]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/CodeGen/CGBuiltin.cpp
Update clang to trunk r256633.
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / CodeGen / CGBuiltin.cpp
1 //===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Builtin calls as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGObjCRuntime.h"
17 #include "CodeGenModule.h"
18 #include "TargetInfo.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/Basic/TargetBuiltins.h"
22 #include "clang/Basic/TargetInfo.h"
23 #include "clang/CodeGen/CGFunctionInfo.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/IR/CallSite.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/InlineAsm.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include <sstream>
30
31 using namespace clang;
32 using namespace CodeGen;
33 using namespace llvm;
34
35 /// getBuiltinLibFunction - Given a builtin id for a function like
36 /// "__builtin_fabsf", return a Function* for "fabsf".
37 llvm::Value *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
38                                                   unsigned BuiltinID) {
39   assert(Context.BuiltinInfo.isLibFunction(BuiltinID));
40
41   // Get the name, skip over the __builtin_ prefix (if necessary).
42   StringRef Name;
43   GlobalDecl D(FD);
44
45   // If the builtin has been declared explicitly with an assembler label,
46   // use the mangled name. This differs from the plain label on platforms
47   // that prefix labels.
48   if (FD->hasAttr<AsmLabelAttr>())
49     Name = getMangledName(D);
50   else
51     Name = Context.BuiltinInfo.getName(BuiltinID) + 10;
52
53   llvm::FunctionType *Ty =
54     cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
55
56   return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
57 }
58
59 /// Emit the conversions required to turn the given value into an
60 /// integer of the given size.
61 static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
62                         QualType T, llvm::IntegerType *IntType) {
63   V = CGF.EmitToMemory(V, T);
64
65   if (V->getType()->isPointerTy())
66     return CGF.Builder.CreatePtrToInt(V, IntType);
67
68   assert(V->getType() == IntType);
69   return V;
70 }
71
72 static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
73                           QualType T, llvm::Type *ResultType) {
74   V = CGF.EmitFromMemory(V, T);
75
76   if (ResultType->isPointerTy())
77     return CGF.Builder.CreateIntToPtr(V, ResultType);
78
79   assert(V->getType() == ResultType);
80   return V;
81 }
82
83 /// Utility to insert an atomic instruction based on Instrinsic::ID
84 /// and the expression node.
85 static Value *MakeBinaryAtomicValue(CodeGenFunction &CGF,
86                                     llvm::AtomicRMWInst::BinOp Kind,
87                                     const CallExpr *E) {
88   QualType T = E->getType();
89   assert(E->getArg(0)->getType()->isPointerType());
90   assert(CGF.getContext().hasSameUnqualifiedType(T,
91                                   E->getArg(0)->getType()->getPointeeType()));
92   assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
93
94   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
95   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
96
97   llvm::IntegerType *IntType =
98     llvm::IntegerType::get(CGF.getLLVMContext(),
99                            CGF.getContext().getTypeSize(T));
100   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
101
102   llvm::Value *Args[2];
103   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
104   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
105   llvm::Type *ValueType = Args[1]->getType();
106   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
107
108   llvm::Value *Result =
109       CGF.Builder.CreateAtomicRMW(Kind, Args[0], Args[1],
110                                   llvm::SequentiallyConsistent);
111   return EmitFromInt(CGF, Result, T, ValueType);
112 }
113
114 static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) {
115   Value *Val = CGF.EmitScalarExpr(E->getArg(0));
116   Value *Address = CGF.EmitScalarExpr(E->getArg(1));
117
118   // Convert the type of the pointer to a pointer to the stored type.
119   Val = CGF.EmitToMemory(Val, E->getArg(0)->getType());
120   Value *BC = CGF.Builder.CreateBitCast(
121       Address, llvm::PointerType::getUnqual(Val->getType()), "cast");
122   LValue LV = CGF.MakeNaturalAlignAddrLValue(BC, E->getArg(0)->getType());
123   LV.setNontemporal(true);
124   CGF.EmitStoreOfScalar(Val, LV, false);
125   return nullptr;
126 }
127
128 static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) {
129   Value *Address = CGF.EmitScalarExpr(E->getArg(0));
130
131   LValue LV = CGF.MakeNaturalAlignAddrLValue(Address, E->getType());
132   LV.setNontemporal(true);
133   return CGF.EmitLoadOfScalar(LV, E->getExprLoc());
134 }
135
136 static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
137                                llvm::AtomicRMWInst::BinOp Kind,
138                                const CallExpr *E) {
139   return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E));
140 }
141
142 /// Utility to insert an atomic instruction based Instrinsic::ID and
143 /// the expression node, where the return value is the result of the
144 /// operation.
145 static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
146                                    llvm::AtomicRMWInst::BinOp Kind,
147                                    const CallExpr *E,
148                                    Instruction::BinaryOps Op,
149                                    bool Invert = false) {
150   QualType T = E->getType();
151   assert(E->getArg(0)->getType()->isPointerType());
152   assert(CGF.getContext().hasSameUnqualifiedType(T,
153                                   E->getArg(0)->getType()->getPointeeType()));
154   assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
155
156   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
157   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
158
159   llvm::IntegerType *IntType =
160     llvm::IntegerType::get(CGF.getLLVMContext(),
161                            CGF.getContext().getTypeSize(T));
162   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
163
164   llvm::Value *Args[2];
165   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
166   llvm::Type *ValueType = Args[1]->getType();
167   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
168   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
169
170   llvm::Value *Result =
171       CGF.Builder.CreateAtomicRMW(Kind, Args[0], Args[1],
172                                   llvm::SequentiallyConsistent);
173   Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
174   if (Invert)
175     Result = CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result,
176                                      llvm::ConstantInt::get(IntType, -1));
177   Result = EmitFromInt(CGF, Result, T, ValueType);
178   return RValue::get(Result);
179 }
180
181 /// @brief Utility to insert an atomic cmpxchg instruction.
182 ///
183 /// @param CGF The current codegen function.
184 /// @param E   Builtin call expression to convert to cmpxchg.
185 ///            arg0 - address to operate on
186 ///            arg1 - value to compare with
187 ///            arg2 - new value
188 /// @param ReturnBool Specifies whether to return success flag of
189 ///                   cmpxchg result or the old value.
190 ///
191 /// @returns result of cmpxchg, according to ReturnBool
192 static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E,
193                                      bool ReturnBool) {
194   QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType();
195   llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
196   unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
197
198   llvm::IntegerType *IntType = llvm::IntegerType::get(
199       CGF.getLLVMContext(), CGF.getContext().getTypeSize(T));
200   llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
201
202   Value *Args[3];
203   Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
204   Args[1] = CGF.EmitScalarExpr(E->getArg(1));
205   llvm::Type *ValueType = Args[1]->getType();
206   Args[1] = EmitToInt(CGF, Args[1], T, IntType);
207   Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType);
208
209   Value *Pair = CGF.Builder.CreateAtomicCmpXchg(Args[0], Args[1], Args[2],
210                                                 llvm::SequentiallyConsistent,
211                                                 llvm::SequentiallyConsistent);
212   if (ReturnBool)
213     // Extract boolean success flag and zext it to int.
214     return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1),
215                                   CGF.ConvertType(E->getType()));
216   else
217     // Extract old value and emit it using the same type as compare value.
218     return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T,
219                        ValueType);
220 }
221
222 /// EmitFAbs - Emit a call to @llvm.fabs().
223 static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) {
224   Value *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType());
225   llvm::CallInst *Call = CGF.Builder.CreateCall(F, V);
226   Call->setDoesNotAccessMemory();
227   return Call;
228 }
229
230 /// Emit the computation of the sign bit for a floating point value. Returns
231 /// the i1 sign bit value.
232 static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) {
233   LLVMContext &C = CGF.CGM.getLLVMContext();
234
235   llvm::Type *Ty = V->getType();
236   int Width = Ty->getPrimitiveSizeInBits();
237   llvm::Type *IntTy = llvm::IntegerType::get(C, Width);
238   V = CGF.Builder.CreateBitCast(V, IntTy);
239   if (Ty->isPPC_FP128Ty()) {
240     // We want the sign bit of the higher-order double. The bitcast we just
241     // did works as if the double-double was stored to memory and then
242     // read as an i128. The "store" will put the higher-order double in the
243     // lower address in both little- and big-Endian modes, but the "load"
244     // will treat those bits as a different part of the i128: the low bits in
245     // little-Endian, the high bits in big-Endian. Therefore, on big-Endian
246     // we need to shift the high bits down to the low before truncating.
247     Width >>= 1;
248     if (CGF.getTarget().isBigEndian()) {
249       Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width);
250       V = CGF.Builder.CreateLShr(V, ShiftCst);
251     } 
252     // We are truncating value in order to extract the higher-order 
253     // double, which we will be using to extract the sign from.
