]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/AST/ItaniumMangle.cpp
Merge clang trunk r238337 from ^/vendor/clang/dist, resolve conflicts,
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / AST / ItaniumMangle.cpp
1 //===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implements C++ name mangling according to the Itanium C++ ABI,
11 // which is used in GCC 3.2 and newer (and many compilers that are
12 // ABI-compatible with GCC):
13 //
14 //   http://mentorembedded.github.io/cxx-abi/abi.html#mangling
15 //
16 //===----------------------------------------------------------------------===//
17 #include "clang/AST/Mangle.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclTemplate.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/ExprObjC.h"
27 #include "clang/AST/TypeLoc.h"
28 #include "clang/Basic/ABI.h"
29 #include "clang/Basic/SourceManager.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34
35 #define MANGLE_CHECKER 0
36
37 #if MANGLE_CHECKER
38 #include <cxxabi.h>
39 #endif
40
41 using namespace clang;
42
43 namespace {
44
45 /// Retrieve the declaration context that should be used when mangling the given
46 /// declaration.
47 static const DeclContext *getEffectiveDeclContext(const Decl *D) {
48   // The ABI assumes that lambda closure types that occur within 
49   // default arguments live in the context of the function. However, due to
50   // the way in which Clang parses and creates function declarations, this is
51   // not the case: the lambda closure type ends up living in the context 
52   // where the function itself resides, because the function declaration itself
53   // had not yet been created. Fix the context here.
54   if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
55     if (RD->isLambda())
56       if (ParmVarDecl *ContextParam
57             = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
58         return ContextParam->getDeclContext();
59   }
60
61   // Perform the same check for block literals.
62   if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
63     if (ParmVarDecl *ContextParam
64           = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
65       return ContextParam->getDeclContext();
66   }
67   
68   const DeclContext *DC = D->getDeclContext();
69   if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(DC))
70     return getEffectiveDeclContext(CD);
71
72   if (const auto *VD = dyn_cast<VarDecl>(D))
73     if (VD->isExternC())
74       return VD->getASTContext().getTranslationUnitDecl();
75
76   if (const auto *FD = dyn_cast<FunctionDecl>(D))
77     if (FD->isExternC())
78       return FD->getASTContext().getTranslationUnitDecl();
79
80   return DC;
81 }
82
83 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
84   return getEffectiveDeclContext(cast<Decl>(DC));
85 }
86
87 static bool isLocalContainerContext(const DeclContext *DC) {
88   return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC);
89 }
90
91 static const RecordDecl *GetLocalClassDecl(const Decl *D) {
92   const DeclContext *DC = getEffectiveDeclContext(D);
93   while (!DC->isNamespace() && !DC->isTranslationUnit()) {
94     if (isLocalContainerContext(DC))
95       return dyn_cast<RecordDecl>(D);
96     D = cast<Decl>(DC);
97     DC = getEffectiveDeclContext(D);
98   }
99   return nullptr;
100 }
101
102 static const FunctionDecl *getStructor(const FunctionDecl *fn) {
103   if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
104     return ftd->getTemplatedDecl();
105
106   return fn;
107 }
108
109 static const NamedDecl *getStructor(const NamedDecl *decl) {
110   const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
111   return (fn ? getStructor(fn) : decl);
112 }
113
114 static bool isLambda(const NamedDecl *ND) {
115   const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
116   if (!Record)
117     return false;
118
119   return Record->isLambda();
120 }
121
122 static const unsigned UnknownArity = ~0U;
123
124 class ItaniumMangleContextImpl : public ItaniumMangleContext {
125   typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy;
126   llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
127   llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
128
129 public:
130   explicit ItaniumMangleContextImpl(ASTContext &Context,
131                                     DiagnosticsEngine &Diags)
132       : ItaniumMangleContext(Context, Diags) {}
133
134   /// @name Mangler Entry Points
135   /// @{
136
137   bool shouldMangleCXXName(const NamedDecl *D) override;
138   bool shouldMangleStringLiteral(const StringLiteral *) override {
139     return false;
140   }
141   void mangleCXXName(const NamedDecl *D, raw_ostream &) override;
142   void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
143                    raw_ostream &) override;
144   void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
145                           const ThisAdjustment &ThisAdjustment,
146                           raw_ostream &) override;
147   void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber,
148                                 raw_ostream &) override;
149   void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override;
150   void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override;
151   void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
152                            const CXXRecordDecl *Type, raw_ostream &) override;
153   void mangleCXXRTTI(QualType T, raw_ostream &) override;
154   void mangleCXXRTTIName(QualType T, raw_ostream &) override;
155   void mangleTypeName(QualType T, raw_ostream &) override;
156   void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
157                      raw_ostream &) override;
158   void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
159                      raw_ostream &) override;
160
161   void mangleCXXCtorComdat(const CXXConstructorDecl *D, raw_ostream &) override;
162   void mangleCXXDtorComdat(const CXXDestructorDecl *D, raw_ostream &) override;
163   void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override;
164   void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
165   void mangleDynamicAtExitDestructor(const VarDecl *D,
166                                      raw_ostream &Out) override;
167   void mangleSEHFilterExpression(const NamedDecl *EnclosingDecl,
168                                  raw_ostream &Out) override;
169   void mangleSEHFinallyBlock(const NamedDecl *EnclosingDecl,
170                              raw_ostream &Out) override;
171   void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override;
172   void mangleItaniumThreadLocalWrapper(const VarDecl *D,
173                                        raw_ostream &) override;
174
175   void mangleStringLiteral(const StringLiteral *, raw_ostream &) override;
176
177   void mangleCXXVTableBitSet(const CXXRecordDecl *RD, raw_ostream &) override;
178
179   bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
180     // Lambda closure types are already numbered.
181     if (isLambda(ND))
182       return false;
183
184     // Anonymous tags are already numbered.
185     if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
186       if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
187         return false;
188     }
189
190     // Use the canonical number for externally visible decls.
191     if (ND->isExternallyVisible()) {
192       unsigned discriminator = getASTContext().getManglingNumber(ND);
193       if (discriminator == 1)
194         return false;
195       disc = discriminator - 2;
196       return true;
197     }
198
199     // Make up a reasonable number for internal decls.
200     unsigned &discriminator = Uniquifier[ND];
201     if (!discriminator) {
202       const DeclContext *DC = getEffectiveDeclContext(ND);
203       discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
204     }
205     if (discriminator == 1)
206       return false;
207     disc = discriminator-2;
208     return true;
209   }
210   /// @}
211 };
212
213 /// Manage the mangling of a single name.
214 class CXXNameMangler {
215   ItaniumMangleContextImpl &Context;
216   raw_ostream &Out;
217
218   /// The "structor" is the top-level declaration being mangled, if
219   /// that's not a template specialization; otherwise it's the pattern
220   /// for that specialization.
221   const NamedDecl *Structor;
222   unsigned StructorType;
223
224   /// The next substitution sequence number.
225   unsigned SeqID;
226
227   class FunctionTypeDepthState {
228     unsigned Bits;
229
230     enum { InResultTypeMask = 1 };
231
232   public:
233     FunctionTypeDepthState() : Bits(0) {}
234
235     /// The number of function types we're inside.
236     unsigned getDepth() const {
237       return Bits >> 1;
238     }
239
240     /// True if we're in the return type of the innermost function type.
241     bool isInResultType() const {
242       return Bits & InResultTypeMask;
243     }
244
245     FunctionTypeDepthState push() {
246       FunctionTypeDepthState tmp = *this;
247       Bits = (Bits & ~InResultTypeMask) + 2;
248       return tmp;
249     }
250
251     void enterResultType() {
252       Bits |= InResultTypeMask;
253     }
254
255     void leaveResultType() {
256       Bits &= ~InResultTypeMask;
257     }
258
259     void pop(FunctionTypeDepthState saved) {
260       assert(getDepth() == saved.getDepth() + 1);
261       Bits = saved.Bits;
262     }
263
264   } FunctionTypeDepth;
265
266   llvm::DenseMap<uintptr_t, unsigned> Substitutions;
267
268   ASTContext &getASTContext() const { return Context.getASTContext(); }
269
270 public:
271   CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
272                  const NamedDecl *D = nullptr)
273     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(0),
274       SeqID(0) {
275     // These can't be mangled without a ctor type or dtor type.
276     assert(!D || (!isa<CXXDestructorDecl>(D) &&
277                   !isa<CXXConstructorDecl>(D)));
278   }
279   CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
280                  const CXXConstructorDecl *D, CXXCtorType Type)
281     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
282       SeqID(0) { }
283   CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
284                  const CXXDestructorDecl *D, CXXDtorType Type)
285     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
286       SeqID(0) { }
287
288 #if MANGLE_CHECKER
289   ~CXXNameMangler() {
290     if (Out.str()[0] == '\01')
291       return;
292
293     int status = 0;
294     char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
295     assert(status == 0 && "Could not demangle mangled name!");
296     free(result);
297   }
298 #endif
299   raw_ostream &getStream() { return Out; }
300
301   void mangle(const NamedDecl *D);
302   void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
303   void mangleNumber(const llvm::APSInt &I);
304   void mangleNumber(int64_t Number);
305   void mangleFloat(const llvm::APFloat &F);
306   void mangleFunctionEncoding(const FunctionDecl *FD);
307   void mangleSeqID(unsigned SeqID);
308   void mangleName(const NamedDecl *ND);
309   void mangleType(QualType T);
310   void mangleNameOrStandardSubstitution(const NamedDecl *ND);
311   
312 private:
313
314   bool mangleSubstitution(const NamedDecl *ND);
315   bool mangleSubstitution(QualType T);
316   bool mangleSubstitution(TemplateName Template);
317   bool mangleSubstitution(uintptr_t Ptr);
318
319   void mangleExistingSubstitution(QualType type);
320   void mangleExistingSubstitution(TemplateName name);
321
322   bool mangleStandardSubstitution(const NamedDecl *ND);
323
324   void addSubstitution(const NamedDecl *ND) {
325     ND = cast<NamedDecl>(ND->getCanonicalDecl());
326
327     addSubstitution(reinterpret_cast<uintptr_t>(ND));
328   }
329   void addSubstitution(QualType T);
330   void addSubstitution(TemplateName Template);
331   void addSubstitution(uintptr_t Ptr);
332
333   void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
334                               bool recursive = false);
335   void mangleUnresolvedName(NestedNameSpecifier *qualifier,
336                             DeclarationName name,
337                             unsigned KnownArity = UnknownArity);
338
339   void mangleName(const TemplateDecl *TD,
340                   const TemplateArgument *TemplateArgs,
341                   unsigned NumTemplateArgs);
342   void mangleUnqualifiedName(const NamedDecl *ND) {
343     mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
344   }
345   void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
346                              unsigned KnownArity);
347   void mangleUnscopedName(const NamedDecl *ND);
348   void mangleUnscopedTemplateName(const TemplateDecl *ND);
349   void mangleUnscopedTemplateName(TemplateName);
350   void mangleSourceName(const IdentifierInfo *II);
351   void mangleLocalName(const Decl *D);
352   void mangleBlockForPrefix(const BlockDecl *Block);
353   void mangleUnqualifiedBlock(const BlockDecl *Block);
354   void mangleLambda(const CXXRecordDecl *Lambda);
355   void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
356                         bool NoFunction=false);
357   void mangleNestedName(const TemplateDecl *TD,
358                         const TemplateArgument *TemplateArgs,
359                         unsigned NumTemplateArgs);
360   void manglePrefix(NestedNameSpecifier *qualifier);
361   void manglePrefix(const DeclContext *DC, bool NoFunction=false);
362   void manglePrefix(QualType type);
363   void mangleTemplatePrefix(const TemplateDecl *ND, bool NoFunction=false);
364   void mangleTemplatePrefix(TemplateName Template);
365   bool mangleUnresolvedTypeOrSimpleId(QualType DestroyedType,
366                                       StringRef Prefix = "");
367   void mangleOperatorName(DeclarationName Name, unsigned Arity);
368   void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
369   void mangleQualifiers(Qualifiers Quals);
370   void mangleRefQualifier(RefQualifierKind RefQualifier);
371
372   void mangleObjCMethodName(const ObjCMethodDecl *MD);
373
374   // Declare manglers for every type class.
375 #define ABSTRACT_TYPE(CLASS, PARENT)
376 #define NON_CANONICAL_TYPE(CLASS, PARENT)
377 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
378 #include "clang/AST/TypeNodes.def"
379
380   void mangleType(const TagType*);
381   void mangleType(TemplateName);
382   void mangleBareFunctionType(const FunctionType *T,
383                               bool MangleReturnType);
384   void mangleNeonVectorType(const VectorType *T);
385   void mangleAArch64NeonVectorType(const VectorType *T);
386
387   void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
388   void mangleMemberExprBase(const Expr *base, bool isArrow);
389   void mangleMemberExpr(const Expr *base, bool isArrow,
390                         NestedNameSpecifier *qualifier,
391                         NamedDecl *firstQualifierLookup,
392                         DeclarationName name,
393                         unsigned knownArity);
394   void mangleCastExpression(const Expr *E, StringRef CastEncoding);
395   void mangleInitListElements(const InitListExpr *InitList);
396   void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
397   void mangleCXXCtorType(CXXCtorType T);
398   void mangleCXXDtorType(CXXDtorType T);
399
400   void mangleTemplateArgs(const ASTTemplateArgumentListInfo &TemplateArgs);
401   void mangleTemplateArgs(const TemplateArgument *TemplateArgs,
402                           unsigned NumTemplateArgs);
403   void mangleTemplateArgs(const TemplateArgumentList &AL);
404   void mangleTemplateArg(TemplateArgument A);
405
406   void mangleTemplateParameter(unsigned Index);
407
408   void mangleFunctionParam(const ParmVarDecl *parm);
409 };
410
411 }
412
413 bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
414   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
415   if (FD) {
416     LanguageLinkage L = FD->getLanguageLinkage();
417     // Overloadable functions need mangling.
418     if (FD->hasAttr<OverloadableAttr>())
419       return true;
420
421     // "main" is not mangled.
422     if (FD->isMain())
423       return false;
424
425     // C++ functions and those whose names are not a simple identifier need
426     // mangling.
427     if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
428       return true;
429
430     // C functions are not mangled.
431     if (L == CLanguageLinkage)
432       return false;
433   }
434
435   // Otherwise, no mangling is done outside C++ mode.
436   if (!getASTContext().getLangOpts().CPlusPlus)
437     return false;
438
439   const VarDecl *VD = dyn_cast<VarDecl>(D);
440   if (VD) {
441     // C variables are not mangled.
442     if (VD->isExternC())
443       return false;
444
445     // Variables at global scope with non-internal linkage are not mangled
446     const DeclContext *DC = getEffectiveDeclContext(D);
447     // Check for extern variable declared locally.
448     if (DC->isFunctionOrMethod() && D->hasLinkage())
449       while (!DC->isNamespace() && !DC->isTranslationUnit())
450         DC = getEffectiveParentContext(DC);
451     if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage &&
452         !isa<VarTemplateSpecializationDecl>(D))
453       return false;
454   }
455
456   return true;
457 }
458
459 void CXXNameMangler::mangle(const NamedDecl *D) {
460   // <mangled-name> ::= _Z <encoding>
461   //            ::= <data name>
462   //            ::= <special-name>
463   Out << "_Z";
464   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
465     mangleFunctionEncoding(FD);
466   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
467     mangleName(VD);
468   else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D))
469     mangleName(IFD->getAnonField());
470   else
471     mangleName(cast<FieldDecl>(D));
472 }
473
474 void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
475   // <encoding> ::= <function name> <bare-function-type>
476   mangleName(FD);
477
478   // Don't mangle in the type if this isn't a decl we should typically mangle.
479   if (!Context.shouldMangleDeclName(FD))
480     return;
481
482   if (FD->hasAttr<EnableIfAttr>()) {
483     FunctionTypeDepthState Saved = FunctionTypeDepth.push();
484     Out << "Ua9enable_ifI";
485     // FIXME: specific_attr_iterator iterates in reverse order. Fix that and use
486     // it here.
487     for (AttrVec::const_reverse_iterator I = FD->getAttrs().rbegin(),
488                                          E = FD->getAttrs().rend();
489          I != E; ++I) {
490       EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I);
491       if (!EIA)
492         continue;
493       Out << 'X';
494       mangleExpression(EIA->getCond());
495       Out << 'E';
496     }
497     Out << 'E';
498     FunctionTypeDepth.pop(Saved);
499   }
500
501   // Whether the mangling of a function type includes the return type depends on
502   // the context and the nature of the function. The rules for deciding whether
503   // the return type is included are:
504   //
505   //   1. Template functions (names or types) have return types encoded, with
506   //   the exceptions listed below.
507   //   2. Function types not appearing as part of a function name mangling,
508   //   e.g. parameters, pointer types, etc., have return type encoded, with the
509   //   exceptions listed below.
510   //   3. Non-template function names do not have return types encoded.
511   //
512   // The exceptions mentioned in (1) and (2) above, for which the return type is
513   // never included, are
514   //   1. Constructors.
515   //   2. Destructors.
516   //   3. Conversion operator functions, e.g. operator int.
517   bool MangleReturnType = false;
518   if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
519     if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
520           isa<CXXConversionDecl>(FD)))
521       MangleReturnType = true;
522
523     // Mangle the type of the primary template.
524     FD = PrimaryTemplate->getTemplatedDecl();
525   }
526
527   mangleBareFunctionType(FD->getType()->getAs<FunctionType>(), 
528                          MangleReturnType);
529 }
530
531 static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
532   while (isa<LinkageSpecDecl>(DC)) {
533     DC = getEffectiveParentContext(DC);
534   }
535
536   return DC;
537 }
538
539 /// Return whether a given namespace is the 'std' namespace.
540 static bool isStd(const NamespaceDecl *NS) {
541   if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
542                                 ->isTranslationUnit())
543     return false;
544   
545   const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
546   return II && II->isStr("std");
547 }
548
549 // isStdNamespace - Return whether a given decl context is a toplevel 'std'
550 // namespace.
551 static bool isStdNamespace(const DeclContext *DC) {
552   if (!DC->isNamespace())
553     return false;
554
555   return isStd(cast<NamespaceDecl>(DC));
556 }
557
558 static const TemplateDecl *
559 isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
560   // Check if we have a function template.
561   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
562     if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
563       TemplateArgs = FD->getTemplateSpecializationArgs();
564       return TD;
565     }
566   }
567
568   // Check if we have a class template.
