]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/CodeGen/CGAtomic.cpp
Revert merge of clang trunk r244063, which I did not intend to commit
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / CodeGen / CGAtomic.cpp
1 //===--- CGAtomic.cpp - Emit LLVM IR for atomic operations ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the code for emitting atomic operations.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGCall.h"
16 #include "CGRecordLayout.h"
17 #include "CodeGenModule.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/CodeGen/CGFunctionInfo.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Intrinsics.h"
23 #include "llvm/IR/Operator.h"
24
25 using namespace clang;
26 using namespace CodeGen;
27
28 namespace {
29   class AtomicInfo {
30     CodeGenFunction &CGF;
31     QualType AtomicTy;
32     QualType ValueTy;
33     uint64_t AtomicSizeInBits;
34     uint64_t ValueSizeInBits;
35     CharUnits AtomicAlign;
36     CharUnits ValueAlign;
37     CharUnits LValueAlign;
38     TypeEvaluationKind EvaluationKind;
39     bool UseLibcall;
40     LValue LVal;
41     CGBitFieldInfo BFI;
42   public:
43     AtomicInfo(CodeGenFunction &CGF, LValue &lvalue)
44         : CGF(CGF), AtomicSizeInBits(0), ValueSizeInBits(0),
45           EvaluationKind(TEK_Scalar), UseLibcall(true) {
46       assert(!lvalue.isGlobalReg());
47       ASTContext &C = CGF.getContext();
48       if (lvalue.isSimple()) {
49         AtomicTy = lvalue.getType();
50         if (auto *ATy = AtomicTy->getAs<AtomicType>())
51           ValueTy = ATy->getValueType();
52         else
53           ValueTy = AtomicTy;
54         EvaluationKind = CGF.getEvaluationKind(ValueTy);
55
56         uint64_t ValueAlignInBits;
57         uint64_t AtomicAlignInBits;
58         TypeInfo ValueTI = C.getTypeInfo(ValueTy);
59         ValueSizeInBits = ValueTI.Width;
60         ValueAlignInBits = ValueTI.Align;
61
62         TypeInfo AtomicTI = C.getTypeInfo(AtomicTy);
63         AtomicSizeInBits = AtomicTI.Width;
64         AtomicAlignInBits = AtomicTI.Align;
65
66         assert(ValueSizeInBits <= AtomicSizeInBits);
67         assert(ValueAlignInBits <= AtomicAlignInBits);
68
69         AtomicAlign = C.toCharUnitsFromBits(AtomicAlignInBits);
70         ValueAlign = C.toCharUnitsFromBits(ValueAlignInBits);
71         if (lvalue.getAlignment().isZero())
72           lvalue.setAlignment(AtomicAlign);
73
74         LVal = lvalue;
75       } else if (lvalue.isBitField()) {
76         ValueTy = lvalue.getType();
77         ValueSizeInBits = C.getTypeSize(ValueTy);
78         auto &OrigBFI = lvalue.getBitFieldInfo();
79         auto Offset = OrigBFI.Offset % C.toBits(lvalue.getAlignment());
80         AtomicSizeInBits = C.toBits(
81             C.toCharUnitsFromBits(Offset + OrigBFI.Size + C.getCharWidth() - 1)
82                 .RoundUpToAlignment(lvalue.getAlignment()));
83         auto VoidPtrAddr = CGF.EmitCastToVoidPtr(lvalue.getBitFieldAddr());
84         auto OffsetInChars =
85             (C.toCharUnitsFromBits(OrigBFI.Offset) / lvalue.getAlignment()) *
86             lvalue.getAlignment();
87         VoidPtrAddr = CGF.Builder.CreateConstGEP1_64(
88             VoidPtrAddr, OffsetInChars.getQuantity());
89         auto Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
90             VoidPtrAddr,
91             CGF.Builder.getIntNTy(AtomicSizeInBits)->getPointerTo(),
92             "atomic_bitfield_base");
93         BFI = OrigBFI;
94         BFI.Offset = Offset;
95         BFI.StorageSize = AtomicSizeInBits;
96         BFI.StorageOffset += OffsetInChars;
97         LVal = LValue::MakeBitfield(Addr, BFI, lvalue.getType(),
98                                     lvalue.getAlignment());
99         LVal.setTBAAInfo(lvalue.getTBAAInfo());
100         AtomicTy = C.getIntTypeForBitwidth(AtomicSizeInBits, OrigBFI.IsSigned);
101         if (AtomicTy.isNull()) {
102           llvm::APInt Size(
103               /*numBits=*/32,
104               C.toCharUnitsFromBits(AtomicSizeInBits).getQuantity());
105           AtomicTy = C.getConstantArrayType(C.CharTy, Size, ArrayType::Normal,
106                                             /*IndexTypeQuals=*/0);
107         }
108         AtomicAlign = ValueAlign = lvalue.getAlignment();
109       } else if (lvalue.isVectorElt()) {
110         ValueTy = lvalue.getType()->getAs<VectorType>()->getElementType();
111         ValueSizeInBits = C.getTypeSize(ValueTy);
112         AtomicTy = lvalue.getType();
113         AtomicSizeInBits = C.getTypeSize(AtomicTy);
114         AtomicAlign = ValueAlign = lvalue.getAlignment();
115         LVal = lvalue;
116       } else {
117         assert(lvalue.isExtVectorElt());
118         ValueTy = lvalue.getType();
119         ValueSizeInBits = C.getTypeSize(ValueTy);
120         AtomicTy = ValueTy = CGF.getContext().getExtVectorType(
121             lvalue.getType(), lvalue.getExtVectorAddr()
122                                   ->getType()
123                                   ->getPointerElementType()
124                                   ->getVectorNumElements());
125         AtomicSizeInBits = C.getTypeSize(AtomicTy);
126         AtomicAlign = ValueAlign = lvalue.getAlignment();
127         LVal = lvalue;
128       }
129       UseLibcall = !C.getTargetInfo().hasBuiltinAtomic(
130           AtomicSizeInBits, C.toBits(lvalue.getAlignment()));
131     }
132
133     QualType getAtomicType() const { return AtomicTy; }
134     QualType getValueType() const { return ValueTy; }
135     CharUnits getAtomicAlignment() const { return AtomicAlign; }
136     CharUnits getValueAlignment() const { return ValueAlign; }
137     uint64_t getAtomicSizeInBits() const { return AtomicSizeInBits; }
138     uint64_t getValueSizeInBits() const { return ValueSizeInBits; }
139     TypeEvaluationKind getEvaluationKind() const { return EvaluationKind; }
140     bool shouldUseLibcall() const { return UseLibcall; }
141     const LValue &getAtomicLValue() const { return LVal; }
142     llvm::Value *getAtomicAddress() const {
143       if (LVal.isSimple())
144         return LVal.getAddress();
145       else if (LVal.isBitField())
146         return LVal.getBitFieldAddr();
147       else if (LVal.isVectorElt())
148         return LVal.getVectorAddr();
149       assert(LVal.isExtVectorElt());
150       return LVal.getExtVectorAddr();
151     }
152
153     /// Is the atomic size larger than the underlying value type?
154     ///
155     /// Note that the absence of padding does not mean that atomic
156     /// objects are completely interchangeable with non-atomic
157     /// objects: we might have promoted the alignment of a type
158     /// without making it bigger.
159     bool hasPadding() const {
160       return (ValueSizeInBits != AtomicSizeInBits);
161     }
162
163     bool emitMemSetZeroIfNecessary() const;
164
165     llvm::Value *getAtomicSizeValue() const {
166       CharUnits size = CGF.getContext().toCharUnitsFromBits(AtomicSizeInBits);
167       return CGF.CGM.getSize(size);
168     }
169
170     /// Cast the given pointer to an integer pointer suitable for
171     /// atomic operations.
172     llvm::Value *emitCastToAtomicIntPointer(llvm::Value *addr) const;
173
174     /// Turn an atomic-layout object into an r-value.
175     RValue convertTempToRValue(llvm::Value *addr, AggValueSlot resultSlot,
176                                SourceLocation loc, bool AsValue) const;
177
178     /// \brief Converts a rvalue to integer value.
179     llvm::Value *convertRValueToInt(RValue RVal) const;
180
181     RValue ConvertIntToValueOrAtomic(llvm::Value *IntVal,
182                                      AggValueSlot ResultSlot,
183                                      SourceLocation Loc, bool AsValue) const;
184
185     /// Copy an atomic r-value into atomic-layout memory.
186     void emitCopyIntoMemory(RValue rvalue) const;
187
188     /// Project an l-value down to the value field.
189     LValue projectValue() const {
190       assert(LVal.isSimple());
191       llvm::Value *addr = getAtomicAddress();
192       if (hasPadding())
193         addr = CGF.Builder.CreateStructGEP(nullptr, addr, 0);
194
195       return LValue::MakeAddr(addr, getValueType(), LVal.getAlignment(),
196                               CGF.getContext(), LVal.getTBAAInfo());
197     }
198
199     /// \brief Emits atomic load.
200     /// \returns Loaded value.
201     RValue EmitAtomicLoad(AggValueSlot ResultSlot, SourceLocation Loc,
202                           bool AsValue, llvm::AtomicOrdering AO,
203                           bool IsVolatile);
204
205     /// \brief Emits atomic compare-and-exchange sequence.
206     /// \param Expected Expected value.
207     /// \param Desired Desired value.
208     /// \param Success Atomic ordering for success operation.
209     /// \param Failure Atomic ordering for failed operation.
210     /// \param IsWeak true if atomic operation is weak, false otherwise.
211     /// \returns Pair of values: previous value from storage (value type) and
212     /// boolean flag (i1 type) with true if success and false otherwise.
213     std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
214         RValue Expected, RValue Desired,
215         llvm::AtomicOrdering Success = llvm::SequentiallyConsistent,
216         llvm::AtomicOrdering Failure = llvm::SequentiallyConsistent,
217         bool IsWeak = false);
218
219     /// \brief Emits atomic update.
220     /// \param AO Atomic ordering.
221     /// \param UpdateOp Update operation for the current lvalue.
222     void EmitAtomicUpdate(llvm::AtomicOrdering AO,
223                           const llvm::function_ref<RValue(RValue)> &UpdateOp,
224                           bool IsVolatile);
225     /// \brief Emits atomic update.
226     /// \param AO Atomic ordering.
227     void EmitAtomicUpdate(llvm::AtomicOrdering AO, RValue UpdateRVal,
228                           bool IsVolatile);
229
230     /// Materialize an atomic r-value in atomic-layout memory.
231     llvm::Value *materializeRValue(RValue rvalue) const;
232
233     /// \brief Translates LLVM atomic ordering to GNU atomic ordering for
234     /// libcalls.
235     static AtomicExpr::AtomicOrderingKind
236     translateAtomicOrdering(const llvm::AtomicOrdering AO);
237
238   private:
239     bool requiresMemSetZero(llvm::Type *type) const;
240
241     /// \brief Creates temp alloca for intermediate operations on atomic value.
