]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/CodeGen/CGAtomic.cpp
Upgrade to Unbound 1.5.8.
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / CodeGen / CGAtomic.cpp
1 //===--- CGAtomic.cpp - Emit LLVM IR for atomic operations ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the code for emitting atomic operations.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGCall.h"
16 #include "CGRecordLayout.h"
17 #include "CodeGenModule.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/CodeGen/CGFunctionInfo.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Intrinsics.h"
23 #include "llvm/IR/Operator.h"
24
25 using namespace clang;
26 using namespace CodeGen;
27
28 namespace {
29   class AtomicInfo {
30     CodeGenFunction &CGF;
31     QualType AtomicTy;
32     QualType ValueTy;
33     uint64_t AtomicSizeInBits;
34     uint64_t ValueSizeInBits;
35     CharUnits AtomicAlign;
36     CharUnits ValueAlign;
37     CharUnits LValueAlign;
38     TypeEvaluationKind EvaluationKind;
39     bool UseLibcall;
40     LValue LVal;
41     CGBitFieldInfo BFI;
42   public:
43     AtomicInfo(CodeGenFunction &CGF, LValue &lvalue)
44         : CGF(CGF), AtomicSizeInBits(0), ValueSizeInBits(0),
45           EvaluationKind(TEK_Scalar), UseLibcall(true) {
46       assert(!lvalue.isGlobalReg());
47       ASTContext &C = CGF.getContext();
48       if (lvalue.isSimple()) {
49         AtomicTy = lvalue.getType();
50         if (auto *ATy = AtomicTy->getAs<AtomicType>())
51           ValueTy = ATy->getValueType();
52         else
53           ValueTy = AtomicTy;
54         EvaluationKind = CGF.getEvaluationKind(ValueTy);
55
56         uint64_t ValueAlignInBits;
57         uint64_t AtomicAlignInBits;
58         TypeInfo ValueTI = C.getTypeInfo(ValueTy);
59         ValueSizeInBits = ValueTI.Width;
60         ValueAlignInBits = ValueTI.Align;
61
62         TypeInfo AtomicTI = C.getTypeInfo(AtomicTy);
63         AtomicSizeInBits = AtomicTI.Width;
64         AtomicAlignInBits = AtomicTI.Align;
65
66         assert(ValueSizeInBits <= AtomicSizeInBits);
67         assert(ValueAlignInBits <= AtomicAlignInBits);
68
69         AtomicAlign = C.toCharUnitsFromBits(AtomicAlignInBits);
70         ValueAlign = C.toCharUnitsFromBits(ValueAlignInBits);
71         if (lvalue.getAlignment().isZero())
72           lvalue.setAlignment(AtomicAlign);
73
74         LVal = lvalue;
75       } else if (lvalue.isBitField()) {
76         ValueTy = lvalue.getType();
77         ValueSizeInBits = C.getTypeSize(ValueTy);
78         auto &OrigBFI = lvalue.getBitFieldInfo();
79         auto Offset = OrigBFI.Offset % C.toBits(lvalue.getAlignment());
80         AtomicSizeInBits = C.toBits(
81             C.toCharUnitsFromBits(Offset + OrigBFI.Size + C.getCharWidth() - 1)
82                 .RoundUpToAlignment(lvalue.getAlignment()));
83         auto VoidPtrAddr = CGF.EmitCastToVoidPtr(lvalue.getBitFieldAddr());
84         auto OffsetInChars =
85             (C.toCharUnitsFromBits(OrigBFI.Offset) / lvalue.getAlignment()) *
86             lvalue.getAlignment();
87         VoidPtrAddr = CGF.Builder.CreateConstGEP1_64(
88             VoidPtrAddr, OffsetInChars.getQuantity());
89         auto Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
90             VoidPtrAddr,
91             CGF.Builder.getIntNTy(AtomicSizeInBits)->getPointerTo(),
92             "atomic_bitfield_base");
93         BFI = OrigBFI;
94         BFI.Offset = Offset;
95         BFI.StorageSize = AtomicSizeInBits;
96         BFI.StorageOffset += OffsetInChars;
97         LVal = LValue::MakeBitfield(Addr, BFI, lvalue.getType(),
98                                     lvalue.getAlignment());
99         LVal.setTBAAInfo(lvalue.getTBAAInfo());
100         AtomicTy = C.getIntTypeForBitwidth(AtomicSizeInBits, OrigBFI.IsSigned);
101         if (AtomicTy.isNull()) {
102           llvm::APInt Size(
103               /*numBits=*/32,
104               C.toCharUnitsFromBits(AtomicSizeInBits).getQuantity());
105           AtomicTy = C.getConstantArrayType(C.CharTy, Size, ArrayType::Normal,
106                                             /*IndexTypeQuals=*/0);
107         }
108         AtomicAlign = ValueAlign = lvalue.getAlignment();
109       } else if (lvalue.isVectorElt()) {
110         ValueTy = lvalue.getType()->getAs<VectorType>()->getElementType();
111         ValueSizeInBits = C.getTypeSize(ValueTy);
112         AtomicTy = lvalue.getType();
113         AtomicSizeInBits = C.getTypeSize(AtomicTy);
114         AtomicAlign = ValueAlign = lvalue.getAlignment();
115         LVal = lvalue;
116       } else {
117         assert(lvalue.isExtVectorElt());
118         ValueTy = lvalue.getType();
119         ValueSizeInBits = C.getTypeSize(ValueTy);
120         AtomicTy = ValueTy = CGF.getContext().getExtVectorType(
121             lvalue.getType(), lvalue.getExtVectorAddr()
122                                   ->getType()
123                                   ->getPointerElementType()
124                                   ->getVectorNumElements());
125         AtomicSizeInBits = C.getTypeSize(AtomicTy);
126         AtomicAlign = ValueAlign = lvalue.getAlignment();
127         LVal = lvalue;
128       }
129       UseLibcall = !C.getTargetInfo().hasBuiltinAtomic(
130           AtomicSizeInBits, C.toBits(lvalue.getAlignment()));
131     }
132
133     QualType getAtomicType() const { return AtomicTy; }
134     QualType getValueType() const { return ValueTy; }
135     CharUnits getAtomicAlignment() const { return AtomicAlign; }
136     CharUnits getValueAlignment() const { return ValueAlign; }
137     uint64_t getAtomicSizeInBits() const { return AtomicSizeInBits; }
138     uint64_t getValueSizeInBits() const { return ValueSizeInBits; }
139     TypeEvaluationKind getEvaluationKind() const { return EvaluationKind; }
140     bool shouldUseLibcall() const { return UseLibcall; }
141     const LValue &getAtomicLValue() const { return LVal; }
142     llvm::Value *getAtomicAddress() const {
143       if (LVal.isSimple())
144         return LVal.getAddress();
145       else if (LVal.isBitField())
146         return LVal.getBitFieldAddr();
147       else if (LVal.isVectorElt())
148         return LVal.getVectorAddr();
149       assert(LVal.isExtVectorElt());
150       return LVal.getExtVectorAddr();
151     }
152
153     /// Is the atomic size larger than the underlying value type?
154     ///
155     /// Note that the absence of padding does not mean that atomic
156     /// objects are completely interchangeable with non-atomic
157     /// objects: we might have promoted the alignment of a type
158     /// without making it bigger.
159     bool hasPadding() const {
160       return (ValueSizeInBits != AtomicSizeInBits);
161     }
162
163     bool emitMemSetZeroIfNecessary() const;
164
165     llvm::Value *getAtomicSizeValue() const {
166       CharUnits size = CGF.getContext().toCharUnitsFromBits(AtomicSizeInBits);
167       return CGF.CGM.getSize(size);
168     }
169
170     /// Cast the given pointer to an integer pointer suitable for
171     /// atomic operations.
172     llvm::Value *emitCastToAtomicIntPointer(llvm::Value *addr) const;
173
174     /// Turn an atomic-layout object into an r-value.
175     RValue convertTempToRValue(llvm::Value *addr, AggValueSlot resultSlot,
176                                SourceLocation loc, bool AsValue) const;
177
178     /// \brief Converts a rvalue to integer value.
179     llvm::Value *convertRValueToInt(RValue RVal) const;
180
181     RValue ConvertIntToValueOrAtomic(llvm::Value *IntVal,
182                                      AggValueSlot ResultSlot,
183                                      SourceLocation Loc, bool AsValue) const;
184
185     /// Copy an atomic r-value into atomic-layout memory.
186     void emitCopyIntoMemory(RValue rvalue) const;
187
188     /// Project an l-value down to the value field.
189     LValue projectValue() const {
190       assert(LVal.isSimple());
191       llvm::Value *addr = getAtomicAddress();
192       if (hasPadding())
193         addr = CGF.Builder.CreateStructGEP(nullptr, addr, 0);
194
195       return LValue::MakeAddr(addr, getValueType(), LVal.getAlignment(),
196                               CGF.getContext(), LVal.getTBAAInfo());
197     }
198
199     /// \brief Emits atomic load.
200     /// \returns Loaded value.
201     RValue EmitAtomicLoad(AggValueSlot ResultSlot, SourceLocation Loc,
202                           bool AsValue, llvm::AtomicOrdering AO,
203                           bool IsVolatile);
204
205     /// \brief Emits atomic compare-and-exchange sequence.
206     /// \param Expected Expected value.
207     /// \param Desired Desired value.
208     /// \param Success Atomic ordering for success operation.
209     /// \param Failure Atomic ordering for failed operation.
210     /// \param IsWeak true if atomic operation is weak, false otherwise.
211     /// \returns Pair of values: previous value from storage (value type) and
212     /// boolean flag (i1 type) with true if success and false otherwise.
213     std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
214         RValue Expected, RValue Desired,
215         llvm::AtomicOrdering Success = llvm::SequentiallyConsistent,
216         llvm::AtomicOrdering Failure = llvm::SequentiallyConsistent,
217         bool IsWeak = false);
218
219     /// \brief Emits atomic update.
220     /// \param AO Atomic ordering.
221     /// \param UpdateOp Update operation for the current lvalue.
222     void EmitAtomicUpdate(llvm::AtomicOrdering AO,
223                           const llvm::function_ref<RValue(RValue)> &UpdateOp,
224                           bool IsVolatile);
225     /// \brief Emits atomic update.
226     /// \param AO Atomic ordering.
227     void EmitAtomicUpdate(llvm::AtomicOrdering AO, RValue UpdateRVal,
228                           bool IsVolatile);
229
230     /// Materialize an atomic r-value in atomic-layout memory.
231     llvm::Value *materializeRValue(RValue rvalue) const;
232
233     /// \brief Translates LLVM atomic ordering to GNU atomic ordering for
234     /// libcalls.
235     static AtomicExpr::AtomicOrderingKind
236     translateAtomicOrdering(const llvm::AtomicOrdering AO);
237
238   private:
239     bool requiresMemSetZero(llvm::Type *type) const;
240
241     /// \brief Creates temp alloca for intermediate operations on atomic value.
242     llvm::Value *CreateTempAlloca() const;
243
244     /// \brief Emits atomic load as a libcall.
245     void EmitAtomicLoadLibcall(llvm::Value *AddForLoaded,
246                                llvm::AtomicOrdering AO, bool IsVolatile);
247     /// \brief Emits atomic load as LLVM instruction.
248     llvm::Value *EmitAtomicLoadOp(llvm::AtomicOrdering AO, bool IsVolatile);
249     /// \brief Emits atomic compare-and-exchange op as a libcall.
