]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/CodeGen/BackendUtil.cpp
Merge lldb trunk r300422 and resolve conflicts.
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / CodeGen / BackendUtil.cpp
1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "clang/CodeGen/BackendUtil.h"
11 #include "clang/Basic/Diagnostic.h"
12 #include "clang/Basic/LangOptions.h"
13 #include "clang/Basic/TargetOptions.h"
14 #include "clang/Frontend/CodeGenOptions.h"
15 #include "clang/Frontend/FrontendDiagnostic.h"
16 #include "clang/Frontend/Utils.h"
17 #include "clang/Lex/HeaderSearchOptions.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/ADT/StringSwitch.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/Analysis/TargetLibraryInfo.h"
23 #include "llvm/Analysis/TargetTransformInfo.h"
24 #include "llvm/Bitcode/BitcodeReader.h"
25 #include "llvm/Bitcode/BitcodeWriter.h"
26 #include "llvm/Bitcode/BitcodeWriterPass.h"
27 #include "llvm/CodeGen/RegAllocRegistry.h"
28 #include "llvm/CodeGen/SchedulerRegistry.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/IRPrintingPasses.h"
31 #include "llvm/IR/LegacyPassManager.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/ModuleSummaryIndex.h"
34 #include "llvm/IR/Verifier.h"
35 #include "llvm/LTO/LTOBackend.h"
36 #include "llvm/MC/MCAsmInfo.h"
37 #include "llvm/MC/SubtargetFeature.h"
38 #include "llvm/Object/ModuleSummaryIndexObjectFile.h"
39 #include "llvm/Passes/PassBuilder.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/MemoryBuffer.h"
42 #include "llvm/Support/PrettyStackTrace.h"
43 #include "llvm/Support/TargetRegistry.h"
44 #include "llvm/Support/Timer.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Target/TargetMachine.h"
47 #include "llvm/Target/TargetOptions.h"
48 #include "llvm/Target/TargetSubtargetInfo.h"
49 #include "llvm/Transforms/Coroutines.h"
50 #include "llvm/Transforms/IPO.h"
51 #include "llvm/Transforms/IPO/AlwaysInliner.h"
52 #include "llvm/Transforms/IPO/PassManagerBuilder.h"
53 #include "llvm/Transforms/Instrumentation.h"
54 #include "llvm/Transforms/ObjCARC.h"
55 #include "llvm/Transforms/Scalar.h"
56 #include "llvm/Transforms/Scalar/GVN.h"
57 #include "llvm/Transforms/Utils/SymbolRewriter.h"
58 #include <memory>
59 using namespace clang;
60 using namespace llvm;
61
62 namespace {
63
64 // Default filename used for profile generation.
65 static constexpr StringLiteral DefaultProfileGenName = "default_%m.profraw";
66
67 class EmitAssemblyHelper {
68   DiagnosticsEngine &Diags;
69   const HeaderSearchOptions &HSOpts;
70   const CodeGenOptions &CodeGenOpts;
71   const clang::TargetOptions &TargetOpts;
72   const LangOptions &LangOpts;
73   Module *TheModule;
74
75   Timer CodeGenerationTime;
76
77   std::unique_ptr<raw_pwrite_stream> OS;
78
79   TargetIRAnalysis getTargetIRAnalysis() const {
80     if (TM)
81       return TM->getTargetIRAnalysis();
82
83     return TargetIRAnalysis();
84   }
85
86   /// Set LLVM command line options passed through -backend-option.
87   void setCommandLineOpts();
88
89   void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM);
90
91   /// Generates the TargetMachine.
92   /// Leaves TM unchanged if it is unable to create the target machine.
93   /// Some of our clang tests specify triples which are not built
94   /// into clang. This is okay because these tests check the generated
95   /// IR, and they require DataLayout which depends on the triple.
96   /// In this case, we allow this method to fail and not report an error.
97   /// When MustCreateTM is used, we print an error if we are unable to load
98   /// the requested target.
99   void CreateTargetMachine(bool MustCreateTM);
100
101   /// Add passes necessary to emit assembly or LLVM IR.
102   ///
103   /// \return True on success.
104   bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action,
105                      raw_pwrite_stream &OS);
106
107 public:
108   EmitAssemblyHelper(DiagnosticsEngine &_Diags,
109                      const HeaderSearchOptions &HeaderSearchOpts,
110                      const CodeGenOptions &CGOpts,
111                      const clang::TargetOptions &TOpts,
112                      const LangOptions &LOpts, Module *M)
113       : Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts),
114         TargetOpts(TOpts), LangOpts(LOpts), TheModule(M),
115         CodeGenerationTime("codegen", "Code Generation Time") {}
116
117   ~EmitAssemblyHelper() {
118     if (CodeGenOpts.DisableFree)
119       BuryPointer(std::move(TM));
120   }
121
122   std::unique_ptr<TargetMachine> TM;
123
124   void EmitAssembly(BackendAction Action,
125                     std::unique_ptr<raw_pwrite_stream> OS);
126
127   void EmitAssemblyWithNewPassManager(BackendAction Action,
128                                       std::unique_ptr<raw_pwrite_stream> OS);
129 };
130
131 // We need this wrapper to access LangOpts and CGOpts from extension functions
132 // that we add to the PassManagerBuilder.
