]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/Analysis/UninitializedValues.cpp
Upgrade our copy of clang, llvm and lldb to 3.6.0 release.
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / Analysis / UninitializedValues.cpp
1 //==- UninitializedValues.cpp - Find Uninitialized Values -------*- C++ --*-==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements uninitialized values analysis for source-level CFGs.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/Attr.h"
16 #include "clang/AST/Decl.h"
17 #include "clang/AST/StmtVisitor.h"
18 #include "clang/Analysis/Analyses/PostOrderCFGView.h"
19 #include "clang/Analysis/Analyses/UninitializedValues.h"
20 #include "clang/Analysis/AnalysisContext.h"
21 #include "clang/Analysis/CFG.h"
22 #include "clang/Analysis/DomainSpecific/ObjCNoReturn.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/Optional.h"
25 #include "llvm/ADT/PackedVector.h"
26 #include "llvm/ADT/SmallBitVector.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/Support/SaveAndRestore.h"
29 #include <utility>
30
31 using namespace clang;
32
33 #define DEBUG_LOGGING 0
34
35 static bool isTrackedVar(const VarDecl *vd, const DeclContext *dc) {
36   if (vd->isLocalVarDecl() && !vd->hasGlobalStorage() &&
37       !vd->isExceptionVariable() && !vd->isInitCapture() &&
38       vd->getDeclContext() == dc) {
39     QualType ty = vd->getType();
40     return ty->isScalarType() || ty->isVectorType();
41   }
42   return false;
43 }
44
45 //------------------------------------------------------------------------====//
46 // DeclToIndex: a mapping from Decls we track to value indices.
47 //====------------------------------------------------------------------------//
48
49 namespace {
50 class DeclToIndex {
51   llvm::DenseMap<const VarDecl *, unsigned> map;
52 public:
53   DeclToIndex() {}
54   
55   /// Compute the actual mapping from declarations to bits.
56   void computeMap(const DeclContext &dc);
57   
58   /// Return the number of declarations in the map.
59   unsigned size() const { return map.size(); }
60   
61   /// Returns the bit vector index for a given declaration.
62   Optional<unsigned> getValueIndex(const VarDecl *d) const;
63 };
64 }
65
66 void DeclToIndex::computeMap(const DeclContext &dc) {
67   unsigned count = 0;
68   DeclContext::specific_decl_iterator<VarDecl> I(dc.decls_begin()),
69                                                E(dc.decls_end());
70   for ( ; I != E; ++I) {
71     const VarDecl *vd = *I;
72     if (isTrackedVar(vd, &dc))
73       map[vd] = count++;
74   }
75 }
76
77 Optional<unsigned> DeclToIndex::getValueIndex(const VarDecl *d) const {
78   llvm::DenseMap<const VarDecl *, unsigned>::const_iterator I = map.find(d);
79   if (I == map.end())
80     return None;
81   return I->second;
82 }
83
84 //------------------------------------------------------------------------====//
85 // CFGBlockValues: dataflow values for CFG blocks.
86 //====------------------------------------------------------------------------//
87
88 // These values are defined in such a way that a merge can be done using
89 // a bitwise OR.
