]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/AST/MicrosoftMangle.cpp
Update libucl to git version 8d3b186
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / AST / MicrosoftMangle.cpp
1 //===--- MicrosoftMangle.cpp - Microsoft Visual C++ Name Mangling ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This provides C++ name mangling targeting the Microsoft Visual C++ ABI.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/AST/Mangle.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/Attr.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/Decl.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/DeclTemplate.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/VTableBuilder.h"
26 #include "clang/Basic/ABI.h"
27 #include "clang/Basic/DiagnosticOptions.h"
28 #include "clang/Basic/TargetInfo.h"
29 #include "llvm/ADT/StringExtras.h"
30 #include "llvm/ADT/StringMap.h"
31 #include "llvm/Support/MathExtras.h"
32
33 using namespace clang;
34
35 namespace {
36
37 /// \brief Retrieve the declaration context that should be used when mangling
38 /// the given declaration.
39 static const DeclContext *getEffectiveDeclContext(const Decl *D) {
40   // The ABI assumes that lambda closure types that occur within
41   // default arguments live in the context of the function. However, due to
42   // the way in which Clang parses and creates function declarations, this is
43   // not the case: the lambda closure type ends up living in the context
44   // where the function itself resides, because the function declaration itself
45   // had not yet been created. Fix the context here.
46   if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
47     if (RD->isLambda())
48       if (ParmVarDecl *ContextParam =
49               dyn_cast_or_null<ParmVarDecl>(RD->getLambdaContextDecl()))
50         return ContextParam->getDeclContext();
51   }
52
53   // Perform the same check for block literals.
54   if (const BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
55     if (ParmVarDecl *ContextParam =
56             dyn_cast_or_null<ParmVarDecl>(BD->getBlockManglingContextDecl()))
57       return ContextParam->getDeclContext();
58   }
59
60   const DeclContext *DC = D->getDeclContext();
61   if (const CapturedDecl *CD = dyn_cast<CapturedDecl>(DC))
62     return getEffectiveDeclContext(CD);
63
64   return DC;
65 }
66
67 static const DeclContext *getEffectiveParentContext(const DeclContext *DC) {
68   return getEffectiveDeclContext(cast<Decl>(DC));
69 }
70
71 static const FunctionDecl *getStructor(const FunctionDecl *fn) {
72   if (const FunctionTemplateDecl *ftd = fn->getPrimaryTemplate())
73     return ftd->getTemplatedDecl();
74
75   return fn;
76 }
77
78 static bool isLambda(const NamedDecl *ND) {
79   const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(ND);
80   if (!Record)
81     return false;
82
83   return Record->isLambda();
84 }
85
86 /// MicrosoftMangleContextImpl - Overrides the default MangleContext for the
87 /// Microsoft Visual C++ ABI.
88 class MicrosoftMangleContextImpl : public MicrosoftMangleContext {
89   typedef std::pair<const DeclContext *, IdentifierInfo *> DiscriminatorKeyTy;
90   llvm::DenseMap<DiscriminatorKeyTy, unsigned> Discriminator;
91   llvm::DenseMap<const NamedDecl *, unsigned> Uniquifier;
92   llvm::DenseMap<const CXXRecordDecl *, unsigned> LambdaIds;
93
94 public:
95   MicrosoftMangleContextImpl(ASTContext &Context, DiagnosticsEngine &Diags)
96       : MicrosoftMangleContext(Context, Diags) {}
97   bool shouldMangleCXXName(const NamedDecl *D) override;
98   bool shouldMangleStringLiteral(const StringLiteral *SL) override;
99   void mangleCXXName(const NamedDecl *D, raw_ostream &Out) override;
100   void mangleVirtualMemPtrThunk(const CXXMethodDecl *MD,
101                                 raw_ostream &) override;
102   void mangleThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk,
103                    raw_ostream &) override;
104   void mangleCXXDtorThunk(const CXXDestructorDecl *DD, CXXDtorType Type,
105                           const ThisAdjustment &ThisAdjustment,
106                           raw_ostream &) override;
107   void mangleCXXVFTable(const CXXRecordDecl *Derived,
108                         ArrayRef<const CXXRecordDecl *> BasePath,
109                         raw_ostream &Out) override;
110   void mangleCXXVBTable(const CXXRecordDecl *Derived,
111                         ArrayRef<const CXXRecordDecl *> BasePath,
112                         raw_ostream &Out) override;
113   void mangleCXXRTTI(QualType T, raw_ostream &Out) override;
114   void mangleCXXRTTIName(QualType T, raw_ostream &Out) override;
115   void mangleCXXRTTIBaseClassDescriptor(const CXXRecordDecl *Derived,
116                                         uint32_t NVOffset, int32_t VBPtrOffset,
117                                         uint32_t VBTableOffset, uint32_t Flags,
118                                         raw_ostream &Out) override;
119   void mangleCXXRTTIBaseClassArray(const CXXRecordDecl *Derived,
120                                    raw_ostream &Out) override;
121   void mangleCXXRTTIClassHierarchyDescriptor(const CXXRecordDecl *Derived,
122                                              raw_ostream &Out) override;
123   void
124   mangleCXXRTTICompleteObjectLocator(const CXXRecordDecl *Derived,
125                                      ArrayRef<const CXXRecordDecl *> BasePath,
126                                      raw_ostream &Out) override;
127   void mangleTypeName(QualType T, raw_ostream &) override;
128   void mangleCXXCtor(const CXXConstructorDecl *D, CXXCtorType Type,
129                      raw_ostream &) override;
130   void mangleCXXDtor(const CXXDestructorDecl *D, CXXDtorType Type,
131                      raw_ostream &) override;
132   void mangleReferenceTemporary(const VarDecl *, unsigned ManglingNumber,
133                                 raw_ostream &) override;
134   void mangleStaticGuardVariable(const VarDecl *D, raw_ostream &Out) override;
135   void mangleDynamicInitializer(const VarDecl *D, raw_ostream &Out) override;
136   void mangleDynamicAtExitDestructor(const VarDecl *D,
137                                      raw_ostream &Out) override;
138   void mangleStringLiteral(const StringLiteral *SL, raw_ostream &Out) override;
139   bool getNextDiscriminator(const NamedDecl *ND, unsigned &disc) {
140     // Lambda closure types are already numbered.
141     if (isLambda(ND))
142       return false;
143
144     const DeclContext *DC = getEffectiveDeclContext(ND);
145     if (!DC->isFunctionOrMethod())
146       return false;
147
148     // Use the canonical number for externally visible decls.
149     if (ND->isExternallyVisible()) {
150       disc = getASTContext().getManglingNumber(ND);
151       return true;
152     }
153
154     // Anonymous tags are already numbered.
155     if (const TagDecl *Tag = dyn_cast<TagDecl>(ND)) {
156       if (Tag->getName().empty() && !Tag->getTypedefNameForAnonDecl())
157         return false;
158     }
159
160     // Make up a reasonable number for internal decls.
161     unsigned &discriminator = Uniquifier[ND];
162     if (!discriminator)
163       discriminator = ++Discriminator[std::make_pair(DC, ND->getIdentifier())];
164     disc = discriminator;
165     return true;
166   }
167
168   unsigned getLambdaId(const CXXRecordDecl *RD) {
169     assert(RD->isLambda() && "RD must be a lambda!");
170     assert(!RD->isExternallyVisible() && "RD must not be visible!");
171     assert(RD->getLambdaManglingNumber() == 0 &&
172            "RD must not have a mangling number!");
173     std::pair<llvm::DenseMap<const CXXRecordDecl *, unsigned>::iterator, bool>
174         Result = LambdaIds.insert(std::make_pair(RD, LambdaIds.size()));
175     return Result.first->second;
176   }
177
178 private:
179   void mangleInitFiniStub(const VarDecl *D, raw_ostream &Out, char CharCode);
180 };
181
182 /// MicrosoftCXXNameMangler - Manage the mangling of a single name for the
183 /// Microsoft Visual C++ ABI.
184 class MicrosoftCXXNameMangler {
185   MicrosoftMangleContextImpl &Context;
186   raw_ostream &Out;
187
188   /// The "structor" is the top-level declaration being mangled, if
189   /// that's not a template specialization; otherwise it's the pattern
190   /// for that specialization.
191   const NamedDecl *Structor;
192   unsigned StructorType;
193
194   typedef llvm::StringMap<unsigned> BackRefMap;
195   BackRefMap NameBackReferences;
196
197   typedef llvm::DenseMap<void *, unsigned> ArgBackRefMap;
198   ArgBackRefMap TypeBackReferences;
199
200   ASTContext &getASTContext() const { return Context.getASTContext(); }
201
202   // FIXME: If we add support for __ptr32/64 qualifiers, then we should push
203   // this check into mangleQualifiers().
204   const bool PointersAre64Bit;
205
206 public:
207   enum QualifierMangleMode { QMM_Drop, QMM_Mangle, QMM_Escape, QMM_Result };
208
209   MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_)
210       : Context(C), Out(Out_), Structor(nullptr), StructorType(-1),
211         PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
212                          64) {}
213
214   MicrosoftCXXNameMangler(MicrosoftMangleContextImpl &C, raw_ostream &Out_,
215                           const CXXDestructorDecl *D, CXXDtorType Type)
216       : Context(C), Out(Out_), Structor(getStructor(D)), StructorType(Type),
217         PointersAre64Bit(C.getASTContext().getTargetInfo().getPointerWidth(0) ==
218                          64) {}
219
220   raw_ostream &getStream() const { return Out; }
221
222   void mangle(const NamedDecl *D, StringRef Prefix = "\01?");
223   void mangleName(const NamedDecl *ND);
224   void mangleFunctionEncoding(const FunctionDecl *FD);
225   void mangleVariableEncoding(const VarDecl *VD);
226   void mangleMemberDataPointer(const CXXRecordDecl *RD, const ValueDecl *VD);
227   void mangleMemberFunctionPointer(const CXXRecordDecl *RD,
228                                    const CXXMethodDecl *MD);
229   void mangleVirtualMemPtrThunk(
230       const CXXMethodDecl *MD,
231       const MicrosoftVTableContext::MethodVFTableLocation &ML);
232   void mangleNumber(int64_t Number);
233   void mangleType(QualType T, SourceRange Range,
234                   QualifierMangleMode QMM = QMM_Mangle);
235   void mangleFunctionType(const FunctionType *T,
236                           const FunctionDecl *D = nullptr,
237                           bool ForceInstMethod = false);
238   void mangleNestedName(const NamedDecl *ND);
239
240 private:
241   void mangleUnqualifiedName(const NamedDecl *ND) {
242     mangleUnqualifiedName(ND, ND->getDeclName());
243   }
244   void mangleUnqualifiedName(const NamedDecl *ND, DeclarationName Name);
245   void mangleSourceName(StringRef Name);
246   void mangleOperatorName(OverloadedOperatorKind OO, SourceLocation Loc);
247   void mangleCXXDtorType(CXXDtorType T);
248   void mangleQualifiers(Qualifiers Quals, bool IsMember);
249   void mangleRefQualifier(RefQualifierKind RefQualifier);
250   void manglePointerCVQualifiers(Qualifiers Quals);
251   void manglePointerExtQualifiers(Qualifiers Quals, const Type *PointeeType);
252
253   void mangleUnscopedTemplateName(const TemplateDecl *ND);
254   void
255   mangleTemplateInstantiationName(const TemplateDecl *TD,
256                                   const TemplateArgumentList &TemplateArgs);
257   void mangleObjCMethodName(const ObjCMethodDecl *MD);
258
259   void mangleArgumentType(QualType T, SourceRange Range);
260
261   // Declare manglers for every type class.
262 #define ABSTRACT_TYPE(CLASS, PARENT)
263 #define NON_CANONICAL_TYPE(CLASS, PARENT)
264 #define TYPE(CLASS, PARENT) void mangleType(const CLASS##Type *T, \
265                                             SourceRange Range);
266 #include "clang/AST/TypeNodes.def"
267 #undef ABSTRACT_TYPE
268 #undef NON_CANONICAL_TYPE
269 #undef TYPE
270
271   void mangleType(const TagDecl *TD);
272   void mangleDecayedArrayType(const ArrayType *T);
273   void mangleArrayType(const ArrayType *T);
274   void mangleFunctionClass(const FunctionDecl *FD);
275   void mangleCallingConvention(const FunctionType *T);
276   void mangleIntegerLiteral(const llvm::APSInt &Number, bool IsBoolean);
277   void mangleExpression(const Expr *E);
278   void mangleThrowSpecification(const FunctionProtoType *T);
279
280   void mangleTemplateArgs(const TemplateDecl *TD,
281                           const TemplateArgumentList &TemplateArgs);
282   void mangleTemplateArg(const TemplateDecl *TD, const TemplateArgument &TA);
283 };
284 }
285
286 bool MicrosoftMangleContextImpl::shouldMangleCXXName(const NamedDecl *D) {
287   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
288     LanguageLinkage L = FD->getLanguageLinkage();
289     // Overloadable functions need mangling.
290     if (FD->hasAttr<OverloadableAttr>())
291       return true;
292
293     // The ABI expects that we would never mangle "typical" user-defined entry
294     // points regardless of visibility or freestanding-ness.
295     //
296     // N.B. This is distinct from asking about "main".  "main" has a lot of
297     // special rules associated with it in the standard while these
298     // user-defined entry points are outside of the purview of the standard.
299     // For example, there can be only one definition for "main" in a standards
300     // compliant program; however nothing forbids the existence of wmain and
301     // WinMain in the same translation unit.
302     if (FD->isMSVCRTEntryPoint())
303       return false;
304
305     // C++ functions and those whose names are not a simple identifier need
306     // mangling.
307     if (!FD->getDeclName().isIdentifier() || L == CXXLanguageLinkage)
308       return true;
309
310     // C functions are not mangled.
311     if (L == CLanguageLinkage)
312       return false;
313   }
314
315   // Otherwise, no mangling is done outside C++ mode.
316   if (!getASTContext().getLangOpts().CPlusPlus)
317     return false;
318
319   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
320     // C variables are not mangled.
