RHS);
7269
7270     switch (E->getOpcode()) {
7271     default:
7272       llvm_unreachable("Invalid binary operator!");
7273     case BO_LT:
7274       return Success(CR == APFloat::cmpLessThan, E);
7275     case BO_GT:
7276       return Success(CR == APFloat::cmpGreaterThan, E);
7277     case BO_LE:
7278       return Success(CR == APFloat::cmpLessThan || CR == APFloat::cmpEqual, E);
7279     case BO_GE:
7280       return Success(CR == APFloat::cmpGreaterThan || CR == APFloat::cmpEqual,
7281                      E);
7282     case BO_EQ:
7283       return Success(CR == APFloat::cmpEqual, E);
7284     case BO_NE:
7285       return Success(CR == APFloat::cmpGreaterThan
7286                      || CR == APFloat::cmpLessThan
7287                      || CR == APFloat::cmpUnordered, E);
7288     }
7289   }
7290
7291   if (LHSTy->isPointerType() && RHSTy->isPointerType()) {
7292     if (E->getOpcode() == BO_Sub || E->isComparisonOp()) {
7293       LValue LHSValue, RHSValue;
7294
7295       bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info);
7296       if (!LHSOK && !Info.keepEvaluatingAfterFailure())
7297         return false;
7298
7299       if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK)
7300         return false;
7301
7302       // Reject differing bases from the normal codepath; we special-case
7303       // comparisons to null.
7304       if (!HasSameBase(LHSValue, RHSValue)) {
7305         if (E->getOpcode() == BO_Sub) {
7306           // Handle &&A - &&B.
7307           if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero())
7308             return Error(E);
7309           const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr*>();
7310           const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr*>();
7311           if (!LHSExpr || !RHSExpr)
7312             return Error(E);
7313           const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr);
7314           const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr);
7315           if (!LHSAddrExpr || !RHSAddrExpr)
7316             return Error(E);
7317           // Make sure both labels come from the same function.
7318           if (LHSAddrExpr->getLabel()->getDeclContext() !=
7319               RHSAddrExpr->getLabel()->getDeclContext())
7320             return Error(E);
7321           return Success(APValue(LHSAddrExpr, RHSAddrExpr), E);
7322         }
7323         // Inequalities and subtractions between unrelated pointers have
7324         // unspecified or undefined behavior.
7325         if (!E->isEqualityOp())
7326           return Error(E);
7327         // A constant address may compare equal to the address of a symbol.
7328         // The one exception is that address of an object cannot compare equal
7329         // to a null pointer constant.
7330         if ((!LHSValue.Base && !LHSValue.Offset.isZero()) ||
7331             (!RHSValue.Base && !RHSValue.Offset.isZero()))
7332           return Error(E);
7333         // It's implementation-defined whether distinct literals will have
7334         // distinct addresses. In clang, the result of such a comparison is
7335         // unspecified, so it is not a constant expression. However, we do know
7336         // that the address of a literal will be non-null.
7337         if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) &&
7338             LHSValue.Base && RHSValue.Base)
7339           return Error(E);
7340         // We can't tell whether weak symbols will end up pointing to the same
7341         // object.
7342         if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue))
7343           return Error(E);
7344         // We can't compare the address of the start of one object with the
7345         // past-the-end address of another object, per C++ DR1652.
7346         if ((LHSValue.Base && LHSValue.Offset.isZero() &&
7347              isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue)) ||
7348             (RHSValue.Base && RHSValue.Offset.isZero() &&
7349              isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue)))
7350           return Error(E);
7351         // We can't tell whether an object is at the same address as another
7352         // zero sized object.
7353         if ((RHSValue.Base && isZeroSized(LHSValue)) ||
7354             (LHSValue.Base && isZeroSized(RHSValue)))
7355           return Error(E);
7356         // Pointers with different bases cannot represent the same object.
7357         // (Note that clang defaults to -fmerge-all-constants, which can
7358         // lead to inconsistent results for comparisons involving the address
7359         // of a constant; this generally doesn't matter in practice.)
7360         return Success(E->getOpcode() == BO_NE, E);
7361       }
7362
7363       const CharUnits &LHSOffset = LHSValue.getLValueOffset();
7364       const CharUnits &RHSOffset = RHSValue.getLValueOffset();
7365
7366       SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator();
7367       SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator();
7368
7369       if (E->getOpcode() == BO_Sub) {
7370         // C++11 [expr.add]p6:
7371         //   Unless both pointers point to elements of the same array object, or
7372         //   one past the last element of the array object, the behavior is
7373         //   undefined.
7374         if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
7375             !AreElementsOfSameArray(getType(LHSValue.Base),
7376                                     LHSDesignator, RHSDesignator))
7377           CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array);
7378
7379         QualType Type = E->getLHS()->getType();
7380         QualType ElementType = Type->getAs<PointerType>()->getPointeeType();
7381
7382         CharUnits ElementSize;
7383         if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize))
7384           return false;
7385
7386         // As an extension, a type may have zero size (empty struct or union in
7387         // C, array of zero length). Pointer subtraction in such cases has
7388         // undefined behavior, so is not constant.
7389         if (ElementSize.isZero()) {
7390           Info.Diag(E, diag::note_constexpr_pointer_subtraction_zero_size)
7391             << ElementType;
7392           return false;
7393         }
7394
7395         // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime,
7396         // and produce incorrect results when it overflows. Such behavior
7397         // appears to be non-conforming, but is common, so perhaps we should
7398         // assume the standard intended for such cases to be undefined behavior
7399         // and check for them.
7400
7401         // Compute (LHSOffset - RHSOffset) / Size carefully, checking for
7402         // overflow in the final conversion to ptrdiff_t.
7403         APSInt LHS(
7404           llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false);
7405         APSInt RHS(
7406           llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false);
7407         APSInt ElemSize(
7408           llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true), false);
7409         APSInt TrueResult = (LHS - RHS) / ElemSize;
7410         APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType()));
7411
7412         if (Result.extend(65) != TrueResult &&
7413             !HandleOverflow(Info, E, TrueResult, E->getType()))
7414           return false;
7415         return Success(Result, E);
7416       }
7417
7418       // C++11 [expr.rel]p3:
7419       //   Pointers to void (after pointer conversions) can be compared, with a
7420       //   result defined as follows: If both pointers represent the same
7421       //   address or are both the null pointer value, the result is true if the
7422       //   operator is <= or >= and false otherwise; otherwise the result is
7423       //   unspecified.
7424       // We interpret this as applying to pointers to *cv* void.
7425       if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset &&
7426           E->isRelationalOp())
7427         CCEDiag(E, diag::note_constexpr_void_comparison);
7428
7429       // C++11 [expr.rel]p2:
7430       // - If two pointers point to non-static data members of the same object,
7431       //   or to subobjects or array elements fo such members, recursively, the
7432       //   pointer to the later declared member compares greater provided the
7433       //   two members have the same access control and provided their class is
7434       //   not a union.
7435       //   [...]
7436       // - Otherwise pointer comparisons are unspecified.
7437       if (!LHSDesignator.Invalid && !RHSDesignator.Invalid &&
7438           E->isRelationalOp()) {
7439         bool WasArrayIndex;
7440         unsigned Mismatch =
7441           FindDesignatorMismatch(getType(LHSValue.Base), LHSDesignator,
7442                                  RHSDesignator, WasArrayIndex);
7443         // At the point where the designators diverge, the comparison has a
7444         // specified value if:
7445         //  - we are comparing array indices
7446         //  - we are comparing fields of a union, or fields with the same access
7447         // Otherwise, the result is unspecified and thus the comparison is not a
7448         // constant expression.
7449         if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() &&
7450             Mismatch < RHSDesignator.Entries.size()) {
7451           const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]);
7452           const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]);
7453           if (!LF && !RF)
7454             CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes);
7455           else if (!LF)
7456             CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
7457               << getAsBaseClass(LHSDesignator.Entries[Mismatch])
7458               << RF->getParent() << RF;
7459           else if (!RF)
7460             CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field)
7461               << getAsBaseClass(RHSDesignator.Entries[Mismatch])
7462               << LF->getParent() << LF;
7463           else if (!LF->getParent()->isUnion() &&
7464                    LF->getAccess() != RF->getAccess())
7465             CCEDiag(E, diag::note_constexpr_pointer_comparison_differing_access)
7466               << LF << LF->getAccess() << RF << RF->getAccess()
7467               << LF->getParent();
7468         }
7469       }
7470
7471       // The comparison here must be unsigned, and performed with the same
7472       // width as the pointer.
7473       unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy);
7474       uint64_t CompareLHS = LHSOffset.getQuantity();
7475       uint64_t CompareRHS = RHSOffset.getQuantity();
7476       assert(PtrSize <= 64 && "Unexpected pointer width");
7477       uint64_t Mask = ~0ULL >> (64 - PtrSize);
7478       CompareLHS &= Mask;
7479       CompareRHS &= Mask;
7480
7481       // If there is a base and this is a relational operator, we can only
7482       // compare pointers within the object in question; otherwise, the result
7483       // depends on where the object is located in memory.
7484       if (!LHSValue.Base.isNull() && E->isRelationalOp()) {
7485         QualType BaseTy = getType(LHSValue.Base);
7486         if (BaseTy->isIncompleteType())
7487           return Error(E);
7488         CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy);
7489         uint64_t OffsetLimit = Size.getQuantity();
7490         if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit)
7491           return Error(E);
7492       }
7493
7494       switch (E->getOpcode()) {
7495       default: llvm_unreachable("missing comparison operator");
7496       case BO_LT: return Success(CompareLHS < CompareRHS, E);
7497       case BO_GT: return Success(CompareLHS > CompareRHS, E);
7498       case BO_LE: return Success(CompareLHS <= CompareRHS, E);
7499       case BO_GE: return Success(CompareLHS >= CompareRHS, E);
7500       case BO_EQ: return Success(CompareLHS == CompareRHS, E);
7501       case BO_NE: return Success(CompareLHS != CompareRHS, E);
7502       }
7503     }
7504   }
7505
7506   if (LHSTy->isMemberPointerType()) {
7507     assert(E->isEqualityOp() && "unexpected member pointer operation");
7508     assert(RHSTy->isMemberPointerType() && "invalid comparison");
7509
7510     MemberPtr LHSValue, RHSValue;
7511
7512     bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info);
7513     if (!LHSOK && Info.keepEvaluatingAfterFailure())
7514       return false;
7515
7516     if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK)
7517       return false;
7518
7519     // C++11 [expr.eq]p2:
7520     //   If both operands are null, they compare equal. Otherwise if only one is
7521     //   null, they compare unequal.
7522     if (!LHSValue.getDecl() || !RHSValue.getDecl()) {
7523       bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl();
7524       return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
7525     }
7526
7527     //   Otherwise if either is a pointer to a virtual member function, the
7528     //   result is unspecified.
7529     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl()))
7530       if (MD->isVirtual())
7531         CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
7532     if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl()))
7533       if (MD->isVirtual())
7534         CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD;
7535
7536     //   Otherwise they compare equal if and only if they would refer to the
7537     //   same member of the same most derived object or the same subobject if
7538     //   they were dereferenced with a hypothetical object of the associated
7539     //   class type.