133 class PassManagerBuilderWrapper : public PassManagerBuilder {
134 public:
135   PassManagerBuilderWrapper(const CodeGenOptions &CGOpts,
136                             const LangOptions &LangOpts)
137       : PassManagerBuilder(), CGOpts(CGOpts), LangOpts(LangOpts) {}
138   const CodeGenOptions &getCGOpts() const { return CGOpts; }
139   const LangOptions &getLangOpts() const { return LangOpts; }
140 private:
141   const CodeGenOptions &CGOpts;
142   const LangOptions &LangOpts;
143 };
144
145 }
146
147 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) {
148   if (Builder.OptLevel > 0)
149     PM.add(createObjCARCAPElimPass());
150 }
151
152 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) {
153   if (Builder.OptLevel > 0)
154     PM.add(createObjCARCExpandPass());
155 }
156
157 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) {
158   if (Builder.OptLevel > 0)
159     PM.add(createObjCARCOptPass());
160 }
161
162 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder,
163                                      legacy::PassManagerBase &PM) {
164   PM.add(createAddDiscriminatorsPass());
165 }
166
167 static void addBoundsCheckingPass(const PassManagerBuilder &Builder,
168                                   legacy::PassManagerBase &PM) {
169   PM.add(createBoundsCheckingPass());
170 }
171
172 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder,
173                                      legacy::PassManagerBase &PM) {
174   const PassManagerBuilderWrapper &BuilderWrapper =
175       static_cast<const PassManagerBuilderWrapper&>(Builder);
176   const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
177   SanitizerCoverageOptions Opts;
178   Opts.CoverageType =
179       static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType);
180   Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls;
181   Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB;
182   Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp;
183   Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv;
184   Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep;
185   Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters;
186   Opts.TracePC = CGOpts.SanitizeCoverageTracePC;
187   Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard;
188   PM.add(createSanitizerCoverageModulePass(Opts));
189 }
190
191 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder,
192                                       legacy::PassManagerBase &PM) {
193   const PassManagerBuilderWrapper &BuilderWrapper =
194       static_cast<const PassManagerBuilderWrapper&>(Builder);
195   const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
196   bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address);
197   bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope;
198   PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover,
199                                             UseAfterScope));
200   PM.add(createAddressSanitizerModulePass(/*CompileKernel*/false, Recover));
201 }
202
203 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder,
204                                             legacy::PassManagerBase &PM) {
205   PM.add(createAddressSanitizerFunctionPass(
206       /*CompileKernel*/ true,
207       /*Recover*/ true, /*UseAfterScope*/ false));
208   PM.add(createAddressSanitizerModulePass(/*CompileKernel*/true,
209                                           /*Recover*/true));
210 }
211
212 static void addMemorySanitizerPass(const PassManagerBuilder &Builder,
213                                    legacy::PassManagerBase &PM) {
214   const PassManagerBuilderWrapper &BuilderWrapper =
215       static_cast<const PassManagerBuilderWrapper&>(Builder);
216   const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
217   int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins;
218   bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory);
219   PM.add(createMemorySanitizerPass(TrackOrigins, Recover));
220
221   // MemorySanitizer inserts complex instrumentation that mostly follows
222   // the logic of the original code, but operates on "shadow" values.
223   // It can benefit from re-running some general purpose optimization passes.
224   if (Builder.OptLevel > 0) {
225     PM.add(createEarlyCSEPass());
226     PM.add(createReassociatePass());
227     PM.add(createLICMPass());
228     PM.add(createGVNPass());
229     PM.add(createInstructionCombiningPass());
230     PM.add(createDeadStoreEliminationPass());
231   }
232 }
233
234 static void addThreadSanitizerPass(const PassManagerBuilder &Builder,
235                                    legacy::PassManagerBase &PM) {
236   PM.add(createThreadSanitizerPass());
237 }
238
239 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder,
240                                      legacy::PassManagerBase &PM) {
241   const PassManagerBuilderWrapper &BuilderWrapper =
242       static_cast<const PassManagerBuilderWrapper&>(Builder);
243   const LangOptions &LangOpts = BuilderWrapper.getLangOpts();
244   PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles));
245 }
246
247 static void addEfficiencySanitizerPass(const PassManagerBuilder &Builder,
248                                        legacy::PassManagerBase &PM) {
249   const PassManagerBuilderWrapper &BuilderWrapper =
250       static_cast<const PassManagerBuilderWrapper&>(Builder);
251   const LangOptions &LangOpts = BuilderWrapper.getLangOpts();
252   EfficiencySanitizerOptions Opts;
253   if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyCacheFrag))
254     Opts.ToolType = EfficiencySanitizerOptions::ESAN_CacheFrag;
255   else if (LangOpts.Sanitize.has(SanitizerKind::EfficiencyWorkingSet))
256     Opts.ToolType = EfficiencySanitizerOptions::ESAN_WorkingSet;
257   PM.add(createEfficiencySanitizerPass(Opts));
258 }
259
260 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple,
261                                          const CodeGenOptions &CodeGenOpts) {
262   TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple);
263   if (!CodeGenOpts.SimplifyLibCalls)
264     TLII->disableAllFunctions();
265   else {
266     // Disable individual libc/libm calls in TargetLibraryInfo.
