]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/AST/ItaniumMangle.cpp
Merge ^/head r275118 through r275209.
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / AST / ItaniumMangle.cpp
1 //===--- ItaniumMangle.cpp - Itanium C++ Name Mangling ----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implements C++ name mangling according to the Itanium C++ ABI,
11 // which is used in GCC 3.2 and newer (and many compilers that are
12 // ABI-compatible with GCC):
13 //
14 //   http://mentorembedded.github.io/cxx-abi/abi.html#mangling
15 //
16 //===----------------------------------------------------------------------===//
17 #include "clang/AST/Mangle.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/AST/DeclTemplate.h"
24 #include "clang/AST/Expr.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/AST/ExprObjC.h"
27 #include "clang/AST/TypeLoc.h"
28 #include "clang/Basic/ABI.h"
29 #include "clang/Basic/SourceManager.h"
30 #include "clang/Basic/TargetInfo.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/raw_ostream.h"
34
35 #define MANGLE_CHECKER 0
36
37 #if MANGLE_CHECKER
38 #include <cxxabi.h>
39 #endif
40
41 using namespace clang;
42
43 namespace {
44
45 /// \brief Retrieve the declaration context that should be used when mangling 
46 /// the given declaration.
47 static const DeclContext *getEffectiveDeclContext(const Decl *D) {
48   // The ABI assumes that lambda closure types that occur within 
49   // default arguments live in the context of the function. However, due to
50   // the way in which Clang parses and creates function declarations, this is
51   // not the case: the lambda closure type ends up living in the context 
52   // where the function itself resides, because the function declaration itself
53   // had not yet been created. Fix the context here.
54   if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
55     if (RD->isLambda())
56       if (ParmVarDecl *ContextParam
57             = dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
58         return ContextParam->getDeclContext();
59   }
60
61   // Perform the same check for block literals.
62   if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
63     if (ParmVarDecl *ContextParam
64           = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
65       return ContextParam->getDeclContext();
66   }
67   
68   const DeclContext *DC = D->getDeclContext();
69   if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(DC))
70     return getEffectiveDeclContext(CD);
71
72   return DC;
73 }
74
75 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
76   return getEffectiveDeclContext(cast<Decl>(DC));
77 }
78
79 static bool isLocalContainerContext(const DeclContext *DC) {
80   return isa<FunctionDecl>(DC) || isa<ObjCMethodDecl>(DC) || isa<BlockDecl>(DC);
81 }
82
83 static const RecordDecl *GetLocalClassDecl(const Decl *D) {
84   const DeclContext *DC = getEffectiveDeclContext(D);
85   while (!DC->isNamespace() && !DC->isTranslationUnit()) {
86     if (isLocalContainerContext(DC))
87       return dyn_cast<RecordDecl>(D);
88     D = cast<Decl>(DC);
89     DC = getEffectiveDeclContext(D);
90   }
91   return nullptr;
92 }
93
94 static const FunctionDecl *getStructor(const FunctionDecl *fn) {
95   if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
96     return ftd->getTemplatedDecl();
97
98   return fn;
99 }
100
101 static const NamedDecl *getStructor(const NamedDecl *decl) {
102   const FunctionDecl *fn = dyn_cast_or_null<FunctionDecl>(decl);
103   return (fn ? getStructor(fn) : decl);
104 }
105
106 static bool isLambda(const NamedDecl *ND) {
107   const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
108   if (!Record)
109     return false;
110
111   return Record->isLambda();
112 }
113
114 static const unsigned UnknownArity = ~0U;
115
116 class ItaniumMangleContextImpl : public ItaniumMangleContext {
117   typedef std::pair<const DeclContext*, IdentifierInfo*> DiscriminatorKeyTy;
118   llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
119   llvm::DenseMap<const NamedDecl*, unsigned> Uniquifier;
120   
121 public:
122   explicit ItaniumMangleContextImpl(ASTContext &Context,
123                                     DiagnosticsEngine &Diags)
124       : ItaniumMangleContext(Context, Diags) {}
125
126   /// @name Mangler Entry Points
127   /// @{
128
129   bool shouldMangleCXXName(const NamedDecl *D) override;
130   bool shouldMangleStringLiteral(const StringLiteral *) override {
131     return false;
132   }
133   void mangleCXXName(const NamedDecl *D, raw_ostream &) override;
134   void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
135                    raw_ostream &) override;
136   void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
137                           const ThisAdjustment &ThisAdjustment,
138                           raw_ostream &) override;
139   void mangleReferenceTemporary(const VarDecl *D, unsigned ManglingNumber,
140                                 raw_ostream &) override;
141   void mangleCXXVTable(const CXXRecordDecl *RD, raw_ostream &) override;
142   void mangleCXXVTT(const CXXRecordDecl *RD, raw_ostream &) override;
143   void mangleCXXCtorVTable(const CXXRecordDecl *RD, int64_t Offset,
144                            const CXXRecordDecl *Type, raw_ostream &) override;
145   void mangleCXXRTTI(QualType T, raw_ostream &) override;
146   void mangleCXXRTTIName(QualType T, raw_ostream &) override;
147   void mangleTypeName(QualType T, raw_ostream &) override;
148   void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
149                      raw_ostream &) override;
150   void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
151                      raw_ostream &) override;
152
153   void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &) override;
154   void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
155   void mangleDynamicAtExitDestructor(const VarDecl *D,
156                                      raw_ostream &Out) override;
157   void mangleItaniumThreadLocalInit(const VarDecl *D, raw_ostream &) override;
158   void mangleItaniumThreadLocalWrapper(const VarDecl *D,
159                                        raw_ostream &) override;
160
161   void mangleStringLiteral(const StringLiteral *, raw_ostream &) override;
162
163   bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
164     // Lambda closure types are already numbered.
165     if (isLambda(ND))
166       return false;
167
168     // Anonymous tags are already numbered.
169     if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
170       if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
171         return false;
172     }
173
174     // Use the canonical number for externally visible decls.
175     if (ND->isExternallyVisible()) {
176       unsigned discriminator = getASTContext().getManglingNumber(ND);
177       if (discriminator == 1)
178         return false;
179       disc = discriminator - 2;
180       return true;
181     }
182
183     // Make up a reasonable number for internal decls.
184     unsigned &discriminator = Uniquifier[ND];
185     if (!discriminator) {
186       const DeclContext *DC = getEffectiveDeclContext(ND);
187       discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
188     }
189     if (discriminator == 1)
190       return false;
191     disc = discriminator-2;
192     return true;
193   }
194   /// @}
195 };
196
197 /// CXXNameMangler - Manage the mangling of a single name.
198 class CXXNameMangler {
199   ItaniumMangleContextImpl &Context;
200   raw_ostream &Out;
201
202   /// The "structor" is the top-level declaration being mangled, if
203   /// that's not a template specialization; otherwise it's the pattern
204   /// for that specialization.
205   const NamedDecl *Structor;
206   unsigned StructorType;
207
208   /// SeqID - The next subsitution sequence number.
209   unsigned SeqID;
210
211   class FunctionTypeDepthState {
212     unsigned Bits;
213
214     enum { InResultTypeMask = 1 };
215
216   public:
217     FunctionTypeDepthState() : Bits(0) {}
218
219     /// The number of function types we're inside.
220     unsigned getDepth() const {
221       return Bits >> 1;
222     }
223
224     /// True if we're in the return type of the innermost function type.
225     bool isInResultType() const {
226       return Bits & InResultTypeMask;
227     }
228
229     FunctionTypeDepthState push() {
230       FunctionTypeDepthState tmp = *this;
231       Bits = (Bits & ~InResultTypeMask) + 2;
232       return tmp;
233     }
234
235     void enterResultType() {
236       Bits |= InResultTypeMask;
237     }
238
239     void leaveResultType() {
240       Bits &= ~InResultTypeMask;
241     }
242
243     void pop(FunctionTypeDepthState saved) {
244       assert(getDepth() == saved.getDepth() + 1);
245       Bits = saved.Bits;
246     }
247
248   } FunctionTypeDepth;
249
250   llvm::DenseMap<uintptr_t, unsigned> Substitutions;
251
252   ASTContext &getASTContext() const { return Context.getASTContext(); }
253
254 public:
255   CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
256                  const NamedDecl *D = nullptr)
257     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(0),
258       SeqID(0) {
259     // These can't be mangled without a ctor type or dtor type.
260     assert(!D || (!isa<CXXDestructorDecl>(D) &&
261                   !isa<CXXConstructorDecl>(D)));
262   }
263   CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
264                  const CXXConstructorDecl *D, CXXCtorType Type)
265     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
266       SeqID(0) { }
267   CXXNameMangler(ItaniumMangleContextImpl &C, raw_ostream &Out_,
268                  const CXXDestructorDecl *D, CXXDtorType Type)
269     : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
270       SeqID(0) { }
271
272 #if MANGLE_CHECKER
273   ~CXXNameMangler() {
274     if (Out.str()[0] == '\01')
275       return;
276
277     int status = 0;
278     char *result = abi::__cxa_demangle(Out.str().str().c_str(), 0, 0, &status);
279     assert(status == 0 && "Could not demangle mangled name!");
280     free(result);
281   }
282 #endif
283   raw_ostream &getStream() { return Out; }
284
285   void mangle(const NamedDecl *D, StringRef Prefix = "_Z");
286   void mangleCallOffset(int64_t NonVirtual, int64_t Virtual);
287   void mangleNumber(const llvm::APSInt &I);
288   void mangleNumber(int64_t Number);
289   void mangleFloat(const llvm::APFloat &F);
290   void mangleFunctionEncoding(const FunctionDecl *FD);
291   void mangleSeqID(unsigned SeqID);
292   void mangleName(const NamedDecl *ND);
293   void mangleType(QualType T);
294   void mangleNameOrStandardSubstitution(const NamedDecl *ND);
295   
296 private:
297
298   bool mangleSubstitution(const NamedDecl *ND);
299   bool mangleSubstitution(QualType T);
300   bool mangleSubstitution(TemplateName Template);
301   bool mangleSubstitution(uintptr_t Ptr);
302
303   void mangleExistingSubstitution(QualType type);
304   void mangleExistingSubstitution(TemplateName name);
305
306   bool mangleStandardSubstitution(const NamedDecl *ND);
307
308   void addSubstitution(const NamedDecl *ND) {
309     ND = cast<NamedDecl>(ND->getCanonicalDecl());
310
311     addSubstitution(reinterpret_cast<uintptr_t>(ND));
312   }
313   void addSubstitution(QualType T);
314   void addSubstitution(TemplateName Template);
315   void addSubstitution(uintptr_t Ptr);
316
317   void mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
318                               NamedDecl *firstQualifierLookup,
319                               bool recursive = false);
320   void mangleUnresolvedName(NestedNameSpecifier *qualifier,
321                             NamedDecl *firstQualifierLookup,
322                             DeclarationName name,
323                             unsigned KnownArity = UnknownArity);
324
325   void mangleName(const TemplateDecl *TD,
326                   const TemplateArgument *TemplateArgs,
327                   unsigned NumTemplateArgs);
328   void mangleUnqualifiedName(const NamedDecl *ND) {
329     mangleUnqualifiedName(ND, ND->getDeclName(), UnknownArity);
330   }
331   void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name,
332                              unsigned KnownArity);
333   void mangleUnscopedName(const NamedDecl *ND);
334   void mangleUnscopedTemplateName(const TemplateDecl *ND);
335   void mangleUnscopedTemplateName(TemplateName);
336   void mangleSourceName(const IdentifierInfo *II);
337   void mangleLocalName(const Decl *D);
338   void mangleBlockForPrefix(const BlockDecl *Block);
339   void mangleUnqualifiedBlock(const BlockDecl *Block);
340   void mangleLambda(const CXXRecordDecl *Lambda);
341   void mangleNestedName(const NamedDecl *ND, const DeclContext *DC,
342                         bool NoFunction=false);
343   void mangleNestedName(const TemplateDecl *TD,
344                         const TemplateArgument *TemplateArgs,
345                         unsigned NumTemplateArgs);
346   void manglePrefix(NestedNameSpecifier *qualifier);
347   void manglePrefix(const DeclContext *DC, bool NoFunction=false);
348   void manglePrefix(QualType type);
349   void mangleTemplatePrefix(const TemplateDecl *ND, bool NoFunction=false);
350   void mangleTemplatePrefix(TemplateName Template);
351   void mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity);
352   void mangleQualifiers(Qualifiers Quals);
353   void mangleRefQualifier(RefQualifierKind RefQualifier);
354
355   void mangleObjCMethodName(const ObjCMethodDecl *MD);
356
357   // Declare manglers for every type class.
358 #define ABSTRACT_TYPE(CLASS, PARENT)
359 #define NON_CANONICAL_TYPE(CLASS, PARENT)
360 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T);
361 #include "clang/AST/TypeNodes.def"
362
363   void mangleType(const TagType*);
364   void mangleType(TemplateName);
365   void mangleBareFunctionType(const FunctionType *T,
366                               bool MangleReturnType);
367   void mangleNeonVectorType(const VectorType *T);
368   void mangleAArch64NeonVectorType(const VectorType *T);
369
370   void mangleIntegerLiteral(QualType T, const llvm::APSInt &Value);
371   void mangleMemberExpr(const Expr *base, bool isArrow,
372                         NestedNameSpecifier *qualifier,
373                         NamedDecl *firstQualifierLookup,
374                         DeclarationName name,
375                         unsigned knownArity);
376   void mangleExpression(const Expr *E, unsigned Arity = UnknownArity);
377   void mangleCXXCtorType(CXXCtorType T);
378   void mangleCXXDtorType(CXXDtorType T);
379
380   void mangleTemplateArgs(const ASTTemplateArgumentListInfo &TemplateArgs);
381   void mangleTemplateArgs(const TemplateArgument *TemplateArgs,
382                           unsigned NumTemplateArgs);
383   void mangleTemplateArgs(const TemplateArgumentList &AL);
384   void mangleTemplateArg(TemplateArgument A);
385
386   void mangleTemplateParameter(unsigned Index);
387
388   void mangleFunctionParam(const ParmVarDecl *parm);
389 };
390
391 }
392
393 bool ItaniumMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
394   const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
395   if (FD) {
396     LanguageLinkage L = FD->getLanguageLinkage();
397     // Overloadable functions need mangling.
398     if (FD->hasAttr<OverloadableAttr>())
399       return true;
400
401     // "main" is not mangled.
402     if (FD->isMain())
403       return false;
404
405     // C++ functions and those whose names are not a simple identifier need
406     // mangling.
407     if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
408       return true;
409
410     // C functions are not mangled.
411     if (L == CLanguageLinkage)
412       return false;
413   }
414
415   // Otherwise, no mangling is done outside C++ mode.
416   if (!getASTContext().getLangOpts().CPlusPlus)
417     return false;
418
419   const VarDecl *VD = dyn_cast<VarDecl>(D);
420   if (VD) {
421     // C variables are not mangled.
422     if (VD->isExternC())
423       return false;
424
425     // Variables at global scope with non-internal linkage are not mangled
426     const DeclContext *DC = getEffectiveDeclContext(D);
427     // Check for extern variable declared locally.
428     if (DC->isFunctionOrMethod() && D->hasLinkage())
429       while (!DC->isNamespace() && !DC->isTranslationUnit())
430         DC = getEffectiveParentContext(DC);
431     if (DC->isTranslationUnit() && D->getFormalLinkage() != InternalLinkage &&
432         !isa<VarTemplateSpecializationDecl>(D))
433       return false;
434   }
435
436   return true;
437 }
438
439 void CXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
440   // <mangled-name> ::= _Z <encoding>
441   //            ::= <data name>
442   //            ::= <special-name>
443   Out << Prefix;
444   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
445     mangleFunctionEncoding(FD);
446   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
447     mangleName(VD);
448   else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(D))
449     mangleName(IFD->getAnonField());
450   else
451     mangleName(cast<FieldDecl>(D));
452 }
453
454 void CXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
455   // <encoding> ::= <function name> <bare-function-type>
456   mangleName(FD);
457
458   // Don't mangle in the type if this isn't a decl we should typically mangle.
459   if (!Context.shouldMangleDeclName(FD))
460     return;
461
462   if (FD->hasAttr<EnableIfAttr>()) {
463     FunctionTypeDepthState Saved = FunctionTypeDepth.push();
464     Out << "Ua9enable_ifI";
465     // FIXME: specific_attr_iterator iterates in reverse order. Fix that and use
466     // it here.
467     for (AttrVec::const_reverse_iterator I = FD->getAttrs().rbegin(),
468                                          E = FD->getAttrs().rend();
469          I != E; ++I) {
470       EnableIfAttr *EIA = dyn_cast<EnableIfAttr>(*I);
471       if (!EIA)
472         continue;
473       Out << 'X';
474       mangleExpression(EIA->getCond());
475       Out << 'E';
476     }
477     Out << 'E';
478     FunctionTypeDepth.pop(Saved);
479   }
480
481   // Whether the mangling of a function type includes the return type depends on
482   // the context and the nature of the function. The rules for deciding whether
483   // the return type is included are:
484   //
485   //   1. Template functions (names or types) have return types encoded, with
486   //   the exceptions listed below.
487   //   2. Function types not appearing as part of a function name mangling,
488   //   e.g. parameters, pointer types, etc., have return type encoded, with the
489   //   exceptions listed below.
490   //   3. Non-template function names do not have return types encoded.
491   //
492   // The exceptions mentioned in (1) and (2) above, for which the return type is
493   // never included, are
494   //   1. Constructors.
495   //   2. Destructors.
496   //   3. Conversion operator functions, e.g. operator int.
497   bool MangleReturnType = false;
498   if (FunctionTemplateDecl *PrimaryTemplate = FD->getPrimaryTemplate()) {
499     if (!(isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD) ||
500           isa<CXXConversionDecl>(FD)))
501       MangleReturnType = true;
502
503     // Mangle the type of the primary template.
504     FD = PrimaryTemplate->getTemplatedDecl();
505   }
506
507   mangleBareFunctionType(FD->getType()->getAs<FunctionType>(), 
508                          MangleReturnType);
509 }
510
511 static const DeclContext *IgnoreLinkageSpecDecls(const DeclContext *DC) {
512   while (isa<LinkageSpecDecl>(DC)) {
513     DC = getEffectiveParentContext(DC);
514   }
515
516   return DC;
517 }
518
519 /// isStd - Return whether a given namespace is the 'std' namespace.
520 static bool isStd(const NamespaceDecl *NS) {
521   if (!IgnoreLinkageSpecDecls(getEffectiveParentContext(NS))
522                                 ->isTranslationUnit())
523     return false;
524   
525   const IdentifierInfo *II = NS->getOriginalNamespace()->getIdentifier();
526   return II && II->isStr("std");
527 }
528
529 // isStdNamespace - Return whether a given decl context is a toplevel 'std'
530 // namespace.
531 static bool isStdNamespace(const DeclContext *DC) {
532   if (!DC->isNamespace())
533     return false;
534
535   return isStd(cast<NamespaceDecl>(DC));
536 }
537
538 static const TemplateDecl *
539 isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
540   // Check if we have a function template.
