]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/Analysis/ThreadSafety.cpp
Merge compiler-rt release_70 branch r338892, and resolve conflicts.
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / Analysis / ThreadSafety.cpp
1 //===- ThreadSafety.cpp ---------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // A intra-procedural analysis for thread safety (e.g. deadlocks and race
11 // conditions), based off of an annotation system.
12 //
13 // See http://clang.llvm.org/docs/ThreadSafetyAnalysis.html
14 // for more information.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #include "clang/Analysis/Analyses/ThreadSafety.h"
19 #include "clang/AST/Attr.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclCXX.h"
22 #include "clang/AST/DeclGroup.h"
23 #include "clang/AST/Expr.h"
24 #include "clang/AST/ExprCXX.h"
25 #include "clang/AST/OperationKinds.h"
26 #include "clang/AST/Stmt.h"
27 #include "clang/AST/StmtVisitor.h"
28 #include "clang/AST/Type.h"
29 #include "clang/Analysis/Analyses/PostOrderCFGView.h"
30 #include "clang/Analysis/Analyses/ThreadSafetyCommon.h"
31 #include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
32 #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h"
33 #include "clang/Analysis/Analyses/ThreadSafetyUtil.h"
34 #include "clang/Analysis/AnalysisDeclContext.h"
35 #include "clang/Analysis/CFG.h"
36 #include "clang/Basic/LLVM.h"
37 #include "clang/Basic/OperatorKinds.h"
38 #include "clang/Basic/SourceLocation.h"
39 #include "clang/Basic/Specifiers.h"
40 #include "llvm/ADT/ArrayRef.h"
41 #include "llvm/ADT/DenseMap.h"
42 #include "llvm/ADT/ImmutableMap.h"
43 #include "llvm/ADT/Optional.h"
44 #include "llvm/ADT/STLExtras.h"
45 #include "llvm/ADT/SmallVector.h"
46 #include "llvm/ADT/StringRef.h"
47 #include "llvm/Support/Allocator.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include <algorithm>
52 #include <cassert>
53 #include <functional>
54 #include <iterator>
55 #include <memory>
56 #include <string>
57 #include <type_traits>
58 #include <utility>
59 #include <vector>
60
61 using namespace clang;
62 using namespace threadSafety;
63
64 // Key method definition
65 ThreadSafetyHandler::~ThreadSafetyHandler() = default;
66
67 namespace {
68
69 class TILPrinter :
70     public til::PrettyPrinter<TILPrinter, llvm::raw_ostream> {};
71
72 } // namespace
73
74 /// Issue a warning about an invalid lock expression
75 static void warnInvalidLock(ThreadSafetyHandler &Handler,
76                             const Expr *MutexExp, const NamedDecl *D,
77                             const Expr *DeclExp, StringRef Kind) {
78   SourceLocation Loc;
79   if (DeclExp)
80     Loc = DeclExp->getExprLoc();
81
82   // FIXME: add a note about the attribute location in MutexExp or D
83   if (Loc.isValid())
84     Handler.handleInvalidLockExp(Kind, Loc);
85 }
86
87 namespace {
88
89 /// A set of CapabilityInfo objects, which are compiled from the
90 /// requires attributes on a function.
91 class CapExprSet : public SmallVector<CapabilityExpr, 4> {
92 public:
93   /// Push M onto list, but discard duplicates.
94   void push_back_nodup(const CapabilityExpr &CapE) {
95     iterator It = std::find_if(begin(), end(),
96                                [=](const CapabilityExpr &CapE2) {
97       return CapE.equals(CapE2);
98     });
99     if (It == end())
100       push_back(CapE);
101   }
102 };
103
104 class FactManager;
105 class FactSet;
106
107 /// This is a helper class that stores a fact that is known at a
108 /// particular point in program execution.  Currently, a fact is a capability,
109 /// along with additional information, such as where it was acquired, whether
110 /// it is exclusive or shared, etc.
111 ///
112 /// FIXME: this analysis does not currently support re-entrant locking.
113 class FactEntry : public CapabilityExpr {
114 private:
115   /// Exclusive or shared.
116   LockKind LKind;
117
118   /// Where it was acquired.
119   SourceLocation AcquireLoc;
120
121   /// True if the lock was asserted.
122   bool Asserted;
123
124   /// True if the lock was declared.
125   bool Declared;
126
127 public:
128   FactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc,
129             bool Asrt, bool Declrd = false)
130       : CapabilityExpr(CE), LKind(LK), AcquireLoc(Loc), Asserted(Asrt),
131         Declared(Declrd) {}
132   virtual ~FactEntry() = default;
133
134   LockKind kind() const { return LKind;      }
135   SourceLocation loc() const { return AcquireLoc; }
136   bool asserted() const { return Asserted; }
137   bool declared() const { return Declared; }
138
139   void setDeclared(bool D) { Declared = D; }
140
141   virtual void
142   handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
143                                 SourceLocation JoinLoc, LockErrorKind LEK,
144                                 ThreadSafetyHandler &Handler) const = 0;
145   virtual void handleUnlock(FactSet &FSet, FactManager &FactMan,
146                             const CapabilityExpr &Cp, SourceLocation UnlockLoc,
147                             bool FullyRemove, ThreadSafetyHandler &Handler,
148                             StringRef DiagKind) const = 0;
149
150   // Return true if LKind >= LK, where exclusive > shared
151   bool isAtLeast(LockKind LK) {
152     return  (LKind == LK_Exclusive) || (LK == LK_Shared);
153   }
154 };
155
156 using FactID = unsigned short;
157
158 /// FactManager manages the memory for all facts that are created during
159 /// the analysis of a single routine.
160 class FactManager {
161 private:
162   std::vector<std::unique_ptr<FactEntry>> Facts;
163
164 public:
165   FactID newFact(std::unique_ptr<FactEntry> Entry) {
166     Facts.push_back(std::move(Entry));
167     return static_cast<unsigned short>(Facts.size() - 1);
168   }
169
170   const FactEntry &operator[](FactID F) const { return *Facts[F]; }
171   FactEntry &operator[](FactID F) { return *Facts[F]; }
172 };
173
174 /// A FactSet is the set of facts that are known to be true at a
175 /// particular program point.  FactSets must be small, because they are
176 /// frequently copied, and are thus implemented as a set of indices into a
177 /// table maintained by a FactManager.  A typical FactSet only holds 1 or 2
178 /// locks, so we can get away with doing a linear search for lookup.  Note
179 /// that a hashtable or map is inappropriate in this case, because lookups
180 /// may involve partial pattern matches, rather than exact matches.
181 class FactSet {
182 private:
183   using FactVec = SmallVector<FactID, 4>;
184
185   FactVec FactIDs;
186
187 public:
188   using iterator = FactVec::iterator;
189   using const_iterator = FactVec::const_iterator;
190
191   iterator begin() { return FactIDs.begin(); }
192   const_iterator begin() const { return FactIDs.begin(); }
193
194   iterator end() { return FactIDs.end(); }
195   const_iterator end() const { return FactIDs.end(); }
196
197   bool isEmpty() const { return FactIDs.size() == 0; }
198
199   // Return true if the set contains only negative facts
200   bool isEmpty(FactManager &FactMan) const {
201     for (const auto FID : *this) {
202       if (!FactMan[FID].negative())
203         return false;
204     }
205     return true;
206   }
207
208   void addLockByID(FactID ID) { FactIDs.push_back(ID); }
209
210   FactID addLock(FactManager &FM, std::unique_ptr<FactEntry> Entry) {
211     FactID F = FM.newFact(std::move(Entry));
212     FactIDs.push_back(F);
213     return F;
214   }
215
216   bool removeLock(FactManager& FM, const CapabilityExpr &CapE) {
217     unsigned n = FactIDs.size();
218     if (n == 0)
219       return false;
220
221     for (unsigned i = 0; i < n-1; ++i) {
222       if (FM[FactIDs[i]].matches(CapE)) {
223         FactIDs[i] = FactIDs[n-1];
224         FactIDs.pop_back();
225         return true;
226       }
227     }
228     if (FM[FactIDs[n-1]].matches(CapE)) {
229       FactIDs.pop_back();
230       return true;
231     }
232     return false;
233   }
234
235   iterator findLockIter(FactManager &FM, const CapabilityExpr &CapE) {
236     return std::find_if(begin(), end(), [&](FactID ID) {
237       return FM[ID].matches(CapE);
238     });
239   }
240
241   FactEntry *findLock(FactManager &FM, const CapabilityExpr &CapE) const {
242     auto I = std::find_if(begin(), end(), [&](FactID ID) {
243       return FM[ID].matches(CapE);
244     });
245     return I != end() ? &FM[*I] : nullptr;
246   }
247
248   FactEntry *findLockUniv(FactManager &FM, const CapabilityExpr &CapE) const {
249     auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
250       return FM[ID].matchesUniv(CapE);
251     });
252     return I != end() ? &FM[*I] : nullptr;
253   }
254
255   FactEntry *findPartialMatch(FactManager &FM,
256                               const CapabilityExpr &CapE) const {
257     auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
258       return FM[ID].partiallyMatches(CapE);
259     });
260     return I != end() ? &FM[*I] : nullptr;
261   }
262
263   bool containsMutexDecl(FactManager &FM, const ValueDecl* Vd) const {
264     auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
265       return FM[ID].valueDecl() == Vd;
266     });
267     return I != end();
268   }
269 };
270
271 class ThreadSafetyAnalyzer;
272
273 } // namespace
274
275 namespace clang {
276 namespace threadSafety {
277
278 class BeforeSet {
279 private:
280   using BeforeVect = SmallVector<const ValueDecl *, 4>;
281
282   struct BeforeInfo {
283     BeforeVect Vect;
284     int Visited = 0;
285
286     BeforeInfo() = default;
287     BeforeInfo(BeforeInfo &&) = default;
288   };
289
290   using BeforeMap =
291       llvm::DenseMap<const ValueDecl *, std::unique_ptr<BeforeInfo>>;
292   using CycleMap = llvm::DenseMap<const ValueDecl *, bool>;
293
294 public:
295   BeforeSet() = default;
296
297   BeforeInfo* insertAttrExprs(const ValueDecl* Vd,
298                               ThreadSafetyAnalyzer& Analyzer);
299
300   BeforeInfo *getBeforeInfoForDecl(const ValueDecl *Vd,
301                                    ThreadSafetyAnalyzer &Analyzer);
302
303   void checkBeforeAfter(const ValueDecl* Vd,
304                         const FactSet& FSet,
305                         ThreadSafetyAnalyzer& Analyzer,
306                         SourceLocation Loc, StringRef CapKind);
307
308 private:
309   BeforeMap BMap;
310   CycleMap CycMap;
311 };
312
313 } // namespace threadSafety
314 } // namespace clang
315
316 namespace {
317
318 class LocalVariableMap;
319
320 using LocalVarContext = llvm::ImmutableMap<const NamedDecl *, unsigned>;
321
322 /// A side (entry or exit) of a CFG node.
323 enum CFGBlockSide { CBS_Entry, CBS_Exit };
324
325 /// CFGBlockInfo is a struct which contains all the information that is
326 /// maintained for each block in the CFG.  See LocalVariableMap for more
327 /// information about the contexts.
328 struct CFGBlockInfo {
329   // Lockset held at entry to block
330   FactSet EntrySet;
331
332   // Lockset held at exit from block
333   FactSet ExitSet;
334
335   // Context held at entry to block
336   LocalVarContext EntryContext;
337
338   // Context held at exit from block
339   LocalVarContext ExitContext;
340
341   // Location of first statement in block
342   SourceLocation EntryLoc;
343
344   // Location of last statement in block.
345   SourceLocation ExitLoc;
346
347   // Used to replay contexts later
348   unsigned EntryIndex;
349
350   // Is this block reachable?
351   bool Reachable = false;
352
353   const FactSet &getSet(CFGBlockSide Side) const {
354     return Side == CBS_Entry ? EntrySet : ExitSet;
355   }
356
357   SourceLocation getLocation(CFGBlockSide Side) const {
358     return Side == CBS_Entry ? EntryLoc : ExitLoc;
359   }
360
361 private:
362   CFGBlockInfo(LocalVarContext EmptyCtx)
363       : EntryContext(EmptyCtx), ExitContext(EmptyCtx) {}
364
365 public:
366   static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M);
367 };
368
369 // A LocalVariableMap maintains a map from local variables to their currently
370 // valid definitions.  It provides SSA-like functionality when traversing the
371 // CFG.  Like SSA, each definition or assignment to a variable is assigned a
372 // unique name (an integer), which acts as the SSA name for that definition.