267     LibFunc F;
268     for (auto &FuncName : CodeGenOpts.getNoBuiltinFuncs())
269       if (TLII->getLibFunc(FuncName, F))
270         TLII->setUnavailable(F);
271   }
272
273   switch (CodeGenOpts.getVecLib()) {
274   case CodeGenOptions::Accelerate:
275     TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate);
276     break;
277   case CodeGenOptions::SVML:
278     TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML);
279     break;
280   default:
281     break;
282   }
283   return TLII;
284 }
285
286 static void addSymbolRewriterPass(const CodeGenOptions &Opts,
287                                   legacy::PassManager *MPM) {
288   llvm::SymbolRewriter::RewriteDescriptorList DL;
289
290   llvm::SymbolRewriter::RewriteMapParser MapParser;
291   for (const auto &MapFile : Opts.RewriteMapFiles)
292     MapParser.parse(MapFile, &DL);
293
294   MPM->add(createRewriteSymbolsPass(DL));
295 }
296
297 static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) {
298   switch (CodeGenOpts.OptimizationLevel) {
299   default:
300     llvm_unreachable("Invalid optimization level!");
301   case 0:
302     return CodeGenOpt::None;
303   case 1:
304     return CodeGenOpt::Less;
305   case 2:
306     return CodeGenOpt::Default; // O2/Os/Oz
307   case 3:
308     return CodeGenOpt::Aggressive;
309   }
310 }
311
312 static llvm::CodeModel::Model getCodeModel(const CodeGenOptions &CodeGenOpts) {
313   unsigned CodeModel =
314       llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel)
315       .Case("small", llvm::CodeModel::Small)
316       .Case("kernel", llvm::CodeModel::Kernel)
317       .Case("medium", llvm::CodeModel::Medium)
318       .Case("large", llvm::CodeModel::Large)
319       .Case("default", llvm::CodeModel::Default)
320       .Default(~0u);
321   assert(CodeModel != ~0u && "invalid code model!");
322   return static_cast<llvm::CodeModel::Model>(CodeModel);
323 }
324
325 static llvm::Reloc::Model getRelocModel(const CodeGenOptions &CodeGenOpts) {
326   // Keep this synced with the equivalent code in
327   // lib/Frontend/CompilerInvocation.cpp
328   llvm::Optional<llvm::Reloc::Model> RM;
329   RM = llvm::StringSwitch<llvm::Reloc::Model>(CodeGenOpts.RelocationModel)
330       .Case("static", llvm::Reloc::Static)
331       .Case("pic", llvm::Reloc::PIC_)
332       .Case("ropi", llvm::Reloc::ROPI)
333       .Case("rwpi", llvm::Reloc::RWPI)
334       .Case("ropi-rwpi", llvm::Reloc::ROPI_RWPI)
335       .Case("dynamic-no-pic", llvm::Reloc::DynamicNoPIC);
336   assert(RM.hasValue() && "invalid PIC model!");
337   return *RM;
338 }
339
340 static TargetMachine::CodeGenFileType getCodeGenFileType(BackendAction Action) {
341   if (Action == Backend_EmitObj)
342     return TargetMachine::CGFT_ObjectFile;
343   else if (Action == Backend_EmitMCNull)
344     return TargetMachine::CGFT_Null;
345   else {
346     assert(Action == Backend_EmitAssembly && "Invalid action!");
347     return TargetMachine::CGFT_AssemblyFile;
348   }
349 }
350
351 static void initTargetOptions(llvm::TargetOptions &Options,
352                               const CodeGenOptions &CodeGenOpts,
353                               const clang::TargetOptions &TargetOpts,
354                               const LangOptions &LangOpts,
355                               const HeaderSearchOptions &HSOpts) {
356   Options.ThreadModel =
357       llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel)
358           .Case("posix", llvm::ThreadModel::POSIX)
359           .Case("single", llvm::ThreadModel::Single);
360
361   // Set float ABI type.
362   assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" ||
363           CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) &&
364          "Invalid Floating Point ABI!");
365   Options.FloatABIType =
366       llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI)
367           .Case("soft", llvm::FloatABI::Soft)
368           .Case("softfp", llvm::FloatABI::Soft)
369           .Case("hard", llvm::FloatABI::Hard)
370           .Default(llvm::FloatABI::Default);
371
372   // Set FP fusion mode.
373   switch (LangOpts.getDefaultFPContractMode()) {
374   case LangOptions::FPC_Off:
375     Options.AllowFPOpFusion = llvm::FPOpFusion::Strict;
376     break;
377   case LangOptions::FPC_On:
378     Options.AllowFPOpFusion = llvm::FPOpFusion::Standard;
379     break;
380   case LangOptions::FPC_Fast:
381     Options.AllowFPOpFusion = llvm::FPOpFusion::Fast;
382     break;
383   }
384
385   Options.UseInitArray = CodeGenOpts.UseInitArray;
386   Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS;
387   Options.CompressDebugSections = CodeGenOpts.CompressDebugSections;
388   Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations;
389
390   // Set EABI version.
391   Options.EABIVersion = llvm::StringSwitch<llvm::EABI>(TargetOpts.EABIVersion)
392                             .Case("4", llvm::EABI::EABI4)
393                             .Case("5", llvm::EABI::EABI5)
394                             .Case("gnu", llvm::EABI::GNU)
395                             .Default(llvm::EABI::Default);
396
397   if (LangOpts.SjLjExceptions)
398     Options.ExceptionModel = llvm::ExceptionHandling::SjLj;
399
400   Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath;
401   Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath;
402   Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS;
403   Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath;
404   Options.StackAlignmentOverride = CodeGenOpts.StackAlignment;
405   Options.FunctionSections = CodeGenOpts.FunctionSections;
406   Options.DataSections = CodeGenOpts.DataSections;
407   Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames;
408   Options.EmulatedTLS = CodeGenOpts.EmulatedTLS;
409   Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning();
410
411   Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll;
412   Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels;
413   Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm;
414   Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack;
415   Options.MCOptions.MCIncrementalLinkerCompatible =
416       CodeGenOpts.IncrementalLinkerCompatible;
417   Options.MCOptions.MCPIECopyRelocations = CodeGenOpts.PIECopyRelocations;
418   Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings;
419   Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose;
420   Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments;
421   Options.MCOptions.ABIName = TargetOpts.ABI;
422   for (const auto &Entry : HSOpts.UserEntries)
423     if (!Entry.IsFramework &&
424         (Entry.Group == frontend::IncludeDirGroup::Quoted ||
425          Entry.Group == frontend::IncludeDirGroup::Angled ||
426          Entry.Group == frontend::IncludeDirGroup::System))
427       Options.MCOptions.IASSearchPaths.push_back(
428           Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path);
429 }
430
431 void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM,
432                                       legacy::FunctionPassManager &FPM) {
433   // Handle disabling of all LLVM passes, where we want to preserve the
434   // internal module before any optimization.
435   if (CodeGenOpts.DisableLLVMPasses)
436     return;
437
438   PassManagerBuilderWrapper PMBuilder(CodeGenOpts, LangOpts);
439
440   // Figure out TargetLibraryInfo.  This needs to be added to MPM and FPM
441   // manually (and not via PMBuilder), since some passes (eg. InstrProfiling)
442   // are inserted before PMBuilder ones - they'd get the default-constructed
443   // TLI with an unknown target otherwise.