242     llvm::Value *CreateTempAlloca() const;
243
244     /// \brief Emits atomic load as a libcall.
245     void EmitAtomicLoadLibcall(llvm::Value *AddForLoaded,
246                                llvm::AtomicOrdering AO, bool IsVolatile);
247     /// \brief Emits atomic load as LLVM instruction.
248     llvm::Value *EmitAtomicLoadOp(llvm::AtomicOrdering AO, bool IsVolatile);
249     /// \brief Emits atomic compare-and-exchange op as a libcall.
250     llvm::Value *EmitAtomicCompareExchangeLibcall(
251         llvm::Value *ExpectedAddr, llvm::Value *DesiredAddr,
252         llvm::AtomicOrdering Success = llvm::SequentiallyConsistent,
253         llvm::AtomicOrdering Failure = llvm::SequentiallyConsistent);
254     /// \brief Emits atomic compare-and-exchange op as LLVM instruction.
255     std::pair<llvm::Value *, llvm::Value *> EmitAtomicCompareExchangeOp(
256         llvm::Value *ExpectedVal, llvm::Value *DesiredVal,
257         llvm::AtomicOrdering Success = llvm::SequentiallyConsistent,
258         llvm::AtomicOrdering Failure = llvm::SequentiallyConsistent,
259         bool IsWeak = false);
260     /// \brief Emit atomic update as libcalls.
261     void
262     EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO,
263                             const llvm::function_ref<RValue(RValue)> &UpdateOp,
264                             bool IsVolatile);
265     /// \brief Emit atomic update as LLVM instructions.
266     void EmitAtomicUpdateOp(llvm::AtomicOrdering AO,
267                             const llvm::function_ref<RValue(RValue)> &UpdateOp,
268                             bool IsVolatile);
269     /// \brief Emit atomic update as libcalls.
270     void EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO, RValue UpdateRVal,
271                                  bool IsVolatile);
272     /// \brief Emit atomic update as LLVM instructions.
273     void EmitAtomicUpdateOp(llvm::AtomicOrdering AO, RValue UpdateRal,
274                             bool IsVolatile);
275   };
276 }
277
278 AtomicExpr::AtomicOrderingKind
279 AtomicInfo::translateAtomicOrdering(const llvm::AtomicOrdering AO) {
280   switch (AO) {
281   case llvm::Unordered:
282   case llvm::NotAtomic:
283   case llvm::Monotonic:
284     return AtomicExpr::AO_ABI_memory_order_relaxed;
285   case llvm::Acquire:
286     return AtomicExpr::AO_ABI_memory_order_acquire;
287   case llvm::Release:
288     return AtomicExpr::AO_ABI_memory_order_release;
289   case llvm::AcquireRelease:
290     return AtomicExpr::AO_ABI_memory_order_acq_rel;
291   case llvm::SequentiallyConsistent:
292     return AtomicExpr::AO_ABI_memory_order_seq_cst;
293   }
294   llvm_unreachable("Unhandled AtomicOrdering");
295 }
296
297 llvm::Value *AtomicInfo::CreateTempAlloca() const {
298   auto *TempAlloca = CGF.CreateMemTemp(
299       (LVal.isBitField() && ValueSizeInBits > AtomicSizeInBits) ? ValueTy
300                                                                 : AtomicTy,
301       "atomic-temp");
302   TempAlloca->setAlignment(getAtomicAlignment().getQuantity());
303   // Cast to pointer to value type for bitfields.
304   if (LVal.isBitField())
305     return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
306         TempAlloca, getAtomicAddress()->getType());
307   return TempAlloca;
308 }
309
310 static RValue emitAtomicLibcall(CodeGenFunction &CGF,
311                                 StringRef fnName,
312                                 QualType resultType,
313                                 CallArgList &args) {
314   const CGFunctionInfo &fnInfo =
315     CGF.CGM.getTypes().arrangeFreeFunctionCall(resultType, args,
316             FunctionType::ExtInfo(), RequiredArgs::All);
317   llvm::FunctionType *fnTy = CGF.CGM.getTypes().GetFunctionType(fnInfo);
318   llvm::Constant *fn = CGF.CGM.CreateRuntimeFunction(fnTy, fnName);
319   return CGF.EmitCall(fnInfo, fn, ReturnValueSlot(), args);
320 }
321
322 /// Does a store of the given IR type modify the full expected width?
323 static bool isFullSizeType(CodeGenModule &CGM, llvm::Type *type,
324                            uint64_t expectedSize) {
325   return (CGM.getDataLayout().getTypeStoreSize(type) * 8 == expectedSize);
326 }
327
328 /// Does the atomic type require memsetting to zero before initialization?
329 ///
330 /// The IR type is provided as a way of making certain queries faster.
331 bool AtomicInfo::requiresMemSetZero(llvm::Type *type) const {
332   // If the atomic type has size padding, we definitely need a memset.
333   if (hasPadding()) return true;
334
335   // Otherwise, do some simple heuristics to try to avoid it:
336   switch (getEvaluationKind()) {
337   // For scalars and complexes, check whether the store size of the
338   // type uses the full size.
339   case TEK_Scalar:
340     return !isFullSizeType(CGF.CGM, type, AtomicSizeInBits);
341   case TEK_Complex:
342     return !isFullSizeType(CGF.CGM, type->getStructElementType(0),
343                            AtomicSizeInBits / 2);
344
345   // Padding in structs has an undefined bit pattern.  User beware.
346   case TEK_Aggregate:
347     return false;
348   }
349   llvm_unreachable("bad evaluation kind");
350 }
351
352 bool AtomicInfo::emitMemSetZeroIfNecessary() const {
353   assert(LVal.isSimple());
354   llvm::Value *addr = LVal.getAddress();
355   if (!requiresMemSetZero(addr->getType()->getPointerElementType()))
356     return false;
357
358   CGF.Builder.CreateMemSet(
359       addr, llvm::ConstantInt::get(CGF.Int8Ty, 0),
360       CGF.getContext().toCharUnitsFromBits(AtomicSizeInBits).getQuantity(),
361       LVal.getAlignment().getQuantity());
362   return true;
363 }
364
365 static void emitAtomicCmpXchg(CodeGenFunction &CGF, AtomicExpr *E, bool IsWeak,
366                               llvm::Value *Dest, llvm::Value *Ptr,
367                               llvm::Value *Val1, llvm::Value *Val2,
368                               uint64_t Size, unsigned Align,
369                               llvm::AtomicOrdering SuccessOrder,
370                               llvm::AtomicOrdering FailureOrder) {
371   // Note that cmpxchg doesn't support weak cmpxchg, at least at the moment.
372   llvm::LoadInst *Expected = CGF.Builder.CreateLoad(Val1);
373   Expected->setAlignment(Align);
374   llvm::LoadInst *Desired = CGF.Builder.CreateLoad(Val2);
375   Desired->setAlignment(Align);
376
377   llvm::AtomicCmpXchgInst *Pair = CGF.Builder.CreateAtomicCmpXchg(
378       Ptr, Expected, Desired, SuccessOrder, FailureOrder);
379   Pair->setVolatile(E->isVolatile());
380   Pair->setWeak(IsWeak);
381
382   // Cmp holds the result of the compare-exchange operation: true on success,
383   // false on failure.
384   llvm::Value *Old = CGF.Builder.CreateExtractValue(Pair, 0);
385   llvm::Value *Cmp = CGF.Builder.CreateExtractValue(Pair, 1);
386
387   // This basic block is used to hold the store instruction if the operation
388   // failed.
389   llvm::BasicBlock *StoreExpectedBB =
390       CGF.createBasicBlock("cmpxchg.store_expected", CGF.CurFn);
391
392   // This basic block is the exit point of the operation, we should end up
393   // here regardless of whether or not the operation succeeded.
394   llvm::BasicBlock *ContinueBB =
395       CGF.createBasicBlock("cmpxchg.continue", CGF.CurFn);
396
397   // Update Expected if Expected isn't equal to Old, otherwise branch to the
398   // exit point.
399   CGF.Builder.CreateCondBr(Cmp, ContinueBB, StoreExpectedBB);
400
401   CGF.Builder.SetInsertPoint(StoreExpectedBB);
402   // Update the memory at Expected with Old's value.
403   llvm::StoreInst *StoreExpected = CGF.Builder.CreateStore(Old, Val1);
404   StoreExpected->setAlignment(Align);
405   // Finally, branch to the exit point.
406   CGF.Builder.CreateBr(ContinueBB);
407
408   CGF.Builder.SetInsertPoint(ContinueBB);
409   // Update the memory at Dest with Cmp's value.
410   CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType()));
411   return;
412 }
413
414 /// Given an ordering required on success, emit all possible cmpxchg
415 /// instructions to cope with the provided (but possibly only dynamically known)
416 /// FailureOrder.
417 static void emitAtomicCmpXchgFailureSet(CodeGenFunction &CGF, AtomicExpr *E,
418                                         bool IsWeak, llvm::Value *Dest,
419                                         llvm::Value *Ptr, llvm::Value *Val1,
420                                         llvm::Value *Val2,
421                                         llvm::Value *FailureOrderVal,
422                                         uint64_t Size, unsigned Align,
423                                         llvm::AtomicOrdering SuccessOrder) {
424   llvm::AtomicOrdering FailureOrder;
425   if (llvm::ConstantInt *FO = dyn_cast<llvm::ConstantInt>(FailureOrderVal)) {
426     switch (FO->getSExtValue()) {
427     default:
428       FailureOrder = llvm::Monotonic;
429       break;
430     case AtomicExpr::AO_ABI_memory_order_consume:
431     case AtomicExpr::AO_ABI_memory_order_acquire:
432       FailureOrder = llvm::Acquire;
433       break;
434     case AtomicExpr::AO_ABI_memory_order_seq_cst:
435       FailureOrder = llvm::SequentiallyConsistent;
436       break;
437     }
438     if (FailureOrder >= SuccessOrder) {
439       // Don't assert on undefined behaviour.
440       FailureOrder =
441         llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrder);
442     }
443     emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, Size, Align,
444                       SuccessOrder, FailureOrder);
445     return;
446   }
447
448   // Create all the relevant BB's
449   llvm::BasicBlock *MonotonicBB = nullptr, *AcquireBB = nullptr,
450                    *SeqCstBB = nullptr;
451   MonotonicBB = CGF.createBasicBlock("monotonic_fail", CGF.CurFn);
452   if (SuccessOrder != llvm::Monotonic && SuccessOrder != llvm::Release)
453     AcquireBB = CGF.createBasicBlock("acquire_fail", CGF.CurFn);
454   if (SuccessOrder == llvm::SequentiallyConsistent)
455     SeqCstBB = CGF.createBasicBlock("seqcst_fail", CGF.CurFn);
456
457   llvm::BasicBlock *ContBB = CGF.createBasicBlock("atomic.continue", CGF.CurFn);
458
459   llvm::SwitchInst *SI = CGF.Builder.CreateSwitch(FailureOrderVal, MonotonicBB);
460
461   // Emit all the different atomics
462
463   // MonotonicBB is arbitrarily chosen as the default case; in practice, this
464   // doesn't matter unless someone is crazy enough to use something that
465   // doesn't fold to a constant for the ordering.