373 // The total set of names is shared among all CFG basic blocks.
374 // Unlike SSA, we do not rewrite expressions to replace local variables declrefs
375 // with their SSA-names.  Instead, we compute a Context for each point in the
376 // code, which maps local variables to the appropriate SSA-name.  This map
377 // changes with each assignment.
378 //
379 // The map is computed in a single pass over the CFG.  Subsequent analyses can
380 // then query the map to find the appropriate Context for a statement, and use
381 // that Context to look up the definitions of variables.
382 class LocalVariableMap {
383 public:
384   using Context = LocalVarContext;
385
386   /// A VarDefinition consists of an expression, representing the value of the
387   /// variable, along with the context in which that expression should be
388   /// interpreted.  A reference VarDefinition does not itself contain this
389   /// information, but instead contains a pointer to a previous VarDefinition.
390   struct VarDefinition {
391   public:
392     friend class LocalVariableMap;
393
394     // The original declaration for this variable.
395     const NamedDecl *Dec;
396
397     // The expression for this variable, OR
398     const Expr *Exp = nullptr;
399
400     // Reference to another VarDefinition
401     unsigned Ref = 0;
402
403     // The map with which Exp should be interpreted.
404     Context Ctx;
405
406     bool isReference() { return !Exp; }
407
408   private:
409     // Create ordinary variable definition
410     VarDefinition(const NamedDecl *D, const Expr *E, Context C)
411         : Dec(D), Exp(E), Ctx(C) {}
412
413     // Create reference to previous definition
414     VarDefinition(const NamedDecl *D, unsigned R, Context C)
415         : Dec(D), Ref(R), Ctx(C) {}
416   };
417
418 private:
419   Context::Factory ContextFactory;
420   std::vector<VarDefinition> VarDefinitions;
421   std::vector<unsigned> CtxIndices;
422   std::vector<std::pair<Stmt *, Context>> SavedContexts;
423
424 public:
425   LocalVariableMap() {
426     // index 0 is a placeholder for undefined variables (aka phi-nodes).
427     VarDefinitions.push_back(VarDefinition(nullptr, 0u, getEmptyContext()));
428   }
429
430   /// Look up a definition, within the given context.
431   const VarDefinition* lookup(const NamedDecl *D, Context Ctx) {
432     const unsigned *i = Ctx.lookup(D);
433     if (!i)
434       return nullptr;
435     assert(*i < VarDefinitions.size());
436     return &VarDefinitions[*i];
437   }
438
439   /// Look up the definition for D within the given context.  Returns
440   /// NULL if the expression is not statically known.  If successful, also
441   /// modifies Ctx to hold the context of the return Expr.
442   const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) {
443     const unsigned *P = Ctx.lookup(D);
444     if (!P)
445       return nullptr;
446
447     unsigned i = *P;
448     while (i > 0) {
449       if (VarDefinitions[i].Exp) {
450         Ctx = VarDefinitions[i].Ctx;
451         return VarDefinitions[i].Exp;
452       }
453       i = VarDefinitions[i].Ref;
454     }
455     return nullptr;
456   }
457
458   Context getEmptyContext() { return ContextFactory.getEmptyMap(); }
459
460   /// Return the next context after processing S.  This function is used by
461   /// clients of the class to get the appropriate context when traversing the
462   /// CFG.  It must be called for every assignment or DeclStmt.
463   Context getNextContext(unsigned &CtxIndex, Stmt *S, Context C) {
464     if (SavedContexts[CtxIndex+1].first == S) {
465       CtxIndex++;
466       Context Result = SavedContexts[CtxIndex].second;
467       return Result;
468     }
469     return C;
470   }
471
472   void dumpVarDefinitionName(unsigned i) {
473     if (i == 0) {
474       llvm::errs() << "Undefined";
475       return;
476     }
477     const NamedDecl *Dec = VarDefinitions[i].Dec;
478     if (!Dec) {
479       llvm::errs() << "<<NULL>>";
480       return;
481     }
482     Dec->printName(llvm::errs());
483     llvm::errs() << "." << i << " " << ((const void*) Dec);
484   }
485
486   /// Dumps an ASCII representation of the variable map to llvm::errs()
487   void dump() {
488     for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) {
489       const Expr *Exp = VarDefinitions[i].Exp;
490       unsigned Ref = VarDefinitions[i].Ref;
491
492       dumpVarDefinitionName(i);
493       llvm::errs() << " = ";
494       if (Exp) Exp->dump();
495       else {
496         dumpVarDefinitionName(Ref);
497         llvm::errs() << "\n";
498       }
499     }
500   }
501
502   /// Dumps an ASCII representation of a Context to llvm::errs()
503   void dumpContext(Context C) {
504     for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
505       const NamedDecl *D = I.getKey();
506       D->printName(llvm::errs());
507       const unsigned *i = C.lookup(D);
508       llvm::errs() << " -> ";
509       dumpVarDefinitionName(*i);
510       llvm::errs() << "\n";
511     }
512   }
513
514   /// Builds the variable map.
515   void traverseCFG(CFG *CFGraph, const PostOrderCFGView *SortedGraph,
516                    std::vector<CFGBlockInfo> &BlockInfo);
517
518 protected:
519   friend class VarMapBuilder;
520
521   // Get the current context index
522   unsigned getContextIndex() { return SavedContexts.size()-1; }
523
524   // Save the current context for later replay
525   void saveContext(Stmt *S, Context C) {
526     SavedContexts.push_back(std::make_pair(S, C));
527   }
528
529   // Adds a new definition to the given context, and returns a new context.
530   // This method should be called when declaring a new variable.
531   Context addDefinition(const NamedDecl *D, const Expr *Exp, Context Ctx) {
532     assert(!Ctx.contains(D));
533     unsigned newID = VarDefinitions.size();
534     Context NewCtx = ContextFactory.add(Ctx, D, newID);
535     VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
536     return NewCtx;
537   }
538
539   // Add a new reference to an existing definition.
540   Context addReference(const NamedDecl *D, unsigned i, Context Ctx) {
541     unsigned newID = VarDefinitions.size();
542     Context NewCtx = ContextFactory.add(Ctx, D, newID);
543     VarDefinitions.push_back(VarDefinition(D, i, Ctx));
544     return NewCtx;
545   }
546
547   // Updates a definition only if that definition is already in the map.
548   // This method should be called when assigning to an existing variable.
549   Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
550     if (Ctx.contains(D)) {
551       unsigned newID = VarDefinitions.size();
552       Context NewCtx = ContextFactory.remove(Ctx, D);
553       NewCtx = ContextFactory.add(NewCtx, D, newID);
554       VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
555       return NewCtx;
556     }
557     return Ctx;
558   }
559
560   // Removes a definition from the context, but keeps the variable name
561   // as a valid variable.  The index 0 is a placeholder for cleared definitions.
562   Context clearDefinition(const NamedDecl *D, Context Ctx) {
563     Context NewCtx = Ctx;
564     if (NewCtx.contains(D)) {
565       NewCtx = ContextFactory.remove(NewCtx, D);
566       NewCtx = ContextFactory.add(NewCtx, D, 0);
567     }
568     return NewCtx;
569   }
570
571   // Remove a definition entirely frmo the context.
572   Context removeDefinition(const NamedDecl *D, Context Ctx) {
573     Context NewCtx = Ctx;
574     if (NewCtx.contains(D)) {
575       NewCtx = ContextFactory.remove(NewCtx, D);
576     }
577     return NewCtx;
578   }
579
580   Context intersectContexts(Context C1, Context C2);
581   Context createReferenceContext(Context C);
582   void intersectBackEdge(Context C1, Context C2);
583 };
584
585 } // namespace
586
587 // This has to be defined after LocalVariableMap.
588 CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) {
589   return CFGBlockInfo(M.getEmptyContext());
590 }
591
592 namespace {
593
594 /// Visitor which builds a LocalVariableMap
595 class VarMapBuilder : public StmtVisitor<VarMapBuilder> {
596 public:
597   LocalVariableMap* VMap;
598   LocalVariableMap::Context Ctx;
599
600   VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C)
601       : VMap(VM), Ctx(C) {}
602
603   void VisitDeclStmt(DeclStmt *S);
604   void VisitBinaryOperator(BinaryOperator *BO);
605 };
606
607 } // namespace
608
609 // Add new local variables to the variable map
610 void VarMapBuilder::VisitDeclStmt(DeclStmt *S) {
611   bool modifiedCtx = false;
612   DeclGroupRef DGrp = S->getDeclGroup();
613   for (const auto *D : DGrp) {
614     if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) {
615       const Expr *E = VD->getInit();
616
617       // Add local variables with trivial type to the variable map
618       QualType T = VD->getType();
619       if (T.isTrivialType(VD->getASTContext())) {
620         Ctx = VMap->addDefinition(VD, E, Ctx);
621         modifiedCtx = true;
622       }
623     }
624   }
625   if (modifiedCtx)
626     VMap->saveContext(S, Ctx);
627 }
628
629 // Update local variable definitions in variable map
630 void VarMapBuilder::VisitBinaryOperator(BinaryOperator *BO) {
631   if (!BO->isAssignmentOp())
632     return;
633
634   Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
635
636   // Update the variable map and current context.
637   if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSExp)) {
638     const ValueDecl *VDec = DRE->getDecl();
639     if (Ctx.lookup(VDec)) {
640       if (BO->getOpcode() == BO_Assign)
641         Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx);
642       else
643         // FIXME -- handle compound assignment operators
644         Ctx = VMap->clearDefinition(VDec, Ctx);
645       VMap->saveContext(BO, Ctx);
646     }
647   }
648 }
649
650 // Computes the intersection of two contexts.  The intersection is the
651 // set of variables which have the same definition in both contexts;
652 // variables with different definitions are discarded.
653 LocalVariableMap::Context
654 LocalVariableMap::intersectContexts(Context C1, Context C2) {
655   Context Result = C1;
656   for (const auto &P : C1) {
657     const NamedDecl *Dec = P.first;
658     const unsigned *i2 = C2.lookup(Dec);
659     if (!i2)             // variable doesn't exist on second path
660       Result = removeDefinition(Dec, Result);
661     else if (*i2 != P.second)  // variable exists, but has different definition
662       Result = clearDefinition(Dec, Result);
663   }
664   return Result;
665 }
666
667 // For every variable in C, create a new variable that refers to the
668 // definition in C.  Return a new context that contains these new variables.
669 // (We use this for a naive implementation of SSA on loop back-edges.)
670 LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) {
671   Context Result = getEmptyContext();
672   for (const auto &P : C)
673     Result = addReference(P.first, P.second, Result);
674   return Result;
675 }
676
677 // This routine also takes the intersection of C1 and C2, but it does so by
678 // altering the VarDefinitions.  C1 must be the result of an earlier call to
679 // createReferenceContext.
680 void LocalVariableMap::intersectBackEdge(Context C1, Context C2) {
681   for (const auto &P : C1) {
682     unsigned i1 = P.second;
683     VarDefinition *VDef = &VarDefinitions[i1];
684     assert(VDef->isReference());
685
686     const unsigned *i2 = C2.lookup(P.first);
687     if (!i2 || (*i2 != i1))
688       VDef->Ref = 0;    // Mark this variable as undefined
689   }
690 }
691
692 // Traverse the CFG in topological order, so all predecessors of a block
693 // (excluding back-edges) are visited before the block itself.  At
694 // each point in the code, we calculate a Context, which holds the set of
695 // variable definitions which are visible at that point in execution.
696 // Visible variables are mapped to their definitions using an array that
697 // contains all definitions.
698 //
699 // At join points in the CFG, the set is computed as the intersection of
700 // the incoming sets along each edge, E.g.
701 //
702 //                       { Context                 | VarDefinitions }
703 //   int x = 0;          { x -> x1                 | x1 = 0 }
704 //   int y = 0;          { x -> x1, y -> y1        | y1 = 0, x1 = 0 }
705 //   if (b) x = 1;       { x -> x2, y -> y1        | x2 = 1, y1 = 0, ... }
706 //   else   x = 2;       { x -> x3, y -> y1        | x3 = 2, x2 = 1, ... }
707 //   ...                 { y -> y1  (x is unknown) | x3 = 2, x2 = 1, ... }
708 //
709 // This is essentially a simpler and more naive version of the standard SSA
710 // algorithm.  Those definitions that remain in the intersection are from blocks
711 // that strictly dominate the current block.  We do not bother to insert proper
712 // phi nodes, because they are not used in our analysis; instead, wherever
713 // a phi node would be required, we simply remove that definition from the
714 // context (E.g. x above).