444   Triple TargetTriple(TheModule->getTargetTriple());
445   std::unique_ptr<TargetLibraryInfoImpl> TLII(
446       createTLII(TargetTriple, CodeGenOpts));
447
448   // At O0 and O1 we only run the always inliner which is more efficient. At
449   // higher optimization levels we run the normal inliner.
450   if (CodeGenOpts.OptimizationLevel <= 1) {
451     bool InsertLifetimeIntrinsics = (CodeGenOpts.OptimizationLevel != 0 &&
452                                      !CodeGenOpts.DisableLifetimeMarkers);
453     PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics);
454   } else {
455     // We do not want to inline hot callsites for SamplePGO module-summary build
456     // because profile annotation will happen again in ThinLTO backend, and we
457     // want the IR of the hot path to match the profile.
458     PMBuilder.Inliner = createFunctionInliningPass(
459         CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize,
460         (!CodeGenOpts.SampleProfileFile.empty() &&
461          CodeGenOpts.EmitSummaryIndex));
462   }
463
464   PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel;
465   PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize;
466   PMBuilder.BBVectorize = CodeGenOpts.VectorizeBB;
467   PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP;
468   PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop;
469
470   PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops;
471   PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions;
472   PMBuilder.PrepareForThinLTO = CodeGenOpts.EmitSummaryIndex;
473   PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO;
474   PMBuilder.RerollLoops = CodeGenOpts.RerollLoops;
475
476   MPM.add(new TargetLibraryInfoWrapperPass(*TLII));
477
478   if (TM)
479     TM->adjustPassManager(PMBuilder);
480
481   if (CodeGenOpts.DebugInfoForProfiling ||
482       !CodeGenOpts.SampleProfileFile.empty())
483     PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible,
484                            addAddDiscriminatorsPass);
485
486   // In ObjC ARC mode, add the main ARC optimization passes.
487   if (LangOpts.ObjCAutoRefCount) {
488     PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible,
489                            addObjCARCExpandPass);
490     PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly,
491                            addObjCARCAPElimPass);
492     PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate,
493                            addObjCARCOptPass);
494   }
495
496   if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) {
497     PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate,
498                            addBoundsCheckingPass);
499     PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
500                            addBoundsCheckingPass);
501   }
502
503   if (CodeGenOpts.SanitizeCoverageType ||
504       CodeGenOpts.SanitizeCoverageIndirectCalls ||
505       CodeGenOpts.SanitizeCoverageTraceCmp) {
506     PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
507                            addSanitizerCoveragePass);
508     PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
509                            addSanitizerCoveragePass);
510   }
511
512   if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
513     PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
514                            addAddressSanitizerPasses);
515     PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
516                            addAddressSanitizerPasses);
517   }
518
519   if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) {
520     PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
521                            addKernelAddressSanitizerPasses);
522     PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
523                            addKernelAddressSanitizerPasses);
524   }
525
526   if (LangOpts.Sanitize.has(SanitizerKind::Memory)) {
527     PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
528                            addMemorySanitizerPass);
529     PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
530                            addMemorySanitizerPass);
531   }
532
533   if (LangOpts.Sanitize.has(SanitizerKind::Thread)) {
534     PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
535                            addThreadSanitizerPass);
536     PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
537                            addThreadSanitizerPass);
538   }
539
540   if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) {
541     PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
542                            addDataFlowSanitizerPass);
543     PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
544                            addDataFlowSanitizerPass);
545   }
546
547   if (LangOpts.CoroutinesTS)
548     addCoroutinePassesToExtensionPoints(PMBuilder);
549
550   if (LangOpts.Sanitize.hasOneOf(SanitizerKind::Efficiency)) {
551     PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
552                            addEfficiencySanitizerPass);
553     PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
554                            addEfficiencySanitizerPass);
555   }
556
557   // Set up the per-function pass manager.
558   FPM.add(new TargetLibraryInfoWrapperPass(*TLII));
559   if (CodeGenOpts.VerifyModule)
560     FPM.add(createVerifierPass());
561
562   // Set up the per-module pass manager.
563   if (!CodeGenOpts.RewriteMapFiles.empty())
564     addSymbolRewriterPass(CodeGenOpts, &MPM);
565
566   if (!CodeGenOpts.DisableGCov &&
567       (CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)) {
568     // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if
569     // LLVM's -default-gcov-version flag is set to something invalid.
570     GCOVOptions Options;
571     Options.EmitNotes = CodeGenOpts.EmitGcovNotes;
572     Options.EmitData = CodeGenOpts.EmitGcovArcs;
573     memcpy(Options.Version, CodeGenOpts.CoverageVersion, 4);
574     Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum;
575     Options.NoRedZone = CodeGenOpts.DisableRedZone;
576     Options.FunctionNamesInData =
577         !CodeGenOpts.CoverageNoFunctionNamesInData;
578     Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody;
579     MPM.add(createGCOVProfilerPass(Options));
580     if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo)
581       MPM.add(createStripSymbolsPass(true));
582   }
583
584   if (CodeGenOpts.hasProfileClangInstr()) {
585     InstrProfOptions Options;
586     Options.NoRedZone = CodeGenOpts.DisableRedZone;
587     Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput;
588     MPM.add(createInstrProfilingLegacyPass(Options));
589   }
590   if (CodeGenOpts.hasProfileIRInstr()) {
591     PMBuilder.EnablePGOInstrGen = true;
592     if (!CodeGenOpts.InstrProfileOutput.empty())
593       PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput;
594     else
595       PMBuilder.PGOInstrGen = DefaultProfileGenName;
596   }
597   if (CodeGenOpts.hasProfileIRUse())
598     PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath;
599
600   if (!CodeGenOpts.SampleProfileFile.empty())
601     PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile;
602
603   PMBuilder.populateFunctionPassManager(FPM);
604   PMBuilder.populateModulePassManager(MPM);
605 }
606
607 void EmitAssemblyHelper::setCommandLineOpts() {
608   SmallVector<const char *, 16> BackendArgs;
609   BackendArgs.push_back("clang"); // Fake program name.
610   if (!CodeGenOpts.DebugPass.empty()) {
611     BackendArgs.push_back("-debug-pass");
612     BackendArgs.push_back(CodeGenOpts.DebugPass.c_str());
613   }
614   if (!CodeGenOpts.LimitFloatPrecision.empty()) {
615     BackendArgs.push_back("-limit-float-precision");
616     BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str());
617   }
618   for (const std::string &BackendOption : CodeGenOpts.BackendOptions)
619     BackendArgs.push_back(BackendOption.c_str());
620   BackendArgs.push_back(nullptr);
621   llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1,
622                                     BackendArgs.data());
623 }
624
625 void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) {
626   // Create the TargetMachine for generating code.