7540     bool Equal = LHSValue == RHSValue;
7541     return Success(E->getOpcode() == BO_EQ ? Equal : !Equal, E);
7542   }
7543
7544   if (LHSTy->isNullPtrType()) {
7545     assert(E->isComparisonOp() && "unexpected nullptr operation");
7546     assert(RHSTy->isNullPtrType() && "missing pointer conversion");
7547     // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t
7548     // are compared, the result is true of the operator is <=, >= or ==, and
7549     // false otherwise.
7550     BinaryOperator::Opcode Opcode = E->getOpcode();
7551     return Success(Opcode == BO_EQ || Opcode == BO_LE || Opcode == BO_GE, E);
7552   }
7553
7554   assert((!LHSTy->isIntegralOrEnumerationType() ||
7555           !RHSTy->isIntegralOrEnumerationType()) &&
7556          "DataRecursiveIntBinOpEvaluator should have handled integral types");
7557   // We can't continue from here for non-integral types.
7558   return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
7559 }
7560
7561 /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with
7562 /// a result as the expression's type.
7563 bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr(
7564                                     const UnaryExprOrTypeTraitExpr *E) {
7565   switch(E->getKind()) {
7566   case UETT_AlignOf: {
7567     if (E->isArgumentType())
7568       return Success(GetAlignOfType(Info, E->getArgumentType()), E);
7569     else
7570       return Success(GetAlignOfExpr(Info, E->getArgumentExpr()), E);
7571   }
7572
7573   case UETT_VecStep: {
7574     QualType Ty = E->getTypeOfArgument();
7575
7576     if (Ty->isVectorType()) {
7577       unsigned n = Ty->castAs<VectorType>()->getNumElements();
7578
7579       // The vec_step built-in functions that take a 3-component
7580       // vector return 4. (OpenCL 1.1 spec 6.11.12)
7581       if (n == 3)
7582         n = 4;
7583
7584       return Success(n, E);
7585     } else
7586       return Success(1, E);
7587   }
7588
7589   case UETT_SizeOf: {
7590     QualType SrcTy = E->getTypeOfArgument();
7591     // C++ [expr.sizeof]p2: "When applied to a reference or a reference type,
7592     //   the result is the size of the referenced type."
7593     if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>())
7594       SrcTy = Ref->getPointeeType();
7595
7596     CharUnits Sizeof;
7597     if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof))
7598       return false;
7599     return Success(Sizeof, E);
7600   }
7601   case UETT_OpenMPRequiredSimdAlign:
7602     assert(E->isArgumentType());
7603     return Success(
7604         Info.Ctx.toCharUnitsFromBits(
7605                     Info.Ctx.getOpenMPDefaultSimdAlign(E->getArgumentType()))
7606             .getQuantity(),
7607         E);
7608   }
7609
7610   llvm_unreachable("unknown expr/type trait");
7611 }
7612
7613 bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) {
7614   CharUnits Result;
7615   unsigned n = OOE->getNumComponents();
7616   if (n == 0)
7617     return Error(OOE);
7618   QualType CurrentType = OOE->getTypeSourceInfo()->getType();
7619   for (unsigned i = 0; i != n; ++i) {
7620     OffsetOfNode ON = OOE->getComponent(i);
7621     switch (ON.getKind()) {
7622     case OffsetOfNode::Array: {
7623       const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex());
7624       APSInt IdxResult;
7625       if (!EvaluateInteger(Idx, IdxResult, Info))
7626         return false;
7627       const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType);
7628       if (!AT)
7629         return Error(OOE);
7630       CurrentType = AT->getElementType();
7631       CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType);
7632       Result += IdxResult.getSExtValue() * ElementSize;
7633       break;
7634     }
7635
7636     case OffsetOfNode::Field: {
7637       FieldDecl *MemberDecl = ON.getField();
7638       const RecordType *RT = CurrentType->getAs<RecordType>();
7639       if (!RT)
7640         return Error(OOE);
7641       RecordDecl *RD = RT->getDecl();
7642       if (RD->isInvalidDecl()) return false;
7643       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
7644       unsigned i = MemberDecl->getFieldIndex();
7645       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
7646       Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i));
7647       CurrentType = MemberDecl->getType().getNonReferenceType();
7648       break;
7649     }
7650
7651     case OffsetOfNode::Identifier:
7652       llvm_unreachable("dependent __builtin_offsetof");
7653
7654     case OffsetOfNode::Base: {
7655       CXXBaseSpecifier *BaseSpec = ON.getBase();
7656       if (BaseSpec->isVirtual())
7657         return Error(OOE);
7658
7659       // Find the layout of the class whose base we are looking into.
7660       const RecordType *RT = CurrentType->getAs<RecordType>();
7661       if (!RT)
7662         return Error(OOE);
7663       RecordDecl *RD = RT->getDecl();
7664       if (RD->isInvalidDecl()) return false;
7665       const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD);
7666
7667       // Find the base class itself.
7668       CurrentType = BaseSpec->getType();
7669       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
7670       if (!BaseRT)
7671         return Error(OOE);
7672       
7673       // Add the offset to the base.
7674       Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl()));
7675       break;
7676     }
7677     }
7678   }
7679   return Success(Result, OOE);
7680 }
7681
7682 bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
7683   switch (E->getOpcode()) {
7684   default:
7685     // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
7686     // See C99 6.6p3.
7687     return Error(E);
7688   case UO_Extension:
7689     // FIXME: Should extension allow i-c-e extension expressions in its scope?
7690     // If so, we could clear the diagnostic ID.
7691     return Visit(E->getSubExpr());
7692   case UO_Plus:
7693     // The result is just the value.
7694     return Visit(E->getSubExpr());
7695   case UO_Minus: {
7696     if (!Visit(E->getSubExpr()))
7697       return false;
7698     if (!Result.isInt()) return Error(E);
7699     const APSInt &Value = Result.getInt();
7700     if (Value.isSigned() && Value.isMinSignedValue() &&
7701         !HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1),
7702                         E->getType()))
7703       return false;
7704     return Success(-Value, E);
7705   }
7706   case UO_Not: {
7707     if (!Visit(E->getSubExpr()))
7708       return false;
7709     if (!Result.isInt()) return Error(E);
7710     return Success(~Result.getInt(), E);
7711   }
7712   case UO_LNot: {
7713     bool bres;
7714     if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info))
7715       return false;
7716     return Success(!bres, E);
7717   }
7718   }
7719 }
7720
7721 /// HandleCast - This is used to evaluate implicit or explicit casts where the
7722 /// result type is integer.
7723 bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) {
7724   const Expr *SubExpr = E->getSubExpr();
7725   QualType DestType = E->getType();
7726   QualType SrcType = SubExpr->getType();
7727
7728   switch (E->getCastKind()) {
7729   case CK_BaseToDerived:
7730   case CK_DerivedToBase:
7731   case CK_UncheckedDerivedToBase:
7732   case CK_Dynamic:
7733   case CK_ToUnion:
7734   case CK_ArrayToPointerDecay:
7735   case CK_FunctionToPointerDecay:
7736   case CK_NullToPointer:
7737   case CK_NullToMemberPointer:
7738   case CK_BaseToDerivedMemberPointer:
7739   case CK_DerivedToBaseMemberPointer:
7740   case CK_ReinterpretMemberPointer:
7741   case CK_ConstructorConversion:
7742   case CK_IntegralToPointer:
7743   case CK_ToVoid:
7744   case CK_VectorSplat:
7745   case CK_IntegralToFloating:
7746   case CK_FloatingCast:
7747   case CK_CPointerToObjCPointerCast:
7748   case CK_BlockPointerToObjCPointerCast:
7749   case CK_AnyPointerToBlockPointerCast:
7750   case CK_ObjCObjectLValueCast:
7751   case CK_FloatingRealToComplex:
7752   case CK_FloatingComplexToReal:
7753   case CK_FloatingComplexCast:
7754   case CK_FloatingComplexToIntegralComplex:
7755   case CK_IntegralRealToComplex:
7756   case CK_IntegralComplexCast:
7757   case CK_IntegralComplexToFloatingComplex:
7758   case CK_BuiltinFnToFnPtr:
7759   case CK_ZeroToOCLEvent:
7760   case CK_NonAtomicToAtomic:
7761   case CK_AddressSpaceConversion:
7762     llvm_unreachable("invalid cast kind for integral value");
7763
7764   case CK_BitCast:
7765   case CK_Dependent:
7766   case CK_LValueBitCast:
7767   case CK_ARCProduceObject:
7768   case CK_ARCConsumeObject:
7769   case CK_ARCReclaimReturnedObject:
7770   case CK_ARCExtendBlockObject:
7771   case CK_CopyAndAutoreleaseBlockObject:
7772     return Error(E);
7773
7774   case CK_UserDefinedConversion:
7775   case CK_LValueToRValue:
7776   case CK_AtomicToNonAtomic:
7777   case CK_NoOp:
7778     return ExprEvaluatorBaseTy::VisitCastExpr(E);
7779
7780   case CK_MemberPointerToBoolean:
7781   case CK_PointerToBoolean:
7782   case CK_IntegralToBoolean:
7783   case CK_FloatingToBoolean:
7784   case CK_FloatingComplexToBoolean:
7785   case CK_IntegralComplexToBoolean: {
7786     bool BoolResult;
7787     if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info))
7788       return false;
7789     return Success(BoolResult, E);
7790   }
7791
7792   case CK_IntegralCast: {
7793     if (!Visit(SubExpr))
7794       return false;
7795
7796     if (!Result.isInt()) {
7797       // Allow casts of address-of-label differences if they are no-ops
7798       // or narrowing.  (The narrowing case isn't actually guaranteed to
7799       // be constant-evaluatable except in some narrow cases which are hard
7800       // to detect here.  We let it through on the assumption the user knows
7801       // what they are doing.)
7802       if (Result.isAddrLabelDiff())
7803         return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType);
7804       // Only allow casts of lvalues if they are lossless.
7805       return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType);
7806     }
7807
7808     return Success(HandleIntToIntCast(Info, E, DestType, SrcType,
7809                                       Result.getInt()), E);
7810   }
7811
7812   case CK_PointerToIntegral: {
7813     CCEDiag(E, diag::note_constexpr_invalid_cast) << 2;
7814
7815     LValue LV;
7816     if (!EvaluatePointer(SubExpr, LV, Info))
7817       return false;
7818
7819     if (LV.getLValueBase()) {
7820       // Only allow based lvalue casts if they are lossless.
7821       // FIXME: Allow a larger integer size than the pointer size, and allow
7822       // narrowing back down to pointer width in subsequent integral casts.
7823       // FIXME: Check integer type's active bits, not its type size.