321     if (VD->isExternC())
322       return false;
323
324     // Variables at global scope with non-internal linkage are not mangled.
325     const DeclContext *DC = getEffectiveDeclContext(D);
326     // Check for extern variable declared locally.
327     if (DC->isFunctionOrMethod() && D->hasLinkage())
328       while (!DC->isNamespace() && !DC->isTranslationUnit())
329         DC = getEffectiveParentContext(DC);
330
331     if (DC->isTranslationUnit() && D->getFormalLinkage() == InternalLinkage &&
332         !isa<VarTemplateSpecializationDecl>(D))
333       return false;
334   }
335
336   return true;
337 }
338
339 bool
340 MicrosoftMangleContextImpl::shouldMangleStringLiteral(const StringLiteral *SL) {
341   return SL->isAscii() || SL->isWide();
342   // TODO: This needs to be updated when MSVC gains support for Unicode
343   // literals.
344 }
345
346 void MicrosoftCXXNameMangler::mangle(const NamedDecl *D, StringRef Prefix) {
347   // MSVC doesn't mangle C++ names the same way it mangles extern "C" names.
348   // Therefore it's really important that we don't decorate the
349   // name with leading underscores or leading/trailing at signs. So, by
350   // default, we emit an asm marker at the start so we get the name right.
351   // Callers can override this with a custom prefix.
352
353   // <mangled-name> ::= ? <name> <type-encoding>
354   Out << Prefix;
355   mangleName(D);
356   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
357     mangleFunctionEncoding(FD);
358   else if (const VarDecl *VD = dyn_cast<VarDecl>(D))
359     mangleVariableEncoding(VD);
360   else {
361     // TODO: Fields? Can MSVC even mangle them?
362     // Issue a diagnostic for now.
363     DiagnosticsEngine &Diags = Context.getDiags();
364     unsigned DiagID = Diags.getCustomDiagID(
365         DiagnosticsEngine::Error, "cannot mangle this declaration yet");
366     Diags.Report(D->getLocation(), DiagID) << D->getSourceRange();
367   }
368 }
369
370 void MicrosoftCXXNameMangler::mangleFunctionEncoding(const FunctionDecl *FD) {
371   // <type-encoding> ::= <function-class> <function-type>
372
373   // Since MSVC operates on the type as written and not the canonical type, it
374   // actually matters which decl we have here.  MSVC appears to choose the
375   // first, since it is most likely to be the declaration in a header file.
376   FD = FD->getFirstDecl();
377
378   // We should never ever see a FunctionNoProtoType at this point.
379   // We don't even know how to mangle their types anyway :).
380   const FunctionProtoType *FT = FD->getType()->castAs<FunctionProtoType>();
381
382   // extern "C" functions can hold entities that must be mangled.
383   // As it stands, these functions still need to get expressed in the full
384   // external name.  They have their class and type omitted, replaced with '9'.
385   if (Context.shouldMangleDeclName(FD)) {
386     // First, the function class.
387     mangleFunctionClass(FD);
388
389     mangleFunctionType(FT, FD);
390   } else
391     Out << '9';
392 }
393
394 void MicrosoftCXXNameMangler::mangleVariableEncoding(const VarDecl *VD) {
395   // <type-encoding> ::= <storage-class> <variable-type>
396   // <storage-class> ::= 0  # private static member
397   //                 ::= 1  # protected static member
398   //                 ::= 2  # public static member
399   //                 ::= 3  # global
400   //                 ::= 4  # static local
401
402   // The first character in the encoding (after the name) is the storage class.
403   if (VD->isStaticDataMember()) {
404     // If it's a static member, it also encodes the access level.
405     switch (VD->getAccess()) {
406       default:
407       case AS_private: Out << '0'; break;
408       case AS_protected: Out << '1'; break;
409       case AS_public: Out << '2'; break;
410     }
411   }
412   else if (!VD->isStaticLocal())
413     Out << '3';
414   else
415     Out << '4';
416   // Now mangle the type.
417   // <variable-type> ::= <type> <cvr-qualifiers>
418   //                 ::= <type> <pointee-cvr-qualifiers> # pointers, references
419   // Pointers and references are odd. The type of 'int * const foo;' gets
420   // mangled as 'QAHA' instead of 'PAHB', for example.
421   SourceRange SR = VD->getSourceRange();
422   QualType Ty = VD->getType();
423   if (Ty->isPointerType() || Ty->isReferenceType() ||
424       Ty->isMemberPointerType()) {
425     mangleType(Ty, SR, QMM_Drop);
426     manglePointerExtQualifiers(
427         Ty.getDesugaredType(getASTContext()).getLocalQualifiers(), nullptr);
428     if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>()) {
429       mangleQualifiers(MPT->getPointeeType().getQualifiers(), true);
430       // Member pointers are suffixed with a back reference to the member
431       // pointer's class name.
432       mangleName(MPT->getClass()->getAsCXXRecordDecl());
433     } else
434       mangleQualifiers(Ty->getPointeeType().getQualifiers(), false);
435   } else if (const ArrayType *AT = getASTContext().getAsArrayType(Ty)) {
436     // Global arrays are funny, too.
437     mangleDecayedArrayType(AT);
438     if (AT->getElementType()->isArrayType())
439       Out << 'A';
440     else
441       mangleQualifiers(Ty.getQualifiers(), false);
442   } else {
443     mangleType(Ty, SR, QMM_Drop);
444     mangleQualifiers(Ty.getLocalQualifiers(), false);
445   }
446 }
447
448 void MicrosoftCXXNameMangler::mangleMemberDataPointer(const CXXRecordDecl *RD,
449                                                       const ValueDecl *VD) {
450   // <member-data-pointer> ::= <integer-literal>
451   //                       ::= $F <number> <number>
452   //                       ::= $G <number> <number> <number>
453
454   int64_t FieldOffset;
455   int64_t VBTableOffset;
456   MSInheritanceAttr::Spelling IM = RD->getMSInheritanceModel();
457   if (VD) {
458     FieldOffset = getASTContext().getFieldOffset(VD);
459     assert(FieldOffset % getASTContext().getCharWidth() == 0 &&
460            "cannot take address of bitfield");
461     FieldOffset /= getASTContext().getCharWidth();
462
463     VBTableOffset = 0;
464   } else {
465     FieldOffset = RD->nullFieldOffsetIsZero() ? 0 : -1;
466
467     VBTableOffset = -1;
468   }
469
470   char Code = '\0';
471   switch (IM) {
472   case MSInheritanceAttr::Keyword_single_inheritance:      Code = '0'; break;
473   case MSInheritanceAttr::Keyword_multiple_inheritance:    Code = '0'; break;
474   case MSInheritanceAttr::Keyword_virtual_inheritance:     Code = 'F'; break;
475   case MSInheritanceAttr::Keyword_unspecified_inheritance: Code = 'G'; break;
476   }
477
478   Out << '$' << Code;
479
480   mangleNumber(FieldOffset);
481
482   // The C++ standard doesn't allow base-to-derived member pointer conversions
483   // in template parameter contexts, so the vbptr offset of data member pointers
484   // is always zero.
485   if (MSInheritanceAttr::hasVBPtrOffsetField(IM))
486     mangleNumber(0);
487   if (MSInheritanceAttr::hasVBTableOffsetField(IM))
488     mangleNumber(VBTableOffset);
489 }
490
491 void
492 MicrosoftCXXNameMangler::mangleMemberFunctionPointer(const CXXRecordDecl *RD,
493                                                      const CXXMethodDecl *MD) {
494   // <member-function-pointer> ::= $1? <name>
495   //                           ::= $H? <name> <number>
496   //                           ::= $I? <name> <number> <number>
497   //                           ::= $J? <name> <number> <number> <number>
498
499   MSInheritanceAttr::Spelling IM = RD->getMSInheritanceModel();
500
501   char Code = '\0';
502   switch (IM) {
503   case MSInheritanceAttr::Keyword_single_inheritance:      Code = '1'; break;
504   case MSInheritanceAttr::Keyword_multiple_inheritance:    Code = 'H'; break;
505   case MSInheritanceAttr::Keyword_virtual_inheritance:     Code = 'I'; break;
506   case MSInheritanceAttr::Keyword_unspecified_inheritance: Code = 'J'; break;
507   }
508
509   // If non-virtual, mangle the name.  If virtual, mangle as a virtual memptr
510   // thunk.
511   uint64_t NVOffset = 0;
512   uint64_t VBTableOffset = 0;
513   uint64_t VBPtrOffset = 0;
514   if (MD) {
515     Out << '$' << Code << '?';
516     if (MD->isVirtual()) {
517       MicrosoftVTableContext *VTContext =
518           cast<MicrosoftVTableContext>(getASTContext().getVTableContext());
519       const MicrosoftVTableContext::MethodVFTableLocation &ML =
520           VTContext->getMethodVFTableLocation(GlobalDecl(MD));
521       mangleVirtualMemPtrThunk(MD, ML);
522       NVOffset = ML.VFPtrOffset.getQuantity();
523       VBTableOffset = ML.VBTableIndex * 4;
524       if (ML.VBase) {
525         const ASTRecordLayout &Layout = getASTContext().getASTRecordLayout(RD);
526         VBPtrOffset = Layout.getVBPtrOffset().getQuantity();
527       }
528     } else {
529       mangleName(MD);
530       mangleFunctionEncoding(MD);
531     }
532   } else {
533     // Null single inheritance member functions are encoded as a simple nullptr.
534     if (IM == MSInheritanceAttr::Keyword_single_inheritance) {
535       Out << "$0A@";
536       return;
537     }
538     if (IM == MSInheritanceAttr::Keyword_unspecified_inheritance)
539       VBTableOffset = -1;
540     Out << '$' << Code;
541   }
542
543   if (MSInheritanceAttr::hasNVOffsetField(/*IsMemberFunction=*/true, IM))
544     mangleNumber(NVOffset);
545   if (MSInheritanceAttr::hasVBPtrOffsetField(IM))
546     mangleNumber(VBPtrOffset);
547   if (MSInheritanceAttr::hasVBTableOffsetField(IM))
548     mangleNumber(VBTableOffset);
549 }
550
551 void MicrosoftCXXNameMangler::mangleVirtualMemPtrThunk(
552     const CXXMethodDecl *MD,
553     const MicrosoftVTableContext::MethodVFTableLocation &ML) {
554   // Get the vftable offset.
555   CharUnits PointerWidth = getASTContext().toCharUnitsFromBits(
556       getASTContext().getTargetInfo().getPointerWidth(0));
557   uint64_t OffsetInVFTable = ML.Index * PointerWidth.getQuantity();
558
559   Out << "?_9";
560   mangleName(MD->getParent());
561   Out << "$B";
562   mangleNumber(OffsetInVFTable);
563   Out << 'A';
564   Out << (PointersAre64Bit ? 'A' : 'E');
565 }
566
567 void MicrosoftCXXNameMangler::mangleName(const NamedDecl *ND) {
568   // <name> ::= <unscoped-name> {[<named-scope>]+ | [<nested-name>]}? @
569
570   // Always start with the unqualified name.
571   mangleUnqualifiedName(ND);
572
573   mangleNestedName(ND);
574
575   // Terminate the whole name with an '@'.
576   Out << '@';
577 }
578
579 void MicrosoftCXXNameMangler::mangleNumber(int64_t Number) {
580   // <non-negative integer> ::= A@              # when Number == 0
581   //                        ::= <decimal digit> # when 1 <= Number <= 10
582   //                        ::= <hex digit>+ @  # when Number >= 10
583   //
584   // <number>               ::= [?] <non-negative integer>
585
586   uint64_t Value = static_cast<uint64_t>(Number);
587   if (Number < 0) {
588     Value = -Value;
589     Out << '?';
590   }
591
592   if (Value == 0)
593     Out << "A@";
594   else if (Value >= 1 && Value <= 10)
595     Out << (Value - 1);
596   else {
597     // Numbers that are not encoded as decimal digits are represented as nibbles
598     // in the range of ASCII characters 'A' to 'P'.
599     // The number 0x123450 would be encoded as 'BCDEFA'
600     char EncodedNumberBuffer[sizeof(uint64_t) * 2];
601     MutableArrayRef<char> BufferRef(EncodedNumberBuffer);
602     MutableArrayRef<char>::reverse_iterator I = BufferRef.rbegin();
603     for (; Value != 0; Value >>= 4)
604       *I++ = 'A' + (Value & 0xf);
605     Out.write(I.base(), I - BufferRef.rbegin());
606     Out << '@';
607   }
608 }
609
610 static const TemplateDecl *
611 isTemplate(const NamedDecl *ND, const TemplateArgumentList *&TemplateArgs) {
612   // Check if we have a function template.
613   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
614     if (const TemplateDecl *TD = FD->getPrimaryTemplate()) {
615       TemplateArgs = FD->getTemplateSpecializationArgs();
616       return TD;
617     }
618   }
619
620   // Check if we have a class template.
621   if (const ClassTemplateSpecializationDecl *Spec =
622           dyn_cast<ClassTemplateSpecializationDecl>(ND)) {
623     TemplateArgs = &Spec->getTemplateArgs();
624     return Spec->getSpecializedTemplate();
625   }
626
627   // Check if we have a variable template.
628   if (const VarTemplateSpecializationDecl *Spec =
629           dyn_cast<VarTemplateSpecializationDecl>(ND)) {
630     TemplateArgs = &Spec->getTemplateArgs();
631     return Spec->getSpecializedTemplate();
632   }
633
634   return nullptr;
635 }
636
637 void MicrosoftCXXNameMangler::mangleUnqualifiedName(const NamedDecl *ND,
638                                                     DeclarationName Name) {
639   //  <unqualified-name> ::= <operator-name>
640   //                     ::= <ctor-dtor-name>
641   //                     ::= <source-name>
642   //                     ::= <template-name>
643
644   // Check if we have a template.
645   const TemplateArgumentList *TemplateArgs = nullptr;
646   if (const TemplateDecl *TD = isTemplate(ND, TemplateArgs)) {
647     // Function templates aren't considered for name back referencing.  This
648     // makes sense since function templates aren't likely to occur multiple
649     // times in a symbol.