250     llvm::Value *EmitAtomicCompareExchangeLibcall(
251         llvm::Value *ExpectedAddr, llvm::Value *DesiredAddr,
252         llvm::AtomicOrdering Success = llvm::SequentiallyConsistent,
253         llvm::AtomicOrdering Failure = llvm::SequentiallyConsistent);
254     /// \brief Emits atomic compare-and-exchange op as LLVM instruction.
255     std::pair<llvm::Value *, llvm::Value *> EmitAtomicCompareExchangeOp(
256         llvm::Value *ExpectedVal, llvm::Value *DesiredVal,
257         llvm::AtomicOrdering Success = llvm::SequentiallyConsistent,
258         llvm::AtomicOrdering Failure = llvm::SequentiallyConsistent,
259         bool IsWeak = false);
260     /// \brief Emit atomic update as libcalls.
261     void
262     EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO,
263                             const llvm::function_ref<RValue(RValue)> &UpdateOp,
264                             bool IsVolatile);
265     /// \brief Emit atomic update as LLVM instructions.
266     void EmitAtomicUpdateOp(llvm::AtomicOrdering AO,
267                             const llvm::function_ref<RValue(RValue)> &UpdateOp,
268                             bool IsVolatile);
269     /// \brief Emit atomic update as libcalls.
270     void EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO, RValue UpdateRVal,
271                                  bool IsVolatile);
272     /// \brief Emit atomic update as LLVM instructions.
273     void EmitAtomicUpdateOp(llvm::AtomicOrdering AO, RValue UpdateRal,
274                             bool IsVolatile);
275   };
276 }
277
278 AtomicExpr::AtomicOrderingKind
279 AtomicInfo::translateAtomicOrdering(const llvm::AtomicOrdering AO) {
280   switch (AO) {
281   case llvm::Unordered:
282   case llvm::NotAtomic:
283   case llvm::Monotonic:
284     return AtomicExpr::AO_ABI_memory_order_relaxed;
285   case llvm::Acquire:
286     return AtomicExpr::AO_ABI_memory_order_acquire;
287   case llvm::Release:
288     return AtomicExpr::AO_ABI_memory_order_release;
289   case llvm::AcquireRelease:
290     return AtomicExpr::AO_ABI_memory_order_acq_rel;
291   case llvm::SequentiallyConsistent:
292     return AtomicExpr::AO_ABI_memory_order_seq_cst;
293   }
294   llvm_unreachable("Unhandled AtomicOrdering");
295 }
296
297 llvm::Value *AtomicInfo::CreateTempAlloca() const {
298   auto *TempAlloca = CGF.CreateMemTemp(
299       (LVal.isBitField() && ValueSizeInBits > AtomicSizeInBits) ? ValueTy
300                                                                 : AtomicTy,
301       "atomic-temp");
302   TempAlloca->setAlignment(getAtomicAlignment().getQuantity());
303   // Cast to pointer to value type for bitfields.
304   if (LVal.isBitField())
305     return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
306         TempAlloca, getAtomicAddress()->getType());
307   return TempAlloca;
308 }
309
310 static RValue emitAtomicLibcall(CodeGenFunction &CGF,
311                                 StringRef fnName,
312                                 QualType resultType,
313                                 CallArgList &args) {
314   const CGFunctionInfo &fnInfo =
315     CGF.CGM.getTypes().arrangeFreeFunctionCall(resultType, args,
316             FunctionType::ExtInfo(), RequiredArgs::All);
317   llvm::FunctionType *fnTy = CGF.CGM.getTypes().GetFunctionType(fnInfo);
318   llvm::Constant *fn = CGF.CGM.CreateRuntimeFunction(fnTy, fnName);
319   return CGF.EmitCall(fnInfo, fn, ReturnValueSlot(), args);
320 }
321
322 /// Does a store of the given IR type modify the full expected width?
323 static bool isFullSizeType(CodeGenModule &CGM, llvm::Type *type,
324                            uint64_t expectedSize) {
325   return (CGM.getDataLayout().getTypeStoreSize(type) * 8 == expectedSize);
326 }
327
328 /// Does the atomic type require memsetting to zero before initialization?
329 ///
330 /// The IR type is provided as a way of making certain queries faster.
331 bool AtomicInfo::requiresMemSetZero(llvm::Type *type) const {
332   // If the atomic type has size padding, we definitely need a memset.
333   if (hasPadding()) return true;
334
335   // Otherwise, do some simple heuristics to try to avoid it:
336   switch (getEvaluationKind()) {
337   // For scalars and complexes, check whether the store size of the
338   // type uses the full size.
339   case TEK_Scalar:
340     return !isFullSizeType(CGF.CGM, type, AtomicSizeInBits);
341   case TEK_Complex:
342     return !isFullSizeType(CGF.CGM, type->getStructElementType(0),
343                            AtomicSizeInBits / 2);
344
345   // Padding in structs has an undefined bit pattern.  User beware.
346   case TEK_Aggregate:
347     return false;
348   }
349   llvm_unreachable("bad evaluation kind");
350 }
351
352 bool AtomicInfo::emitMemSetZeroIfNecessary() const {
353   assert(LVal.isSimple());
354   llvm::Value *addr = LVal.getAddress();
355   if (!requiresMemSetZero(addr->getType()->getPointerElementType()))
356     return false;
357
358   CGF.Builder.CreateMemSet(
359       addr, llvm::ConstantInt::get(CGF.Int8Ty, 0),
360       CGF.getContext().toCharUnitsFromBits(AtomicSizeInBits).getQuantity(),
361       LVal.getAlignment().getQuantity());
362   return true;
363 }
364
365 static void emitAtomicCmpXchg(CodeGenFunction &CGF, AtomicExpr *E, bool IsWeak,
366                               llvm::Value *Dest, llvm::Value *Ptr,
367                               llvm::Value *Val1, llvm::Value *Val2,
368                               uint64_t Size, unsigned Align,
369                               llvm::AtomicOrdering SuccessOrder,
370                               llvm::AtomicOrdering FailureOrder) {
371   // Note that cmpxchg doesn't support weak cmpxchg, at least at the moment.
372   llvm::LoadInst *Expected = CGF.Builder.CreateLoad(Val1);
373   Expected->setAlignment(Align);
374   llvm::LoadInst *Desired = CGF.Builder.CreateLoad(Val2);
375   Desired->setAlignment(Align);
376
377   llvm::AtomicCmpXchgInst *Pair = CGF.Builder.CreateAtomicCmpXchg(
378       Ptr, Expected, Desired, SuccessOrder, FailureOrder);
379   Pair->setVolatile(E->isVolatile());
380   Pair->setWeak(IsWeak);
381
382   // Cmp holds the result of the compare-exchange operation: true on success,
383   // false on failure.
384   llvm::Value *Old = CGF.Builder.CreateExtractValue(Pair, 0);
385   llvm::Value *Cmp = CGF.Builder.CreateExtractValue(Pair, 1);
386
387   // This basic block is used to hold the store instruction if the operation
388   // failed.
389   llvm::BasicBlock *StoreExpectedBB =
390       CGF.createBasicBlock("cmpxchg.store_expected", CGF.CurFn);
391
392   // This basic block is the exit point of the operation, we should end up
393   // here regardless of whether or not the operation succeeded.
394   llvm::BasicBlock *ContinueBB =
395       CGF.createBasicBlock("cmpxchg.continue", CGF.CurFn);
396
397   // Update Expected if Expected isn't equal to Old, otherwise branch to the
398   // exit point.
399   CGF.Builder.CreateCondBr(Cmp, ContinueBB, StoreExpectedBB);
400
401   CGF.Builder.SetInsertPoint(StoreExpectedBB);
402   // Update the memory at Expected with Old's value.
403   llvm::StoreInst *StoreExpected = CGF.Builder.CreateStore(Old, Val1);
404   StoreExpected->setAlignment(Align);
405   // Finally, branch to the exit point.
406   CGF.Builder.CreateBr(ContinueBB);
407
408   CGF.Builder.SetInsertPoint(ContinueBB);
409   // Update the memory at Dest with Cmp's value.
410   CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType()));
411   return;
412 }
413
414 /// Given an ordering required on success, emit all possible cmpxchg
415 /// instructions to cope with the provided (but possibly only dynamically known)
416 /// FailureOrder.
417 static void emitAtomicCmpXchgFailureSet(CodeGenFunction &CGF, AtomicExpr *E,
418                                         bool IsWeak, llvm::Value *Dest,
419                                         llvm::Value *Ptr, llvm::Value *Val1,
420                                         llvm::Value *Val2,
421                                         llvm::Value *FailureOrderVal,
422                                         uint64_t Size, unsigned Align,
423                                         llvm::AtomicOrdering SuccessOrder) {
424   llvm::AtomicOrdering FailureOrder;
425   if (llvm::ConstantInt *FO = dyn_cast<llvm::ConstantInt>(FailureOrderVal)) {
426     switch (FO->getSExtValue()) {
427     default:
428       FailureOrder = llvm::Monotonic;
429       break;
430     case AtomicExpr::AO_ABI_memory_order_consume:
431     case AtomicExpr::AO_ABI_memory_order_acquire:
432       FailureOrder = llvm::Acquire;
433       break;
434     case AtomicExpr::AO_ABI_memory_order_seq_cst:
435       FailureOrder = llvm::SequentiallyConsistent;
436       break;
437     }
438     if (FailureOrder >= SuccessOrder) {
439       // Don't assert on undefined behaviour.
440       FailureOrder =
441         llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrder);
442     }
443     emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, Size, Align,
444                       SuccessOrder, FailureOrder);
445     return;
446   }
447
448   // Create all the relevant BB's
449   llvm::BasicBlock *MonotonicBB = nullptr, *AcquireBB = nullptr,
450                    *SeqCstBB = nullptr;
451   MonotonicBB = CGF.createBasicBlock("monotonic_fail", CGF.CurFn);
452   if (SuccessOrder != llvm::Monotonic && SuccessOrder != llvm::Release)
453     AcquireBB = CGF.createBasicBlock("acquire_fail", CGF.CurFn);
454   if (SuccessOrder == llvm::SequentiallyConsistent)
455     SeqCstBB = CGF.createBasicBlock("seqcst_fail", CGF.CurFn);
456
457   llvm::BasicBlock *ContBB = CGF.createBasicBlock("atomic.continue", CGF.CurFn);
458
459   llvm::SwitchInst *SI = CGF.Builder.CreateSwitch(FailureOrderVal, MonotonicBB);
460
461   // Emit all the different atomics
462
463   // MonotonicBB is arbitrarily chosen as the default case; in practice, this
464   // doesn't matter unless someone is crazy enough to use something that
465   // doesn't fold to a constant for the ordering.