627   std::string Error;
628   std::string Triple = TheModule->getTargetTriple();
629   const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error);
630   if (!TheTarget) {
631     if (MustCreateTM)
632       Diags.Report(diag::err_fe_unable_to_create_target) << Error;
633     return;
634   }
635
636   llvm::CodeModel::Model CM  = getCodeModel(CodeGenOpts);
637   std::string FeaturesStr =
638       llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ",");
639   llvm::Reloc::Model RM = getRelocModel(CodeGenOpts);
640   CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts);
641
642   llvm::TargetOptions Options;
643   initTargetOptions(Options, CodeGenOpts, TargetOpts, LangOpts, HSOpts);
644   TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr,
645                                           Options, RM, CM, OptLevel));
646 }
647
648 bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses,
649                                        BackendAction Action,
650                                        raw_pwrite_stream &OS) {
651   // Add LibraryInfo.
652   llvm::Triple TargetTriple(TheModule->getTargetTriple());
653   std::unique_ptr<TargetLibraryInfoImpl> TLII(
654       createTLII(TargetTriple, CodeGenOpts));
655   CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII));
656
657   // Normal mode, emit a .s or .o file by running the code generator. Note,
658   // this also adds codegenerator level optimization passes.
659   TargetMachine::CodeGenFileType CGFT = getCodeGenFileType(Action);
660
661   // Add ObjC ARC final-cleanup optimizations. This is done as part of the
662   // "codegen" passes so that it isn't run multiple times when there is
663   // inlining happening.
664   if (CodeGenOpts.OptimizationLevel > 0)
665     CodeGenPasses.add(createObjCARCContractPass());
666
667   if (TM->addPassesToEmitFile(CodeGenPasses, OS, CGFT,
668                               /*DisableVerify=*/!CodeGenOpts.VerifyModule)) {
669     Diags.Report(diag::err_fe_unable_to_interface_with_target);
670     return false;
671   }
672
673   return true;
674 }
675
676 void EmitAssemblyHelper::EmitAssembly(BackendAction Action,
677                                       std::unique_ptr<raw_pwrite_stream> OS) {
678   TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr);
679
680   setCommandLineOpts();
681
682   bool UsesCodeGen = (Action != Backend_EmitNothing &&
683                       Action != Backend_EmitBC &&
684                       Action != Backend_EmitLL);
685   CreateTargetMachine(UsesCodeGen);
686
687   if (UsesCodeGen && !TM)
688     return;
689   if (TM)
690     TheModule->setDataLayout(TM->createDataLayout());
691
692   legacy::PassManager PerModulePasses;
693   PerModulePasses.add(
694       createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
695
696   legacy::FunctionPassManager PerFunctionPasses(TheModule);
697   PerFunctionPasses.add(
698       createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
699
700   CreatePasses(PerModulePasses, PerFunctionPasses);
701
702   legacy::PassManager CodeGenPasses;
703   CodeGenPasses.add(
704       createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
705
706   std::unique_ptr<raw_fd_ostream> ThinLinkOS;
707
708   switch (Action) {
709   case Backend_EmitNothing:
710     break;
711
712   case Backend_EmitBC:
713     if (CodeGenOpts.EmitSummaryIndex) {
714       if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) {
715         std::error_code EC;
716         ThinLinkOS.reset(new llvm::raw_fd_ostream(
717             CodeGenOpts.ThinLinkBitcodeFile, EC,
718             llvm::sys::fs::F_None));
719         if (EC) {
720           Diags.Report(diag::err_fe_unable_to_open_output) << CodeGenOpts.ThinLinkBitcodeFile
721                                                            << EC.message();
722           return;
723         }
724       }
725       PerModulePasses.add(
726           createWriteThinLTOBitcodePass(*OS, ThinLinkOS.get()));
727     }
728     else
729       PerModulePasses.add(
730           createBitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists));
731     break;
732
733   case Backend_EmitLL:
734     PerModulePasses.add(
735         createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists));
736     break;
737
738   default:
739     if (!AddEmitPasses(CodeGenPasses, Action, *OS))
740       return;
741   }
742
743   // Before executing passes, print the final values of the LLVM options.
744   cl::PrintOptionValues();
745
746   // Run passes. For now we do all passes at once, but eventually we
747   // would like to have the option of streaming code generation.
748
749   {
750     PrettyStackTraceString CrashInfo("Per-function optimization");
751
752     PerFunctionPasses.doInitialization();
753     for (Function &F : *TheModule)
754       if (!F.isDeclaration())
755         PerFunctionPasses.run(F);
756     PerFunctionPasses.doFinalization();
757   }
758
759   {
760     PrettyStackTraceString CrashInfo("Per-module optimization passes");
761     PerModulePasses.run(*TheModule);
762   }
763
764   {
765     PrettyStackTraceString CrashInfo("Code generation");
766     CodeGenPasses.run(*TheModule);
767   }
768 }
769
770 static PassBuilder::OptimizationLevel mapToLevel(const CodeGenOptions &Opts) {
771   switch (Opts.OptimizationLevel) {
772   default:
773     llvm_unreachable("Invalid optimization level!");
774
775   case 1:
776     return PassBuilder::O1;
777
778   case 2:
779     switch (Opts.OptimizeSize) {
780     default:
781       llvm_unreachable("Invalide optimization level for size!");
782
783     case 0:
784       return PassBuilder::O2;
785
786     case 1:
787       return PassBuilder::Os;
788
789     case 2:
790       return PassBuilder::Oz;
791     }
792
793   case 3:
794     return PassBuilder::O3;
795   }
796 }
797
798 /// A clean version of `EmitAssembly` that uses the new pass manager.