541   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)){
542     if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
543       TemplateArgs = FD->getTemplateSpecializationArgs();
544       return TD;
545     }
546   }
547
548   // Check if we have a class template.
549   if (const ClassTemplateSpecializationDecl *Spec =
550         dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
551     TemplateArgs = &Spec->getTemplateArgs();
552     return Spec->getSpecializedTemplate();
553   }
554
555   // Check if we have a variable template.
556   if (const VarTemplateSpecializationDecl *Spec =
557           dyn_cast<VarTemplateSpecializationDecl>(ND)) {
558     TemplateArgs = &Spec->getTemplateArgs();
559     return Spec->getSpecializedTemplate();
560   }
561
562   return nullptr;
563 }
564
565 void CXXNameMangler::mangleName(const NamedDecl *ND) {
566   //  <name> ::= <nested-name>
567   //         ::= <unscoped-name>
568   //         ::= <unscoped-template-name> <template-args>
569   //         ::= <local-name>
570   //
571   const DeclContext *DC = getEffectiveDeclContext(ND);
572
573   // If this is an extern variable declared locally, the relevant DeclContext
574   // is that of the containing namespace, or the translation unit.
575   // FIXME: This is a hack; extern variables declared locally should have
576   // a proper semantic declaration context!
577   if (isLocalContainerContext(DC) && ND->hasLinkage() && !isLambda(ND))
578     while (!DC->isNamespace() && !DC->isTranslationUnit())
579       DC = getEffectiveParentContext(DC);
580   else if (GetLocalClassDecl(ND)) {
581     mangleLocalName(ND);
582     return;
583   }
584
585   DC = IgnoreLinkageSpecDecls(DC);
586
587   if (DC->isTranslationUnit() || isStdNamespace(DC)) {
588     // Check if we have a template.
589     const TemplateArgumentList *TemplateArgs = nullptr;
590     if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
591       mangleUnscopedTemplateName(TD);
592       mangleTemplateArgs(*TemplateArgs);
593       return;
594     }
595
596     mangleUnscopedName(ND);
597     return;
598   }
599
600   if (isLocalContainerContext(DC)) {
601     mangleLocalName(ND);
602     return;
603   }
604
605   mangleNestedName(ND, DC);
606 }
607 void CXXNameMangler::mangleName(const TemplateDecl *TD,
608                                 const TemplateArgument *TemplateArgs,
609                                 unsigned NumTemplateArgs) {
610   const DeclContext *DC = IgnoreLinkageSpecDecls(getEffectiveDeclContext(TD));
611
612   if (DC->isTranslationUnit() || isStdNamespace(DC)) {
613     mangleUnscopedTemplateName(TD);
614     mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
615   } else {
616     mangleNestedName(TD, TemplateArgs, NumTemplateArgs);
617   }
618 }
619
620 void CXXNameMangler::mangleUnscopedName(const NamedDecl *ND) {
621   //  <unscoped-name> ::= <unqualified-name>
622   //                  ::= St <unqualified-name>   # ::std::
623
624   if (isStdNamespace(IgnoreLinkageSpecDecls(getEffectiveDeclContext(ND))))
625     Out << "St";
626
627   mangleUnqualifiedName(ND);
628 }
629
630 void CXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *ND) {
631   //     <unscoped-template-name> ::= <unscoped-name>
632   //                              ::= <substitution>
633   if (mangleSubstitution(ND))
634     return;
635
636   // <template-template-param> ::= <template-param>
637   if (const TemplateTemplateParmDecl *TTP
638                                      = dyn_cast<TemplateTemplateParmDecl>(ND)) {
639     mangleTemplateParameter(TTP->getIndex());
640     return;
641   }
642
643   mangleUnscopedName(ND->getTemplatedDecl());
644   addSubstitution(ND);
645 }
646
647 void CXXNameMangler::mangleUnscopedTemplateName(TemplateName Template) {
648   //     <unscoped-template-name> ::= <unscoped-name>
649   //                              ::= <substitution>
650   if (TemplateDecl *TD = Template.getAsTemplateDecl())
651     return mangleUnscopedTemplateName(TD);
652   
653   if (mangleSubstitution(Template))
654     return;
655
656   DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
657   assert(Dependent && "Not a dependent template name?");
658   if (const IdentifierInfo *Id = Dependent->getIdentifier())
659     mangleSourceName(Id);
660   else
661     mangleOperatorName(Dependent->getOperator(), UnknownArity);
662   
663   addSubstitution(Template);
664 }
665
666 void CXXNameMangler::mangleFloat(const llvm::APFloat &f) {
667   // ABI:
668   //   Floating-point literals are encoded using a fixed-length
669   //   lowercase hexadecimal string corresponding to the internal
670   //   representation (IEEE on Itanium), high-order bytes first,
671   //   without leading zeroes. For example: "Lf bf800000 E" is -1.0f
672   //   on Itanium.
673   // The 'without leading zeroes' thing seems to be an editorial
674   // mistake; see the discussion on cxx-abi-dev beginning on
675   // 2012-01-16.
676
677   // Our requirements here are just barely weird enough to justify
678   // using a custom algorithm instead of post-processing APInt::toString().
679
680   llvm::APInt valueBits = f.bitcastToAPInt();
681   unsigned numCharacters = (valueBits.getBitWidth() + 3) / 4;
682   assert(numCharacters != 0);
683
684   // Allocate a buffer of the right number of characters.
685   SmallVector<char, 20> buffer;
686   buffer.set_size(numCharacters);
687
688   // Fill the buffer left-to-right.
689   for (unsigned stringIndex = 0; stringIndex != numCharacters; ++stringIndex) {
690     // The bit-index of the next hex digit.
691     unsigned digitBitIndex = 4 * (numCharacters - stringIndex - 1);
692
693     // Project out 4 bits starting at 'digitIndex'.
694     llvm::integerPart hexDigit
695       = valueBits.getRawData()[digitBitIndex / llvm::integerPartWidth];
696     hexDigit >>= (digitBitIndex % llvm::integerPartWidth);
697     hexDigit &= 0xF;
698
699     // Map that over to a lowercase hex digit.
700     static const char charForHex[16] = {
701       '0', '1', '2', '3', '4', '5', '6', '7',
702       '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
703     };
704     buffer[stringIndex] = charForHex[hexDigit];
705   }
706
707   Out.write(buffer.data(), numCharacters);
708 }
709
710 void CXXNameMangler::mangleNumber(const llvm::APSInt &Value) {
711   if (Value.isSigned() && Value.isNegative()) {
712     Out << 'n';
713     Value.abs().print(Out, /*signed*/ false);
714   } else {
715     Value.print(Out, /*signed*/ false);
716   }
717 }
718
719 void CXXNameMangler::mangleNumber(int64_t Number) {
720   //  <number> ::= [n] <non-negative decimal integer>
721   if (Number < 0) {
722     Out << 'n';
723     Number = -Number;
724   }
725
726   Out << Number;
727 }
728
729 void CXXNameMangler::mangleCallOffset(int64_t NonVirtual, int64_t Virtual) {
730   //  <call-offset>  ::= h <nv-offset> _
731   //                 ::= v <v-offset> _
732   //  <nv-offset>    ::= <offset number>        # non-virtual base override
733   //  <v-offset>     ::= <offset number> _ <virtual offset number>
734   //                      # virtual base override, with vcall offset
735   if (!Virtual) {
736     Out << 'h';
737     mangleNumber(NonVirtual);
738     Out << '_';
739     return;
740   }
741
742   Out << 'v';
743   mangleNumber(NonVirtual);
744   Out << '_';
745   mangleNumber(Virtual);
746   Out << '_';
747 }
748
749 void CXXNameMangler::manglePrefix(QualType type) {
750   if (const TemplateSpecializationType *TST =
751         type->getAs<TemplateSpecializationType>()) {
752     if (!mangleSubstitution(QualType(TST, 0))) {
753       mangleTemplatePrefix(TST->getTemplateName());
754         
755       // FIXME: GCC does not appear to mangle the template arguments when
756       // the template in question is a dependent template name. Should we
757       // emulate that badness?
758       mangleTemplateArgs(TST->getArgs(), TST->getNumArgs());
759       addSubstitution(QualType(TST, 0));
760     }
761   } else if (const DependentTemplateSpecializationType *DTST
762                = type->getAs<DependentTemplateSpecializationType>()) {
763     TemplateName Template
764       = getASTContext().getDependentTemplateName(DTST->getQualifier(), 
765                                                  DTST->getIdentifier());
766     mangleTemplatePrefix(Template);
767
768     // FIXME: GCC does not appear to mangle the template arguments when
769     // the template in question is a dependent template name. Should we
770     // emulate that badness?
771     mangleTemplateArgs(DTST->getArgs(), DTST->getNumArgs());
772   } else {
773     // We use the QualType mangle type variant here because it handles
774     // substitutions.
775     mangleType(type);
776   }
777 }
778
779 /// Mangle everything prior to the base-unresolved-name in an unresolved-name.
780 ///
781 /// \param firstQualifierLookup - the entity found by unqualified lookup
782 ///   for the first name in the qualifier, if this is for a member expression
783 /// \param recursive - true if this is being called recursively,
784 ///   i.e. if there is more prefix "to the right".
785 void CXXNameMangler::mangleUnresolvedPrefix(NestedNameSpecifier *qualifier,
786                                             NamedDecl *firstQualifierLookup,
787                                             bool recursive) {
788
789   // x, ::x
790   // <unresolved-name> ::= [gs] <base-unresolved-name>
791
792   // T::x / decltype(p)::x
793   // <unresolved-name> ::= sr <unresolved-type> <base-unresolved-name>
794
795   // T::N::x /decltype(p)::N::x
796   // <unresolved-name> ::= srN <unresolved-type> <unresolved-qualifier-level>+ E
797   //                       <base-unresolved-name>
798
799   // A::x, N::y, A<T>::z; "gs" means leading "::"
800   // <unresolved-name> ::= [gs] sr <unresolved-qualifier-level>+ E
801   //                       <base-unresolved-name>
802
803   switch (qualifier->getKind()) {
804   case NestedNameSpecifier::Global:
805     Out << "gs";
806
807     // We want an 'sr' unless this is the entire NNS.
808     if (recursive)
809       Out << "sr";
810
811     // We never want an 'E' here.
812     return;
813
814   case NestedNameSpecifier::Namespace:
815     if (qualifier->getPrefix())
816       mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
817                              /*recursive*/ true);
818     else
819       Out << "sr";
820     mangleSourceName(qualifier->getAsNamespace()->getIdentifier());
821     break;
822   case NestedNameSpecifier::NamespaceAlias:
823     if (qualifier->getPrefix())
824       mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
825                              /*recursive*/ true);
826     else
827       Out << "sr";
828     mangleSourceName(qualifier->getAsNamespaceAlias()->getIdentifier());
829     break;
830
831   case NestedNameSpecifier::TypeSpec:
832   case NestedNameSpecifier::TypeSpecWithTemplate: {
833     const Type *type = qualifier->getAsType();
834
835     // We only want to use an unresolved-type encoding if this is one of:
836     //   - a decltype
837     //   - a template type parameter
838     //   - a template template parameter with arguments
839     // In all of these cases, we should have no prefix.
840     if (qualifier->getPrefix()) {
841       mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
842                              /*recursive*/ true);
843     } else {
844       // Otherwise, all the cases want this.
845       Out << "sr";
846     }
847
848     // Only certain other types are valid as prefixes;  enumerate them.
849     switch (type->getTypeClass()) {
850     case Type::Builtin:
851     case Type::Complex:
852     case Type::Adjusted:
853     case Type::Decayed:
854     case Type::Pointer:
855     case Type::BlockPointer:
856     case Type::LValueReference:
857     case Type::RValueReference:
858     case Type::MemberPointer:
859     case Type::ConstantArray:
860     case Type::IncompleteArray:
861     case Type::VariableArray:
862     case Type::DependentSizedArray:
863     case Type::DependentSizedExtVector:
864     case Type::Vector:
865     case Type::ExtVector:
866     case Type::FunctionProto:
867     case Type::FunctionNoProto:
868     case Type::Enum:
869     case Type::Paren:
870     case Type::Elaborated:
871     case Type::Attributed:
872     case Type::Auto:
873     case Type::PackExpansion:
874     case Type::ObjCObject:
875     case Type::ObjCInterface:
876     case Type::ObjCObjectPointer:
877     case Type::Atomic:
878       llvm_unreachable("type is illegal as a nested name specifier");
879
880     case Type::SubstTemplateTypeParmPack:
881       // FIXME: not clear how to mangle this!
882       // template <class T...> class A {
883       //   template <class U...> void foo(decltype(T::foo(U())) x...);
884       // };
885       Out << "_SUBSTPACK_";
886       break;
887
888     // <unresolved-type> ::= <template-param>
889     //                   ::= <decltype>
890     //                   ::= <template-template-param> <template-args>
891     // (this last is not official yet)
892     case Type::TypeOfExpr:
893     case Type::TypeOf:
894     case Type::Decltype:
895     case Type::TemplateTypeParm:
896     case Type::UnaryTransform:
897     case Type::SubstTemplateTypeParm:
898     unresolvedType:
899       assert(!qualifier->getPrefix());
900
901       // We only get here recursively if we're followed by identifiers.
902       if (recursive) Out << 'N';
903
904       // This seems to do everything we want.  It's not really
905       // sanctioned for a substituted template parameter, though.
906       mangleType(QualType(type, 0));
907
908       // We never want to print 'E' directly after an unresolved-type,
909       // so we return directly.
910       return;
911
912     case Type::Typedef:
913       mangleSourceName(cast<TypedefType>(type)->getDecl()->getIdentifier());
914       break;
915
916     case Type::UnresolvedUsing:
917       mangleSourceName(cast<UnresolvedUsingType>(type)->getDecl()
918                          ->getIdentifier());
919       break;
920
921     case Type::Record:
922       mangleSourceName(cast<RecordType>(type)->getDecl()->getIdentifier());
923       break;
924
925     case Type::TemplateSpecialization: {
926       const TemplateSpecializationType *tst
927         = cast<TemplateSpecializationType>(type);
928       TemplateName name = tst->getTemplateName();
929       switch (name.getKind()) {
930       case TemplateName::Template:
931       case TemplateName::QualifiedTemplate: {
932         TemplateDecl *temp = name.getAsTemplateDecl();
933
934         // If the base is a template template parameter, this is an
935         // unresolved type.
936         assert(temp && "no template for template specialization type");
937         if (isa<TemplateTemplateParmDecl>(temp)) goto unresolvedType;
938
939         mangleSourceName(temp->getIdentifier());
940         break;
941       }
942
943       case TemplateName::OverloadedTemplate:
944       case TemplateName::DependentTemplate:
945         llvm_unreachable("invalid base for a template specialization type");
946
947       case TemplateName::SubstTemplateTemplateParm: {
948         SubstTemplateTemplateParmStorage *subst
949           = name.getAsSubstTemplateTemplateParm();
950         mangleExistingSubstitution(subst->getReplacement());
951         break;
952       }
953
954       case TemplateName::SubstTemplateTemplateParmPack: {
955         // FIXME: not clear how to mangle this!
956         // template <template <class U> class T...> class A {
957         //   template <class U...> void foo(decltype(T<U>::foo) x...);
958         // };
959         Out << "_SUBSTPACK_";
960         break;
961       }
962       }
963
964       mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());
965       break;
966     }
967
968     case Type::InjectedClassName:
969       mangleSourceName(cast<InjectedClassNameType>(type)->getDecl()
970                          ->getIdentifier());
971       break;
972
973     case Type::DependentName:
974       mangleSourceName(cast<DependentNameType>(type)->getIdentifier());
975       break;
976
977     case Type::DependentTemplateSpecialization: {
978       const DependentTemplateSpecializationType *tst
979         = cast<DependentTemplateSpecializationType>(type);
980       mangleSourceName(tst->getIdentifier());
981       mangleTemplateArgs(tst->getArgs(), tst->getNumArgs());
982       break;
983     }
984     }
985     break;
986   }
987
988   case NestedNameSpecifier::Identifier:
989     // Member expressions can have these without prefixes.
990     if (qualifier->getPrefix()) {
991       mangleUnresolvedPrefix(qualifier->getPrefix(), firstQualifierLookup,
992                              /*recursive*/ true);
993     } else if (firstQualifierLookup) {
994
995       // Try to make a proper qualifier out of the lookup result, and
996       // then just recurse on that.
997       NestedNameSpecifier *newQualifier;
998       if (TypeDecl *typeDecl = dyn_cast<TypeDecl>(firstQualifierLookup)) {
999         QualType type = getASTContext().getTypeDeclType(typeDecl);
1000
1001         // Pretend we had a different nested name specifier.
1002         newQualifier = NestedNameSpecifier::Create(getASTContext(),
1003                                                    /*prefix*/ nullptr,
1004                                                    /*template*/ false,
1005                                                    type.getTypePtr());
1006       } else if (NamespaceDecl *nspace =
1007                    dyn_cast<NamespaceDecl>(firstQualifierLookup)) {
1008         newQualifier = NestedNameSpecifier::Create(getASTContext(),
1009                                                    /*prefix*/ nullptr,
1010                                                    nspace);
1011       } else if (NamespaceAliasDecl *alias =
1012                    dyn_cast<NamespaceAliasDecl>(firstQualifierLookup)) {
1013         newQualifier = NestedNameSpecifier::Create(getASTContext(),
1014                                                    /*prefix*/ nullptr,
1015                                                    alias);
1016       } else {
1017         // No sensible mangling to do here.
1018         newQualifier = nullptr;
1019       }
1020
1021       if (newQualifier)
1022         return mangleUnresolvedPrefix(newQualifier, /*lookup*/ nullptr,
1023                                       recursive);
1024
1025     } else {
1026       Out << "sr";
1027     }
1028
1029     mangleSourceName(qualifier->getAsIdentifier());
1030     break;
1031   }
1032
1033   // If this was the innermost part of the NNS, and we fell out to
1034   // here, append an 'E'.
1035   if (!recursive)
1036     Out << 'E';
1037 }
1038
1039 /// Mangle an unresolved-name, which is generally used for names which
1040 /// weren't resolved to specific entities.
1041 void CXXNameMangler::mangleUnresolvedName(NestedNameSpecifier *qualifier,
1042                                           NamedDecl *firstQualifierLookup,
1043                                           DeclarationName name,
1044                                           unsigned knownArity) {
1045   if (qualifier) mangleUnresolvedPrefix(qualifier, firstQualifierLookup);
1046   mangleUnqualifiedName(nullptr, name, knownArity);
1047 }
1048
1049 static const FieldDecl *FindFirstNamedDataMember(const RecordDecl *RD) {
1050   assert(RD->isAnonymousStructOrUnion() &&
1051          "Expected anonymous struct or union!");
1052   
1053   for (const auto *I : RD->fields()) {
1054     if (I->getIdentifier())
1055       return I;
1056     
1057     if (const RecordType *RT = I->getType()->getAs<RecordType>())
1058       if (const FieldDecl *NamedDataMember = 
1059           FindFirstNamedDataMember(RT->getDecl()))
1060         return NamedDataMember;
1061   }
1062
1063   // We didn't find a named data member.