466   CGF.Builder.SetInsertPoint(MonotonicBB);
467   emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2,
468                     Size, Align, SuccessOrder, llvm::Monotonic);
469   CGF.Builder.CreateBr(ContBB);
470
471   if (AcquireBB) {
472     CGF.Builder.SetInsertPoint(AcquireBB);
473     emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2,
474                       Size, Align, SuccessOrder, llvm::Acquire);
475     CGF.Builder.CreateBr(ContBB);
476     SI->addCase(CGF.Builder.getInt32(AtomicExpr::AO_ABI_memory_order_consume),
477                 AcquireBB);
478     SI->addCase(CGF.Builder.getInt32(AtomicExpr::AO_ABI_memory_order_acquire),
479                 AcquireBB);
480   }
481   if (SeqCstBB) {
482     CGF.Builder.SetInsertPoint(SeqCstBB);
483     emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2,
484                       Size, Align, SuccessOrder, llvm::SequentiallyConsistent);
485     CGF.Builder.CreateBr(ContBB);
486     SI->addCase(CGF.Builder.getInt32(AtomicExpr::AO_ABI_memory_order_seq_cst),
487                 SeqCstBB);
488   }
489
490   CGF.Builder.SetInsertPoint(ContBB);
491 }
492
493 static void EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, llvm::Value *Dest,
494                          llvm::Value *Ptr, llvm::Value *Val1, llvm::Value *Val2,
495                          llvm::Value *IsWeak, llvm::Value *FailureOrder,
496                          uint64_t Size, unsigned Align,
497                          llvm::AtomicOrdering Order) {
498   llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add;
499   llvm::Instruction::BinaryOps PostOp = (llvm::Instruction::BinaryOps)0;
500
501   switch (E->getOp()) {
502   case AtomicExpr::AO__c11_atomic_init:
503     llvm_unreachable("Already handled!");
504
505   case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
506     emitAtomicCmpXchgFailureSet(CGF, E, false, Dest, Ptr, Val1, Val2,
507                                 FailureOrder, Size, Align, Order);
508     return;
509   case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
510     emitAtomicCmpXchgFailureSet(CGF, E, true, Dest, Ptr, Val1, Val2,
511                                 FailureOrder, Size, Align, Order);
512     return;
513   case AtomicExpr::AO__atomic_compare_exchange:
514   case AtomicExpr::AO__atomic_compare_exchange_n: {
515     if (llvm::ConstantInt *IsWeakC = dyn_cast<llvm::ConstantInt>(IsWeak)) {
516       emitAtomicCmpXchgFailureSet(CGF, E, IsWeakC->getZExtValue(), Dest, Ptr,
517                                   Val1, Val2, FailureOrder, Size, Align, Order);
518     } else {
519       // Create all the relevant BB's
520       llvm::BasicBlock *StrongBB =
521           CGF.createBasicBlock("cmpxchg.strong", CGF.CurFn);
522       llvm::BasicBlock *WeakBB = CGF.createBasicBlock("cmxchg.weak", CGF.CurFn);
523       llvm::BasicBlock *ContBB =
524           CGF.createBasicBlock("cmpxchg.continue", CGF.CurFn);
525
526       llvm::SwitchInst *SI = CGF.Builder.CreateSwitch(IsWeak, WeakBB);
527       SI->addCase(CGF.Builder.getInt1(false), StrongBB);
528
529       CGF.Builder.SetInsertPoint(StrongBB);
530       emitAtomicCmpXchgFailureSet(CGF, E, false, Dest, Ptr, Val1, Val2,
531                                   FailureOrder, Size, Align, Order);
532       CGF.Builder.CreateBr(ContBB);
533
534       CGF.Builder.SetInsertPoint(WeakBB);
535       emitAtomicCmpXchgFailureSet(CGF, E, true, Dest, Ptr, Val1, Val2,
536                                   FailureOrder, Size, Align, Order);
537       CGF.Builder.CreateBr(ContBB);
538
539       CGF.Builder.SetInsertPoint(ContBB);
540     }
541     return;
542   }
543   case AtomicExpr::AO__c11_atomic_load:
544   case AtomicExpr::AO__atomic_load_n:
545   case AtomicExpr::AO__atomic_load: {
546     llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr);
547     Load->setAtomic(Order);
548     Load->setAlignment(Size);
549     Load->setVolatile(E->isVolatile());
550     llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Load, Dest);
551     StoreDest->setAlignment(Align);
552     return;
553   }
554
555   case AtomicExpr::AO__c11_atomic_store:
556   case AtomicExpr::AO__atomic_store:
557   case AtomicExpr::AO__atomic_store_n: {
558     assert(!Dest && "Store does not return a value");
559     llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
560     LoadVal1->setAlignment(Align);
561     llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr);
562     Store->setAtomic(Order);
563     Store->setAlignment(Size);
564     Store->setVolatile(E->isVolatile());
565     return;
566   }
567
568   case AtomicExpr::AO__c11_atomic_exchange:
569   case AtomicExpr::AO__atomic_exchange_n:
570   case AtomicExpr::AO__atomic_exchange:
571     Op = llvm::AtomicRMWInst::Xchg;
572     break;
573
574   case AtomicExpr::AO__atomic_add_fetch:
575     PostOp = llvm::Instruction::Add;
576     // Fall through.
577   case AtomicExpr::AO__c11_atomic_fetch_add:
578   case AtomicExpr::AO__atomic_fetch_add:
579     Op = llvm::AtomicRMWInst::Add;
580     break;
581
582   case AtomicExpr::AO__atomic_sub_fetch:
583     PostOp = llvm::Instruction::Sub;
584     // Fall through.
585   case AtomicExpr::AO__c11_atomic_fetch_sub:
586   case AtomicExpr::AO__atomic_fetch_sub:
587     Op = llvm::AtomicRMWInst::Sub;
588     break;
589
590   case AtomicExpr::AO__atomic_and_fetch:
591     PostOp = llvm::Instruction::And;
592     // Fall through.
593   case AtomicExpr::AO__c11_atomic_fetch_and:
594   case AtomicExpr::AO__atomic_fetch_and:
595     Op = llvm::AtomicRMWInst::And;
596     break;
597
598   case AtomicExpr::AO__atomic_or_fetch:
599     PostOp = llvm::Instruction::Or;
600     // Fall through.
601   case AtomicExpr::AO__c11_atomic_fetch_or:
602   case AtomicExpr::AO__atomic_fetch_or:
603     Op = llvm::AtomicRMWInst::Or;
604     break;
605
606   case AtomicExpr::AO__atomic_xor_fetch:
607     PostOp = llvm::Instruction::Xor;
608     // Fall through.
609   case AtomicExpr::AO__c11_atomic_fetch_xor:
610   case AtomicExpr::AO__atomic_fetch_xor:
611     Op = llvm::AtomicRMWInst::Xor;
612     break;
613
614   case AtomicExpr::AO__atomic_nand_fetch:
615     PostOp = llvm::Instruction::And;
616     // Fall through.
617   case AtomicExpr::AO__atomic_fetch_nand:
618     Op = llvm::AtomicRMWInst::Nand;
619     break;
620   }
621
622   llvm::LoadInst *LoadVal1 = CGF.Builder.CreateLoad(Val1);
623   LoadVal1->setAlignment(Align);
624   llvm::AtomicRMWInst *RMWI =
625       CGF.Builder.CreateAtomicRMW(Op, Ptr, LoadVal1, Order);
626   RMWI->setVolatile(E->isVolatile());
627
628   // For __atomic_*_fetch operations, perform the operation again to
629   // determine the value which was written.
630   llvm::Value *Result = RMWI;
631   if (PostOp)
632     Result = CGF.Builder.CreateBinOp(PostOp, RMWI, LoadVal1);
633   if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch)
634     Result = CGF.Builder.CreateNot(Result);
635   llvm::StoreInst *StoreDest = CGF.Builder.CreateStore(Result, Dest);
636   StoreDest->setAlignment(Align);
637 }
638
639 // This function emits any expression (scalar, complex, or aggregate)
640 // into a temporary alloca.
641 static llvm::Value *
642 EmitValToTemp(CodeGenFunction &CGF, Expr *E) {
643   llvm::Value *DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp");
644   CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(),
645                        /*Init*/ true);
646   return DeclPtr;
647 }
648
649 static void
650 AddDirectArgument(CodeGenFunction &CGF, CallArgList &Args,
651                   bool UseOptimizedLibcall, llvm::Value *Val, QualType ValTy,
652                   SourceLocation Loc, CharUnits SizeInChars) {
653   if (UseOptimizedLibcall) {
654     // Load value and pass it to the function directly.
655     unsigned Align = CGF.getContext().getTypeAlignInChars(ValTy).getQuantity();
656     int64_t SizeInBits = CGF.getContext().toBits(SizeInChars);
657     ValTy =
658         CGF.getContext().getIntTypeForBitwidth(SizeInBits, /*Signed=*/false);
659     llvm::Type *IPtrTy = llvm::IntegerType::get(CGF.getLLVMContext(),
660                                                 SizeInBits)->getPointerTo();
661     Val = CGF.EmitLoadOfScalar(CGF.Builder.CreateBitCast(Val, IPtrTy), false,
662                                Align, CGF.getContext().getPointerType(ValTy),
663                                Loc);
664     // Coerce the value into an appropriately sized integer type.
665     Args.add(RValue::get(Val), ValTy);
666   } else {
667     // Non-optimized functions always take a reference.
668     Args.add(RValue::get(CGF.EmitCastToVoidPtr(Val)),
669                          CGF.getContext().VoidPtrTy);
670   }
671 }
672
673 RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E, llvm::Value *Dest) {
674   QualType AtomicTy = E->getPtr()->getType()->getPointeeType();
675   QualType MemTy = AtomicTy;
676   if (const AtomicType *AT = AtomicTy->getAs<AtomicType>())
677     MemTy = AT->getValueType();
678   CharUnits sizeChars = getContext().getTypeSizeInChars(AtomicTy);
679   uint64_t Size = sizeChars.getQuantity();
680   CharUnits alignChars = getContext().getTypeAlignInChars(AtomicTy);
681   unsigned Align = alignChars.getQuantity();
682   unsigned MaxInlineWidthInBits =
683     getTarget().getMaxAtomicInlineWidth();
684   bool UseLibcall = (Size != Align ||
685                      getContext().toBits(sizeChars) > MaxInlineWidthInBits);
686
687   llvm::Value *IsWeak = nullptr, *OrderFail = nullptr, *Val1 = nullptr,
688               *Val2 = nullptr;
689   llvm::Value *Ptr = EmitScalarExpr(E->getPtr());
690
691   if (E->getOp() == AtomicExpr::AO__c11_atomic_init) {
692     assert(!Dest && "Init does not return a value");
693     LValue lvalue = LValue::MakeAddr(Ptr, AtomicTy, alignChars, getContext());
694     EmitAtomicInit(E->getVal1(), lvalue);
695     return RValue::get(nullptr);
696   }
697
698   llvm::Value *Order = EmitScalarExpr(E->getOrder());
699
700   switch (E->getOp()) {
701   case AtomicExpr::AO__c11_atomic_init:
702     llvm_unreachable("Already handled above with EmitAtomicInit!");
703
704   case AtomicExpr::AO__c11_atomic_load:
705   case AtomicExpr::AO__atomic_load_n:
706     break;
707
708   case AtomicExpr::AO__atomic_load:
709     Dest = EmitScalarExpr(E->getVal1());
710     break;
711
712   case AtomicExpr::AO__atomic_store:
713     Val1 = EmitScalarExpr(E->getVal1());
714     break;
715
716   case AtomicExpr::AO__atomic_exchange:
717     Val1 = EmitScalarExpr(E->getVal1());
718     Dest = EmitScalarExpr(E->getVal2());
719     break;
720
721   case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
722   case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
723   case AtomicExpr::AO__atomic_compare_exchange_n:
724   case AtomicExpr::AO__atomic_compare_exchange:
725     Val1 = EmitScalarExpr(E->getVal1());
726     if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange)
727       Val2 = EmitScalarExpr(E->getVal2());
728     else
729       Val2 = EmitValToTemp(*this, E->getVal2());
730     OrderFail = EmitScalarExpr(E->getOrderFail());
731     if (E->getNumSubExprs() == 6)
732       IsWeak = EmitScalarExpr(E->getWeak());
733     break;
734
735   case AtomicExpr::AO__c11_atomic_fetch_add:
736   case AtomicExpr::AO__c11_atomic_fetch_sub:
737     if (MemTy->isPointerType()) {
738       // For pointer arithmetic, we're required to do a bit of math:
739       // adding 1 to an int* is not the same as adding 1 to a uintptr_t.