715 //
716 // The initial traversal does not capture back-edges, so those need to be
717 // handled on a separate pass.  Whenever the first pass encounters an
718 // incoming back edge, it duplicates the context, creating new definitions
719 // that refer back to the originals.  (These correspond to places where SSA
720 // might have to insert a phi node.)  On the second pass, these definitions are
721 // set to NULL if the variable has changed on the back-edge (i.e. a phi
722 // node was actually required.)  E.g.
723 //
724 //                       { Context           | VarDefinitions }
725 //   int x = 0, y = 0;   { x -> x1, y -> y1  | y1 = 0, x1 = 0 }
726 //   while (b)           { x -> x2, y -> y1  | [1st:] x2=x1; [2nd:] x2=NULL; }
727 //     x = x+1;          { x -> x3, y -> y1  | x3 = x2 + 1, ... }
728 //   ...                 { y -> y1           | x3 = 2, x2 = 1, ... }
729 void LocalVariableMap::traverseCFG(CFG *CFGraph,
730                                    const PostOrderCFGView *SortedGraph,
731                                    std::vector<CFGBlockInfo> &BlockInfo) {
732   PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
733
734   CtxIndices.resize(CFGraph->getNumBlockIDs());
735
736   for (const auto *CurrBlock : *SortedGraph) {
737     int CurrBlockID = CurrBlock->getBlockID();
738     CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
739
740     VisitedBlocks.insert(CurrBlock);
741
742     // Calculate the entry context for the current block
743     bool HasBackEdges = false;
744     bool CtxInit = true;
745     for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
746          PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
747       // if *PI -> CurrBlock is a back edge, so skip it
748       if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) {
749         HasBackEdges = true;
750         continue;
751       }
752
753       int PrevBlockID = (*PI)->getBlockID();
754       CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
755
756       if (CtxInit) {
757         CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext;
758         CtxInit = false;
759       }
760       else {
761         CurrBlockInfo->EntryContext =
762           intersectContexts(CurrBlockInfo->EntryContext,
763                             PrevBlockInfo->ExitContext);
764       }
765     }
766
767     // Duplicate the context if we have back-edges, so we can call
768     // intersectBackEdges later.
769     if (HasBackEdges)
770       CurrBlockInfo->EntryContext =
771         createReferenceContext(CurrBlockInfo->EntryContext);
772
773     // Create a starting context index for the current block
774     saveContext(nullptr, CurrBlockInfo->EntryContext);
775     CurrBlockInfo->EntryIndex = getContextIndex();
776
777     // Visit all the statements in the basic block.
778     VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext);
779     for (const auto &BI : *CurrBlock) {
780       switch (BI.getKind()) {
781         case CFGElement::Statement: {
782           CFGStmt CS = BI.castAs<CFGStmt>();
783           VMapBuilder.Visit(const_cast<Stmt *>(CS.getStmt()));
784           break;
785         }
786         default:
787           break;
788       }
789     }
790     CurrBlockInfo->ExitContext = VMapBuilder.Ctx;
791
792     // Mark variables on back edges as "unknown" if they've been changed.
793     for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
794          SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
795       // if CurrBlock -> *SI is *not* a back edge
796       if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI))
797         continue;
798
799       CFGBlock *FirstLoopBlock = *SI;
800       Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext;
801       Context LoopEnd   = CurrBlockInfo->ExitContext;
802       intersectBackEdge(LoopBegin, LoopEnd);
803     }
804   }
805
806   // Put an extra entry at the end of the indexed context array
807   unsigned exitID = CFGraph->getExit().getBlockID();
808   saveContext(nullptr, BlockInfo[exitID].ExitContext);
809 }
810
811 /// Find the appropriate source locations to use when producing diagnostics for
812 /// each block in the CFG.
813 static void findBlockLocations(CFG *CFGraph,
814                                const PostOrderCFGView *SortedGraph,
815                                std::vector<CFGBlockInfo> &BlockInfo) {
816   for (const auto *CurrBlock : *SortedGraph) {
817     CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()];
818
819     // Find the source location of the last statement in the block, if the
820     // block is not empty.
821     if (const Stmt *S = CurrBlock->getTerminator()) {
822       CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getLocStart();
823     } else {
824       for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(),
825            BE = CurrBlock->rend(); BI != BE; ++BI) {
826         // FIXME: Handle other CFGElement kinds.
827         if (Optional<CFGStmt> CS = BI->getAs<CFGStmt>()) {
828           CurrBlockInfo->ExitLoc = CS->getStmt()->getLocStart();
829           break;
830         }
831       }
832     }
833
834     if (CurrBlockInfo->ExitLoc.isValid()) {
835       // This block contains at least one statement. Find the source location
836       // of the first statement in the block.
837       for (const auto &BI : *CurrBlock) {
838         // FIXME: Handle other CFGElement kinds.
839         if (Optional<CFGStmt> CS = BI.getAs<CFGStmt>()) {
840           CurrBlockInfo->EntryLoc = CS->getStmt()->getLocStart();
841           break;
842         }
843       }
844     } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() &&
845                CurrBlock != &CFGraph->getExit()) {
846       // The block is empty, and has a single predecessor. Use its exit
847       // location.
848       CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
849           BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc;
850     }
851   }
852 }
853
854 namespace {
855
856 class LockableFactEntry : public FactEntry {
857 private:
858   /// managed by ScopedLockable object
859   bool Managed;
860
861 public:
862   LockableFactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc,
863                     bool Mng = false, bool Asrt = false)
864       : FactEntry(CE, LK, Loc, Asrt), Managed(Mng) {}
865
866   void
867   handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
868                                 SourceLocation JoinLoc, LockErrorKind LEK,
869                                 ThreadSafetyHandler &Handler) const override {
870     if (!Managed && !asserted() && !negative() && !isUniversal()) {
871       Handler.handleMutexHeldEndOfScope("mutex", toString(), loc(), JoinLoc,
872                                         LEK);
873     }
874   }
875
876   void handleUnlock(FactSet &FSet, FactManager &FactMan,
877                     const CapabilityExpr &Cp, SourceLocation UnlockLoc,
878                     bool FullyRemove, ThreadSafetyHandler &Handler,
879                     StringRef DiagKind) const override {
880     FSet.removeLock(FactMan, Cp);
881     if (!Cp.negative()) {
882       FSet.addLock(FactMan, llvm::make_unique<LockableFactEntry>(
883                                 !Cp, LK_Exclusive, UnlockLoc));
884     }
885   }
886 };
887
888 class ScopedLockableFactEntry : public FactEntry {
889 private:
890   SmallVector<const til::SExpr *, 4> UnderlyingMutexes;
891
892 public:
893   ScopedLockableFactEntry(const CapabilityExpr &CE, SourceLocation Loc,
894                           const CapExprSet &Excl, const CapExprSet &Shrd)
895       : FactEntry(CE, LK_Exclusive, Loc, false) {
896     for (const auto &M : Excl)
897       UnderlyingMutexes.push_back(M.sexpr());
898     for (const auto &M : Shrd)
899       UnderlyingMutexes.push_back(M.sexpr());
900   }
901
902   void
903   handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
904                                 SourceLocation JoinLoc, LockErrorKind LEK,
905                                 ThreadSafetyHandler &Handler) const override {
906     for (const auto *UnderlyingMutex : UnderlyingMutexes) {
907       if (FSet.findLock(FactMan, CapabilityExpr(UnderlyingMutex, false))) {
908         // If this scoped lock manages another mutex, and if the underlying
909         // mutex is still held, then warn about the underlying mutex.
910         Handler.handleMutexHeldEndOfScope(
911             "mutex", sx::toString(UnderlyingMutex), loc(), JoinLoc, LEK);
912       }
913     }
914   }
915
916   void handleUnlock(FactSet &FSet, FactManager &FactMan,
917                     const CapabilityExpr &Cp, SourceLocation UnlockLoc,
918                     bool FullyRemove, ThreadSafetyHandler &Handler,
919                     StringRef DiagKind) const override {
920     assert(!Cp.negative() && "Managing object cannot be negative.");
921     for (const auto *UnderlyingMutex : UnderlyingMutexes) {
922       CapabilityExpr UnderCp(UnderlyingMutex, false);
923       auto UnderEntry = llvm::make_unique<LockableFactEntry>(
924           !UnderCp, LK_Exclusive, UnlockLoc);
925
926       if (FullyRemove) {
927         // We're destroying the managing object.
928         // Remove the underlying mutex if it exists; but don't warn.
929         if (FSet.findLock(FactMan, UnderCp)) {
930           FSet.removeLock(FactMan, UnderCp);
931           FSet.addLock(FactMan, std::move(UnderEntry));
932         }
933       } else {
934         // We're releasing the underlying mutex, but not destroying the
935         // managing object.  Warn on dual release.
936         if (!FSet.findLock(FactMan, UnderCp)) {
937           Handler.handleUnmatchedUnlock(DiagKind, UnderCp.toString(),
938                                         UnlockLoc);
939         }
940         FSet.removeLock(FactMan, UnderCp);
941         FSet.addLock(FactMan, std::move(UnderEntry));
942       }
943     }
944     if (FullyRemove)
945       FSet.removeLock(FactMan, Cp);
946   }
947 };
948
949 /// Class which implements the core thread safety analysis routines.
950 class ThreadSafetyAnalyzer {
951   friend class BuildLockset;
952   friend class threadSafety::BeforeSet;
953
954   llvm::BumpPtrAllocator Bpa;
955   threadSafety::til::MemRegionRef Arena;
956   threadSafety::SExprBuilder SxBuilder;
957
958   ThreadSafetyHandler &Handler;
959   const CXXMethodDecl *CurrentMethod;
960   LocalVariableMap LocalVarMap;
961   FactManager FactMan;
962   std::vector<CFGBlockInfo> BlockInfo;
963
964   BeforeSet *GlobalBeforeSet;
965
966 public:
967   ThreadSafetyAnalyzer(ThreadSafetyHandler &H, BeforeSet* Bset)
968       : Arena(&Bpa), SxBuilder(Arena), Handler(H), GlobalBeforeSet(Bset) {}
969
970   bool inCurrentScope(const CapabilityExpr &CapE);
971
972   void addLock(FactSet &FSet, std::unique_ptr<FactEntry> Entry,
973                StringRef DiagKind, bool ReqAttr = false);
974   void removeLock(FactSet &FSet, const CapabilityExpr &CapE,
975                   SourceLocation UnlockLoc, bool FullyRemove, LockKind Kind,
976                   StringRef DiagKind);
977
978   template <typename AttrType>
979   void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, Expr *Exp,
980                    const NamedDecl *D, VarDecl *SelfDecl = nullptr);
981
982   template <class AttrType>
983   void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, Expr *Exp,
984                    const NamedDecl *D,
985                    const CFGBlock *PredBlock, const CFGBlock *CurrBlock,
986                    Expr *BrE, bool Neg);
987
988   const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C,
989                                      bool &Negate);
990
991   void getEdgeLockset(FactSet &Result, const FactSet &ExitSet,
992                       const CFGBlock* PredBlock,
993                       const CFGBlock *CurrBlock);
994
995   void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
996                         SourceLocation JoinLoc,
997                         LockErrorKind LEK1, LockErrorKind LEK2,
998                         bool Modify=true);
999
1000   void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2,
1001                         SourceLocation JoinLoc, LockErrorKind LEK1,
1002                         bool Modify=true) {
1003     intersectAndWarn(FSet1, FSet2, JoinLoc, LEK1, LEK1, Modify);
1004   }
1005
1006   void runAnalysis(AnalysisDeclContext &AC);
1007 };
1008
1009 } // namespace
1010
1011 /// Process acquired_before and acquired_after attributes on Vd.
1012 BeforeSet::BeforeInfo* BeforeSet::insertAttrExprs(const ValueDecl* Vd,
1013     ThreadSafetyAnalyzer& Analyzer) {
1014   // Create a new entry for Vd.
1015   BeforeInfo *Info = nullptr;
1016   {
1017     // Keep InfoPtr in its own scope in case BMap is modified later and the
1018     // reference becomes invalid.