1064   return nullptr;
1065 }
1066
1067 void CXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
1068                                            DeclarationName Name,
1069                                            unsigned KnownArity) {
1070   //  <unqualified-name> ::= <operator-name>
1071   //                     ::= <ctor-dtor-name>
1072   //                     ::= <source-name>
1073   switch (Name.getNameKind()) {
1074   case DeclarationName::Identifier: {
1075     if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
1076       // We must avoid conflicts between internally- and externally-
1077       // linked variable and function declaration names in the same TU:
1078       //   void test() { extern void foo(); }
1079       //   static void foo();
1080       // This naming convention is the same as that followed by GCC,
1081       // though it shouldn't actually matter.
1082       if (ND && ND->getFormalLinkage() == InternalLinkage &&
1083           getEffectiveDeclContext(ND)->isFileContext())
1084         Out << 'L';
1085
1086       mangleSourceName(II);
1087       break;
1088     }
1089
1090     // Otherwise, an anonymous entity.  We must have a declaration.
1091     assert(ND && "mangling empty name without declaration");
1092
1093     if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
1094       if (NS->isAnonymousNamespace()) {
1095         // This is how gcc mangles these names.
1096         Out << "12_GLOBAL__N_1";
1097         break;
1098       }
1099     }
1100
1101     if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
1102       // We must have an anonymous union or struct declaration.
1103       const RecordDecl *RD = 
1104         cast<RecordDecl>(VD->getType()->getAs<RecordType>()->getDecl());
1105       
1106       // Itanium C++ ABI 5.1.2:
1107       //
1108       //   For the purposes of mangling, the name of an anonymous union is
1109       //   considered to be the name of the first named data member found by a
1110       //   pre-order, depth-first, declaration-order walk of the data members of
1111       //   the anonymous union. If there is no such data member (i.e., if all of
1112       //   the data members in the union are unnamed), then there is no way for
1113       //   a program to refer to the anonymous union, and there is therefore no
1114       //   need to mangle its name.
1115       const FieldDecl *FD = FindFirstNamedDataMember(RD);
1116
1117       // It's actually possible for various reasons for us to get here
1118       // with an empty anonymous struct / union.  Fortunately, it
1119       // doesn't really matter what name we generate.
1120       if (!FD) break;
1121       assert(FD->getIdentifier() && "Data member name isn't an identifier!");
1122       
1123       mangleSourceName(FD->getIdentifier());
1124       break;
1125     }
1126
1127     // Class extensions have no name as a category, and it's possible
1128     // for them to be the semantic parent of certain declarations
1129     // (primarily, tag decls defined within declarations).  Such
1130     // declarations will always have internal linkage, so the name
1131     // doesn't really matter, but we shouldn't crash on them.  For
1132     // safety, just handle all ObjC containers here.
1133     if (isa<ObjCContainerDecl>(ND))
1134       break;
1135     
1136     // We must have an anonymous struct.
1137     const TagDecl *TD = cast<TagDecl>(ND);
1138     if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
1139       assert(TD->getDeclContext() == D->getDeclContext() &&
1140              "Typedef should not be in another decl context!");
1141       assert(D->getDeclName().getAsIdentifierInfo() &&
1142              "Typedef was not named!");
1143       mangleSourceName(D->getDeclName().getAsIdentifierInfo());
1144       break;
1145     }
1146
1147     // <unnamed-type-name> ::= <closure-type-name>
1148     // 
1149     // <closure-type-name> ::= Ul <lambda-sig> E [ <nonnegative number> ] _
1150     // <lambda-sig> ::= <parameter-type>+   # Parameter types or 'v' for 'void'.
1151     if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
1152       if (Record->isLambda() && Record->getLambdaManglingNumber()) {
1153         mangleLambda(Record);
1154         break;
1155       }
1156     }
1157
1158     if (TD->isExternallyVisible()) {
1159       unsigned UnnamedMangle = getASTContext().getManglingNumber(TD);
1160       Out << "Ut";
1161       if (UnnamedMangle > 1)
1162         Out << llvm::utostr(UnnamedMangle - 2);
1163       Out << '_';
1164       break;
1165     }
1166
1167     // Get a unique id for the anonymous struct.
1168     unsigned AnonStructId = Context.getAnonymousStructId(TD);
1169
1170     // Mangle it as a source name in the form
1171     // [n] $_<id>
1172     // where n is the length of the string.
1173     SmallString<8> Str;
1174     Str += "$_";
1175     Str += llvm::utostr(AnonStructId);
1176
1177     Out << Str.size();
1178     Out << Str.str();
1179     break;
1180   }
1181
1182   case DeclarationName::ObjCZeroArgSelector:
1183   case DeclarationName::ObjCOneArgSelector:
1184   case DeclarationName::ObjCMultiArgSelector:
1185     llvm_unreachable("Can't mangle Objective-C selector names here!");
1186
1187   case DeclarationName::CXXConstructorName:
1188     if (ND == Structor)
1189       // If the named decl is the C++ constructor we're mangling, use the type
1190       // we were given.
1191       mangleCXXCtorType(static_cast<CXXCtorType>(StructorType));
1192     else
1193       // Otherwise, use the complete constructor name. This is relevant if a
1194       // class with a constructor is declared within a constructor.
1195       mangleCXXCtorType(Ctor_Complete);
1196     break;
1197
1198   case DeclarationName::CXXDestructorName:
1199     if (ND == Structor)
1200       // If the named decl is the C++ destructor we're mangling, use the type we
1201       // were given.
1202       mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
1203     else
1204       // Otherwise, use the complete destructor name. This is relevant if a
1205       // class with a destructor is declared within a destructor.
1206       mangleCXXDtorType(Dtor_Complete);
1207     break;
1208
1209   case DeclarationName::CXXConversionFunctionName:
1210     // <operator-name> ::= cv <type>    # (cast)
1211     Out << "cv";
1212     mangleType(Name.getCXXNameType());
1213     break;
1214
1215   case DeclarationName::CXXOperatorName: {
1216     unsigned Arity;
1217     if (ND) {
1218       Arity = cast<FunctionDecl>(ND)->getNumParams();
1219
1220       // If we have a C++ member function, we need to include the 'this' pointer.
1221       // FIXME: This does not make sense for operators that are static, but their
1222       // names stay the same regardless of the arity (operator new for instance).
1223       if (isa<CXXMethodDecl>(ND))
1224         Arity++;
1225     } else
1226       Arity = KnownArity;
1227
1228     mangleOperatorName(Name.getCXXOverloadedOperator(), Arity);
1229     break;
1230   }
1231
1232   case DeclarationName::CXXLiteralOperatorName:
1233     // FIXME: This mangling is not yet official.
1234     Out << "li";
1235     mangleSourceName(Name.getCXXLiteralIdentifier());
1236     break;
1237
1238   case DeclarationName::CXXUsingDirective:
1239     llvm_unreachable("Can't mangle a using directive name!");
1240   }
1241 }
1242
1243 void CXXNameMangler::mangleSourceName(const IdentifierInfo *II) {
1244   // <source-name> ::= <positive length number> <identifier>
1245   // <number> ::= [n] <non-negative decimal integer>
1246   // <identifier> ::= <unqualified source code identifier>
1247   Out << II->getLength() << II->getName();
1248 }
1249
1250 void CXXNameMangler::mangleNestedName(const NamedDecl *ND,
1251                                       const DeclContext *DC,
1252                                       bool NoFunction) {
1253   // <nested-name> 
1254   //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <prefix> <unqualified-name> E
1255   //   ::= N [<CV-qualifiers>] [<ref-qualifier>] <template-prefix> 
1256   //       <template-args> E
1257
1258   Out << 'N';
1259   if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(ND)) {
1260     Qualifiers MethodQuals =
1261         Qualifiers::fromCVRMask(Method->getTypeQualifiers());
1262     // We do not consider restrict a distinguishing attribute for overloading
1263     // purposes so we must not mangle it.
1264     MethodQuals.removeRestrict();
1265     mangleQualifiers(MethodQuals);
1266     mangleRefQualifier(Method->getRefQualifier());
1267   }
1268   
1269   // Check if we have a template.
1270   const TemplateArgumentList *TemplateArgs = nullptr;
1271   if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1272     mangleTemplatePrefix(TD, NoFunction);
1273     mangleTemplateArgs(*TemplateArgs);
1274   }
1275   else {
1276     manglePrefix(DC, NoFunction);
1277     mangleUnqualifiedName(ND);
1278   }
1279
1280   Out << 'E';
1281 }
1282 void CXXNameMangler::mangleNestedName(const TemplateDecl *TD,
1283                                       const TemplateArgument *TemplateArgs,
1284                                       unsigned NumTemplateArgs) {
1285   // <nested-name> ::= N [<CV-qualifiers>] <template-prefix> <template-args> E
1286
1287   Out << 'N';
1288
1289   mangleTemplatePrefix(TD);
1290   mangleTemplateArgs(TemplateArgs, NumTemplateArgs);
1291
1292   Out << 'E';
1293 }
1294
1295 void CXXNameMangler::mangleLocalName(const Decl *D) {
1296   // <local-name> := Z <function encoding> E <entity name> [<discriminator>]
1297   //              := Z <function encoding> E s [<discriminator>]
1298   // <local-name> := Z <function encoding> E d [ <parameter number> ] 
1299   //                 _ <entity name>
1300   // <discriminator> := _ <non-negative number>
1301   assert(isa<NamedDecl>(D) || isa<BlockDecl>(D));
1302   const RecordDecl *RD = GetLocalClassDecl(D);
1303   const DeclContext *DC = getEffectiveDeclContext(RD ? RD : D);
1304
1305   Out << 'Z';
1306
1307   if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(DC))
1308     mangleObjCMethodName(MD);
1309   else if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
1310     mangleBlockForPrefix(BD);
1311   else
1312     mangleFunctionEncoding(cast<FunctionDecl>(DC));
1313
1314   Out << 'E';
1315
1316   if (RD) {
1317     // The parameter number is omitted for the last parameter, 0 for the 
1318     // second-to-last parameter, 1 for the third-to-last parameter, etc. The 
1319     // <entity name> will of course contain a <closure-type-name>: Its 
1320     // numbering will be local to the particular argument in which it appears
1321     // -- other default arguments do not affect its encoding.
1322     const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD);
1323     if (CXXRD->isLambda()) {
1324       if (const ParmVarDecl *Parm
1325               = dyn_cast_or_null<ParmVarDecl>(CXXRD->getLambdaContextDecl())) {
1326         if (const FunctionDecl *Func
1327               = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1328           Out << 'd';
1329           unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1330           if (Num > 1)
1331             mangleNumber(Num - 2);
1332           Out << '_';
1333         }
1334       }
1335     }
1336     
1337     // Mangle the name relative to the closest enclosing function.
1338     // equality ok because RD derived from ND above
1339     if (D == RD)  {
1340       mangleUnqualifiedName(RD);
1341     } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1342       manglePrefix(getEffectiveDeclContext(BD), true /*NoFunction*/);
1343       mangleUnqualifiedBlock(BD);
1344     } else {
1345       const NamedDecl *ND = cast<NamedDecl>(D);
1346       mangleNestedName(ND, getEffectiveDeclContext(ND), true /*NoFunction*/);
1347     }
1348   } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
1349     // Mangle a block in a default parameter; see above explanation for
1350     // lambdas.
1351     if (const ParmVarDecl *Parm
1352             = dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl())) {
1353       if (const FunctionDecl *Func
1354             = dyn_cast<FunctionDecl>(Parm->getDeclContext())) {
1355         Out << 'd';
1356         unsigned Num = Func->getNumParams() - Parm->getFunctionScopeIndex();
1357         if (Num > 1)
1358           mangleNumber(Num - 2);
1359         Out << '_';
1360       }
1361     }
1362
1363     mangleUnqualifiedBlock(BD);
1364   } else {
1365     mangleUnqualifiedName(cast<NamedDecl>(D));
1366   }
1367
1368   if (const NamedDecl *ND = dyn_cast<NamedDecl>(RD ? RD : D)) {
1369     unsigned disc;
1370     if (Context.getNextDiscriminator(ND, disc)) {
1371       if (disc < 10)
1372         Out << '_' << disc;
1373       else
1374         Out << "__" << disc << '_';
1375     }
1376   }
1377 }
1378
1379 void CXXNameMangler::mangleBlockForPrefix(const BlockDecl *Block) {
1380   if (GetLocalClassDecl(Block)) {
1381     mangleLocalName(Block);
1382     return;
1383   }
1384   const DeclContext *DC = getEffectiveDeclContext(Block);
1385   if (isLocalContainerContext(DC)) {
1386     mangleLocalName(Block);
1387     return;
1388   }
1389   manglePrefix(getEffectiveDeclContext(Block));
1390   mangleUnqualifiedBlock(Block);
1391 }
1392
1393 void CXXNameMangler::mangleUnqualifiedBlock(const BlockDecl *Block) {
1394   if (Decl *Context = Block->getBlockManglingContextDecl()) {
1395     if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1396         Context->getDeclContext()->isRecord()) {
1397       if (const IdentifierInfo *Name
1398             = cast<NamedDecl>(Context)->getIdentifier()) {
1399         mangleSourceName(Name);
1400         Out << 'M';            
1401       }
1402     }
1403   }
1404
1405   // If we have a block mangling number, use it.
1406   unsigned Number = Block->getBlockManglingNumber();
1407   // Otherwise, just make up a number. It doesn't matter what it is because
1408   // the symbol in question isn't externally visible.
1409   if (!Number)
1410     Number = Context.getBlockId(Block, false);
1411   Out << "Ub";
1412   if (Number > 1)
1413     Out << Number - 2;
1414   Out << '_';
1415 }
1416
1417 void CXXNameMangler::mangleLambda(const CXXRecordDecl *Lambda) {
1418   // If the context of a closure type is an initializer for a class member 
1419   // (static or nonstatic), it is encoded in a qualified name with a final 
1420   // <prefix> of the form:
1421   //
1422   //   <data-member-prefix> := <member source-name> M
1423   //
1424   // Technically, the data-member-prefix is part of the <prefix>. However,
1425   // since a closure type will always be mangled with a prefix, it's easier
1426   // to emit that last part of the prefix here.
1427   if (Decl *Context = Lambda->getLambdaContextDecl()) {
1428     if ((isa<VarDecl>(Context) || isa<FieldDecl>(Context)) &&
1429         Context->getDeclContext()->isRecord()) {
1430       if (const IdentifierInfo *Name
1431             = cast<NamedDecl>(Context)->getIdentifier()) {
1432         mangleSourceName(Name);
1433         Out << 'M';            
1434       }
1435     }
1436   }
1437
1438   Out << "Ul";
1439   const FunctionProtoType *Proto = Lambda->getLambdaTypeInfo()->getType()->
1440                                    getAs<FunctionProtoType>();
1441   mangleBareFunctionType(Proto, /*MangleReturnType=*/false);        
1442   Out << "E";
1443   
1444   // The number is omitted for the first closure type with a given 
1445   // <lambda-sig> in a given context; it is n-2 for the nth closure type 
1446   // (in lexical order) with that same <lambda-sig> and context.
1447   //
1448   // The AST keeps track of the number for us.
1449   unsigned Number = Lambda->getLambdaManglingNumber();
1450   assert(Number > 0 && "Lambda should be mangled as an unnamed class");
1451   if (Number > 1)
1452     mangleNumber(Number - 2);
1453   Out << '_';  
1454 }
1455
1456 void CXXNameMangler::manglePrefix(NestedNameSpecifier *qualifier) {
1457   switch (qualifier->getKind()) {
1458   case NestedNameSpecifier::Global:
1459     // nothing
1460     return;
1461
1462   case NestedNameSpecifier::Namespace:
1463     mangleName(qualifier->getAsNamespace());
1464     return;
1465
1466   case NestedNameSpecifier::NamespaceAlias:
1467     mangleName(qualifier->getAsNamespaceAlias()->getNamespace());
1468     return;
1469
1470   case NestedNameSpecifier::TypeSpec:
1471   case NestedNameSpecifier::TypeSpecWithTemplate:
1472     manglePrefix(QualType(qualifier->getAsType(), 0));
1473     return;
1474
1475   case NestedNameSpecifier::Identifier:
1476     // Member expressions can have these without prefixes, but that
1477     // should end up in mangleUnresolvedPrefix instead.
1478     assert(qualifier->getPrefix());
1479     manglePrefix(qualifier->getPrefix());
1480
1481     mangleSourceName(qualifier->getAsIdentifier());
1482     return;
1483   }
1484
1485   llvm_unreachable("unexpected nested name specifier");
1486 }
1487
1488 void CXXNameMangler::manglePrefix(const DeclContext *DC, bool NoFunction) {
1489   //  <prefix> ::= <prefix> <unqualified-name>
1490   //           ::= <template-prefix> <template-args>
1491   //           ::= <template-param>
1492   //           ::= # empty
1493   //           ::= <substitution>
1494
1495   DC = IgnoreLinkageSpecDecls(DC);
1496
1497   if (DC->isTranslationUnit())
1498     return;
1499
1500   if (NoFunction && isLocalContainerContext(DC))
1501     return;
1502
1503   assert(!isLocalContainerContext(DC));
1504
1505   const NamedDecl *ND = cast<NamedDecl>(DC);  
1506   if (mangleSubstitution(ND))
1507     return;
1508   
1509   // Check if we have a template.
1510   const TemplateArgumentList *TemplateArgs = nullptr;
1511   if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
1512     mangleTemplatePrefix(TD);
1513     mangleTemplateArgs(*TemplateArgs);
1514   } else {
1515     manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1516     mangleUnqualifiedName(ND);
1517   }
1518
1519   addSubstitution(ND);
1520 }
1521
1522 void CXXNameMangler::mangleTemplatePrefix(TemplateName Template) {
1523   // <template-prefix> ::= <prefix> <template unqualified-name>
1524   //                   ::= <template-param>
1525   //                   ::= <substitution>
1526   if (TemplateDecl *TD = Template.getAsTemplateDecl())
1527     return mangleTemplatePrefix(TD);
1528
1529   if (QualifiedTemplateName *Qualified = Template.getAsQualifiedTemplateName())
1530     manglePrefix(Qualified->getQualifier());
1531   
1532   if (OverloadedTemplateStorage *Overloaded
1533                                       = Template.getAsOverloadedTemplate()) {
1534     mangleUnqualifiedName(nullptr, (*Overloaded->begin())->getDeclName(),
1535                           UnknownArity);
1536     return;
1537   }
1538    
1539   DependentTemplateName *Dependent = Template.getAsDependentTemplateName();
1540   assert(Dependent && "Unknown template name kind?");
1541   manglePrefix(Dependent->getQualifier());
1542   mangleUnscopedTemplateName(Template);
1543 }
1544
1545 void CXXNameMangler::mangleTemplatePrefix(const TemplateDecl *ND,
1546                                           bool NoFunction) {
1547   // <template-prefix> ::= <prefix> <template unqualified-name>
1548   //                   ::= <template-param>
1549   //                   ::= <substitution>
1550   // <template-template-param> ::= <template-param>
1551   //                               <substitution>
1552
1553   if (mangleSubstitution(ND))
1554     return;
1555
1556   // <template-template-param> ::= <template-param>
1557   if (const TemplateTemplateParmDecl *TTP
1558                                      = dyn_cast<TemplateTemplateParmDecl>(ND)) {
1559     mangleTemplateParameter(TTP->getIndex());
1560     return;
1561   }
1562
1563   manglePrefix(getEffectiveDeclContext(ND), NoFunction);
1564   mangleUnqualifiedName(ND->getTemplatedDecl());
1565   addSubstitution(ND);
1566 }
1567
1568 /// Mangles a template name under the production <type>.  Required for
1569 /// template template arguments.