650     // FIXME: Test alias template mangling with MSVC 2013.
651     if (!isa<ClassTemplateDecl>(TD)) {
652       mangleTemplateInstantiationName(TD, *TemplateArgs);
653       Out << '@';
654       return;
655     }
656
657     // Here comes the tricky thing: if we need to mangle something like
658     //   void foo(A::X<Y>, B::X<Y>),
659     // the X<Y> part is aliased. However, if you need to mangle
660     //   void foo(A::X<A::Y>, A::X<B::Y>),
661     // the A::X<> part is not aliased.
662     // That said, from the mangler's perspective we have a structure like this:
663     //   namespace[s] -> type[ -> template-parameters]
664     // but from the Clang perspective we have
665     //   type [ -> template-parameters]
666     //      \-> namespace[s]
667     // What we do is we create a new mangler, mangle the same type (without
668     // a namespace suffix) to a string using the extra mangler and then use 
669     // the mangled type name as a key to check the mangling of different types
670     // for aliasing.
671
672     llvm::SmallString<64> TemplateMangling;
673     llvm::raw_svector_ostream Stream(TemplateMangling);
674     MicrosoftCXXNameMangler Extra(Context, Stream);
675     Extra.mangleTemplateInstantiationName(TD, *TemplateArgs);
676     Stream.flush();
677
678     mangleSourceName(TemplateMangling);
679     return;
680   }
681
682   switch (Name.getNameKind()) {
683     case DeclarationName::Identifier: {
684       if (const IdentifierInfo *II = Name.getAsIdentifierInfo()) {
685         mangleSourceName(II->getName());
686         break;
687       }
688
689       // Otherwise, an anonymous entity.  We must have a declaration.
690       assert(ND && "mangling empty name without declaration");
691
692       if (const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(ND)) {
693         if (NS->isAnonymousNamespace()) {
694           Out << "?A@";
695           break;
696         }
697       }
698
699       if (const VarDecl *VD = dyn_cast<VarDecl>(ND)) {
700         // We must have an anonymous union or struct declaration.
701         const CXXRecordDecl *RD = VD->getType()->getAsCXXRecordDecl();
702         assert(RD && "expected variable decl to have a record type");
703         // Anonymous types with no tag or typedef get the name of their
704         // declarator mangled in.  If they have no declarator, number them with
705         // a $S prefix.
706         llvm::SmallString<64> Name("$S");
707         // Get a unique id for the anonymous struct.
708         Name += llvm::utostr(Context.getAnonymousStructId(RD) + 1);
709         mangleSourceName(Name.str());
710         break;
711       }
712
713       // We must have an anonymous struct.
714       const TagDecl *TD = cast<TagDecl>(ND);
715       if (const TypedefNameDecl *D = TD->getTypedefNameForAnonDecl()) {
716         assert(TD->getDeclContext() == D->getDeclContext() &&
717                "Typedef should not be in another decl context!");
718         assert(D->getDeclName().getAsIdentifierInfo() &&
719                "Typedef was not named!");
720         mangleSourceName(D->getDeclName().getAsIdentifierInfo()->getName());
721         break;
722       }
723
724       if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(TD)) {
725         if (Record->isLambda()) {
726           llvm::SmallString<10> Name("<lambda_");
727           unsigned LambdaId;
728           if (Record->getLambdaManglingNumber())
729             LambdaId = Record->getLambdaManglingNumber();
730           else
731             LambdaId = Context.getLambdaId(Record);
732
733           Name += llvm::utostr(LambdaId);
734           Name += ">";
735
736           mangleSourceName(Name);
737           break;
738         }
739       }
740
741       llvm::SmallString<64> Name("<unnamed-type-");
742       if (TD->hasDeclaratorForAnonDecl()) {
743         // Anonymous types with no tag or typedef get the name of their
744         // declarator mangled in if they have one.
745         Name += TD->getDeclaratorForAnonDecl()->getName();
746       } else {
747         // Otherwise, number the types using a $S prefix.
748         Name += "$S";
749         Name += llvm::utostr(Context.getAnonymousStructId(TD));
750       }
751       Name += ">";
752       mangleSourceName(Name.str());
753       break;
754     }
755
756     case DeclarationName::ObjCZeroArgSelector:
757     case DeclarationName::ObjCOneArgSelector:
758     case DeclarationName::ObjCMultiArgSelector:
759       llvm_unreachable("Can't mangle Objective-C selector names here!");
760
761     case DeclarationName::CXXConstructorName:
762       if (ND == Structor) {
763         assert(StructorType == Ctor_Complete &&
764                "Should never be asked to mangle a ctor other than complete");
765       }
766       Out << "?0";
767       break;
768
769     case DeclarationName::CXXDestructorName:
770       if (ND == Structor)
771         // If the named decl is the C++ destructor we're mangling,
772         // use the type we were given.
773         mangleCXXDtorType(static_cast<CXXDtorType>(StructorType));
774       else
775         // Otherwise, use the base destructor name. This is relevant if a
776         // class with a destructor is declared within a destructor.
777         mangleCXXDtorType(Dtor_Base);
778       break;
779
780     case DeclarationName::CXXConversionFunctionName:
781       // <operator-name> ::= ?B # (cast)
782       // The target type is encoded as the return type.
783       Out << "?B";
784       break;
785
786     case DeclarationName::CXXOperatorName:
787       mangleOperatorName(Name.getCXXOverloadedOperator(), ND->getLocation());
788       break;
789
790     case DeclarationName::CXXLiteralOperatorName: {
791       Out << "?__K";
792       mangleSourceName(Name.getCXXLiteralIdentifier()->getName());
793       break;
794     }
795
796     case DeclarationName::CXXUsingDirective:
797       llvm_unreachable("Can't mangle a using directive name!");
798   }
799 }
800
801 void MicrosoftCXXNameMangler::mangleNestedName(const NamedDecl *ND) {
802   // <postfix> ::= <unqualified-name> [<postfix>]
803   //           ::= <substitution> [<postfix>]
804   if (isLambda(ND))
805     return;
806
807   const DeclContext *DC = ND->getDeclContext();
808
809   while (!DC->isTranslationUnit()) {
810     if (isa<TagDecl>(ND) || isa<VarDecl>(ND)) {
811       unsigned Disc;
812       if (Context.getNextDiscriminator(ND, Disc)) {
813         Out << '?';
814         mangleNumber(Disc);
815         Out << '?';
816       }
817     }
818
819     if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
820       DiagnosticsEngine &Diags = Context.getDiags();
821       unsigned DiagID =
822           Diags.getCustomDiagID(DiagnosticsEngine::Error,
823                                 "cannot mangle a local inside this block yet");
824       Diags.Report(BD->getLocation(), DiagID);
825
826       // FIXME: This is completely, utterly, wrong; see ItaniumMangle
827       // for how this should be done.
828       Out << "__block_invoke" << Context.getBlockId(BD, false);
829       Out << '@';
830       continue;
831     } else if (const ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(DC)) {
832       mangleObjCMethodName(Method);
833     } else if (isa<NamedDecl>(DC)) {
834       ND = cast<NamedDecl>(DC);
835       if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
836         mangle(FD, "?");
837         break;
838       } else
839         mangleUnqualifiedName(ND);
840     }
841     DC = DC->getParent();
842   }
843 }
844
845 void MicrosoftCXXNameMangler::mangleCXXDtorType(CXXDtorType T) {
846   // Microsoft uses the names on the case labels for these dtor variants.  Clang
847   // uses the Itanium terminology internally.  Everything in this ABI delegates
848   // towards the base dtor.
849   switch (T) {
850   // <operator-name> ::= ?1  # destructor
851   case Dtor_Base: Out << "?1"; return;
852   // <operator-name> ::= ?_D # vbase destructor
853   case Dtor_Complete: Out << "?_D"; return;
854   // <operator-name> ::= ?_G # scalar deleting destructor
855   case Dtor_Deleting: Out << "?_G"; return;
856   // <operator-name> ::= ?_E # vector deleting destructor
857   // FIXME: Add a vector deleting dtor type.  It goes in the vtable, so we need
858   // it.
859   }
860   llvm_unreachable("Unsupported dtor type?");
861 }
862
863 void MicrosoftCXXNameMangler::mangleOperatorName(OverloadedOperatorKind OO,
864                                                  SourceLocation Loc) {
865   switch (OO) {
866   //                     ?0 # constructor
867   //                     ?1 # destructor
868   // <operator-name> ::= ?2 # new
869   case OO_New: Out << "?2"; break;
870   // <operator-name> ::= ?3 # delete
871   case OO_Delete: Out << "?3"; break;
872   // <operator-name> ::= ?4 # =
873   case OO_Equal: Out << "?4"; break;
874   // <operator-name> ::= ?5 # >>
875   case OO_GreaterGreater: Out << "?5"; break;
876   // <operator-name> ::= ?6 # <<
877   case OO_LessLess: Out << "?6"; break;
878   // <operator-name> ::= ?7 # !
879   case OO_Exclaim: Out << "?7"; break;
880   // <operator-name> ::= ?8 # ==
881   case OO_EqualEqual: Out << "?8"; break;
882   // <operator-name> ::= ?9 # !=
883   case OO_ExclaimEqual: Out << "?9"; break;
884   // <operator-name> ::= ?A # []
885   case OO_Subscript: Out << "?A"; break;
886   //                     ?B # conversion
887   // <operator-name> ::= ?C # ->
888   case OO_Arrow: Out << "?C"; break;
889   // <operator-name> ::= ?D # *
890   case OO_Star: Out << "?D"; break;
891   // <operator-name> ::= ?E # ++
892   case OO_PlusPlus: Out << "?E"; break;
893   // <operator-name> ::= ?F # --
894   case OO_MinusMinus: Out << "?F"; break;
895   // <operator-name> ::= ?G # -
896   case OO_Minus: Out << "?G"; break;
897   // <operator-name> ::= ?H # +
898   case OO_Plus: Out << "?H"; break;
899   // <operator-name> ::= ?I # &
900   case OO_Amp: Out << "?I"; break;
901   // <operator-name> ::= ?J # ->*
902   case OO_ArrowStar: Out << "?J"; break;
903   // <operator-name> ::= ?K # /
904   case OO_Slash: Out << "?K"; break;
905   // <operator-name> ::= ?L # %
906   case OO_Percent: Out << "?L"; break;
907   // <operator-name> ::= ?M # <
908   case OO_Less: Out << "?M"; break;
909   // <operator-name> ::= ?N # <=
910   case OO_LessEqual: Out << "?N"; break;
911   // <operator-name> ::= ?O # >
912   case OO_Greater: Out << "?O"; break;
913   // <operator-name> ::= ?P # >=
914   case OO_GreaterEqual: Out << "?P"; break;
915   // <operator-name> ::= ?Q # ,
916   case OO_Comma: Out << "?Q"; break;
917   // <operator-name> ::= ?R # ()
918   case OO_Call: Out << "?R"; break;
919   // <operator-name> ::= ?S # ~
920   case OO_Tilde: Out << "?S"; break;
921   // <operator-name> ::= ?T # ^
922   case OO_Caret: Out << "?T"; break;
923   // <operator-name> ::= ?U # |
924   case OO_Pipe: Out << "?U"; break;
925   // <operator-name> ::= ?V # &&
926   case OO_AmpAmp: Out << "?V"; break;
927   // <operator-name> ::= ?W # ||
928   case OO_PipePipe: Out << "?W"; break;
929   // <operator-name> ::= ?X # *=
930   case OO_StarEqual: Out << "?X"; break;
931   // <operator-name> ::= ?Y # +=
932   case OO_PlusEqual: Out << "?Y"; break;
933   // <operator-name> ::= ?Z # -=
934   case OO_MinusEqual: Out << "?Z"; break;
935   // <operator-name> ::= ?_0 # /=
936   case OO_SlashEqual: Out << "?_0"; break;
937   // <operator-name> ::= ?_1 # %=
938   case OO_PercentEqual: Out << "?_1"; break;
939   // <operator-name> ::= ?_2 # >>=
940   case OO_GreaterGreaterEqual: Out << "?_2"; break;
941   // <operator-name> ::= ?_3 # <<=
942   case OO_LessLessEqual: Out << "?_3"; break;
943   // <operator-name> ::= ?_4 # &=
944   case OO_AmpEqual: Out << "?_4"; break;
945   // <operator-name> ::= ?_5 # |=
946   case OO_PipeEqual: Out << "?_5"; break;
947   // <operator-name> ::= ?_6 # ^=
948   case OO_CaretEqual: Out << "?_6"; break;
949   //                     ?_7 # vftable
950   //                     ?_8 # vbtable
951   //                     ?_9 # vcall
952   //                     ?_A # typeof
953   //                     ?_B # local static guard
954   //                     ?_C # string
955   //                     ?_D # vbase destructor
956   //                     ?_E # vector deleting destructor
957   //                     ?_F # default constructor closure
958   //                     ?_G # scalar deleting destructor
959   //                     ?_H # vector constructor iterator
960   //                     ?_I # vector destructor iterator
961   //                     ?_J # vector vbase constructor iterator
962   //                     ?_K # virtual displacement map
963   //                     ?_L # eh vector constructor iterator
964   //                     ?_M # eh vector destructor iterator
965   //                     ?_N # eh vector vbase constructor iterator
966   //                     ?_O # copy constructor closure
967   //                     ?_P<name> # udt returning <name>
968   //                     ?_Q # <unknown>
969   //                     ?_R0 # RTTI Type Descriptor
970   //                     ?_R1 # RTTI Base Class Descriptor at (a,b,c,d)
971   //                     ?_R2 # RTTI Base Class Array
972   //                     ?_R3 # RTTI Class Hierarchy Descriptor
973   //                     ?_R4 # RTTI Complete Object Locator
974   //                     ?_S # local vftable
975   //                     ?_T # local vftable constructor closure
976   // <operator-name> ::= ?_U # new[]
977   case OO_Array_New: Out << "?_U"; break;
978   // <operator-name> ::= ?_V # delete[]
979   case OO_Array_Delete: Out << "?_V"; break;
980
981   case OO_Conditional: {
982     DiagnosticsEngine &Diags = Context.getDiags();
983     unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
984       "cannot mangle this conditional operator yet");
985     Diags.Report(Loc, DiagID);
986     break;
987   }
988
989   case OO_None:
990   case NUM_OVERLOADED_OPERATORS:
991     llvm_unreachable("Not an overloaded operator");
992   }
993 }
994
995 void MicrosoftCXXNameMangler::mangleSourceName(StringRef Name) {
996   // <source name> ::= <identifier> @
997   BackRefMap::iterator Found;
998   if (NameBackReferences.size() < 10) {
999     size_t Size = NameBackReferences.size();
1000     bool Inserted;
1001     std::tie(Found, Inserted) =
1002         NameBackReferences.insert(std::make_pair(Name, Size));
1003     if (Inserted)
1004       Found = NameBackReferences.end();
1005   } else {
1006     Found = NameBackReferences.find(Name);
1007   }
1008
1009   if (Found == NameBackReferences.end()) {
1010     Out << Name << '@';
1011   } else {
1012     Out << Found->second;
1013   }
1014 }
1015
1016 void MicrosoftCXXNameMangler::mangleObjCMethodName(const ObjCMethodDecl *MD) {
1017   Context.mangleObjCMethodName(MD, Out);
1018 }
1019
1020 void MicrosoftCXXNameMangler::mangleTemplateInstantiationName(
1021     const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) {
1022   // <template-name> ::= <unscoped-template-name> <template-args>
1023   //                 ::= <substitution>
1024   // Always start with the unqualified name.