740       // ... but only for the C11 builtins. The GNU builtins expect the
741       // user to multiply by sizeof(T).
742       QualType Val1Ty = E->getVal1()->getType();
743       llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1());
744       CharUnits PointeeIncAmt =
745           getContext().getTypeSizeInChars(MemTy->getPointeeType());
746       Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt));
747       Val1 = CreateMemTemp(Val1Ty, ".atomictmp");
748       EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Val1, Val1Ty));
749       break;
750     }
751     // Fall through.
752   case AtomicExpr::AO__atomic_fetch_add:
753   case AtomicExpr::AO__atomic_fetch_sub:
754   case AtomicExpr::AO__atomic_add_fetch:
755   case AtomicExpr::AO__atomic_sub_fetch:
756   case AtomicExpr::AO__c11_atomic_store:
757   case AtomicExpr::AO__c11_atomic_exchange:
758   case AtomicExpr::AO__atomic_store_n:
759   case AtomicExpr::AO__atomic_exchange_n:
760   case AtomicExpr::AO__c11_atomic_fetch_and:
761   case AtomicExpr::AO__c11_atomic_fetch_or:
762   case AtomicExpr::AO__c11_atomic_fetch_xor:
763   case AtomicExpr::AO__atomic_fetch_and:
764   case AtomicExpr::AO__atomic_fetch_or:
765   case AtomicExpr::AO__atomic_fetch_xor:
766   case AtomicExpr::AO__atomic_fetch_nand:
767   case AtomicExpr::AO__atomic_and_fetch:
768   case AtomicExpr::AO__atomic_or_fetch:
769   case AtomicExpr::AO__atomic_xor_fetch:
770   case AtomicExpr::AO__atomic_nand_fetch:
771     Val1 = EmitValToTemp(*this, E->getVal1());
772     break;
773   }
774
775   QualType RValTy = E->getType().getUnqualifiedType();
776
777   auto GetDest = [&] {
778     if (!RValTy->isVoidType() && !Dest) {
779       Dest = CreateMemTemp(RValTy, ".atomicdst");
780     }
781     return Dest;
782   };
783
784   // Use a library call.  See: http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary .
785   if (UseLibcall) {
786     bool UseOptimizedLibcall = false;
787     switch (E->getOp()) {
788     case AtomicExpr::AO__c11_atomic_init:
789       llvm_unreachable("Already handled above with EmitAtomicInit!");
790
791     case AtomicExpr::AO__c11_atomic_fetch_add:
792     case AtomicExpr::AO__atomic_fetch_add:
793     case AtomicExpr::AO__c11_atomic_fetch_and:
794     case AtomicExpr::AO__atomic_fetch_and:
795     case AtomicExpr::AO__c11_atomic_fetch_or:
796     case AtomicExpr::AO__atomic_fetch_or:
797     case AtomicExpr::AO__atomic_fetch_nand:
798     case AtomicExpr::AO__c11_atomic_fetch_sub:
799     case AtomicExpr::AO__atomic_fetch_sub:
800     case AtomicExpr::AO__c11_atomic_fetch_xor:
801     case AtomicExpr::AO__atomic_fetch_xor:
802     case AtomicExpr::AO__atomic_add_fetch:
803     case AtomicExpr::AO__atomic_and_fetch:
804     case AtomicExpr::AO__atomic_nand_fetch:
805     case AtomicExpr::AO__atomic_or_fetch:
806     case AtomicExpr::AO__atomic_sub_fetch:
807     case AtomicExpr::AO__atomic_xor_fetch:
808       // For these, only library calls for certain sizes exist.
809       UseOptimizedLibcall = true;
810       break;
811
812     case AtomicExpr::AO__c11_atomic_load:
813     case AtomicExpr::AO__c11_atomic_store:
814     case AtomicExpr::AO__c11_atomic_exchange:
815     case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
816     case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
817     case AtomicExpr::AO__atomic_load_n:
818     case AtomicExpr::AO__atomic_load:
819     case AtomicExpr::AO__atomic_store_n:
820     case AtomicExpr::AO__atomic_store:
821     case AtomicExpr::AO__atomic_exchange_n:
822     case AtomicExpr::AO__atomic_exchange:
823     case AtomicExpr::AO__atomic_compare_exchange_n:
824     case AtomicExpr::AO__atomic_compare_exchange:
825       // Only use optimized library calls for sizes for which they exist.
826       if (Size == 1 || Size == 2 || Size == 4 || Size == 8)
827         UseOptimizedLibcall = true;
828       break;
829     }
830
831     CallArgList Args;
832     if (!UseOptimizedLibcall) {
833       // For non-optimized library calls, the size is the first parameter
834       Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)),
835                getContext().getSizeType());
836     }
837     // Atomic address is the first or second parameter
838     Args.add(RValue::get(EmitCastToVoidPtr(Ptr)), getContext().VoidPtrTy);
839
840     std::string LibCallName;
841     QualType LoweredMemTy =
842       MemTy->isPointerType() ? getContext().getIntPtrType() : MemTy;
843     QualType RetTy;
844     bool HaveRetTy = false;
845     switch (E->getOp()) {
846     case AtomicExpr::AO__c11_atomic_init:
847       llvm_unreachable("Already handled!");
848
849     // There is only one libcall for compare an exchange, because there is no
850     // optimisation benefit possible from a libcall version of a weak compare
851     // and exchange.
852     // bool __atomic_compare_exchange(size_t size, void *mem, void *expected,
853     //                                void *desired, int success, int failure)
854     // bool __atomic_compare_exchange_N(T *mem, T *expected, T desired,
855     //                                  int success, int failure)
856     case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
857     case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
858     case AtomicExpr::AO__atomic_compare_exchange:
859     case AtomicExpr::AO__atomic_compare_exchange_n:
860       LibCallName = "__atomic_compare_exchange";
861       RetTy = getContext().BoolTy;
862       HaveRetTy = true;
863       Args.add(RValue::get(EmitCastToVoidPtr(Val1)), getContext().VoidPtrTy);
864       AddDirectArgument(*this, Args, UseOptimizedLibcall, Val2, MemTy,
865                         E->getExprLoc(), sizeChars);
866       Args.add(RValue::get(Order), getContext().IntTy);
867       Order = OrderFail;
868       break;
869     // void __atomic_exchange(size_t size, void *mem, void *val, void *return,
870     //                        int order)
871     // T __atomic_exchange_N(T *mem, T val, int order)
872     case AtomicExpr::AO__c11_atomic_exchange:
873     case AtomicExpr::AO__atomic_exchange_n:
874     case AtomicExpr::AO__atomic_exchange:
875       LibCallName = "__atomic_exchange";
876       AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy,
877                         E->getExprLoc(), sizeChars);
878       break;
879     // void __atomic_store(size_t size, void *mem, void *val, int order)
880     // void __atomic_store_N(T *mem, T val, int order)
881     case AtomicExpr::AO__c11_atomic_store:
882     case AtomicExpr::AO__atomic_store:
883     case AtomicExpr::AO__atomic_store_n:
884       LibCallName = "__atomic_store";
885       RetTy = getContext().VoidTy;
886       HaveRetTy = true;
887       AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy,
888                         E->getExprLoc(), sizeChars);
889       break;
890     // void __atomic_load(size_t size, void *mem, void *return, int order)
891     // T __atomic_load_N(T *mem, int order)
892     case AtomicExpr::AO__c11_atomic_load:
893     case AtomicExpr::AO__atomic_load:
894     case AtomicExpr::AO__atomic_load_n:
895       LibCallName = "__atomic_load";
896       break;
897     // T __atomic_fetch_add_N(T *mem, T val, int order)
898     case AtomicExpr::AO__c11_atomic_fetch_add:
899     case AtomicExpr::AO__atomic_fetch_add:
900       LibCallName = "__atomic_fetch_add";
901       AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, LoweredMemTy,
902                         E->getExprLoc(), sizeChars);
903       break;
904     // T __atomic_fetch_and_N(T *mem, T val, int order)
905     case AtomicExpr::AO__c11_atomic_fetch_and:
906     case AtomicExpr::AO__atomic_fetch_and:
907       LibCallName = "__atomic_fetch_and";
908       AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy,
909                         E->getExprLoc(), sizeChars);
910       break;
911     // T __atomic_fetch_or_N(T *mem, T val, int order)
912     case AtomicExpr::AO__c11_atomic_fetch_or:
913     case AtomicExpr::AO__atomic_fetch_or:
914       LibCallName = "__atomic_fetch_or";
915       AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy,
916                         E->getExprLoc(), sizeChars);
917       break;
918     // T __atomic_fetch_sub_N(T *mem, T val, int order)
919     case AtomicExpr::AO__c11_atomic_fetch_sub:
920     case AtomicExpr::AO__atomic_fetch_sub:
921       LibCallName = "__atomic_fetch_sub";
922       AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, LoweredMemTy,
923                         E->getExprLoc(), sizeChars);
924       break;
925     // T __atomic_fetch_xor_N(T *mem, T val, int order)
926     case AtomicExpr::AO__c11_atomic_fetch_xor:
927     case AtomicExpr::AO__atomic_fetch_xor:
928       LibCallName = "__atomic_fetch_xor";
929       AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy,
930                         E->getExprLoc(), sizeChars);
931       break;
932     // T __atomic_fetch_nand_N(T *mem, T val, int order)
933     case AtomicExpr::AO__atomic_fetch_nand:
934       LibCallName = "__atomic_fetch_nand";
935       AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy,
936                         E->getExprLoc(), sizeChars);
937       break;
938
939     // T __atomic_add_fetch_N(T *mem, T val, int order)
940     case AtomicExpr::AO__atomic_add_fetch:
941       LibCallName = "__atomic_add_fetch";
942       AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, LoweredMemTy,
943                         E->getExprLoc(), sizeChars);
944       break;
945     // T __atomic_and_fetch_N(T *mem, T val, int order)
946     case AtomicExpr::AO__atomic_and_fetch:
947       LibCallName = "__atomic_and_fetch";
948       AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy,
949                         E->getExprLoc(), sizeChars);
950       break;
951     // T __atomic_or_fetch_N(T *mem, T val, int order)
952     case AtomicExpr::AO__atomic_or_fetch:
953       LibCallName = "__atomic_or_fetch";
954       AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy,
955                         E->getExprLoc(), sizeChars);
956       break;
957     // T __atomic_sub_fetch_N(T *mem, T val, int order)
958     case AtomicExpr::AO__atomic_sub_fetch:
959       LibCallName = "__atomic_sub_fetch";
960       AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, LoweredMemTy,
961                         E->getExprLoc(), sizeChars);
962       break;
963     // T __atomic_xor_fetch_N(T *mem, T val, int order)
964     case AtomicExpr::AO__atomic_xor_fetch:
965       LibCallName = "__atomic_xor_fetch";
966       AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy,
967                         E->getExprLoc(), sizeChars);
968       break;
969     // T __atomic_nand_fetch_N(T *mem, T val, int order)
970     case AtomicExpr::AO__atomic_nand_fetch:
971       LibCallName = "__atomic_nand_fetch";
972       AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1, MemTy,
973                         E->getExprLoc(), sizeChars);
974       break;
975     }
976
977     // Optimized functions have the size in their name.