569   if (const ClassTemplateSpecializationDecl *Spec =
570         dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
571     TemplateArgs = &Spec->getTemplateArgs();
572     return Spec->getSpecializedTemplate();
573   }
574
575   // Check if we have a variable template.
576   if (const VarTemplateSpecializationDecl *Spec =
577           dyn_cast<VarTemplateSpecializationDecl>(ND)) {
578     TemplateArgs = &Spec->getTemplateArgs();
579     return Spec->getSpecializedTemplate();
580   }
581
582   return nullptr;
583 }
584
585 void CXXNameMangler::mangleName(const NamedDecl *ND) {
586   //  <name> ::= <nested-name>
587   //         ::= <unscoped-name>
588   //         ::= <unscoped-template-name> <template-args>
589   //         ::= <local-name>
590   //
591   const DeclContext *DC = getEffectiveDeclContext(ND);
592
593   // If this is an extern variable declared locally, the relevant DeclContext
594   // is that of the containing namespace, or the translation unit.
595   // FIXME: This is a hack; extern variables declared locally should have
596   // a proper semantic declaration context!
597   if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND))
598     while (!DC->isNamespace() && !DC->isTranslationUnit())
599       DC = getEffectiveParentContext(DC);
600   else if (GetLocalClassDecl(ND)) {
601     mangleLocalName(ND);
602     return;
603   }
604
605   DC = IgnoreLinkageSpecDecls(DC);
606
607   if (DC->isTranslationUnit() || isStdNamespace(DC)) {
608     // Check if we have a template.
609     const TemplateArgumentList *TemplateArgs = nullptr;
610     if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
611       mangleUnscopedTemplateName(TD);
612       mangleTemplateArgs(*TemplateArgs);
613       return;
614     }
615
616     mangleUnscopedName(ND);
617     return;
618   }
619
620   if (isLocalContainerContext(DC)) {
621     mangleLocalName(ND);
622     return;
623   }
624
625   mangleNestedName(ND, DC);
626 }
627 void CXXNameMangler::mangleName(const TemplateDecl *TD,
628                                 const TemplateArgument *TemplateArgs,
629                                 unsigned NumTemplateArgs) {
630   const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
631
632   if (DC->isTranslationUnit() || isStdNamespace(DC)) {
633     mangleUnscopedTemplateName(TD);
634     mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
635   } else {
636     mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
637   }
638 }
639
640 void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
641   //  <unscoped-name> ::= <unqualified-name>
642   //                  ::= St <unqualified-name>   # ::std::
643
644   if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
645     Out << "St";
646
647   mangleUnqualifiedName(ND);
648 }
649
650 void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
651   //     <unscoped-template-name> ::= <unscoped-name>
652   //                              ::= <substitution>
653   if (mangleSubstitution(ND))
654     return;
655
656   // <template-template-param> ::= <template-param>
657   if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND))
658     mangleTemplateParameter(TTP->getIndex());
659   else
660     mangleUnscopedName(ND->getTemplatedDecl());
661
662   addSubstitution(ND);
663 }
664
665 void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
666   //     <unscoped-template-name> ::= <unscoped-name>
667   //                              ::= <substitution>
668   if (TemplateDecl *TD = Template.getAsTemplateDecl())
669     return mangleUnscopedTemplateName(TD);
670   
671   if (mangleSubstitution(Template))
672     return;
673
674   DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
675   assert(Dependent && "Not a dependent template name?");
676   if (const IdentifierInfo *Id = Dependent->getIdentifier())
677     mangleSourceName(Id);
678   else
679     mangleOperatorName(Dependent->getOperator(), UnknownArity);
680   
681   addSubstitution(Template);
682 }
683
684 void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
685   // ABI:
686   //   Floating-point literals are encoded using a fixed-length
687   //   lowercase hexadecimal string corresponding to the internal
688   //   representation (IEEE on Itanium), high-order bytes first,
689   //   without leading zeroes. For example: "Lf bf800000 E" is -1.0f
690   //   on Itanium.
691   // The 'without leading zeroes' thing seems to be an editorial
692   // mistake; see the discussion on cxx-abi-dev beginning on
693   // 2012-01-16.
694
695   // Our requirements here are just barely weird enough to justify
696   // using a custom algorithm instead of post-processing APInt::toString().
697
698   llvm::APInt valueBits = f.bitcastToAPInt();
699   unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
700   assert(numCharacters != 0);
701
702   // Allocate a buffer of the right number of characters.
703   SmallVector<char, 20> buffer;
704   buffer.set_size(numCharacters);
705
706   // Fill the buffer left-to-right.
707   for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
708     // The bit-index of the next hex digit.
709     unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
710
711     // Project out 4 bits starting at 'digitIndex'.
712     llvm::integerPart hexDigit
713       = valueBits.getRawData()[digitBitIndex / llvm::integerPartWidth];
714     hexDigit >>= (digitBitIndex % llvm::integerPartWidth);
715     hexDigit &= 0xF;
716
717     // Map that over to a lowercase hex digit.
718     static const char charForHex[16] = {
719       '0', '1', '2', '3', '4', '5', '6', '7',
720       '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
721     };
722     buffer[stringIndex] = charForHex[hexDigit];
723   }
724
725   Out.write(buffer.data(), numCharacters);
726 }
727
728 void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
729   if (Value.isSigned() && Value.isNegative()) {
730     Out << 'n';
731     Value.abs().print(Out, /*signed*/ false);
732   } else {
733     Value.print(Out, /*signed*/ false);
734   }
735 }
736
737 void CXXNameMangler::mangleNumber(int64_t Number) {
738   //  <number> ::= [n] <non-negative decimal integer>
739   if (Number < 0) {
740     Out << 'n';
741     Number = -Number;
742   }
743
744   Out << Number;
745 }
746
747 void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
748   //  <call-offset>  ::= h <nv-offset> _
749   //                 ::= v <v-offset> _
750   //  <nv-offset>    ::= <offset number>        # non-virtual base override
751   //  <v-offset>     ::= <offset number> _ <virtual offset number>
752   //                      # virtual base override, with vcall offset
753   if (!Virtual) {
754     Out << 'h';
755     mangleNumber(NonVirtual);
756     Out << '_';
757     return;
758   }
759
760   Out << 'v';
761   mangleNumber(NonVirtual);
762   Out << '_';
763   mangleNumber(Virtual);
764   Out << '_';
765 }
766
767 void CXXNameMangler::manglePrefix(QualType type) {
768   if (const auto *TST = type->getAs<TemplateSpecializationType>()) {
769     if (!mangleSubstitution(QualType(TST, 0))) {
770       mangleTemplatePrefix(TST->getTemplateName());
771         
772       // FIXME: GCC does not appear to mangle the template arguments when
773       // the template in question is a dependent template name. Should we
774       // emulate that badness?
775       mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
776       addSubstitution(QualType(TST, 0));
777     }
778   } else if (const auto *DTST =
779                  type->getAs<DependentTemplateSpecializationType>()) {
780     if (!mangleSubstitution(QualType(DTST, 0))) {
781       TemplateName Template = getASTContext().getDependentTemplateName(
782           DTST->getQualifier(), DTST->getIdentifier());
783       mangleTemplatePrefix(Template);
784
785       // FIXME: GCC does not appear to mangle the template arguments when
786       // the template in question is a dependent template name. Should we
787       // emulate that badness?
788       mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
789       addSubstitution(QualType(DTST, 0));
790     }
791   } else {
792     // We use the QualType mangle type variant here because it handles
793     // substitutions.
794     mangleType(type);
795   }
796 }
797
798 /// Mangle everything prior to the base-unresolved-name in an unresolved-name.
799 ///
800 /// \param recursive - true if this is being called recursively,
801 ///   i.e. if there is more prefix "to the right".
802 void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
803                                             bool recursive) {
804
805   // x, ::x
806   // <unresolved-name> ::= [gs] <base-unresolved-name>
807
808   // T::x / decltype(p)::x
809   // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
810
811   // T::N::x /decltype(p)::N::x
812   // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
813   //                       <base-unresolved-name>
814
815   // A::x, N::y, A<T>::z; "gs" means leading "::"
816   // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
817   //                       <base-unresolved-name>
818
819   switch (qualifier->getKind()) {
820   case NestedNameSpecifier::Global:
821     Out << "gs";
822
823     // We want an 'sr' unless this is the entire NNS.
824     if (recursive)
825       Out << "sr";
826
827     // We never want an 'E' here.
828     return;
829
830   case NestedNameSpecifier::Super:
831     llvm_unreachable("Can't mangle __super specifier");
832
833   case NestedNameSpecifier::Namespace:
834     if (qualifier->getPrefix())
835       mangleUnresolvedPrefix(qualifier->getPrefix(),
836                              /*recursive*/ true);
837     else
838       Out << "sr";
839     mangleSourceName(qualifier->getAsNamespace()->getIdentifier());
840     break;
841   case NestedNameSpecifier::NamespaceAlias:
842     if (qualifier->getPrefix())
843       mangleUnresolvedPrefix(qualifier->getPrefix(),
844                              /*recursive*/ true);
845     else
846       Out << "sr";
847     mangleSourceName(qualifier->getAsNamespaceAlias()->getIdentifier());
848     break;
849
850   case NestedNameSpecifier::TypeSpec:
851   case NestedNameSpecifier::TypeSpecWithTemplate: {
852     const Type *type = qualifier->getAsType();
853
854     // We only want to use an unresolved-type encoding if this is one of:
855     //   - a decltype
856     //   - a template type parameter
857     //   - a template template parameter with arguments
858     // In all of these cases, we should have no prefix.
859     if (qualifier->getPrefix()) {
860       mangleUnresolvedPrefix(qualifier->getPrefix(),
861                              /*recursive*/ true);
862     } else {
863       // Otherwise, all the cases want this.
864       Out << "sr";
865     }
866
867     if (mangleUnresolvedTypeOrSimpleId(QualType(type, 0), recursive ? "N" : ""))
868       return;
869
870     break;
871   }
872
873   case NestedNameSpecifier::Identifier:
874     // Member expressions can have these without prefixes.
875     if (qualifier->getPrefix())
876       mangleUnresolvedPrefix(qualifier->getPrefix(),
877                              /*recursive*/ true);
878     else
879       Out << "sr";
880
881     mangleSourceName(qualifier->getAsIdentifier());
882     break;
883   }
884
885   // If this was the innermost part of the NNS, and we fell out to
886   // here, append an 'E'.
887   if (!recursive)
888     Out << 'E';
889 }
890
891 /// Mangle an unresolved-name, which is generally used for names which
892 /// weren't resolved to specific entities.
893 void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *qualifier,
894                                           DeclarationName name,
895                                           unsigned knownArity) {
896   if (qualifier) mangleUnresolvedPrefix(qualifier);
897   switch (name.getNameKind()) {
898     // <base-unresolved-name> ::= <simple-id>
899     case DeclarationName::Identifier:
900       mangleSourceName(name.getAsIdentifierInfo());
901       break;
902     // <base-unresolved-name> ::= dn <destructor-name>
903     case DeclarationName::CXXDestructorName:
904       Out << "dn";
905       mangleUnresolvedTypeOrSimpleId(name.getCXXNameType());
906       break;
907     // <base-unresolved-name> ::= on <operator-name>
908     case DeclarationName::CXXConversionFunctionName:
909     case DeclarationName::CXXLiteralOperatorName:
910     case DeclarationName::CXXOperatorName:
911       Out << "on";
912       mangleOperatorName(name, knownArity);
913       break;
914     case DeclarationName::CXXConstructorName:
915       llvm_unreachable("Can't mangle a constructor name!");
916     case DeclarationName::CXXUsingDirective:
917       llvm_unreachable("Can't mangle a using directive name!");
918     case DeclarationName::ObjCMultiArgSelector:
919     case DeclarationName::ObjCOneArgSelector:
920     case DeclarationName::ObjCZeroArgSelector:
921       llvm_unreachable("Can't mangle Objective-C selector names here!");
922   }
923 }
924
925 void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
926                                            DeclarationName Name,
927                                            unsigned KnownArity) {
928   unsigned Arity = KnownArity;
929   //  <unqualified-name> ::= <operator-name>
930   //                     ::= <ctor-dtor-name>
931   //                     ::= <source-name>
932   switch (Name.getNameKind()) {
933   case DeclarationName::Identifier: {
934     if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
935       // We must avoid conflicts between internally- and externally-
936       // linked variable and function declaration names in the same TU:
937       //   void test() { extern void foo(); }
938       //   static void foo();
939       // This naming convention is the same as that followed by GCC,
940       // though it shouldn't actually matter.
941       if (ND && ND->getFormalLinkage() == InternalLinkage &&
942           getEffectiveDeclContext(ND)->isFileContext())
943         Out << 'L';
944
945       mangleSourceName(II);
946       break;
947     }
948
949     // Otherwise, an anonymous entity.  We must have a declaration.
950     assert(ND && "mangling empty name without declaration");
951
952     if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
953       if (NS->isAnonymousNamespace()) {
954         // This is how gcc mangles these names.
955         Out << "12_GLOBAL__N_1";
956         break;
957       }
958     }
959
960     if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
961       // We must have an anonymous union or struct declaration.
962       const RecordDecl *RD =
963         cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
964
965       // Itanium C++ ABI 5.1.2:
966       //
967       //   For the purposes of mangling, the name of an anonymous union is
968       //   considered to be the name of the first named data member found by a
969       //   pre-order, depth-first, declaration-order walk of the data members of
970       //   the anonymous union. If there is no such data member (i.e., if all of
971       //   the data members in the union are unnamed), then there is no way for
972       //   a program to refer to the anonymous union, and there is therefore no
973       //   need to mangle its name.
974       assert(RD->isAnonymousStructOrUnion()
975              && "Expected anonymous struct or union!");
976       const FieldDecl *FD = RD->findFirstNamedDataMember();
977
978       // It's actually possible for various reasons for us to get here
979       // with an empty anonymous struct / union.  Fortunately, it
980       // doesn't really matter what name we generate.
981       if (!FD) break;
982       assert(FD->getIdentifier() && "Data member name isn't an identifier!");
983
984       mangleSourceName(FD->getIdentifier());
985       break;
986     }
987
988     // Class extensions have no name as a category, and it's possible
989     // for them to be the semantic parent of certain declarations
990     // (primarily, tag decls defined within declarations).  Such
991     // declarations will always have internal linkage, so the name
992     // doesn't really matter, but we shouldn't crash on them.  For
993     // safety, just handle all ObjC containers here.
994     if (isa<ObjCContainerDecl>(ND))
995       break;
996     
997     // We must have an anonymous struct.
998     const TagDecl *TD = cast<TagDecl>(ND);
999     if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1000       assert(TD->getDeclContext() == D->getDeclContext() &&
1001              "Typedef should not be in another decl context!");
1002       assert(D->getDeclName().getAsIdentifierInfo() &&
1003              "Typedef was not named!");
1004       mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1005       break;
1006     }
1007
1008     // <unnamed-type-name> ::= <closure-type-name>
1009     // 
1010     // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1011     // <lambda-sig> ::= <parameter-type>+   # Parameter types or 'v' for 'void'.
1012     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1013       if (Record->isLambda() && Record->getLambdaManglingNumber()) {
1014         mangleLambda(Record);
1015         break;
1016       }
1017     }
1018
1019     if (TD->isExternallyVisible()) {
1020       unsigned UnnamedMangle = getASTContext().getManglingNumber(TD);
1021       Out << "Ut";
1022       if (UnnamedMangle > 1)
1023         Out << llvm::utostr(UnnamedMangle - 2);
1024       Out << '_';
1025       break;
1026     }
1027
1028     // Get a unique id for the anonymous struct.
1029     unsigned AnonStructId = Context.getAnonymousStructId(TD);
1030
1031     // Mangle it as a source name in the form
1032     // [n] $_<id>
1033     // where n is the length of the string.
1034     SmallString<8> Str;
1035     Str += "$_";
1036     Str += llvm::utostr(AnonStructId);
1037
1038     Out << Str.size();
1039     Out << Str;
1040     break;
1041   }
1042
1043   case DeclarationName::ObjCZeroArgSelector:
1044   case DeclarationName::ObjCOneArgSelector:
1045   case DeclarationName::ObjCMultiArgSelector:
1046     llvm_unreachable("Can't mangle Objective-C selector names here!");
1047
1048   case DeclarationName::CXXConstructorName:
1049     if (ND == Structor)
1050       // If the named decl is the C++ constructor we're mangling, use the type
1051       // we were given.
1052       mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
1053     else
1054       // Otherwise, use the complete constructor name. This is relevant if a
1055       // class with a constructor is declared within a constructor.
1056       mangleCXXCtorType(Ctor_Complete);
1057     break;
1058
1059   case DeclarationName::CXXDestructorName:
1060     if (ND == Structor)
1061       // If the named decl is the C++ destructor we're mangling, use the type we
1062       // were given.
1063       mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1064     else
1065       // Otherwise, use the complete destructor name. This is relevant if a
1066       // class with a destructor is declared within a destructor.
1067       mangleCXXDtorType(Dtor_Complete);
1068     break;
1069
1070   case DeclarationName::CXXOperatorName:
1071     if (ND && Arity == UnknownArity) {
1072       Arity = cast<FunctionDecl>(ND)->getNumParams();
1073
1074       // If we have a member function, we need to include the 'this' pointer.
1075       if (const auto *MD = dyn_cast<CXXMethodDecl>(ND))
1076         if (!MD->isStatic())
1077           Arity++;
1078     }
1079   // FALLTHROUGH
1080   case DeclarationName::CXXConversionFunctionName:
1081   case DeclarationName::CXXLiteralOperatorName:
1082     mangleOperatorName(Name, Arity);
1083     break;
1084
1085   case DeclarationName::CXXUsingDirective:
1086     llvm_unreachable("Can't mangle a using directive name!");
1087   }
1088 }
1089
1090 void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1091   // <source-name> ::= <positive length number> <identifier>
1092   // <number> ::= [n] <non-negative decimal integer>
1093   // <identifier> ::= <unqualified source code identifier>
1094   Out << II->getLength() << II->getName();
1095 }
1096
1097 void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
1098                                       const DeclContext *DC,
1099                                       bool NoFunction) {
1100   // <nested-name> 
1101   //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1102   //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix> 
1103   //       <template-args> E
1104
1105   Out << 'N';
1106   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1107     Qualifiers MethodQuals =
1108         Qualifiers::fromCVRMask(Method->getTypeQualifiers());
1109     // We do not consider restrict a distinguishing attribute for overloading
1110     // purposes so we must not mangle it.