1025
1026   // Templates have their own context for back references.
1027   ArgBackRefMap OuterArgsContext;
1028   BackRefMap OuterTemplateContext;
1029   NameBackReferences.swap(OuterTemplateContext);
1030   TypeBackReferences.swap(OuterArgsContext);
1031
1032   mangleUnscopedTemplateName(TD);
1033   mangleTemplateArgs(TD, TemplateArgs);
1034
1035   // Restore the previous back reference contexts.
1036   NameBackReferences.swap(OuterTemplateContext);
1037   TypeBackReferences.swap(OuterArgsContext);
1038 }
1039
1040 void
1041 MicrosoftCXXNameMangler::mangleUnscopedTemplateName(const TemplateDecl *TD) {
1042   // <unscoped-template-name> ::= ?$ <unqualified-name>
1043   Out << "?$";
1044   mangleUnqualifiedName(TD);
1045 }
1046
1047 void MicrosoftCXXNameMangler::mangleIntegerLiteral(const llvm::APSInt &Value,
1048                                                    bool IsBoolean) {
1049   // <integer-literal> ::= $0 <number>
1050   Out << "$0";
1051   // Make sure booleans are encoded as 0/1.
1052   if (IsBoolean && Value.getBoolValue())
1053     mangleNumber(1);
1054   else
1055     mangleNumber(Value.getSExtValue());
1056 }
1057
1058 void MicrosoftCXXNameMangler::mangleExpression(const Expr *E) {
1059   // See if this is a constant expression.
1060   llvm::APSInt Value;
1061   if (E->isIntegerConstantExpr(Value, Context.getASTContext())) {
1062     mangleIntegerLiteral(Value, E->getType()->isBooleanType());
1063     return;
1064   }
1065
1066   // Look through no-op casts like template parameter substitutions.
1067   E = E->IgnoreParenNoopCasts(Context.getASTContext());
1068
1069   const CXXUuidofExpr *UE = nullptr;
1070   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1071     if (UO->getOpcode() == UO_AddrOf)
1072       UE = dyn_cast<CXXUuidofExpr>(UO->getSubExpr());
1073   } else
1074     UE = dyn_cast<CXXUuidofExpr>(E);
1075
1076   if (UE) {
1077     // This CXXUuidofExpr is mangled as-if it were actually a VarDecl from
1078     // const __s_GUID _GUID_{lower case UUID with underscores}
1079     StringRef Uuid = UE->getUuidAsStringRef(Context.getASTContext());
1080     std::string Name = "_GUID_" + Uuid.lower();
1081     std::replace(Name.begin(), Name.end(), '-', '_');
1082
1083     // If we had to peek through an address-of operator, treat this like we are
1084     // dealing with a pointer type.  Otherwise, treat it like a const reference.
1085     //
1086     // N.B. This matches up with the handling of TemplateArgument::Declaration
1087     // in mangleTemplateArg
1088     if (UE == E)
1089       Out << "$E?";
1090     else
1091       Out << "$1?";
1092     Out << Name << "@@3U__s_GUID@@B";
1093     return;
1094   }
1095
1096   // As bad as this diagnostic is, it's better than crashing.
1097   DiagnosticsEngine &Diags = Context.getDiags();
1098   unsigned DiagID = Diags.getCustomDiagID(
1099       DiagnosticsEngine::Error, "cannot yet mangle expression type %0");
1100   Diags.Report(E->getExprLoc(), DiagID) << E->getStmtClassName()
1101                                         << E->getSourceRange();
1102 }
1103
1104 void MicrosoftCXXNameMangler::mangleTemplateArgs(
1105     const TemplateDecl *TD, const TemplateArgumentList &TemplateArgs) {
1106   // <template-args> ::= <template-arg>+
1107   for (const TemplateArgument &TA : TemplateArgs.asArray())
1108     mangleTemplateArg(TD, TA);
1109 }
1110
1111 void MicrosoftCXXNameMangler::mangleTemplateArg(const TemplateDecl *TD,
1112                                                 const TemplateArgument &TA) {
1113   // <template-arg> ::= <type>
1114   //                ::= <integer-literal>
1115   //                ::= <member-data-pointer>
1116   //                ::= <member-function-pointer>
1117   //                ::= $E? <name> <type-encoding>
1118   //                ::= $1? <name> <type-encoding>
1119   //                ::= $0A@
1120   //                ::= <template-args>
1121
1122   switch (TA.getKind()) {
1123   case TemplateArgument::Null:
1124     llvm_unreachable("Can't mangle null template arguments!");
1125   case TemplateArgument::TemplateExpansion:
1126     llvm_unreachable("Can't mangle template expansion arguments!");
1127   case TemplateArgument::Type: {
1128     QualType T = TA.getAsType();
1129     mangleType(T, SourceRange(), QMM_Escape);
1130     break;
1131   }
1132   case TemplateArgument::Declaration: {
1133     const NamedDecl *ND = cast<NamedDecl>(TA.getAsDecl());
1134     if (isa<FieldDecl>(ND) || isa<IndirectFieldDecl>(ND)) {
1135       mangleMemberDataPointer(
1136           cast<CXXRecordDecl>(ND->getDeclContext())->getMostRecentDecl(),
1137           cast<ValueDecl>(ND));
1138     } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
1139       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
1140       if (MD && MD->isInstance())
1141         mangleMemberFunctionPointer(MD->getParent()->getMostRecentDecl(), MD);
1142       else
1143         mangle(FD, "$1?");
1144     } else {
1145       mangle(ND, TA.isDeclForReferenceParam() ? "$E?" : "$1?");
1146     }
1147     break;
1148   }
1149   case TemplateArgument::Integral:
1150     mangleIntegerLiteral(TA.getAsIntegral(),
1151                          TA.getIntegralType()->isBooleanType());
1152     break;
1153   case TemplateArgument::NullPtr: {
1154     QualType T = TA.getNullPtrType();
1155     if (const MemberPointerType *MPT = T->getAs<MemberPointerType>()) {
1156       const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
1157       if (MPT->isMemberFunctionPointerType() && isa<ClassTemplateDecl>(TD)) {
1158         mangleMemberFunctionPointer(RD, nullptr);
1159         return;
1160       }
1161       if (MPT->isMemberDataPointer()) {
1162         mangleMemberDataPointer(RD, nullptr);
1163         return;
1164       }
1165     }
1166     Out << "$0A@";
1167     break;
1168   }
1169   case TemplateArgument::Expression:
1170     mangleExpression(TA.getAsExpr());
1171     break;
1172   case TemplateArgument::Pack: {
1173     ArrayRef<TemplateArgument> TemplateArgs = TA.getPackAsArray();
1174     if (TemplateArgs.empty()) {
1175       Out << "$S";
1176     } else {
1177       for (const TemplateArgument &PA : TemplateArgs)
1178         mangleTemplateArg(TD, PA);
1179     }
1180     break;
1181   }
1182   case TemplateArgument::Template:
1183     mangleType(cast<TagDecl>(
1184         TA.getAsTemplate().getAsTemplateDecl()->getTemplatedDecl()));
1185     break;
1186   }
1187 }
1188
1189 void MicrosoftCXXNameMangler::mangleQualifiers(Qualifiers Quals,
1190                                                bool IsMember) {
1191   // <cvr-qualifiers> ::= [E] [F] [I] <base-cvr-qualifiers>
1192   // 'E' means __ptr64 (32-bit only); 'F' means __unaligned (32/64-bit only);
1193   // 'I' means __restrict (32/64-bit).
1194   // Note that the MSVC __restrict keyword isn't the same as the C99 restrict
1195   // keyword!
1196   // <base-cvr-qualifiers> ::= A  # near
1197   //                       ::= B  # near const
1198   //                       ::= C  # near volatile
1199   //                       ::= D  # near const volatile
1200   //                       ::= E  # far (16-bit)
1201   //                       ::= F  # far const (16-bit)
1202   //                       ::= G  # far volatile (16-bit)
1203   //                       ::= H  # far const volatile (16-bit)
1204   //                       ::= I  # huge (16-bit)
1205   //                       ::= J  # huge const (16-bit)
1206   //                       ::= K  # huge volatile (16-bit)
1207   //                       ::= L  # huge const volatile (16-bit)
1208   //                       ::= M <basis> # based
1209   //                       ::= N <basis> # based const
1210   //                       ::= O <basis> # based volatile
1211   //                       ::= P <basis> # based const volatile
1212   //                       ::= Q  # near member
1213   //                       ::= R  # near const member
1214   //                       ::= S  # near volatile member
1215   //                       ::= T  # near const volatile member
1216   //                       ::= U  # far member (16-bit)
1217   //                       ::= V  # far const member (16-bit)
1218   //                       ::= W  # far volatile member (16-bit)
1219   //                       ::= X  # far const volatile member (16-bit)
1220   //                       ::= Y  # huge member (16-bit)
1221   //                       ::= Z  # huge const member (16-bit)
1222   //                       ::= 0  # huge volatile member (16-bit)
1223   //                       ::= 1  # huge const volatile member (16-bit)
1224   //                       ::= 2 <basis> # based member
1225   //                       ::= 3 <basis> # based const member
1226   //                       ::= 4 <basis> # based volatile member
1227   //                       ::= 5 <basis> # based const volatile member
1228   //                       ::= 6  # near function (pointers only)
1229   //                       ::= 7  # far function (pointers only)
1230   //                       ::= 8  # near method (pointers only)
1231   //                       ::= 9  # far method (pointers only)
1232   //                       ::= _A <basis> # based function (pointers only)
1233   //                       ::= _B <basis> # based function (far?) (pointers only)
1234   //                       ::= _C <basis> # based method (pointers only)
1235   //                       ::= _D <basis> # based method (far?) (pointers only)
1236   //                       ::= _E # block (Clang)
1237   // <basis> ::= 0 # __based(void)
1238   //         ::= 1 # __based(segment)?
1239   //         ::= 2 <name> # __based(name)
1240   //         ::= 3 # ?
1241   //         ::= 4 # ?
1242   //         ::= 5 # not really based
1243   bool HasConst = Quals.hasConst(),
1244        HasVolatile = Quals.hasVolatile();
1245
1246   if (!IsMember) {
1247     if (HasConst && HasVolatile) {
1248       Out << 'D';
1249     } else if (HasVolatile) {
1250       Out << 'C';
1251     } else if (HasConst) {
1252       Out << 'B';
1253     } else {
1254       Out << 'A';
1255     }
1256   } else {
1257     if (HasConst && HasVolatile) {
1258       Out << 'T';
1259     } else if (HasVolatile) {
1260       Out << 'S';
1261     } else if (HasConst) {
1262       Out << 'R';
1263     } else {
1264       Out << 'Q';
1265     }
1266   }
1267
1268   // FIXME: For now, just drop all extension qualifiers on the floor.
1269 }
1270
1271 void
1272 MicrosoftCXXNameMangler::mangleRefQualifier(RefQualifierKind RefQualifier) {
1273   // <ref-qualifier> ::= G                # lvalue reference
1274   //                 ::= H                # rvalue-reference
1275   switch (RefQualifier) {
1276   case RQ_None:
1277     break;
1278
1279   case RQ_LValue:
1280     Out << 'G';
1281     break;
1282
1283   case RQ_RValue:
1284     Out << 'H';
1285     break;
1286   }
1287 }
1288
1289 void
1290 MicrosoftCXXNameMangler::manglePointerExtQualifiers(Qualifiers Quals,
1291                                                     const Type *PointeeType) {
1292   bool HasRestrict = Quals.hasRestrict();
1293   if (PointersAre64Bit && (!PointeeType || !PointeeType->isFunctionType()))
1294     Out << 'E';
1295
1296   if (HasRestrict)
1297     Out << 'I';
1298 }
1299
1300 void MicrosoftCXXNameMangler::manglePointerCVQualifiers(Qualifiers Quals) {
1301   // <pointer-cv-qualifiers> ::= P  # no qualifiers
1302   //                         ::= Q  # const
1303   //                         ::= R  # volatile
1304   //                         ::= S  # const volatile
1305   bool HasConst = Quals.hasConst(),
1306        HasVolatile = Quals.hasVolatile();
1307
1308   if (HasConst && HasVolatile) {
1309     Out << 'S';
1310   } else if (HasVolatile) {
1311     Out << 'R';
1312   } else if (HasConst) {
1313     Out << 'Q';
1314   } else {
1315     Out << 'P';
1316   }
1317 }
1318
1319 void MicrosoftCXXNameMangler::mangleArgumentType(QualType T,
1320                                                  SourceRange Range) {
1321   // MSVC will backreference two canonically equivalent types that have slightly
1322   // different manglings when mangled alone.