1570 ///   <type> ::= <class-enum-type>
1571 ///          ::= <template-param>
1572 ///          ::= <substitution>
1573 void CXXNameMangler::mangleType(TemplateName TN) {
1574   if (mangleSubstitution(TN))
1575     return;
1576
1577   TemplateDecl *TD = nullptr;
1578
1579   switch (TN.getKind()) {
1580   case TemplateName::QualifiedTemplate:
1581     TD = TN.getAsQualifiedTemplateName()->getTemplateDecl();
1582     goto HaveDecl;
1583
1584   case TemplateName::Template:
1585     TD = TN.getAsTemplateDecl();
1586     goto HaveDecl;
1587
1588   HaveDecl:
1589     if (isa<TemplateTemplateParmDecl>(TD))
1590       mangleTemplateParameter(cast<TemplateTemplateParmDecl>(TD)->getIndex());
1591     else
1592       mangleName(TD);
1593     break;
1594
1595   case TemplateName::OverloadedTemplate:
1596     llvm_unreachable("can't mangle an overloaded template name as a <type>");
1597
1598   case TemplateName::DependentTemplate: {
1599     const DependentTemplateName *Dependent = TN.getAsDependentTemplateName();
1600     assert(Dependent->isIdentifier());
1601
1602     // <class-enum-type> ::= <name>
1603     // <name> ::= <nested-name>
1604     mangleUnresolvedPrefix(Dependent->getQualifier(), nullptr);
1605     mangleSourceName(Dependent->getIdentifier());
1606     break;
1607   }
1608
1609   case TemplateName::SubstTemplateTemplateParm: {
1610     // Substituted template parameters are mangled as the substituted
1611     // template.  This will check for the substitution twice, which is
1612     // fine, but we have to return early so that we don't try to *add*
1613     // the substitution twice.
1614     SubstTemplateTemplateParmStorage *subst
1615       = TN.getAsSubstTemplateTemplateParm();
1616     mangleType(subst->getReplacement());
1617     return;
1618   }
1619
1620   case TemplateName::SubstTemplateTemplateParmPack: {
1621     // FIXME: not clear how to mangle this!
1622     // template <template <class> class T...> class A {
1623     //   template <template <class> class U...> void foo(B<T,U> x...);
1624     // };
1625     Out << "_SUBSTPACK_";
1626     break;
1627   }
1628   }
1629
1630   addSubstitution(TN);
1631 }
1632
1633 void
1634 CXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO, unsigned Arity) {
1635   switch (OO) {
1636   // <operator-name> ::= nw     # new
1637   case OO_New: Out << "nw"; break;
1638   //              ::= na        # new[]
1639   case OO_Array_New: Out << "na"; break;
1640   //              ::= dl        # delete
1641   case OO_Delete: Out << "dl"; break;
1642   //              ::= da        # delete[]
1643   case OO_Array_Delete: Out << "da"; break;
1644   //              ::= ps        # + (unary)
1645   //              ::= pl        # + (binary or unknown)
1646   case OO_Plus:
1647     Out << (Arity == 1? "ps" : "pl"); break;
1648   //              ::= ng        # - (unary)
1649   //              ::= mi        # - (binary or unknown)
1650   case OO_Minus:
1651     Out << (Arity == 1? "ng" : "mi"); break;
1652   //              ::= ad        # & (unary)
1653   //              ::= an        # & (binary or unknown)
1654   case OO_Amp:
1655     Out << (Arity == 1? "ad" : "an"); break;
1656   //              ::= de        # * (unary)
1657   //              ::= ml        # * (binary or unknown)
1658   case OO_Star:
1659     // Use binary when unknown.
1660     Out << (Arity == 1? "de" : "ml"); break;
1661   //              ::= co        # ~
1662   case OO_Tilde: Out << "co"; break;
1663   //              ::= dv        # /
1664   case OO_Slash: Out << "dv"; break;
1665   //              ::= rm        # %
1666   case OO_Percent: Out << "rm"; break;
1667   //              ::= or        # |
1668   case OO_Pipe: Out << "or"; break;
1669   //              ::= eo        # ^
1670   case OO_Caret: Out << "eo"; break;
1671   //              ::= aS        # =
1672   case OO_Equal: Out << "aS"; break;
1673   //              ::= pL        # +=
1674   case OO_PlusEqual: Out << "pL"; break;
1675   //              ::= mI        # -=
1676   case OO_MinusEqual: Out << "mI"; break;
1677   //              ::= mL        # *=
1678   case OO_StarEqual: Out << "mL"; break;
1679   //              ::= dV        # /=
1680   case OO_SlashEqual: Out << "dV"; break;
1681   //              ::= rM        # %=
1682   case OO_PercentEqual: Out << "rM"; break;
1683   //              ::= aN        # &=
1684   case OO_AmpEqual: Out << "aN"; break;
1685   //              ::= oR        # |=
1686   case OO_PipeEqual: Out << "oR"; break;
1687   //              ::= eO        # ^=
1688   case OO_CaretEqual: Out << "eO"; break;
1689   //              ::= ls        # <<
1690   case OO_LessLess: Out << "ls"; break;
1691   //              ::= rs        # >>
1692   case OO_GreaterGreater: Out << "rs"; break;
1693   //              ::= lS        # <<=
1694   case OO_LessLessEqual: Out << "lS"; break;
1695   //              ::= rS        # >>=
1696   case OO_GreaterGreaterEqual: Out << "rS"; break;
1697   //              ::= eq        # ==
1698   case OO_EqualEqual: Out << "eq"; break;
1699   //              ::= ne        # !=
1700   case OO_ExclaimEqual: Out << "ne"; break;
1701   //              ::= lt        # <
1702   case OO_Less: Out << "lt"; break;
1703   //              ::= gt        # >
1704   case OO_Greater: Out << "gt"; break;
1705   //              ::= le        # <=
1706   case OO_LessEqual: Out << "le"; break;
1707   //              ::= ge        # >=
1708   case OO_GreaterEqual: Out << "ge"; break;
1709   //              ::= nt        # !
1710   case OO_Exclaim: Out << "nt"; break;
1711   //              ::= aa        # &&
1712   case OO_AmpAmp: Out << "aa"; break;
1713   //              ::= oo        # ||
1714   case OO_PipePipe: Out << "oo"; break;
1715   //              ::= pp        # ++
1716   case OO_PlusPlus: Out << "pp"; break;
1717   //              ::= mm        # --
1718   case OO_MinusMinus: Out << "mm"; break;
1719   //              ::= cm        # ,
1720   case OO_Comma: Out << "cm"; break;
1721   //              ::= pm        # ->*
1722   case OO_ArrowStar: Out << "pm"; break;
1723   //              ::= pt        # ->
1724   case OO_Arrow: Out << "pt"; break;
1725   //              ::= cl        # ()
1726   case OO_Call: Out << "cl"; break;
1727   //              ::= ix        # []
1728   case OO_Subscript: Out << "ix"; break;
1729
1730   //              ::= qu        # ?
1731   // The conditional operator can't be overloaded, but we still handle it when
1732   // mangling expressions.
1733   case OO_Conditional: Out << "qu"; break;
1734
1735   case OO_None:
1736   case NUM_OVERLOADED_OPERATORS:
1737     llvm_unreachable("Not an overloaded operator");
1738   }
1739 }
1740
1741 void CXXNameMangler::mangleQualifiers(Qualifiers Quals) {
1742   // <CV-qualifiers> ::= [r] [V] [K]    # restrict (C99), volatile, const
1743   if (Quals.hasRestrict())
1744     Out << 'r';
1745   if (Quals.hasVolatile())
1746     Out << 'V';
1747   if (Quals.hasConst())
1748     Out << 'K';
1749
1750   if (Quals.hasAddressSpace()) {
1751     // Address space extension:
1752     //
1753     //   <type> ::= U <target-addrspace>
1754     //   <type> ::= U <OpenCL-addrspace>
1755     //   <type> ::= U <CUDA-addrspace>
1756
1757     SmallString<64> ASString;
1758     unsigned AS = Quals.getAddressSpace();
1759
1760     if (Context.getASTContext().addressSpaceMapManglingFor(AS)) {
1761       //  <target-addrspace> ::= "AS" <address-space-number>
1762       unsigned TargetAS = Context.getASTContext().getTargetAddressSpace(AS);
1763       ASString = "AS" + llvm::utostr_32(TargetAS);
1764     } else {
1765       switch (AS) {
1766       default: llvm_unreachable("Not a language specific address space");
1767       //  <OpenCL-addrspace> ::= "CL" [ "global" | "local" | "constant" ]
1768       case LangAS::opencl_global:   ASString = "CLglobal";   break;
1769       case LangAS::opencl_local:    ASString = "CLlocal";    break;
1770       case LangAS::opencl_constant: ASString = "CLconstant"; break;
1771       //  <CUDA-addrspace> ::= "CU" [ "device" | "constant" | "shared" ]
1772       case LangAS::cuda_device:     ASString = "CUdevice";   break;
1773       case LangAS::cuda_constant:   ASString = "CUconstant"; break;
1774       case LangAS::cuda_shared:     ASString = "CUshared";   break;
1775       }
1776     }
1777     Out << 'U' << ASString.size() << ASString;
1778   }
1779   
1780   StringRef LifetimeName;
1781   switch (Quals.getObjCLifetime()) {
1782   // Objective-C ARC Extension:
1783   //
1784   //   <type> ::= U "__strong"
1785   //   <type> ::= U "__weak"
1786   //   <type> ::= U "__autoreleasing"
1787   case Qualifiers::OCL_None:
1788     break;
1789     
1790   case Qualifiers::OCL_Weak:
1791     LifetimeName = "__weak";
1792     break;
1793     
1794   case Qualifiers::OCL_Strong:
1795     LifetimeName = "__strong";
1796     break;
1797     
1798   case Qualifiers::OCL_Autoreleasing:
1799     LifetimeName = "__autoreleasing";
1800     break;
1801     
1802   case Qualifiers::OCL_ExplicitNone:
1803     // The __unsafe_unretained qualifier is *not* mangled, so that
1804     // __unsafe_unretained types in ARC produce the same manglings as the
1805     // equivalent (but, naturally, unqualified) types in non-ARC, providing
1806     // better ABI compatibility.
1807     //
1808     // It's safe to do this because unqualified 'id' won't show up
1809     // in any type signatures that need to be mangled.
1810     break;
1811   }
1812   if (!LifetimeName.empty())
1813     Out << 'U' << LifetimeName.size() << LifetimeName;
1814 }
1815
1816 void CXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
1817   // <ref-qualifier> ::= R                # lvalue reference
1818   //                 ::= O                # rvalue-reference
1819   switch (RefQualifier) {
1820   case RQ_None:
1821     break;
1822       
1823   case RQ_LValue:
1824     Out << 'R';
1825     break;
1826       
1827   case RQ_RValue:
1828     Out << 'O';
1829     break;
1830   }
1831 }
1832
1833 void CXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1834   Context.mangleObjCMethodName(MD, Out);
1835 }
1836
1837 void CXXNameMangler::mangleType(QualType T) {
1838   // If our type is instantiation-dependent but not dependent, we mangle
1839   // it as it was written in the source, removing any top-level sugar. 
1840   // Otherwise, use the canonical type.
1841   //
1842   // FIXME: This is an approximation of the instantiation-dependent name 
1843   // mangling rules, since we should really be using the type as written and
1844   // augmented via semantic analysis (i.e., with implicit conversions and
1845   // default template arguments) for any instantiation-dependent type. 
1846   // Unfortunately, that requires several changes to our AST:
1847   //   - Instantiation-dependent TemplateSpecializationTypes will need to be 
1848   //     uniqued, so that we can handle substitutions properly
1849   //   - Default template arguments will need to be represented in the
1850   //     TemplateSpecializationType, since they need to be mangled even though
1851   //     they aren't written.
1852   //   - Conversions on non-type template arguments need to be expressed, since
1853   //     they can affect the mangling of sizeof/alignof.
1854   if (!T->isInstantiationDependentType() || T->isDependentType())
1855     T = T.getCanonicalType();
1856   else {
1857     // Desugar any types that are purely sugar.
1858     do {
1859       // Don't desugar through template specialization types that aren't
1860       // type aliases. We need to mangle the template arguments as written.
1861       if (const TemplateSpecializationType *TST 
1862                                       = dyn_cast<TemplateSpecializationType>(T))
1863         if (!TST->isTypeAlias())
1864           break;
1865
1866       QualType Desugared 
1867         = T.getSingleStepDesugaredType(Context.getASTContext());
1868       if (Desugared == T)
1869         break;
1870       
1871       T = Desugared;
1872     } while (true);
1873   }
1874   SplitQualType split = T.split();
1875   Qualifiers quals = split.Quals;
1876   const Type *ty = split.Ty;
1877
1878   bool isSubstitutable = quals || !isa<BuiltinType>(T);
1879   if (isSubstitutable && mangleSubstitution(T))
1880     return;
1881
1882   // If we're mangling a qualified array type, push the qualifiers to
1883   // the element type.
1884   if (quals && isa<ArrayType>(T)) {
1885     ty = Context.getASTContext().getAsArrayType(T);
1886     quals = Qualifiers();
1887
1888     // Note that we don't update T: we want to add the
1889     // substitution at the original type.
1890   }
1891
1892   if (quals) {
1893     mangleQualifiers(quals);
1894     // Recurse:  even if the qualified type isn't yet substitutable,
1895     // the unqualified type might be.
1896     mangleType(QualType(ty, 0));
1897   } else {
1898     switch (ty->getTypeClass()) {
1899 #define ABSTRACT_TYPE(CLASS, PARENT)
1900 #define NON_CANONICAL_TYPE(CLASS, PARENT) \
1901     case Type::CLASS: \
1902       llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1903       return;
1904 #define TYPE(CLASS, PARENT) \
1905     case Type::CLASS: \
1906       mangleType(static_cast<const CLASS##Type*>(ty)); \
1907       break;
1908 #include "clang/AST/TypeNodes.def"
1909     }
1910   }
1911
1912   // Add the substitution.
1913   if (isSubstitutable)
1914     addSubstitution(T);
1915 }
1916
1917 void CXXNameMangler::mangleNameOrStandardSubstitution(const NamedDecl *ND) {
1918   if (!mangleStandardSubstitution(ND))
1919     mangleName(ND);
1920 }
1921
1922 void CXXNameMangler::mangleType(const BuiltinType *T) {
1923   //  <type>         ::= <builtin-type>
1924   //  <builtin-type> ::= v  # void
1925   //                 ::= w  # wchar_t
1926   //                 ::= b  # bool
1927   //                 ::= c  # char
1928   //                 ::= a  # signed char
1929   //                 ::= h  # unsigned char
1930   //                 ::= s  # short
1931   //                 ::= t  # unsigned short
1932   //                 ::= i  # int
1933   //                 ::= j  # unsigned int
1934   //                 ::= l  # long
1935   //                 ::= m  # unsigned long
1936   //                 ::= x  # long long, __int64
1937   //                 ::= y  # unsigned long long, __int64
1938   //                 ::= n  # __int128
1939   //                 ::= o  # unsigned __int128
1940   //                 ::= f  # float
1941   //                 ::= d  # double
1942   //                 ::= e  # long double, __float80
1943   // UNSUPPORTED:    ::= g  # __float128
1944   // UNSUPPORTED:    ::= Dd # IEEE 754r decimal floating point (64 bits)
1945   // UNSUPPORTED:    ::= De # IEEE 754r decimal floating point (128 bits)
1946   // UNSUPPORTED:    ::= Df # IEEE 754r decimal floating point (32 bits)
1947   //                 ::= Dh # IEEE 754r half-precision floating point (16 bits)
1948   //                 ::= Di # char32_t
1949   //                 ::= Ds # char16_t
1950   //                 ::= Dn # std::nullptr_t (i.e., decltype(nullptr))
1951   //                 ::= u <source-name>    # vendor extended type
1952   switch (T->getKind()) {
1953   case BuiltinType::Void: Out << 'v'; break;
1954   case BuiltinType::Bool: Out << 'b'; break;
1955   case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'c'; break;
1956   case BuiltinType::UChar: Out << 'h'; break;
1957   case BuiltinType::UShort: Out << 't'; break;
1958   case BuiltinType::UInt: Out << 'j'; break;
1959   case BuiltinType::ULong: Out << 'm'; break;
1960   case BuiltinType::ULongLong: Out << 'y'; break;
1961   case BuiltinType::UInt128: Out << 'o'; break;
1962   case BuiltinType::SChar: Out << 'a'; break;
1963   case BuiltinType::WChar_S:
1964   case BuiltinType::WChar_U: Out << 'w'; break;
1965   case BuiltinType::Char16: Out << "Ds"; break;
1966   case BuiltinType::Char32: Out << "Di"; break;
1967   case BuiltinType::Short: Out << 's'; break;
1968   case BuiltinType::Int: Out << 'i'; break;
1969   case BuiltinType::Long: Out << 'l'; break;
1970   case BuiltinType::LongLong: Out << 'x'; break;
1971   case BuiltinType::Int128: Out << 'n'; break;
1972   case BuiltinType::Half: Out << "Dh"; break;
1973   case BuiltinType::Float: Out << 'f'; break;
1974   case BuiltinType::Double: Out << 'd'; break;
1975   case BuiltinType::LongDouble: Out << 'e'; break;
1976   case BuiltinType::NullPtr: Out << "Dn"; break;
1977
1978 #define BUILTIN_TYPE(Id, SingletonId)
1979 #define PLACEHOLDER_TYPE(Id, SingletonId) \
1980   case BuiltinType::Id:
1981 #include "clang/AST/BuiltinTypes.def"
1982   case BuiltinType::Dependent:
1983     llvm_unreachable("mangling a placeholder type");
1984   case BuiltinType::ObjCId: Out << "11objc_object"; break;
1985   case BuiltinType::ObjCClass: Out << "10objc_class"; break;
1986   case BuiltinType::ObjCSel: Out << "13objc_selector"; break;
1987   case BuiltinType::OCLImage1d: Out << "11ocl_image1d"; break;
1988   case BuiltinType::OCLImage1dArray: Out << "16ocl_image1darray"; break;
1989   case BuiltinType::OCLImage1dBuffer: Out << "17ocl_image1dbuffer"; break;
1990   case BuiltinType::OCLImage2d: Out << "11ocl_image2d"; break;
1991   case BuiltinType::OCLImage2dArray: Out << "16ocl_image2darray"; break;
1992   case BuiltinType::OCLImage3d: Out << "11ocl_image3d"; break;
1993   case BuiltinType::OCLSampler: Out << "11ocl_sampler"; break;
1994   case BuiltinType::OCLEvent: Out << "9ocl_event"; break;
1995   }
1996 }
1997
1998 // <type>          ::= <function-type>
1999 // <function-type> ::= [<CV-qualifiers>] F [Y]
2000 //                      <bare-function-type> [<ref-qualifier>] E
2001 void CXXNameMangler::mangleType(const FunctionProtoType *T) {
2002   // Mangle CV-qualifiers, if present.  These are 'this' qualifiers,
2003   // e.g. "const" in "int (A::*)() const".