1019     std::unique_ptr<BeforeInfo> &InfoPtr = BMap[Vd];
1020     if (!InfoPtr)
1021       InfoPtr.reset(new BeforeInfo());
1022     Info = InfoPtr.get();
1023   }
1024
1025   for (const auto *At : Vd->attrs()) {
1026     switch (At->getKind()) {
1027       case attr::AcquiredBefore: {
1028         const auto *A = cast<AcquiredBeforeAttr>(At);
1029
1030         // Read exprs from the attribute, and add them to BeforeVect.
1031         for (const auto *Arg : A->args()) {
1032           CapabilityExpr Cp =
1033             Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr);
1034           if (const ValueDecl *Cpvd = Cp.valueDecl()) {
1035             Info->Vect.push_back(Cpvd);
1036             const auto It = BMap.find(Cpvd);
1037             if (It == BMap.end())
1038               insertAttrExprs(Cpvd, Analyzer);
1039           }
1040         }
1041         break;
1042       }
1043       case attr::AcquiredAfter: {
1044         const auto *A = cast<AcquiredAfterAttr>(At);
1045
1046         // Read exprs from the attribute, and add them to BeforeVect.
1047         for (const auto *Arg : A->args()) {
1048           CapabilityExpr Cp =
1049             Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr);
1050           if (const ValueDecl *ArgVd = Cp.valueDecl()) {
1051             // Get entry for mutex listed in attribute
1052             BeforeInfo *ArgInfo = getBeforeInfoForDecl(ArgVd, Analyzer);
1053             ArgInfo->Vect.push_back(Vd);
1054           }
1055         }
1056         break;
1057       }
1058       default:
1059         break;
1060     }
1061   }
1062
1063   return Info;
1064 }
1065
1066 BeforeSet::BeforeInfo *
1067 BeforeSet::getBeforeInfoForDecl(const ValueDecl *Vd,
1068                                 ThreadSafetyAnalyzer &Analyzer) {
1069   auto It = BMap.find(Vd);
1070   BeforeInfo *Info = nullptr;
1071   if (It == BMap.end())
1072     Info = insertAttrExprs(Vd, Analyzer);
1073   else
1074     Info = It->second.get();
1075   assert(Info && "BMap contained nullptr?");
1076   return Info;
1077 }
1078
1079 /// Return true if any mutexes in FSet are in the acquired_before set of Vd.
1080 void BeforeSet::checkBeforeAfter(const ValueDecl* StartVd,
1081                                  const FactSet& FSet,
1082                                  ThreadSafetyAnalyzer& Analyzer,
1083                                  SourceLocation Loc, StringRef CapKind) {
1084   SmallVector<BeforeInfo*, 8> InfoVect;
1085
1086   // Do a depth-first traversal of Vd.
1087   // Return true if there are cycles.
1088   std::function<bool (const ValueDecl*)> traverse = [&](const ValueDecl* Vd) {
1089     if (!Vd)
1090       return false;
1091
1092     BeforeSet::BeforeInfo *Info = getBeforeInfoForDecl(Vd, Analyzer);
1093
1094     if (Info->Visited == 1)
1095       return true;
1096
1097     if (Info->Visited == 2)
1098       return false;
1099
1100     if (Info->Vect.empty())
1101       return false;
1102
1103     InfoVect.push_back(Info);
1104     Info->Visited = 1;
1105     for (const auto *Vdb : Info->Vect) {
1106       // Exclude mutexes in our immediate before set.
1107       if (FSet.containsMutexDecl(Analyzer.FactMan, Vdb)) {
1108         StringRef L1 = StartVd->getName();
1109         StringRef L2 = Vdb->getName();
1110         Analyzer.Handler.handleLockAcquiredBefore(CapKind, L1, L2, Loc);
1111       }
1112       // Transitively search other before sets, and warn on cycles.
1113       if (traverse(Vdb)) {
1114         if (CycMap.find(Vd) == CycMap.end()) {
1115           CycMap.insert(std::make_pair(Vd, true));
1116           StringRef L1 = Vd->getName();
1117           Analyzer.Handler.handleBeforeAfterCycle(L1, Vd->getLocation());
1118         }
1119       }
1120     }
1121     Info->Visited = 2;
1122     return false;
1123   };
1124
1125   traverse(StartVd);
1126
1127   for (auto *Info : InfoVect)
1128     Info->Visited = 0;
1129 }
1130
1131 /// Gets the value decl pointer from DeclRefExprs or MemberExprs.
1132 static const ValueDecl *getValueDecl(const Expr *Exp) {
1133   if (const auto *CE = dyn_cast<ImplicitCastExpr>(Exp))
1134     return getValueDecl(CE->getSubExpr());
1135
1136   if (const auto *DR = dyn_cast<DeclRefExpr>(Exp))
1137     return DR->getDecl();
1138
1139   if (const auto *ME = dyn_cast<MemberExpr>(Exp))
1140     return ME->getMemberDecl();
1141
1142   return nullptr;
1143 }
1144
1145 namespace {
1146
1147 template <typename Ty>
1148 class has_arg_iterator_range {
1149   using yes = char[1];
1150   using no = char[2];
1151
1152   template <typename Inner>
1153   static yes& test(Inner *I, decltype(I->args()) * = nullptr);
1154
1155   template <typename>
1156   static no& test(...);
1157
1158 public:
1159   static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
1160 };
1161
1162 } // namespace
1163
1164 static StringRef ClassifyDiagnostic(const CapabilityAttr *A) {
1165   return A->getName();
1166 }
1167
1168 static StringRef ClassifyDiagnostic(QualType VDT) {
1169   // We need to look at the declaration of the type of the value to determine
1170   // which it is. The type should either be a record or a typedef, or a pointer
1171   // or reference thereof.
1172   if (const auto *RT = VDT->getAs<RecordType>()) {
1173     if (const auto *RD = RT->getDecl())
1174       if (const auto *CA = RD->getAttr<CapabilityAttr>())
1175         return ClassifyDiagnostic(CA);
1176   } else if (const auto *TT = VDT->getAs<TypedefType>()) {
1177     if (const auto *TD = TT->getDecl())
1178       if (const auto *CA = TD->getAttr<CapabilityAttr>())
1179         return ClassifyDiagnostic(CA);
1180   } else if (VDT->isPointerType() || VDT->isReferenceType())
1181     return ClassifyDiagnostic(VDT->getPointeeType());
1182
1183   return "mutex";
1184 }
1185
1186 static StringRef ClassifyDiagnostic(const ValueDecl *VD) {
1187   assert(VD && "No ValueDecl passed");
1188
1189   // The ValueDecl is the declaration of a mutex or role (hopefully).
1190   return ClassifyDiagnostic(VD->getType());
1191 }
1192
1193 template <typename AttrTy>
1194 static typename std::enable_if<!has_arg_iterator_range<AttrTy>::value,
1195                                StringRef>::type
1196 ClassifyDiagnostic(const AttrTy *A) {
1197   if (const ValueDecl *VD = getValueDecl(A->getArg()))
1198     return ClassifyDiagnostic(VD);
1199   return "mutex";
1200 }
1201
1202 template <typename AttrTy>
1203 static typename std::enable_if<has_arg_iterator_range<AttrTy>::value,
1204                                StringRef>::type
1205 ClassifyDiagnostic(const AttrTy *A) {
1206   for (const auto *Arg : A->args()) {
1207     if (const ValueDecl *VD = getValueDecl(Arg))
1208       return ClassifyDiagnostic(VD);
1209   }
1210   return "mutex";
1211 }
1212
1213 bool ThreadSafetyAnalyzer::inCurrentScope(const CapabilityExpr &CapE) {
1214   if (!CurrentMethod)
1215       return false;
1216   if (const auto *P = dyn_cast_or_null<til::Project>(CapE.sexpr())) {
1217     const auto *VD = P->clangDecl();
1218     if (VD)
1219       return VD->getDeclContext() == CurrentMethod->getDeclContext();
1220   }
1221   return false;
1222 }
1223
1224 /// Add a new lock to the lockset, warning if the lock is already there.
1225 /// \param ReqAttr -- true if this is part of an initial Requires attribute.
1226 void ThreadSafetyAnalyzer::addLock(FactSet &FSet,
1227                                    std::unique_ptr<FactEntry> Entry,
1228                                    StringRef DiagKind, bool ReqAttr) {
1229   if (Entry->shouldIgnore())
1230     return;
1231
1232   if (!ReqAttr && !Entry->negative()) {
1233     // look for the negative capability, and remove it from the fact set.
1234     CapabilityExpr NegC = !*Entry;
1235     FactEntry *Nen = FSet.findLock(FactMan, NegC);
1236     if (Nen) {
1237       FSet.removeLock(FactMan, NegC);
1238     }
1239     else {
1240       if (inCurrentScope(*Entry) && !Entry->asserted())
1241         Handler.handleNegativeNotHeld(DiagKind, Entry->toString(),
1242                                       NegC.toString(), Entry->loc());
1243     }
1244   }
1245
1246   // Check before/after constraints
1247   if (Handler.issueBetaWarnings() &&
1248       !Entry->asserted() && !Entry->declared()) {
1249     GlobalBeforeSet->checkBeforeAfter(Entry->valueDecl(), FSet, *this,
1250                                       Entry->loc(), DiagKind);
1251   }
1252
1253   // FIXME: Don't always warn when we have support for reentrant locks.
1254   if (FSet.findLock(FactMan, *Entry)) {
1255     if (!Entry->asserted())
1256       Handler.handleDoubleLock(DiagKind, Entry->toString(), Entry->loc());
1257   } else {
1258     FSet.addLock(FactMan, std::move(Entry));
1259   }
1260 }
1261
1262 /// Remove a lock from the lockset, warning if the lock is not there.
1263 /// \param UnlockLoc The source location of the unlock (only used in error msg)
1264 void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, const CapabilityExpr &Cp,
1265                                       SourceLocation UnlockLoc,
1266                                       bool FullyRemove, LockKind ReceivedKind,
1267                                       StringRef DiagKind) {
1268   if (Cp.shouldIgnore())
1269     return;
1270
1271   const FactEntry *LDat = FSet.findLock(FactMan, Cp);
1272   if (!LDat) {
1273     Handler.handleUnmatchedUnlock(DiagKind, Cp.toString(), UnlockLoc);
1274     return;
1275   }
1276
1277   // Generic lock removal doesn't care about lock kind mismatches, but
1278   // otherwise diagnose when the lock kinds are mismatched.
1279   if (ReceivedKind != LK_Generic && LDat->kind() != ReceivedKind) {
1280     Handler.handleIncorrectUnlockKind(DiagKind, Cp.toString(),
1281                                       LDat->kind(), ReceivedKind, UnlockLoc);
1282   }
1283
1284   LDat->handleUnlock(FSet, FactMan, Cp, UnlockLoc, FullyRemove, Handler,
1285                      DiagKind);
1286 }
1287
1288 /// Extract the list of mutexIDs from the attribute on an expression,
1289 /// and push them onto Mtxs, discarding any duplicates.
1290 template <typename AttrType>
1291 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr,
1292                                        Expr *Exp, const NamedDecl *D,
1293                                        VarDecl *SelfDecl) {
1294   if (Attr->args_size() == 0) {
1295     // The mutex held is the "this" object.
1296     CapabilityExpr Cp = SxBuilder.translateAttrExpr(nullptr, D, Exp, SelfDecl);
1297     if (Cp.isInvalid()) {
1298        warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr));
1299        return;
1300     }
1301     //else
1302     if (!Cp.shouldIgnore())
1303       Mtxs.push_back_nodup(Cp);
1304     return;
1305   }
1306
1307   for (const auto *Arg : Attr->args()) {
1308     CapabilityExpr Cp = SxBuilder.translateAttrExpr(Arg, D, Exp, SelfDecl);
1309     if (Cp.isInvalid()) {
1310        warnInvalidLock(Handler, nullptr, D, Exp, ClassifyDiagnostic(Attr));
1311        continue;
1312     }
1313     //else
1314     if (!Cp.shouldIgnore())
1315       Mtxs.push_back_nodup(Cp);
1316   }
1317 }
1318
1319 /// Extract the list of mutexIDs from a trylock attribute.  If the
1320 /// trylock applies to the given edge, then push them onto Mtxs, discarding
1321 /// any duplicates.