90 enum Value { Unknown = 0x0,         /* 00 */
91              Initialized = 0x1,     /* 01 */
92              Uninitialized = 0x2,   /* 10 */
93              MayUninitialized = 0x3 /* 11 */ };
94
95 static bool isUninitialized(const Value v) {
96   return v >= Uninitialized;
97 }
98 static bool isAlwaysUninit(const Value v) {
99   return v == Uninitialized;
100 }
101
102 namespace {
103
104 typedef llvm::PackedVector<Value, 2, llvm::SmallBitVector> ValueVector;
105
106 class CFGBlockValues {
107   const CFG &cfg;
108   SmallVector<ValueVector, 8> vals;
109   ValueVector scratch;
110   DeclToIndex declToIndex;
111 public:
112   CFGBlockValues(const CFG &cfg);
113
114   unsigned getNumEntries() const { return declToIndex.size(); }
115   
116   void computeSetOfDeclarations(const DeclContext &dc);  
117   ValueVector &getValueVector(const CFGBlock *block) {
118     return vals[block->getBlockID()];
119   }
120
121   void setAllScratchValues(Value V);
122   void mergeIntoScratch(ValueVector const &source, bool isFirst);
123   bool updateValueVectorWithScratch(const CFGBlock *block);
124   
125   bool hasNoDeclarations() const {
126     return declToIndex.size() == 0;
127   }
128
129   void resetScratch();
130   
131   ValueVector::reference operator[](const VarDecl *vd);
132
133   Value getValue(const CFGBlock *block, const CFGBlock *dstBlock,
134                  const VarDecl *vd) {
135     const Optional<unsigned> &idx = declToIndex.getValueIndex(vd);
136     assert(idx.hasValue());
137     return getValueVector(block)[idx.getValue()];
138   }
139 };  
140 } // end anonymous namespace
141
142 CFGBlockValues::CFGBlockValues(const CFG &c) : cfg(c), vals(0) {}
143
144 void CFGBlockValues::computeSetOfDeclarations(const DeclContext &dc) {
145   declToIndex.computeMap(dc);
146   unsigned decls = declToIndex.size();
147   scratch.resize(decls);
148   unsigned n = cfg.getNumBlockIDs();
149   if (!n)
150     return;
151   vals.resize(n);
152   for (unsigned i = 0; i < n; ++i)
153     vals[i].resize(decls);
154 }
155
156 #if DEBUG_LOGGING
157 static void printVector(const CFGBlock *block, ValueVector &bv,
158                         unsigned num) {
159   llvm::errs() << block->getBlockID() << " :";
160   for (unsigned i = 0; i < bv.size(); ++i) {
161     llvm::errs() << ' ' << bv[i];
162   }
163   llvm::errs() << " : " << num << '\n';
164 }
165 #endif
166
167 void CFGBlockValues::setAllScratchValues(Value V) {
168   for (unsigned I = 0, E = scratch.size(); I != E; ++I)
169     scratch[I] = V;
170 }
171
172 void CFGBlockValues::mergeIntoScratch(ValueVector const &source,
173                                       bool isFirst) {
174   if (isFirst)
175     scratch = source;
176   else
177     scratch |= source;
178 }
179
180 bool CFGBlockValues::updateValueVectorWithScratch(const CFGBlock *block) {
181   ValueVector &dst = getValueVector(block);
182   bool changed = (dst != scratch);
183   if (changed)
184     dst = scratch;
185 #if DEBUG_LOGGING
186   printVector(block, scratch, 0);
187 #endif
188   return changed;
189 }
190
191 void CFGBlockValues::resetScratch() {
192   scratch.reset();
193 }
194
195 ValueVector::reference CFGBlockValues::operator[](const VarDecl *vd) {
196   const Optional<unsigned> &idx = declToIndex.getValueIndex(vd);
197   assert(idx.hasValue());
198   return scratch[idx.getValue()];
199 }
200
201 //------------------------------------------------------------------------====//
202 // Worklist: worklist for dataflow analysis.
203 //====------------------------------------------------------------------------//
204
205 namespace {
206 class DataflowWorklist {
207   PostOrderCFGView::iterator PO_I, PO_E;
208   SmallVector<const CFGBlock *, 20> worklist;
209   llvm::BitVector enqueuedBlocks;
210 public:
211   DataflowWorklist(const CFG &cfg, PostOrderCFGView &view)
212     : PO_I(view.begin()), PO_E(view.end()),
213       enqueuedBlocks(cfg.getNumBlockIDs(), true) {
214         // Treat the first block as already analyzed.
215         if (PO_I != PO_E) {
216           assert(*PO_I == &cfg.getEntry());
217           enqueuedBlocks[(*PO_I)->getBlockID()] = false;
218           ++PO_I;
219         }
220       }
221   
222   void enqueueSuccessors(const CFGBlock *block);
223   const CFGBlock *dequeue();
224 };
225 }
226
227 void DataflowWorklist::enqueueSuccessors(const clang::CFGBlock *block) {
228   for (CFGBlock::const_succ_iterator I = block->succ_begin(),
229        E = block->succ_end(); I != E; ++I) {
230     const CFGBlock *Successor = *I;
231     if (!Successor || enqueuedBlocks[Successor->getBlockID()])
232       continue;
233     worklist.push_back(Successor);
234     enqueuedBlocks[Successor->getBlockID()] = true;
235   }
236 }
237
238 const CFGBlock *DataflowWorklist::dequeue() {
239   const CFGBlock *B = nullptr;
240
241   // First dequeue from the worklist.  This can represent
242   // updates along backedges that we want propagated as quickly as possible.