7824       if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType))
7825         return Error(E);
7826
7827       LV.Designator.setInvalid();
7828       LV.moveInto(Result);
7829       return true;
7830     }
7831
7832     APSInt AsInt = Info.Ctx.MakeIntValue(LV.getLValueOffset().getQuantity(), 
7833                                          SrcType);
7834     return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E);
7835   }
7836
7837   case CK_IntegralComplexToReal: {
7838     ComplexValue C;
7839     if (!EvaluateComplex(SubExpr, C, Info))
7840       return false;
7841     return Success(C.getComplexIntReal(), E);
7842   }
7843
7844   case CK_FloatingToIntegral: {
7845     APFloat F(0.0);
7846     if (!EvaluateFloat(SubExpr, F, Info))
7847       return false;
7848
7849     APSInt Value;
7850     if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value))
7851       return false;
7852     return Success(Value, E);
7853   }
7854   }
7855
7856   llvm_unreachable("unknown cast resulting in integral value");
7857 }
7858
7859 bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
7860   if (E->getSubExpr()->getType()->isAnyComplexType()) {
7861     ComplexValue LV;
7862     if (!EvaluateComplex(E->getSubExpr(), LV, Info))
7863       return false;
7864     if (!LV.isComplexInt())
7865       return Error(E);
7866     return Success(LV.getComplexIntReal(), E);
7867   }
7868
7869   return Visit(E->getSubExpr());
7870 }
7871
7872 bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
7873   if (E->getSubExpr()->getType()->isComplexIntegerType()) {
7874     ComplexValue LV;
7875     if (!EvaluateComplex(E->getSubExpr(), LV, Info))
7876       return false;
7877     if (!LV.isComplexInt())
7878       return Error(E);
7879     return Success(LV.getComplexIntImag(), E);
7880   }
7881
7882   VisitIgnoredValue(E->getSubExpr());
7883   return Success(0, E);
7884 }
7885
7886 bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) {
7887   return Success(E->getPackLength(), E);
7888 }
7889
7890 bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
7891   return Success(E->getValue(), E);
7892 }
7893
7894 //===----------------------------------------------------------------------===//
7895 // Float Evaluation
7896 //===----------------------------------------------------------------------===//
7897
7898 namespace {
7899 class FloatExprEvaluator
7900   : public ExprEvaluatorBase<FloatExprEvaluator> {
7901   APFloat &Result;
7902 public:
7903   FloatExprEvaluator(EvalInfo &info, APFloat &result)
7904     : ExprEvaluatorBaseTy(info), Result(result) {}
7905
7906   bool Success(const APValue &V, const Expr *e) {
7907     Result = V.getFloat();
7908     return true;
7909   }
7910
7911   bool ZeroInitialization(const Expr *E) {
7912     Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType()));
7913     return true;
7914   }
7915
7916   bool VisitCallExpr(const CallExpr *E);
7917
7918   bool VisitUnaryOperator(const UnaryOperator *E);
7919   bool VisitBinaryOperator(const BinaryOperator *E);
7920   bool VisitFloatingLiteral(const FloatingLiteral *E);
7921   bool VisitCastExpr(const CastExpr *E);
7922
7923   bool VisitUnaryReal(const UnaryOperator *E);
7924   bool VisitUnaryImag(const UnaryOperator *E);
7925
7926   // FIXME: Missing: array subscript of vector, member of vector
7927 };
7928 } // end anonymous namespace
7929
7930 static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) {
7931   assert(E->isRValue() && E->getType()->isRealFloatingType());
7932   return FloatExprEvaluator(Info, Result).Visit(E);
7933 }
7934
7935 static bool TryEvaluateBuiltinNaN(const ASTContext &Context,
7936                                   QualType ResultTy,
7937                                   const Expr *Arg,
7938                                   bool SNaN,
7939                                   llvm::APFloat &Result) {
7940   const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
7941   if (!S) return false;
7942
7943   const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy);
7944
7945   llvm::APInt fill;
7946
7947   // Treat empty strings as if they were zero.
7948   if (S->getString().empty())
7949     fill = llvm::APInt(32, 0);
7950   else if (S->getString().getAsInteger(0, fill))
7951     return false;
7952
7953   if (Context.getTargetInfo().isNan2008()) {
7954     if (SNaN)
7955       Result = llvm::APFloat::getSNaN(Sem, false, &fill);
7956     else
7957       Result = llvm::APFloat::getQNaN(Sem, false, &fill);
7958   } else {
7959     // Prior to IEEE 754-2008, architectures were allowed to choose whether
7960     // the first bit of their significand was set for qNaN or sNaN. MIPS chose
7961     // a different encoding to what became a standard in 2008, and for pre-
7962     // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as
7963     // sNaN. This is now known as "legacy NaN" encoding.
7964     if (SNaN)
7965       Result = llvm::APFloat::getQNaN(Sem, false, &fill);
7966     else
7967       Result = llvm::APFloat::getSNaN(Sem, false, &fill);
7968   }
7969
7970   return true;
7971 }
7972
7973 bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) {
7974   switch (E->getBuiltinCallee()) {
7975   default:
7976     return ExprEvaluatorBaseTy::VisitCallExpr(E);
7977
7978   case Builtin::BI__builtin_huge_val:
7979   case Builtin::BI__builtin_huge_valf:
7980   case Builtin::BI__builtin_huge_vall:
7981   case Builtin::BI__builtin_inf:
7982   case Builtin::BI__builtin_inff:
7983   case Builtin::BI__builtin_infl: {
7984     const llvm::fltSemantics &Sem =
7985       Info.Ctx.getFloatTypeSemantics(E->getType());
7986     Result = llvm::APFloat::getInf(Sem);
7987     return true;
7988   }
7989
7990   case Builtin::BI__builtin_nans:
7991   case Builtin::BI__builtin_nansf:
7992   case Builtin::BI__builtin_nansl:
7993     if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
7994                                true, Result))
7995       return Error(E);
7996     return true;
7997
7998   case Builtin::BI__builtin_nan:
7999   case Builtin::BI__builtin_nanf:
8000   case Builtin::BI__builtin_nanl:
8001     // If this is __builtin_nan() turn this into a nan, otherwise we
8002     // can't constant fold it.
8003     if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0),
8004                                false, Result))
8005       return Error(E);
8006     return true;
8007
8008   case Builtin::BI__builtin_fabs:
8009   case Builtin::BI__builtin_fabsf:
8010   case Builtin::BI__builtin_fabsl:
8011     if (!EvaluateFloat(E->getArg(0), Result, Info))
8012       return false;
8013
8014     if (Result.isNegative())
8015       Result.changeSign();
8016     return true;
8017
8018   // FIXME: Builtin::BI__builtin_powi
8019   // FIXME: Builtin::BI__builtin_powif
8020   // FIXME: Builtin::BI__builtin_powil
8021
8022   case Builtin::BI__builtin_copysign:
8023   case Builtin::BI__builtin_copysignf:
8024   case Builtin::BI__builtin_copysignl: {
8025     APFloat RHS(0.);
8026     if (!EvaluateFloat(E->getArg(0), Result, Info) ||
8027         !EvaluateFloat(E->getArg(1), RHS, Info))
8028       return false;
8029     Result.copySign(RHS);
8030     return true;
8031   }
8032   }
8033 }
8034
8035 bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) {
8036   if (E->getSubExpr()->getType()->isAnyComplexType()) {
8037     ComplexValue CV;
8038     if (!EvaluateComplex(E->getSubExpr(), CV, Info))
8039       return false;
8040     Result = CV.FloatReal;
8041     return true;
8042   }
8043
8044   return Visit(E->getSubExpr());
8045 }
8046
8047 bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) {
8048   if (E->getSubExpr()->getType()->isAnyComplexType()) {
8049     ComplexValue CV;
8050     if (!EvaluateComplex(E->getSubExpr(), CV, Info))
8051       return false;
8052     Result = CV.FloatImag;
8053     return true;
8054   }
8055
8056   VisitIgnoredValue(E->getSubExpr());
8057   const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType());
8058   Result = llvm::APFloat::getZero(Sem);
8059   return true;
8060 }
8061
8062 bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
8063   switch (E->getOpcode()) {
8064   default: return Error(E);
8065   case UO_Plus:
8066     return EvaluateFloat(E->getSubExpr(), Result, Info);
8067   case UO_Minus:
8068     if (!EvaluateFloat(E->getSubExpr(), Result, Info))
8069       return false;
8070     Result.changeSign();
8071     return true;
8072   }
8073 }
8074
8075 bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
8076   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
8077     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
8078
8079   APFloat RHS(0.0);
8080   bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info);
8081   if (!LHSOK && !Info.keepEvaluatingAfterFailure())
8082     return false;
8083   return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK &&
8084          handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS);
8085 }
8086
8087 bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) {
8088   Result = E->getValue();
8089   return true;
8090 }
8091
8092 bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) {
8093   const Expr* SubExpr = E->getSubExpr();
8094
8095   switch (E->getCastKind()) {
8096   default:
8097     return ExprEvaluatorBaseTy::VisitCastExpr(E);
8098
8099   case CK_IntegralToFloating: {
8100     APSInt IntResult;
8101     return EvaluateInteger(SubExpr, IntResult, Info) &&
8102            HandleIntToFloatCast(Info, E, SubExpr->getType(), IntResult,
8103                                 E->getType(), Result);
8104   }
8105
8106   case CK_FloatingCast: {
8107     if (!Visit(SubExpr))
8108       return false;
8109     return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(),
8110                                   Result);
8111   }
8112
8113   case CK_FloatingComplexToReal: {
8114     ComplexValue V;
8115     if (!EvaluateComplex(SubExpr, V, Info))
8116       return false;
8117     Result = V.getComplexFloatReal();
8118     return true;
8119   }
8120   }
8121 }
8122
8123 //===----------------------------------------------------------------------===//
8124 // Complex Evaluation (for float and integer)
8125 //===----------------------------------------------------------------------===//
8126
8127 namespace {
8128 class ComplexExprEvaluator
8129   : public ExprEvaluatorBase<ComplexExprEvaluator> {
8130   ComplexValue &Result;
8131
8132 public:
8133   ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result)
8134     : ExprEvaluatorBaseTy(info), Result(Result) {}
8135
8136   bool Success(const APValue &V, const Expr *e) {
8137     Result.setFrom(V);
8138     return true;
8139   }
8140
8141   bool ZeroInitialization(const Expr *E);
8142
8143   //===--------------------------------------------------------------------===//