254     IntTy = llvm::IntegerType::get(C, Width);
255     V = CGF.Builder.CreateTrunc(V, IntTy);
256   }
257   Value *Zero = llvm::Constant::getNullValue(IntTy);
258   return CGF.Builder.CreateICmpSLT(V, Zero);
259 }
260
261 static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *Fn,
262                               const CallExpr *E, llvm::Value *calleeValue) {
263   return CGF.EmitCall(E->getCallee()->getType(), calleeValue, E,
264                       ReturnValueSlot(), Fn);
265 }
266
267 /// \brief Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
268 /// depending on IntrinsicID.
269 ///
270 /// \arg CGF The current codegen function.
271 /// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
272 /// \arg X The first argument to the llvm.*.with.overflow.*.
273 /// \arg Y The second argument to the llvm.*.with.overflow.*.
274 /// \arg Carry The carry returned by the llvm.*.with.overflow.*.
275 /// \returns The result (i.e. sum/product) returned by the intrinsic.
276 static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
277                                           const llvm::Intrinsic::ID IntrinsicID,
278                                           llvm::Value *X, llvm::Value *Y,
279                                           llvm::Value *&Carry) {
280   // Make sure we have integers of the same width.
281   assert(X->getType() == Y->getType() &&
282          "Arguments must be the same type. (Did you forget to make sure both "
283          "arguments have the same integer width?)");
284
285   llvm::Value *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
286   llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y});
287   Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
288   return CGF.Builder.CreateExtractValue(Tmp, 0);
289 }
290
291 namespace {
292   struct WidthAndSignedness {
293     unsigned Width;
294     bool Signed;
295   };
296 }
297
298 static WidthAndSignedness
299 getIntegerWidthAndSignedness(const clang::ASTContext &context,
300                              const clang::QualType Type) {
301   assert(Type->isIntegerType() && "Given type is not an integer.");
302   unsigned Width = Type->isBooleanType() ? 1 : context.getTypeInfo(Type).Width;
303   bool Signed = Type->isSignedIntegerType();
304   return {Width, Signed};
305 }
306
307 // Given one or more integer types, this function produces an integer type that
308 // encompasses them: any value in one of the given types could be expressed in
309 // the encompassing type.
310 static struct WidthAndSignedness
311 EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) {
312   assert(Types.size() > 0 && "Empty list of types.");
313
314   // If any of the given types is signed, we must return a signed type.
315   bool Signed = false;
316   for (const auto &Type : Types) {
317     Signed |= Type.Signed;
318   }
319
320   // The encompassing type must have a width greater than or equal to the width
321   // of the specified types.  Aditionally, if the encompassing type is signed,
322   // its width must be strictly greater than the width of any unsigned types
323   // given.
324   unsigned Width = 0;
325   for (const auto &Type : Types) {
326     unsigned MinWidth = Type.Width + (Signed && !Type.Signed);
327     if (Width < MinWidth) {
328       Width = MinWidth;
329     }
330   }
331
332   return {Width, Signed};
333 }
334
335 Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) {
336   llvm::Type *DestType = Int8PtrTy;
337   if (ArgValue->getType() != DestType)
338     ArgValue =
339         Builder.CreateBitCast(ArgValue, DestType, ArgValue->getName().data());
340
341   Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend;
342   return Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue);
343 }
344
345 /// Checks if using the result of __builtin_object_size(p, @p From) in place of
346 /// __builtin_object_size(p, @p To) is correct
347 static bool areBOSTypesCompatible(int From, int To) {
348   // Note: Our __builtin_object_size implementation currently treats Type=0 and
349   // Type=2 identically. Encoding this implementation detail here may make
350   // improving __builtin_object_size difficult in the future, so it's omitted.
351   return From == To || (From == 0 && To == 1) || (From == 3 && To == 2);
352 }
353
354 static llvm::Value *
355 getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) {
356   return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true);
357 }
358
359 llvm::Value *
360 CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
361                                                  llvm::IntegerType *ResType) {
362   uint64_t ObjectSize;
363   if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type))
364     return emitBuiltinObjectSize(E, Type, ResType);
365   return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true);
366 }
367
368 /// Returns a Value corresponding to the size of the given expression.
369 /// This Value may be either of the following:
370 ///   - A llvm::Argument (if E is a param with the pass_object_size attribute on
371 ///     it)
372 ///   - A call to the @llvm.objectsize intrinsic
373 llvm::Value *
374 CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type,
375                                        llvm::IntegerType *ResType) {
376   // We need to reference an argument if the pointer is a parameter with the
377   // pass_object_size attribute.
378   if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) {
379     auto *Param = dyn_cast<ParmVarDecl>(D->getDecl());
380     auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>();
381     if (Param != nullptr && PS != nullptr &&
382         areBOSTypesCompatible(PS->getType(), Type)) {
383       auto Iter = SizeArguments.find(Param);
384       assert(Iter != SizeArguments.end());
385
386       const ImplicitParamDecl *D = Iter->second;
387       auto DIter = LocalDeclMap.find(D);
388       assert(DIter != LocalDeclMap.end());
389
390       return EmitLoadOfScalar(DIter->second, /*volatile=*/false,
391                               getContext().getSizeType(), E->getLocStart());
392     }
393   }
394
395   // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't
396   // evaluate E for side-effects. In either case, we shouldn't lower to
397   // @llvm.objectsize.
398   if (Type == 3 || E->HasSideEffects(getContext()))
399     return getDefaultBuiltinObjectSizeResult(Type, ResType);
400
401   // LLVM only supports 0 and 2, make sure that we pass along that
402   // as a boolean.
403   auto *CI = ConstantInt::get(Builder.getInt1Ty(), (Type & 2) >> 1);
404   // FIXME: Get right address space.
405   llvm::Type *Tys[] = {ResType, Builder.getInt8PtrTy(0)};
406   Value *F = CGM.getIntrinsic(Intrinsic::objectsize, Tys);
407   return Builder.CreateCall(F, {EmitScalarExpr(E), CI});
408 }
409
410 RValue CodeGenFunction::EmitBuiltinExpr(const FunctionDecl *FD,
411                                         unsigned BuiltinID, const CallExpr *E,
412                                         ReturnValueSlot ReturnValue) {
413   // See if we can constant fold this builtin.  If so, don't emit it at all.
414   Expr::EvalResult Result;
415   if (E->EvaluateAsRValue(Result, CGM.getContext()) &&
416       !Result.hasSideEffects()) {
417     if (Result.Val.isInt())
418       return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
419                                                 Result.Val.getInt()));
420     if (Result.Val.isFloat())
421       return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
422                                                Result.Val.getFloat()));
423   }
424
425   switch (BuiltinID) {
426   default: break;  // Handle intrinsics and libm functions below.