466   CGF.Builder.SetInsertPoint(MonotonicBB);
467   emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2,
468                     Size, Align, SuccessOrder, llvm::Monotonic);
469   CGF.Builder.CreateBr(ContBB);
470
471   if (AcquireBB) {
472     CGF.Builder.SetInsertPoint(AcquireBB);
473     emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2,
474                       Size, Align, SuccessOrder, llvm::Acquire);
475     CGF.Builder.CreateBr(ContBB);
476     SI->addCase(CGF.Builder.getInt32(AtomicExpr::AO_ABI_memory_order_consume),
477                 AcquireBB);
478     SI->addCase(CGF.Builder.getInt32(AtomicExpr::AO_ABI_memory_order_acquire),
479                 AcquireBB);
480   }
481   if (SeqCstBB) {
482     CGF.Builder.SetInsertPoint(SeqCstBB);
483     emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2,
484                       Size, Align, SuccessOrder, llvm::SequentiallyConsistent);
485     CGF.Builder.CreateBr(ContBB);
486     SI->addCase(CGF.Builder.getInt32(AtomicExpr::AO_ABI_memory_order_seq_cst),
487                 SeqCstBB);
488   }
489
490   CGF.Builder.SetInsertPoint(ContBB);
491 }
492
493 static void EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, llvm::Value *Dest,
494                          llvm::Value *Ptr, llvm::Value *Val1, llvm::Value *Val2,
495                          llvm::Value *IsWeak, llvm::Value *FailureOrder,
496                          uint64_t Size, unsigned Align,
497                          llvm::AtomicOrdering Order) {
498   llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add;
499   llvm::Instruction::BinaryOps PostOp = (llvm::Instruction::BinaryOps)0;
500
501   switch (E->getOp()) {
502   case AtomicExpr::AO__c11_atomic_init:
503     llvm_unreachable("Already handled!");
504
505   case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
506     emitAtomicCmpXchgFailureSet(CGF, E, false, Dest, Ptr, Val1, Val2,
507                                 FailureOrder, Size, Align, Order);
508     return;
509   case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
510     emitAtomicCmpXchgFailureSet(CGF, E, true, Dest, Ptr, Val1, Val2,
511                                 FailureOrder, Size, Align, Order);
512     return;
513   case AtomicExpr::AO__atomic_compare_exchange:
514   case AtomicExpr::AO__atomic_compare_exchange_n: {
515     if (llvm::ConstantInt *IsWeakC = dyn_cast<llvm::ConstantInt>(IsWeak)) {
516       emitAtomicCmpXchgFailureSet(CGF, E, IsWeakC->getZExtValue(), Dest, Ptr,
517                                   Val1, Val2, FailureOrder, Size, Align, Order);
518     } else {
519       // Create all the relevant BB's
520       llvm::BasicBlock *StrongBB =
521           CGF.createBasicBlock("cmpxchg.strong", CGF.CurFn);
522       llvm::BasicBlock *WeakBB = CGF.createBasicBlock("cmxchg.weak", CGF.CurFn);
523       llvm::BasicBlock *ContBB =
524           CGF.createBasicBlock("cmpxchg.continue", CGF.CurFn);
525
526       llvm::SwitchInst *SI = CGF.Builder.CreateSwitch(IsWeak, WeakBB);
527       SI->addCase(CGF.Builder.getInt1(false), StrongBB);
528
529       CGF.Builder.SetInsertPoint(StrongBB);
530       emitAtomicCmpXchgFailureSet(CGF, E, false, Dest, Ptr, Val1, Val2,
531                                   FailureOrder, Size, Align, Order);
532       CGF.Builder.CreateBr(ContBB);
533
534       CGF.Builder.SetInsertPoint(WeakBB);
535       emitAtomicCmpXchgFailureSet(CGF, E, true, Dest, Ptr, Val1, Val2,
536                                   FailureOrder, Size, Align, Order);
537       CGF.Builder.CreateBr(ContBB);
538
539       CGF.Builder.SetInsertPoint(ContBB);
540     }
541     return;
542   }
543   case AtomicExpr::AO__c11_atomic_load:
544   case AtomicExpr::AO__atomic_load_n:
545   case AtomicExpr::AO__atomic_load: {
546     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr);
547     Load->setAtomic(Order);
548     Load->setAlignment(Size);
549     Load->setVolatile(E->isVolatile());
550     llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Load, Dest);
551     StoreDest->setAlignment(Align);
552     return;
553   }
554
555   case AtomicExpr::AO__c11_atomic_store:
556   case AtomicExpr::AO__atomic_store:
557   case AtomicExpr::AO__atomic_store_n: {
558     assert(!Dest && "Store does not return a value");
559     llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
560     LoadVal1->setAlignment(Align);
561     llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr);
562     Store->setAtomic(Order);
563     Store->setAlignment(Size);
564     Store->setVolatile(E->isVolatile());
565     return;
566   }
567
568   case AtomicExpr::AO__c11_atomic_exchange:
569   case AtomicExpr::AO__atomic_exchange_n:
570   case AtomicExpr::AO__atomic_exchange:
571     Op = llvm::AtomicRMWInst::Xchg;
572     break;
573
574   case AtomicExpr::AO__atomic_add_fetch:
575     PostOp = llvm::Instruction::Add;
576     // Fall through.
577   case AtomicExpr::AO__c11_atomic_fetch_add:
578   case AtomicExpr::AO__atomic_fetch_add:
579     Op = llvm::AtomicRMWInst::Add;
580     break;
581
582   case AtomicExpr::AO__atomic_sub_fetch:
583     PostOp = llvm::Instruction::Sub;
584     // Fall through.
585   case AtomicExpr::AO__c11_atomic_fetch_sub:
586   case AtomicExpr::AO__atomic_fetch_sub:
587     Op = llvm::AtomicRMWInst::Sub;
588     break;
589
590   case AtomicExpr::AO__atomic_and_fetch:
591     PostOp = llvm::Instruction::And;
592     // Fall through.
593   case AtomicExpr::AO__c11_atomic_fetch_and:
594   case AtomicExpr::AO__atomic_fetch_and:
595     Op = llvm::AtomicRMWInst::And;
596     break;
597
598   case AtomicExpr::AO__atomic_or_fetch:
599     PostOp = llvm::Instruction::Or;
600     // Fall through.
601   case AtomicExpr::AO__c11_atomic_fetch_or:
602   case AtomicExpr::AO__atomic_fetch_or:
603     Op = llvm::AtomicRMWInst::Or;
604     break;
605
606   case AtomicExpr::AO__atomic_xor_fetch:
607     PostOp = llvm::Instruction::Xor;
608     // Fall through.
609   case AtomicExpr::AO__c11_atomic_fetch_xor:
610   case AtomicExpr::AO__atomic_fetch_xor:
611     Op = llvm::AtomicRMWInst::Xor;
612     break;
613
614   case AtomicExpr::AO__atomic_nand_fetch:
615     PostOp = llvm::Instruction::And;
616     // Fall through.
617   case AtomicExpr::AO__atomic_fetch_nand:
618     Op = llvm::AtomicRMWInst::Nand;
619     break;
620   }
621
622   llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
623   LoadVal1->setAlignment(Align);
624   llvm::AtomicRMWInst *RMWI =
625       CGF.Builder.CreateAtomicRMW(Op, Ptr, LoadVal1, Order);
626   RMWI->setVolatile(E->isVolatile());
627
628   // For __atomic_*_fetch operations, perform the operation again to
629   // determine the value which was written.
630   llvm::Value *Result = RMWI;
631   if (PostOp)
632     Result = CGF.Builder.CreateBinOp(PostOp, RMWI, LoadVal1);
633   if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch)
634     Result = CGF.Builder.CreateNot(Result);
635   llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Result, Dest);
636   StoreDest->setAlignment(Align);
637 }
638
639 // This function emits any expression (scalar, complex, or aggregate)
640 // into a temporary alloca.
641 static llvm::Value *
642 EmitValToTemp(CodeGenFunction &CGF, Expr *E) {
643   llvm::Value *DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp");
644   CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(),
645                        /*Init*/ true);
646   return DeclPtr;
647 }
648
649 static void
650 AddDirectArgument(CodeGenFunction &CGF, CallArgList &Args,
651                   bool UseOptimizedLibcall, llvm::Value *Val, QualType ValTy,
652                   SourceLocation Loc, CharUnits SizeInChars) {
653   if (UseOptimizedLibcall) {
654     // Load value and pass it to the function directly.
655     unsigned Align = CGF.getContext().getTypeAlignInChars(ValTy).getQuantity();
656     int64_t SizeInBits = CGF.getContext().toBits(SizeInChars);
657     ValTy =
658         CGF.getContext().getIntTypeForBitwidth(SizeInBits, /*Signed=*/false);
659     llvm::Type *IPtrTy = llvm::IntegerType::get(CGF.getLLVMContext(),
660                                                 SizeInBits)->getPointerTo();
661     Val = CGF.EmitLoadOfScalar(CGF.Builder.CreateBitCast(Val, IPtrTy), false,
662                                Align, CGF.getContext().getPointerType(ValTy),
663                                Loc);
664     // Coerce the value into an appropriately sized integer type.
665     Args.add(RValue::get(Val), ValTy);
666   } else {
667     // Non-optimized functions always take a reference.