8144   //                            Visitor Methods
8145   //===--------------------------------------------------------------------===//
8146
8147   bool VisitImaginaryLiteral(const ImaginaryLiteral *E);
8148   bool VisitCastExpr(const CastExpr *E);
8149   bool VisitBinaryOperator(const BinaryOperator *E);
8150   bool VisitUnaryOperator(const UnaryOperator *E);
8151   bool VisitInitListExpr(const InitListExpr *E);
8152 };
8153 } // end anonymous namespace
8154
8155 static bool EvaluateComplex(const Expr *E, ComplexValue &Result,
8156                             EvalInfo &Info) {
8157   assert(E->isRValue() && E->getType()->isAnyComplexType());
8158   return ComplexExprEvaluator(Info, Result).Visit(E);
8159 }
8160
8161 bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) {
8162   QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
8163   if (ElemTy->isRealFloatingType()) {
8164     Result.makeComplexFloat();
8165     APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy));
8166     Result.FloatReal = Zero;
8167     Result.FloatImag = Zero;
8168   } else {
8169     Result.makeComplexInt();
8170     APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy);
8171     Result.IntReal = Zero;
8172     Result.IntImag = Zero;
8173   }
8174   return true;
8175 }
8176
8177 bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) {
8178   const Expr* SubExpr = E->getSubExpr();
8179
8180   if (SubExpr->getType()->isRealFloatingType()) {
8181     Result.makeComplexFloat();
8182     APFloat &Imag = Result.FloatImag;
8183     if (!EvaluateFloat(SubExpr, Imag, Info))
8184       return false;
8185
8186     Result.FloatReal = APFloat(Imag.getSemantics());
8187     return true;
8188   } else {
8189     assert(SubExpr->getType()->isIntegerType() &&
8190            "Unexpected imaginary literal.");
8191
8192     Result.makeComplexInt();
8193     APSInt &Imag = Result.IntImag;
8194     if (!EvaluateInteger(SubExpr, Imag, Info))
8195       return false;
8196
8197     Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned());
8198     return true;
8199   }
8200 }
8201
8202 bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) {
8203
8204   switch (E->getCastKind()) {
8205   case CK_BitCast:
8206   case CK_BaseToDerived:
8207   case CK_DerivedToBase:
8208   case CK_UncheckedDerivedToBase:
8209   case CK_Dynamic:
8210   case CK_ToUnion:
8211   case CK_ArrayToPointerDecay:
8212   case CK_FunctionToPointerDecay:
8213   case CK_NullToPointer:
8214   case CK_NullToMemberPointer:
8215   case CK_BaseToDerivedMemberPointer:
8216   case CK_DerivedToBaseMemberPointer:
8217   case CK_MemberPointerToBoolean:
8218   case CK_ReinterpretMemberPointer:
8219   case CK_ConstructorConversion:
8220   case CK_IntegralToPointer:
8221   case CK_PointerToIntegral:
8222   case CK_PointerToBoolean:
8223   case CK_ToVoid:
8224   case CK_VectorSplat:
8225   case CK_IntegralCast:
8226   case CK_IntegralToBoolean:
8227   case CK_IntegralToFloating:
8228   case CK_FloatingToIntegral:
8229   case CK_FloatingToBoolean:
8230   case CK_FloatingCast:
8231   case CK_CPointerToObjCPointerCast:
8232   case CK_BlockPointerToObjCPointerCast:
8233   case CK_AnyPointerToBlockPointerCast:
8234   case CK_ObjCObjectLValueCast:
8235   case CK_FloatingComplexToReal:
8236   case CK_FloatingComplexToBoolean:
8237   case CK_IntegralComplexToReal:
8238   case CK_IntegralComplexToBoolean:
8239   case CK_ARCProduceObject:
8240   case CK_ARCConsumeObject:
8241   case CK_ARCReclaimReturnedObject:
8242   case CK_ARCExtendBlockObject:
8243   case CK_CopyAndAutoreleaseBlockObject:
8244   case CK_BuiltinFnToFnPtr:
8245   case CK_ZeroToOCLEvent:
8246   case CK_NonAtomicToAtomic:
8247   case CK_AddressSpaceConversion:
8248     llvm_unreachable("invalid cast kind for complex value");
8249
8250   case CK_LValueToRValue:
8251   case CK_AtomicToNonAtomic:
8252   case CK_NoOp:
8253     return ExprEvaluatorBaseTy::VisitCastExpr(E);
8254
8255   case CK_Dependent:
8256   case CK_LValueBitCast:
8257   case CK_UserDefinedConversion:
8258     return Error(E);
8259
8260   case CK_FloatingRealToComplex: {
8261     APFloat &Real = Result.FloatReal;
8262     if (!EvaluateFloat(E->getSubExpr(), Real, Info))
8263       return false;
8264
8265     Result.makeComplexFloat();
8266     Result.FloatImag = APFloat(Real.getSemantics());
8267     return true;
8268   }
8269
8270   case CK_FloatingComplexCast: {
8271     if (!Visit(E->getSubExpr()))
8272       return false;
8273
8274     QualType To = E->getType()->getAs<ComplexType>()->getElementType();
8275     QualType From
8276       = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
8277
8278     return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) &&
8279            HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag);
8280   }
8281
8282   case CK_FloatingComplexToIntegralComplex: {
8283     if (!Visit(E->getSubExpr()))
8284       return false;
8285
8286     QualType To = E->getType()->getAs<ComplexType>()->getElementType();
8287     QualType From
8288       = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
8289     Result.makeComplexInt();
8290     return HandleFloatToIntCast(Info, E, From, Result.FloatReal,
8291                                 To, Result.IntReal) &&
8292            HandleFloatToIntCast(Info, E, From, Result.FloatImag,
8293                                 To, Result.IntImag);
8294   }
8295
8296   case CK_IntegralRealToComplex: {
8297     APSInt &Real = Result.IntReal;
8298     if (!EvaluateInteger(E->getSubExpr(), Real, Info))
8299       return false;
8300
8301     Result.makeComplexInt();
8302     Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned());
8303     return true;
8304   }
8305
8306   case CK_IntegralComplexCast: {
8307     if (!Visit(E->getSubExpr()))
8308       return false;
8309
8310     QualType To = E->getType()->getAs<ComplexType>()->getElementType();
8311     QualType From
8312       = E->getSubExpr()->getType()->getAs<ComplexType>()->getElementType();
8313
8314     Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal);
8315     Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag);
8316     return true;
8317   }
8318
8319   case CK_IntegralComplexToFloatingComplex: {
8320     if (!Visit(E->getSubExpr()))
8321       return false;
8322
8323     QualType To = E->getType()->castAs<ComplexType>()->getElementType();
8324     QualType From
8325       = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType();
8326     Result.makeComplexFloat();
8327     return HandleIntToFloatCast(Info, E, From, Result.IntReal,
8328                                 To, Result.FloatReal) &&
8329            HandleIntToFloatCast(Info, E, From, Result.IntImag,
8330                                 To, Result.FloatImag);
8331   }
8332   }
8333
8334   llvm_unreachable("unknown cast resulting in complex value");
8335 }
8336
8337 bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) {
8338   if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma)
8339     return ExprEvaluatorBaseTy::VisitBinaryOperator(E);
8340
8341   // Track whether the LHS or RHS is real at the type system level. When this is
8342   // the case we can simplify our evaluation strategy.
8343   bool LHSReal = false, RHSReal = false;
8344
8345   bool LHSOK;
8346   if (E->getLHS()->getType()->isRealFloatingType()) {
8347     LHSReal = true;
8348     APFloat &Real = Result.FloatReal;
8349     LHSOK = EvaluateFloat(E->getLHS(), Real, Info);
8350     if (LHSOK) {
8351       Result.makeComplexFloat();
8352       Result.FloatImag = APFloat(Real.getSemantics());
8353     }
8354   } else {
8355     LHSOK = Visit(E->getLHS());
8356   }
8357   if (!LHSOK && !Info.keepEvaluatingAfterFailure())
8358     return false;
8359
8360   ComplexValue RHS;
8361   if (E->getRHS()->getType()->isRealFloatingType()) {
8362     RHSReal = true;
8363     APFloat &Real = RHS.FloatReal;
8364     if (!EvaluateFloat(E->getRHS(), Real, Info) || !LHSOK)
8365       return false;
8366     RHS.makeComplexFloat();
8367     RHS.FloatImag = APFloat(Real.getSemantics());
8368   } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK)
8369     return false;
8370
8371   assert(!(LHSReal && RHSReal) &&
8372          "Cannot have both operands of a complex operation be real.");
8373   switch (E->getOpcode()) {
8374   default: return Error(E);
8375   case BO_Add:
8376     if (Result.isComplexFloat()) {
8377       Result.getComplexFloatReal().add(RHS.getComplexFloatReal(),
8378                                        APFloat::rmNearestTiesToEven);
8379       if (LHSReal)
8380         Result.getComplexFloatImag() = RHS.getComplexFloatImag();
8381       else if (!RHSReal)
8382         Result.getComplexFloatImag().add(RHS.getComplexFloatImag(),
8383                                          APFloat::rmNearestTiesToEven);
8384     } else {
8385       Result.getComplexIntReal() += RHS.getComplexIntReal();
8386       Result.getComplexIntImag() += RHS.getComplexIntImag();
8387     }
8388     break;
8389   case BO_Sub:
8390     if (Result.isComplexFloat()) {
8391       Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(),
8392                                             APFloat::rmNearestTiesToEven);
8393       if (LHSReal) {
8394         Result.getComplexFloatImag() = RHS.getComplexFloatImag();
8395         Result.getComplexFloatImag().changeSign();
8396       } else if (!RHSReal) {
8397         Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(),
8398                                               APFloat::rmNearestTiesToEven);
8399       }
8400     } else {
8401       Result.getComplexIntReal() -= RHS.getComplexIntReal();
8402       Result.getComplexIntImag() -= RHS.getComplexIntImag();
8403     }
8404     break;
8405   case BO_Mul:
8406     if (Result.isComplexFloat()) {
8407       // This is an implementation of complex multiplication according to the
8408       // constraints laid out in C11 Annex G. The implemantion uses the
8409       // following naming scheme:
8410       //   (a + ib) * (c + id)
8411       ComplexValue LHS = Result;
8412       APFloat &A = LHS.getComplexFloatReal();
8413       APFloat &B = LHS.getComplexFloatImag();
8414       APFloat &C = RHS.getComplexFloatReal();
8415       APFloat &D = RHS.getComplexFloatImag();
8416       APFloat &ResR = Result.getComplexFloatReal();
8417       APFloat &ResI = Result.getComplexFloatImag();
8418       if (LHSReal) {
8419         assert(!RHSReal && "Cannot have two real operands for a complex op!");
8420         ResR = A * C;
8421         ResI = A * D;
8422       } else if (RHSReal) {
8423         ResR = C * A;
8424         ResI = C * B;
8425       } else {
8426         // In the fully general case, we need to handle NaNs and infinities
8427         // robustly.