1323
1324   // Decayed types do not match up with non-decayed versions of the same type.
1325   //
1326   // e.g.
1327   // void (*x)(void) will not form a backreference with void x(void)
1328   void *TypePtr;
1329   if (const DecayedType *DT = T->getAs<DecayedType>()) {
1330     TypePtr = DT->getOriginalType().getCanonicalType().getAsOpaquePtr();
1331     // If the original parameter was textually written as an array,
1332     // instead treat the decayed parameter like it's const.
1333     //
1334     // e.g.
1335     // int [] -> int * const
1336     if (DT->getOriginalType()->isArrayType())
1337       T = T.withConst();
1338   } else
1339     TypePtr = T.getCanonicalType().getAsOpaquePtr();
1340
1341   ArgBackRefMap::iterator Found = TypeBackReferences.find(TypePtr);
1342
1343   if (Found == TypeBackReferences.end()) {
1344     size_t OutSizeBefore = Out.GetNumBytesInBuffer();
1345
1346     mangleType(T, Range, QMM_Drop);
1347
1348     // See if it's worth creating a back reference.
1349     // Only types longer than 1 character are considered
1350     // and only 10 back references slots are available:
1351     bool LongerThanOneChar = (Out.GetNumBytesInBuffer() - OutSizeBefore > 1);
1352     if (LongerThanOneChar && TypeBackReferences.size() < 10) {
1353       size_t Size = TypeBackReferences.size();
1354       TypeBackReferences[TypePtr] = Size;
1355     }
1356   } else {
1357     Out << Found->second;
1358   }
1359 }
1360
1361 void MicrosoftCXXNameMangler::mangleType(QualType T, SourceRange Range,
1362                                          QualifierMangleMode QMM) {
1363   // Don't use the canonical types.  MSVC includes things like 'const' on
1364   // pointer arguments to function pointers that canonicalization strips away.
1365   T = T.getDesugaredType(getASTContext());
1366   Qualifiers Quals = T.getLocalQualifiers();
1367   if (const ArrayType *AT = getASTContext().getAsArrayType(T)) {
1368     // If there were any Quals, getAsArrayType() pushed them onto the array
1369     // element type.
1370     if (QMM == QMM_Mangle)
1371       Out << 'A';
1372     else if (QMM == QMM_Escape || QMM == QMM_Result)
1373       Out << "$$B";
1374     mangleArrayType(AT);
1375     return;
1376   }
1377
1378   bool IsPointer = T->isAnyPointerType() || T->isMemberPointerType() ||
1379                    T->isBlockPointerType();
1380
1381   switch (QMM) {
1382   case QMM_Drop:
1383     break;
1384   case QMM_Mangle:
1385     if (const FunctionType *FT = dyn_cast<FunctionType>(T)) {
1386       Out << '6';
1387       mangleFunctionType(FT);
1388       return;
1389     }
1390     mangleQualifiers(Quals, false);
1391     break;
1392   case QMM_Escape:
1393     if (!IsPointer && Quals) {
1394       Out << "$$C";
1395       mangleQualifiers(Quals, false);
1396     }
1397     break;
1398   case QMM_Result:
1399     if ((!IsPointer && Quals) || isa<TagType>(T)) {
1400       Out << '?';
1401       mangleQualifiers(Quals, false);
1402     }
1403     break;
1404   }
1405
1406   // We have to mangle these now, while we still have enough information.
1407   if (IsPointer) {
1408     manglePointerCVQualifiers(Quals);
1409     manglePointerExtQualifiers(Quals, T->getPointeeType().getTypePtr());
1410   }
1411   const Type *ty = T.getTypePtr();
1412
1413   switch (ty->getTypeClass()) {
1414 #define ABSTRACT_TYPE(CLASS, PARENT)
1415 #define NON_CANONICAL_TYPE(CLASS, PARENT) \
1416   case Type::CLASS: \
1417     llvm_unreachable("can't mangle non-canonical type " #CLASS "Type"); \
1418     return;
1419 #define TYPE(CLASS, PARENT) \
1420   case Type::CLASS: \
1421     mangleType(cast<CLASS##Type>(ty), Range); \
1422     break;
1423 #include "clang/AST/TypeNodes.def"
1424 #undef ABSTRACT_TYPE
1425 #undef NON_CANONICAL_TYPE
1426 #undef TYPE
1427   }
1428 }
1429
1430 void MicrosoftCXXNameMangler::mangleType(const BuiltinType *T,
1431                                          SourceRange Range) {
1432   //  <type>         ::= <builtin-type>
1433   //  <builtin-type> ::= X  # void
1434   //                 ::= C  # signed char
1435   //                 ::= D  # char
1436   //                 ::= E  # unsigned char
1437   //                 ::= F  # short
1438   //                 ::= G  # unsigned short (or wchar_t if it's not a builtin)
1439   //                 ::= H  # int
1440   //                 ::= I  # unsigned int
1441   //                 ::= J  # long
1442   //                 ::= K  # unsigned long
1443   //                     L  # <none>
1444   //                 ::= M  # float
1445   //                 ::= N  # double
1446   //                 ::= O  # long double (__float80 is mangled differently)
1447   //                 ::= _J # long long, __int64
1448   //                 ::= _K # unsigned long long, __int64
1449   //                 ::= _L # __int128
1450   //                 ::= _M # unsigned __int128
1451   //                 ::= _N # bool
1452   //                     _O # <array in parameter>
1453   //                 ::= _T # __float80 (Intel)
1454   //                 ::= _W # wchar_t
1455   //                 ::= _Z # __float80 (Digital Mars)
1456   switch (T->getKind()) {
1457   case BuiltinType::Void: Out << 'X'; break;
1458   case BuiltinType::SChar: Out << 'C'; break;
1459   case BuiltinType::Char_U: case BuiltinType::Char_S: Out << 'D'; break;
1460   case BuiltinType::UChar: Out << 'E'; break;
1461   case BuiltinType::Short: Out << 'F'; break;
1462   case BuiltinType::UShort: Out << 'G'; break;
1463   case BuiltinType::Int: Out << 'H'; break;
1464   case BuiltinType::UInt: Out << 'I'; break;
1465   case BuiltinType::Long: Out << 'J'; break;
1466   case BuiltinType::ULong: Out << 'K'; break;
1467   case BuiltinType::Float: Out << 'M'; break;
1468   case BuiltinType::Double: Out << 'N'; break;
1469   // TODO: Determine size and mangle accordingly
1470   case BuiltinType::LongDouble: Out << 'O'; break;
1471   case BuiltinType::LongLong: Out << "_J"; break;
1472   case BuiltinType::ULongLong: Out << "_K"; break;
1473   case BuiltinType::Int128: Out << "_L"; break;
1474   case BuiltinType::UInt128: Out << "_M"; break;
1475   case BuiltinType::Bool: Out << "_N"; break;
1476   case BuiltinType::WChar_S:
1477   case BuiltinType::WChar_U: Out << "_W"; break;
1478
1479 #define BUILTIN_TYPE(Id, SingletonId)
1480 #define PLACEHOLDER_TYPE(Id, SingletonId) \
1481   case BuiltinType::Id:
1482 #include "clang/AST/BuiltinTypes.def"
1483   case BuiltinType::Dependent:
1484     llvm_unreachable("placeholder types shouldn't get to name mangling");
1485
1486   case BuiltinType::ObjCId: Out << "PAUobjc_object@@"; break;
1487   case BuiltinType::ObjCClass: Out << "PAUobjc_class@@"; break;
1488   case BuiltinType::ObjCSel: Out << "PAUobjc_selector@@"; break;
1489
1490   case BuiltinType::OCLImage1d: Out << "PAUocl_image1d@@"; break;
1491   case BuiltinType::OCLImage1dArray: Out << "PAUocl_image1darray@@"; break;
1492   case BuiltinType::OCLImage1dBuffer: Out << "PAUocl_image1dbuffer@@"; break;
1493   case BuiltinType::OCLImage2d: Out << "PAUocl_image2d@@"; break;
1494   case BuiltinType::OCLImage2dArray: Out << "PAUocl_image2darray@@"; break;
1495   case BuiltinType::OCLImage3d: Out << "PAUocl_image3d@@"; break;
1496   case BuiltinType::OCLSampler: Out << "PAUocl_sampler@@"; break;
1497   case BuiltinType::OCLEvent: Out << "PAUocl_event@@"; break;
1498
1499   case BuiltinType::NullPtr: Out << "$$T"; break;
1500
1501   case BuiltinType::Char16:
1502   case BuiltinType::Char32:
1503   case BuiltinType::Half: {
1504     DiagnosticsEngine &Diags = Context.getDiags();
1505     unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1506       "cannot mangle this built-in %0 type yet");
1507     Diags.Report(Range.getBegin(), DiagID)
1508       << T->getName(Context.getASTContext().getPrintingPolicy())
1509       << Range;
1510     break;
1511   }
1512   }
1513 }
1514
1515 // <type>          ::= <function-type>
1516 void MicrosoftCXXNameMangler::mangleType(const FunctionProtoType *T,
1517                                          SourceRange) {
1518   // Structors only appear in decls, so at this point we know it's not a
1519   // structor type.
1520   // FIXME: This may not be lambda-friendly.
1521   Out << "$$A6";
1522   mangleFunctionType(T);
1523 }
1524 void MicrosoftCXXNameMangler::mangleType(const FunctionNoProtoType *T,
1525                                          SourceRange) {
1526   llvm_unreachable("Can't mangle K&R function prototypes");
1527 }
1528
1529 void MicrosoftCXXNameMangler::mangleFunctionType(const FunctionType *T,
1530                                                  const FunctionDecl *D,
1531                                                  bool ForceInstMethod) {
1532   // <function-type> ::= <this-cvr-qualifiers> <calling-convention>
1533   //                     <return-type> <argument-list> <throw-spec>
1534   const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
1535
1536   SourceRange Range;
1537   if (D) Range = D->getSourceRange();
1538
1539   bool IsStructor = false, IsInstMethod = ForceInstMethod;
1540   if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(D)) {
1541     if (MD->isInstance())
1542       IsInstMethod = true;
1543     if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))
1544       IsStructor = true;
1545   }
1546
1547   // If this is a C++ instance method, mangle the CVR qualifiers for the
1548   // this pointer.
1549   if (IsInstMethod) {
1550     Qualifiers Quals = Qualifiers::fromCVRMask(Proto->getTypeQuals());
1551     manglePointerExtQualifiers(Quals, nullptr);
1552     mangleRefQualifier(Proto->getRefQualifier());
1553     mangleQualifiers(Quals, false);
1554   }
1555
1556   mangleCallingConvention(T);
1557
1558   // <return-type> ::= <type>
1559   //               ::= @ # structors (they have no declared return type)
1560   if (IsStructor) {
1561     if (isa<CXXDestructorDecl>(D) && D == Structor &&
1562         StructorType == Dtor_Deleting) {
1563       // The scalar deleting destructor takes an extra int argument.
1564       // However, the FunctionType generated has 0 arguments.
1565       // FIXME: This is a temporary hack.
1566       // Maybe should fix the FunctionType creation instead?
1567       Out << (PointersAre64Bit ? "PEAXI@Z" : "PAXI@Z");
1568       return;
1569     }
1570     Out << '@';
1571   } else {
1572     QualType ResultType = Proto->getReturnType();
1573     if (const auto *AT =
1574             dyn_cast_or_null<AutoType>(ResultType->getContainedAutoType())) {
1575       Out << '?';
1576       mangleQualifiers(ResultType.getLocalQualifiers(), /*IsMember=*/false);
1577       Out << '?';
1578       mangleSourceName(AT->isDecltypeAuto() ? "<decltype-auto>" : "<auto>");
1579       Out << '@';
1580     } else {
1581       if (ResultType->isVoidType())
1582         ResultType = ResultType.getUnqualifiedType();
1583       mangleType(ResultType, Range, QMM_Result);
1584     }
1585   }
1586
1587   // <argument-list> ::= X # void
1588   //                 ::= <type>+ @
1589   //                 ::= <type>* Z # varargs
1590   if (Proto->getNumParams() == 0 && !Proto->isVariadic()) {
1591     Out << 'X';
1592   } else {
1593     // Happens for function pointer type arguments for example.
1594     for (const QualType Arg : Proto->param_types())
1595       mangleArgumentType(Arg, Range);
1596     // <builtin-type>      ::= Z  # ellipsis
1597     if (Proto->isVariadic())
1598       Out << 'Z';
1599     else
1600       Out << '@';
1601   }
1602
1603   mangleThrowSpecification(Proto);
1604 }
1605
1606 void MicrosoftCXXNameMangler::mangleFunctionClass(const FunctionDecl *FD) {
1607   // <function-class>  ::= <member-function> E? # E designates a 64-bit 'this'
1608   //                                            # pointer. in 64-bit mode *all*
1609   //                                            # 'this' pointers are 64-bit.