668     Args.add(RValue::get(CGF.EmitCastToVoidPtr(Val)),
669                          CGF.getContext().VoidPtrTy);
670   }
671 }
672
673 RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest) {
674   QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
675   QualType MemTy = AtomicTy;
676   if (const AtomicType *AT = AtomicTy->getAs<AtomicType>())
677     MemTy = AT->getValueType();
678   CharUnits sizeChars = getContext().getTypeSizeInChars(AtomicTy);
679   uint64_t Size = sizeChars.getQuantity();
680   CharUnits alignChars = getContext().getTypeAlignInChars(AtomicTy);
681   unsigned Align = alignChars.getQuantity();
682   unsigned MaxInlineWidthInBits =
683     getTarget().getMaxAtomicInlineWidth();
684   bool UseLibcall = (Size != Align ||
685                      getContext().toBits(sizeChars) > MaxInlineWidthInBits);
686
687   llvm::Value *IsWeak = nullptr, *OrderFail = nullptr, *Val1 = nullptr,
688               *Val2 = nullptr;
689   llvm::Value *Ptr = EmitScalarExpr(E->getPtr());
690
691   if (E->getOp() == AtomicExpr::AO__c11_atomic_init) {
692     assert(!Dest && "Init does not return a value");
693     LValue lvalue = LValue::MakeAddr(Ptr, AtomicTy, alignChars, getContext());
694     EmitAtomicInit(E->getVal1(), lvalue);
695     return RValue::get(nullptr);
696   }
697
698   llvm::Value *Order = EmitScalarExpr(E->getOrder());
699
700   switch (E->getOp()) {
701   case AtomicExpr::AO__c11_atomic_init:
702     llvm_unreachable("Already handled!");
703
704   case AtomicExpr::AO__c11_atomic_load:
705   case AtomicExpr::AO__atomic_load_n:
706     break;
707
708   case AtomicExpr::AO__atomic_load:
709     Dest = EmitScalarExpr(E->getVal1());
710     break;
711
712   case AtomicExpr::AO__atomic_store:
713     Val1 = EmitScalarExpr(E->getVal1());
714     break;
715
716   case AtomicExpr::AO__atomic_exchange:
717     Val1 = EmitScalarExpr(E->getVal1());
718     Dest = EmitScalarExpr(E->getVal2());
719     break;
720
721   case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
722   case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
723   case AtomicExpr::AO__atomic_compare_exchange_n:
724   case AtomicExpr::AO__atomic_compare_exchange:
725     Val1 = EmitScalarExpr(E->getVal1());
726     if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange)
727       Val2 = EmitScalarExpr(E->getVal2());
728     else
729       Val2 = EmitValToTemp(*this, E->getVal2());
730     OrderFail = EmitScalarExpr(E->getOrderFail());
731     if (E->getNumSubExprs() == 6)
732       IsWeak = EmitScalarExpr(E->getWeak());
733     break;
734
735   case AtomicExpr::AO__c11_atomic_fetch_add:
736   case AtomicExpr::AO__c11_atomic_fetch_sub:
737     if (MemTy->isPointerType()) {
738       // For pointer arithmetic, we're required to do a bit of math:
739       // adding 1 to an int* is not the same as adding 1 to a uintptr_t.
740       // ... but only for the C11 builtins. The GNU builtins expect the
741       // user to multiply by sizeof(T).
742       QualType Val1Ty = E->getVal1()->getType();
743       llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1());
744       CharUnits PointeeIncAmt =
745           getContext().getTypeSizeInChars(MemTy->getPointeeType());
746       Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt));
747       Val1 = CreateMemTemp(Val1Ty, ".atomictmp");
748       EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Val1, Val1Ty));
749       break;
750     }
751     // Fall through.
752   case AtomicExpr::AO__atomic_fetch_add:
753   case AtomicExpr::AO__atomic_fetch_sub:
754   case AtomicExpr::AO__atomic_add_fetch:
755   case AtomicExpr::AO__atomic_sub_fetch:
756   case AtomicExpr::AO__c11_atomic_store:
757   case AtomicExpr::AO__c11_atomic_exchange:
758   case AtomicExpr::AO__atomic_store_n:
759   case AtomicExpr::AO__atomic_exchange_n:
760   case AtomicExpr::AO__c11_atomic_fetch_and:
761   case AtomicExpr::AO__c11_atomic_fetch_or:
762   case AtomicExpr::AO__c11_atomic_fetch_xor:
763   case AtomicExpr::AO__atomic_fetch_and:
764   case AtomicExpr::AO__atomic_fetch_or:
765   case AtomicExpr::AO__atomic_fetch_xor:
766   case AtomicExpr::AO__atomic_fetch_nand:
767   case AtomicExpr::AO__atomic_and_fetch:
768   case AtomicExpr::AO__atomic_or_fetch:
769   case AtomicExpr::AO__atomic_xor_fetch:
770   case AtomicExpr::AO__atomic_nand_fetch:
771     Val1 = EmitValToTemp(*this, E->getVal1());
772     break;
773   }
774
775   QualType RValTy = E->getType().getUnqualifiedType();
776
777   auto GetDest = [&] {
778     if (!RValTy->isVoidType() && !Dest) {
779       Dest = CreateMemTemp(RValTy, ".atomicdst");
780     }
781     return Dest;
782   };
783
784   // Use a library call.  See: http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary .
785   if (UseLibcall) {
786     bool UseOptimizedLibcall = false;
787     switch (E->getOp()) {
788     case AtomicExpr::AO__c11_atomic_fetch_add:
789     case AtomicExpr::AO__atomic_fetch_add:
790     case AtomicExpr::AO__c11_atomic_fetch_and:
791     case AtomicExpr::AO__atomic_fetch_and:
792     case AtomicExpr::AO__c11_atomic_fetch_or:
793     case AtomicExpr::AO__atomic_fetch_or:
794     case AtomicExpr::AO__c11_atomic_fetch_sub:
795     case AtomicExpr::AO__atomic_fetch_sub:
796     case AtomicExpr::AO__c11_atomic_fetch_xor:
797     case AtomicExpr::AO__atomic_fetch_xor:
798       // For these, only library calls for certain sizes exist.
799       UseOptimizedLibcall = true;
800       break;
801     default:
802       // Only use optimized library calls for sizes for which they exist.
803       if (Size == 1 || Size == 2 || Size == 4 || Size == 8)
804         UseOptimizedLibcall = true;
805       break;
806     }
807
808     CallArgList Args;
809     if (!UseOptimizedLibcall) {
810       // For non-optimized library calls, the size is the first parameter
811       Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)),
812                getContext().getSizeType());
813     }
814     // Atomic address is the first or second parameter
815     Args.add(RValue::get(EmitCastToVoidPtr(Ptr)), getContext().VoidPtrTy);
816
817     std::string LibCallName;
818     QualType LoweredMemTy =
819       MemTy->isPointerType() ? getContext().getIntPtrType() : MemTy;
820     QualType RetTy;
821     bool HaveRetTy = false;
822     switch (E->getOp()) {
823     // There is only one libcall for compare an exchange, because there is no
824     // optimisation benefit possible from a libcall version of a weak compare
825     // and exchange.
826     // bool __atomic_compare_exchange(size_t size, void *mem, void *expected,
827     //                                void *desired, int success, int failure)
828     // bool __atomic_compare_exchange_N(T *mem, T *expected, T desired,
829     //                                  int success, int failure)
830     case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
831     case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
832     case AtomicExpr::AO__atomic_compare_exchange:
833     case AtomicExpr::AO__atomic_compare_exchange_n:
834       LibCallName = "__atomic_compare_exchange";
835       RetTy = getContext().BoolTy;
836       HaveRetTy = true;
837       Args.add(RValue::get(EmitCastToVoidPtr(Val1)), getContext().VoidPtrTy);
838       AddDirectArgument(*this, Args, UseOptimizedLibcall, Val2, MemTy,
839                         E->getExprLoc(), sizeChars);
840       Args.add(RValue::get(Order), getContext().IntTy);
841       Order = OrderFail;
842       break;
843     // void __atomic_exchange(size_t size, void *mem, void *val, void *return,
844     //                        int order)
845     // T __atomic_exchange_N(T *mem, T val, int order)
846     case AtomicExpr::AO__c11_atomic_exchange:
847     case AtomicExpr::AO__atomic_exchange_n:
848     case AtomicExpr::AO__atomic_exchange:
849       LibCallName = "__atomic_exchange";
850       AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy,
851                         E->getExprLoc(), sizeChars);
852       break;
853     // void __atomic_store(size_t size, void *mem, void *val, int order)
854     // void __atomic_store_N(T *mem, T val, int order)
855     case AtomicExpr::AO__c11_atomic_store:
856     case AtomicExpr::AO__atomic_store:
857     case AtomicExpr::AO__atomic_store_n:
858       LibCallName = "__atomic_store";
859       RetTy = getContext().VoidTy;
860       HaveRetTy = true;
861       AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy,
862                         E->getExprLoc(), sizeChars);
863       break;
864     // void __atomic_load(size_t size, void *mem, void *return, int order)
865     // T __atomic_load_N(T *mem, int order)
866     case AtomicExpr::AO__c11_atomic_load:
867     case AtomicExpr::AO__atomic_load:
868     case AtomicExpr::AO__atomic_load_n:
869       LibCallName = "__atomic_load";
870       break;
871     // T __atomic_fetch_add_N(T *mem, T val, int order)
872     case AtomicExpr::AO__c11_atomic_fetch_add:
873     case AtomicExpr::AO__atomic_fetch_add:
874       LibCallName = "__atomic_fetch_add";
875       AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, LoweredMemTy,
876                         E->getExprLoc(), sizeChars);
877       break;
878     // T __atomic_fetch_and_N(T *mem, T val, int order)
879     case AtomicExpr::AO__c11_atomic_fetch_and:
880     case AtomicExpr::AO__atomic_fetch_and:
881       LibCallName = "__atomic_fetch_and";
882       AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy,
883                         E->getExprLoc(), sizeChars);
884       break;
885     // T __atomic_fetch_or_N(T *mem, T val, int order)
886     case AtomicExpr::AO__c11_atomic_fetch_or:
887     case AtomicExpr::AO__atomic_fetch_or:
888       LibCallName = "__atomic_fetch_or";
889       AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy,
890                         E->getExprLoc(), sizeChars);
891       break;
892     // T __atomic_fetch_sub_N(T *mem, T val, int order)
893     case AtomicExpr::AO__c11_atomic_fetch_sub:
894     case AtomicExpr::AO__atomic_fetch_sub:
895       LibCallName = "__atomic_fetch_sub";
896       AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, LoweredMemTy,
897                         E->getExprLoc(), sizeChars);
898       break;
899     // T __atomic_fetch_xor_N(T *mem, T val, int order)
900     case AtomicExpr::AO__c11_atomic_fetch_xor:
901     case AtomicExpr::AO__atomic_fetch_xor:
902       LibCallName = "__atomic_fetch_xor";
903       AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy,
904                         E->getExprLoc(), sizeChars);
905       break;
906     default: return EmitUnsupportedRValue(E, "atomic library call");
907     }
908
909     // Optimized functions have the size in their name.
910     if (UseOptimizedLibcall)
911       LibCallName += "_" + llvm::utostr(Size);
912     // By default, assume we return a value of the atomic type.
913     if (!HaveRetTy) {
914       if (UseOptimizedLibcall) {
915         // Value is returned directly.
916         // The function returns an appropriately sized integer type.
917         RetTy = getContext().getIntTypeForBitwidth(
918             getContext().toBits(sizeChars), /*Signed=*/false);
919       } else {
920         // Value is returned through parameter before the order.
921         RetTy = getContext().VoidTy;
922         Args.add(RValue::get(EmitCastToVoidPtr(Dest)), getContext().VoidPtrTy);
923       }
924     }
925     // order is always the last parameter
926     Args.add(RValue::get(Order),
927              getContext().IntTy);
928
929     RValue Res = emitAtomicLibcall(*this, LibCallName, RetTy, Args);
930     // The value is returned directly from the libcall.
931     if (HaveRetTy && !RetTy->isVoidType())
932       return Res;
933     // The value is returned via an explicit out param.
934     if (RetTy->isVoidType())
935       return RValue::get(nullptr);
936     // The value is returned directly for optimized libcalls but the caller is
937     // expected an out-param.