2004   mangleQualifiers(Qualifiers::fromCVRMask(T->getTypeQuals()));
2005
2006   Out << 'F';
2007
2008   // FIXME: We don't have enough information in the AST to produce the 'Y'
2009   // encoding for extern "C" function types.
2010   mangleBareFunctionType(T, /*MangleReturnType=*/true);
2011
2012   // Mangle the ref-qualifier, if present.
2013   mangleRefQualifier(T->getRefQualifier());
2014
2015   Out << 'E';
2016 }
2017 void CXXNameMangler::mangleType(const FunctionNoProtoType *T) {
2018   llvm_unreachable("Can't mangle K&R function prototypes");
2019 }
2020 void CXXNameMangler::mangleBareFunctionType(const FunctionType *T,
2021                                             bool MangleReturnType) {
2022   // We should never be mangling something without a prototype.
2023   const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
2024
2025   // Record that we're in a function type.  See mangleFunctionParam
2026   // for details on what we're trying to achieve here.
2027   FunctionTypeDepthState saved = FunctionTypeDepth.push();
2028
2029   // <bare-function-type> ::= <signature type>+
2030   if (MangleReturnType) {
2031     FunctionTypeDepth.enterResultType();
2032     mangleType(Proto->getReturnType());
2033     FunctionTypeDepth.leaveResultType();
2034   }
2035
2036   if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
2037     //   <builtin-type> ::= v   # void
2038     Out << 'v';
2039
2040     FunctionTypeDepth.pop(saved);
2041     return;
2042   }
2043
2044   for (const auto &Arg : Proto->param_types())
2045     mangleType(Context.getASTContext().getSignatureParameterType(Arg));
2046
2047   FunctionTypeDepth.pop(saved);
2048
2049   // <builtin-type>      ::= z  # ellipsis
2050   if (Proto->isVariadic())
2051     Out << 'z';
2052 }
2053
2054 // <type>            ::= <class-enum-type>
2055 // <class-enum-type> ::= <name>
2056 void CXXNameMangler::mangleType(const UnresolvedUsingType *T) {
2057   mangleName(T->getDecl());
2058 }
2059
2060 // <type>            ::= <class-enum-type>
2061 // <class-enum-type> ::= <name>
2062 void CXXNameMangler::mangleType(const EnumType *T) {
2063   mangleType(static_cast<const TagType*>(T));
2064 }
2065 void CXXNameMangler::mangleType(const RecordType *T) {
2066   mangleType(static_cast<const TagType*>(T));
2067 }
2068 void CXXNameMangler::mangleType(const TagType *T) {
2069   mangleName(T->getDecl());
2070 }
2071
2072 // <type>       ::= <array-type>
2073 // <array-type> ::= A <positive dimension number> _ <element type>
2074 //              ::= A [<dimension expression>] _ <element type>
2075 void CXXNameMangler::mangleType(const ConstantArrayType *T) {
2076   Out << 'A' << T->getSize() << '_';
2077   mangleType(T->getElementType());
2078 }
2079 void CXXNameMangler::mangleType(const VariableArrayType *T) {
2080   Out << 'A';
2081   // decayed vla types (size 0) will just be skipped.
2082   if (T->getSizeExpr())
2083     mangleExpression(T->getSizeExpr());
2084   Out << '_';
2085   mangleType(T->getElementType());
2086 }
2087 void CXXNameMangler::mangleType(const DependentSizedArrayType *T) {
2088   Out << 'A';
2089   mangleExpression(T->getSizeExpr());
2090   Out << '_';
2091   mangleType(T->getElementType());
2092 }
2093 void CXXNameMangler::mangleType(const IncompleteArrayType *T) {
2094   Out << "A_";
2095   mangleType(T->getElementType());
2096 }
2097
2098 // <type>                   ::= <pointer-to-member-type>
2099 // <pointer-to-member-type> ::= M <class type> <member type>
2100 void CXXNameMangler::mangleType(const MemberPointerType *T) {
2101   Out << 'M';
2102   mangleType(QualType(T->getClass(), 0));
2103   QualType PointeeType = T->getPointeeType();
2104   if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(PointeeType)) {
2105     mangleType(FPT);
2106     
2107     // Itanium C++ ABI 5.1.8:
2108     //
2109     //   The type of a non-static member function is considered to be different,
2110     //   for the purposes of substitution, from the type of a namespace-scope or
2111     //   static member function whose type appears similar. The types of two
2112     //   non-static member functions are considered to be different, for the
2113     //   purposes of substitution, if the functions are members of different
2114     //   classes. In other words, for the purposes of substitution, the class of 
2115     //   which the function is a member is considered part of the type of 
2116     //   function.
2117
2118     // Given that we already substitute member function pointers as a
2119     // whole, the net effect of this rule is just to unconditionally
2120     // suppress substitution on the function type in a member pointer.
2121     // We increment the SeqID here to emulate adding an entry to the
2122     // substitution table.
2123     ++SeqID;
2124   } else
2125     mangleType(PointeeType);
2126 }
2127
2128 // <type>           ::= <template-param>
2129 void CXXNameMangler::mangleType(const TemplateTypeParmType *T) {
2130   mangleTemplateParameter(T->getIndex());
2131 }
2132
2133 // <type>           ::= <template-param>
2134 void CXXNameMangler::mangleType(const SubstTemplateTypeParmPackType *T) {
2135   // FIXME: not clear how to mangle this!
2136   // template <class T...> class A {
2137   //   template <class U...> void foo(T(*)(U) x...);
2138   // };
2139   Out << "_SUBSTPACK_";
2140 }
2141
2142 // <type> ::= P <type>   # pointer-to
2143 void CXXNameMangler::mangleType(const PointerType *T) {
2144   Out << 'P';
2145   mangleType(T->getPointeeType());
2146 }
2147 void CXXNameMangler::mangleType(const ObjCObjectPointerType *T) {
2148   Out << 'P';
2149   mangleType(T->getPointeeType());
2150 }
2151
2152 // <type> ::= R <type>   # reference-to
2153 void CXXNameMangler::mangleType(const LValueReferenceType *T) {
2154   Out << 'R';
2155   mangleType(T->getPointeeType());
2156 }
2157
2158 // <type> ::= O <type>   # rvalue reference-to (C++0x)
2159 void CXXNameMangler::mangleType(const RValueReferenceType *T) {
2160   Out << 'O';
2161   mangleType(T->getPointeeType());
2162 }
2163
2164 // <type> ::= C <type>   # complex pair (C 2000)
2165 void CXXNameMangler::mangleType(const ComplexType *T) {
2166   Out << 'C';
2167   mangleType(T->getElementType());
2168 }
2169
2170 // ARM's ABI for Neon vector types specifies that they should be mangled as
2171 // if they are structs (to match ARM's initial implementation).  The
2172 // vector type must be one of the special types predefined by ARM.
2173 void CXXNameMangler::mangleNeonVectorType(const VectorType *T) {
2174   QualType EltType = T->getElementType();
2175   assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2176   const char *EltName = nullptr;
2177   if (T->getVectorKind() == VectorType::NeonPolyVector) {
2178     switch (cast<BuiltinType>(EltType)->getKind()) {
2179     case BuiltinType::SChar:
2180     case BuiltinType::UChar:
2181       EltName = "poly8_t";
2182       break;
2183     case BuiltinType::Short:
2184     case BuiltinType::UShort:
2185       EltName = "poly16_t";
2186       break;
2187     case BuiltinType::ULongLong:
2188       EltName = "poly64_t";
2189       break;
2190     default: llvm_unreachable("unexpected Neon polynomial vector element type");
2191     }
2192   } else {
2193     switch (cast<BuiltinType>(EltType)->getKind()) {
2194     case BuiltinType::SChar:     EltName = "int8_t"; break;
2195     case BuiltinType::UChar:     EltName = "uint8_t"; break;
2196     case BuiltinType::Short:     EltName = "int16_t"; break;
2197     case BuiltinType::UShort:    EltName = "uint16_t"; break;
2198     case BuiltinType::Int:       EltName = "int32_t"; break;
2199     case BuiltinType::UInt:      EltName = "uint32_t"; break;
2200     case BuiltinType::LongLong:  EltName = "int64_t"; break;
2201     case BuiltinType::ULongLong: EltName = "uint64_t"; break;
2202     case BuiltinType::Double:    EltName = "float64_t"; break;
2203     case BuiltinType::Float:     EltName = "float32_t"; break;
2204     case BuiltinType::Half:      EltName = "float16_t";break;
2205     default:
2206       llvm_unreachable("unexpected Neon vector element type");
2207     }
2208   }
2209   const char *BaseName = nullptr;
2210   unsigned BitSize = (T->getNumElements() *
2211                       getASTContext().getTypeSize(EltType));
2212   if (BitSize == 64)
2213     BaseName = "__simd64_";
2214   else {
2215     assert(BitSize == 128 && "Neon vector type not 64 or 128 bits");
2216     BaseName = "__simd128_";
2217   }
2218   Out << strlen(BaseName) + strlen(EltName);
2219   Out << BaseName << EltName;
2220 }
2221
2222 static StringRef mangleAArch64VectorBase(const BuiltinType *EltType) {
2223   switch (EltType->getKind()) {
2224   case BuiltinType::SChar:
2225     return "Int8";
2226   case BuiltinType::Short:
2227     return "Int16";
2228   case BuiltinType::Int:
2229     return "Int32";
2230   case BuiltinType::Long:
2231   case BuiltinType::LongLong:
2232     return "Int64";
2233   case BuiltinType::UChar:
2234     return "Uint8";
2235   case BuiltinType::UShort:
2236     return "Uint16";
2237   case BuiltinType::UInt:
2238     return "Uint32";
2239   case BuiltinType::ULong:
2240   case BuiltinType::ULongLong:
2241     return "Uint64";
2242   case BuiltinType::Half:
2243     return "Float16";
2244   case BuiltinType::Float:
2245     return "Float32";
2246   case BuiltinType::Double:
2247     return "Float64";
2248   default:
2249     llvm_unreachable("Unexpected vector element base type");
2250   }
2251 }
2252
2253 // AArch64's ABI for Neon vector types specifies that they should be mangled as
2254 // the equivalent internal name. The vector type must be one of the special
2255 // types predefined by ARM.
2256 void CXXNameMangler::mangleAArch64NeonVectorType(const VectorType *T) {
2257   QualType EltType = T->getElementType();
2258   assert(EltType->isBuiltinType() && "Neon vector element not a BuiltinType");
2259   unsigned BitSize =
2260       (T->getNumElements() * getASTContext().getTypeSize(EltType));
2261   (void)BitSize; // Silence warning.
2262
2263   assert((BitSize == 64 || BitSize == 128) &&
2264          "Neon vector type not 64 or 128 bits");
2265
2266   StringRef EltName;
2267   if (T->getVectorKind() == VectorType::NeonPolyVector) {
2268     switch (cast<BuiltinType>(EltType)->getKind()) {
2269     case BuiltinType::UChar:
2270       EltName = "Poly8";
2271       break;
2272     case BuiltinType::UShort:
2273       EltName = "Poly16";
2274       break;
2275     case BuiltinType::ULong:
2276       EltName = "Poly64";
2277       break;
2278     default:
2279       llvm_unreachable("unexpected Neon polynomial vector element type");
2280     }
2281   } else
2282     EltName = mangleAArch64VectorBase(cast<BuiltinType>(EltType));
2283
2284   std::string TypeName =
2285       ("__" + EltName + "x" + llvm::utostr(T->getNumElements()) + "_t").str();
2286   Out << TypeName.length() << TypeName;
2287 }
2288
2289 // GNU extension: vector types
2290 // <type>                  ::= <vector-type>
2291 // <vector-type>           ::= Dv <positive dimension number> _
2292 //                                    <extended element type>
2293 //                         ::= Dv [<dimension expression>] _ <element type>
2294 // <extended element type> ::= <element type>
2295 //                         ::= p # AltiVec vector pixel
2296 //                         ::= b # Altivec vector bool
2297 void CXXNameMangler::mangleType(const VectorType *T) {
2298   if ((T->getVectorKind() == VectorType::NeonVector ||
2299        T->getVectorKind() == VectorType::NeonPolyVector)) {
2300     llvm::Triple Target = getASTContext().getTargetInfo().getTriple();
2301     llvm::Triple::ArchType Arch =
2302         getASTContext().getTargetInfo().getTriple().getArch();
2303     if ((Arch == llvm::Triple::aarch64 ||
2304          Arch == llvm::Triple::aarch64_be ||
2305          Arch == llvm::Triple::arm64_be ||
2306          Arch == llvm::Triple::arm64) && !Target.isOSDarwin())
2307       mangleAArch64NeonVectorType(T);
2308     else
2309       mangleNeonVectorType(T);
2310     return;
2311   }
2312   Out << "Dv" << T->getNumElements() << '_';
2313   if (T->getVectorKind() == VectorType::AltiVecPixel)
2314     Out << 'p';
2315   else if (T->getVectorKind() == VectorType::AltiVecBool)
2316     Out << 'b';
2317   else
2318     mangleType(T->getElementType());
2319 }
2320 void CXXNameMangler::mangleType(const ExtVectorType *T) {
2321   mangleType(static_cast<const VectorType*>(T));
2322 }
2323 void CXXNameMangler::mangleType(const DependentSizedExtVectorType *T) {
2324   Out << "Dv";
2325   mangleExpression(T->getSizeExpr());
2326   Out << '_';
2327   mangleType(T->getElementType());
2328 }
2329
2330 void CXXNameMangler::mangleType(const PackExpansionType *T) {
2331   // <type>  ::= Dp <type>          # pack expansion (C++0x)
2332   Out << "Dp";
2333   mangleType(T->getPattern());
2334 }
2335
2336 void CXXNameMangler::mangleType(const ObjCInterfaceType *T) {
2337   mangleSourceName(T->getDecl()->getIdentifier());
2338 }
2339
2340 void CXXNameMangler::mangleType(const ObjCObjectType *T) {
2341   if (!T->qual_empty()) {
2342     // Mangle protocol qualifiers.
2343     SmallString<64> QualStr;
2344     llvm::raw_svector_ostream QualOS(QualStr);
2345     QualOS << "objcproto";
2346     for (const auto *I : T->quals()) {
2347       StringRef name = I->getName();
2348       QualOS << name.size() << name;
2349     }
2350     QualOS.flush();
2351     Out << 'U' << QualStr.size() << QualStr;
2352   }
2353   mangleType(T->getBaseType());
2354 }
2355
2356 void CXXNameMangler::mangleType(const BlockPointerType *T) {
2357   Out << "U13block_pointer";
2358   mangleType(T->getPointeeType());
2359 }
2360
2361 void CXXNameMangler::mangleType(const InjectedClassNameType *T) {
2362   // Mangle injected class name types as if the user had written the
2363   // specialization out fully.  It may not actually be possible to see
2364   // this mangling, though.
2365   mangleType(T->getInjectedSpecializationType());
2366 }
2367
2368 void CXXNameMangler::mangleType(const TemplateSpecializationType *T) {
2369   if (TemplateDecl *TD = T->getTemplateName().getAsTemplateDecl()) {
2370     mangleName(TD, T->getArgs(), T->getNumArgs());
2371   } else {
2372     if (mangleSubstitution(QualType(T, 0)))
2373       return;
2374     
2375     mangleTemplatePrefix(T->getTemplateName());
2376     
2377     // FIXME: GCC does not appear to mangle the template arguments when
2378     // the template in question is a dependent template name. Should we
2379     // emulate that badness?
2380     mangleTemplateArgs(T->getArgs(), T->getNumArgs());
2381     addSubstitution(QualType(T, 0));
2382   }
2383 }
2384
2385 void CXXNameMangler::mangleType(const DependentNameType *T) {
2386   // Proposal by cxx-abi-dev, 2014-03-26
2387   // <class-enum-type> ::= <name>    # non-dependent or dependent type name or
2388   //                                 # dependent elaborated type specifier using
2389   //                                 # 'typename'
2390   //                   ::= Ts <name> # dependent elaborated type specifier using
2391   //                                 # 'struct' or 'class'
2392   //                   ::= Tu <name> # dependent elaborated type specifier using
2393   //                                 # 'union'
2394   //                   ::= Te <name> # dependent elaborated type specifier using
2395   //                                 # 'enum'
2396   switch (T->getKeyword()) {
2397     case ETK_Typename:
2398       break;
2399     case ETK_Struct:
2400     case ETK_Class:
2401     case ETK_Interface:
2402       Out << "Ts";
2403       break;
2404     case ETK_Union:
2405       Out << "Tu";
2406       break;
2407     case ETK_Enum:
2408       Out << "Te";
2409       break;
2410     default:
2411       llvm_unreachable("unexpected keyword for dependent type name");
2412   }
2413   // Typename types are always nested
2414   Out << 'N';
2415   manglePrefix(T->getQualifier());
2416   mangleSourceName(T->getIdentifier());
2417   Out << 'E';
2418 }
2419
2420 void CXXNameMangler::mangleType(const DependentTemplateSpecializationType *T) {
2421   // Dependently-scoped template types are nested if they have a prefix.
2422   Out << 'N';
2423
2424   // TODO: avoid making this TemplateName.
2425   TemplateName Prefix =
2426     getASTContext().getDependentTemplateName(T->getQualifier(),
2427                                              T->getIdentifier());
2428   mangleTemplatePrefix(Prefix);
2429
2430   // FIXME: GCC does not appear to mangle the template arguments when
2431   // the template in question is a dependent template name. Should we
2432   // emulate that badness?
2433   mangleTemplateArgs(T->getArgs(), T->getNumArgs());    
2434   Out << 'E';
2435 }
2436
2437 void CXXNameMangler::mangleType(const TypeOfType *T) {
2438   // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2439   // "extension with parameters" mangling.
2440   Out << "u6typeof";
2441 }
2442
2443 void CXXNameMangler::mangleType(const TypeOfExprType *T) {
2444   // FIXME: this is pretty unsatisfactory, but there isn't an obvious
2445   // "extension with parameters" mangling.