243   if (!worklist.empty())
244     B = worklist.pop_back_val();
245
246   // Next dequeue from the initial reverse post order.  This is the
247   // theoretical ideal in the presence of no back edges.
248   else if (PO_I != PO_E) {
249     B = *PO_I;
250     ++PO_I;
251   }
252   else {
253     return nullptr;
254   }
255
256   assert(enqueuedBlocks[B->getBlockID()] == true);
257   enqueuedBlocks[B->getBlockID()] = false;
258   return B;
259 }
260
261 //------------------------------------------------------------------------====//
262 // Classification of DeclRefExprs as use or initialization.
263 //====------------------------------------------------------------------------//
264
265 namespace {
266 class FindVarResult {
267   const VarDecl *vd;
268   const DeclRefExpr *dr;
269 public:
270   FindVarResult(const VarDecl *vd, const DeclRefExpr *dr) : vd(vd), dr(dr) {}
271
272   const DeclRefExpr *getDeclRefExpr() const { return dr; }
273   const VarDecl *getDecl() const { return vd; }
274 };
275
276 static const Expr *stripCasts(ASTContext &C, const Expr *Ex) {
277   while (Ex) {
278     Ex = Ex->IgnoreParenNoopCasts(C);
279     if (const CastExpr *CE = dyn_cast<CastExpr>(Ex)) {
280       if (CE->getCastKind() == CK_LValueBitCast) {
281         Ex = CE->getSubExpr();
282         continue;
283       }
284     }
285     break;
286   }
287   return Ex;
288 }
289
290 /// If E is an expression comprising a reference to a single variable, find that
291 /// variable.
292 static FindVarResult findVar(const Expr *E, const DeclContext *DC) {
293   if (const DeclRefExpr *DRE =
294         dyn_cast<DeclRefExpr>(stripCasts(DC->getParentASTContext(), E)))
295     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
296       if (isTrackedVar(VD, DC))
297         return FindVarResult(VD, DRE);
298   return FindVarResult(nullptr, nullptr);
299 }
300
301 /// \brief Classify each DeclRefExpr as an initialization or a use. Any
302 /// DeclRefExpr which isn't explicitly classified will be assumed to have
303 /// escaped the analysis and will be treated as an initialization.
304 class ClassifyRefs : public StmtVisitor<ClassifyRefs> {
305 public:
306   enum Class {
307     Init,
308     Use,
309     SelfInit,
310     Ignore
311   };
312
313 private:
314   const DeclContext *DC;
315   llvm::DenseMap<const DeclRefExpr*, Class> Classification;
316
317   bool isTrackedVar(const VarDecl *VD) const {
318     return ::isTrackedVar(VD, DC);
319   }
320
321   void classify(const Expr *E, Class C);
322
323 public:
324   ClassifyRefs(AnalysisDeclContext &AC) : DC(cast<DeclContext>(AC.getDecl())) {}
325
326   void VisitDeclStmt(DeclStmt *DS);
327   void VisitUnaryOperator(UnaryOperator *UO);
328   void VisitBinaryOperator(BinaryOperator *BO);
329   void VisitCallExpr(CallExpr *CE);
330   void VisitCastExpr(CastExpr *CE);
331
332   void operator()(Stmt *S) { Visit(S); }
333
334   Class get(const DeclRefExpr *DRE) const {
335     llvm::DenseMap<const DeclRefExpr*, Class>::const_iterator I
336         = Classification.find(DRE);
337     if (I != Classification.end())
338       return I->second;
339
340     const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl());
341     if (!VD || !isTrackedVar(VD))
342       return Ignore;
343
344     return Init;
345   }
346 };
347 }
348
349 static const DeclRefExpr *getSelfInitExpr(VarDecl *VD) {
350   if (Expr *Init = VD->getInit()) {
351     const DeclRefExpr *DRE
352       = dyn_cast<DeclRefExpr>(stripCasts(VD->getASTContext(), Init));
353     if (DRE && DRE->getDecl() == VD)
354       return DRE;
355   }
356   return nullptr;
357 }
358
359 void ClassifyRefs::classify(const Expr *E, Class C) {
360   // The result of a ?: could also be an lvalue.