8428         APFloat AC = A * C;
8429         APFloat BD = B * D;
8430         APFloat AD = A * D;
8431         APFloat BC = B * C;
8432         ResR = AC - BD;
8433         ResI = AD + BC;
8434         if (ResR.isNaN() && ResI.isNaN()) {
8435           bool Recalc = false;
8436           if (A.isInfinity() || B.isInfinity()) {
8437             A = APFloat::copySign(
8438                 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
8439             B = APFloat::copySign(
8440                 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
8441             if (C.isNaN())
8442               C = APFloat::copySign(APFloat(C.getSemantics()), C);
8443             if (D.isNaN())
8444               D = APFloat::copySign(APFloat(D.getSemantics()), D);
8445             Recalc = true;
8446           }
8447           if (C.isInfinity() || D.isInfinity()) {
8448             C = APFloat::copySign(
8449                 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
8450             D = APFloat::copySign(
8451                 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
8452             if (A.isNaN())
8453               A = APFloat::copySign(APFloat(A.getSemantics()), A);
8454             if (B.isNaN())
8455               B = APFloat::copySign(APFloat(B.getSemantics()), B);
8456             Recalc = true;
8457           }
8458           if (!Recalc && (AC.isInfinity() || BD.isInfinity() ||
8459                           AD.isInfinity() || BC.isInfinity())) {
8460             if (A.isNaN())
8461               A = APFloat::copySign(APFloat(A.getSemantics()), A);
8462             if (B.isNaN())
8463               B = APFloat::copySign(APFloat(B.getSemantics()), B);
8464             if (C.isNaN())
8465               C = APFloat::copySign(APFloat(C.getSemantics()), C);
8466             if (D.isNaN())
8467               D = APFloat::copySign(APFloat(D.getSemantics()), D);
8468             Recalc = true;
8469           }
8470           if (Recalc) {
8471             ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D);
8472             ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C);
8473           }
8474         }
8475       }
8476     } else {
8477       ComplexValue LHS = Result;
8478       Result.getComplexIntReal() =
8479         (LHS.getComplexIntReal() * RHS.getComplexIntReal() -
8480          LHS.getComplexIntImag() * RHS.getComplexIntImag());
8481       Result.getComplexIntImag() =
8482         (LHS.getComplexIntReal() * RHS.getComplexIntImag() +
8483          LHS.getComplexIntImag() * RHS.getComplexIntReal());
8484     }
8485     break;
8486   case BO_Div:
8487     if (Result.isComplexFloat()) {
8488       // This is an implementation of complex division according to the
8489       // constraints laid out in C11 Annex G. The implemantion uses the
8490       // following naming scheme:
8491       //   (a + ib) / (c + id)
8492       ComplexValue LHS = Result;
8493       APFloat &A = LHS.getComplexFloatReal();
8494       APFloat &B = LHS.getComplexFloatImag();
8495       APFloat &C = RHS.getComplexFloatReal();
8496       APFloat &D = RHS.getComplexFloatImag();
8497       APFloat &ResR = Result.getComplexFloatReal();
8498       APFloat &ResI = Result.getComplexFloatImag();
8499       if (RHSReal) {
8500         ResR = A / C;
8501         ResI = B / C;
8502       } else {
8503         if (LHSReal) {
8504           // No real optimizations we can do here, stub out with zero.
8505           B = APFloat::getZero(A.getSemantics());
8506         }
8507         int DenomLogB = 0;
8508         APFloat MaxCD = maxnum(abs(C), abs(D));
8509         if (MaxCD.isFinite()) {
8510           DenomLogB = ilogb(MaxCD);
8511           C = scalbn(C, -DenomLogB);
8512           D = scalbn(D, -DenomLogB);
8513         }
8514         APFloat Denom = C * C + D * D;
8515         ResR = scalbn((A * C + B * D) / Denom, -DenomLogB);
8516         ResI = scalbn((B * C - A * D) / Denom, -DenomLogB);
8517         if (ResR.isNaN() && ResI.isNaN()) {
8518           if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) {
8519             ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A;
8520             ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B;
8521           } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() &&
8522                      D.isFinite()) {
8523             A = APFloat::copySign(
8524                 APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A);
8525             B = APFloat::copySign(
8526                 APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B);
8527             ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D);
8528             ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D);
8529           } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) {
8530             C = APFloat::copySign(
8531                 APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C);
8532             D = APFloat::copySign(
8533                 APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D);
8534             ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D);
8535             ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D);
8536           }
8537         }
8538       }
8539     } else {
8540       if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0)
8541         return Error(E, diag::note_expr_divide_by_zero);
8542
8543       ComplexValue LHS = Result;
8544       APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() +
8545         RHS.getComplexIntImag() * RHS.getComplexIntImag();
8546       Result.getComplexIntReal() =
8547         (LHS.getComplexIntReal() * RHS.getComplexIntReal() +
8548          LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den;
8549       Result.getComplexIntImag() =
8550         (LHS.getComplexIntImag() * RHS.getComplexIntReal() -
8551          LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den;
8552     }
8553     break;
8554   }
8555
8556   return true;
8557 }
8558
8559 bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) {
8560   // Get the operand value into 'Result'.
8561   if (!Visit(E->getSubExpr()))
8562     return false;
8563
8564   switch (E->getOpcode()) {
8565   default:
8566     return Error(E);
8567   case UO_Extension:
8568     return true;
8569   case UO_Plus:
8570     // The result is always just the subexpr.
8571     return true;
8572   case UO_Minus:
8573     if (Result.isComplexFloat()) {
8574       Result.getComplexFloatReal().changeSign();
8575       Result.getComplexFloatImag().changeSign();
8576     }
8577     else {
8578       Result.getComplexIntReal() = -Result.getComplexIntReal();
8579       Result.getComplexIntImag() = -Result.getComplexIntImag();
8580     }
8581     return true;
8582   case UO_Not:
8583     if (Result.isComplexFloat())
8584       Result.getComplexFloatImag().changeSign();
8585     else
8586       Result.getComplexIntImag() = -Result.getComplexIntImag();
8587     return true;
8588   }
8589 }
8590
8591 bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) {
8592   if (E->getNumInits() == 2) {
8593     if (E->getType()->isComplexType()) {
8594       Result.makeComplexFloat();
8595       if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info))
8596         return false;
8597       if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info))
8598         return false;
8599     } else {
8600       Result.makeComplexInt();
8601       if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info))
8602         return false;
8603       if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info))
8604         return false;
8605     }
8606     return true;
8607   }
8608   return ExprEvaluatorBaseTy::VisitInitListExpr(E);
8609 }
8610
8611 //===----------------------------------------------------------------------===//
8612 // Atomic expression evaluation, essentially just handling the NonAtomicToAtomic
8613 // implicit conversion.
8614 //===----------------------------------------------------------------------===//
8615
8616 namespace {
8617 class AtomicExprEvaluator :
8618     public ExprEvaluatorBase<AtomicExprEvaluator> {
8619   APValue &Result;
8620 public:
8621   AtomicExprEvaluator(EvalInfo &Info, APValue &Result)
8622       : ExprEvaluatorBaseTy(Info), Result(Result) {}
8623
8624   bool Success(const APValue &V, const Expr *E) {
8625     Result = V;
8626     return true;
8627   }
8628
8629   bool ZeroInitialization(const Expr *E) {
8630     ImplicitValueInitExpr VIE(
8631         E->getType()->castAs<AtomicType>()->getValueType());
8632     return Evaluate(Result, Info, &VIE);
8633   }
8634
8635   bool VisitCastExpr(const CastExpr *E) {
8636     switch (E->getCastKind()) {
8637     default:
8638       return ExprEvaluatorBaseTy::VisitCastExpr(E);
8639     case CK_NonAtomicToAtomic:
8640       return Evaluate(Result, Info, E->getSubExpr());
8641     }
8642   }
8643 };
8644 } // end anonymous namespace
8645
8646 static bool EvaluateAtomic(const Expr *E, APValue &Result, EvalInfo &Info) {
8647   assert(E->isRValue() && E->getType()->isAtomicType());
8648   return AtomicExprEvaluator(Info, Result).Visit(E);
8649 }
8650
8651 //===----------------------------------------------------------------------===//
8652 // Void expression evaluation, primarily for a cast to void on the LHS of a
8653 // comma operator
8654 //===----------------------------------------------------------------------===//
8655
8656 namespace {
8657 class VoidExprEvaluator
8658   : public ExprEvaluatorBase<VoidExprEvaluator> {
8659 public:
8660   VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {}
8661
8662   bool Success(const APValue &V, const Expr *e) { return true; }
8663
8664   bool VisitCastExpr(const CastExpr *E) {
8665     switch (E->getCastKind()) {
8666     default:
8667       return ExprEvaluatorBaseTy::VisitCastExpr(E);
8668     case CK_ToVoid:
8669       VisitIgnoredValue(E->getSubExpr());
8670       return true;
8671     }
8672   }
8673
8674   bool VisitCallExpr(const CallExpr *E) {
8675     switch (E->getBuiltinCallee()) {
8676     default:
8677       return ExprEvaluatorBaseTy::VisitCallExpr(E);
8678     case Builtin::BI__assume:
8679     case Builtin::BI__builtin_assume:
8680       // The argument is not evaluated!
8681       return true;
8682     }
8683   }
8684 };
8685 } // end anonymous namespace
8686
8687 static bool EvaluateVoid(const Expr *E, EvalInfo &Info) {
8688   assert(E->isRValue() && E->getType()->isVoidType());
8689   return VoidExprEvaluator(Info).Visit(E);
8690 }
8691
8692 //===----------------------------------------------------------------------===//
8693 // Top level Expr::EvaluateAsRValue method.
8694 //===----------------------------------------------------------------------===//
8695
8696 static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) {
8697   // In C, function designators are not lvalues, but we evaluate them as if they
8698   // are.
8699   QualType T = E->getType();
8700   if (E->isGLValue() || T->isFunctionType()) {
8701     LValue LV;
8702     if (!EvaluateLValue(E, LV, Info))
8703       return false;
8704     LV.moveInto(Result);
8705   } else if (T->isVectorType()) {
8706     if (!EvaluateVector(E, Result, Info))
8707       return false;
8708   } else if (T->isIntegralOrEnumerationType()) {
8709     if (!IntExprEvaluator(Info, Result).Visit(E))
8710       return false;
8711   } else if (T->hasPointerRepresentation()) {
8712     LValue LV;
8713     if (!EvaluatePointer(E, LV, Info))
8714       return false;
8715     LV.moveInto(Result);
8716   } else if (T->isRealFloatingType()) {
8717     llvm::APFloat F(0.0);
8718     if (!EvaluateFloat(E, F, Info))
8719       return false;
8720     Result = APValue(F);
8721   } else if (T->isAnyComplexType()) {
8722     ComplexValue C;
8723     if (!EvaluateComplex(E, C, Info))
8724       return false;
8725     C.moveInto(Result);
8726   } else if (T->isMemberPointerType()) {
8727     MemberPtr P;
8728     if (!EvaluateMemberPointer(E, P, Info))
8729       return false;
8730     P.moveInto(Result);
8731     return true;
8732   } else if (T->isArrayType()) {
8733     LValue LV;
8734     LV.set(E, Info.CurrentCall->Index);
8735     APValue &Value = Info.CurrentCall->createTemporary(E, false);
8736     if (!EvaluateArray(E, LV, Value, Info))
8737       return false;
8738     Result = Value;
8739   } else if (T->isRecordType()) {
8740     LValue LV;
8741     LV.set(E, Info.CurrentCall->Index);
8742     APValue &Value = Info.CurrentCall->createTemporary(E, false);
8743     if (!EvaluateRecord(E, LV, Value, Info))
8744       return false;
8745     Result = Value;
8746   } else if (T->isVoidType()) {
8747     if (!Info.getLangOpts().CPlusPlus11)
8748       Info.CCEDiag(E, diag::note_constexpr_nonliteral)
8749         << E->getType();
8750     if (!EvaluateVoid(E, Info))
8751       return false;
8752   } else if (T->isAtomicType()) {
8753     if (!EvaluateAtomic(E, Result, Info))
8754       return false;
8755   } else if (Info.getLangOpts().CPlusPlus11) {
8756     Info.Diag(E, diag::note_constexpr_nonliteral) << E->getType();
8757     return false;
8758   } else {
8759     Info.Diag(E, diag::note_invalid_subexpr_in_const_expr);
8760     return false;
8761   }
8762
8763   return true;
8764 }
8765
8766 /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some
8767 /// cases, the in-place evaluation is essential, since later initializers for
8768 /// an object can indirectly refer to subobjects which were initialized earlier.