938     if (UseOptimizedLibcall) {
939       llvm::Value *ResVal = Res.getScalarVal();
940       llvm::StoreInst *StoreDest = Builder.CreateStore(
941           ResVal,
942           Builder.CreateBitCast(GetDest(), ResVal->getType()->getPointerTo()));
943       StoreDest->setAlignment(Align);
944     }
945     return convertTempToRValue(Dest, RValTy, E->getExprLoc());
946   }
947
948   bool IsStore = E->getOp() == AtomicExpr::AO__c11_atomic_store ||
949                  E->getOp() == AtomicExpr::AO__atomic_store ||
950                  E->getOp() == AtomicExpr::AO__atomic_store_n;
951   bool IsLoad = E->getOp() == AtomicExpr::AO__c11_atomic_load ||
952                 E->getOp() == AtomicExpr::AO__atomic_load ||
953                 E->getOp() == AtomicExpr::AO__atomic_load_n;
954
955   llvm::Type *ITy =
956       llvm::IntegerType::get(getLLVMContext(), Size * 8);
957   llvm::Value *OrigDest = GetDest();
958   Ptr = Builder.CreateBitCast(
959       Ptr, ITy->getPointerTo(Ptr->getType()->getPointerAddressSpace()));
960   if (Val1) Val1 = Builder.CreateBitCast(Val1, ITy->getPointerTo());
961   if (Val2) Val2 = Builder.CreateBitCast(Val2, ITy->getPointerTo());
962   if (Dest && !E->isCmpXChg())
963     Dest = Builder.CreateBitCast(Dest, ITy->getPointerTo());
964
965   if (isa<llvm::ConstantInt>(Order)) {
966     int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
967     switch (ord) {
968     case AtomicExpr::AO_ABI_memory_order_relaxed:
969       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
970                    Size, Align, llvm::Monotonic);
971       break;
972     case AtomicExpr::AO_ABI_memory_order_consume:
973     case AtomicExpr::AO_ABI_memory_order_acquire:
974       if (IsStore)
975         break; // Avoid crashing on code with undefined behavior
976       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
977                    Size, Align, llvm::Acquire);
978       break;
979     case AtomicExpr::AO_ABI_memory_order_release:
980       if (IsLoad)
981         break; // Avoid crashing on code with undefined behavior
982       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
983                    Size, Align, llvm::Release);
984       break;
985     case AtomicExpr::AO_ABI_memory_order_acq_rel:
986       if (IsLoad || IsStore)
987         break; // Avoid crashing on code with undefined behavior
988       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
989                    Size, Align, llvm::AcquireRelease);
990       break;
991     case AtomicExpr::AO_ABI_memory_order_seq_cst:
992       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
993                    Size, Align, llvm::SequentiallyConsistent);
994       break;
995     default: // invalid order
996       // We should not ever get here normally, but it's hard to
997       // enforce that in general.
998       break;
999     }
1000     if (RValTy->isVoidType())
1001       return RValue::get(nullptr);
1002     return convertTempToRValue(OrigDest, RValTy, E->getExprLoc());
1003   }
1004
1005   // Long case, when Order isn't obviously constant.
1006
1007   // Create all the relevant BB's
1008   llvm::BasicBlock *MonotonicBB = nullptr, *AcquireBB = nullptr,
1009                    *ReleaseBB = nullptr, *AcqRelBB = nullptr,
1010                    *SeqCstBB = nullptr;
1011   MonotonicBB = createBasicBlock("monotonic", CurFn);
1012   if (!IsStore)
1013     AcquireBB = createBasicBlock("acquire", CurFn);
1014   if (!IsLoad)
1015     ReleaseBB = createBasicBlock("release", CurFn);
1016   if (!IsLoad && !IsStore)
1017     AcqRelBB = createBasicBlock("acqrel", CurFn);
1018   SeqCstBB = createBasicBlock("seqcst", CurFn);
1019   llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
1020
1021   // Create the switch for the split
1022   // MonotonicBB is arbitrarily chosen as the default case; in practice, this
1023   // doesn't matter unless someone is crazy enough to use something that
1024   // doesn't fold to a constant for the ordering.
1025   Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
1026   llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB);
1027
1028   // Emit all the different atomics
1029   Builder.SetInsertPoint(MonotonicBB);
1030   EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
1031                Size, Align, llvm::Monotonic);
1032   Builder.CreateBr(ContBB);
1033   if (!IsStore) {
1034     Builder.SetInsertPoint(AcquireBB);
1035     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
1036                  Size, Align, llvm::Acquire);
1037     Builder.CreateBr(ContBB);
1038     SI->addCase(Builder.getInt32(AtomicExpr::AO_ABI_memory_order_consume),
1039                 AcquireBB);
1040     SI->addCase(Builder.getInt32(AtomicExpr::AO_ABI_memory_order_acquire),
1041                 AcquireBB);
1042   }
1043   if (!IsLoad) {
1044     Builder.SetInsertPoint(ReleaseBB);
1045     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
1046                  Size, Align, llvm::Release);
1047     Builder.CreateBr(ContBB);
1048     SI->addCase(Builder.getInt32(AtomicExpr::AO_ABI_memory_order_release),
1049                 ReleaseBB);
1050   }
1051   if (!IsLoad && !IsStore) {
1052     Builder.SetInsertPoint(AcqRelBB);
1053     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
1054                  Size, Align, llvm::AcquireRelease);
1055     Builder.CreateBr(ContBB);
1056     SI->addCase(Builder.getInt32(AtomicExpr::AO_ABI_memory_order_acq_rel),
1057                 AcqRelBB);
1058   }
1059   Builder.SetInsertPoint(SeqCstBB);
1060   EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
1061                Size, Align, llvm::SequentiallyConsistent);
1062   Builder.CreateBr(ContBB);
1063   SI->addCase(Builder.getInt32(AtomicExpr::AO_ABI_memory_order_seq_cst),
1064               SeqCstBB);
1065
1066   // Cleanup and return
1067   Builder.SetInsertPoint(ContBB);
1068   if (RValTy->isVoidType())
1069     return RValue::get(nullptr);
1070   return convertTempToRValue(OrigDest, RValTy, E->getExprLoc());
1071 }
1072
1073 llvm::Value *AtomicInfo::emitCastToAtomicIntPointer(llvm::Value *addr) const {
1074   unsigned addrspace =
1075     cast<llvm::PointerType>(addr->getType())->getAddressSpace();
1076   llvm::IntegerType *ty =
1077     llvm::IntegerType::get(CGF.getLLVMContext(), AtomicSizeInBits);
1078   return CGF.Builder.CreateBitCast(addr, ty->getPointerTo(addrspace));
1079 }
1080
1081 RValue AtomicInfo::convertTempToRValue(llvm::Value *addr,
1082                                        AggValueSlot resultSlot,
1083                                        SourceLocation loc, bool AsValue) const {
1084   if (LVal.isSimple()) {
1085     if (EvaluationKind == TEK_Aggregate)
1086       return resultSlot.asRValue();
1087
1088     // Drill into the padding structure if we have one.
1089     if (hasPadding())
1090       addr = CGF.Builder.CreateStructGEP(nullptr, addr, 0);
1091
1092     // Otherwise, just convert the temporary to an r-value using the
1093     // normal conversion routine.
1094     return CGF.convertTempToRValue(addr, getValueType(), loc);
1095   }
1096   if (!AsValue)
1097     // Get RValue from temp memory as atomic for non-simple lvalues
1098     return RValue::get(
1099         CGF.Builder.CreateAlignedLoad(addr, AtomicAlign.getQuantity()));
1100   if (LVal.isBitField())
1101     return CGF.EmitLoadOfBitfieldLValue(LValue::MakeBitfield(
1102         addr, LVal.getBitFieldInfo(), LVal.getType(), LVal.getAlignment()));
1103   if (LVal.isVectorElt())
1104     return CGF.EmitLoadOfLValue(LValue::MakeVectorElt(addr, LVal.getVectorIdx(),
1105                                                       LVal.getType(),
1106                                                       LVal.getAlignment()),
1107                                 loc);
1108   assert(LVal.isExtVectorElt());
1109   return CGF.EmitLoadOfExtVectorElementLValue(LValue::MakeExtVectorElt(
1110       addr, LVal.getExtVectorElts(), LVal.getType(), LVal.getAlignment()));
1111 }
1112
1113 RValue AtomicInfo::ConvertIntToValueOrAtomic(llvm::Value *IntVal,
1114                                              AggValueSlot ResultSlot,
1115                                              SourceLocation Loc,
1116                                              bool AsValue) const {
1117   // Try not to in some easy cases.
1118   assert(IntVal->getType()->isIntegerTy() && "Expected integer value");
1119   if (getEvaluationKind() == TEK_Scalar &&
1120       (((!LVal.isBitField() ||
1121          LVal.getBitFieldInfo().Size == ValueSizeInBits) &&
1122         !hasPadding()) ||
1123        !AsValue)) {
1124     auto *ValTy = AsValue
1125                       ? CGF.ConvertTypeForMem(ValueTy)
1126                       : getAtomicAddress()->getType()->getPointerElementType();
1127     if (ValTy->isIntegerTy()) {
1128       assert(IntVal->getType() == ValTy && "Different integer types.");
1129       return RValue::get(CGF.EmitFromMemory(IntVal, ValueTy));
1130     } else if (ValTy->isPointerTy())
1131       return RValue::get(CGF.Builder.CreateIntToPtr(IntVal, ValTy));
1132     else if (llvm::CastInst::isBitCastable(IntVal->getType(), ValTy))
1133       return RValue::get(CGF.Builder.CreateBitCast(IntVal, ValTy));
1134   }
1135
1136   // Create a temporary.  This needs to be big enough to hold the
1137   // atomic integer.
1138   llvm::Value *Temp;
1139   bool TempIsVolatile = false;
1140   CharUnits TempAlignment;
1141   if (AsValue && getEvaluationKind() == TEK_Aggregate) {
1142     assert(!ResultSlot.isIgnored());
1143     Temp = ResultSlot.getAddr();
1144     TempAlignment = getValueAlignment();
1145     TempIsVolatile = ResultSlot.isVolatile();
1146   } else {
1147     Temp = CreateTempAlloca();
1148     TempAlignment = getAtomicAlignment();
1149   }
1150
1151   // Slam the integer into the temporary.