361   E = E->IgnoreParens();
362   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
363     classify(CO->getTrueExpr(), C);
364     classify(CO->getFalseExpr(), C);
365     return;
366   }
367
368   if (const BinaryConditionalOperator *BCO =
369           dyn_cast<BinaryConditionalOperator>(E)) {
370     classify(BCO->getFalseExpr(), C);
371     return;
372   }
373
374   if (const OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
375     classify(OVE->getSourceExpr(), C);
376     return;
377   }
378
379   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
380     if (BO->getOpcode() == BO_Comma)
381       classify(BO->getRHS(), C);
382     return;
383   }
384
385   FindVarResult Var = findVar(E, DC);
386   if (const DeclRefExpr *DRE = Var.getDeclRefExpr())
387     Classification[DRE] = std::max(Classification[DRE], C);
388 }
389
390 void ClassifyRefs::VisitDeclStmt(DeclStmt *DS) {
391   for (auto *DI : DS->decls()) {
392     VarDecl *VD = dyn_cast<VarDecl>(DI);
393     if (VD && isTrackedVar(VD))
394       if (const DeclRefExpr *DRE = getSelfInitExpr(VD))
395         Classification[DRE] = SelfInit;
396   }
397 }
398
399 void ClassifyRefs::VisitBinaryOperator(BinaryOperator *BO) {
400   // Ignore the evaluation of a DeclRefExpr on the LHS of an assignment. If this
401   // is not a compound-assignment, we will treat it as initializing the variable
402   // when TransferFunctions visits it. A compound-assignment does not affect
403   // whether a variable is uninitialized, and there's no point counting it as a
404   // use.
405   if (BO->isCompoundAssignmentOp())
406     classify(BO->getLHS(), Use);
407   else if (BO->getOpcode() == BO_Assign)
408     classify(BO->getLHS(), Ignore);
409 }
410
411 void ClassifyRefs::VisitUnaryOperator(UnaryOperator *UO) {
412   // Increment and decrement are uses despite there being no lvalue-to-rvalue
413   // conversion.
414   if (UO->isIncrementDecrementOp())
415     classify(UO->getSubExpr(), Use);
416 }
417
418 void ClassifyRefs::VisitCallExpr(CallExpr *CE) {
419   // Classify arguments to std::move as used.
420   if (CE->getNumArgs() == 1) {
421     if (FunctionDecl *FD = CE->getDirectCallee()) {
422       if (FD->isInStdNamespace() && FD->getIdentifier() &&
423           FD->getIdentifier()->isStr("move")) {
424         classify(CE->getArg(0), Use);
425         return;
426       }
427     }
428   }
429
430   // If a value is passed by const reference to a function, we should not assume
431   // that it is initialized by the call, and we conservatively do not assume
432   // that it is used.
433   for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end();
434        I != E; ++I)
435     if ((*I)->getType().isConstQualified() && (*I)->isGLValue())
436       classify(*I, Ignore);
437 }
438
439 void ClassifyRefs::VisitCastExpr(CastExpr *CE) {
440   if (CE->getCastKind() == CK_LValueToRValue)
441     classify(CE->getSubExpr(), Use);
442   else if (CStyleCastExpr *CSE = dyn_cast<CStyleCastExpr>(CE)) {
443     if (CSE->getType()->isVoidType()) {
444       // Squelch any detected load of an uninitialized value if
445       // we cast it to void.
446       // e.g. (void) x;
447       classify(CSE->getSubExpr(), Ignore);
448     }
449   }
450 }
451
452 //------------------------------------------------------------------------====//
453 // Transfer function for uninitialized values analysis.