1322 template <class AttrType>
1323 void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr,
1324                                        Expr *Exp, const NamedDecl *D,
1325                                        const CFGBlock *PredBlock,
1326                                        const CFGBlock *CurrBlock,
1327                                        Expr *BrE, bool Neg) {
1328   // Find out which branch has the lock
1329   bool branch = false;
1330   if (const auto *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE))
1331     branch = BLE->getValue();
1332   else if (const auto *ILE = dyn_cast_or_null<IntegerLiteral>(BrE))
1333     branch = ILE->getValue().getBoolValue();
1334
1335   int branchnum = branch ? 0 : 1;
1336   if (Neg)
1337     branchnum = !branchnum;
1338
1339   // If we've taken the trylock branch, then add the lock
1340   int i = 0;
1341   for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(),
1342        SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) {
1343     if (*SI == CurrBlock && i == branchnum)
1344       getMutexIDs(Mtxs, Attr, Exp, D);
1345   }
1346 }
1347
1348 static bool getStaticBooleanValue(Expr *E, bool &TCond) {
1349   if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) {
1350     TCond = false;
1351     return true;
1352   } else if (const auto *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) {
1353     TCond = BLE->getValue();
1354     return true;
1355   } else if (const auto *ILE = dyn_cast<IntegerLiteral>(E)) {
1356     TCond = ILE->getValue().getBoolValue();
1357     return true;
1358   } else if (auto *CE = dyn_cast<ImplicitCastExpr>(E))
1359     return getStaticBooleanValue(CE->getSubExpr(), TCond);
1360   return false;
1361 }
1362
1363 // If Cond can be traced back to a function call, return the call expression.
1364 // The negate variable should be called with false, and will be set to true
1365 // if the function call is negated, e.g. if (!mu.tryLock(...))
1366 const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond,
1367                                                          LocalVarContext C,
1368                                                          bool &Negate) {
1369   if (!Cond)
1370     return nullptr;
1371
1372   if (const auto *CallExp = dyn_cast<CallExpr>(Cond))
1373     return CallExp;
1374   else if (const auto *PE = dyn_cast<ParenExpr>(Cond))
1375     return getTrylockCallExpr(PE->getSubExpr(), C, Negate);
1376   else if (const auto *CE = dyn_cast<ImplicitCastExpr>(Cond))
1377     return getTrylockCallExpr(CE->getSubExpr(), C, Negate);
1378   else if (const auto *EWC = dyn_cast<ExprWithCleanups>(Cond))
1379     return getTrylockCallExpr(EWC->getSubExpr(), C, Negate);
1380   else if (const auto *DRE = dyn_cast<DeclRefExpr>(Cond)) {
1381     const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C);
1382     return getTrylockCallExpr(E, C, Negate);
1383   }
1384   else if (const auto *UOP = dyn_cast<UnaryOperator>(Cond)) {
1385     if (UOP->getOpcode() == UO_LNot) {
1386       Negate = !Negate;
1387       return getTrylockCallExpr(UOP->getSubExpr(), C, Negate);
1388     }
1389     return nullptr;
1390   }
1391   else if (const auto *BOP = dyn_cast<BinaryOperator>(Cond)) {
1392     if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) {
1393       if (BOP->getOpcode() == BO_NE)
1394         Negate = !Negate;
1395
1396       bool TCond = false;
1397       if (getStaticBooleanValue(BOP->getRHS(), TCond)) {
1398         if (!TCond) Negate = !Negate;
1399         return getTrylockCallExpr(BOP->getLHS(), C, Negate);
1400       }
1401       TCond = false;
1402       if (getStaticBooleanValue(BOP->getLHS(), TCond)) {
1403         if (!TCond) Negate = !Negate;
1404         return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1405       }
1406       return nullptr;
1407     }
1408     if (BOP->getOpcode() == BO_LAnd) {
1409       // LHS must have been evaluated in a different block.
1410       return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1411     }
1412     if (BOP->getOpcode() == BO_LOr)
1413       return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1414     return nullptr;
1415   }
1416   return nullptr;
1417 }
1418
1419 /// Find the lockset that holds on the edge between PredBlock
1420 /// and CurrBlock.  The edge set is the exit set of PredBlock (passed
1421 /// as the ExitSet parameter) plus any trylocks, which are conditionally held.
1422 void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result,
1423                                           const FactSet &ExitSet,
1424                                           const CFGBlock *PredBlock,
1425                                           const CFGBlock *CurrBlock) {
1426   Result = ExitSet;
1427
1428   const Stmt *Cond = PredBlock->getTerminatorCondition();
1429   if (!Cond)
1430     return;
1431
1432   bool Negate = false;
1433   const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()];
1434   const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext;
1435   StringRef CapDiagKind = "mutex";
1436
1437   auto *Exp = const_cast<CallExpr *>(getTrylockCallExpr(Cond, LVarCtx, Negate));
1438   if (!Exp)
1439     return;
1440
1441   auto *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
1442   if(!FunDecl || !FunDecl->hasAttrs())
1443     return;
1444
1445   CapExprSet ExclusiveLocksToAdd;
1446   CapExprSet SharedLocksToAdd;
1447
1448   // If the condition is a call to a Trylock function, then grab the attributes
1449   for (const auto *Attr : FunDecl->attrs()) {
1450     switch (Attr->getKind()) {
1451       case attr::TryAcquireCapability: {
1452         auto *A = cast<TryAcquireCapabilityAttr>(Attr);
1453         getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
1454                     Exp, FunDecl, PredBlock, CurrBlock, A->getSuccessValue(),
1455                     Negate);
1456         CapDiagKind = ClassifyDiagnostic(A);
1457         break;
1458       };
1459       case attr::ExclusiveTrylockFunction: {
1460         const auto *A = cast<ExclusiveTrylockFunctionAttr>(Attr);
1461         getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl,
1462                     PredBlock, CurrBlock, A->getSuccessValue(), Negate);
1463         CapDiagKind = ClassifyDiagnostic(A);
1464         break;
1465       }
1466       case attr::SharedTrylockFunction: {
1467         const auto *A = cast<SharedTrylockFunctionAttr>(Attr);
1468         getMutexIDs(SharedLocksToAdd, A, Exp, FunDecl,
1469                     PredBlock, CurrBlock, A->getSuccessValue(), Negate);
1470         CapDiagKind = ClassifyDiagnostic(A);
1471         break;
1472       }
1473       default:
1474         break;
1475     }
1476   }
1477
1478   // Add and remove locks.
1479   SourceLocation Loc = Exp->getExprLoc();
1480   for (const auto &ExclusiveLockToAdd : ExclusiveLocksToAdd)
1481     addLock(Result, llvm::make_unique<LockableFactEntry>(ExclusiveLockToAdd,
1482                                                          LK_Exclusive, Loc),
1483             CapDiagKind);
1484   for (const auto &SharedLockToAdd : SharedLocksToAdd)
1485     addLock(Result, llvm::make_unique<LockableFactEntry>(SharedLockToAdd,
1486                                                          LK_Shared, Loc),
1487             CapDiagKind);
1488 }
1489
1490 namespace {
1491
1492 /// We use this class to visit different types of expressions in
1493 /// CFGBlocks, and build up the lockset.
1494 /// An expression may cause us to add or remove locks from the lockset, or else
1495 /// output error messages related to missing locks.
1496 /// FIXME: In future, we may be able to not inherit from a visitor.
1497 class BuildLockset : public StmtVisitor<BuildLockset> {
1498   friend class ThreadSafetyAnalyzer;
1499
1500   ThreadSafetyAnalyzer *Analyzer;
1501   FactSet FSet;
1502   LocalVariableMap::Context LVarCtx;
1503   unsigned CtxIndex;
1504
1505   // helper functions
1506   void warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, AccessKind AK,
1507                           Expr *MutexExp, ProtectedOperationKind POK,
1508                           StringRef DiagKind, SourceLocation Loc);
1509   void warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, Expr *MutexExp,
1510                        StringRef DiagKind);
1511
1512   void checkAccess(const Expr *Exp, AccessKind AK,
1513                    ProtectedOperationKind POK = POK_VarAccess);
1514   void checkPtAccess(const Expr *Exp, AccessKind AK,
1515                      ProtectedOperationKind POK = POK_VarAccess);
1516
1517   void handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD = nullptr);
1518
1519 public:
1520   BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info)
1521       : StmtVisitor<BuildLockset>(), Analyzer(Anlzr), FSet(Info.EntrySet),
1522         LVarCtx(Info.EntryContext), CtxIndex(Info.EntryIndex) {}
1523
1524   void VisitUnaryOperator(UnaryOperator *UO);
1525   void VisitBinaryOperator(BinaryOperator *BO);
1526   void VisitCastExpr(CastExpr *CE);
1527   void VisitCallExpr(CallExpr *Exp);
1528   void VisitCXXConstructExpr(CXXConstructExpr *Exp);
1529   void VisitDeclStmt(DeclStmt *S);
1530 };
1531
1532 } // namespace
1533
1534 /// Warn if the LSet does not contain a lock sufficient to protect access
1535 /// of at least the passed in AccessKind.
1536 void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp,
1537                                       AccessKind AK, Expr *MutexExp,
1538                                       ProtectedOperationKind POK,
1539                                       StringRef DiagKind, SourceLocation Loc) {
1540   LockKind LK = getLockKindFromAccessKind(AK);
1541
1542   CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp);
1543   if (Cp.isInvalid()) {
1544     warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind);
1545     return;
1546   } else if (Cp.shouldIgnore()) {
1547     return;
1548   }
1549
1550   if (Cp.negative()) {
1551     // Negative capabilities act like locks excluded
1552     FactEntry *LDat = FSet.findLock(Analyzer->FactMan, !Cp);
1553     if (LDat) {
1554       Analyzer->Handler.handleFunExcludesLock(
1555           DiagKind, D->getNameAsString(), (!Cp).toString(), Loc);
1556       return;
1557     }
1558
1559     // If this does not refer to a negative capability in the same class,
1560     // then stop here.
1561     if (!Analyzer->inCurrentScope(Cp))
1562       return;
1563
1564     // Otherwise the negative requirement must be propagated to the caller.
1565     LDat = FSet.findLock(Analyzer->FactMan, Cp);
1566     if (!LDat) {
1567       Analyzer->Handler.handleMutexNotHeld("", D, POK, Cp.toString(),
1568                                            LK_Shared, Loc);
1569     }
1570     return;
1571   }
1572
1573   FactEntry* LDat = FSet.findLockUniv(Analyzer->FactMan, Cp);
1574   bool NoError = true;
1575   if (!LDat) {
1576     // No exact match found.  Look for a partial match.
1577     LDat = FSet.findPartialMatch(Analyzer->FactMan, Cp);
1578     if (LDat) {
1579       // Warn that there's no precise match.
1580       std::string PartMatchStr = LDat->toString();
1581       StringRef   PartMatchName(PartMatchStr);
1582       Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(),
1583                                            LK, Loc, &PartMatchName);
1584     } else {
1585       // Warn that there's no match at all.
1586       Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(),
1587                                            LK, Loc);
1588     }
1589     NoError = false;
1590   }
1591   // Make sure the mutex we found is the right kind.
1592   if (NoError && LDat && !LDat->isAtLeast(LK)) {
1593     Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Cp.toString(),
1594                                          LK, Loc);
1595   }
1596 }
1597
1598 /// Warn if the LSet contains the given lock.
1599 void BuildLockset::warnIfMutexHeld(const NamedDecl *D, const Expr *Exp,
1600                                    Expr *MutexExp, StringRef DiagKind) {
1601   CapabilityExpr Cp = Analyzer->SxBuilder.translateAttrExpr(MutexExp, D, Exp);
1602   if (Cp.isInvalid()) {
1603     warnInvalidLock(Analyzer->Handler, MutexExp, D, Exp, DiagKind);
1604     return;
1605   } else if (Cp.shouldIgnore()) {
1606     return;
1607   }
1608
1609   FactEntry* LDat = FSet.findLock(Analyzer->FactMan, Cp);
1610   if (LDat) {
1611     Analyzer->Handler.handleFunExcludesLock(
1612         DiagKind, D->getNameAsString(), Cp.toString(), Exp->getExprLoc());
1613   }
1614 }
1615
1616 /// Checks guarded_by and pt_guarded_by attributes.
1617 /// Whenever we identify an access (read or write) to a DeclRefExpr that is
1618 /// marked with guarded_by, we must ensure the appropriate mutexes are held.
1619 /// Similarly, we check if the access is to an expression that dereferences
1620 /// a pointer marked with pt_guarded_by.