1610   //                   ::= <global-function>
1611   // <member-function> ::= A # private: near
1612   //                   ::= B # private: far
1613   //                   ::= C # private: static near
1614   //                   ::= D # private: static far
1615   //                   ::= E # private: virtual near
1616   //                   ::= F # private: virtual far
1617   //                   ::= I # protected: near
1618   //                   ::= J # protected: far
1619   //                   ::= K # protected: static near
1620   //                   ::= L # protected: static far
1621   //                   ::= M # protected: virtual near
1622   //                   ::= N # protected: virtual far
1623   //                   ::= Q # public: near
1624   //                   ::= R # public: far
1625   //                   ::= S # public: static near
1626   //                   ::= T # public: static far
1627   //                   ::= U # public: virtual near
1628   //                   ::= V # public: virtual far
1629   // <global-function> ::= Y # global near
1630   //                   ::= Z # global far
1631   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1632     switch (MD->getAccess()) {
1633       case AS_none:
1634         llvm_unreachable("Unsupported access specifier");
1635       case AS_private:
1636         if (MD->isStatic())
1637           Out << 'C';
1638         else if (MD->isVirtual())
1639           Out << 'E';
1640         else
1641           Out << 'A';
1642         break;
1643       case AS_protected:
1644         if (MD->isStatic())
1645           Out << 'K';
1646         else if (MD->isVirtual())
1647           Out << 'M';
1648         else
1649           Out << 'I';
1650         break;
1651       case AS_public:
1652         if (MD->isStatic())
1653           Out << 'S';
1654         else if (MD->isVirtual())
1655           Out << 'U';
1656         else
1657           Out << 'Q';
1658     }
1659   } else
1660     Out << 'Y';
1661 }
1662 void MicrosoftCXXNameMangler::mangleCallingConvention(const FunctionType *T) {
1663   // <calling-convention> ::= A # __cdecl
1664   //                      ::= B # __export __cdecl
1665   //                      ::= C # __pascal
1666   //                      ::= D # __export __pascal
1667   //                      ::= E # __thiscall
1668   //                      ::= F # __export __thiscall
1669   //                      ::= G # __stdcall
1670   //                      ::= H # __export __stdcall
1671   //                      ::= I # __fastcall
1672   //                      ::= J # __export __fastcall
1673   // The 'export' calling conventions are from a bygone era
1674   // (*cough*Win16*cough*) when functions were declared for export with
1675   // that keyword. (It didn't actually export them, it just made them so
1676   // that they could be in a DLL and somebody from another module could call
1677   // them.)
1678   CallingConv CC = T->getCallConv();
1679   switch (CC) {
1680     default:
1681       llvm_unreachable("Unsupported CC for mangling");
1682     case CC_X86_64Win64:
1683     case CC_X86_64SysV:
1684     case CC_C: Out << 'A'; break;
1685     case CC_X86Pascal: Out << 'C'; break;
1686     case CC_X86ThisCall: Out << 'E'; break;
1687     case CC_X86StdCall: Out << 'G'; break;
1688     case CC_X86FastCall: Out << 'I'; break;
1689   }
1690 }
1691 void MicrosoftCXXNameMangler::mangleThrowSpecification(
1692                                                 const FunctionProtoType *FT) {
1693   // <throw-spec> ::= Z # throw(...) (default)
1694   //              ::= @ # throw() or __declspec/__attribute__((nothrow))
1695   //              ::= <type>+
1696   // NOTE: Since the Microsoft compiler ignores throw specifications, they are
1697   // all actually mangled as 'Z'. (They're ignored because their associated
1698   // functionality isn't implemented, and probably never will be.)
1699   Out << 'Z';
1700 }
1701
1702 void MicrosoftCXXNameMangler::mangleType(const UnresolvedUsingType *T,
1703                                          SourceRange Range) {
1704   // Probably should be mangled as a template instantiation; need to see what
1705   // VC does first.
1706   DiagnosticsEngine &Diags = Context.getDiags();
1707   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1708     "cannot mangle this unresolved dependent type yet");
1709   Diags.Report(Range.getBegin(), DiagID)
1710     << Range;
1711 }
1712
1713 // <type>        ::= <union-type> | <struct-type> | <class-type> | <enum-type>
1714 // <union-type>  ::= T <name>
1715 // <struct-type> ::= U <name>
1716 // <class-type>  ::= V <name>
1717 // <enum-type>   ::= W4 <name>
1718 void MicrosoftCXXNameMangler::mangleType(const EnumType *T, SourceRange) {
1719   mangleType(cast<TagType>(T)->getDecl());
1720 }
1721 void MicrosoftCXXNameMangler::mangleType(const RecordType *T, SourceRange) {
1722   mangleType(cast<TagType>(T)->getDecl());
1723 }
1724 void MicrosoftCXXNameMangler::mangleType(const TagDecl *TD) {
1725   switch (TD->getTagKind()) {
1726     case TTK_Union:
1727       Out << 'T';
1728       break;
1729     case TTK_Struct:
1730     case TTK_Interface:
1731       Out << 'U';
1732       break;
1733     case TTK_Class:
1734       Out << 'V';
1735       break;
1736     case TTK_Enum:
1737       Out << "W4";
1738       break;
1739   }
1740   mangleName(TD);
1741 }
1742
1743 // <type>       ::= <array-type>
1744 // <array-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
1745 //                  [Y <dimension-count> <dimension>+]
1746 //                  <element-type> # as global, E is never required
1747 // It's supposed to be the other way around, but for some strange reason, it
1748 // isn't. Today this behavior is retained for the sole purpose of backwards
1749 // compatibility.
1750 void MicrosoftCXXNameMangler::mangleDecayedArrayType(const ArrayType *T) {
1751   // This isn't a recursive mangling, so now we have to do it all in this
1752   // one call.
1753   manglePointerCVQualifiers(T->getElementType().getQualifiers());
1754   mangleType(T->getElementType(), SourceRange());
1755 }
1756 void MicrosoftCXXNameMangler::mangleType(const ConstantArrayType *T,
1757                                          SourceRange) {
1758   llvm_unreachable("Should have been special cased");
1759 }
1760 void MicrosoftCXXNameMangler::mangleType(const VariableArrayType *T,
1761                                          SourceRange) {
1762   llvm_unreachable("Should have been special cased");
1763 }
1764 void MicrosoftCXXNameMangler::mangleType(const DependentSizedArrayType *T,
1765                                          SourceRange) {
1766   llvm_unreachable("Should have been special cased");
1767 }
1768 void MicrosoftCXXNameMangler::mangleType(const IncompleteArrayType *T,
1769                                          SourceRange) {
1770   llvm_unreachable("Should have been special cased");
1771 }
1772 void MicrosoftCXXNameMangler::mangleArrayType(const ArrayType *T) {
1773   QualType ElementTy(T, 0);
1774   SmallVector<llvm::APInt, 3> Dimensions;
1775   for (;;) {
1776     if (const ConstantArrayType *CAT =
1777             getASTContext().getAsConstantArrayType(ElementTy)) {
1778       Dimensions.push_back(CAT->getSize());
1779       ElementTy = CAT->getElementType();
1780     } else if (ElementTy->isVariableArrayType()) {
1781       const VariableArrayType *VAT =
1782         getASTContext().getAsVariableArrayType(ElementTy);
1783       DiagnosticsEngine &Diags = Context.getDiags();
1784       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1785         "cannot mangle this variable-length array yet");
1786       Diags.Report(VAT->getSizeExpr()->getExprLoc(), DiagID)
1787         << VAT->getBracketsRange();
1788       return;
1789     } else if (ElementTy->isDependentSizedArrayType()) {
1790       // The dependent expression has to be folded into a constant (TODO).
1791       const DependentSizedArrayType *DSAT =
1792         getASTContext().getAsDependentSizedArrayType(ElementTy);
1793       DiagnosticsEngine &Diags = Context.getDiags();
1794       unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1795         "cannot mangle this dependent-length array yet");
1796       Diags.Report(DSAT->getSizeExpr()->getExprLoc(), DiagID)
1797         << DSAT->getBracketsRange();
1798       return;
1799     } else if (const IncompleteArrayType *IAT =
1800                    getASTContext().getAsIncompleteArrayType(ElementTy)) {
1801       Dimensions.push_back(llvm::APInt(32, 0));
1802       ElementTy = IAT->getElementType();
1803     }
1804     else break;
1805   }
1806   Out << 'Y';
1807   // <dimension-count> ::= <number> # number of extra dimensions
1808   mangleNumber(Dimensions.size());
1809   for (const llvm::APInt &Dimension : Dimensions)
1810     mangleNumber(Dimension.getLimitedValue());
1811   mangleType(ElementTy, SourceRange(), QMM_Escape);
1812 }
1813
1814 // <type>                   ::= <pointer-to-member-type>
1815 // <pointer-to-member-type> ::= <pointer-cvr-qualifiers> <cvr-qualifiers>
1816 //                                                          <class name> <type>
1817 void MicrosoftCXXNameMangler::mangleType(const MemberPointerType *T,
1818                                          SourceRange Range) {
1819   QualType PointeeType = T->getPointeeType();
1820   if (const FunctionProtoType *FPT = PointeeType->getAs<FunctionProtoType>()) {
1821     Out << '8';
1822     mangleName(T->getClass()->castAs<RecordType>()->getDecl());
1823     mangleFunctionType(FPT, nullptr, true);
1824   } else {
1825     mangleQualifiers(PointeeType.getQualifiers(), true);
1826     mangleName(T->getClass()->castAs<RecordType>()->getDecl());
1827     mangleType(PointeeType, Range, QMM_Drop);
1828   }
1829 }
1830
1831 void MicrosoftCXXNameMangler::mangleType(const TemplateTypeParmType *T,
1832                                          SourceRange Range) {
1833   DiagnosticsEngine &Diags = Context.getDiags();
1834   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1835     "cannot mangle this template type parameter type yet");
1836   Diags.Report(Range.getBegin(), DiagID)
1837     << Range;
1838 }
1839
1840 void MicrosoftCXXNameMangler::mangleType(
1841                                        const SubstTemplateTypeParmPackType *T,
1842                                        SourceRange Range) {
1843   DiagnosticsEngine &Diags = Context.getDiags();
1844   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1845     "cannot mangle this substituted parameter pack yet");
1846   Diags.Report(Range.getBegin(), DiagID)
1847     << Range;
1848 }
1849
1850 // <type> ::= <pointer-type>
1851 // <pointer-type> ::= E? <pointer-cvr-qualifiers> <cvr-qualifiers> <type>
1852 //                       # the E is required for 64-bit non-static pointers
1853 void MicrosoftCXXNameMangler::mangleType(const PointerType *T,
1854                                          SourceRange Range) {
1855   QualType PointeeTy = T->getPointeeType();
1856   mangleType(PointeeTy, Range);
1857 }
1858 void MicrosoftCXXNameMangler::mangleType(const ObjCObjectPointerType *T,
1859                                          SourceRange Range) {
1860   // Object pointers never have qualifiers.
1861   Out << 'A';
1862   manglePointerExtQualifiers(Qualifiers(), T->getPointeeType().getTypePtr());
1863   mangleType(T->getPointeeType(), Range);
1864 }
1865
1866 // <type> ::= <reference-type>
1867 // <reference-type> ::= A E? <cvr-qualifiers> <type>
1868 //                 # the E is required for 64-bit non-static lvalue references
1869 void MicrosoftCXXNameMangler::mangleType(const LValueReferenceType *T,
1870                                          SourceRange Range) {
1871   Out << 'A';
1872   manglePointerExtQualifiers(Qualifiers(), T->getPointeeType().getTypePtr());
1873   mangleType(T->getPointeeType(), Range);
1874 }
1875
1876 // <type> ::= <r-value-reference-type>
1877 // <r-value-reference-type> ::= $$Q E? <cvr-qualifiers> <type>
1878 //                 # the E is required for 64-bit non-static rvalue references
1879 void MicrosoftCXXNameMangler::mangleType(const RValueReferenceType *T,
1880                                          SourceRange Range) {
1881   Out << "$$Q";
1882   manglePointerExtQualifiers(Qualifiers(), T->getPointeeType().getTypePtr());
1883   mangleType(T->getPointeeType(), Range);
1884 }
1885
1886 void MicrosoftCXXNameMangler::mangleType(const ComplexType *T,
1887                                          SourceRange Range) {
1888   DiagnosticsEngine &Diags = Context.getDiags();
1889   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1890     "cannot mangle this complex number type yet");
1891   Diags.Report(Range.getBegin(), DiagID)
1892     << Range;
1893 }
1894
1895 void MicrosoftCXXNameMangler::mangleType(const VectorType *T,
1896                                          SourceRange Range) {
1897   const BuiltinType *ET = T->getElementType()->getAs<BuiltinType>();
1898   assert(ET && "vectors with non-builtin elements are unsupported");
1899   uint64_t Width = getASTContext().getTypeSize(T);
1900   // Pattern match exactly the typedefs in our intrinsic headers.  Anything that
1901   // doesn't match the Intel types uses a custom mangling below.
1902   bool IntelVector = true;
1903   if (Width == 64 && ET->getKind() == BuiltinType::LongLong) {
1904     Out << "T__m64";
1905   } else if (Width == 128 || Width == 256) {
1906     if (ET->getKind() == BuiltinType::Float)
1907       Out << "T__m" << Width;
1908     else if (ET->getKind() == BuiltinType::LongLong)
1909       Out << "T__m" << Width << 'i';
1910     else if (ET->getKind() == BuiltinType::Double)
1911       Out << "U__m" << Width << 'd';
1912     else
1913       IntelVector = false;
1914   } else {
1915     IntelVector = false;
1916   }
1917
1918   if (!IntelVector) {
1919     // The MS ABI doesn't have a special mangling for vector types, so we define
1920     // our own mangling to handle uses of __vector_size__ on user-specified
1921     // types, and for extensions like __v4sf.
1922     Out << "T__clang_vec" << T->getNumElements() << '_';
1923     mangleType(ET, Range);
1924   }
1925
1926   Out << "@@";
1927 }
1928
1929 void MicrosoftCXXNameMangler::mangleType(const ExtVectorType *T,
1930                                          SourceRange Range) {
1931   DiagnosticsEngine &Diags = Context.getDiags();
1932   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1933     "cannot mangle this extended vector type yet");
1934   Diags.Report(Range.getBegin(), DiagID)
1935     << Range;
1936 }
1937 void MicrosoftCXXNameMangler::mangleType(const DependentSizedExtVectorType *T,
1938                                          SourceRange Range) {
1939   DiagnosticsEngine &Diags = Context.getDiags();
1940   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1941     "cannot mangle this dependent-sized extended vector type yet");
1942   Diags.Report(Range.getBegin(), DiagID)
1943     << Range;
1944 }
1945
1946 void MicrosoftCXXNameMangler::mangleType(const ObjCInterfaceType *T,
1947                                          SourceRange) {
1948   // ObjC interfaces have structs underlying them.