454 //====------------------------------------------------------------------------//
455
456 namespace {
457 class TransferFunctions : public StmtVisitor<TransferFunctions> {
458   CFGBlockValues &vals;
459   const CFG &cfg;
460   const CFGBlock *block;
461   AnalysisDeclContext &ac;
462   const ClassifyRefs &classification;
463   ObjCNoReturn objCNoRet;
464   UninitVariablesHandler &handler;
465
466 public:
467   TransferFunctions(CFGBlockValues &vals, const CFG &cfg,
468                     const CFGBlock *block, AnalysisDeclContext &ac,
469                     const ClassifyRefs &classification,
470                     UninitVariablesHandler &handler)
471     : vals(vals), cfg(cfg), block(block), ac(ac),
472       classification(classification), objCNoRet(ac.getASTContext()),
473       handler(handler) {}
474
475   void reportUse(const Expr *ex, const VarDecl *vd);
476
477   void VisitBinaryOperator(BinaryOperator *bo);
478   void VisitBlockExpr(BlockExpr *be);
479   void VisitCallExpr(CallExpr *ce);
480   void VisitDeclRefExpr(DeclRefExpr *dr);
481   void VisitDeclStmt(DeclStmt *ds);
482   void VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS);
483   void VisitObjCMessageExpr(ObjCMessageExpr *ME);
484
485   bool isTrackedVar(const VarDecl *vd) {
486     return ::isTrackedVar(vd, cast<DeclContext>(ac.getDecl()));
487   }
488
489   FindVarResult findVar(const Expr *ex) {
490     return ::findVar(ex, cast<DeclContext>(ac.getDecl()));
491   }
492
493   UninitUse getUninitUse(const Expr *ex, const VarDecl *vd, Value v) {
494     UninitUse Use(ex, isAlwaysUninit(v));
495
496     assert(isUninitialized(v));
497     if (Use.getKind() == UninitUse::Always)
498       return Use;
499
500     // If an edge which leads unconditionally to this use did not initialize
501     // the variable, we can say something stronger than 'may be uninitialized':
502     // we can say 'either it's used uninitialized or you have dead code'.
503     //
504     // We track the number of successors of a node which have been visited, and
505     // visit a node once we have visited all of its successors. Only edges where
506     // the variable might still be uninitialized are followed. Since a variable
507     // can't transfer from being initialized to being uninitialized, this will
508     // trace out the subgraph which inevitably leads to the use and does not
509     // initialize the variable. We do not want to skip past loops, since their
510     // non-termination might be correlated with the initialization condition.
511     //
512     // For example:
513     //
514     //         void f(bool a, bool b) {
515     // block1:   int n;
516     //           if (a) {
517     // block2:     if (b)
518     // block3:       n = 1;
519     // block4:   } else if (b) {
520     // block5:     while (!a) {
521     // block6:       do_work(&a);
522     //               n = 2;
523     //             }
524     //           }
525     // block7:   if (a)
526     // block8:     g();
527     // block9:   return n;
528     //         }
529     //
530     // Starting from the maybe-uninitialized use in block 9:
531     //  * Block 7 is not visited because we have only visited one of its two
532     //    successors.
533     //  * Block 8 is visited because we've visited its only successor.
534     // From block 8:
535     //  * Block 7 is visited because we've now visited both of its successors.
536     // From block 7:
537     //  * Blocks 1, 2, 4, 5, and 6 are not visited because we didn't visit all
538     //    of their successors (we didn't visit 4, 3, 5, 6, and 5, respectively).
539     //  * Block 3 is not visited because it initializes 'n'.
540     // Now the algorithm terminates, having visited blocks 7 and 8, and having
541     // found the frontier is blocks 2, 4, and 5.
542     //
543     // 'n' is definitely uninitialized for two edges into block 7 (from blocks 2
544     // and 4), so we report that any time either of those edges is taken (in
545     // each case when 'b == false'), 'n' is used uninitialized.
546     SmallVector<const CFGBlock*, 32> Queue;
547     SmallVector<unsigned, 32> SuccsVisited(cfg.getNumBlockIDs(), 0);
548     Queue.push_back(block);
549     // Specify that we've already visited all successors of the starting block.
550     // This has the dual purpose of ensuring we never add it to the queue, and
551     // of marking it as not being a candidate element of the frontier.
552     SuccsVisited[block->getBlockID()] = block->succ_size();
553     while (!Queue.empty()) {
554       const CFGBlock *B = Queue.pop_back_val();
555
556       // If the use is always reached from the entry block, make a note of that.
557       if (B == &cfg.getEntry())
558         Use.setUninitAfterCall();
559
560       for (CFGBlock::const_pred_iterator I = B->pred_begin(), E = B->pred_end();
561            I != E; ++I) {
562         const CFGBlock *Pred = *I;
563         if (!Pred)
564           continue;
565         
566         Value AtPredExit = vals.getValue(Pred, B, vd);
567         if (AtPredExit == Initialized)
568           // This block initializes the variable.
569           continue;
570         if (AtPredExit == MayUninitialized &&
571             vals.getValue(B, nullptr, vd) == Uninitialized) {
572           // This block declares the variable (uninitialized), and is reachable
573           // from a block that initializes the variable. We can't guarantee to
574           // give an earlier location for the diagnostic (and it appears that
575           // this code is intended to be reachable) so give a diagnostic here
576           // and go no further down this path.