1111     MethodQuals.removeRestrict();
1112     mangleQualifiers(MethodQuals);
1113     mangleRefQualifier(Method->getRefQualifier());
1114   }
1115   
1116   // Check if we have a template.
1117   const TemplateArgumentList *TemplateArgs = nullptr;
1118   if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1119     mangleTemplatePrefix(TD, NoFunction);
1120     mangleTemplateArgs(*TemplateArgs);
1121   }
1122   else {
1123     manglePrefix(DC, NoFunction);
1124     mangleUnqualifiedName(ND);
1125   }
1126
1127   Out << 'E';
1128 }
1129 void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1130                                       const TemplateArgument *TemplateArgs,
1131                                       unsigned NumTemplateArgs) {
1132   // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1133
1134   Out << 'N';
1135
1136   mangleTemplatePrefix(TD);
1137   mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
1138
1139   Out << 'E';
1140 }
1141
1142 void CXXNameMangler::mangleLocalName(const Decl *D) {
1143   // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1144   //              := Z <function encoding> E s [<discriminator>]
1145   // <local-name> := Z <function encoding> E d [ <parameter number> ] 
1146   //                 _ <entity name>
1147   // <discriminator> := _ <non-negative number>
1148   assert(isa<NamedDecl>(D) || isa<BlockDecl>(D));
1149   const RecordDecl *RD = GetLocalClassDecl(D);
1150   const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D);
1151
1152   Out << 'Z';
1153
1154   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
1155     mangleObjCMethodName(MD);
1156   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
1157     mangleBlockForPrefix(BD);
1158   else
1159     mangleFunctionEncoding(cast<FunctionDecl>(DC));
1160
1161   Out << 'E';
1162
1163   if (RD) {
1164     // The parameter number is omitted for the last parameter, 0 for the 
1165     // second-to-last parameter, 1 for the third-to-last parameter, etc. The 
1166     // <entity name> will of course contain a <closure-type-name>: Its 
1167     // numbering will be local to the particular argument in which it appears
1168     // -- other default arguments do not affect its encoding.
1169     const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1170     if (CXXRD->isLambda()) {
1171       if (const ParmVarDecl *Parm
1172               = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) {
1173         if (const FunctionDecl *Func
1174               = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1175           Out << 'd';
1176           unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1177           if (Num > 1)
1178             mangleNumber(Num - 2);
1179           Out << '_';
1180         }
1181       }
1182     }
1183     
1184     // Mangle the name relative to the closest enclosing function.
1185     // equality ok because RD derived from ND above
1186     if (D == RD)  {
1187       mangleUnqualifiedName(RD);
1188     } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1189       manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/);
1190       mangleUnqualifiedBlock(BD);
1191     } else {
1192       const NamedDecl *ND = cast<NamedDecl>(D);
1193       mangleNestedName(ND, getEffectiveDeclContext(ND), true /*NoFunction*/);
1194     }
1195   } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1196     // Mangle a block in a default parameter; see above explanation for
1197     // lambdas.
1198     if (const ParmVarDecl *Parm
1199             = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) {
1200       if (const FunctionDecl *Func
1201             = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1202         Out << 'd';
1203         unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1204         if (Num > 1)
1205           mangleNumber(Num - 2);
1206         Out << '_';
1207       }
1208     }
1209
1210     mangleUnqualifiedBlock(BD);
1211   } else {
1212     mangleUnqualifiedName(cast<NamedDecl>(D));
1213   }
1214
1215   if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) {
1216     unsigned disc;
1217     if (Context.getNextDiscriminator(ND, disc)) {
1218       if (disc < 10)
1219         Out << '_' << disc;
1220       else
1221         Out << "__" << disc << '_';
1222     }
1223   }
1224 }
1225
1226 void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) {
1227   if (GetLocalClassDecl(Block)) {
1228     mangleLocalName(Block);
1229     return;
1230   }
1231   const DeclContext *DC = getEffectiveDeclContext(Block);
1232   if (isLocalContainerContext(DC)) {
1233     mangleLocalName(Block);
1234     return;
1235   }
1236   manglePrefix(getEffectiveDeclContext(Block));
1237   mangleUnqualifiedBlock(Block);
1238 }
1239
1240 void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) {
1241   if (Decl *Context = Block->getBlockManglingContextDecl()) {
1242     if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1243         Context->getDeclContext()->isRecord()) {
1244       if (const IdentifierInfo *Name
1245             = cast<NamedDecl>(Context)->getIdentifier()) {
1246         mangleSourceName(Name);
1247         Out << 'M';            
1248       }
1249     }
1250   }
1251
1252   // If we have a block mangling number, use it.
1253   unsigned Number = Block->getBlockManglingNumber();
1254   // Otherwise, just make up a number. It doesn't matter what it is because
1255   // the symbol in question isn't externally visible.
1256   if (!Number)
1257     Number = Context.getBlockId(Block, false);
1258   Out << "Ub";
1259   if (Number > 0)
1260     Out << Number - 1;
1261   Out << '_';
1262 }
1263
1264 void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1265   // If the context of a closure type is an initializer for a class member 
1266   // (static or nonstatic), it is encoded in a qualified name with a final 
1267   // <prefix> of the form:
1268   //
1269   //   <data-member-prefix> := <member source-name> M
1270   //
1271   // Technically, the data-member-prefix is part of the <prefix>. However,
1272   // since a closure type will always be mangled with a prefix, it's easier
1273   // to emit that last part of the prefix here.
1274   if (Decl *Context = Lambda->getLambdaContextDecl()) {
1275     if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1276         Context->getDeclContext()->isRecord()) {
1277       if (const IdentifierInfo *Name
1278             = cast<NamedDecl>(Context)->getIdentifier()) {
1279         mangleSourceName(Name);
1280         Out << 'M';            
1281       }
1282     }
1283   }
1284
1285   Out << "Ul";
1286   const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()->
1287                                    getAs<FunctionProtoType>();
1288   mangleBareFunctionType(Proto, /*MangleReturnType=*/false);        
1289   Out << "E";
1290   
1291   // The number is omitted for the first closure type with a given 
1292   // <lambda-sig> in a given context; it is n-2 for the nth closure type 
1293   // (in lexical order) with that same <lambda-sig> and context.
1294   //
1295   // The AST keeps track of the number for us.
1296   unsigned Number = Lambda->getLambdaManglingNumber();
1297   assert(Number > 0 && "Lambda should be mangled as an unnamed class");
1298   if (Number > 1)
1299     mangleNumber(Number - 2);
1300   Out << '_';  
1301 }
1302
1303 void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1304   switch (qualifier->getKind()) {
1305   case NestedNameSpecifier::Global:
1306     // nothing
1307     return;
1308
1309   case NestedNameSpecifier::Super:
1310     llvm_unreachable("Can't mangle __super specifier");
1311
1312   case NestedNameSpecifier::Namespace:
1313     mangleName(qualifier->getAsNamespace());
1314     return;
1315
1316   case NestedNameSpecifier::NamespaceAlias:
1317     mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
1318     return;
1319
1320   case NestedNameSpecifier::TypeSpec:
1321   case NestedNameSpecifier::TypeSpecWithTemplate:
1322     manglePrefix(QualType(qualifier->getAsType(), 0));
1323     return;
1324
1325   case NestedNameSpecifier::Identifier:
1326     // Member expressions can have these without prefixes, but that
1327     // should end up in mangleUnresolvedPrefix instead.
1328     assert(qualifier->getPrefix());
1329     manglePrefix(qualifier->getPrefix());
1330
1331     mangleSourceName(qualifier->getAsIdentifier());
1332     return;
1333   }
1334
1335   llvm_unreachable("unexpected nested name specifier");
1336 }
1337
1338 void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
1339   //  <prefix> ::= <prefix> <unqualified-name>
1340   //           ::= <template-prefix> <template-args>
1341   //           ::= <template-param>
1342   //           ::= # empty
1343   //           ::= <substitution>
1344
1345   DC = IgnoreLinkageSpecDecls(DC);
1346
1347   if (DC->isTranslationUnit())
1348     return;
1349
1350   if (NoFunction && isLocalContainerContext(DC))
1351     return;
1352
1353   assert(!isLocalContainerContext(DC));
1354
1355   const NamedDecl *ND = cast<NamedDecl>(DC);  
1356   if (mangleSubstitution(ND))
1357     return;
1358   
1359   // Check if we have a template.
1360   const TemplateArgumentList *TemplateArgs = nullptr;
1361   if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1362     mangleTemplatePrefix(TD);
1363     mangleTemplateArgs(*TemplateArgs);
1364   } else {
1365     manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1366     mangleUnqualifiedName(ND);
1367   }
1368
1369   addSubstitution(ND);
1370 }
1371
1372 void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
1373   // <template-prefix> ::= <prefix> <template unqualified-name>
1374   //                   ::= <template-param>
1375   //                   ::= <substitution>
1376   if (TemplateDecl *TD = Template.getAsTemplateDecl())
1377     return mangleTemplatePrefix(TD);
1378
1379   if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
1380     manglePrefix(Qualified->getQualifier());
1381   
1382   if (OverloadedTemplateStorage *Overloaded
1383                                       = Template.getAsOverloadedTemplate()) {
1384     mangleUnqualifiedName(nullptr, (*Overloaded->begin())->getDeclName(),
1385                           UnknownArity);
1386     return;
1387   }
1388    
1389   DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
1390   assert(Dependent && "Unknown template name kind?");
1391   if (NestedNameSpecifier *Qualifier = Dependent->getQualifier())
1392     manglePrefix(Qualifier);
1393   mangleUnscopedTemplateName(Template);
1394 }
1395
1396 void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND,
1397                                           bool NoFunction) {
1398   // <template-prefix> ::= <prefix> <template unqualified-name>
1399   //                   ::= <template-param>
1400   //                   ::= <substitution>
1401   // <template-template-param> ::= <template-param>
1402   //                               <substitution>
1403
1404   if (mangleSubstitution(ND))
1405     return;
1406
1407   // <template-template-param> ::= <template-param>
1408   if (const auto *TTP = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1409     mangleTemplateParameter(TTP->getIndex());
1410   } else {
1411     manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1412     mangleUnqualifiedName(ND->getTemplatedDecl());
1413   }
1414
1415   addSubstitution(ND);
1416 }
1417
1418 /// Mangles a template name under the production <type>.  Required for
1419 /// template template arguments.
1420 ///   <type> ::= <class-enum-type>
1421 ///          ::= <template-param>
1422 ///          ::= <substitution>
1423 void CXXNameMangler::mangleType(TemplateName TN) {
1424   if (mangleSubstitution(TN))
1425     return;
1426
1427   TemplateDecl *TD = nullptr;
1428
1429   switch (TN.getKind()) {
1430   case TemplateName::QualifiedTemplate:
1431     TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
1432     goto HaveDecl;
1433
1434   case TemplateName::Template:
1435     TD = TN.getAsTemplateDecl();
1436     goto HaveDecl;
1437
1438   HaveDecl:
1439     if (isa<TemplateTemplateParmDecl>(TD))
1440       mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
1441     else
1442       mangleName(TD);
1443     break;
1444
1445   case TemplateName::OverloadedTemplate:
1446     llvm_unreachable("can't mangle an overloaded template name as a <type>");
1447
1448   case TemplateName::DependentTemplate: {
1449     const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
1450     assert(Dependent->isIdentifier());
1451
1452     // <class-enum-type> ::= <name>
1453     // <name> ::= <nested-name>
1454     mangleUnresolvedPrefix(Dependent->getQualifier());
1455     mangleSourceName(Dependent->getIdentifier());
1456     break;
1457   }
1458
1459   case TemplateName::SubstTemplateTemplateParm: {
1460     // Substituted template parameters are mangled as the substituted
1461     // template.  This will check for the substitution twice, which is
1462     // fine, but we have to return early so that we don't try to *add*
1463     // the substitution twice.
1464     SubstTemplateTemplateParmStorage *subst
1465       = TN.getAsSubstTemplateTemplateParm();
1466     mangleType(subst->getReplacement());
1467     return;
1468   }
1469
1470   case TemplateName::SubstTemplateTemplateParmPack: {
1471     // FIXME: not clear how to mangle this!
1472     // template <template <class> class T...> class A {
1473     //   template <template <class> class U...> void foo(B<T,U> x...);
1474     // };
1475     Out << "_SUBSTPACK_";
1476     break;
1477   }
1478   }
1479
1480   addSubstitution(TN);
1481 }
1482
1483 bool CXXNameMangler::mangleUnresolvedTypeOrSimpleId(QualType Ty,
1484                                                     StringRef Prefix) {
1485   // Only certain other types are valid as prefixes;  enumerate them.
1486   switch (Ty->getTypeClass()) {
1487   case Type::Builtin:
1488   case Type::Complex:
1489   case Type::Adjusted:
1490   case Type::Decayed:
1491   case Type::Pointer:
1492   case Type::BlockPointer:
1493   case Type::LValueReference:
1494   case Type::RValueReference:
1495   case Type::MemberPointer:
1496   case Type::ConstantArray:
1497   case Type::IncompleteArray:
1498   case Type::VariableArray:
1499   case Type::DependentSizedArray:
1500   case Type::DependentSizedExtVector:
1501   case Type::Vector:
1502   case Type::ExtVector:
1503   case Type::FunctionProto:
1504   case Type::FunctionNoProto:
1505   case Type::Paren:
1506   case Type::Attributed:
1507   case Type::Auto:
1508   case Type::PackExpansion:
1509   case Type::ObjCObject:
1510   case Type::ObjCInterface:
1511   case Type::ObjCObjectPointer:
1512   case Type::Atomic:
1513     llvm_unreachable("type is illegal as a nested name specifier");
1514
1515   case Type::SubstTemplateTypeParmPack:
1516     // FIXME: not clear how to mangle this!
1517     // template <class T...> class A {
1518     //   template <class U...> void foo(decltype(T::foo(U())) x...);
1519     // };
1520     Out << "_SUBSTPACK_";
1521     break;
1522
1523   // <unresolved-type> ::= <template-param>
1524   //                   ::= <decltype>
1525   //                   ::= <template-template-param> <template-args>
1526   // (this last is not official yet)
1527   case Type::TypeOfExpr:
1528   case Type::TypeOf:
1529   case Type::Decltype:
1530   case Type::TemplateTypeParm:
1531   case Type::UnaryTransform:
1532   case Type::SubstTemplateTypeParm:
1533   unresolvedType:
1534     // Some callers want a prefix before the mangled type.
1535     Out << Prefix;
1536
1537     // This seems to do everything we want.  It's not really
1538     // sanctioned for a substituted template parameter, though.
1539     mangleType(Ty);
1540
1541     // We never want to print 'E' directly after an unresolved-type,
1542     // so we return directly.
1543     return true;
1544
1545   case Type::Typedef:
1546     mangleSourceName(cast<TypedefType>(Ty)->getDecl()->getIdentifier());
1547     break;
1548
1549   case Type::UnresolvedUsing:
1550     mangleSourceName(
1551         cast<UnresolvedUsingType>(Ty)->getDecl()->getIdentifier());
1552     break;
1553
1554   case Type::Enum:
1555   case Type::Record:
1556     mangleSourceName(cast<TagType>(Ty)->getDecl()->getIdentifier());
1557     break;
1558
1559   case Type::TemplateSpecialization: {
1560     const TemplateSpecializationType *TST =
1561         cast<TemplateSpecializationType>(Ty);
1562     TemplateName TN = TST->getTemplateName();
1563     switch (TN.getKind()) {
1564     case TemplateName::Template:
1565     case TemplateName::QualifiedTemplate: {
1566       TemplateDecl *TD = TN.getAsTemplateDecl();
1567
1568       // If the base is a template template parameter, this is an
1569       // unresolved type.
1570       assert(TD && "no template for template specialization type");
1571       if (isa<TemplateTemplateParmDecl>(TD))
1572         goto unresolvedType;
1573
1574       mangleSourceName(TD->getIdentifier());
1575       break;
1576     }
1577
1578     case TemplateName::OverloadedTemplate:
1579     case TemplateName::DependentTemplate:
1580       llvm_unreachable("invalid base for a template specialization type");
1581
1582     case TemplateName::SubstTemplateTemplateParm: {
1583       SubstTemplateTemplateParmStorage *subst =
1584           TN.getAsSubstTemplateTemplateParm();
1585       mangleExistingSubstitution(subst->getReplacement());
1586       break;
1587     }
1588
1589     case TemplateName::SubstTemplateTemplateParmPack: {
1590       // FIXME: not clear how to mangle this!
1591       // template <template <class U> class T...> class A {
1592       //   template <class U...> void foo(decltype(T<U>::foo) x...);
1593       // };
1594       Out << "_SUBSTPACK_";
1595       break;
1596     }
1597     }
1598
1599     mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
1600     break;
1601   }
1602
1603   case Type::InjectedClassName:
1604     mangleSourceName(
1605         cast<InjectedClassNameType>(Ty)->getDecl()->getIdentifier());
1606     break;
1607
1608   case Type::DependentName:
1609     mangleSourceName(cast<DependentNameType>(Ty)->getIdentifier());
1610     break;
1611
1612   case Type::DependentTemplateSpecialization: {
1613     const DependentTemplateSpecializationType *DTST =
1614         cast<DependentTemplateSpecializationType>(Ty);
1615     mangleSourceName(DTST->getIdentifier());
1616     mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
1617     break;
1618   }
1619
1620   case Type::Elaborated:
1621     return mangleUnresolvedTypeOrSimpleId(
1622         cast<ElaboratedType>(Ty)->getNamedType(), Prefix);
1623   }
1624
1625   return false;
1626 }
1627
1628 void CXXNameMangler::mangleOperatorName(DeclarationName Name, unsigned Arity) {
1629   switch (Name.getNameKind()) {
1630   case DeclarationName::CXXConstructorName:
1631   case DeclarationName::CXXDestructorName:
1632   case DeclarationName::CXXUsingDirective:
1633   case DeclarationName::Identifier:
1634   case DeclarationName::ObjCMultiArgSelector:
1635   case DeclarationName::ObjCOneArgSelector:
1636   case DeclarationName::ObjCZeroArgSelector:
1637     llvm_unreachable("Not an operator name");
1638
1639   case DeclarationName::CXXConversionFunctionName:
1640     // <operator-name> ::= cv <type>    # (cast)
1641     Out << "cv";
1642     mangleType(Name.getCXXNameType());
1643     break;
1644
1645   case DeclarationName::CXXLiteralOperatorName:
1646     Out << "li";
1647     mangleSourceName(Name.getCXXLiteralIdentifier());
1648     return;
1649
1650   case DeclarationName::CXXOperatorName:
1651     mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
1652     break;
1653   }
1654 }
1655
1656
1657
1658 void
1659 CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
1660   switch (OO) {
1661   // <operator-name> ::= nw     # new
1662   case OO_New: Out << "nw"; break;
1663   //              ::= na        # new[]
1664   case OO_Array_New: Out << "na"; break;
1665   //              ::= dl        # delete
1666   case OO_Delete: Out << "dl"; break;
1667   //              ::= da        # delete[]
1668   case OO_Array_Delete: Out << "da"; break;
1669   //              ::= ps        # + (unary)
1670   //              ::= pl        # + (binary or unknown)
1671   case OO_Plus:
1672     Out << (Arity == 1? "ps" : "pl"); break;
1673   //              ::= ng        # - (unary)
1674   //              ::= mi        # - (binary or unknown)
1675   case OO_Minus:
1676     Out << (Arity == 1? "ng" : "mi"); break;
1677   //              ::= ad        # & (unary)
1678   //              ::= an        # & (binary or unknown)
1679   case OO_Amp:
1680     Out << (Arity == 1? "ad" : "an"); break;
1681   //              ::= de        # * (unary)
1682   //              ::= ml        # * (binary or unknown)
1683   case OO_Star:
1684     // Use binary when unknown.