799 ///
800 /// Not all features are currently supported in this system, but where
801 /// necessary it falls back to the legacy pass manager to at least provide
802 /// basic functionality.
803 ///
804 /// This API is planned to have its functionality finished and then to replace
805 /// `EmitAssembly` at some point in the future when the default switches.
806 void EmitAssemblyHelper::EmitAssemblyWithNewPassManager(
807     BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) {
808   TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr);
809   setCommandLineOpts();
810
811   // The new pass manager always makes a target machine available to passes
812   // during construction.
813   CreateTargetMachine(/*MustCreateTM*/ true);
814   if (!TM)
815     // This will already be diagnosed, just bail.
816     return;
817   TheModule->setDataLayout(TM->createDataLayout());
818
819   PGOOptions PGOOpt;
820
821   // -fprofile-generate.
822   PGOOpt.RunProfileGen = CodeGenOpts.hasProfileIRInstr();
823   if (PGOOpt.RunProfileGen)
824     PGOOpt.ProfileGenFile = CodeGenOpts.InstrProfileOutput.empty() ?
825       DefaultProfileGenName : CodeGenOpts.InstrProfileOutput;
826
827   // -fprofile-use.
828   if (CodeGenOpts.hasProfileIRUse())
829     PGOOpt.ProfileUseFile = CodeGenOpts.ProfileInstrumentUsePath;
830
831   // Only pass a PGO options struct if -fprofile-generate or
832   // -fprofile-use were passed on the cmdline.
833   PassBuilder PB(TM.get(),
834     (PGOOpt.RunProfileGen ||
835       !PGOOpt.ProfileUseFile.empty()) ?
836         Optional<PGOOptions>(PGOOpt) : None);
837
838   LoopAnalysisManager LAM;
839   FunctionAnalysisManager FAM;
840   CGSCCAnalysisManager CGAM;
841   ModuleAnalysisManager MAM;
842
843   // Register the AA manager first so that our version is the one used.
844   FAM.registerPass([&] { return PB.buildDefaultAAPipeline(); });
845
846   // Register all the basic analyses with the managers.
847   PB.registerModuleAnalyses(MAM);
848   PB.registerCGSCCAnalyses(CGAM);
849   PB.registerFunctionAnalyses(FAM);
850   PB.registerLoopAnalyses(LAM);
851   PB.crossRegisterProxies(LAM, FAM, CGAM, MAM);
852
853   ModulePassManager MPM;
854
855   if (!CodeGenOpts.DisableLLVMPasses) {
856     if (CodeGenOpts.OptimizationLevel == 0) {
857       // Build a minimal pipeline based on the semantics required by Clang,
858       // which is just that always inlining occurs.
859       MPM.addPass(AlwaysInlinerPass());
860     } else {
861       // Otherwise, use the default pass pipeline. We also have to map our
862       // optimization levels into one of the distinct levels used to configure
863       // the pipeline.
864       PassBuilder::OptimizationLevel Level = mapToLevel(CodeGenOpts);
865
866       MPM = PB.buildPerModuleDefaultPipeline(Level);
867     }
868   }
869
870   // FIXME: We still use the legacy pass manager to do code generation. We
871   // create that pass manager here and use it as needed below.
872   legacy::PassManager CodeGenPasses;
873   bool NeedCodeGen = false;
874
875   // Append any output we need to the pass manager.
876   switch (Action) {
877   case Backend_EmitNothing:
878     break;
879
880   case Backend_EmitBC:
881     MPM.addPass(BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists,
882                                   CodeGenOpts.EmitSummaryIndex,
883                                   CodeGenOpts.EmitSummaryIndex));
884     break;
885
886   case Backend_EmitLL:
887     MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists));
888     break;
889
890   case Backend_EmitAssembly:
891   case Backend_EmitMCNull:
892   case Backend_EmitObj:
893     NeedCodeGen = true;
894     CodeGenPasses.add(
895         createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
896     if (!AddEmitPasses(CodeGenPasses, Action, *OS))
897       // FIXME: Should we handle this error differently?
898       return;
899     break;
900   }
901
902   // Before executing passes, print the final values of the LLVM options.
903   cl::PrintOptionValues();
904
905   // Now that we have all of the passes ready, run them.
906   {
907     PrettyStackTraceString CrashInfo("Optimizer");
908     MPM.run(*TheModule, MAM);
909   }
910
911   // Now if needed, run the legacy PM for codegen.
912   if (NeedCodeGen) {
913     PrettyStackTraceString CrashInfo("Code generation");
914     CodeGenPasses.run(*TheModule);
915   }
916 }
917
918 Expected<BitcodeModule> clang::FindThinLTOModule(MemoryBufferRef MBRef) {
919   Expected<std::vector<BitcodeModule>> BMsOrErr = getBitcodeModuleList(MBRef);
920   if (!BMsOrErr)
921     return BMsOrErr.takeError();
922
923   // The bitcode file may contain multiple modules, we want the one with a
924   // summary.
925   for (BitcodeModule &BM : *BMsOrErr) {
926     Expected<bool> HasSummary = BM.hasSummary();
927     if (HasSummary && *HasSummary)
928       return BM;
929   }
930
931   return make_error<StringError>("Could not find module summary",
932                                  inconvertibleErrorCode());
933 }
934
935 static void runThinLTOBackend(ModuleSummaryIndex *CombinedIndex, Module *M,
936                               const HeaderSearchOptions &HeaderOpts,
937                               const CodeGenOptions &CGOpts,
938                               const clang::TargetOptions &TOpts,
939                               const LangOptions &LOpts,
940                               std::unique_ptr<raw_pwrite_stream> OS,
941                               std::string SampleProfile,
942                               BackendAction Action) {
943   StringMap<std::map<GlobalValue::GUID, GlobalValueSummary *>>
944       ModuleToDefinedGVSummaries;
945   CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries);
946
947   // We can simply import the values mentioned in the combined index, since
948   // we should only invoke this using the individual indexes written out
949   // via a WriteIndexesThinBackend.