1621 void BuildLockset::checkAccess(const Expr *Exp, AccessKind AK,
1622                                ProtectedOperationKind POK) {
1623   Exp = Exp->IgnoreImplicit()->IgnoreParenCasts();
1624
1625   SourceLocation Loc = Exp->getExprLoc();
1626
1627   // Local variables of reference type cannot be re-assigned;
1628   // map them to their initializer.
1629   while (const auto *DRE = dyn_cast<DeclRefExpr>(Exp)) {
1630     const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()->getCanonicalDecl());
1631     if (VD && VD->isLocalVarDecl() && VD->getType()->isReferenceType()) {
1632       if (const auto *E = VD->getInit()) {
1633         Exp = E;
1634         continue;
1635       }
1636     }
1637     break;
1638   }
1639
1640   if (const auto *UO = dyn_cast<UnaryOperator>(Exp)) {
1641     // For dereferences
1642     if (UO->getOpcode() == UO_Deref)
1643       checkPtAccess(UO->getSubExpr(), AK, POK);
1644     return;
1645   }
1646
1647   if (const auto *AE = dyn_cast<ArraySubscriptExpr>(Exp)) {
1648     checkPtAccess(AE->getLHS(), AK, POK);
1649     return;
1650   }
1651
1652   if (const auto *ME = dyn_cast<MemberExpr>(Exp)) {
1653     if (ME->isArrow())
1654       checkPtAccess(ME->getBase(), AK, POK);
1655     else
1656       checkAccess(ME->getBase(), AK, POK);
1657   }
1658
1659   const ValueDecl *D = getValueDecl(Exp);
1660   if (!D || !D->hasAttrs())
1661     return;
1662
1663   if (D->hasAttr<GuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan)) {
1664     Analyzer->Handler.handleNoMutexHeld("mutex", D, POK, AK, Loc);
1665   }
1666
1667   for (const auto *I : D->specific_attrs<GuardedByAttr>())
1668     warnIfMutexNotHeld(D, Exp, AK, I->getArg(), POK,
1669                        ClassifyDiagnostic(I), Loc);
1670 }
1671
1672 /// Checks pt_guarded_by and pt_guarded_var attributes.
1673 /// POK is the same  operationKind that was passed to checkAccess.
1674 void BuildLockset::checkPtAccess(const Expr *Exp, AccessKind AK,
1675                                  ProtectedOperationKind POK) {
1676   while (true) {
1677     if (const auto *PE = dyn_cast<ParenExpr>(Exp)) {
1678       Exp = PE->getSubExpr();
1679       continue;
1680     }
1681     if (const auto *CE = dyn_cast<CastExpr>(Exp)) {
1682       if (CE->getCastKind() == CK_ArrayToPointerDecay) {
1683         // If it's an actual array, and not a pointer, then it's elements
1684         // are protected by GUARDED_BY, not PT_GUARDED_BY;
1685         checkAccess(CE->getSubExpr(), AK, POK);
1686         return;
1687       }
1688       Exp = CE->getSubExpr();
1689       continue;
1690     }
1691     break;
1692   }
1693
1694   // Pass by reference warnings are under a different flag.
1695   ProtectedOperationKind PtPOK = POK_VarDereference;
1696   if (POK == POK_PassByRef) PtPOK = POK_PtPassByRef;
1697
1698   const ValueDecl *D = getValueDecl(Exp);
1699   if (!D || !D->hasAttrs())
1700     return;
1701
1702   if (D->hasAttr<PtGuardedVarAttr>() && FSet.isEmpty(Analyzer->FactMan))
1703     Analyzer->Handler.handleNoMutexHeld("mutex", D, PtPOK, AK,
1704                                         Exp->getExprLoc());
1705
1706   for (auto const *I : D->specific_attrs<PtGuardedByAttr>())
1707     warnIfMutexNotHeld(D, Exp, AK, I->getArg(), PtPOK,
1708                        ClassifyDiagnostic(I), Exp->getExprLoc());
1709 }
1710
1711 /// Process a function call, method call, constructor call,
1712 /// or destructor call.  This involves looking at the attributes on the
1713 /// corresponding function/method/constructor/destructor, issuing warnings,
1714 /// and updating the locksets accordingly.
1715 ///
1716 /// FIXME: For classes annotated with one of the guarded annotations, we need
1717 /// to treat const method calls as reads and non-const method calls as writes,
1718 /// and check that the appropriate locks are held. Non-const method calls with
1719 /// the same signature as const method calls can be also treated as reads.
1720 ///
1721 void BuildLockset::handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD) {
1722   SourceLocation Loc = Exp->getExprLoc();
1723   CapExprSet ExclusiveLocksToAdd, SharedLocksToAdd;
1724   CapExprSet ExclusiveLocksToRemove, SharedLocksToRemove, GenericLocksToRemove;
1725   CapExprSet ScopedExclusiveReqs, ScopedSharedReqs;
1726   StringRef CapDiagKind = "mutex";
1727
1728   // Figure out if we're constructing an object of scoped lockable class
1729   bool isScopedVar = false;
1730   if (VD) {
1731     if (const auto *CD = dyn_cast<const CXXConstructorDecl>(D)) {
1732       const CXXRecordDecl* PD = CD->getParent();
1733       if (PD && PD->hasAttr<ScopedLockableAttr>())
1734         isScopedVar = true;
1735     }
1736   }
1737
1738   for(const Attr *At : D->attrs()) {
1739     switch (At->getKind()) {
1740       // When we encounter a lock function, we need to add the lock to our
1741       // lockset.
1742       case attr::AcquireCapability: {
1743         const auto *A = cast<AcquireCapabilityAttr>(At);
1744         Analyzer->getMutexIDs(A->isShared() ? SharedLocksToAdd
1745                                             : ExclusiveLocksToAdd,
1746                               A, Exp, D, VD);
1747
1748         CapDiagKind = ClassifyDiagnostic(A);
1749         break;
1750       }
1751
1752       // An assert will add a lock to the lockset, but will not generate
1753       // a warning if it is already there, and will not generate a warning
1754       // if it is not removed.
1755       case attr::AssertExclusiveLock: {
1756         const auto *A = cast<AssertExclusiveLockAttr>(At);
1757
1758         CapExprSet AssertLocks;
1759         Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD);
1760         for (const auto &AssertLock : AssertLocks)
1761           Analyzer->addLock(FSet,
1762                             llvm::make_unique<LockableFactEntry>(
1763                                 AssertLock, LK_Exclusive, Loc, false, true),
1764                             ClassifyDiagnostic(A));
1765         break;
1766       }
1767       case attr::AssertSharedLock: {
1768         const auto *A = cast<AssertSharedLockAttr>(At);
1769
1770         CapExprSet AssertLocks;
1771         Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD);
1772         for (const auto &AssertLock : AssertLocks)
1773           Analyzer->addLock(FSet,
1774                             llvm::make_unique<LockableFactEntry>(
1775                                 AssertLock, LK_Shared, Loc, false, true),
1776                             ClassifyDiagnostic(A));
1777         break;
1778       }
1779
1780       case attr::AssertCapability: {
1781         const auto *A = cast<AssertCapabilityAttr>(At);
1782         CapExprSet AssertLocks;
1783         Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD);
1784         for (const auto &AssertLock : AssertLocks)
1785           Analyzer->addLock(FSet,
1786                             llvm::make_unique<LockableFactEntry>(
1787                                 AssertLock,
1788                                 A->isShared() ? LK_Shared : LK_Exclusive, Loc,
1789                                 false, true),
1790                             ClassifyDiagnostic(A));
1791         break;
1792       }
1793
1794       // When we encounter an unlock function, we need to remove unlocked
1795       // mutexes from the lockset, and flag a warning if they are not there.
1796       case attr::ReleaseCapability: {
1797         const auto *A = cast<ReleaseCapabilityAttr>(At);
1798         if (A->isGeneric())
1799           Analyzer->getMutexIDs(GenericLocksToRemove, A, Exp, D, VD);
1800         else if (A->isShared())
1801           Analyzer->getMutexIDs(SharedLocksToRemove, A, Exp, D, VD);
1802         else
1803           Analyzer->getMutexIDs(ExclusiveLocksToRemove, A, Exp, D, VD);
1804
1805         CapDiagKind = ClassifyDiagnostic(A);
1806         break;
1807       }
1808
1809       case attr::RequiresCapability: {
1810         const auto *A = cast<RequiresCapabilityAttr>(At);
1811         for (auto *Arg : A->args()) {
1812           warnIfMutexNotHeld(D, Exp, A->isShared() ? AK_Read : AK_Written, Arg,
1813                              POK_FunctionCall, ClassifyDiagnostic(A),
1814                              Exp->getExprLoc());
1815           // use for adopting a lock
1816           if (isScopedVar) {
1817             Analyzer->getMutexIDs(A->isShared() ? ScopedSharedReqs
1818                                                 : ScopedExclusiveReqs,
1819                                   A, Exp, D, VD);
1820           }
1821         }
1822         break;
1823       }
1824
1825       case attr::LocksExcluded: {
1826         const auto *A = cast<LocksExcludedAttr>(At);
1827         for (auto *Arg : A->args())
1828           warnIfMutexHeld(D, Exp, Arg, ClassifyDiagnostic(A));
1829         break;
1830       }
1831
1832       // Ignore attributes unrelated to thread-safety
1833       default:
1834         break;
1835     }
1836   }
1837
1838   // Remove locks first to allow lock upgrading/downgrading.
1839   // FIXME -- should only fully remove if the attribute refers to 'this'.
1840   bool Dtor = isa<CXXDestructorDecl>(D);
1841   for (const auto &M : ExclusiveLocksToRemove)
1842     Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Exclusive, CapDiagKind);
1843   for (const auto &M : SharedLocksToRemove)
1844     Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Shared, CapDiagKind);
1845   for (const auto &M : GenericLocksToRemove)
1846     Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Generic, CapDiagKind);
1847
1848   // Add locks.
1849   for (const auto &M : ExclusiveLocksToAdd)
1850     Analyzer->addLock(FSet, llvm::make_unique<LockableFactEntry>(
1851                                 M, LK_Exclusive, Loc, isScopedVar),
1852                       CapDiagKind);
1853   for (const auto &M : SharedLocksToAdd)
1854     Analyzer->addLock(FSet, llvm::make_unique<LockableFactEntry>(
1855                                 M, LK_Shared, Loc, isScopedVar),
1856                       CapDiagKind);
1857
1858   if (isScopedVar) {
1859     // Add the managing object as a dummy mutex, mapped to the underlying mutex.
1860     SourceLocation MLoc = VD->getLocation();
1861     DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue, VD->getLocation());
1862     // FIXME: does this store a pointer to DRE?
1863     CapabilityExpr Scp = Analyzer->SxBuilder.translateAttrExpr(&DRE, nullptr);
1864
1865     std::copy(ScopedExclusiveReqs.begin(), ScopedExclusiveReqs.end(),
1866               std::back_inserter(ExclusiveLocksToAdd));
1867     std::copy(ScopedSharedReqs.begin(), ScopedSharedReqs.end(),
1868               std::back_inserter(SharedLocksToAdd));
1869     Analyzer->addLock(FSet,
1870                       llvm::make_unique<ScopedLockableFactEntry>(
1871                           Scp, MLoc, ExclusiveLocksToAdd, SharedLocksToAdd),
1872                       CapDiagKind);
1873   }
1874 }
1875
1876 /// For unary operations which read and write a variable, we need to
1877 /// check whether we hold any required mutexes. Reads are checked in
1878 /// VisitCastExpr.
1879 void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) {
1880   switch (UO->getOpcode()) {
1881     case UO_PostDec:
1882     case UO_PostInc:
1883     case UO_PreDec:
1884     case UO_PreInc:
1885       checkAccess(UO->getSubExpr(), AK_Written);
1886       break;
1887     default:
1888       break;
1889   }
1890 }
1891
1892 /// For binary operations which assign to a variable (writes), we need to check
1893 /// whether we hold any required mutexes.
1894 /// FIXME: Deal with non-primitive types.
1895 void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) {
1896   if (!BO->isAssignmentOp())
1897     return;
1898
1899   // adjust the context
1900   LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx);
1901
1902   checkAccess(BO->getLHS(), AK_Written);
1903 }
1904
1905 /// Whenever we do an LValue to Rvalue cast, we are reading a variable and
1906 /// need to ensure we hold any required mutexes.
1907 /// FIXME: Deal with non-primitive types.