577           Use.setUninitAfterDecl();
578           continue;
579         }
580
581         unsigned &SV = SuccsVisited[Pred->getBlockID()];
582         if (!SV) {
583           // When visiting the first successor of a block, mark all NULL
584           // successors as having been visited.
585           for (CFGBlock::const_succ_iterator SI = Pred->succ_begin(),
586                                              SE = Pred->succ_end();
587                SI != SE; ++SI)
588             if (!*SI)
589               ++SV;
590         }
591
592         if (++SV == Pred->succ_size())
593           // All paths from this block lead to the use and don't initialize the
594           // variable.
595           Queue.push_back(Pred);
596       }
597     }
598
599     // Scan the frontier, looking for blocks where the variable was
600     // uninitialized.
601     for (CFG::const_iterator BI = cfg.begin(), BE = cfg.end(); BI != BE; ++BI) {
602       const CFGBlock *Block = *BI;
603       unsigned BlockID = Block->getBlockID();
604       const Stmt *Term = Block->getTerminator();
605       if (SuccsVisited[BlockID] && SuccsVisited[BlockID] < Block->succ_size() &&
606           Term) {
607         // This block inevitably leads to the use. If we have an edge from here
608         // to a post-dominator block, and the variable is uninitialized on that
609         // edge, we have found a bug.
610         for (CFGBlock::const_succ_iterator I = Block->succ_begin(),
611              E = Block->succ_end(); I != E; ++I) {
612           const CFGBlock *Succ = *I;
613           if (Succ && SuccsVisited[Succ->getBlockID()] >= Succ->succ_size() &&
614               vals.getValue(Block, Succ, vd) == Uninitialized) {
615             // Switch cases are a special case: report the label to the caller
616             // as the 'terminator', not the switch statement itself. Suppress
617             // situations where no label matched: we can't be sure that's
618             // possible.
619             if (isa<SwitchStmt>(Term)) {
620               const Stmt *Label = Succ->getLabel();
621               if (!Label || !isa<SwitchCase>(Label))
622                 // Might not be possible.
623                 continue;
624               UninitUse::Branch Branch;
625               Branch.Terminator = Label;
626               Branch.Output = 0; // Ignored.
627               Use.addUninitBranch(Branch);
628             } else {
629               UninitUse::Branch Branch;
630               Branch.Terminator = Term;
631               Branch.Output = I - Block->succ_begin();
632               Use.addUninitBranch(Branch);
633             }
634           }
635         }
636       }
637     }
638
639     return Use;
640   }
641 };
642 }
643
644 void TransferFunctions::reportUse(const Expr *ex, const VarDecl *vd) {
645   Value v = vals[vd];
646   if (isUninitialized(v))
647     handler.handleUseOfUninitVariable(vd, getUninitUse(ex, vd, v));
648 }
649
650 void TransferFunctions::VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS) {
651   // This represents an initialization of the 'element' value.
652   if (DeclStmt *DS = dyn_cast<DeclStmt>(FS->getElement())) {
653     const VarDecl *VD = cast<VarDecl>(DS->getSingleDecl());
654     if (isTrackedVar(VD))
655       vals[VD] = Initialized;
656   }
657 }
658
659 void TransferFunctions::VisitBlockExpr(BlockExpr *be) {
660   const BlockDecl *bd = be->getBlockDecl();
661   for (const auto &I : bd->captures()) {
662     const VarDecl *vd = I.getVariable();
663     if (!isTrackedVar(vd))
664       continue;
665     if (I.isByRef()) {
666       vals[vd] = Initialized;
667       continue;
668     }
669     reportUse(be, vd);
670   }
671 }
672
673 void TransferFunctions::VisitCallExpr(CallExpr *ce) {
674   if (Decl *Callee = ce->getCalleeDecl()) {
675     if (Callee->hasAttr<ReturnsTwiceAttr>()) {
676       // After a call to a function like setjmp or vfork, any variable which is
677       // initialized anywhere within this function may now be initialized. For
678       // now, just assume such a call initializes all variables.  FIXME: Only
679       // mark variables as initialized if they have an initializer which is
680       // reachable from here.