427   case Builtin::BI__builtin___CFStringMakeConstantString:
428   case Builtin::BI__builtin___NSStringMakeConstantString:
429     return RValue::get(CGM.EmitConstantExpr(E, E->getType(), nullptr));
430   case Builtin::BI__builtin_stdarg_start:
431   case Builtin::BI__builtin_va_start:
432   case Builtin::BI__va_start:
433   case Builtin::BI__builtin_va_end:
434     return RValue::get(
435         EmitVAStartEnd(BuiltinID == Builtin::BI__va_start
436                            ? EmitScalarExpr(E->getArg(0))
437                            : EmitVAListRef(E->getArg(0)).getPointer(),
438                        BuiltinID != Builtin::BI__builtin_va_end));
439   case Builtin::BI__builtin_va_copy: {
440     Value *DstPtr = EmitVAListRef(E->getArg(0)).getPointer();
441     Value *SrcPtr = EmitVAListRef(E->getArg(1)).getPointer();
442
443     llvm::Type *Type = Int8PtrTy;
444
445     DstPtr = Builder.CreateBitCast(DstPtr, Type);
446     SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
447     return RValue::get(Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy),
448                                           {DstPtr, SrcPtr}));
449   }
450   case Builtin::BI__builtin_abs:
451   case Builtin::BI__builtin_labs:
452   case Builtin::BI__builtin_llabs: {
453     Value *ArgValue = EmitScalarExpr(E->getArg(0));
454
455     Value *NegOp = Builder.CreateNeg(ArgValue, "neg");
456     Value *CmpResult =
457     Builder.CreateICmpSGE(ArgValue,
458                           llvm::Constant::getNullValue(ArgValue->getType()),
459                                                             "abscond");
460     Value *Result =
461       Builder.CreateSelect(CmpResult, ArgValue, NegOp, "abs");
462
463     return RValue::get(Result);
464   }
465   case Builtin::BI__builtin_fabs:
466   case Builtin::BI__builtin_fabsf:
467   case Builtin::BI__builtin_fabsl: {
468     Value *Arg1 = EmitScalarExpr(E->getArg(0));
469     Value *Result = EmitFAbs(*this, Arg1);
470     return RValue::get(Result);
471   }
472   case Builtin::BI__builtin_fmod:
473   case Builtin::BI__builtin_fmodf:
474   case Builtin::BI__builtin_fmodl: {
475     Value *Arg1 = EmitScalarExpr(E->getArg(0));
476     Value *Arg2 = EmitScalarExpr(E->getArg(1));
477     Value *Result = Builder.CreateFRem(Arg1, Arg2, "fmod");
478     return RValue::get(Result);
479   }
480
481   case Builtin::BI__builtin_conj:
482   case Builtin::BI__builtin_conjf:
483   case Builtin::BI__builtin_conjl: {
484     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
485     Value *Real = ComplexVal.first;
486     Value *Imag = ComplexVal.second;
487     Value *Zero =
488       Imag->getType()->isFPOrFPVectorTy()
489         ? llvm::ConstantFP::getZeroValueForNegation(Imag->getType())
490         : llvm::Constant::getNullValue(Imag->getType());
491
492     Imag = Builder.CreateFSub(Zero, Imag, "sub");
493     return RValue::getComplex(std::make_pair(Real, Imag));
494   }
495   case Builtin::BI__builtin_creal:
496   case Builtin::BI__builtin_crealf:
497   case Builtin::BI__builtin_creall:
498   case Builtin::BIcreal:
499   case Builtin::BIcrealf:
500   case Builtin::BIcreall: {
501     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
502     return RValue::get(ComplexVal.first);
503   }
504
505   case Builtin::BI__builtin_cimag:
506   case Builtin::BI__builtin_cimagf:
507   case Builtin::BI__builtin_cimagl:
508   case Builtin::BIcimag:
509   case Builtin::BIcimagf:
510   case Builtin::BIcimagl: {
511     ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
512     return RValue::get(ComplexVal.second);
513   }
514
515   case Builtin::BI__builtin_ctzs:
516   case Builtin::BI__builtin_ctz:
517   case Builtin::BI__builtin_ctzl:
518   case Builtin::BI__builtin_ctzll: {
519     Value *ArgValue = EmitScalarExpr(E->getArg(0));
520
521     llvm::Type *ArgType = ArgValue->getType();
522     Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
523
524     llvm::Type *ResultType = ConvertType(E->getType());
525     Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
526     Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
527     if (Result->getType() != ResultType)
528       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
529                                      "cast");
530     return RValue::get(Result);
531   }
532   case Builtin::BI__builtin_clzs:
533   case Builtin::BI__builtin_clz:
534   case Builtin::BI__builtin_clzl:
535   case Builtin::BI__builtin_clzll: {
536     Value *ArgValue = EmitScalarExpr(E->getArg(0));
537
538     llvm::Type *ArgType = ArgValue->getType();
539     Value *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
540
541     llvm::Type *ResultType = ConvertType(E->getType());
542     Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
543     Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
544     if (Result->getType() != ResultType)
545       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
546                                      "cast");
547     return RValue::get(Result);
548   }
549   case Builtin::BI__builtin_ffs:
550   case Builtin::BI__builtin_ffsl:
551   case Builtin::BI__builtin_ffsll: {
552     // ffs(x) -> x ? cttz(x) + 1 : 0
553     Value *ArgValue = EmitScalarExpr(E->getArg(0));
554
555     llvm::Type *ArgType = ArgValue->getType();
556     Value *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
557
558     llvm::Type *ResultType = ConvertType(E->getType());
559     Value *Tmp =
560         Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}),
561                           llvm::ConstantInt::get(ArgType, 1));
562     Value *Zero = llvm::Constant::getNullValue(ArgType);
563     Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
564     Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
565     if (Result->getType() != ResultType)
566       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
567                                      "cast");
568     return RValue::get(Result);
569   }
570   case Builtin::BI__builtin_parity:
571   case Builtin::BI__builtin_parityl:
572   case Builtin::BI__builtin_parityll: {
573     // parity(x) -> ctpop(x) & 1
574     Value *ArgValue = EmitScalarExpr(E->getArg(0));
575
576     llvm::Type *ArgType = ArgValue->getType();
577     Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
578
579     llvm::Type *ResultType = ConvertType(E->getType());
580     Value *Tmp = Builder.CreateCall(F, ArgValue);
581     Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
582     if (Result->getType() != ResultType)
583       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
584                                      "cast");
585     return RValue::get(Result);
586   }
587   case Builtin::BI__builtin_popcount:
588   case Builtin::BI__builtin_popcountl:
589   case Builtin::BI__builtin_popcountll: {
590     Value *ArgValue = EmitScalarExpr(E->getArg(0));
591
592     llvm::Type *ArgType = ArgValue->getType();
593     Value *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
594
595     llvm::Type *ResultType = ConvertType(E->getType());
596     Value *Result = Builder.CreateCall(F, ArgValue);
597     if (Result->getType() != ResultType)
598       Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
599                                      "cast");
600     return RValue::get(Result);
601   }
602   case Builtin::BI__builtin_unpredictable: {
603     // Always return the argument of __builtin_unpredictable. LLVM does not
604     // handle this builtin. Metadata for this builtin should be added directly
605     // to instructions such as branches or switches that use it.
606     return RValue::get(EmitScalarExpr(E->getArg(0)));
607   }
608   case Builtin::BI__builtin_expect: {
609     Value *ArgValue = EmitScalarExpr(E->getArg(0));
610     llvm::Type *ArgType = ArgValue->getType();
611
612     Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
613     // Don't generate llvm.expect on -O0 as the backend won't use it for
614     // anything.
615     // Note, we still IRGen ExpectedValue because it could have side-effects.
616     if (CGM.getCodeGenOpts().OptimizationLevel == 0)
617       return RValue::get(ArgValue);
618
619     Value *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
620     Value *Result =
621         Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval");
622     return RValue::get(Result);
623   }
624   case Builtin::BI__builtin_assume_aligned: {
625     Value *PtrValue = EmitScalarExpr(E->getArg(0));
626     Value *OffsetValue =
627       (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr;
628
629     Value *AlignmentValue = EmitScalarExpr(E->getArg(1));
630     ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue);
631     unsigned Alignment = (unsigned) AlignmentCI->getZExtValue();
632
633     EmitAlignmentAssumption(PtrValue, Alignment, OffsetValue);
634     return RValue::get(PtrValue);
635   }
636   case Builtin::BI__assume:
637   case Builtin::BI__builtin_assume: {
638     if (E->getArg(0)->HasSideEffects(getContext()))
639       return RValue::get(nullptr);
640
641     Value *ArgValue = EmitScalarExpr(E->getArg(0));
642     Value *FnAssume = CGM.getIntrinsic(Intrinsic::assume);
643     return RValue::get(Builder.CreateCall(FnAssume, ArgValue));
644   }
645   case Builtin::BI__builtin_bswap16:
646   case Builtin::BI__builtin_bswap32:
647   case Builtin::BI__builtin_bswap64: {
648     Value *ArgValue = EmitScalarExpr(E->getArg(0));
649     llvm::Type *ArgType = ArgValue->getType();
650     Value *F = CGM.getIntrinsic(Intrinsic::bswap, ArgType);
651     return RValue::get(Builder.CreateCall(F, ArgValue));
652   }
653   case Builtin::BI__builtin_object_size: {
654     unsigned Type =
655         E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue();
656     auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType()));
657
658     // We pass this builtin onto the optimizer so that it can figure out the
659     // object size in more complex cases.
660     return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType));
661   }
662   case Builtin::BI__builtin_prefetch: {
663     Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
664     // FIXME: Technically these constants should of type 'int', yes?
665     RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
666       llvm::ConstantInt::get(Int32Ty, 0);
667     Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
668       llvm::ConstantInt::get(Int32Ty, 3);
669     Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
670     Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
671     return RValue::get(Builder.CreateCall(F, {Address, RW, Locality, Data}));
672   }
673   case Builtin::BI__builtin_readcyclecounter: {
674     Value *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
675     return RValue::get(Builder.CreateCall(F));
676   }
677   case Builtin::BI__builtin___clear_cache: {
678     Value *Begin = EmitScalarExpr(E->getArg(0));
679     Value *End = EmitScalarExpr(E->getArg(1));
680     Value *F = CGM.getIntrinsic(Intrinsic::clear_cache);
681     return RValue::get(Builder.CreateCall(F, {Begin, End}));
682   }
683   case Builtin::BI__builtin_trap:
684     return RValue::get(EmitTrapCall(Intrinsic::trap));
685   case Builtin::BI__debugbreak:
686     return RValue::get(EmitTrapCall(Intrinsic::debugtrap));
687   case Builtin::BI__builtin_unreachable: {
688     if (SanOpts.has(SanitizerKind::Unreachable)) {
689       SanitizerScope SanScope(this);
690       EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
691                                SanitizerKind::Unreachable),
692                 "builtin_unreachable", EmitCheckSourceLocation(E->getExprLoc()),
693                 None);
694     } else
695       Builder.CreateUnreachable();
696
697     // We do need to preserve an insertion point.