1908 void BuildLockset::VisitCastExpr(CastExpr *CE) {
1909   if (CE->getCastKind() != CK_LValueToRValue)
1910     return;
1911   checkAccess(CE->getSubExpr(), AK_Read);
1912 }
1913
1914 void BuildLockset::VisitCallExpr(CallExpr *Exp) {
1915   bool ExamineArgs = true;
1916   bool OperatorFun = false;
1917
1918   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(Exp)) {
1919     const auto *ME = dyn_cast<MemberExpr>(CE->getCallee());
1920     // ME can be null when calling a method pointer
1921     const CXXMethodDecl *MD = CE->getMethodDecl();
1922
1923     if (ME && MD) {
1924       if (ME->isArrow()) {
1925         if (MD->isConst())
1926           checkPtAccess(CE->getImplicitObjectArgument(), AK_Read);
1927         else // FIXME -- should be AK_Written
1928           checkPtAccess(CE->getImplicitObjectArgument(), AK_Read);
1929       } else {
1930         if (MD->isConst())
1931           checkAccess(CE->getImplicitObjectArgument(), AK_Read);
1932         else     // FIXME -- should be AK_Written
1933           checkAccess(CE->getImplicitObjectArgument(), AK_Read);
1934       }
1935     }
1936   } else if (const auto *OE = dyn_cast<CXXOperatorCallExpr>(Exp)) {
1937     OperatorFun = true;
1938
1939     auto OEop = OE->getOperator();
1940     switch (OEop) {
1941       case OO_Equal: {
1942         ExamineArgs = false;
1943         const Expr *Target = OE->getArg(0);
1944         const Expr *Source = OE->getArg(1);
1945         checkAccess(Target, AK_Written);
1946         checkAccess(Source, AK_Read);
1947         break;
1948       }
1949       case OO_Star:
1950       case OO_Arrow:
1951       case OO_Subscript: {
1952         const Expr *Obj = OE->getArg(0);
1953         checkAccess(Obj, AK_Read);
1954         if (!(OEop == OO_Star && OE->getNumArgs() > 1)) {
1955           // Grrr.  operator* can be multiplication...
1956           checkPtAccess(Obj, AK_Read);
1957         }
1958         break;
1959       }
1960       default: {
1961         // TODO: get rid of this, and rely on pass-by-ref instead.
1962         const Expr *Obj = OE->getArg(0);
1963         checkAccess(Obj, AK_Read);
1964         break;
1965       }
1966     }
1967   }
1968
1969   if (ExamineArgs) {
1970     if (FunctionDecl *FD = Exp->getDirectCallee()) {
1971       // NO_THREAD_SAFETY_ANALYSIS does double duty here.  Normally it
1972       // only turns off checking within the body of a function, but we also
1973       // use it to turn off checking in arguments to the function.  This
1974       // could result in some false negatives, but the alternative is to
1975       // create yet another attribute.
1976       if (!FD->hasAttr<NoThreadSafetyAnalysisAttr>()) {
1977         unsigned Fn = FD->getNumParams();
1978         unsigned Cn = Exp->getNumArgs();
1979         unsigned Skip = 0;
1980
1981         unsigned i = 0;
1982         if (OperatorFun) {
1983           if (isa<CXXMethodDecl>(FD)) {
1984             // First arg in operator call is implicit self argument,
1985             // and doesn't appear in the FunctionDecl.
1986             Skip = 1;
1987             Cn--;
1988           } else {
1989             // Ignore the first argument of operators; it's been checked above.
1990             i = 1;
1991           }
1992         }
1993         // Ignore default arguments
1994         unsigned n = (Fn < Cn) ? Fn : Cn;
1995
1996         for (; i < n; ++i) {
1997           ParmVarDecl* Pvd = FD->getParamDecl(i);
1998           Expr* Arg = Exp->getArg(i+Skip);
1999           QualType Qt = Pvd->getType();
2000           if (Qt->isReferenceType())
2001             checkAccess(Arg, AK_Read, POK_PassByRef);
2002         }
2003       }
2004     }
2005   }
2006
2007   auto *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
2008   if(!D || !D->hasAttrs())
2009     return;
2010   handleCall(Exp, D);
2011 }
2012
2013 void BuildLockset::VisitCXXConstructExpr(CXXConstructExpr *Exp) {
2014   const CXXConstructorDecl *D = Exp->getConstructor();
2015   if (D && D->isCopyConstructor()) {
2016     const Expr* Source = Exp->getArg(0);
2017     checkAccess(Source, AK_Read);
2018   }
2019   // FIXME -- only handles constructors in DeclStmt below.
2020 }
2021
2022 static CXXConstructorDecl *
2023 findConstructorForByValueReturn(const CXXRecordDecl *RD) {
2024   // Prefer a move constructor over a copy constructor. If there's more than
2025   // one copy constructor or more than one move constructor, we arbitrarily
2026   // pick the first declared such constructor rather than trying to guess which
2027   // one is more appropriate.
2028   CXXConstructorDecl *CopyCtor = nullptr;
2029   for (auto *Ctor : RD->ctors()) {
2030     if (Ctor->isDeleted())
2031       continue;
2032     if (Ctor->isMoveConstructor())
2033       return Ctor;
2034     if (!CopyCtor && Ctor->isCopyConstructor())
2035       CopyCtor = Ctor;
2036   }
2037   return CopyCtor;
2038 }
2039
2040 static Expr *buildFakeCtorCall(CXXConstructorDecl *CD, ArrayRef<Expr *> Args,
2041                                SourceLocation Loc) {
2042   ASTContext &Ctx = CD->getASTContext();
2043   return CXXConstructExpr::Create(Ctx, Ctx.getRecordType(CD->getParent()), Loc,
2044                                   CD, true, Args, false, false, false, false,
2045                                   CXXConstructExpr::CK_Complete,
2046                                   SourceRange(Loc, Loc));
2047 }
2048
2049 void BuildLockset::VisitDeclStmt(DeclStmt *S) {
2050   // adjust the context
2051   LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx);
2052
2053   for (auto *D : S->getDeclGroup()) {
2054     if (auto *VD = dyn_cast_or_null<VarDecl>(D)) {
2055       Expr *E = VD->getInit();
2056       if (!E)
2057         continue;
2058       E = E->IgnoreParens();
2059
2060       // handle constructors that involve temporaries
2061       if (auto *EWC = dyn_cast<ExprWithCleanups>(E))
2062         E = EWC->getSubExpr();
2063       if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(E))
2064         E = BTE->getSubExpr();
2065
2066       if (const auto *CE = dyn_cast<CXXConstructExpr>(E)) {
2067         const auto *CtorD = dyn_cast_or_null<NamedDecl>(CE->getConstructor());
2068         if (!CtorD || !CtorD->hasAttrs())
2069           continue;
2070         handleCall(E, CtorD, VD);
2071       } else if (isa<CallExpr>(E) && E->isRValue()) {
2072         // If the object is initialized by a function call that returns a
2073         // scoped lockable by value, use the attributes on the copy or move
2074         // constructor to figure out what effect that should have on the
2075         // lockset.
2076         // FIXME: Is this really the best way to handle this situation?
2077         auto *RD = E->getType()->getAsCXXRecordDecl();
2078         if (!RD || !RD->hasAttr<ScopedLockableAttr>())
2079           continue;
2080         CXXConstructorDecl *CtorD = findConstructorForByValueReturn(RD);
2081         if (!CtorD || !CtorD->hasAttrs())
2082           continue;
2083         handleCall(buildFakeCtorCall(CtorD, {E}, E->getLocStart()), CtorD, VD);
2084       }
2085     }
2086   }
2087 }
2088
2089 /// Compute the intersection of two locksets and issue warnings for any
2090 /// locks in the symmetric difference.
2091 ///
2092 /// This function is used at a merge point in the CFG when comparing the lockset
2093 /// of each branch being merged. For example, given the following sequence:
2094 /// A; if () then B; else C; D; we need to check that the lockset after B and C
2095 /// are the same. In the event of a difference, we use the intersection of these
2096 /// two locksets at the start of D.
2097 ///
2098 /// \param FSet1 The first lockset.
2099 /// \param FSet2 The second lockset.
2100 /// \param JoinLoc The location of the join point for error reporting
2101 /// \param LEK1 The error message to report if a mutex is missing from LSet1
2102 /// \param LEK2 The error message to report if a mutex is missing from Lset2
2103 void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &FSet1,
2104                                             const FactSet &FSet2,
2105                                             SourceLocation JoinLoc,
2106                                             LockErrorKind LEK1,
2107                                             LockErrorKind LEK2,
2108                                             bool Modify) {
2109   FactSet FSet1Orig = FSet1;
2110
2111   // Find locks in FSet2 that conflict or are not in FSet1, and warn.
2112   for (const auto &Fact : FSet2) {
2113     const FactEntry *LDat1 = nullptr;
2114     const FactEntry *LDat2 = &FactMan[Fact];
2115     FactSet::iterator Iter1  = FSet1.findLockIter(FactMan, *LDat2);
2116     if (Iter1 != FSet1.end()) LDat1 = &FactMan[*Iter1];
2117
2118     if (LDat1) {
2119       if (LDat1->kind() != LDat2->kind()) {
2120         Handler.handleExclusiveAndShared("mutex", LDat2->toString(),
2121                                          LDat2->loc(), LDat1->loc());
2122         if (Modify && LDat1->kind() != LK_Exclusive) {
2123           // Take the exclusive lock, which is the one in FSet2.
2124           *Iter1 = Fact;
2125         }
2126       }
2127       else if (Modify && LDat1->asserted() && !LDat2->asserted()) {
2128         // The non-asserted lock in FSet2 is the one we want to track.
2129         *Iter1 = Fact;
2130       }
2131     } else {
2132       LDat2->handleRemovalFromIntersection(FSet2, FactMan, JoinLoc, LEK1,
2133                                            Handler);
2134     }
2135   }
2136
2137   // Find locks in FSet1 that are not in FSet2, and remove them.
2138   for (const auto &Fact : FSet1Orig) {
2139     const FactEntry *LDat1 = &FactMan[Fact];
2140     const FactEntry *LDat2 = FSet2.findLock(FactMan, *LDat1);
2141
2142     if (!LDat2) {
2143       LDat1->handleRemovalFromIntersection(FSet1Orig, FactMan, JoinLoc, LEK2,
2144                                            Handler);
2145       if (Modify)
2146         FSet1.removeLock(FactMan, *LDat1);
2147     }
2148   }
2149 }
2150
2151 // Return true if block B never continues to its successors.
2152 static bool neverReturns(const CFGBlock *B) {
2153   if (B->hasNoReturnElement())
2154     return true;
2155   if (B->empty())
2156     return false;
2157
2158   CFGElement Last = B->back();
2159   if (Optional<CFGStmt> S = Last.getAs<CFGStmt>()) {
2160     if (isa<CXXThrowExpr>(S->getStmt()))
2161       return true;
2162   }
2163   return false;
2164 }
2165
2166 /// Check a function's CFG for thread-safety violations.
2167 ///
2168 /// We traverse the blocks in the CFG, compute the set of mutexes that are held
2169 /// at the end of each block, and issue warnings for thread safety violations.
2170 /// Each block in the CFG is traversed exactly once.
2171 void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
2172   // TODO: this whole function needs be rewritten as a visitor for CFGWalker.
2173   // For now, we just use the walker to set things up.
2174   threadSafety::CFGWalker walker;
2175   if (!walker.init(AC))
2176     return;
2177
2178   // AC.dumpCFG(true);
2179   // threadSafety::printSCFG(walker);
2180
2181   CFG *CFGraph = walker.getGraph();
2182   const NamedDecl *D = walker.getDecl();
2183   const auto *CurrentFunction = dyn_cast<FunctionDecl>(D);
2184   CurrentMethod = dyn_cast<CXXMethodDecl>(D);
2185
2186   if (D->hasAttr<NoThreadSafetyAnalysisAttr>())
2187     return;
2188
2189   // FIXME: Do something a bit more intelligent inside constructor and
2190   // destructor code.  Constructors and destructors must assume unique access
2191   // to 'this', so checks on member variable access is disabled, but we should
2192   // still enable checks on other objects.
2193   if (isa<CXXConstructorDecl>(D))
2194     return;  // Don't check inside constructors.
2195   if (isa<CXXDestructorDecl>(D))
2196     return;  // Don't check inside destructors.
2197
2198   Handler.enterFunction(CurrentFunction);
2199
2200   BlockInfo.resize(CFGraph->getNumBlockIDs(),
2201     CFGBlockInfo::getEmptyBlockInfo(LocalVarMap));
2202
2203   // We need to explore the CFG via a "topological" ordering.