681       vals.setAllScratchValues(Initialized);
682     }
683     else if (Callee->hasAttr<AnalyzerNoReturnAttr>()) {
684       // Functions labeled like "analyzer_noreturn" are often used to denote
685       // "panic" functions that in special debug situations can still return,
686       // but for the most part should not be treated as returning.  This is a
687       // useful annotation borrowed from the static analyzer that is useful for
688       // suppressing branch-specific false positives when we call one of these
689       // functions but keep pretending the path continues (when in reality the
690       // user doesn't care).
691       vals.setAllScratchValues(Unknown);
692     }
693   }
694 }
695
696 void TransferFunctions::VisitDeclRefExpr(DeclRefExpr *dr) {
697   switch (classification.get(dr)) {
698   case ClassifyRefs::Ignore:
699     break;
700   case ClassifyRefs::Use:
701     reportUse(dr, cast<VarDecl>(dr->getDecl()));
702     break;
703   case ClassifyRefs::Init:
704     vals[cast<VarDecl>(dr->getDecl())] = Initialized;
705     break;
706   case ClassifyRefs::SelfInit:
707       handler.handleSelfInit(cast<VarDecl>(dr->getDecl()));
708     break;
709   }
710 }
711
712 void TransferFunctions::VisitBinaryOperator(BinaryOperator *BO) {
713   if (BO->getOpcode() == BO_Assign) {
714     FindVarResult Var = findVar(BO->getLHS());
715     if (const VarDecl *VD = Var.getDecl())
716       vals[VD] = Initialized;
717   }
718 }
719
720 void TransferFunctions::VisitDeclStmt(DeclStmt *DS) {
721   for (auto *DI : DS->decls()) {
722     VarDecl *VD = dyn_cast<VarDecl>(DI);
723     if (VD && isTrackedVar(VD)) {
724       if (getSelfInitExpr(VD)) {
725         // If the initializer consists solely of a reference to itself, we
726         // explicitly mark the variable as uninitialized. This allows code
727         // like the following:
728         //
729         //   int x = x;
730         //
731         // to deliberately leave a variable uninitialized. Different analysis
732         // clients can detect this pattern and adjust their reporting
733         // appropriately, but we need to continue to analyze subsequent uses
734         // of the variable.
735         vals[VD] = Uninitialized;
736       } else if (VD->getInit()) {
737         // Treat the new variable as initialized.
738         vals[VD] = Initialized;
739       } else {
740         // No initializer: the variable is now uninitialized. This matters
741         // for cases like:
742         //   while (...) {
743         //     int n;
744         //     use(n);
745         //     n = 0;
746         //   }
747         // FIXME: Mark the variable as uninitialized whenever its scope is
748         // left, since its scope could be re-entered by a jump over the
749         // declaration.
750         vals[VD] = Uninitialized;
751       }
752     }
753   }
754 }
755
756 void TransferFunctions::VisitObjCMessageExpr(ObjCMessageExpr *ME) {
757   // If the Objective-C message expression is an implicit no-return that
758   // is not modeled in the CFG, set the tracked dataflow values to Unknown.
759   if (objCNoRet.isImplicitNoReturn(ME)) {
760     vals.setAllScratchValues(Unknown);
761   }
762 }
763
764 //------------------------------------------------------------------------====//
765 // High-level "driver" logic for uninitialized values analysis.
766 //====------------------------------------------------------------------------//
767
768 static bool runOnBlock(const CFGBlock *block, const CFG &cfg,
769                        AnalysisDeclContext &ac, CFGBlockValues &vals,
770                        const ClassifyRefs &classification,
771                        llvm::BitVector &wasAnalyzed,
772                        UninitVariablesHandler &handler) {
773   wasAnalyzed[block->getBlockID()] = true;
774   vals.resetScratch();
775   // Merge in values of predecessor blocks.
776   bool isFirst = true;
777   for (CFGBlock::const_pred_iterator I = block->pred_begin(),
778        E = block->pred_end(); I != E; ++I) {
779     const CFGBlock *pred = *I;
780     if (!pred)
781       continue;
782     if (wasAnalyzed[pred->getBlockID()]) {
783       vals.mergeIntoScratch(vals.getValueVector(pred), isFirst);
784       isFirst = false;
785     }
786   }
787   // Apply the transfer function.