698     EmitBlock(createBasicBlock("unreachable.cont"));
699
700     return RValue::get(nullptr);
701   }
702
703   case Builtin::BI__builtin_powi:
704   case Builtin::BI__builtin_powif:
705   case Builtin::BI__builtin_powil: {
706     Value *Base = EmitScalarExpr(E->getArg(0));
707     Value *Exponent = EmitScalarExpr(E->getArg(1));
708     llvm::Type *ArgType = Base->getType();
709     Value *F = CGM.getIntrinsic(Intrinsic::powi, ArgType);
710     return RValue::get(Builder.CreateCall(F, {Base, Exponent}));
711   }
712
713   case Builtin::BI__builtin_isgreater:
714   case Builtin::BI__builtin_isgreaterequal:
715   case Builtin::BI__builtin_isless:
716   case Builtin::BI__builtin_islessequal:
717   case Builtin::BI__builtin_islessgreater:
718   case Builtin::BI__builtin_isunordered: {
719     // Ordered comparisons: we know the arguments to these are matching scalar
720     // floating point values.
721     Value *LHS = EmitScalarExpr(E->getArg(0));
722     Value *RHS = EmitScalarExpr(E->getArg(1));
723
724     switch (BuiltinID) {
725     default: llvm_unreachable("Unknown ordered comparison");
726     case Builtin::BI__builtin_isgreater:
727       LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
728       break;
729     case Builtin::BI__builtin_isgreaterequal:
730       LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
731       break;
732     case Builtin::BI__builtin_isless:
733       LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
734       break;
735     case Builtin::BI__builtin_islessequal:
736       LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
737       break;
738     case Builtin::BI__builtin_islessgreater:
739       LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
740       break;
741     case Builtin::BI__builtin_isunordered:
742       LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
743       break;
744     }
745     // ZExt bool to int type.
746     return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
747   }
748   case Builtin::BI__builtin_isnan: {
749     Value *V = EmitScalarExpr(E->getArg(0));
750     V = Builder.CreateFCmpUNO(V, V, "cmp");
751     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
752   }
753
754   case Builtin::BI__builtin_isinf: {
755     // isinf(x) --> fabs(x) == infinity
756     Value *V = EmitScalarExpr(E->getArg(0));
757     V = EmitFAbs(*this, V);
758
759     V = Builder.CreateFCmpOEQ(V, ConstantFP::getInfinity(V->getType()),"isinf");
760     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
761   }
762
763   case Builtin::BI__builtin_isinf_sign: {
764     // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0
765     Value *Arg = EmitScalarExpr(E->getArg(0));
766     Value *AbsArg = EmitFAbs(*this, Arg);
767     Value *IsInf = Builder.CreateFCmpOEQ(
768         AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf");
769     Value *IsNeg = EmitSignBit(*this, Arg);
770
771     llvm::Type *IntTy = ConvertType(E->getType());
772     Value *Zero = Constant::getNullValue(IntTy);
773     Value *One = ConstantInt::get(IntTy, 1);
774     Value *NegativeOne = ConstantInt::get(IntTy, -1);
775     Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One);
776     Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero);
777     return RValue::get(Result);
778   }
779
780   case Builtin::BI__builtin_isnormal: {
781     // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
782     Value *V = EmitScalarExpr(E->getArg(0));
783     Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
784
785     Value *Abs = EmitFAbs(*this, V);
786     Value *IsLessThanInf =
787       Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
788     APFloat Smallest = APFloat::getSmallestNormalized(
789                    getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
790     Value *IsNormal =
791       Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
792                             "isnormal");
793     V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
794     V = Builder.CreateAnd(V, IsNormal, "and");
795     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
796   }
797
798   case Builtin::BI__builtin_isfinite: {
799     // isfinite(x) --> x == x && fabs(x) != infinity;
800     Value *V = EmitScalarExpr(E->getArg(0));
801     Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
802
803     Value *Abs = EmitFAbs(*this, V);
804     Value *IsNotInf =
805       Builder.CreateFCmpUNE(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
806
807     V = Builder.CreateAnd(Eq, IsNotInf, "and");
808     return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
809   }
810
811   case Builtin::BI__builtin_fpclassify: {
812     Value *V = EmitScalarExpr(E->getArg(5));
813     llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
814
815     // Create Result
816     BasicBlock *Begin = Builder.GetInsertBlock();
817     BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
818     Builder.SetInsertPoint(End);
819     PHINode *Result =
820       Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
821                         "fpclassify_result");
822
823     // if (V==0) return FP_ZERO
824     Builder.SetInsertPoint(Begin);
825     Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
826                                           "iszero");
827     Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
828     BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
829     Builder.CreateCondBr(IsZero, End, NotZero);
830     Result->addIncoming(ZeroLiteral, Begin);
831
832     // if (V != V) return FP_NAN
833     Builder.SetInsertPoint(NotZero);
834     Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
835     Value *NanLiteral = EmitScalarExpr(E->getArg(0));
836     BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
837     Builder.CreateCondBr(IsNan, End, NotNan);
838     Result->addIncoming(NanLiteral, NotZero);
839
840     // if (fabs(V) == infinity) return FP_INFINITY
841     Builder.SetInsertPoint(NotNan);
842     Value *VAbs = EmitFAbs(*this, V);
843     Value *IsInf =
844       Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
845                             "isinf");
846     Value *InfLiteral = EmitScalarExpr(E->getArg(1));
847     BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
848     Builder.CreateCondBr(IsInf, End, NotInf);
849     Result->addIncoming(InfLiteral, NotNan);
850
851     // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
852     Builder.SetInsertPoint(NotInf);
853     APFloat Smallest = APFloat::getSmallestNormalized(
854         getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
855     Value *IsNormal =
856       Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
857                             "isnormal");
858     Value *NormalResult =
859       Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
860                            EmitScalarExpr(E->getArg(3)));
861     Builder.CreateBr(End);
862     Result->addIncoming(NormalResult, NotInf);
863
864     // return Result
865     Builder.SetInsertPoint(End);
866     return RValue::get(Result);
867   }
868
869   case Builtin::BIalloca:
870   case Builtin::BI_alloca:
871   case Builtin::BI__builtin_alloca: {
872     Value *Size = EmitScalarExpr(E->getArg(0));
873     return RValue::get(Builder.CreateAlloca(Builder.getInt8Ty(), Size));
874   }
875   case Builtin::BIbzero:
876   case Builtin::BI__builtin_bzero: {
877     Address Dest = EmitPointerWithAlignment(E->getArg(0));
878     Value *SizeVal = EmitScalarExpr(E->getArg(1));
879     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
880                         E->getArg(0)->getExprLoc(), FD, 0);
881     Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false);
882     return RValue::get(Dest.getPointer());
883   }
884   case Builtin::BImemcpy:
885   case Builtin::BI__builtin_memcpy: {
886     Address Dest = EmitPointerWithAlignment(E->getArg(0));
887     Address Src = EmitPointerWithAlignment(E->getArg(1));
888     Value *SizeVal = EmitScalarExpr(E->getArg(2));
889     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
890                         E->getArg(0)->getExprLoc(), FD, 0);
891     EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
892                         E->getArg(1)->getExprLoc(), FD, 1);
893     Builder.CreateMemCpy(Dest, Src, SizeVal, false);
894     return RValue::get(Dest.getPointer());
895   }
896
897   case Builtin::BI__builtin___memcpy_chk: {
898     // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
899     llvm::APSInt Size, DstSize;
900     if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
901         !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
902       break;
903     if (Size.ugt(DstSize))
904       break;
905     Address Dest = EmitPointerWithAlignment(E->getArg(0));
906     Address Src = EmitPointerWithAlignment(E->getArg(1));
907     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
908     Builder.CreateMemCpy(Dest, Src, SizeVal, false);
909     return RValue::get(Dest.getPointer());
910   }
911
912   case Builtin::BI__builtin_objc_memmove_collectable: {
913     Address DestAddr = EmitPointerWithAlignment(E->getArg(0));
914     Address SrcAddr = EmitPointerWithAlignment(E->getArg(1));
915     Value *SizeVal = EmitScalarExpr(E->getArg(2));
916     CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
917                                                   DestAddr, SrcAddr, SizeVal);
918     return RValue::get(DestAddr.getPointer());
919   }
920
921   case Builtin::BI__builtin___memmove_chk: {
922     // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
923     llvm::APSInt Size, DstSize;
924     if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
925         !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
926       break;
927     if (Size.ugt(DstSize))
928       break;
929     Address Dest = EmitPointerWithAlignment(E->getArg(0));
930     Address Src = EmitPointerWithAlignment(E->getArg(1));
931     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
932     Builder.CreateMemMove(Dest, Src, SizeVal, false);
933     return RValue::get(Dest.getPointer());
934   }
935
936   case Builtin::BImemmove:
937   case Builtin::BI__builtin_memmove: {
938     Address Dest = EmitPointerWithAlignment(E->getArg(0));
939     Address Src = EmitPointerWithAlignment(E->getArg(1));
940     Value *SizeVal = EmitScalarExpr(E->getArg(2));
941     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
942                         E->getArg(0)->getExprLoc(), FD, 0);
943     EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
944                         E->getArg(1)->getExprLoc(), FD, 1);
945     Builder.CreateMemMove(Dest, Src, SizeVal, false);
946     return RValue::get(Dest.getPointer());
947   }
948   case Builtin::BImemset:
949   case Builtin::BI__builtin_memset: {
950     Address Dest = EmitPointerWithAlignment(E->getArg(0));
951     Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
952                                          Builder.getInt8Ty());
953     Value *SizeVal = EmitScalarExpr(E->getArg(2));
954     EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
955                         E->getArg(0)->getExprLoc(), FD, 0);
956     Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
957     return RValue::get(Dest.getPointer());
958   }
959   case Builtin::BI__builtin___memset_chk: {
960     // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
961     llvm::APSInt Size, DstSize;
962     if (!E->getArg(2)->EvaluateAsInt(Size, CGM.getContext()) ||
963         !E->getArg(3)->EvaluateAsInt(DstSize, CGM.getContext()))
964       break;
965     if (Size.ugt(DstSize))
966       break;
967     Address Dest = EmitPointerWithAlignment(E->getArg(0));
968     Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
969                                          Builder.getInt8Ty());
970     Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
971     Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
972     return RValue::get(Dest.getPointer());
973   }
974   case Builtin::BI__builtin_dwarf_cfa: {
975     // The offset in bytes from the first argument to the CFA.