2204   // That way, we will be guaranteed to have information about required
2205   // predecessor locksets when exploring a new block.
2206   const PostOrderCFGView *SortedGraph = walker.getSortedGraph();
2207   PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
2208
2209   // Mark entry block as reachable
2210   BlockInfo[CFGraph->getEntry().getBlockID()].Reachable = true;
2211
2212   // Compute SSA names for local variables
2213   LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo);
2214
2215   // Fill in source locations for all CFGBlocks.
2216   findBlockLocations(CFGraph, SortedGraph, BlockInfo);
2217
2218   CapExprSet ExclusiveLocksAcquired;
2219   CapExprSet SharedLocksAcquired;
2220   CapExprSet LocksReleased;
2221
2222   // Add locks from exclusive_locks_required and shared_locks_required
2223   // to initial lockset. Also turn off checking for lock and unlock functions.
2224   // FIXME: is there a more intelligent way to check lock/unlock functions?
2225   if (!SortedGraph->empty() && D->hasAttrs()) {
2226     const CFGBlock *FirstBlock = *SortedGraph->begin();
2227     FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet;
2228
2229     CapExprSet ExclusiveLocksToAdd;
2230     CapExprSet SharedLocksToAdd;
2231     StringRef CapDiagKind = "mutex";
2232
2233     SourceLocation Loc = D->getLocation();
2234     for (const auto *Attr : D->attrs()) {
2235       Loc = Attr->getLocation();
2236       if (const auto *A = dyn_cast<RequiresCapabilityAttr>(Attr)) {
2237         getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
2238                     nullptr, D);
2239         CapDiagKind = ClassifyDiagnostic(A);
2240       } else if (const auto *A = dyn_cast<ReleaseCapabilityAttr>(Attr)) {
2241         // UNLOCK_FUNCTION() is used to hide the underlying lock implementation.
2242         // We must ignore such methods.
2243         if (A->args_size() == 0)
2244           return;
2245         // FIXME -- deal with exclusive vs. shared unlock functions?
2246         getMutexIDs(ExclusiveLocksToAdd, A, nullptr, D);
2247         getMutexIDs(LocksReleased, A, nullptr, D);
2248         CapDiagKind = ClassifyDiagnostic(A);
2249       } else if (const auto *A = dyn_cast<AcquireCapabilityAttr>(Attr)) {
2250         if (A->args_size() == 0)
2251           return;
2252         getMutexIDs(A->isShared() ? SharedLocksAcquired
2253                                   : ExclusiveLocksAcquired,
2254                     A, nullptr, D);
2255         CapDiagKind = ClassifyDiagnostic(A);
2256       } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) {
2257         // Don't try to check trylock functions for now.
2258         return;
2259       } else if (isa<SharedTrylockFunctionAttr>(Attr)) {
2260         // Don't try to check trylock functions for now.
2261         return;
2262       } else if (isa<TryAcquireCapabilityAttr>(Attr)) {
2263         // Don't try to check trylock functions for now.
2264         return;
2265       }
2266     }
2267
2268     // FIXME -- Loc can be wrong here.
2269     for (const auto &Mu : ExclusiveLocksToAdd) {
2270       auto Entry = llvm::make_unique<LockableFactEntry>(Mu, LK_Exclusive, Loc);
2271       Entry->setDeclared(true);
2272       addLock(InitialLockset, std::move(Entry), CapDiagKind, true);
2273     }
2274     for (const auto &Mu : SharedLocksToAdd) {
2275       auto Entry = llvm::make_unique<LockableFactEntry>(Mu, LK_Shared, Loc);
2276       Entry->setDeclared(true);
2277       addLock(InitialLockset, std::move(Entry), CapDiagKind, true);
2278     }
2279   }
2280
2281   for (const auto *CurrBlock : *SortedGraph) {
2282     int CurrBlockID = CurrBlock->getBlockID();
2283     CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
2284
2285     // Use the default initial lockset in case there are no predecessors.
2286     VisitedBlocks.insert(CurrBlock);
2287
2288     // Iterate through the predecessor blocks and warn if the lockset for all
2289     // predecessors is not the same. We take the entry lockset of the current
2290     // block to be the intersection of all previous locksets.
2291     // FIXME: By keeping the intersection, we may output more errors in future
2292     // for a lock which is not in the intersection, but was in the union. We
2293     // may want to also keep the union in future. As an example, let's say
2294     // the intersection contains Mutex L, and the union contains L and M.
2295     // Later we unlock M. At this point, we would output an error because we
2296     // never locked M; although the real error is probably that we forgot to
2297     // lock M on all code paths. Conversely, let's say that later we lock M.
2298     // In this case, we should compare against the intersection instead of the
2299     // union because the real error is probably that we forgot to unlock M on
2300     // all code paths.
2301     bool LocksetInitialized = false;
2302     SmallVector<CFGBlock *, 8> SpecialBlocks;
2303     for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
2304          PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
2305       // if *PI -> CurrBlock is a back edge
2306       if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI))
2307         continue;
2308
2309       int PrevBlockID = (*PI)->getBlockID();
2310       CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
2311
2312       // Ignore edges from blocks that can't return.
2313       if (neverReturns(*PI) || !PrevBlockInfo->Reachable)
2314         continue;
2315
2316       // Okay, we can reach this block from the entry.
2317       CurrBlockInfo->Reachable = true;
2318
2319       // If the previous block ended in a 'continue' or 'break' statement, then
2320       // a difference in locksets is probably due to a bug in that block, rather
2321       // than in some other predecessor. In that case, keep the other
2322       // predecessor's lockset.
2323       if (const Stmt *Terminator = (*PI)->getTerminator()) {
2324         if (isa<ContinueStmt>(Terminator) || isa<BreakStmt>(Terminator)) {
2325           SpecialBlocks.push_back(*PI);
2326           continue;
2327         }
2328       }
2329
2330       FactSet PrevLockset;
2331       getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock);
2332
2333       if (!LocksetInitialized) {
2334         CurrBlockInfo->EntrySet = PrevLockset;
2335         LocksetInitialized = true;
2336       } else {
2337         intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
2338                          CurrBlockInfo->EntryLoc,
2339                          LEK_LockedSomePredecessors);
2340       }
2341     }
2342
2343     // Skip rest of block if it's not reachable.
2344     if (!CurrBlockInfo->Reachable)
2345       continue;
2346
2347     // Process continue and break blocks. Assume that the lockset for the
2348     // resulting block is unaffected by any discrepancies in them.
2349     for (const auto *PrevBlock : SpecialBlocks) {
2350       int PrevBlockID = PrevBlock->getBlockID();
2351       CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
2352
2353       if (!LocksetInitialized) {
2354         CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet;
2355         LocksetInitialized = true;
2356       } else {
2357         // Determine whether this edge is a loop terminator for diagnostic
2358         // purposes. FIXME: A 'break' statement might be a loop terminator, but
2359         // it might also be part of a switch. Also, a subsequent destructor
2360         // might add to the lockset, in which case the real issue might be a
2361         // double lock on the other path.
2362         const Stmt *Terminator = PrevBlock->getTerminator();
2363         bool IsLoop = Terminator && isa<ContinueStmt>(Terminator);
2364
2365         FactSet PrevLockset;
2366         getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet,
2367                        PrevBlock, CurrBlock);
2368
2369         // Do not update EntrySet.
2370         intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset,
2371                          PrevBlockInfo->ExitLoc,
2372                          IsLoop ? LEK_LockedSomeLoopIterations
2373                                 : LEK_LockedSomePredecessors,
2374                          false);
2375       }
2376     }
2377
2378     BuildLockset LocksetBuilder(this, *CurrBlockInfo);
2379
2380     // Visit all the statements in the basic block.
2381     for (const auto &BI : *CurrBlock) {
2382       switch (BI.getKind()) {
2383         case CFGElement::Statement: {
2384           CFGStmt CS = BI.castAs<CFGStmt>();
2385           LocksetBuilder.Visit(const_cast<Stmt *>(CS.getStmt()));
2386           break;
2387         }
2388         // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now.
2389         case CFGElement::AutomaticObjectDtor: {
2390           CFGAutomaticObjDtor AD = BI.castAs<CFGAutomaticObjDtor>();
2391           auto *DD = const_cast<CXXDestructorDecl *>(
2392               AD.getDestructorDecl(AC.getASTContext()));
2393           if (!DD->hasAttrs())
2394             break;
2395
2396           // Create a dummy expression,
2397           auto *VD = const_cast<VarDecl *>(AD.getVarDecl());
2398           DeclRefExpr DRE(VD, false, VD->getType().getNonReferenceType(),
2399                           VK_LValue, AD.getTriggerStmt()->getLocEnd());
2400           LocksetBuilder.handleCall(&DRE, DD);
2401           break;
2402         }
2403         default:
2404           break;
2405       }
2406     }
2407     CurrBlockInfo->ExitSet = LocksetBuilder.FSet;
2408
2409     // For every back edge from CurrBlock (the end of the loop) to another block
2410     // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
2411     // the one held at the beginning of FirstLoopBlock. We can look up the
2412     // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
2413     for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
2414          SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
2415       // if CurrBlock -> *SI is *not* a back edge
2416       if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI))
2417         continue;
2418
2419       CFGBlock *FirstLoopBlock = *SI;
2420       CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()];
2421       CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID];
2422       intersectAndWarn(LoopEnd->ExitSet, PreLoop->EntrySet,
2423                        PreLoop->EntryLoc,
2424                        LEK_LockedSomeLoopIterations,
2425                        false);
2426     }
2427   }
2428
2429   CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()];
2430   CFGBlockInfo *Final   = &BlockInfo[CFGraph->getExit().getBlockID()];
2431
2432   // Skip the final check if the exit block is unreachable.
2433   if (!Final->Reachable)
2434     return;
2435
2436   // By default, we expect all locks held on entry to be held on exit.
2437   FactSet ExpectedExitSet = Initial->EntrySet;
2438
2439   // Adjust the expected exit set by adding or removing locks, as declared
2440   // by *-LOCK_FUNCTION and UNLOCK_FUNCTION.  The intersect below will then
2441   // issue the appropriate warning.
2442   // FIXME: the location here is not quite right.
2443   for (const auto &Lock : ExclusiveLocksAcquired)
2444     ExpectedExitSet.addLock(FactMan, llvm::make_unique<LockableFactEntry>(
2445                                          Lock, LK_Exclusive, D->getLocation()));
2446   for (const auto &Lock : SharedLocksAcquired)
2447     ExpectedExitSet.addLock(FactMan, llvm::make_unique<LockableFactEntry>(
2448                                          Lock, LK_Shared, D->getLocation()));
2449   for (const auto &Lock : LocksReleased)
2450     ExpectedExitSet.removeLock(FactMan, Lock);
2451
2452   // FIXME: Should we call this function for all blocks which exit the function?
2453   intersectAndWarn(ExpectedExitSet, Final->ExitSet,
2454                    Final->ExitLoc,
2455                    LEK_LockedAtEndOfFunction,
2456                    LEK_NotLockedAtEndOfFunction,
2457                    false);
2458
2459   Handler.leaveFunction(CurrentFunction);
2460 }
2461
2462 /// Check a function's CFG for thread-safety violations.
2463 ///
2464 /// We traverse the blocks in the CFG, compute the set of mutexes that are held
2465 /// at the end of each block, and issue warnings for thread safety violations.
2466 /// Each block in the CFG is traversed exactly once.
2467 void threadSafety::runThreadSafetyAnalysis(AnalysisDeclContext &AC,
2468                                            ThreadSafetyHandler &Handler,
2469                                            BeforeSet **BSet) {
2470   if (!*BSet)
2471     *BSet = new BeforeSet;
2472   ThreadSafetyAnalyzer Analyzer(Handler, *BSet);
2473   Analyzer.runAnalysis(AC);
2474 }
2475
2476 void threadSafety::threadSafetyCleanup(BeforeSet *Cache) { delete Cache; }
2477
2478 /// Helper function that returns a LockKind required for the given level
2479 /// of access.
2480 LockKind threadSafety::getLockKindFromAccessKind(AccessKind AK) {
2481   switch (AK) {
2482     case AK_Read :
2483       return LK_Shared;
2484     case AK_Written :
2485       return LK_Exclusive;
2486   }
2487   llvm_unreachable("Unknown AccessKind");
2488 }