978     if (UseOptimizedLibcall)
979       LibCallName += "_" + llvm::utostr(Size);
980     // By default, assume we return a value of the atomic type.
981     if (!HaveRetTy) {
982       if (UseOptimizedLibcall) {
983         // Value is returned directly.
984         // The function returns an appropriately sized integer type.
985         RetTy = getContext().getIntTypeForBitwidth(
986             getContext().toBits(sizeChars), /*Signed=*/false);
987       } else {
988         // Value is returned through parameter before the order.
989         RetTy = getContext().VoidTy;
990         Args.add(RValue::get(EmitCastToVoidPtr(Dest)), getContext().VoidPtrTy);
991       }
992     }
993     // order is always the last parameter
994     Args.add(RValue::get(Order),
995              getContext().IntTy);
996
997     RValue Res = emitAtomicLibcall(*this, LibCallName, RetTy, Args);
998     // The value is returned directly from the libcall.
999     if (HaveRetTy && !RetTy->isVoidType())
1000       return Res;
1001     // The value is returned via an explicit out param.
1002     if (RetTy->isVoidType())
1003       return RValue::get(nullptr);
1004     // The value is returned directly for optimized libcalls but the caller is
1005     // expected an out-param.
1006     if (UseOptimizedLibcall) {
1007       llvm::Value *ResVal = Res.getScalarVal();
1008       llvm::StoreInst *StoreDest = Builder.CreateStore(
1009           ResVal,
1010           Builder.CreateBitCast(GetDest(), ResVal->getType()->getPointerTo()));
1011       StoreDest->setAlignment(Align);
1012     }
1013     return convertTempToRValue(Dest, RValTy, E->getExprLoc());
1014   }
1015
1016   bool IsStore = E->getOp() == AtomicExpr::AO__c11_atomic_store ||
1017                  E->getOp() == AtomicExpr::AO__atomic_store ||
1018                  E->getOp() == AtomicExpr::AO__atomic_store_n;
1019   bool IsLoad = E->getOp() == AtomicExpr::AO__c11_atomic_load ||
1020                 E->getOp() == AtomicExpr::AO__atomic_load ||
1021                 E->getOp() == AtomicExpr::AO__atomic_load_n;
1022
1023   llvm::Type *ITy =
1024       llvm::IntegerType::get(getLLVMContext(), Size * 8);
1025   llvm::Value *OrigDest = GetDest();
1026   Ptr = Builder.CreateBitCast(
1027       Ptr, ITy->getPointerTo(Ptr->getType()->getPointerAddressSpace()));
1028   if (Val1) Val1 = Builder.CreateBitCast(Val1, ITy->getPointerTo());
1029   if (Val2) Val2 = Builder.CreateBitCast(Val2, ITy->getPointerTo());
1030   if (Dest && !E->isCmpXChg())
1031     Dest = Builder.CreateBitCast(Dest, ITy->getPointerTo());
1032
1033   if (isa<llvm::ConstantInt>(Order)) {
1034     int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
1035     switch (ord) {
1036     case AtomicExpr::AO_ABI_memory_order_relaxed:
1037       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
1038                    Size, Align, llvm::Monotonic);
1039       break;
1040     case AtomicExpr::AO_ABI_memory_order_consume:
1041     case AtomicExpr::AO_ABI_memory_order_acquire:
1042       if (IsStore)
1043         break; // Avoid crashing on code with undefined behavior
1044       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
1045                    Size, Align, llvm::Acquire);
1046       break;
1047     case AtomicExpr::AO_ABI_memory_order_release:
1048       if (IsLoad)
1049         break; // Avoid crashing on code with undefined behavior
1050       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
1051                    Size, Align, llvm::Release);
1052       break;
1053     case AtomicExpr::AO_ABI_memory_order_acq_rel:
1054       if (IsLoad || IsStore)
1055         break; // Avoid crashing on code with undefined behavior
1056       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
1057                    Size, Align, llvm::AcquireRelease);
1058       break;
1059     case AtomicExpr::AO_ABI_memory_order_seq_cst:
1060       EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
1061                    Size, Align, llvm::SequentiallyConsistent);
1062       break;
1063     default: // invalid order
1064       // We should not ever get here normally, but it's hard to
1065       // enforce that in general.
1066       break;
1067     }
1068     if (RValTy->isVoidType())
1069       return RValue::get(nullptr);
1070     return convertTempToRValue(OrigDest, RValTy, E->getExprLoc());
1071   }
1072
1073   // Long case, when Order isn't obviously constant.
1074
1075   // Create all the relevant BB's
1076   llvm::BasicBlock *MonotonicBB = nullptr, *AcquireBB = nullptr,
1077                    *ReleaseBB = nullptr, *AcqRelBB = nullptr,
1078                    *SeqCstBB = nullptr;
1079   MonotonicBB = createBasicBlock("monotonic", CurFn);
1080   if (!IsStore)
1081     AcquireBB = createBasicBlock("acquire", CurFn);
1082   if (!IsLoad)
1083     ReleaseBB = createBasicBlock("release", CurFn);
1084   if (!IsLoad && !IsStore)
1085     AcqRelBB = createBasicBlock("acqrel", CurFn);
1086   SeqCstBB = createBasicBlock("seqcst", CurFn);
1087   llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
1088
1089   // Create the switch for the split
1090   // MonotonicBB is arbitrarily chosen as the default case; in practice, this
1091   // doesn't matter unless someone is crazy enough to use something that
1092   // doesn't fold to a constant for the ordering.
1093   Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
1094   llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB);
1095
1096   // Emit all the different atomics
1097   Builder.SetInsertPoint(MonotonicBB);
1098   EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
1099                Size, Align, llvm::Monotonic);
1100   Builder.CreateBr(ContBB);
1101   if (!IsStore) {
1102     Builder.SetInsertPoint(AcquireBB);
1103     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
1104                  Size, Align, llvm::Acquire);
1105     Builder.CreateBr(ContBB);
1106     SI->addCase(Builder.getInt32(AtomicExpr::AO_ABI_memory_order_consume),
1107                 AcquireBB);
1108     SI->addCase(Builder.getInt32(AtomicExpr::AO_ABI_memory_order_acquire),
1109                 AcquireBB);
1110   }
1111   if (!IsLoad) {
1112     Builder.SetInsertPoint(ReleaseBB);
1113     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
1114                  Size, Align, llvm::Release);
1115     Builder.CreateBr(ContBB);
1116     SI->addCase(Builder.getInt32(AtomicExpr::AO_ABI_memory_order_release),
1117                 ReleaseBB);
1118   }
1119   if (!IsLoad && !IsStore) {
1120     Builder.SetInsertPoint(AcqRelBB);
1121     EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
1122                  Size, Align, llvm::AcquireRelease);
1123     Builder.CreateBr(ContBB);
1124     SI->addCase(Builder.getInt32(AtomicExpr::AO_ABI_memory_order_acq_rel),
1125                 AcqRelBB);
1126   }
1127   Builder.SetInsertPoint(SeqCstBB);
1128   EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail,
1129                Size, Align, llvm::SequentiallyConsistent);
1130   Builder.CreateBr(ContBB);
1131   SI->addCase(Builder.getInt32(AtomicExpr::AO_ABI_memory_order_seq_cst),
1132               SeqCstBB);
1133
1134   // Cleanup and return
1135   Builder.SetInsertPoint(ContBB);
1136   if (RValTy->isVoidType())
1137     return RValue::get(nullptr);
1138   return convertTempToRValue(OrigDest, RValTy, E->getExprLoc());
1139 }
1140
1141 llvm::Value *AtomicInfo::emitCastToAtomicIntPointer(llvm::Value *addr) const {
1142   unsigned addrspace =
1143     cast<llvm::PointerType>(addr->getType())->getAddressSpace();
1144   llvm::IntegerType *ty =
1145     llvm::IntegerType::get(CGF.getLLVMContext(), AtomicSizeInBits);
1146   return CGF.Builder.CreateBitCast(addr, ty->getPointerTo(addrspace));
1147 }
1148
1149 RValue AtomicInfo::convertTempToRValue(llvm::Value *addr,
1150                                        AggValueSlot resultSlot,
1151                                        SourceLocation loc, bool AsValue) const {
1152   if (LVal.isSimple()) {
1153     if (EvaluationKind == TEK_Aggregate)
1154       return resultSlot.asRValue();
1155
1156     // Drill into the padding structure if we have one.
1157     if (hasPadding())
1158       addr = CGF.Builder.CreateStructGEP(nullptr, addr, 0);
1159
1160     // Otherwise, just convert the temporary to an r-value using the
1161     // normal conversion routine.
1162     return CGF.convertTempToRValue(addr, getValueType(), loc);
1163   }
1164   if (!AsValue)
1165     // Get RValue from temp memory as atomic for non-simple lvalues
1166     return RValue::get(
1167         CGF.Builder.CreateAlignedLoad(addr, AtomicAlign.getQuantity()));
1168   if (LVal.isBitField())
1169     return CGF.EmitLoadOfBitfieldLValue(LValue::MakeBitfield(
1170         addr, LVal.getBitFieldInfo(), LVal.getType(), LVal.getAlignment()));
1171   if (LVal.isVectorElt())
1172     return CGF.EmitLoadOfLValue(LValue::MakeVectorElt(addr, LVal.getVectorIdx(),
1173                                                       LVal.getType(),
1174                                                       LVal.getAlignment()),
1175                                 loc);
1176   assert(LVal.isExtVectorElt());
1177   return CGF.EmitLoadOfExtVectorElementLValue(LValue::MakeExtVectorElt(
1178       addr, LVal.getExtVectorElts(), LVal.getType(), LVal.getAlignment()));
1179 }
1180
1181 RValue AtomicInfo::ConvertIntToValueOrAtomic(llvm::Value *IntVal,
1182                                              AggValueSlot ResultSlot,
1183                                              SourceLocation Loc,
1184                                              bool AsValue) const {
1185   // Try not to in some easy cases.
1186   assert(IntVal->getType()->isIntegerTy() && "Expected integer value");
1187   if (getEvaluationKind() == TEK_Scalar &&
1188       (((!LVal.isBitField() ||
1189          LVal.getBitFieldInfo().Size == ValueSizeInBits) &&
1190         !hasPadding()) ||
1191        !AsValue)) {
1192     auto *ValTy = AsValue
1193                       ? CGF.ConvertTypeForMem(ValueTy)
1194                       : getAtomicAddress()->getType()->getPointerElementType();
1195     if (ValTy->isIntegerTy()) {
1196       assert(IntVal->getType() == ValTy && "Different integer types.");
1197       return RValue::get(CGF.EmitFromMemory(IntVal, ValueTy));
1198     } else if (ValTy->isPointerTy())
1199       return RValue::get(CGF.Builder.CreateIntToPtr(IntVal, ValTy));
1200     else if (llvm::CastInst::isBitCastable(IntVal->getType(), ValTy))
1201       return RValue::get(CGF.Builder.CreateBitCast(IntVal, ValTy));
1202   }
1203
1204   // Create a temporary.  This needs to be big enough to hold the
1205   // atomic integer.