976     //
977     // Why on earth is this in the frontend?  Is there any reason at
978     // all that the backend can't reasonably determine this while
979     // lowering llvm.eh.dwarf.cfa()?
980     //
981     // TODO: If there's a satisfactory reason, add a target hook for
982     // this instead of hard-coding 0, which is correct for most targets.
983     int32_t Offset = 0;
984
985     Value *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
986     return RValue::get(Builder.CreateCall(F,
987                                       llvm::ConstantInt::get(Int32Ty, Offset)));
988   }
989   case Builtin::BI__builtin_return_address: {
990     Value *Depth =
991         CGM.EmitConstantExpr(E->getArg(0), getContext().UnsignedIntTy, this);
992     Value *F = CGM.getIntrinsic(Intrinsic::returnaddress);
993     return RValue::get(Builder.CreateCall(F, Depth));
994   }
995   case Builtin::BI__builtin_frame_address: {
996     Value *Depth =
997         CGM.EmitConstantExpr(E->getArg(0), getContext().UnsignedIntTy, this);
998     Value *F = CGM.getIntrinsic(Intrinsic::frameaddress);
999     return RValue::get(Builder.CreateCall(F, Depth));
1000   }
1001   case Builtin::BI__builtin_extract_return_addr: {
1002     Value *Address = EmitScalarExpr(E->getArg(0));
1003     Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
1004     return RValue::get(Result);
1005   }
1006   case Builtin::BI__builtin_frob_return_addr: {
1007     Value *Address = EmitScalarExpr(E->getArg(0));
1008     Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
1009     return RValue::get(Result);
1010   }
1011   case Builtin::BI__builtin_dwarf_sp_column: {
1012     llvm::IntegerType *Ty
1013       = cast<llvm::IntegerType>(ConvertType(E->getType()));
1014     int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
1015     if (Column == -1) {
1016       CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
1017       return RValue::get(llvm::UndefValue::get(Ty));
1018     }
1019     return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
1020   }
1021   case Builtin::BI__builtin_init_dwarf_reg_size_table: {
1022     Value *Address = EmitScalarExpr(E->getArg(0));
1023     if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
1024       CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
1025     return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
1026   }
1027   case Builtin::BI__builtin_eh_return: {
1028     Value *Int = EmitScalarExpr(E->getArg(0));
1029     Value *Ptr = EmitScalarExpr(E->getArg(1));
1030
1031     llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
1032     assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&
1033            "LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
1034     Value *F = CGM.getIntrinsic(IntTy->getBitWidth() == 32
1035                                   ? Intrinsic::eh_return_i32
1036                                   : Intrinsic::eh_return_i64);
1037     Builder.CreateCall(F, {Int, Ptr});
1038     Builder.CreateUnreachable();
1039
1040     // We do need to preserve an insertion point.
1041     EmitBlock(createBasicBlock("builtin_eh_return.cont"));
1042
1043     return RValue::get(nullptr);
1044   }
1045   case Builtin::BI__builtin_unwind_init: {
1046     Value *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
1047     return RValue::get(Builder.CreateCall(F));
1048   }
1049   case Builtin::BI__builtin_extend_pointer: {
1050     // Extends a pointer to the size of an _Unwind_Word, which is
1051     // uint64_t on all platforms.  Generally this gets poked into a
1052     // register and eventually used as an address, so if the
1053     // addressing registers are wider than pointers and the platform
1054     // doesn't implicitly ignore high-order bits when doing
1055     // addressing, we need to make sure we zext / sext based on
1056     // the platform's expectations.
1057     //
1058     // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
1059
1060     // Cast the pointer to intptr_t.
1061     Value *Ptr = EmitScalarExpr(E->getArg(0));
1062     Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
1063
1064     // If that's 64 bits, we're done.
1065     if (IntPtrTy->getBitWidth() == 64)
1066       return RValue::get(Result);
1067
1068     // Otherwise, ask the codegen data what to do.
1069     if (getTargetHooks().extendPointerWithSExt())
1070       return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
1071     else
1072       return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
1073   }
1074   case Builtin::BI__builtin_setjmp: {
1075     // Buffer is a void**.
1076     Address Buf = EmitPointerWithAlignment(E->getArg(0));
1077
1078     // Store the frame pointer to the setjmp buffer.
1079     Value *FrameAddr =
1080       Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress),
1081                          ConstantInt::get(Int32Ty, 0));
1082     Builder.CreateStore(FrameAddr, Buf);
1083
1084     // Store the stack pointer to the setjmp buffer.
1085     Value *StackAddr =
1086         Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
1087     Address StackSaveSlot =
1088       Builder.CreateConstInBoundsGEP(Buf, 2, getPointerSize());
1089     Builder.CreateStore(StackAddr, StackSaveSlot);
1090
1091     // Call LLVM's EH setjmp, which is lightweight.
1092     Value *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
1093     Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
1094     return RValue::get(Builder.CreateCall(F, Buf.getPointer()));
1095   }
1096   case Builtin::BI__builtin_longjmp: {
1097     Value *Buf = EmitScalarExpr(E->getArg(0));
1098     Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
1099
1100     // Call LLVM's EH longjmp, which is lightweight.
1101     Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
1102
1103     // longjmp doesn't return; mark this as unreachable.
1104     Builder.CreateUnreachable();
1105
1106     // We do need to preserve an insertion point.