1949   Out << 'U';
1950   mangleName(T->getDecl());
1951 }
1952
1953 void MicrosoftCXXNameMangler::mangleType(const ObjCObjectType *T,
1954                                          SourceRange Range) {
1955   // We don't allow overloading by different protocol qualification,
1956   // so mangling them isn't necessary.
1957   mangleType(T->getBaseType(), Range);
1958 }
1959
1960 void MicrosoftCXXNameMangler::mangleType(const BlockPointerType *T,
1961                                          SourceRange Range) {
1962   Out << "_E";
1963
1964   QualType pointee = T->getPointeeType();
1965   mangleFunctionType(pointee->castAs<FunctionProtoType>());
1966 }
1967
1968 void MicrosoftCXXNameMangler::mangleType(const InjectedClassNameType *,
1969                                          SourceRange) {
1970   llvm_unreachable("Cannot mangle injected class name type.");
1971 }
1972
1973 void MicrosoftCXXNameMangler::mangleType(const TemplateSpecializationType *T,
1974                                          SourceRange Range) {
1975   DiagnosticsEngine &Diags = Context.getDiags();
1976   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1977     "cannot mangle this template specialization type yet");
1978   Diags.Report(Range.getBegin(), DiagID)
1979     << Range;
1980 }
1981
1982 void MicrosoftCXXNameMangler::mangleType(const DependentNameType *T,
1983                                          SourceRange Range) {
1984   DiagnosticsEngine &Diags = Context.getDiags();
1985   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1986     "cannot mangle this dependent name type yet");
1987   Diags.Report(Range.getBegin(), DiagID)
1988     << Range;
1989 }
1990
1991 void MicrosoftCXXNameMangler::mangleType(
1992                                  const DependentTemplateSpecializationType *T,
1993                                  SourceRange Range) {
1994   DiagnosticsEngine &Diags = Context.getDiags();
1995   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
1996     "cannot mangle this dependent template specialization type yet");
1997   Diags.Report(Range.getBegin(), DiagID)
1998     << Range;
1999 }
2000
2001 void MicrosoftCXXNameMangler::mangleType(const PackExpansionType *T,
2002                                          SourceRange Range) {
2003   DiagnosticsEngine &Diags = Context.getDiags();
2004   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2005     "cannot mangle this pack expansion yet");
2006   Diags.Report(Range.getBegin(), DiagID)
2007     << Range;
2008 }
2009
2010 void MicrosoftCXXNameMangler::mangleType(const TypeOfType *T,
2011                                          SourceRange Range) {
2012   DiagnosticsEngine &Diags = Context.getDiags();
2013   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2014     "cannot mangle this typeof(type) yet");
2015   Diags.Report(Range.getBegin(), DiagID)
2016     << Range;
2017 }
2018
2019 void MicrosoftCXXNameMangler::mangleType(const TypeOfExprType *T,
2020                                          SourceRange Range) {
2021   DiagnosticsEngine &Diags = Context.getDiags();
2022   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2023     "cannot mangle this typeof(expression) yet");
2024   Diags.Report(Range.getBegin(), DiagID)
2025     << Range;
2026 }
2027
2028 void MicrosoftCXXNameMangler::mangleType(const DecltypeType *T,
2029                                          SourceRange Range) {
2030   DiagnosticsEngine &Diags = Context.getDiags();
2031   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2032     "cannot mangle this decltype() yet");
2033   Diags.Report(Range.getBegin(), DiagID)
2034     << Range;
2035 }
2036
2037 void MicrosoftCXXNameMangler::mangleType(const UnaryTransformType *T,
2038                                          SourceRange Range) {
2039   DiagnosticsEngine &Diags = Context.getDiags();
2040   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2041     "cannot mangle this unary transform type yet");
2042   Diags.Report(Range.getBegin(), DiagID)
2043     << Range;
2044 }
2045
2046 void MicrosoftCXXNameMangler::mangleType(const AutoType *T, SourceRange Range) {
2047   assert(T->getDeducedType().isNull() && "expecting a dependent type!");
2048
2049   DiagnosticsEngine &Diags = Context.getDiags();
2050   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2051     "cannot mangle this 'auto' type yet");
2052   Diags.Report(Range.getBegin(), DiagID)
2053     << Range;
2054 }
2055
2056 void MicrosoftCXXNameMangler::mangleType(const AtomicType *T,
2057                                          SourceRange Range) {
2058   DiagnosticsEngine &Diags = Context.getDiags();
2059   unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
2060     "cannot mangle this C11 atomic type yet");
2061   Diags.Report(Range.getBegin(), DiagID)
2062     << Range;
2063 }
2064
2065 void MicrosoftMangleContextImpl::mangleCXXName(const NamedDecl *D,
2066                                                raw_ostream &Out) {
2067   assert((isa<FunctionDecl>(D) || isa<VarDecl>(D)) &&
2068          "Invalid mangleName() call, argument is not a variable or function!");
2069   assert(!isa<CXXConstructorDecl>(D) && !isa<CXXDestructorDecl>(D) &&
2070          "Invalid mangleName() call on 'structor decl!");
2071
2072   PrettyStackTraceDecl CrashInfo(D, SourceLocation(),
2073                                  getASTContext().getSourceManager(),
2074                                  "Mangling declaration");
2075
2076   MicrosoftCXXNameMangler Mangler(*this, Out);
2077   return Mangler.mangle(D);
2078 }
2079
2080 // <this-adjustment> ::= <no-adjustment> | <static-adjustment> |
2081 //                       <virtual-adjustment>
2082 // <no-adjustment>      ::= A # private near
2083 //                      ::= B # private far
2084 //                      ::= I # protected near
2085 //                      ::= J # protected far
2086 //                      ::= Q # public near
2087 //                      ::= R # public far
2088 // <static-adjustment>  ::= G <static-offset> # private near
2089 //                      ::= H <static-offset> # private far
2090 //                      ::= O <static-offset> # protected near
2091 //                      ::= P <static-offset> # protected far
2092 //                      ::= W <static-offset> # public near
2093 //                      ::= X <static-offset> # public far
2094 // <virtual-adjustment> ::= $0 <virtual-shift> <static-offset> # private near
2095 //                      ::= $1 <virtual-shift> <static-offset> # private far
2096 //                      ::= $2 <virtual-shift> <static-offset> # protected near
2097 //                      ::= $3 <virtual-shift> <static-offset> # protected far
2098 //                      ::= $4 <virtual-shift> <static-offset> # public near
2099 //                      ::= $5 <virtual-shift> <static-offset> # public far
2100 // <virtual-shift>      ::= <vtordisp-shift> | <vtordispex-shift>
2101 // <vtordisp-shift>     ::= <offset-to-vtordisp>
2102 // <vtordispex-shift>   ::= <offset-to-vbptr> <vbase-offset-offset>
2103 //                          <offset-to-vtordisp>
2104 static void mangleThunkThisAdjustment(const CXXMethodDecl *MD,
2105                                       const ThisAdjustment &Adjustment,
2106                                       MicrosoftCXXNameMangler &Mangler,
2107                                       raw_ostream &Out) {
2108   if (!Adjustment.Virtual.isEmpty()) {
2109     Out << '$';
2110     char AccessSpec;
2111     switch (MD->getAccess()) {
2112     case AS_none:
2113       llvm_unreachable("Unsupported access specifier");
2114     case AS_private:
2115       AccessSpec = '0';
2116       break;
2117     case AS_protected:
2118       AccessSpec = '2';
2119       break;
2120     case AS_public:
2121       AccessSpec = '4';
2122     }
2123     if (Adjustment.Virtual.Microsoft.VBPtrOffset) {
2124       Out << 'R' << AccessSpec;
2125       Mangler.mangleNumber(
2126           static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBPtrOffset));
2127       Mangler.mangleNumber(
2128           static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VBOffsetOffset));
2129       Mangler.mangleNumber(
2130           static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset));
2131       Mangler.mangleNumber(static_cast<uint32_t>(Adjustment.NonVirtual));
2132     } else {
2133       Out << AccessSpec;
2134       Mangler.mangleNumber(
2135           static_cast<uint32_t>(Adjustment.Virtual.Microsoft.VtordispOffset));
2136       Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual));
2137     }
2138   } else if (Adjustment.NonVirtual != 0) {
2139     switch (MD->getAccess()) {
2140     case AS_none:
2141       llvm_unreachable("Unsupported access specifier");
2142     case AS_private:
2143       Out << 'G';
2144       break;
2145     case AS_protected:
2146       Out << 'O';
2147       break;
2148     case AS_public:
2149       Out << 'W';
2150     }
2151     Mangler.mangleNumber(-static_cast<uint32_t>(Adjustment.NonVirtual));
2152   } else {
2153     switch (MD->getAccess()) {
2154     case AS_none:
2155       llvm_unreachable("Unsupported access specifier");
2156     case AS_private:
2157       Out << 'A';
2158       break;
2159     case AS_protected:
2160       Out << 'I';
2161       break;
2162     case AS_public:
2163       Out << 'Q';
2164     }
2165   }
2166 }
2167
2168 void
2169 MicrosoftMangleContextImpl::mangleVirtualMemPtrThunk(const CXXMethodDecl *MD,
2170                                                      raw_ostream &Out) {
2171   MicrosoftVTableContext *VTContext =
2172       cast<MicrosoftVTableContext>(getASTContext().getVTableContext());
2173   const MicrosoftVTableContext::MethodVFTableLocation &ML =
2174       VTContext->getMethodVFTableLocation(GlobalDecl(MD));
2175
2176   MicrosoftCXXNameMangler Mangler(*this, Out);
2177   Mangler.getStream() << "\01?";
2178   Mangler.mangleVirtualMemPtrThunk(MD, ML);
2179 }
2180
2181 void MicrosoftMangleContextImpl::mangleThunk(const CXXMethodDecl *MD,
2182                                              const ThunkInfo &Thunk,
2183                                              raw_ostream &Out) {
2184   MicrosoftCXXNameMangler Mangler(*this, Out);
2185   Out << "\01?";
2186   Mangler.mangleName(MD);
2187   mangleThunkThisAdjustment(MD, Thunk.This, Mangler, Out);
2188   if (!Thunk.Return.isEmpty())
2189     assert(Thunk.Method != nullptr &&
2190            "Thunk info should hold the overridee decl");
2191
2192   const CXXMethodDecl *DeclForFPT = Thunk.Method ? Thunk.Method : MD;
2193   Mangler.mangleFunctionType(
2194       DeclForFPT->getType()->castAs<FunctionProtoType>(), MD);
2195 }
2196
2197 void MicrosoftMangleContextImpl::mangleCXXDtorThunk(
2198     const CXXDestructorDecl *DD, CXXDtorType Type,
2199     const ThisAdjustment &Adjustment, raw_ostream &Out) {
2200   // FIXME: Actually, the dtor thunk should be emitted for vector deleting
2201   // dtors rather than scalar deleting dtors. Just use the vector deleting dtor
2202   // mangling manually until we support both deleting dtor types.
2203   assert(Type == Dtor_Deleting);
2204   MicrosoftCXXNameMangler Mangler(*this, Out, DD, Type);
2205   Out << "\01??_E";
2206   Mangler.mangleName(DD->getParent());
2207   mangleThunkThisAdjustment(DD, Adjustment, Mangler, Out);
2208   Mangler.mangleFunctionType(DD->getType()->castAs<FunctionProtoType>(), DD);
2209 }
2210
2211 void MicrosoftMangleContextImpl::mangleCXXVFTable(
2212     const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
2213     raw_ostream &Out) {
2214   // <mangled-name> ::= ?_7 <class-name> <storage-class>
2215   //                    <cvr-qualifiers> [<name>] @
2216   // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
2217   // is always '6' for vftables.
2218   MicrosoftCXXNameMangler Mangler(*this, Out);
2219   Mangler.getStream() << "\01??_7";
2220   Mangler.mangleName(Derived);
2221   Mangler.getStream() << "6B"; // '6' for vftable, 'B' for const.
2222   for (const CXXRecordDecl *RD : BasePath)
2223     Mangler.mangleName(RD);
2224   Mangler.getStream() << '@';
2225 }
2226
2227 void MicrosoftMangleContextImpl::mangleCXXVBTable(
2228     const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
2229     raw_ostream &Out) {
2230   // <mangled-name> ::= ?_8 <class-name> <storage-class>
2231   //                    <cvr-qualifiers> [<name>] @
2232   // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
2233   // is always '7' for vbtables.