1685     Out << (Arity == 1? "de" : "ml"); break;
1686   //              ::= co        # ~
1687   case OO_Tilde: Out << "co"; break;
1688   //              ::= dv        # /
1689   case OO_Slash: Out << "dv"; break;
1690   //              ::= rm        # %
1691   case OO_Percent: Out << "rm"; break;
1692   //              ::= or        # |
1693   case OO_Pipe: Out << "or"; break;
1694   //              ::= eo        # ^
1695   case OO_Caret: Out << "eo"; break;
1696   //              ::= aS        # =
1697   case OO_Equal: Out << "aS"; break;
1698   //              ::= pL        # +=
1699   case OO_PlusEqual: Out << "pL"; break;
1700   //              ::= mI        # -=
1701   case OO_MinusEqual: Out << "mI"; break;
1702   //              ::= mL        # *=
1703   case OO_StarEqual: Out << "mL"; break;
1704   //              ::= dV        # /=
1705   case OO_SlashEqual: Out << "dV"; break;
1706   //              ::= rM        # %=
1707   case OO_PercentEqual: Out << "rM"; break;
1708   //              ::= aN        # &=
1709   case OO_AmpEqual: Out << "aN"; break;
1710   //              ::= oR        # |=
1711   case OO_PipeEqual: Out << "oR"; break;
1712   //              ::= eO        # ^=
1713   case OO_CaretEqual: Out << "eO"; break;
1714   //              ::= ls        # <<
1715   case OO_LessLess: Out << "ls"; break;
1716   //              ::= rs        # >>
1717   case OO_GreaterGreater: Out << "rs"; break;
1718   //              ::= lS        # <<=
1719   case OO_LessLessEqual: Out << "lS"; break;
1720   //              ::= rS        # >>=
1721   case OO_GreaterGreaterEqual: Out << "rS"; break;
1722   //              ::= eq        # ==
1723   case OO_EqualEqual: Out << "eq"; break;
1724   //              ::= ne        # !=
1725   case OO_ExclaimEqual: Out << "ne"; break;
1726   //              ::= lt        # <
1727   case OO_Less: Out << "lt"; break;
1728   //              ::= gt        # >
1729   case OO_Greater: Out << "gt"; break;
1730   //              ::= le        # <=
1731   case OO_LessEqual: Out << "le"; break;
1732   //              ::= ge        # >=
1733   case OO_GreaterEqual: Out << "ge"; break;
1734   //              ::= nt        # !
1735   case OO_Exclaim: Out << "nt"; break;
1736   //              ::= aa        # &&
1737   case OO_AmpAmp: Out << "aa"; break;
1738   //              ::= oo        # ||
1739   case OO_PipePipe: Out << "oo"; break;
1740   //              ::= pp        # ++
1741   case OO_PlusPlus: Out << "pp"; break;
1742   //              ::= mm        # --
1743   case OO_MinusMinus: Out << "mm"; break;
1744   //              ::= cm        # ,
1745   case OO_Comma: Out << "cm"; break;
1746   //              ::= pm        # ->*
1747   case OO_ArrowStar: Out << "pm"; break;
1748   //              ::= pt        # ->
1749   case OO_Arrow: Out << "pt"; break;
1750   //              ::= cl        # ()
1751   case OO_Call: Out << "cl"; break;
1752   //              ::= ix        # []
1753   case OO_Subscript: Out << "ix"; break;
1754
1755   //              ::= qu        # ?
1756   // The conditional operator can't be overloaded, but we still handle it when
1757   // mangling expressions.
1758   case OO_Conditional: Out << "qu"; break;
1759
1760   case OO_None:
1761   case NUM_OVERLOADED_OPERATORS:
1762     llvm_unreachable("Not an overloaded operator");
1763   }
1764 }
1765
1766 void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
1767   // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const
1768   if (Quals.hasRestrict())
1769     Out << 'r';
1770   if (Quals.hasVolatile())
1771     Out << 'V';
1772   if (Quals.hasConst())
1773     Out << 'K';
1774
1775   if (Quals.hasAddressSpace()) {
1776     // Address space extension:
1777     //
1778     //   <type> ::= U <target-addrspace>
1779     //   <type> ::= U <OpenCL-addrspace>
1780     //   <type> ::= U <CUDA-addrspace>
1781
1782     SmallString<64> ASString;
1783     unsigned AS = Quals.getAddressSpace();
1784
1785     if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
1786       //  <target-addrspace> ::= "AS" <address-space-number>
1787       unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
1788       ASString = "AS" + llvm::utostr_32(TargetAS);
1789     } else {
1790       switch (AS) {
1791       default: llvm_unreachable("Not a language specific address space");
1792       //  <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" ]
1793       case LangAS::opencl_global:   ASString = "CLglobal";   break;
1794       case LangAS::opencl_local:    ASString = "CLlocal";    break;
1795       case LangAS::opencl_constant: ASString = "CLconstant"; break;
1796       //  <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
1797       case LangAS::cuda_device:     ASString = "CUdevice";   break;
1798       case LangAS::cuda_constant:   ASString = "CUconstant"; break;
1799       case LangAS::cuda_shared:     ASString = "CUshared";   break;
1800       }
1801     }
1802     Out << 'U' << ASString.size() << ASString;
1803   }
1804   
1805   StringRef LifetimeName;
1806   switch (Quals.getObjCLifetime()) {
1807   // Objective-C ARC Extension:
1808   //
1809   //   <type> ::= U "__strong"
1810   //   <type> ::= U "__weak"
1811   //   <type> ::= U "__autoreleasing"
1812   case Qualifiers::OCL_None:
1813     break;
1814     
1815   case Qualifiers::OCL_Weak:
1816     LifetimeName = "__weak";
1817     break;
1818     
1819   case Qualifiers::OCL_Strong:
1820     LifetimeName = "__strong";
1821     break;
1822     
1823   case Qualifiers::OCL_Autoreleasing:
1824     LifetimeName = "__autoreleasing";
1825     break;
1826     
1827   case Qualifiers::OCL_ExplicitNone:
1828     // The __unsafe_unretained qualifier is *not* mangled, so that
1829     // __unsafe_unretained types in ARC produce the same manglings as the
1830     // equivalent (but, naturally, unqualified) types in non-ARC, providing
1831     // better ABI compatibility.
1832     //
1833     // It's safe to do this because unqualified 'id' won't show up
1834     // in any type signatures that need to be mangled.
1835     break;
1836   }
1837   if (!LifetimeName.empty())
1838     Out << 'U' << LifetimeName.size() << LifetimeName;
1839 }
1840
1841 void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
1842   // <ref-qualifier> ::= R                # lvalue reference
1843   //                 ::= O                # rvalue-reference
1844   switch (RefQualifier) {
1845   case RQ_None:
1846     break;
1847       
1848   case RQ_LValue:
1849     Out << 'R';
1850     break;
1851       
1852   case RQ_RValue:
1853     Out << 'O';
1854     break;
1855   }
1856 }
1857
1858 void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1859   Context.mangleObjCMethodName(MD, Out);
1860 }
1861
1862 static bool isTypeSubstitutable(Qualifiers Quals, const Type *Ty) {
1863   if (Quals)
1864     return true;
1865   if (Ty->isSpecificBuiltinType(BuiltinType::ObjCSel))
1866     return true;
1867   if (Ty->isOpenCLSpecificType())
1868     return true;
1869   if (Ty->isBuiltinType())
1870     return false;
1871
1872   return true;
1873 }
1874
1875 void CXXNameMangler::mangleType(QualType T) {
1876   // If our type is instantiation-dependent but not dependent, we mangle
1877   // it as it was written in the source, removing any top-level sugar. 
1878   // Otherwise, use the canonical type.
1879   //
1880   // FIXME: This is an approximation of the instantiation-dependent name 
1881   // mangling rules, since we should really be using the type as written and
1882   // augmented via semantic analysis (i.e., with implicit conversions and
1883   // default template arguments) for any instantiation-dependent type. 
1884   // Unfortunately, that requires several changes to our AST:
1885   //   - Instantiation-dependent TemplateSpecializationTypes will need to be 
1886   //     uniqued, so that we can handle substitutions properly
1887   //   - Default template arguments will need to be represented in the
1888   //     TemplateSpecializationType, since they need to be mangled even though
1889   //     they aren't written.
1890   //   - Conversions on non-type template arguments need to be expressed, since
1891   //     they can affect the mangling of sizeof/alignof.
1892   if (!T->isInstantiationDependentType() || T->isDependentType())
1893     T = T.getCanonicalType();
1894   else {
1895     // Desugar any types that are purely sugar.
1896     do {
1897       // Don't desugar through template specialization types that aren't
1898       // type aliases. We need to mangle the template arguments as written.
1899       if (const TemplateSpecializationType *TST 
1900                                       = dyn_cast<TemplateSpecializationType>(T))
1901         if (!TST->isTypeAlias())
1902           break;
1903
1904       QualType Desugared 
1905         = T.getSingleStepDesugaredType(Context.getASTContext());
1906       if (Desugared == T)
1907         break;
1908       
1909       T = Desugared;
1910     } while (true);
1911   }
1912   SplitQualType split = T.split();
1913   Qualifiers quals = split.Quals;
1914   const Type *ty = split.Ty;
1915
1916   bool isSubstitutable = isTypeSubstitutable(quals, ty);
1917   if (isSubstitutable && mangleSubstitution(T))
1918     return;
1919
1920   // If we're mangling a qualified array type, push the qualifiers to
1921   // the element type.
1922   if (quals && isa<ArrayType>(T)) {
1923     ty = Context.getASTContext().getAsArrayType(T);
1924     quals = Qualifiers();
1925
1926     // Note that we don't update T: we want to add the
1927     // substitution at the original type.
1928   }
1929
1930   if (quals) {
1931     mangleQualifiers(quals);
1932     // Recurse:  even if the qualified type isn't yet substitutable,
1933     // the unqualified type might be.
1934     mangleType(QualType(ty, 0));
1935   } else {
1936     switch (ty->getTypeClass()) {
1937 #define ABSTRACT_TYPE(CLASS, PARENT)
1938 #define NON_CANONICAL_TYPE(CLASS, PARENT) \
1939     case Type::CLASS: \
1940       llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1941       return;
1942 #define TYPE(CLASS, PARENT) \
1943     case Type::CLASS: \
1944       mangleType(static_cast<const CLASS##Type*>(ty)); \
1945       break;
1946 #include "clang/AST/TypeNodes.def"
1947     }
1948   }
1949
1950   // Add the substitution.
1951   if (isSubstitutable)
1952     addSubstitution(T);
1953 }
1954
1955 void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
1956   if (!mangleStandardSubstitution(ND))
1957     mangleName(ND);
1958 }
1959
1960 void CXXNameMangler::mangleType(const BuiltinType *T) {
1961   //  <type>         ::= <builtin-type>
1962   //  <builtin-type> ::= v  # void
1963   //                 ::= w  # wchar_t
1964   //                 ::= b  # bool
1965   //                 ::= c  # char
1966   //                 ::= a  # signed char
1967   //                 ::= h  # unsigned char
1968   //                 ::= s  # short
1969   //                 ::= t  # unsigned short
1970   //                 ::= i  # int
1971   //                 ::= j  # unsigned int
1972   //                 ::= l  # long
1973   //                 ::= m  # unsigned long
1974   //                 ::= x  # long long, __int64
1975   //                 ::= y  # unsigned long long, __int64
1976   //                 ::= n  # __int128
1977   //                 ::= o  # unsigned __int128
1978   //                 ::= f  # float
1979   //                 ::= d  # double
1980   //                 ::= e  # long double, __float80
1981   // UNSUPPORTED:    ::= g  # __float128
1982   // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)
1983   // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)
1984   // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)
1985   //                 ::= Dh # IEEE 754r half-precision floating point (16 bits)
1986   //                 ::= Di # char32_t
1987   //                 ::= Ds # char16_t
1988   //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
1989   //                 ::= u <source-name>    # vendor extended type
1990   switch (T->getKind()) {
1991   case BuiltinType::Void: Out << 'v'; break;
1992   case BuiltinType::Bool: Out << 'b'; break;
1993   case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
1994   case BuiltinType::UChar: Out << 'h'; break;
1995   case BuiltinType::UShort: Out << 't'; break;
1996   case BuiltinType::UInt: Out << 'j'; break;
1997   case BuiltinType::ULong: Out << 'm'; break;
1998   case BuiltinType::ULongLong: Out << 'y'; break;
1999   case BuiltinType::UInt128: Out << 'o'; break;
2000   case BuiltinType::SChar: Out << 'a'; break;
2001   case BuiltinType::WChar_S:
2002   case BuiltinType::WChar_U: Out << 'w'; break;
2003   case BuiltinType::Char16: Out << "Ds"; break;
2004   case BuiltinType::Char32: Out << "Di"; break;
2005   case BuiltinType::Short: Out << 's'; break;
2006   case BuiltinType::Int: Out << 'i'; break;
2007   case BuiltinType::Long: Out << 'l'; break;
2008   case BuiltinType::LongLong: Out << 'x'; break;
2009   case BuiltinType::Int128: Out << 'n'; break;
2010   case BuiltinType::Half: Out << "Dh"; break;
2011   case BuiltinType::Float: Out << 'f'; break;
2012   case BuiltinType::Double: Out << 'd'; break;
2013   case BuiltinType::LongDouble: Out << 'e'; break;
2014   case BuiltinType::NullPtr: Out << "Dn"; break;
2015
2016 #define BUILTIN_TYPE(Id, SingletonId)
2017 #define PLACEHOLDER_TYPE(Id, SingletonId) \
2018   case BuiltinType::Id:
2019 #include "clang/AST/BuiltinTypes.def"
2020   case BuiltinType::Dependent:
2021     llvm_unreachable("mangling a placeholder type");
2022   case BuiltinType::ObjCId: Out << "11objc_object"; break;
2023   case BuiltinType::ObjCClass: Out << "10objc_class"; break;
2024   case BuiltinType::ObjCSel: Out << "13objc_selector"; break;
2025   case BuiltinType::OCLImage1d: Out << "11ocl_image1d"; break;
2026   case BuiltinType::OCLImage1dArray: Out << "16ocl_image1darray"; break;
2027   case BuiltinType::OCLImage1dBuffer: Out << "17ocl_image1dbuffer"; break;
2028   case BuiltinType::OCLImage2d: Out << "11ocl_image2d"; break;
2029   case BuiltinType::OCLImage2dArray: Out << "16ocl_image2darray"; break;
2030   case BuiltinType::OCLImage3d: Out << "11ocl_image3d"; break;
2031   case BuiltinType::OCLSampler: Out << "11ocl_sampler"; break;
2032   case BuiltinType::OCLEvent: Out << "9ocl_event"; break;
2033   }
2034 }
2035
2036 // <type>          ::= <function-type>
2037 // <function-type> ::= [<CV-qualifiers>] F [Y]
2038 //                      <bare-function-type> [<ref-qualifier>] E
2039 void CXXNameMangler::mangleType(const FunctionProtoType *T) {
2040   // Mangle CV-qualifiers, if present.  These are 'this' qualifiers,
2041   // e.g. "const" in "int (A::*)() const".
2042   mangleQualifiers(Qualifiers::fromCVRMask(T->getTypeQuals()));
2043
2044   Out << 'F';
2045
2046   // FIXME: We don't have enough information in the AST to produce the 'Y'
2047   // encoding for extern "C" function types.
2048   mangleBareFunctionType(T, /*MangleReturnType=*/true);
2049
2050   // Mangle the ref-qualifier, if present.
2051   mangleRefQualifier(T->getRefQualifier());
2052
2053   Out << 'E';
2054 }
2055 void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
2056   llvm_unreachable("Can't mangle K&R function prototypes");
2057 }
2058 void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
2059                                             bool MangleReturnType) {
2060   // We should never be mangling something without a prototype.
2061   const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2062
2063   // Record that we're in a function type.  See mangleFunctionParam
2064   // for details on what we're trying to achieve here.