1152   llvm::Value *CastTemp = emitCastToAtomicIntPointer(Temp);
1153   CGF.Builder.CreateAlignedStore(IntVal, CastTemp, TempAlignment.getQuantity())
1154       ->setVolatile(TempIsVolatile);
1155
1156   return convertTempToRValue(Temp, ResultSlot, Loc, AsValue);
1157 }
1158
1159 void AtomicInfo::EmitAtomicLoadLibcall(llvm::Value *AddForLoaded,
1160                                        llvm::AtomicOrdering AO, bool) {
1161   // void __atomic_load(size_t size, void *mem, void *return, int order);
1162   CallArgList Args;
1163   Args.add(RValue::get(getAtomicSizeValue()), CGF.getContext().getSizeType());
1164   Args.add(RValue::get(CGF.EmitCastToVoidPtr(getAtomicAddress())),
1165            CGF.getContext().VoidPtrTy);
1166   Args.add(RValue::get(CGF.EmitCastToVoidPtr(AddForLoaded)),
1167            CGF.getContext().VoidPtrTy);
1168   Args.add(RValue::get(
1169                llvm::ConstantInt::get(CGF.IntTy, translateAtomicOrdering(AO))),
1170            CGF.getContext().IntTy);
1171   emitAtomicLibcall(CGF, "__atomic_load", CGF.getContext().VoidTy, Args);
1172 }
1173
1174 llvm::Value *AtomicInfo::EmitAtomicLoadOp(llvm::AtomicOrdering AO,
1175                                           bool IsVolatile) {
1176   // Okay, we're doing this natively.
1177   llvm::Value *Addr = emitCastToAtomicIntPointer(getAtomicAddress());
1178   llvm::LoadInst *Load = CGF.Builder.CreateLoad(Addr, "atomic-load");
1179   Load->setAtomic(AO);
1180
1181   // Other decoration.
1182   Load->setAlignment(getAtomicAlignment().getQuantity());
1183   if (IsVolatile)
1184     Load->setVolatile(true);
1185   if (LVal.getTBAAInfo())
1186     CGF.CGM.DecorateInstruction(Load, LVal.getTBAAInfo());
1187   return Load;
1188 }
1189
1190 /// An LValue is a candidate for having its loads and stores be made atomic if
1191 /// we are operating under /volatile:ms *and* the LValue itself is volatile and
1192 /// performing such an operation can be performed without a libcall.
1193 bool CodeGenFunction::LValueIsSuitableForInlineAtomic(LValue LV) {
1194   AtomicInfo AI(*this, LV);
1195   bool IsVolatile = LV.isVolatile() || hasVolatileMember(LV.getType());
1196   // An atomic is inline if we don't need to use a libcall.
1197   bool AtomicIsInline = !AI.shouldUseLibcall();
1198   return CGM.getCodeGenOpts().MSVolatile && IsVolatile && AtomicIsInline;
1199 }
1200
1201 /// An type is a candidate for having its loads and stores be made atomic if
1202 /// we are operating under /volatile:ms *and* we know the access is volatile and
1203 /// performing such an operation can be performed without a libcall.
1204 bool CodeGenFunction::typeIsSuitableForInlineAtomic(QualType Ty,
1205                                                     bool IsVolatile) const {
1206   // An atomic is inline if we don't need to use a libcall (e.g. it is builtin).
1207   bool AtomicIsInline = getContext().getTargetInfo().hasBuiltinAtomic(
1208       getContext().getTypeSize(Ty), getContext().getTypeAlign(Ty));
1209   return CGM.getCodeGenOpts().MSVolatile && IsVolatile && AtomicIsInline;
1210 }
1211
1212 RValue CodeGenFunction::EmitAtomicLoad(LValue LV, SourceLocation SL,
1213                                        AggValueSlot Slot) {
1214   llvm::AtomicOrdering AO;
1215   bool IsVolatile = LV.isVolatileQualified();
1216   if (LV.getType()->isAtomicType()) {
1217     AO = llvm::SequentiallyConsistent;
1218   } else {
1219     AO = llvm::Acquire;
1220     IsVolatile = true;
1221   }
1222   return EmitAtomicLoad(LV, SL, AO, IsVolatile, Slot);
1223 }
1224
1225 RValue AtomicInfo::EmitAtomicLoad(AggValueSlot ResultSlot, SourceLocation Loc,
1226                                   bool AsValue, llvm::AtomicOrdering AO,
1227                                   bool IsVolatile) {
1228   // Check whether we should use a library call.
1229   if (shouldUseLibcall()) {
1230     llvm::Value *TempAddr;
1231     if (LVal.isSimple() && !ResultSlot.isIgnored()) {
1232       assert(getEvaluationKind() == TEK_Aggregate);
1233       TempAddr = ResultSlot.getAddr();
1234     } else
1235       TempAddr = CreateTempAlloca();
1236
1237     EmitAtomicLoadLibcall(TempAddr, AO, IsVolatile);
1238
1239     // Okay, turn that back into the original value or whole atomic (for
1240     // non-simple lvalues) type.
1241     return convertTempToRValue(TempAddr, ResultSlot, Loc, AsValue);
1242   }
1243
1244   // Okay, we're doing this natively.
1245   auto *Load = EmitAtomicLoadOp(AO, IsVolatile);
1246
1247   // If we're ignoring an aggregate return, don't do anything.
1248   if (getEvaluationKind() == TEK_Aggregate && ResultSlot.isIgnored())
1249     return RValue::getAggregate(nullptr, false);
1250
1251   // Okay, turn that back into the original value or atomic (for non-simple
1252   // lvalues) type.
1253   return ConvertIntToValueOrAtomic(Load, ResultSlot, Loc, AsValue);
1254 }
1255
1256 /// Emit a load from an l-value of atomic type.  Note that the r-value
1257 /// we produce is an r-value of the atomic *value* type.
1258 RValue CodeGenFunction::EmitAtomicLoad(LValue src, SourceLocation loc,
1259                                        llvm::AtomicOrdering AO, bool IsVolatile,
1260                                        AggValueSlot resultSlot) {
1261   AtomicInfo Atomics(*this, src);
1262   return Atomics.EmitAtomicLoad(resultSlot, loc, /*AsValue=*/true, AO,
1263                                 IsVolatile);
1264 }
1265
1266 /// Copy an r-value into memory as part of storing to an atomic type.
1267 /// This needs to create a bit-pattern suitable for atomic operations.
1268 void AtomicInfo::emitCopyIntoMemory(RValue rvalue) const {
1269   assert(LVal.isSimple());
1270   // If we have an r-value, the rvalue should be of the atomic type,
1271   // which means that the caller is responsible for having zeroed
1272   // any padding.  Just do an aggregate copy of that type.
1273   if (rvalue.isAggregate()) {
1274     CGF.EmitAggregateCopy(getAtomicAddress(),
1275                           rvalue.getAggregateAddr(),
1276                           getAtomicType(),
1277                           (rvalue.isVolatileQualified()
1278                            || LVal.isVolatileQualified()),
1279                           LVal.getAlignment());
1280     return;
1281   }
1282
1283   // Okay, otherwise we're copying stuff.
1284
1285   // Zero out the buffer if necessary.
1286   emitMemSetZeroIfNecessary();
1287
1288   // Drill past the padding if present.
1289   LValue TempLVal = projectValue();
1290
1291   // Okay, store the rvalue in.
1292   if (rvalue.isScalar()) {
1293     CGF.EmitStoreOfScalar(rvalue.getScalarVal(), TempLVal, /*init*/ true);
1294   } else {
1295     CGF.EmitStoreOfComplex(rvalue.getComplexVal(), TempLVal, /*init*/ true);
1296   }
1297 }
1298
1299
1300 /// Materialize an r-value into memory for the purposes of storing it
1301 /// to an atomic type.
1302 llvm::Value *AtomicInfo::materializeRValue(RValue rvalue) const {
1303   // Aggregate r-values are already in memory, and EmitAtomicStore
1304   // requires them to be values of the atomic type.
1305   if (rvalue.isAggregate())
1306     return rvalue.getAggregateAddr();
1307
1308   // Otherwise, make a temporary and materialize into it.
1309   LValue TempLV = CGF.MakeAddrLValue(CreateTempAlloca(), getAtomicType(),
1310                                      getAtomicAlignment());
1311   AtomicInfo Atomics(CGF, TempLV);
1312   Atomics.emitCopyIntoMemory(rvalue);
1313   return TempLV.getAddress();
1314 }
1315
1316 llvm::Value *AtomicInfo::convertRValueToInt(RValue RVal) const {
1317   // If we've got a scalar value of the right size, try to avoid going
1318   // through memory.
1319   if (RVal.isScalar() && (!hasPadding() || !LVal.isSimple())) {
1320     llvm::Value *Value = RVal.getScalarVal();
1321     if (isa<llvm::IntegerType>(Value->getType()))
1322       return CGF.EmitToMemory(Value, ValueTy);
1323     else {
1324       llvm::IntegerType *InputIntTy = llvm::IntegerType::get(
1325           CGF.getLLVMContext(),
1326           LVal.isSimple() ? getValueSizeInBits() : getAtomicSizeInBits());
1327       if (isa<llvm::PointerType>(Value->getType()))
1328         return CGF.Builder.CreatePtrToInt(Value, InputIntTy);
1329       else if (llvm::BitCastInst::isBitCastable(Value->getType(), InputIntTy))
1330         return CGF.Builder.CreateBitCast(Value, InputIntTy);
1331     }
1332   }
1333   // Otherwise, we need to go through memory.
1334   // Put the r-value in memory.
1335   llvm::Value *Addr = materializeRValue(RVal);
1336
1337   // Cast the temporary to the atomic int type and pull a value out.
1338   Addr = emitCastToAtomicIntPointer(Addr);
1339   return CGF.Builder.CreateAlignedLoad(Addr,
1340                                        getAtomicAlignment().getQuantity());
1341 }
1342
1343 std::pair<llvm::Value *, llvm::Value *> AtomicInfo::EmitAtomicCompareExchangeOp(
1344     llvm::Value *ExpectedVal, llvm::Value *DesiredVal,
1345     llvm::AtomicOrdering Success, llvm::AtomicOrdering Failure, bool IsWeak) {
1346   // Do the atomic store.
1347   auto *Addr = emitCastToAtomicIntPointer(getAtomicAddress());
1348   auto *Inst = CGF.Builder.CreateAtomicCmpXchg(Addr, ExpectedVal, DesiredVal,
1349                                                Success, Failure);
1350   // Other decoration.
1351   Inst->setVolatile(LVal.isVolatileQualified());
1352   Inst->setWeak(IsWeak);
1353
1354   // Okay, turn that back into the original value type.