1107     EmitBlock(createBasicBlock("longjmp.cont"));
1108
1109     return RValue::get(nullptr);
1110   }
1111   case Builtin::BI__sync_fetch_and_add:
1112   case Builtin::BI__sync_fetch_and_sub:
1113   case Builtin::BI__sync_fetch_and_or:
1114   case Builtin::BI__sync_fetch_and_and:
1115   case Builtin::BI__sync_fetch_and_xor:
1116   case Builtin::BI__sync_fetch_and_nand:
1117   case Builtin::BI__sync_add_and_fetch:
1118   case Builtin::BI__sync_sub_and_fetch:
1119   case Builtin::BI__sync_and_and_fetch:
1120   case Builtin::BI__sync_or_and_fetch:
1121   case Builtin::BI__sync_xor_and_fetch:
1122   case Builtin::BI__sync_nand_and_fetch:
1123   case Builtin::BI__sync_val_compare_and_swap:
1124   case Builtin::BI__sync_bool_compare_and_swap:
1125   case Builtin::BI__sync_lock_test_and_set:
1126   case Builtin::BI__sync_lock_release:
1127   case Builtin::BI__sync_swap:
1128     llvm_unreachable("Shouldn't make it through sema");
1129   case Builtin::BI__sync_fetch_and_add_1:
1130   case Builtin::BI__sync_fetch_and_add_2:
1131   case Builtin::BI__sync_fetch_and_add_4:
1132   case Builtin::BI__sync_fetch_and_add_8:
1133   case Builtin::BI__sync_fetch_and_add_16:
1134     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
1135   case Builtin::BI__sync_fetch_and_sub_1:
1136   case Builtin::BI__sync_fetch_and_sub_2:
1137   case Builtin::BI__sync_fetch_and_sub_4:
1138   case Builtin::BI__sync_fetch_and_sub_8:
1139   case Builtin::BI__sync_fetch_and_sub_16:
1140     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
1141   case Builtin::BI__sync_fetch_and_or_1:
1142   case Builtin::BI__sync_fetch_and_or_2:
1143   case Builtin::BI__sync_fetch_and_or_4:
1144   case Builtin::BI__sync_fetch_and_or_8:
1145   case Builtin::BI__sync_fetch_and_or_16:
1146     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
1147   case Builtin::BI__sync_fetch_and_and_1:
1148   case Builtin::BI__sync_fetch_and_and_2:
1149   case Builtin::BI__sync_fetch_and_and_4:
1150   case Builtin::BI__sync_fetch_and_and_8:
1151   case Builtin::BI__sync_fetch_and_and_16:
1152     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
1153   case Builtin::BI__sync_fetch_and_xor_1:
1154   case Builtin::BI__sync_fetch_and_xor_2:
1155   case Builtin::BI__sync_fetch_and_xor_4:
1156   case Builtin::BI__sync_fetch_and_xor_8:
1157   case Builtin::BI__sync_fetch_and_xor_16:
1158     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
1159   case Builtin::BI__sync_fetch_and_nand_1:
1160   case Builtin::BI__sync_fetch_and_nand_2:
1161   case Builtin::BI__sync_fetch_and_nand_4:
1162   case Builtin::BI__sync_fetch_and_nand_8:
1163   case Builtin::BI__sync_fetch_and_nand_16:
1164     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E);
1165
1166   // Clang extensions: not overloaded yet.
1167   case Builtin::BI__sync_fetch_and_min:
1168     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
1169   case Builtin::BI__sync_fetch_and_max:
1170     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
1171   case Builtin::BI__sync_fetch_and_umin:
1172     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
1173   case Builtin::BI__sync_fetch_and_umax:
1174     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
1175
1176   case Builtin::BI__sync_add_and_fetch_1:
1177   case Builtin::BI__sync_add_and_fetch_2:
1178   case Builtin::BI__sync_add_and_fetch_4:
1179   case Builtin::BI__sync_add_and_fetch_8:
1180   case Builtin::BI__sync_add_and_fetch_16:
1181     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
1182                                 llvm::Instruction::Add);
1183   case Builtin::BI__sync_sub_and_fetch_1:
1184   case Builtin::BI__sync_sub_and_fetch_2:
1185   case Builtin::BI__sync_sub_and_fetch_4:
1186   case Builtin::BI__sync_sub_and_fetch_8:
1187   case Builtin::BI__sync_sub_and_fetch_16:
1188     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
1189                                 llvm::Instruction::Sub);
1190   case Builtin::BI__sync_and_and_fetch_1:
1191   case Builtin::BI__sync_and_and_fetch_2:
1192   case Builtin::BI__sync_and_and_fetch_4:
1193   case Builtin::BI__sync_and_and_fetch_8:
1194   case Builtin::BI__sync_and_and_fetch_16:
1195     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
1196                                 llvm::Instruction::And);
1197   case Builtin::BI__sync_or_and_fetch_1:
1198   case Builtin::BI__sync_or_and_fetch_2:
1199   case Builtin::BI__sync_or_and_fetch_4:
1200   case Builtin::BI__sync_or_and_fetch_8:
1201   case Builtin::BI__sync_or_and_fetch_16:
1202     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
1203                                 llvm::Instruction::Or);
1204   case Builtin::BI__sync_xor_and_fetch_1:
1205   case Builtin::BI__sync_xor_and_fetch_2:
1206   case Builtin::BI__sync_xor_and_fetch_4:
1207   case Builtin::BI__sync_xor_and_fetch_8:
1208   case Builtin::BI__sync_xor_and_fetch_16:
1209     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
1210                                 llvm::Instruction::Xor);
1211   case Builtin::BI__sync_nand_and_fetch_1:
1212   case Builtin::BI__sync_nand_and_fetch_2:
1213   case Builtin::BI__sync_nand_and_fetch_4:
1214   case Builtin::BI__sync_nand_and_fetch_8:
1215   case Builtin::BI__sync_nand_and_fetch_16:
1216     return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E,
1217                                 llvm::Instruction::And, true);
1218
1219   case Builtin::BI__sync_val_compare_and_swap_1:
1220   case Builtin::BI__sync_val_compare_and_swap_2:
1221   case Builtin::BI__sync_val_compare_and_swap_4:
1222   case Builtin::BI__sync_val_compare_and_swap_8:
1223   case Builtin::BI__sync_val_compare_and_swap_16:
1224     return RValue::get(MakeAtomicCmpXchgValue(*this, E, false));
1225
1226   case Builtin::BI__sync_bool_compare_and_swap_1:
1227   case Builtin::BI__sync_bool_compare_and_swap_2:
1228   case Builtin::BI__sync_bool_compare_and_swap_4:
1229   case Builtin::BI__sync_bool_compare_and_swap_8:
1230   case Builtin::BI__sync_bool_compare_and_swap_16:
1231     return RValue::get(MakeAtomicCmpXchgValue(*this, E, true));
1232
1233   case Builtin::BI__sync_swap_1:
1234   case Builtin::BI__sync_swap_2:
1235   case Builtin::BI__sync_swap_4:
1236   case Builtin::BI__sync_swap_8:
1237   case Builtin::BI__sync_swap_16:
1238     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
1239
1240   case Builtin::BI__sync_lock_test_and_set_1:
1241   case Builtin::BI__sync_lock_test_and_set_2:
1242   case Builtin::BI__sync_lock_test_and_set_4:
1243   case Builtin::BI__sync_lock_test_and_set_8:
1244   case Builtin::BI__sync_lock_test_and_set_16:
1245     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
1246
1247   case Builtin::BI__sync_lock_release_1:
1248   case Builtin::BI__sync_lock_release_2:
1249   case Builtin::BI__sync_lock_release_4:
1250   case Builtin::BI__sync_lock_release_8:
1251   case Builtin::BI__sync_lock_release_16: {
1252     Value *Ptr = EmitScalarExpr(E->getArg(0));
1253     QualType ElTy = E->getArg(0)->getType()->getPointeeType();
1254     CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
1255     llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
1256                                              StoreSize.getQuantity() * 8);
1257     Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
1258     llvm::StoreInst *Store =
1259       Builder.CreateAlignedStore(llvm::Constant::getNullValue(ITy), Ptr,
1260                                  StoreSize);
1261     Store->setAtomic(llvm::Release);
1262     return RValue::get(nullptr);
1263   }
1264
1265   case Builtin::BI__sync_synchronize: {
1266     // We assume this is supposed to correspond to a C++0x-style
1267     // sequentially-consistent fence (i.e. this is only usable for
1268     // synchonization, not device I/O or anything like that). This intrinsic
1269     // is really badly designed in the sense that in theory, there isn't
1270     // any way to safely use it... but in practice, it mostly works
1271     // to use it with non-atomic loads and stores to get acquire/release
1272     // semantics.
1273     Builder.CreateFence(llvm::SequentiallyConsistent);
1274     return RValue::get(nullptr);
1275   }
1276
1277   case Builtin::BI__builtin_nontemporal_load:
1278     return RValue::get(EmitNontemporalLoad(*this, E));
1279   case Builtin::BI__builtin_nontemporal_store:
1280     return RValue::get(EmitNontemporalStore(*this, E));
1281   case Builtin::BI__c11_atomic_is_lock_free:
1282   case Builtin::BI__atomic_is_lock_free: {
1283     // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
1284     // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
1285     // _Atomic(T) is always properly-aligned.
1286     const char *LibCallName = "__atomic_is_lock_free";
1287     CallArgList Args;
1288     Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
1289              getContext().getSizeType());
1290     if (BuiltinID == Builtin::BI__atomic_is_lock_free)
1291       Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
1292                getContext().VoidPtrTy);
1293     else
1294       Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
1295                getContext().VoidPtrTy);
1296     const CGFunctionInfo &FuncInfo =
1297         CGM.getTypes().arrangeFreeFunctionCall(E->getType(), Args,
1298                                                FunctionType::ExtInfo(),
1299                                                RequiredArgs::All);
1300     llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
1301     llvm::Constant *Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
1302     return EmitCall(FuncInfo, Func, ReturnValueSlot(), Args);
1303   }
1304
1305   case Builtin::BI__atomic_test_and_set: {
1306     // Look at the argument type to determine whether this is a volatile
1307     // operation. The parameter type is always volatile.