1206   llvm::Value *Temp;
1207   bool TempIsVolatile = false;
1208   CharUnits TempAlignment;
1209   if (AsValue && getEvaluationKind() == TEK_Aggregate) {
1210     assert(!ResultSlot.isIgnored());
1211     Temp = ResultSlot.getAddr();
1212     TempAlignment = getValueAlignment();
1213     TempIsVolatile = ResultSlot.isVolatile();
1214   } else {
1215     Temp = CreateTempAlloca();
1216     TempAlignment = getAtomicAlignment();
1217   }
1218
1219   // Slam the integer into the temporary.
1220   llvm::Value *CastTemp = emitCastToAtomicIntPointer(Temp);
1221   CGF.Builder.CreateAlignedStore(IntVal, CastTemp, TempAlignment.getQuantity())
1222       ->setVolatile(TempIsVolatile);
1223
1224   return convertTempToRValue(Temp, ResultSlot, Loc, AsValue);
1225 }
1226
1227 void AtomicInfo::EmitAtomicLoadLibcall(llvm::Value *AddForLoaded,
1228                                        llvm::AtomicOrdering AO, bool) {
1229   // void __atomic_load(size_t size, void *mem, void *return, int order);
1230   CallArgList Args;
1231   Args.add(RValue::get(getAtomicSizeValue()), CGF.getContext().getSizeType());
1232   Args.add(RValue::get(CGF.EmitCastToVoidPtr(getAtomicAddress())),
1233            CGF.getContext().VoidPtrTy);
1234   Args.add(RValue::get(CGF.EmitCastToVoidPtr(AddForLoaded)),
1235            CGF.getContext().VoidPtrTy);
1236   Args.add(RValue::get(
1237                llvm::ConstantInt::get(CGF.IntTy, translateAtomicOrdering(AO))),
1238            CGF.getContext().IntTy);
1239   emitAtomicLibcall(CGF, "__atomic_load", CGF.getContext().VoidTy, Args);
1240 }
1241
1242 llvm::Value *AtomicInfo::EmitAtomicLoadOp(llvm::AtomicOrdering AO,
1243                                           bool IsVolatile) {
1244   // Okay, we're doing this natively.
1245   llvm::Value *Addr = emitCastToAtomicIntPointer(getAtomicAddress());
1246   llvm::LoadInst *Load = CGF.Builder.CreateLoad(Addr, "atomic-load");
1247   Load->setAtomic(AO);
1248
1249   // Other decoration.
1250   Load->setAlignment(getAtomicAlignment().getQuantity());
1251   if (IsVolatile)
1252     Load->setVolatile(true);
1253   if (LVal.getTBAAInfo())
1254     CGF.CGM.DecorateInstruction(Load, LVal.getTBAAInfo());
1255   return Load;
1256 }
1257
1258 /// An LValue is a candidate for having its loads and stores be made atomic if
1259 /// we are operating under /volatile:ms *and* the LValue itself is volatile and
1260 /// performing such an operation can be performed without a libcall.
1261 bool CodeGenFunction::LValueIsSuitableForInlineAtomic(LValue LV) {
1262   AtomicInfo AI(*this, LV);
1263   bool IsVolatile = LV.isVolatile() || hasVolatileMember(LV.getType());
1264   // An atomic is inline if we don't need to use a libcall.
1265   bool AtomicIsInline = !AI.shouldUseLibcall();
1266   return CGM.getCodeGenOpts().MSVolatile && IsVolatile && AtomicIsInline;
1267 }
1268
1269 /// An type is a candidate for having its loads and stores be made atomic if
1270 /// we are operating under /volatile:ms *and* we know the access is volatile and
1271 /// performing such an operation can be performed without a libcall.
1272 bool CodeGenFunction::typeIsSuitableForInlineAtomic(QualType Ty,
1273                                                     bool IsVolatile) const {
1274   // An atomic is inline if we don't need to use a libcall (e.g. it is builtin).
1275   bool AtomicIsInline = getContext().getTargetInfo().hasBuiltinAtomic(
1276       getContext().getTypeSize(Ty), getContext().getTypeAlign(Ty));
1277   return CGM.getCodeGenOpts().MSVolatile && IsVolatile && AtomicIsInline;
1278 }
1279
1280 RValue CodeGenFunction::EmitAtomicLoad(LValue LV, SourceLocation SL,
1281                                        AggValueSlot Slot) {
1282   llvm::AtomicOrdering AO;
1283   bool IsVolatile = LV.isVolatileQualified();
1284   if (LV.getType()->isAtomicType()) {
1285     AO = llvm::SequentiallyConsistent;
1286   } else {
1287     AO = llvm::Acquire;
1288     IsVolatile = true;
1289   }
1290   return EmitAtomicLoad(LV, SL, AO, IsVolatile, Slot);
1291 }
1292
1293 RValue AtomicInfo::EmitAtomicLoad(AggValueSlot ResultSlot, SourceLocation Loc,
1294                                   bool AsValue, llvm::AtomicOrdering AO,
1295                                   bool IsVolatile) {
1296   // Check whether we should use a library call.
1297   if (shouldUseLibcall()) {
1298     llvm::Value *TempAddr;
1299     if (LVal.isSimple() && !ResultSlot.isIgnored()) {
1300       assert(getEvaluationKind() == TEK_Aggregate);
1301       TempAddr = ResultSlot.getAddr();
1302     } else
1303       TempAddr = CreateTempAlloca();
1304
1305     EmitAtomicLoadLibcall(TempAddr, AO, IsVolatile);
1306
1307     // Okay, turn that back into the original value or whole atomic (for
1308     // non-simple lvalues) type.
1309     return convertTempToRValue(TempAddr, ResultSlot, Loc, AsValue);
1310   }
1311
1312   // Okay, we're doing this natively.
1313   auto *Load = EmitAtomicLoadOp(AO, IsVolatile);
1314
1315   // If we're ignoring an aggregate return, don't do anything.
1316   if (getEvaluationKind() == TEK_Aggregate && ResultSlot.isIgnored())
1317     return RValue::getAggregate(nullptr, false);
1318
1319   // Okay, turn that back into the original value or atomic (for non-simple
1320   // lvalues) type.
1321   return ConvertIntToValueOrAtomic(Load, ResultSlot, Loc, AsValue);
1322 }
1323
1324 /// Emit a load from an l-value of atomic type.  Note that the r-value
1325 /// we produce is an r-value of the atomic *value* type.
1326 RValue CodeGenFunction::EmitAtomicLoad(LValue src, SourceLocation loc,
1327                                        llvm::AtomicOrdering AO, bool IsVolatile,
1328                                        AggValueSlot resultSlot) {
1329   AtomicInfo Atomics(*this, src);
1330   return Atomics.EmitAtomicLoad(resultSlot, loc, /*AsValue=*/true, AO,
1331                                 IsVolatile);
1332 }
1333
1334 /// Copy an r-value into memory as part of storing to an atomic type.
1335 /// This needs to create a bit-pattern suitable for atomic operations.
1336 void AtomicInfo::emitCopyIntoMemory(RValue rvalue) const {
1337   assert(LVal.isSimple());
1338   // If we have an r-value, the rvalue should be of the atomic type,
1339   // which means that the caller is responsible for having zeroed
1340   // any padding.  Just do an aggregate copy of that type.
1341   if (rvalue.isAggregate()) {
1342     CGF.EmitAggregateCopy(getAtomicAddress(),
1343                           rvalue.getAggregateAddr(),
1344                           getAtomicType(),
1345                           (rvalue.isVolatileQualified()
1346                            || LVal.isVolatileQualified()),
1347                           LVal.getAlignment());
1348     return;
1349   }
1350
1351   // Okay, otherwise we're copying stuff.
1352
1353   // Zero out the buffer if necessary.
1354   emitMemSetZeroIfNecessary();
1355
1356   // Drill past the padding if present.
1357   LValue TempLVal = projectValue();
1358
1359   // Okay, store the rvalue in.
1360   if (rvalue.isScalar()) {
1361     CGF.EmitStoreOfScalar(rvalue.getScalarVal(), TempLVal, /*init*/ true);
1362   } else {
1363     CGF.EmitStoreOfComplex(rvalue.getComplexVal(), TempLVal, /*init*/ true);
1364   }
1365 }
1366
1367
1368 /// Materialize an r-value into memory for the purposes of storing it
1369 /// to an atomic type.
1370 llvm::Value *AtomicInfo::materializeRValue(RValue rvalue) const {
1371   // Aggregate r-values are already in memory, and EmitAtomicStore
1372   // requires them to be values of the atomic type.
1373   if (rvalue.isAggregate())
1374     return rvalue.getAggregateAddr();
1375
1376   // Otherwise, make a temporary and materialize into it.
1377   LValue TempLV = CGF.MakeAddrLValue(CreateTempAlloca(), getAtomicType(),
1378                                      getAtomicAlignment());
1379   AtomicInfo Atomics(CGF, TempLV);
1380   Atomics.emitCopyIntoMemory(rvalue);
1381   return TempLV.getAddress();
1382 }
1383
1384 llvm::Value *AtomicInfo::convertRValueToInt(RValue RVal) const {
1385   // If we've got a scalar value of the right size, try to avoid going
1386   // through memory.
1387   if (RVal.isScalar() && (!hasPadding() || !LVal.isSimple())) {
1388     llvm::Value *Value = RVal.getScalarVal();
1389     if (isa<llvm::IntegerType>(Value->getType()))
1390       return CGF.EmitToMemory(Value, ValueTy);
1391     else {
1392       llvm::IntegerType *InputIntTy = llvm::IntegerType::get(
1393           CGF.getLLVMContext(),
1394           LVal.isSimple() ? getValueSizeInBits() : getAtomicSizeInBits());
1395       if (isa<llvm::PointerType>(Value->getType()))
1396         return CGF.Builder.CreatePtrToInt(Value, InputIntTy);
1397       else if (llvm::BitCastInst::isBitCastable(Value->getType(), InputIntTy))
1398         return CGF.Builder.CreateBitCast(Value, InputIntTy);
1399     }
1400   }
1401   // Otherwise, we need to go through memory.
1402   // Put the r-value in memory.
1403   llvm::Value *Addr = materializeRValue(RVal);
1404
1405   // Cast the temporary to the atomic int type and pull a value out.
1406   Addr = emitCastToAtomicIntPointer(Addr);
1407   return CGF.Builder.CreateAlignedLoad(Addr,
1408                                        getAtomicAlignment().getQuantity());
1409 }
1410
1411 std::pair<llvm::Value *, llvm::Value *> AtomicInfo::EmitAtomicCompareExchangeOp(
1412     llvm::Value *ExpectedVal, llvm::Value *DesiredVal,
1413     llvm::AtomicOrdering Success, llvm::AtomicOrdering Failure, bool IsWeak) {
1414   // Do the atomic store.
1415   auto *Addr = emitCastToAtomicIntPointer(getAtomicAddress());
1416   auto *Inst = CGF.Builder.CreateAtomicCmpXchg(Addr, ExpectedVal, DesiredVal,
1417                                                Success, Failure);
1418   // Other decoration.