1355   auto *PreviousVal = CGF.Builder.CreateExtractValue(Inst, /*Idxs=*/0);
1356   auto *SuccessFailureVal = CGF.Builder.CreateExtractValue(Inst, /*Idxs=*/1);
1357   return std::make_pair(PreviousVal, SuccessFailureVal);
1358 }
1359
1360 llvm::Value *
1361 AtomicInfo::EmitAtomicCompareExchangeLibcall(llvm::Value *ExpectedAddr,
1362                                              llvm::Value *DesiredAddr,
1363                                              llvm::AtomicOrdering Success,
1364                                              llvm::AtomicOrdering Failure) {
1365   // bool __atomic_compare_exchange(size_t size, void *obj, void *expected,
1366   // void *desired, int success, int failure);
1367   CallArgList Args;
1368   Args.add(RValue::get(getAtomicSizeValue()), CGF.getContext().getSizeType());
1369   Args.add(RValue::get(CGF.EmitCastToVoidPtr(getAtomicAddress())),
1370            CGF.getContext().VoidPtrTy);
1371   Args.add(RValue::get(CGF.EmitCastToVoidPtr(ExpectedAddr)),
1372            CGF.getContext().VoidPtrTy);
1373   Args.add(RValue::get(CGF.EmitCastToVoidPtr(DesiredAddr)),
1374            CGF.getContext().VoidPtrTy);
1375   Args.add(RValue::get(llvm::ConstantInt::get(
1376                CGF.IntTy, translateAtomicOrdering(Success))),
1377            CGF.getContext().IntTy);
1378   Args.add(RValue::get(llvm::ConstantInt::get(
1379                CGF.IntTy, translateAtomicOrdering(Failure))),
1380            CGF.getContext().IntTy);
1381   auto SuccessFailureRVal = emitAtomicLibcall(CGF, "__atomic_compare_exchange",
1382                                               CGF.getContext().BoolTy, Args);
1383
1384   return SuccessFailureRVal.getScalarVal();
1385 }
1386
1387 std::pair<RValue, llvm::Value *> AtomicInfo::EmitAtomicCompareExchange(
1388     RValue Expected, RValue Desired, llvm::AtomicOrdering Success,
1389     llvm::AtomicOrdering Failure, bool IsWeak) {
1390   if (Failure >= Success)
1391     // Don't assert on undefined behavior.
1392     Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(Success);
1393
1394   // Check whether we should use a library call.
1395   if (shouldUseLibcall()) {
1396     // Produce a source address.
1397     auto *ExpectedAddr = materializeRValue(Expected);
1398     auto *DesiredAddr = materializeRValue(Desired);
1399     auto *Res = EmitAtomicCompareExchangeLibcall(ExpectedAddr, DesiredAddr,
1400                                                  Success, Failure);
1401     return std::make_pair(
1402         convertTempToRValue(ExpectedAddr, AggValueSlot::ignored(),
1403                             SourceLocation(), /*AsValue=*/false),
1404         Res);
1405   }
1406
1407   // If we've got a scalar value of the right size, try to avoid going
1408   // through memory.
1409   auto *ExpectedVal = convertRValueToInt(Expected);
1410   auto *DesiredVal = convertRValueToInt(Desired);
1411   auto Res = EmitAtomicCompareExchangeOp(ExpectedVal, DesiredVal, Success,
1412                                          Failure, IsWeak);
1413   return std::make_pair(
1414       ConvertIntToValueOrAtomic(Res.first, AggValueSlot::ignored(),
1415                                 SourceLocation(), /*AsValue=*/false),
1416       Res.second);
1417 }
1418
1419 static void
1420 EmitAtomicUpdateValue(CodeGenFunction &CGF, AtomicInfo &Atomics, RValue OldRVal,
1421                       const llvm::function_ref<RValue(RValue)> &UpdateOp,
1422                       llvm::Value *DesiredAddr) {
1423   llvm::Value *Ptr = nullptr;
1424   LValue UpdateLVal;
1425   RValue UpRVal;
1426   LValue AtomicLVal = Atomics.getAtomicLValue();
1427   LValue DesiredLVal;
1428   if (AtomicLVal.isSimple()) {
1429     UpRVal = OldRVal;
1430     DesiredLVal =
1431         LValue::MakeAddr(DesiredAddr, AtomicLVal.getType(),
1432                          AtomicLVal.getAlignment(), CGF.CGM.getContext());
1433   } else {
1434     // Build new lvalue for temp address
1435     Ptr = Atomics.materializeRValue(OldRVal);
1436     if (AtomicLVal.isBitField()) {
1437       UpdateLVal =
1438           LValue::MakeBitfield(Ptr, AtomicLVal.getBitFieldInfo(),
1439                                AtomicLVal.getType(), AtomicLVal.getAlignment());
1440       DesiredLVal =
1441           LValue::MakeBitfield(DesiredAddr, AtomicLVal.getBitFieldInfo(),
1442                                AtomicLVal.getType(), AtomicLVal.getAlignment());
1443     } else if (AtomicLVal.isVectorElt()) {
1444       UpdateLVal = LValue::MakeVectorElt(Ptr, AtomicLVal.getVectorIdx(),
1445                                          AtomicLVal.getType(),
1446                                          AtomicLVal.getAlignment());
1447       DesiredLVal = LValue::MakeVectorElt(
1448           DesiredAddr, AtomicLVal.getVectorIdx(), AtomicLVal.getType(),
1449           AtomicLVal.getAlignment());
1450     } else {
1451       assert(AtomicLVal.isExtVectorElt());
1452       UpdateLVal = LValue::MakeExtVectorElt(Ptr, AtomicLVal.getExtVectorElts(),
1453                                             AtomicLVal.getType(),
1454                                             AtomicLVal.getAlignment());
1455       DesiredLVal = LValue::MakeExtVectorElt(
1456           DesiredAddr, AtomicLVal.getExtVectorElts(), AtomicLVal.getType(),
1457           AtomicLVal.getAlignment());
1458     }
1459     UpdateLVal.setTBAAInfo(AtomicLVal.getTBAAInfo());
1460     DesiredLVal.setTBAAInfo(AtomicLVal.getTBAAInfo());
1461     UpRVal = CGF.EmitLoadOfLValue(UpdateLVal, SourceLocation());
1462   }
1463   // Store new value in the corresponding memory area
1464   RValue NewRVal = UpdateOp(UpRVal);
1465   if (NewRVal.isScalar()) {
1466     CGF.EmitStoreThroughLValue(NewRVal, DesiredLVal);
1467   } else {
1468     assert(NewRVal.isComplex());
1469     CGF.EmitStoreOfComplex(NewRVal.getComplexVal(), DesiredLVal,
1470                            /*isInit=*/false);
1471   }
1472 }
1473
1474 void AtomicInfo::EmitAtomicUpdateLibcall(
1475     llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp,
1476     bool IsVolatile) {
1477   auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO);
1478
1479   llvm::Value *ExpectedAddr = CreateTempAlloca();
1480
1481   EmitAtomicLoadLibcall(ExpectedAddr, AO, IsVolatile);
1482   auto *ContBB = CGF.createBasicBlock("atomic_cont");
1483   auto *ExitBB = CGF.createBasicBlock("atomic_exit");
1484   CGF.EmitBlock(ContBB);
1485   auto *DesiredAddr = CreateTempAlloca();
1486   if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) ||
1487       requiresMemSetZero(
1488           getAtomicAddress()->getType()->getPointerElementType())) {
1489     auto *OldVal = CGF.Builder.CreateAlignedLoad(
1490         ExpectedAddr, getAtomicAlignment().getQuantity());
1491     CGF.Builder.CreateAlignedStore(OldVal, DesiredAddr,
1492                                    getAtomicAlignment().getQuantity());
1493   }
1494   auto OldRVal = convertTempToRValue(ExpectedAddr, AggValueSlot::ignored(),
1495                                     SourceLocation(), /*AsValue=*/false);
1496   EmitAtomicUpdateValue(CGF, *this, OldRVal, UpdateOp, DesiredAddr);
1497   auto *Res =
1498       EmitAtomicCompareExchangeLibcall(ExpectedAddr, DesiredAddr, AO, Failure);
1499   CGF.Builder.CreateCondBr(Res, ExitBB, ContBB);
1500   CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
1501 }
1502
1503 void AtomicInfo::EmitAtomicUpdateOp(
1504     llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp,
1505     bool IsVolatile) {
1506   auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO);
1507
1508   // Do the atomic load.
1509   auto *OldVal = EmitAtomicLoadOp(AO, IsVolatile);
1510   // For non-simple lvalues perform compare-and-swap procedure.
1511   auto *ContBB = CGF.createBasicBlock("atomic_cont");
1512   auto *ExitBB = CGF.createBasicBlock("atomic_exit");
1513   auto *CurBB = CGF.Builder.GetInsertBlock();
1514   CGF.EmitBlock(ContBB);
1515   llvm::PHINode *PHI = CGF.Builder.CreatePHI(OldVal->getType(),
1516                                              /*NumReservedValues=*/2);
1517   PHI->addIncoming(OldVal, CurBB);
1518   auto *NewAtomicAddr = CreateTempAlloca();
1519   auto *NewAtomicIntAddr = emitCastToAtomicIntPointer(NewAtomicAddr);
1520   if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) ||
1521       requiresMemSetZero(
1522           getAtomicAddress()->getType()->getPointerElementType())) {
1523     CGF.Builder.CreateAlignedStore(PHI, NewAtomicIntAddr,
1524                                    getAtomicAlignment().getQuantity());
1525   }
1526   auto OldRVal = ConvertIntToValueOrAtomic(PHI, AggValueSlot::ignored(),
1527                                            SourceLocation(), /*AsValue=*/false);
1528   EmitAtomicUpdateValue(CGF, *this, OldRVal, UpdateOp, NewAtomicAddr);
1529   auto *DesiredVal = CGF.Builder.CreateAlignedLoad(
1530       NewAtomicIntAddr, getAtomicAlignment().getQuantity());
1531   // Try to write new value using cmpxchg operation
1532   auto Res = EmitAtomicCompareExchangeOp(PHI, DesiredVal, AO, Failure);
1533   PHI->addIncoming(Res.first, CGF.Builder.GetInsertBlock());
1534   CGF.Builder.CreateCondBr(Res.second, ExitBB, ContBB);
1535   CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
1536 }
1537
1538 static void EmitAtomicUpdateValue(CodeGenFunction &CGF, AtomicInfo &Atomics,
1539                                   RValue UpdateRVal, llvm::Value *DesiredAddr) {
1540   LValue AtomicLVal = Atomics.getAtomicLValue();
1541   LValue DesiredLVal;
1542   // Build new lvalue for temp address
1543   if (AtomicLVal.isBitField()) {
1544     DesiredLVal =
1545         LValue::MakeBitfield(DesiredAddr, AtomicLVal.getBitFieldInfo(),
1546                              AtomicLVal.getType(), AtomicLVal.getAlignment());
1547   } else if (AtomicLVal.isVectorElt()) {
1548     DesiredLVal =
1549         LValue::MakeVectorElt(DesiredAddr, AtomicLVal.getVectorIdx(),
1550                               AtomicLVal.getType(), AtomicLVal.getAlignment());
1551   } else {
1552     assert(AtomicLVal.isExtVectorElt());
1553     DesiredLVal = LValue::MakeExtVectorElt(
1554         DesiredAddr, AtomicLVal.getExtVectorElts(), AtomicLVal.getType(),
1555         AtomicLVal.getAlignment());
1556   }
1557   DesiredLVal.setTBAAInfo(AtomicLVal.getTBAAInfo());
1558   // Store new value in the corresponding memory area
1559   assert(UpdateRVal.isScalar());
1560   CGF.EmitStoreThroughLValue(UpdateRVal, DesiredLVal);
1561 }
1562
1563 void AtomicInfo::EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO,
1564                                          RValue UpdateRVal, bool IsVolatile) {
1565   auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO);
1566
1567   llvm::Value *ExpectedAddr = CreateTempAlloca();
1568
1569   EmitAtomicLoadLibcall(ExpectedAddr, AO, IsVolatile);
1570   auto *ContBB = CGF.createBasicBlock("atomic_cont");
1571   auto *ExitBB = CGF.createBasicBlock("atomic_exit");
1572   CGF.EmitBlock(ContBB);
1573   auto *DesiredAddr = CreateTempAlloca();
1574   if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) ||
1575       requiresMemSetZero(
1576           getAtomicAddress()->getType()->getPointerElementType())) {
1577     auto *OldVal = CGF.Builder.CreateAlignedLoad(
1578         ExpectedAddr, getAtomicAlignment().getQuantity());
1579     CGF.Builder.CreateAlignedStore(OldVal, DesiredAddr,
1580                                    getAtomicAlignment().getQuantity());
1581   }
1582   EmitAtomicUpdateValue(CGF, *this, UpdateRVal, DesiredAddr);
1583   auto *Res =
1584       EmitAtomicCompareExchangeLibcall(ExpectedAddr, DesiredAddr, AO, Failure);
1585   CGF.Builder.CreateCondBr(Res, ExitBB, ContBB);
1586   CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
1587 }
1588
1589 void AtomicInfo::EmitAtomicUpdateOp(llvm::AtomicOrdering AO, RValue UpdateRVal,
1590                                     bool IsVolatile) {
1591   auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO);
1592
1593   // Do the atomic load.