2065   FunctionTypeDepthState saved = FunctionTypeDepth.push();
2066
2067   // <bare-function-type> ::= <signature type>+
2068   if (MangleReturnType) {
2069     FunctionTypeDepth.enterResultType();
2070     mangleType(Proto->getReturnType());
2071     FunctionTypeDepth.leaveResultType();
2072   }
2073
2074   if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
2075     //   <builtin-type> ::= v   # void
2076     Out << 'v';
2077
2078     FunctionTypeDepth.pop(saved);
2079     return;
2080   }
2081
2082   for (const auto &Arg : Proto->param_types())
2083     mangleType(Context.getASTContext().getSignatureParameterType(Arg));
2084
2085   FunctionTypeDepth.pop(saved);
2086
2087   // <builtin-type>      ::= z  # ellipsis
2088   if (Proto->isVariadic())
2089     Out << 'z';
2090 }
2091
2092 // <type>            ::= <class-enum-type>
2093 // <class-enum-type> ::= <name>
2094 void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
2095   mangleName(T->getDecl());
2096 }
2097
2098 // <type>            ::= <class-enum-type>
2099 // <class-enum-type> ::= <name>
2100 void CXXNameMangler::mangleType(const EnumType *T) {
2101   mangleType(static_cast<const TagType*>(T));
2102 }
2103 void CXXNameMangler::mangleType(const RecordType *T) {
2104   mangleType(static_cast<const TagType*>(T));
2105 }
2106 void CXXNameMangler::mangleType(const TagType *T) {
2107   mangleName(T->getDecl());
2108 }
2109
2110 // <type>       ::= <array-type>
2111 // <array-type> ::= A <positive dimension number> _ <element type>
2112 //              ::= A [<dimension expression>] _ <element type>
2113 void CXXNameMangler::mangleType(const ConstantArrayType *T) {
2114   Out << 'A' << T->getSize() << '_';
2115   mangleType(T->getElementType());
2116 }
2117 void CXXNameMangler::mangleType(const VariableArrayType *T) {
2118   Out << 'A';
2119   // decayed vla types (size 0) will just be skipped.
2120   if (T->getSizeExpr())
2121     mangleExpression(T->getSizeExpr());
2122   Out << '_';
2123   mangleType(T->getElementType());
2124 }
2125 void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
2126   Out << 'A';
2127   mangleExpression(T->getSizeExpr());
2128   Out << '_';
2129   mangleType(T->getElementType());
2130 }
2131 void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
2132   Out << "A_";
2133   mangleType(T->getElementType());
2134 }
2135
2136 // <type>                   ::= <pointer-to-member-type>
2137 // <pointer-to-member-type> ::= M <class type> <member type>
2138 void CXXNameMangler::mangleType(const MemberPointerType *T) {
2139   Out << 'M';
2140   mangleType(QualType(T->getClass(), 0));
2141   QualType PointeeType = T->getPointeeType();
2142   if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
2143     mangleType(FPT);
2144     
2145     // Itanium C++ ABI 5.1.8:
2146     //
2147     //   The type of a non-static member function is considered to be different,
2148     //   for the purposes of substitution, from the type of a namespace-scope or
2149     //   static member function whose type appears similar. The types of two
2150     //   non-static member functions are considered to be different, for the
2151     //   purposes of substitution, if the functions are members of different
2152     //   classes. In other words, for the purposes of substitution, the class of 
2153     //   which the function is a member is considered part of the type of 
2154     //   function.
2155
2156     // Given that we already substitute member function pointers as a
2157     // whole, the net effect of this rule is just to unconditionally
2158     // suppress substitution on the function type in a member pointer.
2159     // We increment the SeqID here to emulate adding an entry to the
2160     // substitution table.
2161     ++SeqID;
2162   } else
2163     mangleType(PointeeType);
2164 }
2165
2166 // <type>           ::= <template-param>
2167 void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
2168   mangleTemplateParameter(T->getIndex());
2169 }
2170
2171 // <type>           ::= <template-param>
2172 void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
2173   // FIXME: not clear how to mangle this!
2174   // template <class T...> class A {
2175   //   template <class U...> void foo(T(*)(U) x...);
2176   // };
2177   Out << "_SUBSTPACK_";
2178 }
2179
2180 // <type> ::= P <type>   # pointer-to
2181 void CXXNameMangler::mangleType(const PointerType *T) {
2182   Out << 'P';
2183   mangleType(T->getPointeeType());
2184 }
2185 void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
2186   Out << 'P';
2187   mangleType(T->getPointeeType());
2188 }
2189
2190 // <type> ::= R <type>   # reference-to
2191 void CXXNameMangler::mangleType(const LValueReferenceType *T) {
2192   Out << 'R';
2193   mangleType(T->getPointeeType());
2194 }
2195
2196 // <type> ::= O <type>   # rvalue reference-to (C++0x)
2197 void CXXNameMangler::mangleType(const RValueReferenceType *T) {
2198   Out << 'O';
2199   mangleType(T->getPointeeType());
2200 }
2201
2202 // <type> ::= C <type>   # complex pair (C 2000)
2203 void CXXNameMangler::mangleType(const ComplexType *T) {
2204   Out << 'C';
2205   mangleType(T->getElementType());
2206 }
2207
2208 // ARM's ABI for Neon vector types specifies that they should be mangled as
2209 // if they are structs (to match ARM's initial implementation).  The
2210 // vector type must be one of the special types predefined by ARM.
2211 void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
2212   QualType EltType = T->getElementType();
2213   assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2214   const char *EltName = nullptr;
2215   if (T->getVectorKind() == VectorType::NeonPolyVector) {
2216     switch (cast<BuiltinType>(EltType)->getKind()) {
2217     case BuiltinType::SChar:
2218     case BuiltinType::UChar:
2219       EltName = "poly8_t";
2220       break;
2221     case BuiltinType::Short:
2222     case BuiltinType::UShort:
2223       EltName = "poly16_t";
2224       break;
2225     case BuiltinType::ULongLong:
2226       EltName = "poly64_t";
2227       break;
2228     default: llvm_unreachable("unexpected Neon polynomial vector element type");
2229     }
2230   } else {
2231     switch (cast<BuiltinType>(EltType)->getKind()) {
2232     case BuiltinType::SChar:     EltName = "int8_t"; break;
2233     case BuiltinType::UChar:     EltName = "uint8_t"; break;
2234     case BuiltinType::Short:     EltName = "int16_t"; break;
2235     case BuiltinType::UShort:    EltName = "uint16_t"; break;
2236     case BuiltinType::Int:       EltName = "int32_t"; break;
2237     case BuiltinType::UInt:      EltName = "uint32_t"; break;
2238     case BuiltinType::LongLong:  EltName = "int64_t"; break;
2239     case BuiltinType::ULongLong: EltName = "uint64_t"; break;
2240     case BuiltinType::Double:    EltName = "float64_t"; break;
2241     case BuiltinType::Float:     EltName = "float32_t"; break;
2242     case BuiltinType::Half:      EltName = "float16_t";break;
2243     default:
2244       llvm_unreachable("unexpected Neon vector element type");
2245     }
2246   }
2247   const char *BaseName = nullptr;
2248   unsigned BitSize = (T->getNumElements() *
2249                       getASTContext().getTypeSize(EltType));
2250   if (BitSize == 64)
2251     BaseName = "__simd64_";
2252   else {
2253     assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
2254     BaseName = "__simd128_";
2255   }
2256   Out << strlen(BaseName) + strlen(EltName);
2257   Out << BaseName << EltName;
2258 }
2259
2260 static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) {
2261   switch (EltType->getKind()) {
2262   case BuiltinType::SChar:
2263     return "Int8";
2264   case BuiltinType::Short:
2265     return "Int16";
2266   case BuiltinType::Int:
2267     return "Int32";
2268   case BuiltinType::Long:
2269   case BuiltinType::LongLong:
2270     return "Int64";
2271   case BuiltinType::UChar:
2272     return "Uint8";
2273   case BuiltinType::UShort:
2274     return "Uint16";
2275   case BuiltinType::UInt:
2276     return "Uint32";
2277   case BuiltinType::ULong:
2278   case BuiltinType::ULongLong:
2279     return "Uint64";
2280   case BuiltinType::Half:
2281     return "Float16";
2282   case BuiltinType::Float:
2283     return "Float32";
2284   case BuiltinType::Double:
2285     return "Float64";
2286   default:
2287     llvm_unreachable("Unexpected vector element base type");
2288   }
2289 }
2290
2291 // AArch64's ABI for Neon vector types specifies that they should be mangled as
2292 // the equivalent internal name. The vector type must be one of the special
2293 // types predefined by ARM.
2294 void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) {
2295   QualType EltType = T->getElementType();
2296   assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2297   unsigned BitSize =
2298       (T->getNumElements() * getASTContext().getTypeSize(EltType));
2299   (void)BitSize; // Silence warning.
2300
2301   assert((BitSize == 64 || BitSize == 128) &&
2302          "Neon vector type not 64 or 128 bits");
2303
2304   StringRef EltName;
2305   if (T->getVectorKind() == VectorType::NeonPolyVector) {
2306     switch (cast<BuiltinType>(EltType)->getKind()) {
2307     case BuiltinType::UChar:
2308       EltName = "Poly8";
2309       break;
2310     case BuiltinType::UShort:
2311       EltName = "Poly16";
2312       break;
2313     case BuiltinType::ULong:
2314     case BuiltinType::ULongLong:
2315       EltName = "Poly64";
2316       break;
2317     default:
2318       llvm_unreachable("unexpected Neon polynomial vector element type");
2319     }
2320   } else
2321     EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType));
2322
2323   std::string TypeName =
2324       ("__" + EltName + "x" + llvm::utostr(T->getNumElements()) + "_t").str();
2325   Out << TypeName.length() << TypeName;
2326 }
2327
2328 // GNU extension: vector types
2329 // <type>                  ::= <vector-type>
2330 // <vector-type>           ::= Dv <positive dimension number> _
2331 //                                    <extended element type>
2332 //                         ::= Dv [<dimension expression>] _ <element type>
2333 // <extended element type> ::= <element type>
2334 //                         ::= p # AltiVec vector pixel
2335 //                         ::= b # Altivec vector bool
2336 void CXXNameMangler::mangleType(const VectorType *T) {
2337   if ((T->getVectorKind() == VectorType::NeonVector ||
2338        T->getVectorKind() == VectorType::NeonPolyVector)) {
2339     llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
2340     llvm::Triple::ArchType Arch =
2341         getASTContext().getTargetInfo().getTriple().getArch();
2342     if ((Arch == llvm::Triple::aarch64 ||
2343          Arch == llvm::Triple::aarch64_be) && !Target.isOSDarwin())
2344       mangleAArch64NeonVectorType(T);
2345     else
2346       mangleNeonVectorType(T);
2347     return;
2348   }
2349   Out << "Dv" << T->getNumElements() << '_';
2350   if (T->getVectorKind() == VectorType::AltiVecPixel)
2351     Out << 'p';
2352   else if (T->getVectorKind() == VectorType::AltiVecBool)
2353     Out << 'b';
2354   else
2355     mangleType(T->getElementType());
2356 }
2357 void CXXNameMangler::mangleType(const ExtVectorType *T) {
2358   mangleType(static_cast<const VectorType*>(T));
2359 }
2360 void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
2361   Out << "Dv";
2362   mangleExpression(T->getSizeExpr());
2363   Out << '_';
2364   mangleType(T->getElementType());
2365 }
2366
2367 void CXXNameMangler::mangleType(const PackExpansionType *T) {
2368   // <type>  ::= Dp <type>          # pack expansion (C++0x)
2369   Out << "Dp";
2370   mangleType(T->getPattern());
2371 }
2372
2373 void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
2374   mangleSourceName(T->getDecl()->getIdentifier());
2375 }
2376
2377 void CXXNameMangler::mangleType(const ObjCObjectType *T) {
2378   if (!T->qual_empty()) {
2379     // Mangle protocol qualifiers.
2380     SmallString<64> QualStr;
2381     llvm::raw_svector_ostream QualOS(QualStr);
2382     QualOS << "objcproto";
2383     for (const auto *I : T->quals()) {
2384       StringRef name = I->getName();
2385       QualOS << name.size() << name;
2386     }
2387     QualOS.flush();
2388     Out << 'U' << QualStr.size() << QualStr;
2389   }
2390   mangleType(T->getBaseType());
2391 }
2392
2393 void CXXNameMangler::mangleType(const BlockPointerType *T) {
2394   Out << "U13block_pointer";
2395   mangleType(T->getPointeeType());
2396 }
2397
2398 void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
2399   // Mangle injected class name types as if the user had written the
2400   // specialization out fully.  It may not actually be possible to see
2401   // this mangling, though.
2402   mangleType(T->getInjectedSpecializationType());
2403 }
2404
2405 void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
2406   if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
2407     mangleName(TD, T->getArgs(), T->getNumArgs());
2408   } else {
2409     if (mangleSubstitution(QualType(T, 0)))
2410       return;
2411     
2412     mangleTemplatePrefix(T->getTemplateName());
2413     
2414     // FIXME: GCC does not appear to mangle the template arguments when
2415     // the template in question is a dependent template name. Should we
2416     // emulate that badness?
2417     mangleTemplateArgs(T->getArgs(), T->getNumArgs());
2418     addSubstitution(QualType(T, 0));
2419   }
2420 }
2421
2422 void CXXNameMangler::mangleType(const DependentNameType *T) {
2423   // Proposal by cxx-abi-dev, 2014-03-26
2424   // <class-enum-type> ::= <name>    # non-dependent or dependent type name or
2425   //                                 # dependent elaborated type specifier using
2426   //                                 # 'typename'
2427   //                   ::= Ts <name> # dependent elaborated type specifier using
2428   //                                 # 'struct' or 'class'
2429   //                   ::= Tu <name> # dependent elaborated type specifier using
2430   //                                 # 'union'
2431   //                   ::= Te <name> # dependent elaborated type specifier using
2432   //                                 # 'enum'
2433   switch (T->getKeyword()) {
2434     case ETK_Typename:
2435       break;
2436     case ETK_Struct:
2437     case ETK_Class:
2438     case ETK_Interface:
2439       Out << "Ts";
2440       break;
2441     case ETK_Union:
2442       Out << "Tu";
2443       break;
2444     case ETK_Enum:
2445       Out << "Te";
2446       break;
2447     default:
2448       llvm_unreachable("unexpected keyword for dependent type name");
2449   }
2450   // Typename types are always nested
2451   Out << 'N';
2452   manglePrefix(T->getQualifier());
2453   mangleSourceName(T->getIdentifier());
2454   Out << 'E';
2455 }
2456
2457 void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
2458   // Dependently-scoped template types are nested if they have a prefix.
2459   Out << 'N';
2460
2461   // TODO: avoid making this TemplateName.
2462   TemplateName Prefix =
2463     getASTContext().getDependentTemplateName(T->getQualifier(),
2464                                              T->getIdentifier());
2465   mangleTemplatePrefix(Prefix);
2466
2467   // FIXME: GCC does not appear to mangle the template arguments when
2468   // the template in question is a dependent template name. Should we
2469   // emulate that badness?
2470   mangleTemplateArgs(T->getArgs(), T->getNumArgs());    
2471   Out << 'E';
2472 }
2473
2474 void CXXNameMangler::mangleType(const TypeOfType *T) {
2475   // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2476   // "extension with parameters" mangling.
2477   Out << "u6typeof";
2478 }
2479
2480 void CXXNameMangler::mangleType(const TypeOfExprType *T) {
2481   // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2482   // "extension with parameters" mangling.
2483   Out << "u6typeof";
2484 }
2485
2486 void CXXNameMangler::mangleType(const DecltypeType *T) {
2487   Expr *E = T->getUnderlyingExpr();
2488
2489   // type ::= Dt <expression> E  # decltype of an id-expression
2490   //                             #   or class member access
2491   //      ::= DT <expression> E  # decltype of an expression
2492
2493   // This purports to be an exhaustive list of id-expressions and
2494   // class member accesses.  Note that we do not ignore parentheses;
2495   // parentheses change the semantics of decltype for these
2496   // expressions (and cause the mangler to use the other form).
2497   if (isa<DeclRefExpr>(E) ||
2498       isa<MemberExpr>(E) ||
2499       isa<UnresolvedLookupExpr>(E) ||
2500       isa<DependentScopeDeclRefExpr>(E) ||
2501       isa<CXXDependentScopeMemberExpr>(E) ||
2502       isa<UnresolvedMemberExpr>(E))
2503     Out << "Dt";
2504   else
2505     Out << "DT";
2506   mangleExpression(E);
2507   Out << 'E';
2508 }
2509
2510 void CXXNameMangler::mangleType(const UnaryTransformType *T) {
2511   // If this is dependent, we need to record that. If not, we simply
2512   // mangle it as the underlying type since they are equivalent.
2513   if (T->isDependentType()) {
2514     Out << 'U';
2515     
2516     switch (T->getUTTKind()) {
2517       case UnaryTransformType::EnumUnderlyingType:
2518         Out << "3eut";
2519         break;
2520     }
2521   }
2522
2523   mangleType(T->getUnderlyingType());
2524 }
2525
2526 void CXXNameMangler::mangleType(const AutoType *T) {
2527   QualType D = T->getDeducedType();
2528   // <builtin-type> ::= Da  # dependent auto
2529   if (D.isNull())
2530     Out << (T->isDecltypeAuto() ? "Dc" : "Da");
2531   else
2532     mangleType(D);
2533 }
2534
2535 void CXXNameMangler::mangleType(const AtomicType *T) {
2536   // <type> ::= U <source-name> <type>  # vendor extended type qualifier
2537   // (Until there's a standardized mangling...)
2538   Out << "U7_Atomic";
2539   mangleType(T->getValueType());
2540 }
2541
2542 void CXXNameMangler::mangleIntegerLiteral(QualType T,
2543                                           const llvm::APSInt &Value) {
2544   //  <expr-primary> ::= L <type> <value number> E # integer literal
2545   Out << 'L';
2546
2547   mangleType(T);
2548   if (T->isBooleanType()) {
2549     // Boolean values are encoded as 0/1.
2550     Out << (Value.getBoolValue() ? '1' : '0');
2551   } else {
2552     mangleNumber(Value);
2553   }
2554   Out << 'E';
2555
2556 }
2557
2558 void CXXNameMangler::mangleMemberExprBase(const Expr *Base, bool IsArrow) {
2559   // Ignore member expressions involving anonymous unions.
2560   while (const auto *RT = Base->getType()->getAs<RecordType>()) {
2561     if (!RT->getDecl()->isAnonymousStructOrUnion())
2562       break;
2563     const auto *ME = dyn_cast<MemberExpr>(Base);
2564     if (!ME)
2565       break;
2566     Base = ME->getBase();
2567     IsArrow = ME->isArrow();
2568   }
2569
2570   if (Base->isImplicitCXXThis()) {
2571     // Note: GCC mangles member expressions to the implicit 'this' as
2572     // *this., whereas we represent them as this->. The Itanium C++ ABI
2573     // does not specify anything here, so we follow GCC.
2574     Out << "dtdefpT";
2575   } else {
2576     Out << (IsArrow ? "pt" : "dt");
2577     mangleExpression(Base);
2578   }
2579 }
2580
2581 /// Mangles a member expression.