8769 static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This,
8770                             const Expr *E, bool AllowNonLiteralTypes) {
8771   assert(!E->isValueDependent());
8772
8773   if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This))
8774     return false;
8775
8776   if (E->isRValue()) {
8777     // Evaluate arrays and record types in-place, so that later initializers can
8778     // refer to earlier-initialized members of the object.
8779     if (E->getType()->isArrayType())
8780       return EvaluateArray(E, This, Result, Info);
8781     else if (E->getType()->isRecordType())
8782       return EvaluateRecord(E, This, Result, Info);
8783   }
8784
8785   // For any other type, in-place evaluation is unimportant.
8786   return Evaluate(Result, Info, E);
8787 }
8788
8789 /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit
8790 /// lvalue-to-rvalue cast if it is an lvalue.
8791 static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) {
8792   if (E->getType().isNull())
8793     return false;
8794
8795   if (!CheckLiteralType(Info, E))
8796     return false;
8797
8798   if (!::Evaluate(Result, Info, E))
8799     return false;
8800
8801   if (E->isGLValue()) {
8802     LValue LV;
8803     LV.setFrom(Info.Ctx, Result);
8804     if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result))
8805       return false;
8806   }
8807
8808   // Check this core constant expression is a constant expression.
8809   return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result);
8810 }
8811
8812 static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result,
8813                                  const ASTContext &Ctx, bool &IsConst) {
8814   // Fast-path evaluations of integer literals, since we sometimes see files
8815   // containing vast quantities of these.
8816   if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) {
8817     Result.Val = APValue(APSInt(L->getValue(),
8818                                 L->getType()->isUnsignedIntegerType()));
8819     IsConst = true;
8820     return true;
8821   }
8822
8823   // This case should be rare, but we need to check it before we check on
8824   // the type below.
8825   if (Exp->getType().isNull()) {
8826     IsConst = false;
8827     return true;
8828   }
8829   
8830   // FIXME: Evaluating values of large array and record types can cause
8831   // performance problems. Only do so in C++11 for now.
8832   if (Exp->isRValue() && (Exp->getType()->isArrayType() ||
8833                           Exp->getType()->isRecordType()) &&
8834       !Ctx.getLangOpts().CPlusPlus11) {
8835     IsConst = false;
8836     return true;
8837   }
8838   return false;
8839 }
8840
8841
8842 /// EvaluateAsRValue - Return true if this is a constant which we can fold using
8843 /// any crazy technique (that has nothing to do with language standards) that
8844 /// we want to.  If this function returns true, it returns the folded constant
8845 /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion
8846 /// will be applied to the result.
8847 bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx) const {
8848   bool IsConst;
8849   if (FastEvaluateAsRValue(this, Result, Ctx, IsConst))
8850     return IsConst;
8851   
8852   EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects);
8853   return ::EvaluateAsRValue(Info, this, Result.Val);
8854 }
8855
8856 bool Expr::EvaluateAsBooleanCondition(bool &Result,
8857                                       const ASTContext &Ctx) const {
8858   EvalResult Scratch;
8859   return EvaluateAsRValue(Scratch, Ctx) &&
8860          HandleConversionToBool(Scratch.Val, Result);
8861 }
8862
8863 static bool hasUnacceptableSideEffect(Expr::EvalStatus &Result,
8864                                       Expr::SideEffectsKind SEK) {
8865   return (SEK < Expr::SE_AllowSideEffects && Result.HasSideEffects) ||
8866          (SEK < Expr::SE_AllowUndefinedBehavior && Result.HasUndefinedBehavior);
8867 }
8868
8869 bool Expr::EvaluateAsInt(APSInt &Result, const ASTContext &Ctx,
8870                          SideEffectsKind AllowSideEffects) const {
8871   if (!getType()->isIntegralOrEnumerationType())
8872     return false;
8873
8874   EvalResult ExprResult;
8875   if (!EvaluateAsRValue(ExprResult, Ctx) || !ExprResult.Val.isInt() ||
8876       hasUnacceptableSideEffect(ExprResult, AllowSideEffects))
8877     return false;
8878
8879   Result = ExprResult.Val.getInt();
8880   return true;
8881 }
8882
8883 bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx) const {
8884   EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold);
8885
8886   LValue LV;
8887   if (!EvaluateLValue(this, LV, Info) || Result.HasSideEffects ||
8888       !CheckLValueConstantExpression(Info, getExprLoc(),
8889                                      Ctx.getLValueReferenceType(getType()), LV))
8890     return false;
8891
8892   LV.moveInto(Result.Val);
8893   return true;
8894 }
8895
8896 bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx,
8897                                  const VarDecl *VD,
8898                             SmallVectorImpl<PartialDiagnosticAt> &Notes) const {
8899   // FIXME: Evaluating initializers for large array and record types can cause
8900   // performance problems. Only do so in C++11 for now.
8901   if (isRValue() && (getType()->isArrayType() || getType()->isRecordType()) &&
8902       !Ctx.getLangOpts().CPlusPlus11)
8903     return false;
8904
8905   Expr::EvalStatus EStatus;
8906   EStatus.Diag = &Notes;
8907
8908   EvalInfo InitInfo(Ctx, EStatus, VD->isConstexpr()
8909                                       ? EvalInfo::EM_ConstantExpression
8910                                       : EvalInfo::EM_ConstantFold);
8911   InitInfo.setEvaluatingDecl(VD, Value);
8912
8913   LValue LVal;
8914   LVal.set(VD);
8915
8916   // C++11 [basic.start.init]p2:
8917   //  Variables with static storage duration or thread storage duration shall be
8918   //  zero-initialized before any other initialization takes place.
8919   // This behavior is not present in C.
8920   if (Ctx.getLangOpts().CPlusPlus && !VD->hasLocalStorage() &&
8921       !VD->getType()->isReferenceType()) {
8922     ImplicitValueInitExpr VIE(VD->getType());
8923     if (!EvaluateInPlace(Value, InitInfo, LVal, &VIE,
8924                          /*AllowNonLiteralTypes=*/true))
8925       return false;
8926   }
8927
8928   if (!EvaluateInPlace(Value, InitInfo, LVal, this,
8929                        /*AllowNonLiteralTypes=*/true) ||
8930       EStatus.HasSideEffects)
8931     return false;
8932
8933   return CheckConstantExpression(InitInfo, VD->getLocation(), VD->getType(),
8934                                  Value);
8935 }
8936
8937 /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be
8938 /// constant folded, but discard the result.
8939 bool Expr::isEvaluatable(const ASTContext &Ctx, SideEffectsKind SEK) const {
8940   EvalResult Result;
8941   return EvaluateAsRValue(Result, Ctx) &&
8942          !hasUnacceptableSideEffect(Result, SEK);
8943 }
8944
8945 APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx,
8946                     SmallVectorImpl<PartialDiagnosticAt> *Diag) const {
8947   EvalResult EvalResult;
8948   EvalResult.Diag = Diag;
8949   bool Result = EvaluateAsRValue(EvalResult, Ctx);
8950   (void)Result;
8951   assert(Result && "Could not evaluate expression");
8952   assert(EvalResult.Val.isInt() && "Expression did not evaluate to integer");
8953
8954   return EvalResult.Val.getInt();
8955 }
8956
8957 void Expr::EvaluateForOverflow(const ASTContext &Ctx) const {
8958   bool IsConst;
8959   EvalResult EvalResult;
8960   if (!FastEvaluateAsRValue(this, EvalResult, Ctx, IsConst)) {
8961     EvalInfo Info(Ctx, EvalResult, EvalInfo::EM_EvaluateForOverflow);
8962     (void)::EvaluateAsRValue(Info, this, EvalResult.Val);
8963   }
8964 }
8965
8966 bool Expr::EvalResult::isGlobalLValue() const {
8967   assert(Val.isLValue());
8968   return IsGlobalLValue(Val.getLValueBase());
8969 }
8970
8971
8972 /// isIntegerConstantExpr - this recursive routine will test if an expression is
8973 /// an integer constant expression.
8974
8975 /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero,
8976 /// comma, etc
8977
8978 // CheckICE - This function does the fundamental ICE checking: the returned
8979 // ICEDiag contains an ICEKind indicating whether the expression is an ICE,
8980 // and a (possibly null) SourceLocation indicating the location of the problem.
8981 //
8982 // Note that to reduce code duplication, this helper does no evaluation
8983 // itself; the caller checks whether the expression is evaluatable, and
8984 // in the rare cases where CheckICE actually cares about the evaluated
8985 // value, it calls into Evalute.
8986
8987 namespace {
8988
8989 enum ICEKind {
8990   /// This expression is an ICE.
8991   IK_ICE,
8992   /// This expression is not an ICE, but if it isn't evaluated, it's
8993   /// a legal subexpression for an ICE. This return value is used to handle
8994   /// the comma operator in C99 mode, and non-constant subexpressions.
8995   IK_ICEIfUnevaluated,
8996   /// This expression is not an ICE, and is not a legal subexpression for one.