1594   auto *OldVal = EmitAtomicLoadOp(AO, IsVolatile);
1595   // For non-simple lvalues perform compare-and-swap procedure.
1596   auto *ContBB = CGF.createBasicBlock("atomic_cont");
1597   auto *ExitBB = CGF.createBasicBlock("atomic_exit");
1598   auto *CurBB = CGF.Builder.GetInsertBlock();
1599   CGF.EmitBlock(ContBB);
1600   llvm::PHINode *PHI = CGF.Builder.CreatePHI(OldVal->getType(),
1601                                              /*NumReservedValues=*/2);
1602   PHI->addIncoming(OldVal, CurBB);
1603   auto *NewAtomicAddr = CreateTempAlloca();
1604   auto *NewAtomicIntAddr = emitCastToAtomicIntPointer(NewAtomicAddr);
1605   if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) ||
1606       requiresMemSetZero(
1607           getAtomicAddress()->getType()->getPointerElementType())) {
1608     CGF.Builder.CreateAlignedStore(PHI, NewAtomicIntAddr,
1609                                    getAtomicAlignment().getQuantity());
1610   }
1611   EmitAtomicUpdateValue(CGF, *this, UpdateRVal, NewAtomicAddr);
1612   auto *DesiredVal = CGF.Builder.CreateAlignedLoad(
1613       NewAtomicIntAddr, getAtomicAlignment().getQuantity());
1614   // Try to write new value using cmpxchg operation
1615   auto Res = EmitAtomicCompareExchangeOp(PHI, DesiredVal, AO, Failure);
1616   PHI->addIncoming(Res.first, CGF.Builder.GetInsertBlock());
1617   CGF.Builder.CreateCondBr(Res.second, ExitBB, ContBB);
1618   CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
1619 }
1620
1621 void AtomicInfo::EmitAtomicUpdate(
1622     llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp,
1623     bool IsVolatile) {
1624   if (shouldUseLibcall()) {
1625     EmitAtomicUpdateLibcall(AO, UpdateOp, IsVolatile);
1626   } else {
1627     EmitAtomicUpdateOp(AO, UpdateOp, IsVolatile);
1628   }
1629 }
1630
1631 void AtomicInfo::EmitAtomicUpdate(llvm::AtomicOrdering AO, RValue UpdateRVal,
1632                                   bool IsVolatile) {
1633   if (shouldUseLibcall()) {
1634     EmitAtomicUpdateLibcall(AO, UpdateRVal, IsVolatile);
1635   } else {
1636     EmitAtomicUpdateOp(AO, UpdateRVal, IsVolatile);
1637   }
1638 }
1639
1640 void CodeGenFunction::EmitAtomicStore(RValue rvalue, LValue lvalue,
1641                                       bool isInit) {
1642   bool IsVolatile = lvalue.isVolatileQualified();
1643   llvm::AtomicOrdering AO;
1644   if (lvalue.getType()->isAtomicType()) {
1645     AO = llvm::SequentiallyConsistent;
1646   } else {
1647     AO = llvm::Release;
1648     IsVolatile = true;
1649   }
1650   return EmitAtomicStore(rvalue, lvalue, AO, IsVolatile, isInit);
1651 }
1652
1653 /// Emit a store to an l-value of atomic type.
1654 ///
1655 /// Note that the r-value is expected to be an r-value *of the atomic
1656 /// type*; this means that for aggregate r-values, it should include
1657 /// storage for any padding that was necessary.
1658 void CodeGenFunction::EmitAtomicStore(RValue rvalue, LValue dest,
1659                                       llvm::AtomicOrdering AO, bool IsVolatile,
1660                                       bool isInit) {
1661   // If this is an aggregate r-value, it should agree in type except
1662   // maybe for address-space qualification.
1663   assert(!rvalue.isAggregate() ||
1664          rvalue.getAggregateAddr()->getType()->getPointerElementType()
1665            == dest.getAddress()->getType()->getPointerElementType());
1666
1667   AtomicInfo atomics(*this, dest);
1668   LValue LVal = atomics.getAtomicLValue();
1669
1670   // If this is an initialization, just put the value there normally.
1671   if (LVal.isSimple()) {
1672     if (isInit) {
1673       atomics.emitCopyIntoMemory(rvalue);
1674       return;
1675     }
1676
1677     // Check whether we should use a library call.
1678     if (atomics.shouldUseLibcall()) {
1679       // Produce a source address.
1680       llvm::Value *srcAddr = atomics.materializeRValue(rvalue);
1681
1682       // void __atomic_store(size_t size, void *mem, void *val, int order)
1683       CallArgList args;
1684       args.add(RValue::get(atomics.getAtomicSizeValue()),
1685                getContext().getSizeType());
1686       args.add(RValue::get(EmitCastToVoidPtr(atomics.getAtomicAddress())),
1687                getContext().VoidPtrTy);
1688       args.add(RValue::get(EmitCastToVoidPtr(srcAddr)), getContext().VoidPtrTy);
1689       args.add(RValue::get(llvm::ConstantInt::get(
1690                    IntTy, AtomicInfo::translateAtomicOrdering(AO))),
1691                getContext().IntTy);
1692       emitAtomicLibcall(*this, "__atomic_store", getContext().VoidTy, args);
1693       return;
1694     }
1695
1696     // Okay, we're doing this natively.
1697     llvm::Value *intValue = atomics.convertRValueToInt(rvalue);
1698
1699     // Do the atomic store.
1700     llvm::Value *addr =
1701         atomics.emitCastToAtomicIntPointer(atomics.getAtomicAddress());
1702     intValue = Builder.CreateIntCast(
1703         intValue, addr->getType()->getPointerElementType(), /*isSigned=*/false);
1704     llvm::StoreInst *store = Builder.CreateStore(intValue, addr);
1705
1706     // Initializations don't need to be atomic.
1707     if (!isInit)
1708       store->setAtomic(AO);
1709
1710     // Other decoration.
1711     store->setAlignment(dest.getAlignment().getQuantity());
1712     if (IsVolatile)
1713       store->setVolatile(true);
1714     if (dest.getTBAAInfo())
1715       CGM.DecorateInstruction(store, dest.getTBAAInfo());
1716     return;
1717   }
1718
1719   // Emit simple atomic update operation.
1720   atomics.EmitAtomicUpdate(AO, rvalue, IsVolatile);
1721 }
1722
1723 /// Emit a compare-and-exchange op for atomic type.
1724 ///
1725 std::pair<RValue, llvm::Value *> CodeGenFunction::EmitAtomicCompareExchange(
1726     LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
1727     llvm::AtomicOrdering Success, llvm::AtomicOrdering Failure, bool IsWeak,
1728     AggValueSlot Slot) {
1729   // If this is an aggregate r-value, it should agree in type except
1730   // maybe for address-space qualification.
1731   assert(!Expected.isAggregate() ||
1732          Expected.getAggregateAddr()->getType()->getPointerElementType() ==
1733              Obj.getAddress()->getType()->getPointerElementType());
1734   assert(!Desired.isAggregate() ||
1735          Desired.getAggregateAddr()->getType()->getPointerElementType() ==
1736              Obj.getAddress()->getType()->getPointerElementType());
1737   AtomicInfo Atomics(*this, Obj);
1738
1739   return Atomics.EmitAtomicCompareExchange(Expected, Desired, Success, Failure,
1740                                            IsWeak);
1741 }
1742
1743 void CodeGenFunction::EmitAtomicUpdate(
1744     LValue LVal, llvm::AtomicOrdering AO,
1745     const llvm::function_ref<RValue(RValue)> &UpdateOp, bool IsVolatile) {
1746   AtomicInfo Atomics(*this, LVal);
1747   Atomics.EmitAtomicUpdate(AO, UpdateOp, IsVolatile);
1748 }
1749
1750 void CodeGenFunction::EmitAtomicInit(Expr *init, LValue dest) {
1751   AtomicInfo atomics(*this, dest);
1752
1753   switch (atomics.getEvaluationKind()) {
1754   case TEK_Scalar: {
1755     llvm::Value *value = EmitScalarExpr(init);
1756     atomics.emitCopyIntoMemory(RValue::get(value));
1757     return;
1758   }
1759
1760   case TEK_Complex: {
1761     ComplexPairTy value = EmitComplexExpr(init);
1762     atomics.emitCopyIntoMemory(RValue::getComplex(value));
1763     return;
1764   }
1765
1766   case TEK_Aggregate: {
1767     // Fix up the destination if the initializer isn't an expression
1768     // of atomic type.
1769     bool Zeroed = false;
1770     if (!init->getType()->isAtomicType()) {
1771       Zeroed = atomics.emitMemSetZeroIfNecessary();
1772       dest = atomics.projectValue();
1773     }
1774
1775     // Evaluate the expression directly into the destination.
1776     AggValueSlot slot = AggValueSlot::forLValue(dest,
1777                                         AggValueSlot::IsNotDestructed,
1778                                         AggValueSlot::DoesNotNeedGCBarriers,
1779                                         AggValueSlot::IsNotAliased,
1780                                         Zeroed ? AggValueSlot::IsZeroed :
1781                                                  AggValueSlot::IsNotZeroed);
1782
1783     EmitAggExpr(init, slot);
1784     return;
1785   }
1786   }
1787   llvm_unreachable("bad evaluation kind");
1788 }