1308     QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
1309     bool Volatile =
1310         PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
1311
1312     Value *Ptr = EmitScalarExpr(E->getArg(0));
1313     unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
1314     Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
1315     Value *NewVal = Builder.getInt8(1);
1316     Value *Order = EmitScalarExpr(E->getArg(1));
1317     if (isa<llvm::ConstantInt>(Order)) {
1318       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
1319       AtomicRMWInst *Result = nullptr;
1320       switch (ord) {
1321       case 0:  // memory_order_relaxed
1322       default: // invalid order
1323         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1324                                          Ptr, NewVal,
1325                                          llvm::Monotonic);
1326         break;
1327       case 1:  // memory_order_consume
1328       case 2:  // memory_order_acquire
1329         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1330                                          Ptr, NewVal,
1331                                          llvm::Acquire);
1332         break;
1333       case 3:  // memory_order_release
1334         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1335                                          Ptr, NewVal,
1336                                          llvm::Release);
1337         break;
1338       case 4:  // memory_order_acq_rel
1339         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1340                                          Ptr, NewVal,
1341                                          llvm::AcquireRelease);
1342         break;
1343       case 5:  // memory_order_seq_cst
1344         Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1345                                          Ptr, NewVal,
1346                                          llvm::SequentiallyConsistent);
1347         break;
1348       }
1349       Result->setVolatile(Volatile);
1350       return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
1351     }
1352
1353     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
1354
1355     llvm::BasicBlock *BBs[5] = {
1356       createBasicBlock("monotonic", CurFn),
1357       createBasicBlock("acquire", CurFn),
1358       createBasicBlock("release", CurFn),
1359       createBasicBlock("acqrel", CurFn),
1360       createBasicBlock("seqcst", CurFn)
1361     };
1362     llvm::AtomicOrdering Orders[5] = {
1363       llvm::Monotonic, llvm::Acquire, llvm::Release,
1364       llvm::AcquireRelease, llvm::SequentiallyConsistent
1365     };
1366
1367     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
1368     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
1369
1370     Builder.SetInsertPoint(ContBB);
1371     PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
1372
1373     for (unsigned i = 0; i < 5; ++i) {
1374       Builder.SetInsertPoint(BBs[i]);
1375       AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1376                                                    Ptr, NewVal, Orders[i]);
1377       RMW->setVolatile(Volatile);
1378       Result->addIncoming(RMW, BBs[i]);
1379       Builder.CreateBr(ContBB);
1380     }
1381
1382     SI->addCase(Builder.getInt32(0), BBs[0]);
1383     SI->addCase(Builder.getInt32(1), BBs[1]);
1384     SI->addCase(Builder.getInt32(2), BBs[1]);
1385     SI->addCase(Builder.getInt32(3), BBs[2]);
1386     SI->addCase(Builder.getInt32(4), BBs[3]);
1387     SI->addCase(Builder.getInt32(5), BBs[4]);
1388
1389     Builder.SetInsertPoint(ContBB);
1390     return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
1391   }
1392
1393   case Builtin::BI__atomic_clear: {
1394     QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
1395     bool Volatile =
1396         PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
1397
1398     Address Ptr = EmitPointerWithAlignment(E->getArg(0));
1399     unsigned AddrSpace = Ptr.getPointer()->getType()->getPointerAddressSpace();
1400     Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
1401     Value *NewVal = Builder.getInt8(0);
1402     Value *Order = EmitScalarExpr(E->getArg(1));
1403     if (isa<llvm::ConstantInt>(Order)) {
1404       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
1405       StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
1406       switch (ord) {
1407       case 0:  // memory_order_relaxed
1408       default: // invalid order
1409         Store->setOrdering(llvm::Monotonic);
1410         break;
1411       case 3:  // memory_order_release
1412         Store->setOrdering(llvm::Release);
1413         break;
1414       case 5:  // memory_order_seq_cst
1415         Store->setOrdering(llvm::SequentiallyConsistent);
1416         break;
1417       }
1418       return RValue::get(nullptr);
1419     }
1420
1421     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
1422
1423     llvm::BasicBlock *BBs[3] = {
1424       createBasicBlock("monotonic", CurFn),
1425       createBasicBlock("release", CurFn),
1426       createBasicBlock("seqcst", CurFn)
1427     };
1428     llvm::AtomicOrdering Orders[3] = {
1429       llvm::Monotonic, llvm::Release, llvm::SequentiallyConsistent
1430     };
1431
1432     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
1433     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
1434
1435     for (unsigned i = 0; i < 3; ++i) {
1436       Builder.SetInsertPoint(BBs[i]);
1437       StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
1438       Store->setOrdering(Orders[i]);
1439       Builder.CreateBr(ContBB);
1440     }
1441
1442     SI->addCase(Builder.getInt32(0), BBs[0]);
1443     SI->addCase(Builder.getInt32(3), BBs[1]);
1444     SI->addCase(Builder.getInt32(5), BBs[2]);
1445
1446     Builder.SetInsertPoint(ContBB);
1447     return RValue::get(nullptr);
1448   }
1449
1450   case Builtin::BI__atomic_thread_fence:
1451   case Builtin::BI__atomic_signal_fence:
1452   case Builtin::BI__c11_atomic_thread_fence:
1453   case Builtin::BI__c11_atomic_signal_fence: {
1454     llvm::SynchronizationScope Scope;
1455     if (BuiltinID == Builtin::BI__atomic_signal_fence ||
1456         BuiltinID == Builtin::BI__c11_atomic_signal_fence)
1457       Scope = llvm::SingleThread;
1458     else
1459       Scope = llvm::CrossThread;
1460     Value *Order = EmitScalarExpr(E->getArg(0));
1461     if (isa<llvm::ConstantInt>(Order)) {
1462       int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
1463       switch (ord) {
1464       case 0:  // memory_order_relaxed
1465       default: // invalid order
1466         break;
1467       case 1:  // memory_order_consume
1468       case 2:  // memory_order_acquire
1469         Builder.CreateFence(llvm::Acquire, Scope);
1470         break;
1471       case 3:  // memory_order_release
1472         Builder.CreateFence(llvm::Release, Scope);
1473         break;
1474       case 4:  // memory_order_acq_rel
1475         Builder.CreateFence(llvm::AcquireRelease, Scope);
1476         break;
1477       case 5:  // memory_order_seq_cst
1478         Builder.CreateFence(llvm::SequentiallyConsistent, Scope);
1479         break;
1480       }
1481       return RValue::get(nullptr);
1482     }
1483
1484     llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
1485     AcquireBB = createBasicBlock("acquire", CurFn);
1486     ReleaseBB = createBasicBlock("release", CurFn);
1487     AcqRelBB = createBasicBlock("acqrel", CurFn);
1488     SeqCstBB = createBasicBlock("seqcst", CurFn);
1489     llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
1490
1491     Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
1492     llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
1493
1494     Builder.SetInsertPoint(AcquireBB);
1495     Builder.CreateFence(llvm::Acquire, Scope);
1496     Builder.CreateBr(ContBB);
1497     SI->addCase(Builder.getInt32(1), AcquireBB);
1498     SI->addCase(Builder.getInt32(2), AcquireBB);
1499
1500     Builder.SetInsertPoint(ReleaseBB);
1501     Builder.CreateFence(llvm::Release, Scope);
1502     Builder.CreateBr(ContBB);
1503     SI->addCase(Builder.getInt32(3), ReleaseBB);
1504
1505     Builder.SetInsertPoint(AcqRelBB);
1506     Builder.CreateFence(llvm::AcquireRelease, Scope);
1507     Builder.CreateBr(ContBB);
1508     SI->addCase(Builder.getInt32(4), AcqRelBB);
1509
1510     Builder.SetInsertPoint(SeqCstBB);
1511     Builder.CreateFence(llvm::SequentiallyConsistent, Scope);
1512     Builder.CreateBr(ContBB);
1513     SI->addCase(Builder.getInt32(5), SeqCstBB);
1514
1515     Builder.SetInsertPoint(ContBB);
1516     return RValue::get(nullptr);
1517   }
1518
1519     // Library functions with special handling.
1520   case Builtin::BIsqrt:
1521   case Builtin::BIsqrtf:
1522   case Builtin::BIsqrtl: {
1523     // Transform a call to sqrt* into a @llvm.sqrt.* intrinsic call, but only
1524     // in finite- or unsafe-math mode (the intrinsic has different semantics
1525     // for handling negative numbers compared to the library function, so
1526     // -fmath-errno=0 is not enough).