2582 void CXXNameMangler::mangleMemberExpr(const Expr *base,
2583                                       bool isArrow,
2584                                       NestedNameSpecifier *qualifier,
2585                                       NamedDecl *firstQualifierLookup,
2586                                       DeclarationName member,
2587                                       unsigned arity) {
2588   // <expression> ::= dt <expression> <unresolved-name>
2589   //              ::= pt <expression> <unresolved-name>
2590   if (base)
2591     mangleMemberExprBase(base, isArrow);
2592   mangleUnresolvedName(qualifier, member, arity);
2593 }
2594
2595 /// Look at the callee of the given call expression and determine if
2596 /// it's a parenthesized id-expression which would have triggered ADL
2597 /// otherwise.
2598 static bool isParenthesizedADLCallee(const CallExpr *call) {
2599   const Expr *callee = call->getCallee();
2600   const Expr *fn = callee->IgnoreParens();
2601
2602   // Must be parenthesized.  IgnoreParens() skips __extension__ nodes,
2603   // too, but for those to appear in the callee, it would have to be
2604   // parenthesized.
2605   if (callee == fn) return false;
2606
2607   // Must be an unresolved lookup.
2608   const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
2609   if (!lookup) return false;
2610
2611   assert(!lookup->requiresADL());
2612
2613   // Must be an unqualified lookup.
2614   if (lookup->getQualifier()) return false;
2615
2616   // Must not have found a class member.  Note that if one is a class
2617   // member, they're all class members.
2618   if (lookup->getNumDecls() > 0 &&
2619       (*lookup->decls_begin())->isCXXClassMember())
2620     return false;
2621
2622   // Otherwise, ADL would have been triggered.
2623   return true;
2624 }
2625
2626 void CXXNameMangler::mangleCastExpression(const Expr *E, StringRef CastEncoding) {
2627   const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
2628   Out << CastEncoding;
2629   mangleType(ECE->getType());
2630   mangleExpression(ECE->getSubExpr());
2631 }
2632
2633 void CXXNameMangler::mangleInitListElements(const InitListExpr *InitList) {
2634   if (auto *Syntactic = InitList->getSyntacticForm())
2635     InitList = Syntactic;
2636   for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2637     mangleExpression(InitList->getInit(i));
2638 }
2639
2640 void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
2641   // <expression> ::= <unary operator-name> <expression>
2642   //              ::= <binary operator-name> <expression> <expression>
2643   //              ::= <trinary operator-name> <expression> <expression> <expression>
2644   //              ::= cv <type> expression           # conversion with one argument
2645   //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments
2646   //              ::= dc <type> <expression>         # dynamic_cast<type> (expression)
2647   //              ::= sc <type> <expression>         # static_cast<type> (expression)
2648   //              ::= cc <type> <expression>         # const_cast<type> (expression)
2649   //              ::= rc <type> <expression>         # reinterpret_cast<type> (expression)
2650   //              ::= st <type>                      # sizeof (a type)
2651   //              ::= at <type>                      # alignof (a type)
2652   //              ::= <template-param>
2653   //              ::= <function-param>
2654   //              ::= sr <type> <unqualified-name>                   # dependent name
2655   //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id
2656   //              ::= ds <expression> <expression>                   # expr.*expr
2657   //              ::= sZ <template-param>                            # size of a parameter pack
2658   //              ::= sZ <function-param>    # size of a function parameter pack
2659   //              ::= <expr-primary>
2660   // <expr-primary> ::= L <type> <value number> E    # integer literal
2661   //                ::= L <type <value float> E      # floating literal
2662   //                ::= L <mangled-name> E           # external name
2663   //                ::= fpT                          # 'this' expression
2664   QualType ImplicitlyConvertedToType;
2665   
2666 recurse:
2667   switch (E->getStmtClass()) {
2668   case Expr::NoStmtClass:
2669 #define ABSTRACT_STMT(Type)
2670 #define EXPR(Type, Base)
2671 #define STMT(Type, Base) \
2672   case Expr::Type##Class:
2673 #include "clang/AST/StmtNodes.inc"
2674     // fallthrough
2675
2676   // These all can only appear in local or variable-initialization
2677   // contexts and so should never appear in a mangling.
2678   case Expr::AddrLabelExprClass:
2679   case Expr::ImplicitValueInitExprClass:
2680   case Expr::ParenListExprClass:
2681   case Expr::LambdaExprClass:
2682   case Expr::MSPropertyRefExprClass:
2683   case Expr::TypoExprClass:  // This should no longer exist in the AST by now.
2684     llvm_unreachable("unexpected statement kind");
2685
2686   // FIXME: invent manglings for all these.
2687   case Expr::BlockExprClass:
2688   case Expr::ChooseExprClass:
2689   case Expr::CompoundLiteralExprClass:
2690   case Expr::DesignatedInitExprClass:
2691   case Expr::ExtVectorElementExprClass:
2692   case Expr::GenericSelectionExprClass:
2693   case Expr::ObjCEncodeExprClass:
2694   case Expr::ObjCIsaExprClass:
2695   case Expr::ObjCIvarRefExprClass:
2696   case Expr::ObjCMessageExprClass:
2697   case Expr::ObjCPropertyRefExprClass:
2698   case Expr::ObjCProtocolExprClass:
2699   case Expr::ObjCSelectorExprClass:
2700   case Expr::ObjCStringLiteralClass:
2701   case Expr::ObjCBoxedExprClass:
2702   case Expr::ObjCArrayLiteralClass:
2703   case Expr::ObjCDictionaryLiteralClass:
2704   case Expr::ObjCSubscriptRefExprClass:
2705   case Expr::ObjCIndirectCopyRestoreExprClass:
2706   case Expr::OffsetOfExprClass:
2707   case Expr::PredefinedExprClass:
2708   case Expr::ShuffleVectorExprClass:
2709   case Expr::ConvertVectorExprClass:
2710   case Expr::StmtExprClass:
2711   case Expr::TypeTraitExprClass:
2712   case Expr::ArrayTypeTraitExprClass:
2713   case Expr::ExpressionTraitExprClass:
2714   case Expr::VAArgExprClass:
2715   case Expr::CUDAKernelCallExprClass:
2716   case Expr::AsTypeExprClass:
2717   case Expr::PseudoObjectExprClass:
2718   case Expr::AtomicExprClass:
2719   {
2720     // As bad as this diagnostic is, it's better than crashing.
2721     DiagnosticsEngine &Diags = Context.getDiags();
2722     unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2723                                      "cannot yet mangle expression type %0");
2724     Diags.Report(E->getExprLoc(), DiagID)
2725       << E->getStmtClassName() << E->getSourceRange();
2726     break;
2727   }
2728
2729   case Expr::CXXUuidofExprClass: {
2730     const CXXUuidofExpr *UE = cast<CXXUuidofExpr>(E);
2731     if (UE->isTypeOperand()) {
2732       QualType UuidT = UE->getTypeOperand(Context.getASTContext());
2733       Out << "u8__uuidoft";
2734       mangleType(UuidT);
2735     } else {
2736       Expr *UuidExp = UE->getExprOperand();
2737       Out << "u8__uuidofz";
2738       mangleExpression(UuidExp, Arity);
2739     }
2740     break;
2741   }
2742
2743   // Even gcc-4.5 doesn't mangle this.
2744   case Expr::BinaryConditionalOperatorClass: {
2745     DiagnosticsEngine &Diags = Context.getDiags();
2746     unsigned DiagID =
2747       Diags.getCustomDiagID(DiagnosticsEngine::Error,
2748                 "?: operator with omitted middle operand cannot be mangled");
2749     Diags.Report(E->getExprLoc(), DiagID)
2750       << E->getStmtClassName() << E->getSourceRange();
2751     break;
2752   }
2753
2754   // These are used for internal purposes and cannot be meaningfully mangled.
2755   case Expr::OpaqueValueExprClass:
2756     llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
2757
2758   case Expr::InitListExprClass: {
2759     Out << "il";
2760     mangleInitListElements(cast<InitListExpr>(E));
2761     Out << "E";
2762     break;
2763   }
2764
2765   case Expr::CXXDefaultArgExprClass:
2766     mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
2767     break;
2768
2769   case Expr::CXXDefaultInitExprClass:
2770     mangleExpression(cast<CXXDefaultInitExpr>(E)->getExpr(), Arity);
2771     break;
2772
2773   case Expr::CXXStdInitializerListExprClass:
2774     mangleExpression(cast<CXXStdInitializerListExpr>(E)->getSubExpr(), Arity);
2775     break;
2776
2777   case Expr::SubstNonTypeTemplateParmExprClass:
2778     mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
2779                      Arity);
2780     break;
2781
2782   case Expr::UserDefinedLiteralClass:
2783     // We follow g++'s approach of mangling a UDL as a call to the literal
2784     // operator.
2785   case Expr::CXXMemberCallExprClass: // fallthrough
2786   case Expr::CallExprClass: {
2787     const CallExpr *CE = cast<CallExpr>(E);
2788
2789     // <expression> ::= cp <simple-id> <expression>* E
2790     // We use this mangling only when the call would use ADL except
2791     // for being parenthesized.  Per discussion with David
2792     // Vandervoorde, 2011.04.25.
2793     if (isParenthesizedADLCallee(CE)) {
2794       Out << "cp";
2795       // The callee here is a parenthesized UnresolvedLookupExpr with
2796       // no qualifier and should always get mangled as a <simple-id>
2797       // anyway.
2798
2799     // <expression> ::= cl <expression>* E
2800     } else {
2801       Out << "cl";
2802     }
2803
2804     unsigned CallArity = CE->getNumArgs();
2805     for (const Expr *Arg : CE->arguments())
2806       if (isa<PackExpansionExpr>(Arg))
2807         CallArity = UnknownArity;
2808
2809     mangleExpression(CE->getCallee(), CallArity);
2810     for (const Expr *Arg : CE->arguments())
2811       mangleExpression(Arg);
2812     Out << 'E';
2813     break;
2814   }
2815
2816   case Expr::CXXNewExprClass: {
2817     const CXXNewExpr *New = cast<CXXNewExpr>(E);
2818     if (New->isGlobalNew()) Out << "gs";
2819     Out << (New->isArray() ? "na" : "nw");
2820     for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
2821            E = New->placement_arg_end(); I != E; ++I)
2822       mangleExpression(*I);
2823     Out << '_';
2824     mangleType(New->getAllocatedType());
2825     if (New->hasInitializer()) {
2826       if (New->getInitializationStyle() == CXXNewExpr::ListInit)
2827         Out << "il";
2828       else
2829         Out << "pi";
2830       const Expr *Init = New->getInitializer();
2831       if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
2832         // Directly inline the initializers.
2833         for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
2834                                                   E = CCE->arg_end();
2835              I != E; ++I)
2836           mangleExpression(*I);
2837       } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
2838         for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
2839           mangleExpression(PLE->getExpr(i));
2840       } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
2841                  isa<InitListExpr>(Init)) {
2842         // Only take InitListExprs apart for list-initialization.
2843         mangleInitListElements(cast<InitListExpr>(Init));
2844       } else
2845         mangleExpression(Init);
2846     }
2847     Out << 'E';
2848     break;
2849   }
2850
2851   case Expr::CXXPseudoDestructorExprClass: {
2852     const auto *PDE = cast<CXXPseudoDestructorExpr>(E);
2853     if (const Expr *Base = PDE->getBase())
2854       mangleMemberExprBase(Base, PDE->isArrow());
2855     NestedNameSpecifier *Qualifier = PDE->getQualifier();
2856     QualType ScopeType;
2857     if (TypeSourceInfo *ScopeInfo = PDE->getScopeTypeInfo()) {
2858       if (Qualifier) {
2859         mangleUnresolvedPrefix(Qualifier,
2860                                /*Recursive=*/true);
2861         mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType());
2862         Out << 'E';
2863       } else {
2864         Out << "sr";
2865         if (!mangleUnresolvedTypeOrSimpleId(ScopeInfo->getType()))
2866           Out << 'E';
2867       }
2868     } else if (Qualifier) {
2869       mangleUnresolvedPrefix(Qualifier);
2870     }
2871     // <base-unresolved-name> ::= dn <destructor-name>
2872     Out << "dn";
2873     QualType DestroyedType = PDE->getDestroyedType();
2874     mangleUnresolvedTypeOrSimpleId(DestroyedType);
2875     break;
2876   }
2877
2878   case Expr::MemberExprClass: {
2879     const MemberExpr *ME = cast<MemberExpr>(E);
2880     mangleMemberExpr(ME->getBase(), ME->isArrow(),
2881                      ME->getQualifier(), nullptr,
2882                      ME->getMemberDecl()->getDeclName(), Arity);
2883     break;
2884   }
2885
2886   case Expr::UnresolvedMemberExprClass: {
2887     const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
2888     mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
2889                      ME->isArrow(), ME->getQualifier(), nullptr,
2890                      ME->getMemberName(), Arity);
2891     if (ME->hasExplicitTemplateArgs())
2892       mangleTemplateArgs(ME->getExplicitTemplateArgs());
2893     break;
2894   }
2895
2896   case Expr::CXXDependentScopeMemberExprClass: {
2897     const CXXDependentScopeMemberExpr *ME
2898       = cast<CXXDependentScopeMemberExpr>(E);
2899     mangleMemberExpr(ME->isImplicitAccess() ? nullptr : ME->getBase(),
2900                      ME->isArrow(), ME->getQualifier(),
2901                      ME->getFirstQualifierFoundInScope(),
2902                      ME->getMember(), Arity);
2903     if (ME->hasExplicitTemplateArgs())
2904       mangleTemplateArgs(ME->getExplicitTemplateArgs());
2905     break;
2906   }
2907
2908   case Expr::UnresolvedLookupExprClass: {
2909     const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
2910     mangleUnresolvedName(ULE->getQualifier(), ULE->getName(), Arity);
2911
2912     // All the <unresolved-name> productions end in a
2913     // base-unresolved-name, where <template-args> are just tacked
2914     // onto the end.
2915     if (ULE->hasExplicitTemplateArgs())
2916       mangleTemplateArgs(ULE->getExplicitTemplateArgs());
2917     break;
2918   }
2919
2920   case Expr::CXXUnresolvedConstructExprClass: {
2921     const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
2922     unsigned N = CE->arg_size();
2923
2924     Out << "cv";
2925     mangleType(CE->getType());
2926     if (N != 1) Out << '_';
2927     for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2928     if (N != 1) Out << 'E';
2929     break;
2930   }
2931
2932   case Expr::CXXConstructExprClass: {
2933     const auto *CE = cast<CXXConstructExpr>(E);
2934     if (!CE->isListInitialization() || CE->isStdInitListInitialization()) {
2935       assert(
2936           CE->getNumArgs() >= 1 &&
2937           (CE->getNumArgs() == 1 || isa<CXXDefaultArgExpr>(CE->getArg(1))) &&
2938           "implicit CXXConstructExpr must have one argument");
2939       return mangleExpression(cast<CXXConstructExpr>(E)->getArg(0));
2940     }
2941     Out << "il";
2942     for (auto *E : CE->arguments())
2943       mangleExpression(E);
2944     Out << "E";
2945     break;
2946   }
2947
2948   case Expr::CXXTemporaryObjectExprClass: {
2949     const auto *CE = cast<CXXTemporaryObjectExpr>(E);
2950     unsigned N = CE->getNumArgs();
2951     bool List = CE->isListInitialization();
2952
2953     if (List)
2954       Out << "tl";
2955     else
2956       Out << "cv";
2957     mangleType(CE->getType());
2958     if (!List && N != 1)
2959       Out << '_';
2960     if (CE->isStdInitListInitialization()) {
2961       // We implicitly created a std::initializer_list<T> for the first argument
2962       // of a constructor of type U in an expression of the form U{a, b, c}.
2963       // Strip all the semantic gunk off the initializer list.
2964       auto *SILE =
2965           cast<CXXStdInitializerListExpr>(CE->getArg(0)->IgnoreImplicit());
2966       auto *ILE = cast<InitListExpr>(SILE->getSubExpr()->IgnoreImplicit());
2967       mangleInitListElements(ILE);
2968     } else {
2969       for (auto *E : CE->arguments())
2970         mangleExpression(E);
2971     }
2972     if (List || N != 1)
2973       Out << 'E';
2974     break;
2975   }
2976
2977   case Expr::CXXScalarValueInitExprClass:
2978     Out << "cv";
2979     mangleType(E->getType());
2980     Out << "_E";
2981     break;
2982
2983   case Expr::CXXNoexceptExprClass:
2984     Out << "nx";
2985     mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
2986     break;
2987
2988   case Expr::UnaryExprOrTypeTraitExprClass: {
2989     const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
2990     
2991     if (!SAE->isInstantiationDependent()) {
2992       // Itanium C++ ABI:
2993       //   If the operand of a sizeof or alignof operator is not 
2994       //   instantiation-dependent it is encoded as an integer literal 
2995       //   reflecting the result of the operator.
2996       //
2997       //   If the result of the operator is implicitly converted to a known 
2998       //   integer type, that type is used for the literal; otherwise, the type 
2999       //   of std::size_t or std::ptrdiff_t is used.
3000       QualType T = (ImplicitlyConvertedToType.isNull() || 
3001                     !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
3002                                                     : ImplicitlyConvertedToType;
3003       llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
3004       mangleIntegerLiteral(T, V);
3005       break;
3006     }
3007     
3008     switch(SAE->getKind()) {
3009     case UETT_SizeOf:
3010       Out << 's';
3011       break;
3012     case UETT_AlignOf:
3013       Out << 'a';
3014       break;
3015     case UETT_VecStep:
3016       DiagnosticsEngine &Diags = Context.getDiags();
3017       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
3018                                      "cannot yet mangle vec_step expression");
3019       Diags.Report(DiagID);
3020       return;
3021     }
3022     if (SAE->isArgumentType()) {
3023       Out << 't';
3024       mangleType(SAE->getArgumentType());
3025     } else {
3026       Out << 'z';
3027       mangleExpression(SAE->getArgumentExpr());
3028     }
3029     break;
3030   }
3031
3032   case Expr::CXXThrowExprClass: {
3033     const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
3034     //  <expression> ::= tw <expression>  # throw expression
3035     //               ::= tr               # rethrow
3036     if (TE->getSubExpr()) {
3037       Out << "tw";
3038       mangleExpression(TE->getSubExpr());
3039     } else {
3040       Out << "tr";
3041     }
3042     break;
3043   }
3044
3045   case Expr::CXXTypeidExprClass: {
3046     const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
3047     //  <expression> ::= ti <type>        # typeid (type)
3048     //               ::= te <expression>  # typeid (expression)
3049     if (TIE->isTypeOperand()) {
3050       Out << "ti";
3051       mangleType(TIE->getTypeOperand(Context.getASTContext()));
3052     } else {
3053       Out << "te";
3054       mangleExpression(TIE->getExprOperand());
3055     }
3056     break;
3057   }
3058
3059   case Expr::CXXDeleteExprClass: {
3060     const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
3061     //  <expression> ::= [gs] dl <expression>  # [::] delete expr
3062     //               ::= [gs] da <expression>  # [::] delete [] expr
3063     if (DE->isGlobalDelete()) Out << "gs";
3064     Out << (DE->isArrayForm() ? "da" : "dl");
3065     mangleExpression(DE->getArgument());
3066     break;
3067   }
3068
3069   case Expr::UnaryOperatorClass: {
3070     const UnaryOperator *UO = cast<UnaryOperator>(E);
3071     mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
3072                        /*Arity=*/1);
3073     mangleExpression(UO->getSubExpr());
3074     break;
3075   }
3076
3077   case Expr::ArraySubscriptExprClass: {
3078     const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
3079
3080     // Array subscript is treated as a syntactically weird form of
3081     // binary operator.