1419   Inst->setVolatile(LVal.isVolatileQualified());
1420   Inst->setWeak(IsWeak);
1421
1422   // Okay, turn that back into the original value type.
1423   auto *PreviousVal = CGF.Builder.CreateExtractValue(Inst, /*Idxs=*/0);
1424   auto *SuccessFailureVal = CGF.Builder.CreateExtractValue(Inst, /*Idxs=*/1);
1425   return std::make_pair(PreviousVal, SuccessFailureVal);
1426 }
1427
1428 llvm::Value *
1429 AtomicInfo::EmitAtomicCompareExchangeLibcall(llvm::Value *ExpectedAddr,
1430                                              llvm::Value *DesiredAddr,
1431                                              llvm::AtomicOrdering Success,
1432                                              llvm::AtomicOrdering Failure) {
1433   // bool __atomic_compare_exchange(size_t size, void *obj, void *expected,
1434   // void *desired, int success, int failure);
1435   CallArgList Args;
1436   Args.add(RValue::get(getAtomicSizeValue()), CGF.getContext().getSizeType());
1437   Args.add(RValue::get(CGF.EmitCastToVoidPtr(getAtomicAddress())),
1438            CGF.getContext().VoidPtrTy);
1439   Args.add(RValue::get(CGF.EmitCastToVoidPtr(ExpectedAddr)),
1440            CGF.getContext().VoidPtrTy);
1441   Args.add(RValue::get(CGF.EmitCastToVoidPtr(DesiredAddr)),
1442            CGF.getContext().VoidPtrTy);
1443   Args.add(RValue::get(llvm::ConstantInt::get(
1444                CGF.IntTy, translateAtomicOrdering(Success))),
1445            CGF.getContext().IntTy);
1446   Args.add(RValue::get(llvm::ConstantInt::get(
1447                CGF.IntTy, translateAtomicOrdering(Failure))),
1448            CGF.getContext().IntTy);
1449   auto SuccessFailureRVal = emitAtomicLibcall(CGF, "__atomic_compare_exchange",
1450                                               CGF.getContext().BoolTy, Args);
1451
1452   return SuccessFailureRVal.getScalarVal();
1453 }
1454
1455 std::pair<RValue, llvm::Value *> AtomicInfo::EmitAtomicCompareExchange(
1456     RValue Expected, RValue Desired, llvm::AtomicOrdering Success,
1457     llvm::AtomicOrdering Failure, bool IsWeak) {
1458   if (Failure >= Success)
1459     // Don't assert on undefined behavior.
1460     Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(Success);
1461
1462   // Check whether we should use a library call.
1463   if (shouldUseLibcall()) {
1464     // Produce a source address.
1465     auto *ExpectedAddr = materializeRValue(Expected);
1466     auto *DesiredAddr = materializeRValue(Desired);
1467     auto *Res = EmitAtomicCompareExchangeLibcall(ExpectedAddr, DesiredAddr,
1468                                                  Success, Failure);
1469     return std::make_pair(
1470         convertTempToRValue(ExpectedAddr, AggValueSlot::ignored(),
1471                             SourceLocation(), /*AsValue=*/false),
1472         Res);
1473   }
1474
1475   // If we've got a scalar value of the right size, try to avoid going
1476   // through memory.
1477   auto *ExpectedVal = convertRValueToInt(Expected);
1478   auto *DesiredVal = convertRValueToInt(Desired);
1479   auto Res = EmitAtomicCompareExchangeOp(ExpectedVal, DesiredVal, Success,
1480                                          Failure, IsWeak);
1481   return std::make_pair(
1482       ConvertIntToValueOrAtomic(Res.first, AggValueSlot::ignored(),
1483                                 SourceLocation(), /*AsValue=*/false),
1484       Res.second);
1485 }
1486
1487 static void
1488 EmitAtomicUpdateValue(CodeGenFunction &CGF, AtomicInfo &Atomics, RValue OldRVal,
1489                       const llvm::function_ref<RValue(RValue)> &UpdateOp,
1490                       llvm::Value *DesiredAddr) {
1491   llvm::Value *Ptr = nullptr;
1492   LValue UpdateLVal;
1493   RValue UpRVal;
1494   LValue AtomicLVal = Atomics.getAtomicLValue();
1495   LValue DesiredLVal;
1496   if (AtomicLVal.isSimple()) {
1497     UpRVal = OldRVal;
1498     DesiredLVal =
1499         LValue::MakeAddr(DesiredAddr, AtomicLVal.getType(),
1500                          AtomicLVal.getAlignment(), CGF.CGM.getContext());
1501   } else {
1502     // Build new lvalue for temp address
1503     Ptr = Atomics.materializeRValue(OldRVal);
1504     if (AtomicLVal.isBitField()) {
1505       UpdateLVal =
1506           LValue::MakeBitfield(Ptr, AtomicLVal.getBitFieldInfo(),
1507                                AtomicLVal.getType(), AtomicLVal.getAlignment());
1508       DesiredLVal =
1509           LValue::MakeBitfield(DesiredAddr, AtomicLVal.getBitFieldInfo(),
1510                                AtomicLVal.getType(), AtomicLVal.getAlignment());
1511     } else if (AtomicLVal.isVectorElt()) {
1512       UpdateLVal = LValue::MakeVectorElt(Ptr, AtomicLVal.getVectorIdx(),
1513                                          AtomicLVal.getType(),
1514                                          AtomicLVal.getAlignment());
1515       DesiredLVal = LValue::MakeVectorElt(
1516           DesiredAddr, AtomicLVal.getVectorIdx(), AtomicLVal.getType(),
1517           AtomicLVal.getAlignment());
1518     } else {
1519       assert(AtomicLVal.isExtVectorElt());
1520       UpdateLVal = LValue::MakeExtVectorElt(Ptr, AtomicLVal.getExtVectorElts(),
1521                                             AtomicLVal.getType(),
1522                                             AtomicLVal.getAlignment());
1523       DesiredLVal = LValue::MakeExtVectorElt(
1524           DesiredAddr, AtomicLVal.getExtVectorElts(), AtomicLVal.getType(),
1525           AtomicLVal.getAlignment());
1526     }
1527     UpdateLVal.setTBAAInfo(AtomicLVal.getTBAAInfo());
1528     DesiredLVal.setTBAAInfo(AtomicLVal.getTBAAInfo());
1529     UpRVal = CGF.EmitLoadOfLValue(UpdateLVal, SourceLocation());
1530   }
1531   // Store new value in the corresponding memory area
1532   RValue NewRVal = UpdateOp(UpRVal);
1533   if (NewRVal.isScalar()) {
1534     CGF.EmitStoreThroughLValue(NewRVal, DesiredLVal);
1535   } else {
1536     assert(NewRVal.isComplex());
1537     CGF.EmitStoreOfComplex(NewRVal.getComplexVal(), DesiredLVal,
1538                            /*isInit=*/false);
1539   }
1540 }
1541
1542 void AtomicInfo::EmitAtomicUpdateLibcall(
1543     llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp,
1544     bool IsVolatile) {
1545   auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO);
1546
1547   llvm::Value *ExpectedAddr = CreateTempAlloca();
1548
1549   EmitAtomicLoadLibcall(ExpectedAddr, AO, IsVolatile);
1550   auto *ContBB = CGF.createBasicBlock("atomic_cont");
1551   auto *ExitBB = CGF.createBasicBlock("atomic_exit");
1552   CGF.EmitBlock(ContBB);
1553   auto *DesiredAddr = CreateTempAlloca();
1554   if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) ||
1555       requiresMemSetZero(
1556           getAtomicAddress()->getType()->getPointerElementType())) {
1557     auto *OldVal = CGF.Builder.CreateAlignedLoad(
1558         ExpectedAddr, getAtomicAlignment().getQuantity());
1559     CGF.Builder.CreateAlignedStore(OldVal, DesiredAddr,
1560                                    getAtomicAlignment().getQuantity());
1561   }
1562   auto OldRVal = convertTempToRValue(ExpectedAddr, AggValueSlot::ignored(),
1563                                     SourceLocation(), /*AsValue=*/false);
1564   EmitAtomicUpdateValue(CGF, *this, OldRVal, UpdateOp, DesiredAddr);
1565   auto *Res =
1566       EmitAtomicCompareExchangeLibcall(ExpectedAddr, DesiredAddr, AO, Failure);
1567   CGF.Builder.CreateCondBr(Res, ExitBB, ContBB);
1568   CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
1569 }
1570
1571 void AtomicInfo::EmitAtomicUpdateOp(
1572     llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp,
1573     bool IsVolatile) {
1574   auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO);
1575
1576   // Do the atomic load.
1577   auto *OldVal = EmitAtomicLoadOp(AO, IsVolatile);
1578   // For non-simple lvalues perform compare-and-swap procedure.
1579   auto *ContBB = CGF.createBasicBlock("atomic_cont");
1580   auto *ExitBB = CGF.createBasicBlock("atomic_exit");
1581   auto *CurBB = CGF.Builder.GetInsertBlock();
1582   CGF.EmitBlock(ContBB);
1583   llvm::PHINode *PHI = CGF.Builder.CreatePHI(OldVal->getType(),
1584                                              /*NumReservedValues=*/2);
1585   PHI->addIncoming(OldVal, CurBB);
1586   auto *NewAtomicAddr = CreateTempAlloca();
1587   auto *NewAtomicIntAddr = emitCastToAtomicIntPointer(NewAtomicAddr);
1588   if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) ||
1589       requiresMemSetZero(
1590           getAtomicAddress()->getType()->getPointerElementType())) {
1591     CGF.Builder.CreateAlignedStore(PHI, NewAtomicIntAddr,
1592                                    getAtomicAlignment().getQuantity());
1593   }
1594   auto OldRVal = ConvertIntToValueOrAtomic(PHI, AggValueSlot::ignored(),
1595                                            SourceLocation(), /*AsValue=*/false);
1596   EmitAtomicUpdateValue(CGF, *this, OldRVal, UpdateOp, NewAtomicAddr);
1597   auto *DesiredVal = CGF.Builder.CreateAlignedLoad(
1598       NewAtomicIntAddr, getAtomicAlignment().getQuantity());
1599   // Try to write new value using cmpxchg operation
1600   auto Res = EmitAtomicCompareExchangeOp(PHI, DesiredVal, AO, Failure);
1601   PHI->addIncoming(Res.first, CGF.Builder.GetInsertBlock());
1602   CGF.Builder.CreateCondBr(Res.second, ExitBB, ContBB);
1603   CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
1604 }
1605
1606 static void EmitAtomicUpdateValue(CodeGenFunction &CGF, AtomicInfo &Atomics,
1607                                   RValue UpdateRVal, llvm::Value *DesiredAddr) {
1608   LValue AtomicLVal = Atomics.getAtomicLValue();
1609   LValue DesiredLVal;
1610   // Build new lvalue for temp address
1611   if (AtomicLVal.isBitField()) {
1612     DesiredLVal =
1613         LValue::MakeBitfield(DesiredAddr, AtomicLVal.getBitFieldInfo(),
1614                              AtomicLVal.getType(), AtomicLVal.getAlignment());
1615   } else if (AtomicLVal.isVectorElt()) {
1616     DesiredLVal =
1617         LValue::MakeVectorElt(DesiredAddr, AtomicLVal.getVectorIdx(),
1618                               AtomicLVal.getType(), AtomicLVal.getAlignment());
1619   } else {
1620     assert(AtomicLVal.isExtVectorElt());
1621     DesiredLVal = LValue::MakeExtVectorElt(
1622         DesiredAddr, AtomicLVal.getExtVectorElts(), AtomicLVal.getType(),
1623         AtomicLVal.getAlignment());
1624   }
1625   DesiredLVal.setTBAAInfo(AtomicLVal.getTBAAInfo());
1626   // Store new value in the corresponding memory area
1627   assert(UpdateRVal.isScalar());
1628   CGF.EmitStoreThroughLValue(UpdateRVal, DesiredLVal);
1629 }
1630
1631 void AtomicInfo::EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO,
1632                                          RValue UpdateRVal, bool IsVolatile) {
1633   auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO);
1634
1635   llvm::Value *ExpectedAddr = CreateTempAlloca();
1636
1637   EmitAtomicLoadLibcall(ExpectedAddr, AO, IsVolatile);
1638   auto *ContBB = CGF.createBasicBlock("atomic_cont");
1639   auto *ExitBB = CGF.createBasicBlock("atomic_exit");
1640   CGF.EmitBlock(ContBB);
1641   auto *DesiredAddr = CreateTempAlloca();
1642   if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) ||
1643       requiresMemSetZero(
1644           getAtomicAddress()->getType()->getPointerElementType())) {
1645     auto *OldVal = CGF.Builder.CreateAlignedLoad(
1646         ExpectedAddr, getAtomicAlignment().getQuantity());
1647     CGF.Builder.CreateAlignedStore(OldVal, DesiredAddr,
1648                                    getAtomicAlignment().getQuantity());
1649   }
1650   EmitAtomicUpdateValue(CGF, *this, UpdateRVal, DesiredAddr);
1651   auto *Res =
1652       EmitAtomicCompareExchangeLibcall(ExpectedAddr, DesiredAddr, AO, Failure);
1653   CGF.Builder.CreateCondBr(Res, ExitBB, ContBB);
1654   CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
1655 }
1656
1657 void AtomicInfo::EmitAtomicUpdateOp(llvm::AtomicOrdering AO, RValue UpdateRVal,
1658                                     bool IsVolatile) {
1659   auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO);
1660
1661   // Do the atomic load.