8997   IK_NotICE
8998 };
8999
9000 struct ICEDiag {
9001   ICEKind Kind;
9002   SourceLocation Loc;
9003
9004   ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {}
9005 };
9006
9007 }
9008
9009 static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); }
9010
9011 static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; }
9012
9013 static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) {
9014   Expr::EvalResult EVResult;
9015   if (!E->EvaluateAsRValue(EVResult, Ctx) || EVResult.HasSideEffects ||
9016       !EVResult.Val.isInt())
9017     return ICEDiag(IK_NotICE, E->getLocStart());
9018
9019   return NoDiag();
9020 }
9021
9022 static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) {
9023   assert(!E->isValueDependent() && "Should not see value dependent exprs!");
9024   if (!E->getType()->isIntegralOrEnumerationType())
9025     return ICEDiag(IK_NotICE, E->getLocStart());
9026
9027   switch (E->getStmtClass()) {
9028 #define ABSTRACT_STMT(Node)
9029 #define STMT(Node, Base) case Expr::Node##Class:
9030 #define EXPR(Node, Base)
9031 #include "clang/AST/StmtNodes.inc"
9032   case Expr::PredefinedExprClass:
9033   case Expr::FloatingLiteralClass:
9034   case Expr::ImaginaryLiteralClass:
9035   case Expr::StringLiteralClass:
9036   case Expr::ArraySubscriptExprClass:
9037   case Expr::OMPArraySectionExprClass:
9038   case Expr::MemberExprClass:
9039   case Expr::CompoundAssignOperatorClass:
9040   case Expr::CompoundLiteralExprClass:
9041   case Expr::ExtVectorElementExprClass:
9042   case Expr::DesignatedInitExprClass:
9043   case Expr::NoInitExprClass:
9044   case Expr::DesignatedInitUpdateExprClass:
9045   case Expr::ImplicitValueInitExprClass:
9046   case Expr::ParenListExprClass:
9047   case Expr::VAArgExprClass:
9048   case Expr::AddrLabelExprClass:
9049   case Expr::StmtExprClass:
9050   case Expr::CXXMemberCallExprClass:
9051   case Expr::CUDAKernelCallExprClass:
9052   case Expr::CXXDynamicCastExprClass:
9053   case Expr::CXXTypeidExprClass:
9054   case Expr::CXXUuidofExprClass:
9055   case Expr::MSPropertyRefExprClass:
9056   case Expr::MSPropertySubscriptExprClass:
9057   case Expr::CXXNullPtrLiteralExprClass:
9058   case Expr::UserDefinedLiteralClass:
9059   case Expr::CXXThisExprClass:
9060   case Expr::CXXThrowExprClass:
9061   case Expr::CXXNewExprClass:
9062   case Expr::CXXDeleteExprClass:
9063   case Expr::CXXPseudoDestructorExprClass:
9064   case Expr::UnresolvedLookupExprClass:
9065   case Expr::TypoExprClass:
9066   case Expr::DependentScopeDeclRefExprClass:
9067   case Expr::CXXConstructExprClass:
9068   case Expr::CXXStdInitializerListExprClass:
9069   case Expr::CXXBindTemporaryExprClass:
9070   case Expr::ExprWithCleanupsClass:
9071   case Expr::CXXTemporaryObjectExprClass:
9072   case Expr::CXXUnresolvedConstructExprClass:
9073   case Expr::CXXDependentScopeMemberExprClass:
9074   case Expr::UnresolvedMemberExprClass:
9075   case Expr::ObjCStringLiteralClass:
9076   case Expr::ObjCBoxedExprClass:
9077   case Expr::ObjCArrayLiteralClass:
9078   case Expr::ObjCDictionaryLiteralClass:
9079   case Expr::ObjCEncodeExprClass:
9080   case Expr::ObjCMessageExprClass:
9081   case Expr::ObjCSelectorExprClass:
9082   case Expr::ObjCProtocolExprClass:
9083   case Expr::ObjCIvarRefExprClass:
9084   case Expr::ObjCPropertyRefExprClass:
9085   case Expr::ObjCSubscriptRefExprClass:
9086   case Expr::ObjCIsaExprClass:
9087   case Expr::ShuffleVectorExprClass:
9088   case Expr::ConvertVectorExprClass:
9089   case Expr::BlockExprClass:
9090   case Expr::NoStmtClass:
9091   case Expr::OpaqueValueExprClass:
9092   case Expr::PackExpansionExprClass:
9093   case Expr::SubstNonTypeTemplateParmPackExprClass:
9094   case Expr::FunctionParmPackExprClass:
9095   case Expr::AsTypeExprClass:
9096   case Expr::ObjCIndirectCopyRestoreExprClass:
9097   case Expr::MaterializeTemporaryExprClass:
9098   case Expr::PseudoObjectExprClass:
9099   case Expr::AtomicExprClass:
9100   case Expr::LambdaExprClass:
9101   case Expr::CXXFoldExprClass:
9102   case Expr::CoawaitExprClass:
9103   case Expr::CoyieldExprClass:
9104     return ICEDiag(IK_NotICE, E->getLocStart());
9105
9106   case Expr::InitListExprClass: {
9107     // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the
9108     // form "T x = { a };" is equivalent to "T x = a;".
9109     // Unless we're initializing a reference, T is a scalar as it is known to be
9110     // of integral or enumeration type.
9111     if (E->isRValue())
9112       if (cast<InitListExpr>(E)->getNumInits() == 1)
9113         return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx);
9114     return ICEDiag(IK_NotICE, E->getLocStart());
9115   }
9116
9117   case Expr::SizeOfPackExprClass:
9118   case Expr::GNUNullExprClass:
9119     // GCC considers the GNU __null value to be an integral constant expression.
9120     return NoDiag();
9121
9122   case Expr::SubstNonTypeTemplateParmExprClass:
9123     return
9124       CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx);
9125
9126   case Expr::ParenExprClass:
9127     return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx);
9128   case Expr::GenericSelectionExprClass:
9129     return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx);
9130   case Expr::IntegerLiteralClass:
9131   case Expr::CharacterLiteralClass:
9132   case Expr::ObjCBoolLiteralExprClass:
9133   case Expr::CXXBoolLiteralExprClass:
9134   case Expr::CXXScalarValueInitExprClass:
9135   case Expr::TypeTraitExprClass:
9136   case Expr::ArrayTypeTraitExprClass:
9137   case Expr::ExpressionTraitExprClass:
9138   case Expr::CXXNoexceptExprClass:
9139     return NoDiag();
9140   case Expr::CallExprClass:
9141   case Expr::CXXOperatorCallExprClass: {
9142     // C99 6.6/3 allows function calls within unevaluated subexpressions of
9143     // constant expressions, but they can never be ICEs because an ICE cannot
9144     // contain an operand of (pointer to) function type.
9145     const CallExpr *CE = cast<CallExpr>(E);
9146     if (CE->getBuiltinCallee())
9147       return CheckEvalInICE(E, Ctx);
9148     return ICEDiag(IK_NotICE, E->getLocStart());
9149   }
9150   case Expr::DeclRefExprClass: {
9151     if (isa<EnumConstantDecl>(cast<DeclRefExpr>(E)->getDecl()))
9152       return NoDiag();
9153     const ValueDecl *D = dyn_cast<ValueDecl>(cast<DeclRefExpr>(E)->getDecl());
9154     if (Ctx.getLangOpts().CPlusPlus &&
9155         D && IsConstNonVolatile(D->getType())) {
9156       // Parameter variables are never constants.  Without this check,
9157       // getAnyInitializer() can find a default argument, which leads
9158       // to chaos.
9159       if (isa<ParmVarDecl>(D))
9160         return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
9161
9162       // C++ 7.1.5.1p2
9163       //   A variable of non-volatile const-qualified integral or enumeration
9164       //   type initialized by an ICE can be used in ICEs.
9165       if (const VarDecl *Dcl = dyn_cast<VarDecl>(D)) {
9166         if (!Dcl->getType()->isIntegralOrEnumerationType())
9167           return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
9168
9169         const VarDecl *VD;
9170         // Look for a declaration of this variable that has an initializer, and
9171         // check whether it is an ICE.
9172         if (Dcl->getAnyInitializer(VD) && VD->checkInitIsICE())
9173           return NoDiag();
9174         else
9175           return ICEDiag(IK_NotICE, cast<DeclRefExpr>(E)->getLocation());
9176       }
9177     }
9178     return ICEDiag(IK_NotICE, E->getLocStart());
9179   }
9180   case Expr::UnaryOperatorClass: {
9181     const UnaryOperator *Exp = cast<UnaryOperator>(E);
9182     switch (Exp->getOpcode()) {
9183     case UO_PostInc:
9184     case UO_PostDec:
9185     case UO_PreInc:
9186     case UO_PreDec:
9187     case UO_AddrOf:
9188     case UO_Deref:
9189     case UO_Coawait:
9190       // C99 6.6/3 allows increment and decrement within unevaluated
9191       // subexpressions of constant expressions, but they can never be ICEs
9192       // because an ICE cannot contain an lvalue operand.
9193       return ICEDiag(IK_NotICE, E->getLocStart());
9194     case UO_Extension:
9195     case UO_LNot:
9196     case UO_Plus:
9197     case UO_Minus:
9198     case UO_Not:
9199     case UO_Real:
9200     case UO_Imag:
9201       return CheckICE(Exp->getSubExpr(), Ctx);
9202     }
9203
9204     // OffsetOf falls through here.
9205   }
9206   case Expr::OffsetOfExprClass: {
9207     // Note that per C99, offsetof must be an ICE. And AFAIK, using
9208     // EvaluateAsRValue matches the proposed gcc behavior for cases like
9209     // "offsetof(struct s{int x[4];}, x[1.0])".  This doesn't affect
9210     // compliance: we should warn earlier for offsetof expressions with
9211     // array subscripts that aren't ICEs, and if the array subscripts
9212     // are ICEs, the value of the offsetof must be an integer constant.
9213     return CheckEvalInICE(E, Ctx);
9214   }
9215   case Expr::UnaryExprOrTypeTraitExprClass: {
9216     const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E);
9217     if ((Exp->getKind() ==  UETT_SizeOf) &&
9218         Exp->getTypeOfArgument()->isVariableArrayType())
9219       return ICEDiag(IK_NotICE, E->getLocStart());
9220     return NoDiag();
9221   }
9222   case Expr::BinaryOperatorClass: {
9223     const BinaryOperator *Exp = cast<BinaryOperator>(E);
9224     switch (Exp->getOpcode()) {
9225     case BO_PtrMemD:
9226     case BO_PtrMemI:
9227     case BO_Assign:
9228     case BO_MulAssign:
9229     case BO_DivAssign:
9230     case BO_RemAssign:
9231     case BO_AddAssign:
9232     case BO_SubAssign:
9233     case BO_ShlAssign:
9234     case BO_ShrAssign:
9235     case BO_AndAssign:
9236     case BO_XorAssign:
9237     case BO_OrAssign:
9238       // C99 6.6/3 allows assignments within unevaluated subexpressions of
9239       // constant expressions, but they can never be ICEs because an ICE cannot
9240       // contain an lvalue operand.
9241       return ICEDiag(IK_NotICE, E->getLocStart());
9242
9243     case BO_Mul:
9244     case BO_Div:
9245     case BO_Rem:
9246     case BO_Add:
9247     case BO_Sub:
9248     case BO_Shl:
9249     case BO_Shr:
9250     case BO_LT:
9251     case BO_GT:
9252     case BO_LE:
9253     case BO_GE:
9254     case BO_EQ:
9255     case BO_NE:
9256     case BO_And:
9257     case BO_Xor:
9258     case BO_Or:
9259     case BO_Comma: {
9260       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
9261       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
9262       if (Exp->getOpcode() == BO_Div ||
9263           Exp->getOpcode() == BO_Rem) {
9264         // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure
9265         // we don't evaluate one.
9266         if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) {
9267           llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx);
9268           if (REval == 0)
9269             return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
9270           if (REval.isSigned() && REval.isAllOnesValue()) {
9271             llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx);
9272             if (LEval.isMinSignedValue())
9273               return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
9274           }
9275         }
9276       }
9277       if (Exp->getOpcode() == BO_Comma) {
9278         if (Ctx.getLangOpts().C99) {
9279           // C99 6.6p3 introduces a strange edge case: comma can be in an ICE
9280           // if it isn't evaluated.
9281           if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE)
9282             return ICEDiag(IK_ICEIfUnevaluated, E->getLocStart());
9283         } else {
9284           // In both C89 and C++, commas in ICEs are illegal.