3082     Out << "ix";
3083     mangleExpression(AE->getLHS());
3084     mangleExpression(AE->getRHS());
3085     break;
3086   }
3087
3088   case Expr::CompoundAssignOperatorClass: // fallthrough
3089   case Expr::BinaryOperatorClass: {
3090     const BinaryOperator *BO = cast<BinaryOperator>(E);
3091     if (BO->getOpcode() == BO_PtrMemD)
3092       Out << "ds";
3093     else
3094       mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
3095                          /*Arity=*/2);
3096     mangleExpression(BO->getLHS());
3097     mangleExpression(BO->getRHS());
3098     break;
3099   }
3100
3101   case Expr::ConditionalOperatorClass: {
3102     const ConditionalOperator *CO = cast<ConditionalOperator>(E);
3103     mangleOperatorName(OO_Conditional, /*Arity=*/3);
3104     mangleExpression(CO->getCond());
3105     mangleExpression(CO->getLHS(), Arity);
3106     mangleExpression(CO->getRHS(), Arity);
3107     break;
3108   }
3109
3110   case Expr::ImplicitCastExprClass: {
3111     ImplicitlyConvertedToType = E->getType();
3112     E = cast<ImplicitCastExpr>(E)->getSubExpr();
3113     goto recurse;
3114   }
3115       
3116   case Expr::ObjCBridgedCastExprClass: {
3117     // Mangle ownership casts as a vendor extended operator __bridge, 
3118     // __bridge_transfer, or __bridge_retain.
3119     StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
3120     Out << "v1U" << Kind.size() << Kind;
3121   }
3122   // Fall through to mangle the cast itself.
3123       
3124   case Expr::CStyleCastExprClass:
3125     mangleCastExpression(E, "cv");
3126     break;
3127
3128   case Expr::CXXFunctionalCastExprClass: {
3129     auto *Sub = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreImplicit();
3130     // FIXME: Add isImplicit to CXXConstructExpr.
3131     if (auto *CCE = dyn_cast<CXXConstructExpr>(Sub))
3132       if (CCE->getParenOrBraceRange().isInvalid())
3133         Sub = CCE->getArg(0)->IgnoreImplicit();
3134     if (auto *StdInitList = dyn_cast<CXXStdInitializerListExpr>(Sub))
3135       Sub = StdInitList->getSubExpr()->IgnoreImplicit();
3136     if (auto *IL = dyn_cast<InitListExpr>(Sub)) {
3137       Out << "tl";
3138       mangleType(E->getType());
3139       mangleInitListElements(IL);
3140       Out << "E";
3141     } else {
3142       mangleCastExpression(E, "cv");
3143     }
3144     break;
3145   }
3146
3147   case Expr::CXXStaticCastExprClass:
3148     mangleCastExpression(E, "sc");
3149     break;
3150   case Expr::CXXDynamicCastExprClass:
3151     mangleCastExpression(E, "dc");
3152     break;
3153   case Expr::CXXReinterpretCastExprClass:
3154     mangleCastExpression(E, "rc");
3155     break;
3156   case Expr::CXXConstCastExprClass:
3157     mangleCastExpression(E, "cc");
3158     break;
3159
3160   case Expr::CXXOperatorCallExprClass: {
3161     const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
3162     unsigned NumArgs = CE->getNumArgs();
3163     mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
3164     // Mangle the arguments.
3165     for (unsigned i = 0; i != NumArgs; ++i)
3166       mangleExpression(CE->getArg(i));
3167     break;
3168   }
3169
3170   case Expr::ParenExprClass:
3171     mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
3172     break;
3173
3174   case Expr::DeclRefExprClass: {
3175     const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
3176
3177     switch (D->getKind()) {
3178     default:
3179       //  <expr-primary> ::= L <mangled-name> E # external name
3180       Out << 'L';
3181       mangle(D);
3182       Out << 'E';
3183       break;
3184
3185     case Decl::ParmVar:
3186       mangleFunctionParam(cast<ParmVarDecl>(D));
3187       break;
3188
3189     case Decl::EnumConstant: {
3190       const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
3191       mangleIntegerLiteral(ED->getType(), ED->getInitVal());
3192       break;
3193     }
3194
3195     case Decl::NonTypeTemplateParm: {
3196       const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
3197       mangleTemplateParameter(PD->getIndex());
3198       break;
3199     }
3200
3201     }
3202
3203     break;
3204   }
3205
3206   case Expr::SubstNonTypeTemplateParmPackExprClass:
3207     // FIXME: not clear how to mangle this!
3208     // template <unsigned N...> class A {
3209     //   template <class U...> void foo(U (&x)[N]...);
3210     // };
3211     Out << "_SUBSTPACK_";
3212     break;
3213
3214   case Expr::FunctionParmPackExprClass: {
3215     // FIXME: not clear how to mangle this!
3216     const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
3217     Out << "v110_SUBSTPACK";
3218     mangleFunctionParam(FPPE->getParameterPack());
3219     break;
3220   }
3221
3222   case Expr::DependentScopeDeclRefExprClass: {
3223     const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
3224     mangleUnresolvedName(DRE->getQualifier(), DRE->getDeclName(), Arity);
3225
3226     // All the <unresolved-name> productions end in a
3227     // base-unresolved-name, where <template-args> are just tacked
3228     // onto the end.
3229     if (DRE->hasExplicitTemplateArgs())
3230       mangleTemplateArgs(DRE->getExplicitTemplateArgs());
3231     break;
3232   }
3233
3234   case Expr::CXXBindTemporaryExprClass:
3235     mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
3236     break;
3237
3238   case Expr::ExprWithCleanupsClass:
3239     mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
3240     break;
3241
3242   case Expr::FloatingLiteralClass: {
3243     const FloatingLiteral *FL = cast<FloatingLiteral>(E);
3244     Out << 'L';
3245     mangleType(FL->getType());
3246     mangleFloat(FL->getValue());
3247     Out << 'E';
3248     break;
3249   }
3250
3251   case Expr::CharacterLiteralClass:
3252     Out << 'L';
3253     mangleType(E->getType());
3254     Out << cast<CharacterLiteral>(E)->getValue();
3255     Out << 'E';
3256     break;
3257
3258   // FIXME. __objc_yes/__objc_no are mangled same as true/false
3259   case Expr::ObjCBoolLiteralExprClass:
3260     Out << "Lb";
3261     Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
3262     Out << 'E';
3263     break;
3264   
3265   case Expr::CXXBoolLiteralExprClass:
3266     Out << "Lb";
3267     Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
3268     Out << 'E';
3269     break;
3270
3271   case Expr::IntegerLiteralClass: {
3272     llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
3273     if (E->getType()->isSignedIntegerType())
3274       Value.setIsSigned(true);
3275     mangleIntegerLiteral(E->getType(), Value);
3276     break;
3277   }
3278
3279   case Expr::ImaginaryLiteralClass: {
3280     const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
3281     // Mangle as if a complex literal.
3282     // Proposal from David Vandevoorde, 2010.06.30.
3283     Out << 'L';
3284     mangleType(E->getType());
3285     if (const FloatingLiteral *Imag =
3286           dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
3287       // Mangle a floating-point zero of the appropriate type.
3288       mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
3289       Out << '_';
3290       mangleFloat(Imag->getValue());
3291     } else {
3292       Out << "0_";
3293       llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
3294       if (IE->getSubExpr()->getType()->isSignedIntegerType())
3295         Value.setIsSigned(true);
3296       mangleNumber(Value);
3297     }
3298     Out << 'E';
3299     break;
3300   }
3301
3302   case Expr::StringLiteralClass: {
3303     // Revised proposal from David Vandervoorde, 2010.07.15.
3304     Out << 'L';
3305     assert(isa<ConstantArrayType>(E->getType()));
3306     mangleType(E->getType());
3307     Out << 'E';
3308     break;
3309   }
3310
3311   case Expr::GNUNullExprClass:
3312     // FIXME: should this really be mangled the same as nullptr?
3313     // fallthrough
3314
3315   case Expr::CXXNullPtrLiteralExprClass: {
3316     Out << "LDnE";
3317     break;
3318   }
3319       
3320   case Expr::PackExpansionExprClass:
3321     Out << "sp";
3322     mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
3323     break;
3324       
3325   case Expr::SizeOfPackExprClass: {
3326     Out << "sZ";
3327     const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack();
3328     if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
3329       mangleTemplateParameter(TTP->getIndex());
3330     else if (const NonTypeTemplateParmDecl *NTTP
3331                 = dyn_cast<NonTypeTemplateParmDecl>(Pack))
3332       mangleTemplateParameter(NTTP->getIndex());
3333     else if (const TemplateTemplateParmDecl *TempTP
3334                                     = dyn_cast<TemplateTemplateParmDecl>(Pack))
3335       mangleTemplateParameter(TempTP->getIndex());
3336     else
3337       mangleFunctionParam(cast<ParmVarDecl>(Pack));
3338     break;
3339   }
3340
3341   case Expr::MaterializeTemporaryExprClass: {
3342     mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());
3343     break;
3344   }
3345
3346   case Expr::CXXFoldExprClass: {
3347     auto *FE = cast<CXXFoldExpr>(E);
3348     if (FE->isLeftFold())
3349       Out << (FE->getInit() ? "fL" : "fl");
3350     else
3351       Out << (FE->getInit() ? "fR" : "fr");
3352
3353     if (FE->getOperator() == BO_PtrMemD)
3354       Out << "ds";
3355     else
3356       mangleOperatorName(
3357           BinaryOperator::getOverloadedOperator(FE->getOperator()),
3358           /*Arity=*/2);
3359
3360     if (FE->getLHS())
3361       mangleExpression(FE->getLHS());
3362     if (FE->getRHS())
3363       mangleExpression(FE->getRHS());
3364     break;
3365   }
3366
3367   case Expr::CXXThisExprClass:
3368     Out << "fpT";
3369     break;
3370   }
3371 }
3372
3373 /// Mangle an expression which refers to a parameter variable.
3374 ///
3375 /// <expression>     ::= <function-param>
3376 /// <function-param> ::= fp <top-level CV-qualifiers> _      # L == 0, I == 0
3377 /// <function-param> ::= fp <top-level CV-qualifiers>
3378 ///                      <parameter-2 non-negative number> _ # L == 0, I > 0
3379 /// <function-param> ::= fL <L-1 non-negative number>
3380 ///                      p <top-level CV-qualifiers> _       # L > 0, I == 0
3381 /// <function-param> ::= fL <L-1 non-negative number>
3382 ///                      p <top-level CV-qualifiers>
3383 ///                      <I-1 non-negative number> _         # L > 0, I > 0
3384 ///
3385 /// L is the nesting depth of the parameter, defined as 1 if the
3386 /// parameter comes from the innermost function prototype scope
3387 /// enclosing the current context, 2 if from the next enclosing
3388 /// function prototype scope, and so on, with one special case: if
3389 /// we've processed the full parameter clause for the innermost
3390 /// function type, then L is one less.  This definition conveniently
3391 /// makes it irrelevant whether a function's result type was written
3392 /// trailing or leading, but is otherwise overly complicated; the
3393 /// numbering was first designed without considering references to
3394 /// parameter in locations other than return types, and then the
3395 /// mangling had to be generalized without changing the existing
3396 /// manglings.
3397 ///
3398 /// I is the zero-based index of the parameter within its parameter
3399 /// declaration clause.  Note that the original ABI document describes
3400 /// this using 1-based ordinals.
3401 void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
3402   unsigned parmDepth = parm->getFunctionScopeDepth();
3403   unsigned parmIndex = parm->getFunctionScopeIndex();
3404
3405   // Compute 'L'.
3406   // parmDepth does not include the declaring function prototype.
3407   // FunctionTypeDepth does account for that.
3408   assert(parmDepth < FunctionTypeDepth.getDepth());
3409   unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
3410   if (FunctionTypeDepth.isInResultType())
3411     nestingDepth--;
3412
3413   if (nestingDepth == 0) {
3414     Out << "fp";
3415   } else {
3416     Out << "fL" << (nestingDepth - 1) << 'p';
3417   }
3418
3419   // Top-level qualifiers.  We don't have to worry about arrays here,
3420   // because parameters declared as arrays should already have been
3421   // transformed to have pointer type. FIXME: apparently these don't
3422   // get mangled if used as an rvalue of a known non-class type?
3423   assert(!parm->getType()->isArrayType()
3424          && "parameter's type is still an array type?");
3425   mangleQualifiers(parm->getType().getQualifiers());
3426
3427   // Parameter index.
3428   if (parmIndex != 0) {
3429     Out << (parmIndex - 1);
3430   }
3431   Out << '_';
3432 }
3433
3434 void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
3435   // <ctor-dtor-name> ::= C1  # complete object constructor
3436   //                  ::= C2  # base object constructor
3437   //
3438   // In addition, C5 is a comdat name with C1 and C2 in it.
3439   switch (T) {
3440   case Ctor_Complete:
3441     Out << "C1";
3442     break;
3443   case Ctor_Base:
3444     Out << "C2";
3445     break;
3446   case Ctor_Comdat:
3447     Out << "C5";
3448     break;
3449   case Ctor_DefaultClosure:
3450   case Ctor_CopyingClosure:
3451     llvm_unreachable("closure constructors don't exist for the Itanium ABI!");
3452   }
3453 }
3454
3455 void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
3456   // <ctor-dtor-name> ::= D0  # deleting destructor
3457   //                  ::= D1  # complete object destructor
3458   //                  ::= D2  # base object destructor
3459   //
3460   // In addition, D5 is a comdat name with D1, D2 and, if virtual, D0 in it.
3461   switch (T) {
3462   case Dtor_Deleting:
3463     Out << "D0";
3464     break;
3465   case Dtor_Complete:
3466     Out << "D1";
3467     break;
3468   case Dtor_Base:
3469     Out << "D2";
3470     break;
3471   case Dtor_Comdat:
3472     Out << "D5";
3473     break;
3474   }
3475 }
3476
3477 void CXXNameMangler::mangleTemplateArgs(
3478                           const ASTTemplateArgumentListInfo &TemplateArgs) {
3479   // <template-args> ::= I <template-arg>+ E
3480   Out << 'I';
3481   for (unsigned i = 0, e = TemplateArgs.NumTemplateArgs; i != e; ++i)
3482     mangleTemplateArg(TemplateArgs.getTemplateArgs()[i].getArgument());
3483   Out << 'E';
3484 }
3485
3486 void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) {
3487   // <template-args> ::= I <template-arg>+ E
3488   Out << 'I';
3489   for (unsigned i = 0, e = AL.size(); i != e; ++i)
3490     mangleTemplateArg(AL[i]);
3491   Out << 'E';
3492 }
3493
3494 void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs,
3495                                         unsigned NumTemplateArgs) {
3496   // <template-args> ::= I <template-arg>+ E
3497   Out << 'I';
3498   for (unsigned i = 0; i != NumTemplateArgs; ++i)
3499     mangleTemplateArg(TemplateArgs[i]);
3500   Out << 'E';
3501 }
3502
3503 void CXXNameMangler::mangleTemplateArg(TemplateArgument A) {
3504   // <template-arg> ::= <type>              # type or template
3505   //                ::= X <expression> E    # expression
3506   //                ::= <expr-primary>      # simple expressions
3507   //                ::= J <template-arg>* E # argument pack
3508   if (!A.isInstantiationDependent() || A.isDependent())
3509     A = Context.getASTContext().getCanonicalTemplateArgument(A);
3510   
3511   switch (A.getKind()) {
3512   case TemplateArgument::Null:
3513     llvm_unreachable("Cannot mangle NULL template argument");
3514       
3515   case TemplateArgument::Type:
3516     mangleType(A.getAsType());
3517     break;
3518   case TemplateArgument::Template:
3519     // This is mangled as <type>.
3520     mangleType(A.getAsTemplate());
3521     break;
3522   case TemplateArgument::TemplateExpansion:
3523     // <type>  ::= Dp <type>          # pack expansion (C++0x)
3524     Out << "Dp";
3525     mangleType(A.getAsTemplateOrTemplatePattern());
3526     break;
3527   case TemplateArgument::Expression: {
3528     // It's possible to end up with a DeclRefExpr here in certain
3529     // dependent cases, in which case we should mangle as a
3530     // declaration.
3531     const Expr *E = A.getAsExpr()->IgnoreParens();
3532     if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
3533       const ValueDecl *D = DRE->getDecl();
3534       if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
3535         Out << 'L';
3536         mangle(D);
3537         Out << 'E';
3538         break;
3539       }
3540     }
3541     
3542     Out << 'X';
3543     mangleExpression(E);
3544     Out << 'E';
3545     break;
3546   }
3547   case TemplateArgument::Integral:
3548     mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
3549     break;
3550   case TemplateArgument::Declaration: {
3551     //  <expr-primary> ::= L <mangled-name> E # external name
3552     // Clang produces AST's where pointer-to-member-function expressions
3553     // and pointer-to-function expressions are represented as a declaration not
3554     // an expression. We compensate for it here to produce the correct mangling.
3555     ValueDecl *D = A.getAsDecl();
3556     bool compensateMangling = !A.getParamTypeForDecl()->isReferenceType();
3557     if (compensateMangling) {
3558       Out << 'X';
3559       mangleOperatorName(OO_Amp, 1);
3560     }
3561
3562     Out << 'L';
3563     // References to external entities use the mangled name; if the name would
3564     // not normally be manged then mangle it as unqualified.