2446   Out << "u6typeof";
2447 }
2448
2449 void CXXNameMangler::mangleType(const DecltypeType *T) {
2450   Expr *E = T->getUnderlyingExpr();
2451
2452   // type ::= Dt <expression> E  # decltype of an id-expression
2453   //                             #   or class member access
2454   //      ::= DT <expression> E  # decltype of an expression
2455
2456   // This purports to be an exhaustive list of id-expressions and
2457   // class member accesses.  Note that we do not ignore parentheses;
2458   // parentheses change the semantics of decltype for these
2459   // expressions (and cause the mangler to use the other form).
2460   if (isa<DeclRefExpr>(E) ||
2461       isa<MemberExpr>(E) ||
2462       isa<UnresolvedLookupExpr>(E) ||
2463       isa<DependentScopeDeclRefExpr>(E) ||
2464       isa<CXXDependentScopeMemberExpr>(E) ||
2465       isa<UnresolvedMemberExpr>(E))
2466     Out << "Dt";
2467   else
2468     Out << "DT";
2469   mangleExpression(E);
2470   Out << 'E';
2471 }
2472
2473 void CXXNameMangler::mangleType(const UnaryTransformType *T) {
2474   // If this is dependent, we need to record that. If not, we simply
2475   // mangle it as the underlying type since they are equivalent.
2476   if (T->isDependentType()) {
2477     Out << 'U';
2478     
2479     switch (T->getUTTKind()) {
2480       case UnaryTransformType::EnumUnderlyingType:
2481         Out << "3eut";
2482         break;
2483     }
2484   }
2485
2486   mangleType(T->getUnderlyingType());
2487 }
2488
2489 void CXXNameMangler::mangleType(const AutoType *T) {
2490   QualType D = T->getDeducedType();
2491   // <builtin-type> ::= Da  # dependent auto
2492   if (D.isNull())
2493     Out << (T->isDecltypeAuto() ? "Dc" : "Da");
2494   else
2495     mangleType(D);
2496 }
2497
2498 void CXXNameMangler::mangleType(const AtomicType *T) {
2499   // <type> ::= U <source-name> <type>  # vendor extended type qualifier
2500   // (Until there's a standardized mangling...)
2501   Out << "U7_Atomic";
2502   mangleType(T->getValueType());
2503 }
2504
2505 void CXXNameMangler::mangleIntegerLiteral(QualType T,
2506                                           const llvm::APSInt &Value) {
2507   //  <expr-primary> ::= L <type> <value number> E # integer literal
2508   Out << 'L';
2509
2510   mangleType(T);
2511   if (T->isBooleanType()) {
2512     // Boolean values are encoded as 0/1.
2513     Out << (Value.getBoolValue() ? '1' : '0');
2514   } else {
2515     mangleNumber(Value);
2516   }
2517   Out << 'E';
2518
2519 }
2520
2521 /// Mangles a member expression.
2522 void CXXNameMangler::mangleMemberExpr(const Expr *base,
2523                                       bool isArrow,
2524                                       NestedNameSpecifier *qualifier,
2525                                       NamedDecl *firstQualifierLookup,
2526                                       DeclarationName member,
2527                                       unsigned arity) {
2528   // <expression> ::= dt <expression> <unresolved-name>
2529   //              ::= pt <expression> <unresolved-name>
2530   if (base) {
2531     if (base->isImplicitCXXThis()) {
2532       // Note: GCC mangles member expressions to the implicit 'this' as
2533       // *this., whereas we represent them as this->. The Itanium C++ ABI
2534       // does not specify anything here, so we follow GCC.
2535       Out << "dtdefpT";
2536     } else {
2537       Out << (isArrow ? "pt" : "dt");
2538       mangleExpression(base);
2539     }
2540   }
2541   mangleUnresolvedName(qualifier, firstQualifierLookup, member, arity);
2542 }
2543
2544 /// Look at the callee of the given call expression and determine if
2545 /// it's a parenthesized id-expression which would have triggered ADL
2546 /// otherwise.
2547 static bool isParenthesizedADLCallee(const CallExpr *call) {
2548   const Expr *callee = call->getCallee();
2549   const Expr *fn = callee->IgnoreParens();
2550
2551   // Must be parenthesized.  IgnoreParens() skips __extension__ nodes,
2552   // too, but for those to appear in the callee, it would have to be
2553   // parenthesized.
2554   if (callee == fn) return false;
2555
2556   // Must be an unresolved lookup.
2557   const UnresolvedLookupExpr *lookup = dyn_cast<UnresolvedLookupExpr>(fn);
2558   if (!lookup) return false;
2559
2560   assert(!lookup->requiresADL());
2561
2562   // Must be an unqualified lookup.
2563   if (lookup->getQualifier()) return false;
2564
2565   // Must not have found a class member.  Note that if one is a class
2566   // member, they're all class members.
2567   if (lookup->getNumDecls() > 0 &&
2568       (*lookup->decls_begin())->isCXXClassMember())
2569     return false;
2570
2571   // Otherwise, ADL would have been triggered.
2572   return true;
2573 }
2574
2575 void CXXNameMangler::mangleExpression(const Expr *E, unsigned Arity) {
2576   // <expression> ::= <unary operator-name> <expression>
2577   //              ::= <binary operator-name> <expression> <expression>
2578   //              ::= <trinary operator-name> <expression> <expression> <expression>
2579   //              ::= cv <type> expression           # conversion with one argument
2580   //              ::= cv <type> _ <expression>* E # conversion with a different number of arguments
2581   //              ::= st <type>                      # sizeof (a type)
2582   //              ::= at <type>                      # alignof (a type)
2583   //              ::= <template-param>
2584   //              ::= <function-param>
2585   //              ::= sr <type> <unqualified-name>                   # dependent name
2586   //              ::= sr <type> <unqualified-name> <template-args>   # dependent template-id
2587   //              ::= ds <expression> <expression>                   # expr.*expr
2588   //              ::= sZ <template-param>                            # size of a parameter pack
2589   //              ::= sZ <function-param>    # size of a function parameter pack
2590   //              ::= <expr-primary>
2591   // <expr-primary> ::= L <type> <value number> E    # integer literal
2592   //                ::= L <type <value float> E      # floating literal
2593   //                ::= L <mangled-name> E           # external name
2594   //                ::= fpT                          # 'this' expression
2595   QualType ImplicitlyConvertedToType;
2596   
2597 recurse:
2598   switch (E->getStmtClass()) {
2599   case Expr::NoStmtClass:
2600 #define ABSTRACT_STMT(Type)
2601 #define EXPR(Type, Base)
2602 #define STMT(Type, Base) \
2603   case Expr::Type##Class:
2604 #include "clang/AST/StmtNodes.inc"
2605     // fallthrough
2606
2607   // These all can only appear in local or variable-initialization
2608   // contexts and so should never appear in a mangling.
2609   case Expr::AddrLabelExprClass:
2610   case Expr::DesignatedInitExprClass:
2611   case Expr::ImplicitValueInitExprClass:
2612   case Expr::ParenListExprClass:
2613   case Expr::LambdaExprClass:
2614   case Expr::MSPropertyRefExprClass:
2615     llvm_unreachable("unexpected statement kind");
2616
2617   // FIXME: invent manglings for all these.
2618   case Expr::BlockExprClass:
2619   case Expr::CXXPseudoDestructorExprClass:
2620   case Expr::ChooseExprClass:
2621   case Expr::CompoundLiteralExprClass:
2622   case Expr::ExtVectorElementExprClass:
2623   case Expr::GenericSelectionExprClass:
2624   case Expr::ObjCEncodeExprClass:
2625   case Expr::ObjCIsaExprClass:
2626   case Expr::ObjCIvarRefExprClass:
2627   case Expr::ObjCMessageExprClass:
2628   case Expr::ObjCPropertyRefExprClass:
2629   case Expr::ObjCProtocolExprClass:
2630   case Expr::ObjCSelectorExprClass:
2631   case Expr::ObjCStringLiteralClass:
2632   case Expr::ObjCBoxedExprClass:
2633   case Expr::ObjCArrayLiteralClass:
2634   case Expr::ObjCDictionaryLiteralClass:
2635   case Expr::ObjCSubscriptRefExprClass:
2636   case Expr::ObjCIndirectCopyRestoreExprClass:
2637   case Expr::OffsetOfExprClass:
2638   case Expr::PredefinedExprClass:
2639   case Expr::ShuffleVectorExprClass:
2640   case Expr::ConvertVectorExprClass:
2641   case Expr::StmtExprClass:
2642   case Expr::TypeTraitExprClass:
2643   case Expr::ArrayTypeTraitExprClass:
2644   case Expr::ExpressionTraitExprClass:
2645   case Expr::VAArgExprClass:
2646   case Expr::CXXUuidofExprClass:
2647   case Expr::CUDAKernelCallExprClass:
2648   case Expr::AsTypeExprClass:
2649   case Expr::PseudoObjectExprClass:
2650   case Expr::AtomicExprClass:
2651   {
2652     // As bad as this diagnostic is, it's better than crashing.
2653     DiagnosticsEngine &Diags = Context.getDiags();
2654     unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2655                                      "cannot yet mangle expression type %0");
2656     Diags.Report(E->getExprLoc(), DiagID)
2657       << E->getStmtClassName() << E->getSourceRange();
2658     break;
2659   }
2660
2661   // Even gcc-4.5 doesn't mangle this.
2662   case Expr::BinaryConditionalOperatorClass: {
2663     DiagnosticsEngine &Diags = Context.getDiags();
2664     unsigned DiagID =
2665       Diags.getCustomDiagID(DiagnosticsEngine::Error,
2666                 "?: operator with omitted middle operand cannot be mangled");
2667     Diags.Report(E->getExprLoc(), DiagID)
2668       << E->getStmtClassName() << E->getSourceRange();
2669     break;
2670   }
2671
2672   // These are used for internal purposes and cannot be meaningfully mangled.
2673   case Expr::OpaqueValueExprClass:
2674     llvm_unreachable("cannot mangle opaque value; mangling wrong thing?");
2675
2676   case Expr::InitListExprClass: {
2677     Out << "il";
2678     const InitListExpr *InitList = cast<InitListExpr>(E);
2679     for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2680       mangleExpression(InitList->getInit(i));
2681     Out << "E";
2682     break;
2683   }
2684
2685   case Expr::CXXDefaultArgExprClass:
2686     mangleExpression(cast<CXXDefaultArgExpr>(E)->getExpr(), Arity);
2687     break;
2688
2689   case Expr::CXXDefaultInitExprClass:
2690     mangleExpression(cast<CXXDefaultInitExpr>(E)->getExpr(), Arity);
2691     break;
2692
2693   case Expr::CXXStdInitializerListExprClass:
2694     mangleExpression(cast<CXXStdInitializerListExpr>(E)->getSubExpr(), Arity);
2695     break;
2696
2697   case Expr::SubstNonTypeTemplateParmExprClass:
2698     mangleExpression(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
2699                      Arity);
2700     break;
2701
2702   case Expr::UserDefinedLiteralClass:
2703     // We follow g++'s approach of mangling a UDL as a call to the literal
2704     // operator.
2705   case Expr::CXXMemberCallExprClass: // fallthrough
2706   case Expr::CallExprClass: {
2707     const CallExpr *CE = cast<CallExpr>(E);
2708
2709     // <expression> ::= cp <simple-id> <expression>* E
2710     // We use this mangling only when the call would use ADL except
2711     // for being parenthesized.  Per discussion with David
2712     // Vandervoorde, 2011.04.25.
2713     if (isParenthesizedADLCallee(CE)) {
2714       Out << "cp";
2715       // The callee here is a parenthesized UnresolvedLookupExpr with
2716       // no qualifier and should always get mangled as a <simple-id>
2717       // anyway.
2718
2719     // <expression> ::= cl <expression>* E
2720     } else {
2721       Out << "cl";
2722     }
2723
2724     mangleExpression(CE->getCallee(), CE->getNumArgs());
2725     for (unsigned I = 0, N = CE->getNumArgs(); I != N; ++I)
2726       mangleExpression(CE->getArg(I));
2727     Out << 'E';
2728     break;
2729   }
2730
2731   case Expr::CXXNewExprClass: {
2732     const CXXNewExpr *New = cast<CXXNewExpr>(E);
2733     if (New->isGlobalNew()) Out << "gs";
2734     Out << (New->isArray() ? "na" : "nw");
2735     for (CXXNewExpr::const_arg_iterator I = New->placement_arg_begin(),
2736            E = New->placement_arg_end(); I != E; ++I)
2737       mangleExpression(*I);
2738     Out << '_';
2739     mangleType(New->getAllocatedType());
2740     if (New->hasInitializer()) {
2741       if (New->getInitializationStyle() == CXXNewExpr::ListInit)
2742         Out << "il";
2743       else
2744         Out << "pi";
2745       const Expr *Init = New->getInitializer();
2746       if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
2747         // Directly inline the initializers.
2748         for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
2749                                                   E = CCE->arg_end();
2750              I != E; ++I)
2751           mangleExpression(*I);
2752       } else if (const ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) {
2753         for (unsigned i = 0, e = PLE->getNumExprs(); i != e; ++i)
2754           mangleExpression(PLE->getExpr(i));
2755       } else if (New->getInitializationStyle() == CXXNewExpr::ListInit &&
2756                  isa<InitListExpr>(Init)) {
2757         // Only take InitListExprs apart for list-initialization.
2758         const InitListExpr *InitList = cast<InitListExpr>(Init);
2759         for (unsigned i = 0, e = InitList->getNumInits(); i != e; ++i)
2760           mangleExpression(InitList->getInit(i));
2761       } else
2762         mangleExpression(Init);
2763     }
2764     Out << 'E';
2765     break;
2766   }
2767
2768   case Expr::MemberExprClass: {
2769     const MemberExpr *ME = cast<MemberExpr>(E);
2770     mangleMemberExpr(ME->getBase(), ME->isArrow(),
2771                      ME->getQualifier(), nullptr,
2772                      ME->getMemberDecl()->getDeclName(), Arity);
2773     break;
2774   }
2775
2776   case Expr::UnresolvedMemberExprClass: {
2777     const UnresolvedMemberExpr *ME = cast<UnresolvedMemberExpr>(E);
2778     mangleMemberExpr(ME->getBase(), ME->isArrow(),
2779                      ME->getQualifier(), nullptr, ME->getMemberName(),
2780                      Arity);
2781     if (ME->hasExplicitTemplateArgs())
2782       mangleTemplateArgs(ME->getExplicitTemplateArgs());
2783     break;
2784   }
2785
2786   case Expr::CXXDependentScopeMemberExprClass: {
2787     const CXXDependentScopeMemberExpr *ME
2788       = cast<CXXDependentScopeMemberExpr>(E);
2789     mangleMemberExpr(ME->getBase(), ME->isArrow(),
2790                      ME->getQualifier(), ME->getFirstQualifierFoundInScope(),
2791                      ME->getMember(), Arity);
2792     if (ME->hasExplicitTemplateArgs())
2793       mangleTemplateArgs(ME->getExplicitTemplateArgs());
2794     break;
2795   }
2796
2797   case Expr::UnresolvedLookupExprClass: {
2798     const UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(E);
2799     mangleUnresolvedName(ULE->getQualifier(), nullptr, ULE->getName(), Arity);
2800
2801     // All the <unresolved-name> productions end in a
2802     // base-unresolved-name, where <template-args> are just tacked
2803     // onto the end.
2804     if (ULE->hasExplicitTemplateArgs())
2805       mangleTemplateArgs(ULE->getExplicitTemplateArgs());
2806     break;
2807   }
2808
2809   case Expr::CXXUnresolvedConstructExprClass: {
2810     const CXXUnresolvedConstructExpr *CE = cast<CXXUnresolvedConstructExpr>(E);
2811     unsigned N = CE->arg_size();
2812
2813     Out << "cv";
2814     mangleType(CE->getType());
2815     if (N != 1) Out << '_';
2816     for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2817     if (N != 1) Out << 'E';
2818     break;
2819   }
2820
2821   case Expr::CXXTemporaryObjectExprClass:
2822   case Expr::CXXConstructExprClass: {
2823     const CXXConstructExpr *CE = cast<CXXConstructExpr>(E);
2824     unsigned N = CE->getNumArgs();
2825
2826     if (CE->isListInitialization())
2827       Out << "tl";
2828     else
2829       Out << "cv";
2830     mangleType(CE->getType());
2831     if (N != 1) Out << '_';
2832     for (unsigned I = 0; I != N; ++I) mangleExpression(CE->getArg(I));
2833     if (N != 1) Out << 'E';
2834     break;
2835   }
2836
2837   case Expr::CXXScalarValueInitExprClass:
2838     Out <<"cv";
2839     mangleType(E->getType());
2840     Out <<"_E";
2841     break;
2842
2843   case Expr::CXXNoexceptExprClass:
2844     Out << "nx";
2845     mangleExpression(cast<CXXNoexceptExpr>(E)->getOperand());
2846     break;
2847
2848   case Expr::UnaryExprOrTypeTraitExprClass: {
2849     const UnaryExprOrTypeTraitExpr *SAE = cast<UnaryExprOrTypeTraitExpr>(E);
2850     
2851     if (!SAE->isInstantiationDependent()) {
2852       // Itanium C++ ABI:
2853       //   If the operand of a sizeof or alignof operator is not 
2854       //   instantiation-dependent it is encoded as an integer literal 
2855       //   reflecting the result of the operator.
2856       //
2857       //   If the result of the operator is implicitly converted to a known 
2858       //   integer type, that type is used for the literal; otherwise, the type 
2859       //   of std::size_t or std::ptrdiff_t is used.