950   FunctionImporter::ImportMapTy ImportList;
951   for (auto &GlobalList : *CombinedIndex) {
952     auto GUID = GlobalList.first;
953     assert(GlobalList.second.size() == 1 &&
954            "Expected individual combined index to have one summary per GUID");
955     auto &Summary = GlobalList.second[0];
956     // Skip the summaries for the importing module. These are included to
957     // e.g. record required linkage changes.
958     if (Summary->modulePath() == M->getModuleIdentifier())
959       continue;
960     // Doesn't matter what value we plug in to the map, just needs an entry
961     // to provoke importing by thinBackend.
962     ImportList[Summary->modulePath()][GUID] = 1;
963   }
964
965   std::vector<std::unique_ptr<llvm::MemoryBuffer>> OwnedImports;
966   MapVector<llvm::StringRef, llvm::BitcodeModule> ModuleMap;
967
968   for (auto &I : ImportList) {
969     ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> MBOrErr =
970         llvm::MemoryBuffer::getFile(I.first());
971     if (!MBOrErr) {
972       errs() << "Error loading imported file '" << I.first()
973              << "': " << MBOrErr.getError().message() << "\n";
974       return;
975     }
976
977     Expected<BitcodeModule> BMOrErr = FindThinLTOModule(**MBOrErr);
978     if (!BMOrErr) {
979       handleAllErrors(BMOrErr.takeError(), [&](ErrorInfoBase &EIB) {
980         errs() << "Error loading imported file '" << I.first()
981                << "': " << EIB.message() << '\n';
982       });
983       return;
984     }
985     ModuleMap.insert({I.first(), *BMOrErr});
986
987     OwnedImports.push_back(std::move(*MBOrErr));
988   }
989   auto AddStream = [&](size_t Task) {
990     return llvm::make_unique<lto::NativeObjectStream>(std::move(OS));
991   };
992   lto::Config Conf;
993   Conf.CPU = TOpts.CPU;
994   Conf.CodeModel = getCodeModel(CGOpts);
995   Conf.MAttrs = TOpts.Features;
996   Conf.RelocModel = getRelocModel(CGOpts);
997   Conf.CGOptLevel = getCGOptLevel(CGOpts);
998   initTargetOptions(Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts);
999   Conf.SampleProfile = std::move(SampleProfile);
1000   switch (Action) {
1001   case Backend_EmitNothing:
1002     Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) {
1003       return false;
1004     };
1005     break;
1006   case Backend_EmitLL:
1007     Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) {
1008       M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists);
1009       return false;
1010     };
1011     break;
1012   case Backend_EmitBC:
1013     Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) {
1014       WriteBitcodeToFile(M, *OS, CGOpts.EmitLLVMUseLists);
1015       return false;
1016     };
1017     break;
1018   default:
1019     Conf.CGFileType = getCodeGenFileType(Action);
1020     break;
1021   }
1022   if (Error E = thinBackend(
1023           Conf, 0, AddStream, *M, *CombinedIndex, ImportList,
1024           ModuleToDefinedGVSummaries[M->getModuleIdentifier()], ModuleMap)) {
1025     handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) {
1026       errs() << "Error running ThinLTO backend: " << EIB.message() << '\n';
1027     });
1028   }
1029 }
1030
1031 void clang::EmitBackendOutput(DiagnosticsEngine &Diags,
1032                               const HeaderSearchOptions &HeaderOpts,
1033                               const CodeGenOptions &CGOpts,
1034                               const clang::TargetOptions &TOpts,
1035                               const LangOptions &LOpts,
1036                               const llvm::DataLayout &TDesc, Module *M,
1037                               BackendAction Action,
1038                               std::unique_ptr<raw_pwrite_stream> OS) {
1039   if (!CGOpts.ThinLTOIndexFile.empty()) {
1040     // If we are performing a ThinLTO importing compile, load the function index
1041     // into memory and pass it into runThinLTOBackend, which will run the
1042     // function importer and invoke LTO passes.
1043     Expected<std::unique_ptr<ModuleSummaryIndex>> IndexOrErr =
1044         llvm::getModuleSummaryIndexForFile(CGOpts.ThinLTOIndexFile);
1045     if (!IndexOrErr) {
1046       logAllUnhandledErrors(IndexOrErr.takeError(), errs(),
1047                             "Error loading index file '" +
1048                             CGOpts.ThinLTOIndexFile + "': ");
1049       return;
1050     }
1051     std::unique_ptr<ModuleSummaryIndex> CombinedIndex = std::move(*IndexOrErr);
1052     // A null CombinedIndex means we should skip ThinLTO compilation
1053     // (LLVM will optionally ignore empty index files, returning null instead
1054     // of an error).
1055     bool DoThinLTOBackend = CombinedIndex != nullptr;
1056     if (DoThinLTOBackend) {
1057       runThinLTOBackend(CombinedIndex.get(), M, HeaderOpts, CGOpts, TOpts,
1058                         LOpts, std::move(OS), CGOpts.SampleProfileFile, Action);
1059       return;
1060     }
1061   }
1062
1063   EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M);
1064
1065   if (CGOpts.ExperimentalNewPassManager)
1066     AsmHelper.EmitAssemblyWithNewPassManager(Action, std::move(OS));
1067   else
1068     AsmHelper.EmitAssembly(Action, std::move(OS));
1069
1070   // Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's
1071   // DataLayout.