2234   MicrosoftCXXNameMangler Mangler(*this, Out);
2235   Mangler.getStream() << "\01??_8";
2236   Mangler.mangleName(Derived);
2237   Mangler.getStream() << "7B";  // '7' for vbtable, 'B' for const.
2238   for (const CXXRecordDecl *RD : BasePath)
2239     Mangler.mangleName(RD);
2240   Mangler.getStream() << '@';
2241 }
2242
2243 void MicrosoftMangleContextImpl::mangleCXXRTTI(QualType T, raw_ostream &Out) {
2244   MicrosoftCXXNameMangler Mangler(*this, Out);
2245   Mangler.getStream() << "\01??_R0";
2246   Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
2247   Mangler.getStream() << "@8";
2248 }
2249
2250 void MicrosoftMangleContextImpl::mangleCXXRTTIName(QualType T,
2251                                                    raw_ostream &Out) {
2252   MicrosoftCXXNameMangler Mangler(*this, Out);
2253   Mangler.getStream() << '.';
2254   Mangler.mangleType(T, SourceRange(), MicrosoftCXXNameMangler::QMM_Result);
2255 }
2256
2257 void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassDescriptor(
2258     const CXXRecordDecl *Derived, uint32_t NVOffset, int32_t VBPtrOffset,
2259     uint32_t VBTableOffset, uint32_t Flags, raw_ostream &Out) {
2260   MicrosoftCXXNameMangler Mangler(*this, Out);
2261   Mangler.getStream() << "\01??_R1";
2262   Mangler.mangleNumber(NVOffset);
2263   Mangler.mangleNumber(VBPtrOffset);
2264   Mangler.mangleNumber(VBTableOffset);
2265   Mangler.mangleNumber(Flags);
2266   Mangler.mangleName(Derived);
2267   Mangler.getStream() << "8";
2268 }
2269
2270 void MicrosoftMangleContextImpl::mangleCXXRTTIBaseClassArray(
2271     const CXXRecordDecl *Derived, raw_ostream &Out) {
2272   MicrosoftCXXNameMangler Mangler(*this, Out);
2273   Mangler.getStream() << "\01??_R2";
2274   Mangler.mangleName(Derived);
2275   Mangler.getStream() << "8";
2276 }
2277
2278 void MicrosoftMangleContextImpl::mangleCXXRTTIClassHierarchyDescriptor(
2279     const CXXRecordDecl *Derived, raw_ostream &Out) {
2280   MicrosoftCXXNameMangler Mangler(*this, Out);
2281   Mangler.getStream() << "\01??_R3";
2282   Mangler.mangleName(Derived);
2283   Mangler.getStream() << "8";
2284 }
2285
2286 void MicrosoftMangleContextImpl::mangleCXXRTTICompleteObjectLocator(
2287     const CXXRecordDecl *Derived, ArrayRef<const CXXRecordDecl *> BasePath,
2288     raw_ostream &Out) {
2289   // <mangled-name> ::= ?_R4 <class-name> <storage-class>
2290   //                    <cvr-qualifiers> [<name>] @
2291   // NOTE: <cvr-qualifiers> here is always 'B' (const). <storage-class>
2292   // is always '6' for vftables.
2293   MicrosoftCXXNameMangler Mangler(*this, Out);
2294   Mangler.getStream() << "\01??_R4";
2295   Mangler.mangleName(Derived);
2296   Mangler.getStream() << "6B"; // '6' for vftable, 'B' for const.
2297   for (const CXXRecordDecl *RD : BasePath)
2298     Mangler.mangleName(RD);
2299   Mangler.getStream() << '@';
2300 }
2301
2302 void MicrosoftMangleContextImpl::mangleTypeName(QualType T, raw_ostream &Out) {
2303   // This is just a made up unique string for the purposes of tbaa.  undname
2304   // does *not* know how to demangle it.
2305   MicrosoftCXXNameMangler Mangler(*this, Out);
2306   Mangler.getStream() << '?';
2307   Mangler.mangleType(T, SourceRange());
2308 }
2309
2310 void MicrosoftMangleContextImpl::mangleCXXCtor(const CXXConstructorDecl *D,
2311                                                CXXCtorType Type,
2312                                                raw_ostream &Out) {
2313   MicrosoftCXXNameMangler mangler(*this, Out);
2314   mangler.mangle(D);
2315 }
2316
2317 void MicrosoftMangleContextImpl::mangleCXXDtor(const CXXDestructorDecl *D,
2318                                                CXXDtorType Type,
2319                                                raw_ostream &Out) {
2320   MicrosoftCXXNameMangler mangler(*this, Out, D, Type);
2321   mangler.mangle(D);
2322 }
2323
2324 void MicrosoftMangleContextImpl::mangleReferenceTemporary(const VarDecl *VD,
2325                                                           unsigned,
2326                                                           raw_ostream &) {
2327   unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
2328     "cannot mangle this reference temporary yet");
2329   getDiags().Report(VD->getLocation(), DiagID);
2330 }
2331
2332 void MicrosoftMangleContextImpl::mangleStaticGuardVariable(const VarDecl *VD,
2333                                                            raw_ostream &Out) {
2334   // TODO: This is not correct, especially with respect to MSVC2013.  MSVC2013
2335   // utilizes thread local variables to implement thread safe, re-entrant
2336   // initialization for statics.  They no longer differentiate between an
2337   // externally visible and non-externally visible static with respect to
2338   // mangling, they all get $TSS <number>.
2339   //
2340   // N.B. This means that they can get more than 32 static variable guards in a
2341   // scope.  It also means that they broke compatibility with their own ABI.
2342
2343   // <guard-name> ::= ?_B <postfix> @5 <scope-depth>
2344   //              ::= ?$S <guard-num> @ <postfix> @4IA
2345
2346   // The first mangling is what MSVC uses to guard static locals in inline
2347   // functions.  It uses a different mangling in external functions to support
2348   // guarding more than 32 variables.  MSVC rejects inline functions with more
2349   // than 32 static locals.  We don't fully implement the second mangling
2350   // because those guards are not externally visible, and instead use LLVM's
2351   // default renaming when creating a new guard variable.
2352   MicrosoftCXXNameMangler Mangler(*this, Out);
2353
2354   bool Visible = VD->isExternallyVisible();
2355   // <operator-name> ::= ?_B # local static guard
2356   Mangler.getStream() << (Visible ? "\01??_B" : "\01?$S1@");
2357   unsigned ScopeDepth = 0;
2358   if (Visible && !getNextDiscriminator(VD, ScopeDepth))
2359     // If we do not have a discriminator and are emitting a guard variable for
2360     // use at global scope, then mangling the nested name will not be enough to
2361     // remove ambiguities.
2362     Mangler.mangle(VD, "");
2363   else
2364     Mangler.mangleNestedName(VD);
2365   Mangler.getStream() << (Visible ? "@5" : "@4IA");
2366   if (ScopeDepth)
2367     Mangler.mangleNumber(ScopeDepth);
2368 }
2369
2370 void MicrosoftMangleContextImpl::mangleInitFiniStub(const VarDecl *D,
2371                                                     raw_ostream &Out,
2372                                                     char CharCode) {
2373   MicrosoftCXXNameMangler Mangler(*this, Out);
2374   Mangler.getStream() << "\01??__" << CharCode;
2375   Mangler.mangleName(D);
2376   if (D->isStaticDataMember()) {
2377     Mangler.mangleVariableEncoding(D);
2378     Mangler.getStream() << '@';
2379   }
2380   // This is the function class mangling.  These stubs are global, non-variadic,
2381   // cdecl functions that return void and take no args.
2382   Mangler.getStream() << "YAXXZ";
2383 }
2384
2385 void MicrosoftMangleContextImpl::mangleDynamicInitializer(const VarDecl *D,
2386                                                           raw_ostream &Out) {
2387   // <initializer-name> ::= ?__E <name> YAXXZ
2388   mangleInitFiniStub(D, Out, 'E');
2389 }
2390
2391 void
2392 MicrosoftMangleContextImpl::mangleDynamicAtExitDestructor(const VarDecl *D,
2393                                                           raw_ostream &Out) {
2394   // <destructor-name> ::= ?__F <name> YAXXZ
2395   mangleInitFiniStub(D, Out, 'F');
2396 }
2397
2398 void MicrosoftMangleContextImpl::mangleStringLiteral(const StringLiteral *SL,
2399                                                      raw_ostream &Out) {
2400   // <char-type> ::= 0   # char
2401   //             ::= 1   # wchar_t
2402   //             ::= ??? # char16_t/char32_t will need a mangling too...
2403   //
2404   // <literal-length> ::= <non-negative integer>  # the length of the literal
2405   //
2406   // <encoded-crc>    ::= <hex digit>+ @          # crc of the literal including
2407   //                                              # null-terminator
2408   //
2409   // <encoded-string> ::= <simple character>           # uninteresting character
2410   //                  ::= '?$' <hex digit> <hex digit> # these two nibbles
2411   //                                                   # encode the byte for the
2412   //                                                   # character
2413   //                  ::= '?' [a-z]                    # \xe1 - \xfa
2414   //                  ::= '?' [A-Z]                    # \xc1 - \xda
2415   //                  ::= '?' [0-9]                    # [,/\:. \n\t'-]
2416   //
2417   // <literal> ::= '??_C@_' <char-type> <literal-length> <encoded-crc>
2418   //               <encoded-string> '@'
2419   MicrosoftCXXNameMangler Mangler(*this, Out);
2420   Mangler.getStream() << "\01??_C@_";
2421
2422   // <char-type>: The "kind" of string literal is encoded into the mangled name.
2423   // TODO: This needs to be updated when MSVC gains support for unicode
2424   // literals.
2425   if (SL->isAscii())
2426     Mangler.getStream() << '0';
2427   else if (SL->isWide())
2428     Mangler.getStream() << '1';
2429   else
2430     llvm_unreachable("unexpected string literal kind!");
2431
2432   // <literal-length>: The next part of the mangled name consists of the length
2433   // of the string.
2434   // The StringLiteral does not consider the NUL terminator byte(s) but the
2435   // mangling does.
2436   // N.B. The length is in terms of bytes, not characters.
2437   Mangler.mangleNumber(SL->getByteLength() + SL->getCharByteWidth());
2438
2439   // We will use the "Rocksoft^tm Model CRC Algorithm" to describe the
2440   // properties of our CRC:
2441   //   Width  : 32
2442   //   Poly   : 04C11DB7
2443   //   Init   : FFFFFFFF
2444   //   RefIn  : True
2445   //   RefOut : True
2446   //   XorOut : 00000000
2447   //   Check  : 340BC6D9
2448   uint32_t CRC = 0xFFFFFFFFU;
2449
2450   auto UpdateCRC = [&CRC](char Byte) {
2451     for (unsigned i = 0; i < 8; ++i) {
2452       bool Bit = CRC & 0x80000000U;
2453       if (Byte & (1U << i))
2454         Bit = !Bit;
2455       CRC <<= 1;
2456       if (Bit)
2457         CRC ^= 0x04C11DB7U;
2458     }
2459   };
2460
2461   auto GetLittleEndianByte = [&Mangler, &SL](unsigned Index) {
2462     unsigned CharByteWidth = SL->getCharByteWidth();
2463     uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth);
2464     unsigned OffsetInCodeUnit = Index % CharByteWidth;
2465     return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff);
2466   };
2467
2468   auto GetBigEndianByte = [&Mangler, &SL](unsigned Index) {
2469     unsigned CharByteWidth = SL->getCharByteWidth();
2470     uint32_t CodeUnit = SL->getCodeUnit(Index / CharByteWidth);
2471     unsigned OffsetInCodeUnit = (CharByteWidth - 1) - (Index % CharByteWidth);
2472     return static_cast<char>((CodeUnit >> (8 * OffsetInCodeUnit)) & 0xff);
2473   };
2474
2475   // CRC all the bytes of the StringLiteral.
2476   for (unsigned I = 0, E = SL->getByteLength(); I != E; ++I)
2477     UpdateCRC(GetLittleEndianByte(I));
2478
2479   // The NUL terminator byte(s) were not present earlier,
2480   // we need to manually process those bytes into the CRC.
2481   for (unsigned NullTerminator = 0; NullTerminator < SL->getCharByteWidth();
2482        ++NullTerminator)
2483     UpdateCRC('\x00');
2484
2485   // The literature refers to the process of reversing the bits in the final CRC
2486   // output as "reflection".
2487   CRC = llvm::reverseBits(CRC);
2488
2489   // <encoded-crc>: The CRC is encoded utilizing the standard number mangling
2490   // scheme.
2491   Mangler.mangleNumber(CRC);
2492
2493   // <encoded-string>: The mangled name also contains the first 32 _characters_
2494   // (including null-terminator bytes) of the StringLiteral.
2495   // Each character is encoded by splitting them into bytes and then encoding
2496   // the constituent bytes.
2497   auto MangleByte = [&Mangler](char Byte) {
2498     // There are five different manglings for characters:
2499     // - [a-zA-Z0-9_$]: A one-to-one mapping.
2500     // - ?[a-z]: The range from \xe1 to \xfa.
2501     // - ?[A-Z]: The range from \xc1 to \xda.
2502     // - ?[0-9]: The set of [,/\:. \n\t'-].
2503     // - ?$XX: A fallback which maps nibbles.
2504     if (isIdentifierBody(Byte, /*AllowDollar=*/true)) {
2505       Mangler.getStream() << Byte;
2506     } else if (isLetter(Byte & 0x7f)) {
2507       Mangler.getStream() << '?' << static_cast<char>(Byte & 0x7f);
2508     } else {
2509       switch (Byte) {
2510         case ',':
2511           Mangler.getStream() << "?0";
2512           break;
2513         case '/':
2514           Mangler.getStream() << "?1";
2515           break;
2516         case '\\':
2517           Mangler.getStream() << "?2";
2518           break;
2519         case ':':
2520           Mangler.getStream() << "?3";
2521           break;
2522         case '.':
2523           Mangler.getStream() << "?4";
2524           break;
2525         case ' ':
2526           Mangler.getStream() << "?5";
2527           break;
2528         case '\n':
2529           Mangler.getStream() << "?6";
2530           break;
2531         case '\t':
2532           Mangler.getStream() << "?7";
2533           break;
2534         case '\'':
2535           Mangler.getStream() << "?8";
2536           break;
2537         case '-':
2538           Mangler.getStream() << "?9";
2539           break;
2540         default:
2541           Mangler.getStream() << "?$";
2542           Mangler.getStream() << static_cast<char>('A' + ((Byte >> 4) & 0xf));
2543           Mangler.getStream() << static_cast<char>('A' + (Byte & 0xf));
2544           break;
2545       }
2546     }
2547   };
2548
2549   // Enforce our 32 character max.
2550   unsigned NumCharsToMangle = std::min(32U, SL->getLength());
2551   for (unsigned I = 0, E = NumCharsToMangle * SL->getCharByteWidth(); I != E;
2552        ++I)
2553     MangleByte(GetBigEndianByte(I));
2554
2555   // Encode the NUL terminator if there is room.
2556   if (NumCharsToMangle < 32)
2557     for (unsigned NullTerminator = 0; NullTerminator < SL->getCharByteWidth();
2558          ++NullTerminator)
2559       MangleByte(0);
2560
2561   Mangler.getStream() << '@';
2562 }
2563
2564 MicrosoftMangleContext *
2565 MicrosoftMangleContext::create(ASTContext &Context, DiagnosticsEngine &Diags) {
2566   return new MicrosoftMangleContextImpl(Context, Diags);
2567 }