3565     mangle(D);
3566     Out << 'E';
3567
3568     if (compensateMangling)
3569       Out << 'E';
3570
3571     break;
3572   }
3573   case TemplateArgument::NullPtr: {
3574     //  <expr-primary> ::= L <type> 0 E
3575     Out << 'L';
3576     mangleType(A.getNullPtrType());
3577     Out << "0E";
3578     break;
3579   }
3580   case TemplateArgument::Pack: {
3581     //  <template-arg> ::= J <template-arg>* E
3582     Out << 'J';
3583     for (const auto &P : A.pack_elements())
3584       mangleTemplateArg(P);
3585     Out << 'E';
3586   }
3587   }
3588 }
3589
3590 void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
3591   // <template-param> ::= T_    # first template parameter
3592   //                  ::= T <parameter-2 non-negative number> _
3593   if (Index == 0)
3594     Out << "T_";
3595   else
3596     Out << 'T' << (Index - 1) << '_';
3597 }
3598
3599 void CXXNameMangler::mangleSeqID(unsigned SeqID) {
3600   if (SeqID == 1)
3601     Out << '0';
3602   else if (SeqID > 1) {
3603     SeqID--;
3604
3605     // <seq-id> is encoded in base-36, using digits and upper case letters.
3606     char Buffer[7]; // log(2**32) / log(36) ~= 7
3607     MutableArrayRef<char> BufferRef(Buffer);
3608     MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
3609
3610     for (; SeqID != 0; SeqID /= 36) {
3611       unsigned C = SeqID % 36;
3612       *I++ = (C < 10 ? '0' + C : 'A' + C - 10);
3613     }
3614
3615     Out.write(I.base(), I - BufferRef.rbegin());
3616   }
3617   Out << '_';
3618 }
3619
3620 void CXXNameMangler::mangleExistingSubstitution(QualType type) {
3621   bool result = mangleSubstitution(type);
3622   assert(result && "no existing substitution for type");
3623   (void) result;
3624 }
3625
3626 void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
3627   bool result = mangleSubstitution(tname);
3628   assert(result && "no existing substitution for template name");
3629   (void) result;
3630 }
3631
3632 // <substitution> ::= S <seq-id> _
3633 //                ::= S_
3634 bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
3635   // Try one of the standard substitutions first.
3636   if (mangleStandardSubstitution(ND))
3637     return true;
3638
3639   ND = cast<NamedDecl>(ND->getCanonicalDecl());
3640   return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
3641 }
3642
3643 /// Determine whether the given type has any qualifiers that are relevant for
3644 /// substitutions.
3645 static bool hasMangledSubstitutionQualifiers(QualType T) {
3646   Qualifiers Qs = T.getQualifiers();
3647   return Qs.getCVRQualifiers() || Qs.hasAddressSpace();
3648 }
3649
3650 bool CXXNameMangler::mangleSubstitution(QualType T) {
3651   if (!hasMangledSubstitutionQualifiers(T)) {
3652     if (const RecordType *RT = T->getAs<RecordType>())
3653       return mangleSubstitution(RT->getDecl());
3654   }
3655
3656   uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3657
3658   return mangleSubstitution(TypePtr);
3659 }
3660
3661 bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
3662   if (TemplateDecl *TD = Template.getAsTemplateDecl())
3663     return mangleSubstitution(TD);
3664   
3665   Template = Context.getASTContext().getCanonicalTemplateName(Template);
3666   return mangleSubstitution(
3667                       reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3668 }
3669
3670 bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
3671   llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
3672   if (I == Substitutions.end())
3673     return false;
3674
3675   unsigned SeqID = I->second;
3676   Out << 'S';
3677   mangleSeqID(SeqID);
3678
3679   return true;
3680 }
3681
3682 static bool isCharType(QualType T) {
3683   if (T.isNull())
3684     return false;
3685
3686   return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
3687     T->isSpecificBuiltinType(BuiltinType::Char_U);
3688 }
3689
3690 /// Returns whether a given type is a template specialization of a given name
3691 /// with a single argument of type char.
3692 static bool isCharSpecialization(QualType T, const char *Name) {
3693   if (T.isNull())
3694     return false;
3695
3696   const RecordType *RT = T->getAs<RecordType>();
3697   if (!RT)
3698     return false;
3699
3700   const ClassTemplateSpecializationDecl *SD =
3701     dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
3702   if (!SD)
3703     return false;
3704
3705   if (!isStdNamespace(getEffectiveDeclContext(SD)))
3706     return false;
3707
3708   const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3709   if (TemplateArgs.size() != 1)
3710     return false;
3711
3712   if (!isCharType(TemplateArgs[0].getAsType()))
3713     return false;
3714
3715   return SD->getIdentifier()->getName() == Name;
3716 }
3717
3718 template <std::size_t StrLen>
3719 static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
3720                                        const char (&Str)[StrLen]) {
3721   if (!SD->getIdentifier()->isStr(Str))
3722     return false;
3723
3724   const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3725   if (TemplateArgs.size() != 2)
3726     return false;
3727
3728   if (!isCharType(TemplateArgs[0].getAsType()))
3729     return false;
3730
3731   if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3732     return false;
3733
3734   return true;
3735 }
3736
3737 bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
3738   // <substitution> ::= St # ::std::
3739   if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
3740     if (isStd(NS)) {
3741       Out << "St";
3742       return true;
3743     }
3744   }
3745
3746   if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
3747     if (!isStdNamespace(getEffectiveDeclContext(TD)))
3748       return false;
3749
3750     // <substitution> ::= Sa # ::std::allocator
3751     if (TD->getIdentifier()->isStr("allocator")) {
3752       Out << "Sa";
3753       return true;
3754     }
3755
3756     // <<substitution> ::= Sb # ::std::basic_string
3757     if (TD->getIdentifier()->isStr("basic_string")) {
3758       Out << "Sb";
3759       return true;
3760     }
3761   }
3762
3763   if (const ClassTemplateSpecializationDecl *SD =
3764         dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
3765     if (!isStdNamespace(getEffectiveDeclContext(SD)))
3766       return false;
3767
3768     //    <substitution> ::= Ss # ::std::basic_string<char,
3769     //                            ::std::char_traits<char>,
3770     //                            ::std::allocator<char> >
3771     if (SD->getIdentifier()->isStr("basic_string")) {
3772       const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3773
3774       if (TemplateArgs.size() != 3)
3775         return false;
3776
3777       if (!isCharType(TemplateArgs[0].getAsType()))
3778         return false;
3779
3780       if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3781         return false;
3782
3783       if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
3784         return false;
3785
3786       Out << "Ss";
3787       return true;
3788     }
3789
3790     //    <substitution> ::= Si # ::std::basic_istream<char,
3791     //                            ::std::char_traits<char> >
3792     if (isStreamCharSpecialization(SD, "basic_istream")) {
3793       Out << "Si";
3794       return true;
3795     }
3796
3797     //    <substitution> ::= So # ::std::basic_ostream<char,
3798     //                            ::std::char_traits<char> >
3799     if (isStreamCharSpecialization(SD, "basic_ostream")) {
3800       Out << "So";
3801       return true;
3802     }
3803
3804     //    <substitution> ::= Sd # ::std::basic_iostream<char,
3805     //                            ::std::char_traits<char> >
3806     if (isStreamCharSpecialization(SD, "basic_iostream")) {
3807       Out << "Sd";
3808       return true;
3809     }
3810   }
3811   return false;
3812 }
3813
3814 void CXXNameMangler::addSubstitution(QualType T) {
3815   if (!hasMangledSubstitutionQualifiers(T)) {
3816     if (const RecordType *RT = T->getAs<RecordType>()) {
3817       addSubstitution(RT->getDecl());
3818       return;
3819     }
3820   }
3821
3822   uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3823   addSubstitution(TypePtr);
3824 }
3825
3826 void CXXNameMangler::addSubstitution(TemplateName Template) {
3827   if (TemplateDecl *TD = Template.getAsTemplateDecl())
3828     return addSubstitution(TD);
3829   
3830   Template = Context.getASTContext().getCanonicalTemplateName(Template);
3831   addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3832 }
3833
3834 void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
3835   assert(!Substitutions.count(Ptr) && "Substitution already exists!");
3836   Substitutions[Ptr] = SeqID++;
3837 }
3838
3839 //
3840
3841 /// Mangles the name of the declaration D and emits that name to the given
3842 /// output stream.
3843 ///
3844 /// If the declaration D requires a mangled name, this routine will emit that
3845 /// mangled name to \p os and return true. Otherwise, \p os will be unchanged
3846 /// and this routine will return false. In this case, the caller should just
3847 /// emit the identifier of the declaration (\c D->getIdentifier()) as its
3848 /// name.
3849 void ItaniumMangleContextImpl::mangleCXXName(const NamedDecl *D,
3850                                              raw_ostream &Out) {
3851   assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
3852           "Invalid mangleName() call, argument is not a variable or function!");
3853   assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
3854          "Invalid mangleName() call on 'structor decl!");
3855
3856   PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
3857                                  getASTContext().getSourceManager(),
3858                                  "Mangling declaration");
3859
3860   CXXNameMangler Mangler(*this, Out, D);
3861   Mangler.mangle(D);
3862 }
3863
3864 void ItaniumMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D,
3865                                              CXXCtorType Type,
3866                                              raw_ostream &Out) {
3867   CXXNameMangler Mangler(*this, Out, D, Type);
3868   Mangler.mangle(D);
3869 }
3870
3871 void ItaniumMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D,
3872                                              CXXDtorType Type,
3873                                              raw_ostream &Out) {
3874   CXXNameMangler Mangler(*this, Out, D, Type);
3875   Mangler.mangle(D);
3876 }
3877
3878 void ItaniumMangleContextImpl::mangleCXXCtorComdat(const CXXConstructorDecl *D,
3879                                                    raw_ostream &Out) {
3880   CXXNameMangler Mangler(*this, Out, D, Ctor_Comdat);
3881   Mangler.mangle(D);
3882 }
3883
3884 void ItaniumMangleContextImpl::mangleCXXDtorComdat(const CXXDestructorDecl *D,
3885                                                    raw_ostream &Out) {
3886   CXXNameMangler Mangler(*this, Out, D, Dtor_Comdat);
3887   Mangler.mangle(D);
3888 }
3889
3890 void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
3891                                            const ThunkInfo &Thunk,
3892                                            raw_ostream &Out) {
3893   //  <special-name> ::= T <call-offset> <base encoding>
3894   //                      # base is the nominal target function of thunk
3895   //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
3896   //                      # base is the nominal target function of thunk
3897   //                      # first call-offset is 'this' adjustment
3898   //                      # second call-offset is result adjustment
3899   
3900   assert(!isa<CXXDestructorDecl>(MD) &&
3901          "Use mangleCXXDtor for destructor decls!");
3902   CXXNameMangler Mangler(*this, Out);
3903   Mangler.getStream() << "_ZT";
3904   if (!Thunk.Return.isEmpty())
3905     Mangler.getStream() << 'c';
3906   
3907   // Mangle the 'this' pointer adjustment.
3908   Mangler.mangleCallOffset(Thunk.This.NonVirtual,
3909                            Thunk.This.Virtual.Itanium.VCallOffsetOffset);
3910
3911   // Mangle the return pointer adjustment if there is one.
3912   if (!Thunk.Return.isEmpty())
3913     Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
3914                              Thunk.Return.Virtual.Itanium.VBaseOffsetOffset);
3915
3916   Mangler.mangleFunctionEncoding(MD);
3917 }
3918
3919 void ItaniumMangleContextImpl::mangleCXXDtorThunk(
3920     const CXXDestructorDecl *DD, CXXDtorType Type,
3921     const ThisAdjustment &ThisAdjustment, raw_ostream &Out) {
3922   //  <special-name> ::= T <call-offset> <base encoding>
3923   //                      # base is the nominal target function of thunk
3924   CXXNameMangler Mangler(*this, Out, DD, Type);
3925   Mangler.getStream() << "_ZT";
3926
3927   // Mangle the 'this' pointer adjustment.
3928   Mangler.mangleCallOffset(ThisAdjustment.NonVirtual, 
3929                            ThisAdjustment.Virtual.Itanium.VCallOffsetOffset);
3930
3931   Mangler.mangleFunctionEncoding(DD);
3932 }
3933
3934 /// Returns the mangled name for a guard variable for the passed in VarDecl.
3935 void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D,
3936                                                          raw_ostream &Out) {
3937   //  <special-name> ::= GV <object name>       # Guard variable for one-time
3938   //                                            # initialization
3939   CXXNameMangler Mangler(*this, Out);
3940   Mangler.getStream() << "_ZGV";
3941   Mangler.mangleName(D);
3942 }
3943
3944 void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD,
3945                                                         raw_ostream &Out) {
3946   // These symbols are internal in the Itanium ABI, so the names don't matter.
3947   // Clang has traditionally used this symbol and allowed LLVM to adjust it to
3948   // avoid duplicate symbols.
3949   Out << "__cxx_global_var_init";
3950 }
3951
3952 void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
3953                                                              raw_ostream &Out) {
3954   // Prefix the mangling of D with __dtor_.
3955   CXXNameMangler Mangler(*this, Out);
3956   Mangler.getStream() << "__dtor_";
3957   if (shouldMangleDeclName(D))
3958     Mangler.mangle(D);
3959   else
3960     Mangler.getStream() << D->getName();
3961 }
3962
3963 void ItaniumMangleContextImpl::mangleSEHFilterExpression(
3964     const NamedDecl *EnclosingDecl, raw_ostream &Out) {
3965   CXXNameMangler Mangler(*this, Out);
3966   Mangler.getStream() << "__filt_";
3967   if (shouldMangleDeclName(EnclosingDecl))
3968     Mangler.mangle(EnclosingDecl);
3969   else
3970     Mangler.getStream() << EnclosingDecl->getName();
3971 }
3972
3973 void ItaniumMangleContextImpl::mangleSEHFinallyBlock(
3974     const NamedDecl *EnclosingDecl, raw_ostream &Out) {
3975   CXXNameMangler Mangler(*this, Out);
3976   Mangler.getStream() << "__fin_";
3977   if (shouldMangleDeclName(EnclosingDecl))
3978     Mangler.mangle(EnclosingDecl);
3979   else
3980     Mangler.getStream() << EnclosingDecl->getName();
3981 }
3982
3983 void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D,
3984                                                             raw_ostream &Out) {
3985   //  <special-name> ::= TH <object name>
3986   CXXNameMangler Mangler(*this, Out);
3987   Mangler.getStream() << "_ZTH";
3988   Mangler.mangleName(D);
3989 }
3990
3991 void
3992 ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D,
3993                                                           raw_ostream &Out) {
3994   //  <special-name> ::= TW <object name>
3995   CXXNameMangler Mangler(*this, Out);
3996   Mangler.getStream() << "_ZTW";
3997   Mangler.mangleName(D);
3998 }
3999
4000 void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D,
4001                                                         unsigned ManglingNumber,
4002                                                         raw_ostream &Out) {
4003   // We match the GCC mangling here.
4004   //  <special-name> ::= GR <object name>
4005   CXXNameMangler Mangler(*this, Out);
4006   Mangler.getStream() << "_ZGR";
4007   Mangler.mangleName(D);
4008   assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!");
4009   Mangler.mangleSeqID(ManglingNumber - 1);
4010 }
4011
4012 void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD,
4013                                                raw_ostream &Out) {
4014   // <special-name> ::= TV <type>  # virtual table
4015   CXXNameMangler Mangler(*this, Out);
4016   Mangler.getStream() << "_ZTV";
4017   Mangler.mangleNameOrStandardSubstitution(RD);
4018 }
4019
4020 void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD,
4021                                             raw_ostream &Out) {
4022   // <special-name> ::= TT <type>  # VTT structure
4023   CXXNameMangler Mangler(*this, Out);
4024   Mangler.getStream() << "_ZTT";
4025   Mangler.mangleNameOrStandardSubstitution(RD);
4026 }
4027
4028 void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD,
4029                                                    int64_t Offset,
4030                                                    const CXXRecordDecl *Type,
4031                                                    raw_ostream &Out) {
4032   // <special-name> ::= TC <type> <offset number> _ <base type>
4033   CXXNameMangler Mangler(*this, Out);
4034   Mangler.getStream() << "_ZTC";
4035   Mangler.mangleNameOrStandardSubstitution(RD);
4036   Mangler.getStream() << Offset;
4037   Mangler.getStream() << '_';
4038   Mangler.mangleNameOrStandardSubstitution(Type);
4039 }
4040
4041 void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) {
4042   // <special-name> ::= TI <type>  # typeinfo structure
4043   assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
4044   CXXNameMangler Mangler(*this, Out);
4045   Mangler.getStream() << "_ZTI";
4046   Mangler.mangleType(Ty);
4047 }
4048
4049 void ItaniumMangleContextImpl::mangleCXXRTTIName(QualType Ty,
4050                                                  raw_ostream &Out) {
4051   // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)
4052   CXXNameMangler Mangler(*this, Out);
4053   Mangler.getStream() << "_ZTS";
4054   Mangler.mangleType(Ty);
4055 }
4056
4057 void ItaniumMangleContextImpl::mangleTypeName(QualType Ty, raw_ostream &Out) {
4058   mangleCXXRTTIName(Ty, Out);
4059 }
4060
4061 void ItaniumMangleContextImpl::mangleCXXVTableBitSet(const CXXRecordDecl *RD,
4062                                                      raw_ostream &Out) {
4063   Linkage L = RD->getLinkageInternal();
4064   if (L == InternalLinkage || L == UniqueExternalLinkage) {
4065     // This part of the identifier needs to be unique across all translation
4066     // units in the linked program. The scheme fails if multiple translation
4067     // units are compiled using the same relative source file path, or if
4068     // multiple translation units are built from the same source file.
4069     SourceManager &SM = getASTContext().getSourceManager();
4070     Out << "[" << SM.getFileEntryForID(SM.getMainFileID())->getName() << "]";
4071   }
4072
4073   CXXNameMangler Mangler(*this, Out);
4074   Mangler.mangleType(QualType(RD->getTypeForDecl(), 0));
4075 }
4076
4077 void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) {
4078   llvm_unreachable("Can't mangle string literals");
4079 }
4080
4081 ItaniumMangleContext *
4082 ItaniumMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) {
4083   return new ItaniumMangleContextImpl(Context, Diags);
4084 }
4085