9285           return ICEDiag(IK_NotICE, E->getLocStart());
9286         }
9287       }
9288       return Worst(LHSResult, RHSResult);
9289     }
9290     case BO_LAnd:
9291     case BO_LOr: {
9292       ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx);
9293       ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx);
9294       if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) {
9295         // Rare case where the RHS has a comma "side-effect"; we need
9296         // to actually check the condition to see whether the side
9297         // with the comma is evaluated.
9298         if ((Exp->getOpcode() == BO_LAnd) !=
9299             (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0))
9300           return RHSResult;
9301         return NoDiag();
9302       }
9303
9304       return Worst(LHSResult, RHSResult);
9305     }
9306     }
9307   }
9308   case Expr::ImplicitCastExprClass:
9309   case Expr::CStyleCastExprClass:
9310   case Expr::CXXFunctionalCastExprClass:
9311   case Expr::CXXStaticCastExprClass:
9312   case Expr::CXXReinterpretCastExprClass:
9313   case Expr::CXXConstCastExprClass:
9314   case Expr::ObjCBridgedCastExprClass: {
9315     const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr();
9316     if (isa<ExplicitCastExpr>(E)) {
9317       if (const FloatingLiteral *FL
9318             = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) {
9319         unsigned DestWidth = Ctx.getIntWidth(E->getType());
9320         bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType();
9321         APSInt IgnoredVal(DestWidth, !DestSigned);
9322         bool Ignored;
9323         // If the value does not fit in the destination type, the behavior is
9324         // undefined, so we are not required to treat it as a constant
9325         // expression.
9326         if (FL->getValue().convertToInteger(IgnoredVal,
9327                                             llvm::APFloat::rmTowardZero,
9328                                             &Ignored) & APFloat::opInvalidOp)
9329           return ICEDiag(IK_NotICE, E->getLocStart());
9330         return NoDiag();
9331       }
9332     }
9333     switch (cast<CastExpr>(E)->getCastKind()) {
9334     case CK_LValueToRValue:
9335     case CK_AtomicToNonAtomic:
9336     case CK_NonAtomicToAtomic:
9337     case CK_NoOp:
9338     case CK_IntegralToBoolean:
9339     case CK_IntegralCast:
9340       return CheckICE(SubExpr, Ctx);
9341     default:
9342       return ICEDiag(IK_NotICE, E->getLocStart());
9343     }
9344   }
9345   case Expr::BinaryConditionalOperatorClass: {
9346     const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E);
9347     ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx);
9348     if (CommonResult.Kind == IK_NotICE) return CommonResult;
9349     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
9350     if (FalseResult.Kind == IK_NotICE) return FalseResult;
9351     if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult;
9352     if (FalseResult.Kind == IK_ICEIfUnevaluated &&
9353         Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag();
9354     return FalseResult;
9355   }
9356   case Expr::ConditionalOperatorClass: {
9357     const ConditionalOperator *Exp = cast<ConditionalOperator>(E);
9358     // If the condition (ignoring parens) is a __builtin_constant_p call,
9359     // then only the true side is actually considered in an integer constant
9360     // expression, and it is fully evaluated.  This is an important GNU
9361     // extension.  See GCC PR38377 for discussion.
9362     if (const CallExpr *CallCE
9363         = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts()))
9364       if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p)
9365         return CheckEvalInICE(E, Ctx);
9366     ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx);
9367     if (CondResult.Kind == IK_NotICE)
9368       return CondResult;
9369
9370     ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx);
9371     ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx);
9372
9373     if (TrueResult.Kind == IK_NotICE)
9374       return TrueResult;
9375     if (FalseResult.Kind == IK_NotICE)
9376       return FalseResult;
9377     if (CondResult.Kind == IK_ICEIfUnevaluated)
9378       return CondResult;
9379     if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE)
9380       return NoDiag();
9381     // Rare case where the diagnostics depend on which side is evaluated
9382     // Note that if we get here, CondResult is 0, and at least one of
9383     // TrueResult and FalseResult is non-zero.
9384     if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0)
9385       return FalseResult;
9386     return TrueResult;
9387   }
9388   case Expr::CXXDefaultArgExprClass:
9389     return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx);
9390   case Expr::CXXDefaultInitExprClass:
9391     return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx);
9392   case Expr::ChooseExprClass: {
9393     return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx);
9394   }
9395   }
9396
9397   llvm_unreachable("Invalid StmtClass!");
9398 }
9399
9400 /// Evaluate an expression as a C++11 integral constant expression.
9401 static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx,
9402                                                     const Expr *E,
9403                                                     llvm::APSInt *Value,
9404                                                     SourceLocation *Loc) {
9405   if (!E->getType()->isIntegralOrEnumerationType()) {
9406     if (Loc) *Loc = E->getExprLoc();
9407     return false;
9408   }
9409
9410   APValue Result;
9411   if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc))
9412     return false;
9413
9414   if (!Result.isInt()) {
9415     if (Loc) *Loc = E->getExprLoc();
9416     return false;
9417   }
9418
9419   if (Value) *Value = Result.getInt();
9420   return true;
9421 }
9422
9423 bool Expr::isIntegerConstantExpr(const ASTContext &Ctx,
9424                                  SourceLocation *Loc) const {
9425   if (Ctx.getLangOpts().CPlusPlus11)
9426     return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc);
9427
9428   ICEDiag D = CheckICE(this, Ctx);
9429   if (D.Kind != IK_ICE) {
9430     if (Loc) *Loc = D.Loc;
9431     return false;
9432   }
9433   return true;
9434 }
9435
9436 bool Expr::isIntegerConstantExpr(llvm::APSInt &Value, const ASTContext &Ctx,
9437                                  SourceLocation *Loc, bool isEvaluated) const {
9438   if (Ctx.getLangOpts().CPlusPlus11)
9439     return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc);
9440
9441   if (!isIntegerConstantExpr(Ctx, Loc))
9442     return false;
9443   // The only possible side-effects here are due to UB discovered in the
9444   // evaluation (for instance, INT_MAX + 1). In such a case, we are still
9445   // required to treat the expression as an ICE, so we produce the folded
9446   // value.
9447   if (!EvaluateAsInt(Value, Ctx, SE_AllowSideEffects))
9448     llvm_unreachable("ICE cannot be evaluated!");
9449   return true;
9450 }
9451
9452 bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const {
9453   return CheckICE(this, Ctx).Kind == IK_ICE;
9454 }
9455
9456 bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result,
9457                                SourceLocation *Loc) const {
9458   // We support this checking in C++98 mode in order to diagnose compatibility
9459   // issues.
9460   assert(Ctx.getLangOpts().CPlusPlus);
9461
9462   // Build evaluation settings.
9463   Expr::EvalStatus Status;
9464   SmallVector<PartialDiagnosticAt, 8> Diags;
9465   Status.Diag = &Diags;
9466   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression);
9467
9468   APValue Scratch;
9469   bool IsConstExpr = ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch);
9470
9471   if (!Diags.empty()) {
9472     IsConstExpr = false;
9473     if (Loc) *Loc = Diags[0].first;
9474   } else if (!IsConstExpr) {
9475     // FIXME: This shouldn't happen.
9476     if (Loc) *Loc = getExprLoc();
9477   }
9478
9479   return IsConstExpr;
9480 }
9481
9482 bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx,
9483                                     const FunctionDecl *Callee,
9484                                     ArrayRef<const Expr*> Args) const {
9485   Expr::EvalStatus Status;
9486   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated);
9487
9488   ArgVector ArgValues(Args.size());
9489   for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end();
9490        I != E; ++I) {
9491     if ((*I)->isValueDependent() ||
9492         !Evaluate(ArgValues[I - Args.begin()], Info, *I))
9493       // If evaluation fails, throw away the argument entirely.
9494       ArgValues[I - Args.begin()] = APValue();
9495     if (Info.EvalStatus.HasSideEffects)
9496       return false;
9497   }
9498
9499   // Build fake call to Callee.
9500   CallStackFrame Frame(Info, Callee->getLocation(), Callee, /*This*/nullptr,
9501                        ArgValues.data());
9502   return Evaluate(Value, Info, this) && !Info.EvalStatus.HasSideEffects;
9503 }
9504
9505 bool Expr::isPotentialConstantExpr(const FunctionDecl *FD,
9506                                    SmallVectorImpl<
9507                                      PartialDiagnosticAt> &Diags) {
9508   // FIXME: It would be useful to check constexpr function templates, but at the
9509   // moment the constant expression evaluator cannot cope with the non-rigorous
9510   // ASTs which we build for dependent expressions.
9511   if (FD->isDependentContext())
9512     return true;
9513
9514   Expr::EvalStatus Status;
9515   Status.Diag = &Diags;
9516
9517   EvalInfo Info(FD->getASTContext(), Status,
9518                 EvalInfo::EM_PotentialConstantExpression);
9519
9520   const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
9521   const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr;
9522
9523   // Fabricate an arbitrary expression on the stack and pretend that it
9524   // is a temporary being used as the 'this' pointer.
9525   LValue This;
9526   ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy);
9527   This.set(&VIE, Info.CurrentCall->Index);
9528
9529   ArrayRef<const Expr*> Args;
9530
9531   SourceLocation Loc = FD->getLocation();
9532
9533   APValue Scratch;
9534   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) {
9535     // Evaluate the call as a constant initializer, to allow the construction
9536     // of objects of non-literal types.
9537     Info.setEvaluatingDecl(This.getLValueBase(), Scratch);
9538     HandleConstructorCall(Loc, This, Args, CD, Info, Scratch);
9539   } else
9540     HandleFunctionCall(Loc, FD, (MD && MD->isInstance()) ? &This : nullptr,
9541                        Args, FD->getBody(), Info, Scratch, nullptr);
9542
9543   return Diags.empty();
9544 }
9545
9546 bool Expr::isPotentialConstantExprUnevaluated(Expr *E,
9547                                               const FunctionDecl *FD,
9548                                               SmallVectorImpl<
9549                                                 PartialDiagnosticAt> &Diags) {
9550   Expr::EvalStatus Status;
9551   Status.Diag = &Diags;
9552
9553   EvalInfo Info(FD->getASTContext(), Status,
9554                 EvalInfo::EM_PotentialConstantExpressionUnevaluated);
9555
9556   // Fabricate a call stack frame to give the arguments a plausible cover story.
9557   ArrayRef<const Expr*> Args;
9558   ArgVector ArgValues(0);
9559   bool Success = EvaluateArgs(Args, ArgValues, Info);
9560   (void)Success;
9561   assert(Success &&
9562          "Failed to set up arguments for potential constant evaluation");
9563   CallStackFrame Frame(Info, SourceLocation(), FD, nullptr, ArgValues.data());
9564
9565   APValue ResultScratch;
9566   Evaluate(ResultScratch, Info, E);
9567   return Diags.empty();
9568 }
9569
9570 bool Expr::tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx,
9571                                  unsigned Type) const {
9572   if (!getType()->isPointerType())
9573     return false;
9574
9575   Expr::EvalStatus Status;
9576   EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold);
9577   return ::tryEvaluateBuiltinObjectSize(this, Type, Info, Result);
9578 }