788   TransferFunctions tf(vals, cfg, block, ac, classification, handler);
789   for (CFGBlock::const_iterator I = block->begin(), E = block->end(); 
790        I != E; ++I) {
791     if (Optional<CFGStmt> cs = I->getAs<CFGStmt>())
792       tf.Visit(const_cast<Stmt*>(cs->getStmt()));
793   }
794   return vals.updateValueVectorWithScratch(block);
795 }
796
797 /// PruneBlocksHandler is a special UninitVariablesHandler that is used
798 /// to detect when a CFGBlock has any *potential* use of an uninitialized
799 /// variable.  It is mainly used to prune out work during the final
800 /// reporting pass.
801 namespace {
802 struct PruneBlocksHandler : public UninitVariablesHandler {
803   PruneBlocksHandler(unsigned numBlocks)
804     : hadUse(numBlocks, false), hadAnyUse(false),
805       currentBlock(0) {}
806
807   virtual ~PruneBlocksHandler() {}
808
809   /// Records if a CFGBlock had a potential use of an uninitialized variable.
810   llvm::BitVector hadUse;
811
812   /// Records if any CFGBlock had a potential use of an uninitialized variable.
813   bool hadAnyUse;
814
815   /// The current block to scribble use information.
816   unsigned currentBlock;
817
818   void handleUseOfUninitVariable(const VarDecl *vd,
819                                  const UninitUse &use) override {
820     hadUse[currentBlock] = true;
821     hadAnyUse = true;
822   }
823
824   /// Called when the uninitialized variable analysis detects the
825   /// idiom 'int x = x'.  All other uses of 'x' within the initializer
826   /// are handled by handleUseOfUninitVariable.
827   void handleSelfInit(const VarDecl *vd) override {
828     hadUse[currentBlock] = true;
829     hadAnyUse = true;
830   }
831 };
832 }
833
834 void clang::runUninitializedVariablesAnalysis(
835     const DeclContext &dc,
836     const CFG &cfg,
837     AnalysisDeclContext &ac,
838     UninitVariablesHandler &handler,
839     UninitVariablesAnalysisStats &stats) {
840   CFGBlockValues vals(cfg);
841   vals.computeSetOfDeclarations(dc);
842   if (vals.hasNoDeclarations())
843     return;
844
845   stats.NumVariablesAnalyzed = vals.getNumEntries();
846
847   // Precompute which expressions are uses and which are initializations.
848   ClassifyRefs classification(ac);
849   cfg.VisitBlockStmts(classification);
850
851   // Mark all variables uninitialized at the entry.
852   const CFGBlock &entry = cfg.getEntry();
853   ValueVector &vec = vals.getValueVector(&entry);
854   const unsigned n = vals.getNumEntries();
855   for (unsigned j = 0; j < n ; ++j) {
856     vec[j] = Uninitialized;
857   }
858
859   // Proceed with the workist.
860   DataflowWorklist worklist(cfg, *ac.getAnalysis<PostOrderCFGView>());
861   llvm::BitVector previouslyVisited(cfg.getNumBlockIDs());
862   worklist.enqueueSuccessors(&cfg.getEntry());
863   llvm::BitVector wasAnalyzed(cfg.getNumBlockIDs(), false);
864   wasAnalyzed[cfg.getEntry().getBlockID()] = true;
865   PruneBlocksHandler PBH(cfg.getNumBlockIDs());
866
867   while (const CFGBlock *block = worklist.dequeue()) {
868     PBH.currentBlock = block->getBlockID();
869
870     // Did the block change?
871     bool changed = runOnBlock(block, cfg, ac, vals,
872                               classification, wasAnalyzed, PBH);
873     ++stats.NumBlockVisits;
874     if (changed || !previouslyVisited[block->getBlockID()])
875       worklist.enqueueSuccessors(block);    
876     previouslyVisited[block->getBlockID()] = true;
877   }
878
879   if (!PBH.hadAnyUse)
880     return;
881
882   // Run through the blocks one more time, and report uninitialized variables.
883   for (CFG::const_iterator BI = cfg.begin(), BE = cfg.end(); BI != BE; ++BI) {
884     const CFGBlock *block = *BI;
885     if (PBH.hadUse[block->getBlockID()]) {
886       runOnBlock(block, cfg, ac, vals, classification, wasAnalyzed, handler);
887       ++stats.NumBlockVisits;
888     }
889   }
890 }
891
892 UninitVariablesHandler::~UninitVariablesHandler() {}