2860       QualType T = (ImplicitlyConvertedToType.isNull() || 
2861                     !ImplicitlyConvertedToType->isIntegerType())? SAE->getType()
2862                                                     : ImplicitlyConvertedToType;
2863       llvm::APSInt V = SAE->EvaluateKnownConstInt(Context.getASTContext());
2864       mangleIntegerLiteral(T, V);
2865       break;
2866     }
2867     
2868     switch(SAE->getKind()) {
2869     case UETT_SizeOf:
2870       Out << 's';
2871       break;
2872     case UETT_AlignOf:
2873       Out << 'a';
2874       break;
2875     case UETT_VecStep:
2876       DiagnosticsEngine &Diags = Context.getDiags();
2877       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2878                                      "cannot yet mangle vec_step expression");
2879       Diags.Report(DiagID);
2880       return;
2881     }
2882     if (SAE->isArgumentType()) {
2883       Out << 't';
2884       mangleType(SAE->getArgumentType());
2885     } else {
2886       Out << 'z';
2887       mangleExpression(SAE->getArgumentExpr());
2888     }
2889     break;
2890   }
2891
2892   case Expr::CXXThrowExprClass: {
2893     const CXXThrowExpr *TE = cast<CXXThrowExpr>(E);
2894     //  <expression> ::= tw <expression>  # throw expression
2895     //               ::= tr               # rethrow
2896     if (TE->getSubExpr()) {
2897       Out << "tw";
2898       mangleExpression(TE->getSubExpr());
2899     } else {
2900       Out << "tr";
2901     }
2902     break;
2903   }
2904
2905   case Expr::CXXTypeidExprClass: {
2906     const CXXTypeidExpr *TIE = cast<CXXTypeidExpr>(E);
2907     //  <expression> ::= ti <type>        # typeid (type)
2908     //               ::= te <expression>  # typeid (expression)
2909     if (TIE->isTypeOperand()) {
2910       Out << "ti";
2911       mangleType(TIE->getTypeOperand(Context.getASTContext()));
2912     } else {
2913       Out << "te";
2914       mangleExpression(TIE->getExprOperand());
2915     }
2916     break;
2917   }
2918
2919   case Expr::CXXDeleteExprClass: {
2920     const CXXDeleteExpr *DE = cast<CXXDeleteExpr>(E);
2921     //  <expression> ::= [gs] dl <expression>  # [::] delete expr
2922     //               ::= [gs] da <expression>  # [::] delete [] expr
2923     if (DE->isGlobalDelete()) Out << "gs";
2924     Out << (DE->isArrayForm() ? "da" : "dl");
2925     mangleExpression(DE->getArgument());
2926     break;
2927   }
2928
2929   case Expr::UnaryOperatorClass: {
2930     const UnaryOperator *UO = cast<UnaryOperator>(E);
2931     mangleOperatorName(UnaryOperator::getOverloadedOperator(UO->getOpcode()),
2932                        /*Arity=*/1);
2933     mangleExpression(UO->getSubExpr());
2934     break;
2935   }
2936
2937   case Expr::ArraySubscriptExprClass: {
2938     const ArraySubscriptExpr *AE = cast<ArraySubscriptExpr>(E);
2939
2940     // Array subscript is treated as a syntactically weird form of
2941     // binary operator.
2942     Out << "ix";
2943     mangleExpression(AE->getLHS());
2944     mangleExpression(AE->getRHS());
2945     break;
2946   }
2947
2948   case Expr::CompoundAssignOperatorClass: // fallthrough
2949   case Expr::BinaryOperatorClass: {
2950     const BinaryOperator *BO = cast<BinaryOperator>(E);
2951     if (BO->getOpcode() == BO_PtrMemD)
2952       Out << "ds";
2953     else
2954       mangleOperatorName(BinaryOperator::getOverloadedOperator(BO->getOpcode()),
2955                          /*Arity=*/2);
2956     mangleExpression(BO->getLHS());
2957     mangleExpression(BO->getRHS());
2958     break;
2959   }
2960
2961   case Expr::ConditionalOperatorClass: {
2962     const ConditionalOperator *CO = cast<ConditionalOperator>(E);
2963     mangleOperatorName(OO_Conditional, /*Arity=*/3);
2964     mangleExpression(CO->getCond());
2965     mangleExpression(CO->getLHS(), Arity);
2966     mangleExpression(CO->getRHS(), Arity);
2967     break;
2968   }
2969
2970   case Expr::ImplicitCastExprClass: {
2971     ImplicitlyConvertedToType = E->getType();
2972     E = cast<ImplicitCastExpr>(E)->getSubExpr();
2973     goto recurse;
2974   }
2975       
2976   case Expr::ObjCBridgedCastExprClass: {
2977     // Mangle ownership casts as a vendor extended operator __bridge, 
2978     // __bridge_transfer, or __bridge_retain.
2979     StringRef Kind = cast<ObjCBridgedCastExpr>(E)->getBridgeKindName();
2980     Out << "v1U" << Kind.size() << Kind;
2981   }
2982   // Fall through to mangle the cast itself.
2983       
2984   case Expr::CStyleCastExprClass:
2985   case Expr::CXXStaticCastExprClass:
2986   case Expr::CXXDynamicCastExprClass:
2987   case Expr::CXXReinterpretCastExprClass:
2988   case Expr::CXXConstCastExprClass:
2989   case Expr::CXXFunctionalCastExprClass: {
2990     const ExplicitCastExpr *ECE = cast<ExplicitCastExpr>(E);
2991     Out << "cv";
2992     mangleType(ECE->getType());
2993     mangleExpression(ECE->getSubExpr());
2994     break;
2995   }
2996
2997   case Expr::CXXOperatorCallExprClass: {
2998     const CXXOperatorCallExpr *CE = cast<CXXOperatorCallExpr>(E);
2999     unsigned NumArgs = CE->getNumArgs();
3000     mangleOperatorName(CE->getOperator(), /*Arity=*/NumArgs);
3001     // Mangle the arguments.
3002     for (unsigned i = 0; i != NumArgs; ++i)
3003       mangleExpression(CE->getArg(i));
3004     break;
3005   }
3006
3007   case Expr::ParenExprClass:
3008     mangleExpression(cast<ParenExpr>(E)->getSubExpr(), Arity);
3009     break;
3010
3011   case Expr::DeclRefExprClass: {
3012     const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl();
3013
3014     switch (D->getKind()) {
3015     default:
3016       //  <expr-primary> ::= L <mangled-name> E # external name
3017       Out << 'L';
3018       mangle(D, "_Z");
3019       Out << 'E';
3020       break;
3021
3022     case Decl::ParmVar:
3023       mangleFunctionParam(cast<ParmVarDecl>(D));
3024       break;
3025
3026     case Decl::EnumConstant: {
3027       const EnumConstantDecl *ED = cast<EnumConstantDecl>(D);
3028       mangleIntegerLiteral(ED->getType(), ED->getInitVal());
3029       break;
3030     }
3031
3032     case Decl::NonTypeTemplateParm: {
3033       const NonTypeTemplateParmDecl *PD = cast<NonTypeTemplateParmDecl>(D);
3034       mangleTemplateParameter(PD->getIndex());
3035       break;
3036     }
3037
3038     }
3039
3040     break;
3041   }
3042
3043   case Expr::SubstNonTypeTemplateParmPackExprClass:
3044     // FIXME: not clear how to mangle this!
3045     // template <unsigned N...> class A {
3046     //   template <class U...> void foo(U (&x)[N]...);
3047     // };
3048     Out << "_SUBSTPACK_";
3049     break;
3050
3051   case Expr::FunctionParmPackExprClass: {
3052     // FIXME: not clear how to mangle this!
3053     const FunctionParmPackExpr *FPPE = cast<FunctionParmPackExpr>(E);
3054     Out << "v110_SUBSTPACK";
3055     mangleFunctionParam(FPPE->getParameterPack());
3056     break;
3057   }
3058
3059   case Expr::DependentScopeDeclRefExprClass: {
3060     const DependentScopeDeclRefExpr *DRE = cast<DependentScopeDeclRefExpr>(E);
3061     mangleUnresolvedName(DRE->getQualifier(), nullptr, DRE->getDeclName(),
3062                          Arity);
3063
3064     // All the <unresolved-name> productions end in a
3065     // base-unresolved-name, where <template-args> are just tacked
3066     // onto the end.
3067     if (DRE->hasExplicitTemplateArgs())
3068       mangleTemplateArgs(DRE->getExplicitTemplateArgs());
3069     break;
3070   }
3071
3072   case Expr::CXXBindTemporaryExprClass:
3073     mangleExpression(cast<CXXBindTemporaryExpr>(E)->getSubExpr());
3074     break;
3075
3076   case Expr::ExprWithCleanupsClass:
3077     mangleExpression(cast<ExprWithCleanups>(E)->getSubExpr(), Arity);
3078     break;
3079
3080   case Expr::FloatingLiteralClass: {
3081     const FloatingLiteral *FL = cast<FloatingLiteral>(E);
3082     Out << 'L';
3083     mangleType(FL->getType());
3084     mangleFloat(FL->getValue());
3085     Out << 'E';
3086     break;
3087   }
3088
3089   case Expr::CharacterLiteralClass:
3090     Out << 'L';
3091     mangleType(E->getType());
3092     Out << cast<CharacterLiteral>(E)->getValue();
3093     Out << 'E';
3094     break;
3095
3096   // FIXME. __objc_yes/__objc_no are mangled same as true/false
3097   case Expr::ObjCBoolLiteralExprClass:
3098     Out << "Lb";
3099     Out << (cast<ObjCBoolLiteralExpr>(E)->getValue() ? '1' : '0');
3100     Out << 'E';
3101     break;
3102   
3103   case Expr::CXXBoolLiteralExprClass:
3104     Out << "Lb";
3105     Out << (cast<CXXBoolLiteralExpr>(E)->getValue() ? '1' : '0');
3106     Out << 'E';
3107     break;
3108
3109   case Expr::IntegerLiteralClass: {
3110     llvm::APSInt Value(cast<IntegerLiteral>(E)->getValue());
3111     if (E->getType()->isSignedIntegerType())
3112       Value.setIsSigned(true);
3113     mangleIntegerLiteral(E->getType(), Value);
3114     break;
3115   }
3116
3117   case Expr::ImaginaryLiteralClass: {
3118     const ImaginaryLiteral *IE = cast<ImaginaryLiteral>(E);
3119     // Mangle as if a complex literal.
3120     // Proposal from David Vandevoorde, 2010.06.30.
3121     Out << 'L';
3122     mangleType(E->getType());
3123     if (const FloatingLiteral *Imag =
3124           dyn_cast<FloatingLiteral>(IE->getSubExpr())) {
3125       // Mangle a floating-point zero of the appropriate type.
3126       mangleFloat(llvm::APFloat(Imag->getValue().getSemantics()));
3127       Out << '_';
3128       mangleFloat(Imag->getValue());
3129     } else {
3130       Out << "0_";
3131       llvm::APSInt Value(cast<IntegerLiteral>(IE->getSubExpr())->getValue());
3132       if (IE->getSubExpr()->getType()->isSignedIntegerType())
3133         Value.setIsSigned(true);
3134       mangleNumber(Value);
3135     }
3136     Out << 'E';
3137     break;
3138   }
3139
3140   case Expr::StringLiteralClass: {
3141     // Revised proposal from David Vandervoorde, 2010.07.15.
3142     Out << 'L';
3143     assert(isa<ConstantArrayType>(E->getType()));
3144     mangleType(E->getType());
3145     Out << 'E';
3146     break;
3147   }
3148
3149   case Expr::GNUNullExprClass:
3150     // FIXME: should this really be mangled the same as nullptr?
3151     // fallthrough
3152
3153   case Expr::CXXNullPtrLiteralExprClass: {
3154     Out << "LDnE";
3155     break;
3156   }
3157       
3158   case Expr::PackExpansionExprClass:
3159     Out << "sp";
3160     mangleExpression(cast<PackExpansionExpr>(E)->getPattern());
3161     break;
3162       
3163   case Expr::SizeOfPackExprClass: {
3164     Out << "sZ";
3165     const NamedDecl *Pack = cast<SizeOfPackExpr>(E)->getPack();
3166     if (const TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Pack))
3167       mangleTemplateParameter(TTP->getIndex());
3168     else if (const NonTypeTemplateParmDecl *NTTP
3169                 = dyn_cast<NonTypeTemplateParmDecl>(Pack))
3170       mangleTemplateParameter(NTTP->getIndex());
3171     else if (const TemplateTemplateParmDecl *TempTP
3172                                     = dyn_cast<TemplateTemplateParmDecl>(Pack))
3173       mangleTemplateParameter(TempTP->getIndex());
3174     else
3175       mangleFunctionParam(cast<ParmVarDecl>(Pack));
3176     break;
3177   }
3178       
3179   case Expr::MaterializeTemporaryExprClass: {
3180     mangleExpression(cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr());
3181     break;
3182   }
3183       
3184   case Expr::CXXThisExprClass:
3185     Out << "fpT";
3186     break;
3187   }
3188 }
3189
3190 /// Mangle an expression which refers to a parameter variable.
3191 ///
3192 /// <expression>     ::= <function-param>
3193 /// <function-param> ::= fp <top-level CV-qualifiers> _      # L == 0, I == 0
3194 /// <function-param> ::= fp <top-level CV-qualifiers>
3195 ///                      <parameter-2 non-negative number> _ # L == 0, I > 0
3196 /// <function-param> ::= fL <L-1 non-negative number>
3197 ///                      p <top-level CV-qualifiers> _       # L > 0, I == 0
3198 /// <function-param> ::= fL <L-1 non-negative number>
3199 ///                      p <top-level CV-qualifiers>
3200 ///                      <I-1 non-negative number> _         # L > 0, I > 0
3201 ///
3202 /// L is the nesting depth of the parameter, defined as 1 if the
3203 /// parameter comes from the innermost function prototype scope
3204 /// enclosing the current context, 2 if from the next enclosing
3205 /// function prototype scope, and so on, with one special case: if
3206 /// we've processed the full parameter clause for the innermost
3207 /// function type, then L is one less.  This definition conveniently
3208 /// makes it irrelevant whether a function's result type was written
3209 /// trailing or leading, but is otherwise overly complicated; the
3210 /// numbering was first designed without considering references to
3211 /// parameter in locations other than return types, and then the
3212 /// mangling had to be generalized without changing the existing
3213 /// manglings.
3214 ///
3215 /// I is the zero-based index of the parameter within its parameter
3216 /// declaration clause.  Note that the original ABI document describes
3217 /// this using 1-based ordinals.
3218 void CXXNameMangler::mangleFunctionParam(const ParmVarDecl *parm) {
3219   unsigned parmDepth = parm->getFunctionScopeDepth();
3220   unsigned parmIndex = parm->getFunctionScopeIndex();
3221
3222   // Compute 'L'.
3223   // parmDepth does not include the declaring function prototype.
3224   // FunctionTypeDepth does account for that.
3225   assert(parmDepth < FunctionTypeDepth.getDepth());
3226   unsigned nestingDepth = FunctionTypeDepth.getDepth() - parmDepth;
3227   if (FunctionTypeDepth.isInResultType())
3228     nestingDepth--;
3229
3230   if (nestingDepth == 0) {
3231     Out << "fp";
3232   } else {
3233     Out << "fL" << (nestingDepth - 1) << 'p';
3234   }
3235
3236   // Top-level qualifiers.  We don't have to worry about arrays here,
3237   // because parameters declared as arrays should already have been
3238   // transformed to have pointer type. FIXME: apparently these don't
3239   // get mangled if used as an rvalue of a known non-class type?
3240   assert(!parm->getType()->isArrayType()
3241          && "parameter's type is still an array type?");
3242   mangleQualifiers(parm->getType().getQualifiers());
3243
3244   // Parameter index.
3245   if (parmIndex != 0) {
3246     Out << (parmIndex - 1);
3247   }
3248   Out << '_';
3249 }
3250
3251 void CXXNameMangler::mangleCXXCtorType(CXXCtorType T) {
3252   // <ctor-dtor-name> ::= C1  # complete object constructor
3253   //                  ::= C2  # base object constructor
3254   //                  ::= C3  # complete object allocating constructor
3255   //
3256   switch (T) {
3257   case Ctor_Complete:
3258     Out << "C1";
3259     break;
3260   case Ctor_Base:
3261     Out << "C2";
3262     break;
3263   case Ctor_CompleteAllocating:
3264     Out << "C3";
3265     break;
3266   }
3267 }
3268
3269 void CXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
3270   // <ctor-dtor-name> ::= D0  # deleting destructor
3271   //                  ::= D1  # complete object destructor
3272   //                  ::= D2  # base object destructor
3273   //
3274   switch (T) {
3275   case Dtor_Deleting:
3276     Out << "D0";
3277     break;
3278   case Dtor_Complete:
3279     Out << "D1";
3280     break;
3281   case Dtor_Base:
3282     Out << "D2";
3283     break;
3284   }
3285 }
3286
3287 void CXXNameMangler::mangleTemplateArgs(
3288                           const ASTTemplateArgumentListInfo &TemplateArgs) {
3289   // <template-args> ::= I <template-arg>+ E
3290   Out << 'I';
3291   for (unsigned i = 0, e = TemplateArgs.NumTemplateArgs; i != e; ++i)
3292     mangleTemplateArg(TemplateArgs.getTemplateArgs()[i].getArgument());
3293   Out << 'E';
3294 }
3295
3296 void CXXNameMangler::mangleTemplateArgs(const TemplateArgumentList &AL) {
3297   // <template-args> ::= I <template-arg>+ E
3298   Out << 'I';
3299   for (unsigned i = 0, e = AL.size(); i != e; ++i)
3300     mangleTemplateArg(AL[i]);
3301   Out << 'E';
3302 }
3303
3304 void CXXNameMangler::mangleTemplateArgs(const TemplateArgument *TemplateArgs,
3305                                         unsigned NumTemplateArgs) {
3306   // <template-args> ::= I <template-arg>+ E
3307   Out << 'I';
3308   for (unsigned i = 0; i != NumTemplateArgs; ++i)
3309     mangleTemplateArg(TemplateArgs[i]);
3310   Out << 'E';
3311 }
3312
3313 void CXXNameMangler::mangleTemplateArg(TemplateArgument A) {
3314   // <template-arg> ::= <type>              # type or template
3315   //                ::= X <expression> E    # expression
3316   //                ::= <expr-primary>      # simple expressions
3317   //                ::= J <template-arg>* E # argument pack
3318   if (!A.isInstantiationDependent() || A.isDependent())
3319     A = Context.getASTContext().getCanonicalTemplateArgument(A);
3320   
3321   switch (A.getKind()) {
3322   case TemplateArgument::Null:
3323     llvm_unreachable("Cannot mangle NULL template argument");
3324       
3325   case TemplateArgument::Type:
3326     mangleType(A.getAsType());
3327     break;
3328   case TemplateArgument::Template:
3329     // This is mangled as <type>.
3330     mangleType(A.getAsTemplate());
3331     break;
3332   case TemplateArgument::TemplateExpansion:
3333     // <type>  ::= Dp <type>          # pack expansion (C++0x)
3334     Out << "Dp";
3335     mangleType(A.getAsTemplateOrTemplatePattern());
3336     break;
3337   case TemplateArgument::Expression: {
3338     // It's possible to end up with a DeclRefExpr here in certain
3339     // dependent cases, in which case we should mangle as a
3340     // declaration.
3341     const Expr *E = A.getAsExpr()->IgnoreParens();
3342     if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
3343       const ValueDecl *D = DRE->getDecl();
3344       if (isa<VarDecl>(D) || isa<FunctionDecl>(D)) {
3345         Out << "L";
3346         mangle(D, "_Z");
3347         Out << 'E';
3348         break;
3349       }
3350     }
3351     
3352     Out << 'X';
3353     mangleExpression(E);
3354     Out << 'E';
3355     break;
3356   }
3357   case TemplateArgument::Integral:
3358     mangleIntegerLiteral(A.getIntegralType(), A.getAsIntegral());
3359     break;
3360   case TemplateArgument::Declaration: {
3361     //  <expr-primary> ::= L <mangled-name> E # external name
3362     // Clang produces AST's where pointer-to-member-function expressions
3363     // and pointer-to-function expressions are represented as a declaration not
3364     // an expression. We compensate for it here to produce the correct mangling.