1662   auto *OldVal = EmitAtomicLoadOp(AO, IsVolatile);
1663   // For non-simple lvalues perform compare-and-swap procedure.
1664   auto *ContBB = CGF.createBasicBlock("atomic_cont");
1665   auto *ExitBB = CGF.createBasicBlock("atomic_exit");
1666   auto *CurBB = CGF.Builder.GetInsertBlock();
1667   CGF.EmitBlock(ContBB);
1668   llvm::PHINode *PHI = CGF.Builder.CreatePHI(OldVal->getType(),
1669                                              /*NumReservedValues=*/2);
1670   PHI->addIncoming(OldVal, CurBB);
1671   auto *NewAtomicAddr = CreateTempAlloca();
1672   auto *NewAtomicIntAddr = emitCastToAtomicIntPointer(NewAtomicAddr);
1673   if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) ||
1674       requiresMemSetZero(
1675           getAtomicAddress()->getType()->getPointerElementType())) {
1676     CGF.Builder.CreateAlignedStore(PHI, NewAtomicIntAddr,
1677                                    getAtomicAlignment().getQuantity());
1678   }
1679   EmitAtomicUpdateValue(CGF, *this, UpdateRVal, NewAtomicAddr);
1680   auto *DesiredVal = CGF.Builder.CreateAlignedLoad(
1681       NewAtomicIntAddr, getAtomicAlignment().getQuantity());
1682   // Try to write new value using cmpxchg operation
1683   auto Res = EmitAtomicCompareExchangeOp(PHI, DesiredVal, AO, Failure);
1684   PHI->addIncoming(Res.first, CGF.Builder.GetInsertBlock());
1685   CGF.Builder.CreateCondBr(Res.second, ExitBB, ContBB);
1686   CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
1687 }
1688
1689 void AtomicInfo::EmitAtomicUpdate(
1690     llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp,
1691     bool IsVolatile) {
1692   if (shouldUseLibcall()) {
1693     EmitAtomicUpdateLibcall(AO, UpdateOp, IsVolatile);
1694   } else {
1695     EmitAtomicUpdateOp(AO, UpdateOp, IsVolatile);
1696   }
1697 }
1698
1699 void AtomicInfo::EmitAtomicUpdate(llvm::AtomicOrdering AO, RValue UpdateRVal,
1700                                   bool IsVolatile) {
1701   if (shouldUseLibcall()) {
1702     EmitAtomicUpdateLibcall(AO, UpdateRVal, IsVolatile);
1703   } else {
1704     EmitAtomicUpdateOp(AO, UpdateRVal, IsVolatile);
1705   }
1706 }
1707
1708 void CodeGenFunction::EmitAtomicStore(RValue rvalue, LValue lvalue,
1709                                       bool isInit) {
1710   bool IsVolatile = lvalue.isVolatileQualified();
1711   llvm::AtomicOrdering AO;
1712   if (lvalue.getType()->isAtomicType()) {
1713     AO = llvm::SequentiallyConsistent;
1714   } else {
1715     AO = llvm::Release;
1716     IsVolatile = true;
1717   }
1718   return EmitAtomicStore(rvalue, lvalue, AO, IsVolatile, isInit);
1719 }
1720
1721 /// Emit a store to an l-value of atomic type.
1722 ///
1723 /// Note that the r-value is expected to be an r-value *of the atomic
1724 /// type*; this means that for aggregate r-values, it should include
1725 /// storage for any padding that was necessary.
1726 void CodeGenFunction::EmitAtomicStore(RValue rvalue, LValue dest,
1727                                       llvm::AtomicOrdering AO, bool IsVolatile,
1728                                       bool isInit) {
1729   // If this is an aggregate r-value, it should agree in type except
1730   // maybe for address-space qualification.
1731   assert(!rvalue.isAggregate() ||
1732          rvalue.getAggregateAddr()->getType()->getPointerElementType()
1733            == dest.getAddress()->getType()->getPointerElementType());
1734
1735   AtomicInfo atomics(*this, dest);
1736   LValue LVal = atomics.getAtomicLValue();
1737
1738   // If this is an initialization, just put the value there normally.
1739   if (LVal.isSimple()) {
1740     if (isInit) {
1741       atomics.emitCopyIntoMemory(rvalue);
1742       return;
1743     }
1744
1745     // Check whether we should use a library call.
1746     if (atomics.shouldUseLibcall()) {
1747       // Produce a source address.
1748       llvm::Value *srcAddr = atomics.materializeRValue(rvalue);
1749
1750       // void __atomic_store(size_t size, void *mem, void *val, int order)
1751       CallArgList args;
1752       args.add(RValue::get(atomics.getAtomicSizeValue()),
1753                getContext().getSizeType());
1754       args.add(RValue::get(EmitCastToVoidPtr(atomics.getAtomicAddress())),
1755                getContext().VoidPtrTy);
1756       args.add(RValue::get(EmitCastToVoidPtr(srcAddr)), getContext().VoidPtrTy);
1757       args.add(RValue::get(llvm::ConstantInt::get(
1758                    IntTy, AtomicInfo::translateAtomicOrdering(AO))),
1759                getContext().IntTy);
1760       emitAtomicLibcall(*this, "__atomic_store", getContext().VoidTy, args);
1761       return;
1762     }
1763
1764     // Okay, we're doing this natively.
1765     llvm::Value *intValue = atomics.convertRValueToInt(rvalue);
1766
1767     // Do the atomic store.
1768     llvm::Value *addr =
1769         atomics.emitCastToAtomicIntPointer(atomics.getAtomicAddress());
1770     intValue = Builder.CreateIntCast(
1771         intValue, addr->getType()->getPointerElementType(), /*isSigned=*/false);
1772     llvm::StoreInst *store = Builder.CreateStore(intValue, addr);
1773
1774     // Initializations don't need to be atomic.
1775     if (!isInit)
1776       store->setAtomic(AO);
1777
1778     // Other decoration.
1779     store->setAlignment(dest.getAlignment().getQuantity());
1780     if (IsVolatile)
1781       store->setVolatile(true);
1782     if (dest.getTBAAInfo())
1783       CGM.DecorateInstruction(store, dest.getTBAAInfo());
1784     return;
1785   }
1786
1787   // Emit simple atomic update operation.
1788   atomics.EmitAtomicUpdate(AO, rvalue, IsVolatile);
1789 }
1790
1791 /// Emit a compare-and-exchange op for atomic type.
1792 ///
1793 std::pair<RValue, llvm::Value *> CodeGenFunction::EmitAtomicCompareExchange(
1794     LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
1795     llvm::AtomicOrdering Success, llvm::AtomicOrdering Failure, bool IsWeak,
1796     AggValueSlot Slot) {
1797   // If this is an aggregate r-value, it should agree in type except
1798   // maybe for address-space qualification.
1799   assert(!Expected.isAggregate() ||
1800          Expected.getAggregateAddr()->getType()->getPointerElementType() ==
1801              Obj.getAddress()->getType()->getPointerElementType());
1802   assert(!Desired.isAggregate() ||
1803          Desired.getAggregateAddr()->getType()->getPointerElementType() ==
1804              Obj.getAddress()->getType()->getPointerElementType());
1805   AtomicInfo Atomics(*this, Obj);
1806
1807   return Atomics.EmitAtomicCompareExchange(Expected, Desired, Success, Failure,
1808                                            IsWeak);
1809 }
1810
1811 void CodeGenFunction::EmitAtomicUpdate(
1812     LValue LVal, llvm::AtomicOrdering AO,
1813     const llvm::function_ref<RValue(RValue)> &UpdateOp, bool IsVolatile) {
1814   AtomicInfo Atomics(*this, LVal);
1815   Atomics.EmitAtomicUpdate(AO, UpdateOp, IsVolatile);
1816 }
1817
1818 void CodeGenFunction::EmitAtomicInit(Expr *init, LValue dest) {
1819   AtomicInfo atomics(*this, dest);
1820
1821   switch (atomics.getEvaluationKind()) {
1822   case TEK_Scalar: {
1823     llvm::Value *value = EmitScalarExpr(init);
1824     atomics.emitCopyIntoMemory(RValue::get(value));
1825     return;
1826   }
1827
1828   case TEK_Complex: {
1829     ComplexPairTy value = EmitComplexExpr(init);
1830     atomics.emitCopyIntoMemory(RValue::getComplex(value));
1831     return;
1832   }
1833
1834   case TEK_Aggregate: {
1835     // Fix up the destination if the initializer isn't an expression
1836     // of atomic type.
1837     bool Zeroed = false;
1838     if (!init->getType()->isAtomicType()) {
1839       Zeroed = atomics.emitMemSetZeroIfNecessary();
1840       dest = atomics.projectValue();
1841     }
1842
1843     // Evaluate the expression directly into the destination.
1844     AggValueSlot slot = AggValueSlot::forLValue(dest,
1845                                         AggValueSlot::IsNotDestructed,
1846                                         AggValueSlot::DoesNotNeedGCBarriers,
1847                                         AggValueSlot::IsNotAliased,
1848                                         Zeroed ? AggValueSlot::IsZeroed :
1849                                                  AggValueSlot::IsNotZeroed);
1850
1851     EmitAggExpr(init, slot);
1852     return;
1853   }
1854   }
1855   llvm_unreachable("bad evaluation kind");
1856 }