1072   if (AsmHelper.TM) {
1073     std::string DLDesc = M->getDataLayout().getStringRepresentation();
1074     if (DLDesc != TDesc.getStringRepresentation()) {
1075       unsigned DiagID = Diags.getCustomDiagID(
1076           DiagnosticsEngine::Error, "backend data layout '%0' does not match "
1077                                     "expected target description '%1'");
1078       Diags.Report(DiagID) << DLDesc << TDesc.getStringRepresentation();
1079     }
1080   }
1081 }
1082
1083 static const char* getSectionNameForBitcode(const Triple &T) {
1084   switch (T.getObjectFormat()) {
1085   case Triple::MachO:
1086     return "__LLVM,__bitcode";
1087   case Triple::COFF:
1088   case Triple::ELF:
1089   case Triple::Wasm:
1090   case Triple::UnknownObjectFormat:
1091     return ".llvmbc";
1092   }
1093   llvm_unreachable("Unimplemented ObjectFormatType");
1094 }
1095
1096 static const char* getSectionNameForCommandline(const Triple &T) {
1097   switch (T.getObjectFormat()) {
1098   case Triple::MachO:
1099     return "__LLVM,__cmdline";
1100   case Triple::COFF:
1101   case Triple::ELF:
1102   case Triple::Wasm:
1103   case Triple::UnknownObjectFormat:
1104     return ".llvmcmd";
1105   }
1106   llvm_unreachable("Unimplemented ObjectFormatType");
1107 }
1108
1109 // With -fembed-bitcode, save a copy of the llvm IR as data in the
1110 // __LLVM,__bitcode section.
1111 void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts,
1112                          llvm::MemoryBufferRef Buf) {
1113   if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off)
1114     return;
1115
1116   // Save llvm.compiler.used and remote it.
1117   SmallVector<Constant*, 2> UsedArray;
1118   SmallSet<GlobalValue*, 4> UsedGlobals;
1119   Type *UsedElementType = Type::getInt8Ty(M->getContext())->getPointerTo(0);
1120   GlobalVariable *Used = collectUsedGlobalVariables(*M, UsedGlobals, true);
1121   for (auto *GV : UsedGlobals) {
1122     if (GV->getName() != "llvm.embedded.module" &&
1123         GV->getName() != "llvm.cmdline")
1124       UsedArray.push_back(
1125           ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
1126   }
1127   if (Used)
1128     Used->eraseFromParent();
1129
1130   // Embed the bitcode for the llvm module.
1131   std::string Data;
1132   ArrayRef<uint8_t> ModuleData;
1133   Triple T(M->getTargetTriple());
1134   // Create a constant that contains the bitcode.
1135   // In case of embedding a marker, ignore the input Buf and use the empty
1136   // ArrayRef. It is also legal to create a bitcode marker even Buf is empty.
1137   if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker) {
1138     if (!isBitcode((const unsigned char *)Buf.getBufferStart(),
1139                    (const unsigned char *)Buf.getBufferEnd())) {
1140       // If the input is LLVM Assembly, bitcode is produced by serializing
1141       // the module. Use-lists order need to be perserved in this case.
1142       llvm::raw_string_ostream OS(Data);
1143       llvm::WriteBitcodeToFile(M, OS, /* ShouldPreserveUseListOrder */ true);
1144       ModuleData =
1145           ArrayRef<uint8_t>((const uint8_t *)OS.str().data(), OS.str().size());
1146     } else
1147       // If the input is LLVM bitcode, write the input byte stream directly.
1148       ModuleData = ArrayRef<uint8_t>((const uint8_t *)Buf.getBufferStart(),
1149                                      Buf.getBufferSize());
1150   }
1151   llvm::Constant *ModuleConstant =
1152       llvm::ConstantDataArray::get(M->getContext(), ModuleData);
1153   llvm::GlobalVariable *GV = new llvm::GlobalVariable(
1154       *M, ModuleConstant->getType(), true, llvm::GlobalValue::PrivateLinkage,
1155       ModuleConstant);
1156   GV->setSection(getSectionNameForBitcode(T));
1157   UsedArray.push_back(
1158       ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
1159   if (llvm::GlobalVariable *Old =
1160           M->getGlobalVariable("llvm.embedded.module", true)) {
1161     assert(Old->hasOneUse() &&
1162            "llvm.embedded.module can only be used once in llvm.compiler.used");
1163     GV->takeName(Old);
1164     Old->eraseFromParent();
1165   } else {
1166     GV->setName("llvm.embedded.module");
1167   }
1168
1169   // Skip if only bitcode needs to be embedded.
1170   if (CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode) {
1171     // Embed command-line options.
1172     ArrayRef<uint8_t> CmdData(const_cast<uint8_t *>(CGOpts.CmdArgs.data()),
1173                               CGOpts.CmdArgs.size());
1174     llvm::Constant *CmdConstant =
1175       llvm::ConstantDataArray::get(M->getContext(), CmdData);
1176     GV = new llvm::GlobalVariable(*M, CmdConstant->getType(), true,
1177                                   llvm::GlobalValue::PrivateLinkage,
1178                                   CmdConstant);
1179     GV->setSection(getSectionNameForCommandline(T));
1180     UsedArray.push_back(
1181         ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, UsedElementType));
1182     if (llvm::GlobalVariable *Old =
1183             M->getGlobalVariable("llvm.cmdline", true)) {
1184       assert(Old->hasOneUse() &&
1185              "llvm.cmdline can only be used once in llvm.compiler.used");
1186       GV->takeName(Old);
1187       Old->eraseFromParent();
1188     } else {
1189       GV->setName("llvm.cmdline");
1190     }
1191   }
1192
1193   if (UsedArray.empty())
1194     return;
1195
1196   // Recreate llvm.compiler.used.
1197   ArrayType *ATy = ArrayType::get(UsedElementType, UsedArray.size());
1198   auto *NewUsed = new GlobalVariable(
1199       *M, ATy, false, llvm::GlobalValue::AppendingLinkage,
1200       llvm::ConstantArray::get(ATy, UsedArray), "llvm.compiler.used");
1201   NewUsed->setSection("llvm.metadata");
1202 }