3365     ValueDecl *D = A.getAsDecl();
3366     bool compensateMangling = !A.isDeclForReferenceParam();
3367     if (compensateMangling) {
3368       Out << 'X';
3369       mangleOperatorName(OO_Amp, 1);
3370     }
3371
3372     Out << 'L';
3373     // References to external entities use the mangled name; if the name would
3374     // not normally be manged then mangle it as unqualified.
3375     //
3376     // FIXME: The ABI specifies that external names here should have _Z, but
3377     // gcc leaves this off.
3378     if (compensateMangling)
3379       mangle(D, "_Z");
3380     else
3381       mangle(D, "Z");
3382     Out << 'E';
3383
3384     if (compensateMangling)
3385       Out << 'E';
3386
3387     break;
3388   }
3389   case TemplateArgument::NullPtr: {
3390     //  <expr-primary> ::= L <type> 0 E
3391     Out << 'L';
3392     mangleType(A.getNullPtrType());
3393     Out << "0E";
3394     break;
3395   }
3396   case TemplateArgument::Pack: {
3397     //  <template-arg> ::= J <template-arg>* E
3398     Out << 'J';
3399     for (const auto &P : A.pack_elements())
3400       mangleTemplateArg(P);
3401     Out << 'E';
3402   }
3403   }
3404 }
3405
3406 void CXXNameMangler::mangleTemplateParameter(unsigned Index) {
3407   // <template-param> ::= T_    # first template parameter
3408   //                  ::= T <parameter-2 non-negative number> _
3409   if (Index == 0)
3410     Out << "T_";
3411   else
3412     Out << 'T' << (Index - 1) << '_';
3413 }
3414
3415 void CXXNameMangler::mangleSeqID(unsigned SeqID) {
3416   if (SeqID == 1)
3417     Out << '0';
3418   else if (SeqID > 1) {
3419     SeqID--;
3420
3421     // <seq-id> is encoded in base-36, using digits and upper case letters.
3422     char Buffer[7]; // log(2**32) / log(36) ~= 7
3423     MutableArrayRef<char> BufferRef(Buffer);
3424     MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
3425
3426     for (; SeqID != 0; SeqID /= 36) {
3427       unsigned C = SeqID % 36;
3428       *I++ = (C < 10 ? '0' + C : 'A' + C - 10);
3429     }
3430
3431     Out.write(I.base(), I - BufferRef.rbegin());
3432   }
3433   Out << '_';
3434 }
3435
3436 void CXXNameMangler::mangleExistingSubstitution(QualType type) {
3437   bool result = mangleSubstitution(type);
3438   assert(result && "no existing substitution for type");
3439   (void) result;
3440 }
3441
3442 void CXXNameMangler::mangleExistingSubstitution(TemplateName tname) {
3443   bool result = mangleSubstitution(tname);
3444   assert(result && "no existing substitution for template name");
3445   (void) result;
3446 }
3447
3448 // <substitution> ::= S <seq-id> _
3449 //                ::= S_
3450 bool CXXNameMangler::mangleSubstitution(const NamedDecl *ND) {
3451   // Try one of the standard substitutions first.
3452   if (mangleStandardSubstitution(ND))
3453     return true;
3454
3455   ND = cast<NamedDecl>(ND->getCanonicalDecl());
3456   return mangleSubstitution(reinterpret_cast<uintptr_t>(ND));
3457 }
3458
3459 /// \brief Determine whether the given type has any qualifiers that are
3460 /// relevant for substitutions.
3461 static bool hasMangledSubstitutionQualifiers(QualType T) {
3462   Qualifiers Qs = T.getQualifiers();
3463   return Qs.getCVRQualifiers() || Qs.hasAddressSpace();
3464 }
3465
3466 bool CXXNameMangler::mangleSubstitution(QualType T) {
3467   if (!hasMangledSubstitutionQualifiers(T)) {
3468     if (const RecordType *RT = T->getAs<RecordType>())
3469       return mangleSubstitution(RT->getDecl());
3470   }
3471
3472   uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3473
3474   return mangleSubstitution(TypePtr);
3475 }
3476
3477 bool CXXNameMangler::mangleSubstitution(TemplateName Template) {
3478   if (TemplateDecl *TD = Template.getAsTemplateDecl())
3479     return mangleSubstitution(TD);
3480   
3481   Template = Context.getASTContext().getCanonicalTemplateName(Template);
3482   return mangleSubstitution(
3483                       reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3484 }
3485
3486 bool CXXNameMangler::mangleSubstitution(uintptr_t Ptr) {
3487   llvm::DenseMap<uintptr_t, unsigned>::iterator I = Substitutions.find(Ptr);
3488   if (I == Substitutions.end())
3489     return false;
3490
3491   unsigned SeqID = I->second;
3492   Out << 'S';
3493   mangleSeqID(SeqID);
3494
3495   return true;
3496 }
3497
3498 static bool isCharType(QualType T) {
3499   if (T.isNull())
3500     return false;
3501
3502   return T->isSpecificBuiltinType(BuiltinType::Char_S) ||
3503     T->isSpecificBuiltinType(BuiltinType::Char_U);
3504 }
3505
3506 /// isCharSpecialization - Returns whether a given type is a template
3507 /// specialization of a given name with a single argument of type char.
3508 static bool isCharSpecialization(QualType T, const char *Name) {
3509   if (T.isNull())
3510     return false;
3511
3512   const RecordType *RT = T->getAs<RecordType>();
3513   if (!RT)
3514     return false;
3515
3516   const ClassTemplateSpecializationDecl *SD =
3517     dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
3518   if (!SD)
3519     return false;
3520
3521   if (!isStdNamespace(getEffectiveDeclContext(SD)))
3522     return false;
3523
3524   const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3525   if (TemplateArgs.size() != 1)
3526     return false;
3527
3528   if (!isCharType(TemplateArgs[0].getAsType()))
3529     return false;
3530
3531   return SD->getIdentifier()->getName() == Name;
3532 }
3533
3534 template <std::size_t StrLen>
3535 static bool isStreamCharSpecialization(const ClassTemplateSpecializationDecl*SD,
3536                                        const char (&Str)[StrLen]) {
3537   if (!SD->getIdentifier()->isStr(Str))
3538     return false;
3539
3540   const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3541   if (TemplateArgs.size() != 2)
3542     return false;
3543
3544   if (!isCharType(TemplateArgs[0].getAsType()))
3545     return false;
3546
3547   if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3548     return false;
3549
3550   return true;
3551 }
3552
3553 bool CXXNameMangler::mangleStandardSubstitution(const NamedDecl *ND) {
3554   // <substitution> ::= St # ::std::
3555   if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
3556     if (isStd(NS)) {
3557       Out << "St";
3558       return true;
3559     }
3560   }
3561
3562   if (const ClassTemplateDecl *TD = dyn_cast<ClassTemplateDecl>(ND)) {
3563     if (!isStdNamespace(getEffectiveDeclContext(TD)))
3564       return false;
3565
3566     // <substitution> ::= Sa # ::std::allocator
3567     if (TD->getIdentifier()->isStr("allocator")) {
3568       Out << "Sa";
3569       return true;
3570     }
3571
3572     // <<substitution> ::= Sb # ::std::basic_string
3573     if (TD->getIdentifier()->isStr("basic_string")) {
3574       Out << "Sb";
3575       return true;
3576     }
3577   }
3578
3579   if (const ClassTemplateSpecializationDecl *SD =
3580         dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
3581     if (!isStdNamespace(getEffectiveDeclContext(SD)))
3582       return false;
3583
3584     //    <substitution> ::= Ss # ::std::basic_string<char,
3585     //                            ::std::char_traits<char>,
3586     //                            ::std::allocator<char> >
3587     if (SD->getIdentifier()->isStr("basic_string")) {
3588       const TemplateArgumentList &TemplateArgs = SD->getTemplateArgs();
3589
3590       if (TemplateArgs.size() != 3)
3591         return false;
3592
3593       if (!isCharType(TemplateArgs[0].getAsType()))
3594         return false;
3595
3596       if (!isCharSpecialization(TemplateArgs[1].getAsType(), "char_traits"))
3597         return false;
3598
3599       if (!isCharSpecialization(TemplateArgs[2].getAsType(), "allocator"))
3600         return false;
3601
3602       Out << "Ss";
3603       return true;
3604     }
3605
3606     //    <substitution> ::= Si # ::std::basic_istream<char,
3607     //                            ::std::char_traits<char> >
3608     if (isStreamCharSpecialization(SD, "basic_istream")) {
3609       Out << "Si";
3610       return true;
3611     }
3612
3613     //    <substitution> ::= So # ::std::basic_ostream<char,
3614     //                            ::std::char_traits<char> >
3615     if (isStreamCharSpecialization(SD, "basic_ostream")) {
3616       Out << "So";
3617       return true;
3618     }
3619
3620     //    <substitution> ::= Sd # ::std::basic_iostream<char,
3621     //                            ::std::char_traits<char> >
3622     if (isStreamCharSpecialization(SD, "basic_iostream")) {
3623       Out << "Sd";
3624       return true;
3625     }
3626   }
3627   return false;
3628 }
3629
3630 void CXXNameMangler::addSubstitution(QualType T) {
3631   if (!hasMangledSubstitutionQualifiers(T)) {
3632     if (const RecordType *RT = T->getAs<RecordType>()) {
3633       addSubstitution(RT->getDecl());
3634       return;
3635     }
3636   }
3637
3638   uintptr_t TypePtr = reinterpret_cast<uintptr_t>(T.getAsOpaquePtr());
3639   addSubstitution(TypePtr);
3640 }
3641
3642 void CXXNameMangler::addSubstitution(TemplateName Template) {
3643   if (TemplateDecl *TD = Template.getAsTemplateDecl())
3644     return addSubstitution(TD);
3645   
3646   Template = Context.getASTContext().getCanonicalTemplateName(Template);
3647   addSubstitution(reinterpret_cast<uintptr_t>(Template.getAsVoidPointer()));
3648 }
3649
3650 void CXXNameMangler::addSubstitution(uintptr_t Ptr) {
3651   assert(!Substitutions.count(Ptr) && "Substitution already exists!");
3652   Substitutions[Ptr] = SeqID++;
3653 }
3654
3655 //
3656
3657 /// \brief Mangles the name of the declaration D and emits that name to the
3658 /// given output stream.
3659 ///
3660 /// If the declaration D requires a mangled name, this routine will emit that
3661 /// mangled name to \p os and return true. Otherwise, \p os will be unchanged
3662 /// and this routine will return false. In this case, the caller should just
3663 /// emit the identifier of the declaration (\c D->getIdentifier()) as its
3664 /// name.
3665 void ItaniumMangleContextImpl::mangleCXXName(const NamedDecl *D,
3666                                              raw_ostream &Out) {
3667   assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
3668           "Invalid mangleName() call, argument is not a variable or function!");
3669   assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
3670          "Invalid mangleName() call on 'structor decl!");
3671
3672   PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
3673                                  getASTContext().getSourceManager(),
3674                                  "Mangling declaration");
3675
3676   CXXNameMangler Mangler(*this, Out, D);
3677   return Mangler.mangle(D);
3678 }
3679
3680 void ItaniumMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D,
3681                                              CXXCtorType Type,
3682                                              raw_ostream &Out) {
3683   CXXNameMangler Mangler(*this, Out, D, Type);
3684   Mangler.mangle(D);
3685 }
3686
3687 void ItaniumMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D,
3688                                              CXXDtorType Type,
3689                                              raw_ostream &Out) {
3690   CXXNameMangler Mangler(*this, Out, D, Type);
3691   Mangler.mangle(D);
3692 }
3693
3694 void ItaniumMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
3695                                            const ThunkInfo &Thunk,
3696                                            raw_ostream &Out) {
3697   //  <special-name> ::= T <call-offset> <base encoding>
3698   //                      # base is the nominal target function of thunk
3699   //  <special-name> ::= Tc <call-offset> <call-offset> <base encoding>
3700   //                      # base is the nominal target function of thunk
3701   //                      # first call-offset is 'this' adjustment
3702   //                      # second call-offset is result adjustment
3703   
3704   assert(!isa<CXXDestructorDecl>(MD) &&
3705          "Use mangleCXXDtor for destructor decls!");
3706   CXXNameMangler Mangler(*this, Out);
3707   Mangler.getStream() << "_ZT";
3708   if (!Thunk.Return.isEmpty())
3709     Mangler.getStream() << 'c';
3710   
3711   // Mangle the 'this' pointer adjustment.
3712   Mangler.mangleCallOffset(Thunk.This.NonVirtual,
3713                            Thunk.This.Virtual.Itanium.VCallOffsetOffset);
3714
3715   // Mangle the return pointer adjustment if there is one.
3716   if (!Thunk.Return.isEmpty())
3717     Mangler.mangleCallOffset(Thunk.Return.NonVirtual,
3718                              Thunk.Return.Virtual.Itanium.VBaseOffsetOffset);
3719
3720   Mangler.mangleFunctionEncoding(MD);
3721 }
3722
3723 void ItaniumMangleContextImpl::mangleCXXDtorThunk(
3724     const CXXDestructorDecl *DD, CXXDtorType Type,
3725     const ThisAdjustment &ThisAdjustment, raw_ostream &Out) {
3726   //  <special-name> ::= T <call-offset> <base encoding>
3727   //                      # base is the nominal target function of thunk
3728   CXXNameMangler Mangler(*this, Out, DD, Type);
3729   Mangler.getStream() << "_ZT";
3730
3731   // Mangle the 'this' pointer adjustment.
3732   Mangler.mangleCallOffset(ThisAdjustment.NonVirtual, 
3733                            ThisAdjustment.Virtual.Itanium.VCallOffsetOffset);
3734
3735   Mangler.mangleFunctionEncoding(DD);
3736 }
3737
3738 /// mangleGuardVariable - Returns the mangled name for a guard variable
3739 /// for the passed in VarDecl.
3740 void ItaniumMangleContextImpl::mangleStaticGuardVariable(const VarDecl *D,
3741                                                          raw_ostream &Out) {
3742   //  <special-name> ::= GV <object name>       # Guard variable for one-time
3743   //                                            # initialization
3744   CXXNameMangler Mangler(*this, Out);
3745   Mangler.getStream() << "_ZGV";
3746   Mangler.mangleName(D);
3747 }
3748
3749 void ItaniumMangleContextImpl::mangleDynamicInitializer(const VarDecl *MD,
3750                                                         raw_ostream &Out) {
3751   // These symbols are internal in the Itanium ABI, so the names don't matter.
3752   // Clang has traditionally used this symbol and allowed LLVM to adjust it to
3753   // avoid duplicate symbols.
3754   Out << "__cxx_global_var_init";
3755 }
3756
3757 void ItaniumMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
3758                                                              raw_ostream &Out) {
3759   // Prefix the mangling of D with __dtor_.
3760   CXXNameMangler Mangler(*this, Out);
3761   Mangler.getStream() << "__dtor_";
3762   if (shouldMangleDeclName(D))
3763     Mangler.mangle(D);
3764   else
3765     Mangler.getStream() << D->getName();
3766 }
3767
3768 void ItaniumMangleContextImpl::mangleItaniumThreadLocalInit(const VarDecl *D,
3769                                                             raw_ostream &Out) {
3770   //  <special-name> ::= TH <object name>
3771   CXXNameMangler Mangler(*this, Out);
3772   Mangler.getStream() << "_ZTH";
3773   Mangler.mangleName(D);
3774 }
3775
3776 void
3777 ItaniumMangleContextImpl::mangleItaniumThreadLocalWrapper(const VarDecl *D,
3778                                                           raw_ostream &Out) {
3779   //  <special-name> ::= TW <object name>
3780   CXXNameMangler Mangler(*this, Out);
3781   Mangler.getStream() << "_ZTW";
3782   Mangler.mangleName(D);
3783 }
3784
3785 void ItaniumMangleContextImpl::mangleReferenceTemporary(const VarDecl *D,
3786                                                         unsigned ManglingNumber,
3787                                                         raw_ostream &Out) {
3788   // We match the GCC mangling here.
3789   //  <special-name> ::= GR <object name>
3790   CXXNameMangler Mangler(*this, Out);
3791   Mangler.getStream() << "_ZGR";
3792   Mangler.mangleName(D);
3793   assert(ManglingNumber > 0 && "Reference temporary mangling number is zero!");
3794   Mangler.mangleSeqID(ManglingNumber - 1);
3795 }
3796
3797 void ItaniumMangleContextImpl::mangleCXXVTable(const CXXRecordDecl *RD,
3798                                                raw_ostream &Out) {
3799   // <special-name> ::= TV <type>  # virtual table
3800   CXXNameMangler Mangler(*this, Out);
3801   Mangler.getStream() << "_ZTV";
3802   Mangler.mangleNameOrStandardSubstitution(RD);
3803 }
3804
3805 void ItaniumMangleContextImpl::mangleCXXVTT(const CXXRecordDecl *RD,
3806                                             raw_ostream &Out) {
3807   // <special-name> ::= TT <type>  # VTT structure
3808   CXXNameMangler Mangler(*this, Out);
3809   Mangler.getStream() << "_ZTT";
3810   Mangler.mangleNameOrStandardSubstitution(RD);
3811 }
3812
3813 void ItaniumMangleContextImpl::mangleCXXCtorVTable(const CXXRecordDecl *RD,
3814                                                    int64_t Offset,
3815                                                    const CXXRecordDecl *Type,
3816                                                    raw_ostream &Out) {
3817   // <special-name> ::= TC <type> <offset number> _ <base type>
3818   CXXNameMangler Mangler(*this, Out);
3819   Mangler.getStream() << "_ZTC";
3820   Mangler.mangleNameOrStandardSubstitution(RD);
3821   Mangler.getStream() << Offset;
3822   Mangler.getStream() << '_';
3823   Mangler.mangleNameOrStandardSubstitution(Type);
3824 }
3825
3826 void ItaniumMangleContextImpl::mangleCXXRTTI(QualType Ty, raw_ostream &Out) {
3827   // <special-name> ::= TI <type>  # typeinfo structure
3828   assert(!Ty.hasQualifiers() && "RTTI info cannot have top-level qualifiers");
3829   CXXNameMangler Mangler(*this, Out);
3830   Mangler.getStream() << "_ZTI";
3831   Mangler.mangleType(Ty);
3832 }
3833
3834 void ItaniumMangleContextImpl::mangleCXXRTTIName(QualType Ty,
3835                                                  raw_ostream &Out) {
3836   // <special-name> ::= TS <type>  # typeinfo name (null terminated byte string)
3837   CXXNameMangler Mangler(*this, Out);
3838   Mangler.getStream() << "_ZTS";
3839   Mangler.mangleType(Ty);
3840 }
3841
3842 void ItaniumMangleContextImpl::mangleTypeName(QualType Ty, raw_ostream &Out) {
3843   mangleCXXRTTIName(Ty, Out);
3844 }
3845
3846 void ItaniumMangleContextImpl::mangleStringLiteral(const StringLiteral *, raw_ostream &) {
3847   llvm_unreachable("Can't mangle string literals");
3848 }
3849
3850 ItaniumMangleContext *
3851 ItaniumMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) {
3852   return new ItaniumMangleContextImpl(Context, Diags);
3853 }