1527     if (!FD->hasAttr<ConstAttr>())
1528       break;
1529     if (!(CGM.getCodeGenOpts().UnsafeFPMath ||
1530           CGM.getCodeGenOpts().NoNaNsFPMath))
1531       break;
1532     Value *Arg0 = EmitScalarExpr(E->getArg(0));
1533     llvm::Type *ArgType = Arg0->getType();
1534     Value *F = CGM.getIntrinsic(Intrinsic::sqrt, ArgType);
1535     return RValue::get(Builder.CreateCall(F, Arg0));
1536   }
1537
1538   case Builtin::BI__builtin_pow:
1539   case Builtin::BI__builtin_powf:
1540   case Builtin::BI__builtin_powl:
1541   case Builtin::BIpow:
1542   case Builtin::BIpowf:
1543   case Builtin::BIpowl: {
1544     // Transform a call to pow* into a @llvm.pow.* intrinsic call.
1545     if (!FD->hasAttr<ConstAttr>())
1546       break;
1547     Value *Base = EmitScalarExpr(E->getArg(0));
1548     Value *Exponent = EmitScalarExpr(E->getArg(1));
1549     llvm::Type *ArgType = Base->getType();
1550     Value *F = CGM.getIntrinsic(Intrinsic::pow, ArgType);
1551     return RValue::get(Builder.CreateCall(F, {Base, Exponent}));
1552   }
1553
1554   case Builtin::BIfma:
1555   case Builtin::BIfmaf:
1556   case Builtin::BIfmal:
1557   case Builtin::BI__builtin_fma:
1558   case Builtin::BI__builtin_fmaf:
1559   case Builtin::BI__builtin_fmal: {
1560     // Rewrite fma to intrinsic.
1561     Value *FirstArg = EmitScalarExpr(E->getArg(0));
1562     llvm::Type *ArgType = FirstArg->getType();
1563     Value *F = CGM.getIntrinsic(Intrinsic::fma, ArgType);
1564     return RValue::get(
1565         Builder.CreateCall(F, {FirstArg, EmitScalarExpr(E->getArg(1)),
1566                                EmitScalarExpr(E->getArg(2))}));
1567   }
1568
1569   case Builtin::BI__builtin_signbit:
1570   case Builtin::BI__builtin_signbitf:
1571   case Builtin::BI__builtin_signbitl: {
1572     return RValue::get(
1573         Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))),
1574                            ConvertType(E->getType())));
1575   }
1576   case Builtin::BI__builtin_annotation: {
1577     llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
1578     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::annotation,
1579                                       AnnVal->getType());
1580
1581     // Get the annotation string, go through casts. Sema requires this to be a
1582     // non-wide string literal, potentially casted, so the cast<> is safe.
1583     const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
1584     StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
1585     return RValue::get(EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc()));
1586   }
1587   case Builtin::BI__builtin_addcb:
1588   case Builtin::BI__builtin_addcs:
1589   case Builtin::BI__builtin_addc:
1590   case Builtin::BI__builtin_addcl:
1591   case Builtin::BI__builtin_addcll:
1592   case Builtin::BI__builtin_subcb:
1593   case Builtin::BI__builtin_subcs:
1594   case Builtin::BI__builtin_subc:
1595   case Builtin::BI__builtin_subcl:
1596   case Builtin::BI__builtin_subcll: {
1597
1598     // We translate all of these builtins from expressions of the form:
1599     //   int x = ..., y = ..., carryin = ..., carryout, result;
1600     //   result = __builtin_addc(x, y, carryin, &carryout);
1601     //
1602     // to LLVM IR of the form:
1603     //
1604     //   %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
1605     //   %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
1606     //   %carry1 = extractvalue {i32, i1} %tmp1, 1
1607     //   %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
1608     //                                                       i32 %carryin)
1609     //   %result = extractvalue {i32, i1} %tmp2, 0
1610     //   %carry2 = extractvalue {i32, i1} %tmp2, 1
1611     //   %tmp3 = or i1 %carry1, %carry2
1612     //   %tmp4 = zext i1 %tmp3 to i32
1613     //   store i32 %tmp4, i32* %carryout
1614
1615     // Scalarize our inputs.
1616     llvm::Value *X = EmitScalarExpr(E->getArg(0));
1617     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
1618     llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
1619     Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3));
1620
1621     // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
1622     llvm::Intrinsic::ID IntrinsicId;
1623     switch (BuiltinID) {
1624     default: llvm_unreachable("Unknown multiprecision builtin id.");
1625     case Builtin::BI__builtin_addcb:
1626     case Builtin::BI__builtin_addcs:
1627     case Builtin::BI__builtin_addc:
1628     case Builtin::BI__builtin_addcl:
1629     case Builtin::BI__builtin_addcll:
1630       IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
1631       break;
1632     case Builtin::BI__builtin_subcb:
1633     case Builtin::BI__builtin_subcs:
1634     case Builtin::BI__builtin_subc:
1635     case Builtin::BI__builtin_subcl:
1636     case Builtin::BI__builtin_subcll:
1637       IntrinsicId = llvm::Intrinsic::usub_with_overflow;
1638       break;
1639     }
1640
1641     // Construct our resulting LLVM IR expression.
1642     llvm::Value *Carry1;
1643     llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
1644                                               X, Y, Carry1);
1645     llvm::Value *Carry2;
1646     llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
1647                                               Sum1, Carryin, Carry2);
1648     llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
1649                                                X->getType());
1650     Builder.CreateStore(CarryOut, CarryOutPtr);
1651     return RValue::get(Sum2);
1652   }
1653
1654   case Builtin::BI__builtin_add_overflow:
1655   case Builtin::BI__builtin_sub_overflow:
1656   case Builtin::BI__builtin_mul_overflow: {
1657     const clang::Expr *LeftArg = E->getArg(0);
1658     const clang::Expr *RightArg = E->getArg(1);
1659     const clang::Expr *ResultArg = E->getArg(2);
1660
1661     clang::QualType ResultQTy =
1662         ResultArg->getType()->castAs<PointerType>()->getPointeeType();
1663
1664     WidthAndSignedness LeftInfo =
1665         getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType());
1666     WidthAndSignedness RightInfo =
1667         getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType());
1668     WidthAndSignedness ResultInfo =
1669         getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy);
1670     WidthAndSignedness EncompassingInfo =
1671         EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo});
1672
1673     llvm::Type *EncompassingLLVMTy =
1674         llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width);
1675
1676     llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy);
1677
1678     llvm::Intrinsic::ID IntrinsicId;
1679     switch (BuiltinID) {
1680     default:
1681       llvm_unreachable("Unknown overflow builtin id.");
1682     case Builtin::BI__builtin_add_overflow:
1683       IntrinsicId = EncompassingInfo.Signed
1684                         ? llvm::Intrinsic::sadd_with_overflow
1685                         : llvm::Intrinsic::uadd_with_overflow;
1686       break;
1687     case Builtin::BI__builtin_sub_overflow:
1688       IntrinsicId = EncompassingInfo.Signed
1689                         ? llvm::Intrinsic::ssub_with_overflow
1690                         : llvm::Intrinsic::usub_with_overflow;
1691       break;
1692     case Builtin::BI__builtin_mul_overflow:
1693       IntrinsicId = EncompassingInfo.Signed
1694                         ? llvm::Intrinsic::smul_with_overflow
1695                         : llvm::Intrinsic::umul_with_overflow;
1696       break;
1697     }
1698
1699     llvm::Value *Left = EmitScalarExpr(LeftArg);
1700     llvm::Value *Right = EmitScalarExpr(RightArg);
1701     Address ResultPtr = EmitPointerWithAlignment(ResultArg);
1702
1703     // Extend each operand to the encompassing type.
1704     Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed);
1705     Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed);
1706
1707     // Perform the operation on the extended values.
1708     llvm::Value *Overflow, *Result;
1709     Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow);
1710
1711     if (EncompassingInfo.Width > ResultInfo.Width) {
1712       // The encompassing type is wider than the result type, so we need to
1713       // truncate it.
1714       llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy);
1715
1716       // To see if the truncation caused an overflow, we will extend
1717       // the result and then compare it to the original result.
1718       llvm::Value *ResultTruncExt = Builder.CreateIntCast(
1719           ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed);
1720       llvm::Value *TruncationOverflow =
1721           Builder.CreateICmpNE(Result, ResultTruncExt);
1722
1723       Overflow = Builder.CreateOr(Overflow, TruncationOverflow);
1724       Result = ResultTrunc;
1725     }
1726
1727     // Finally, store the result using the pointer.
1728     bool isVolatile =
1729       ResultArg->getType()->getPointeeType().isVolatileQualified();
1730     Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile);
1731
1732     return RValue::get(Overflow);
1733   }
1734
1735   case Builtin::BI__builtin_uadd_overflow:
1736   case Builtin::BI__builtin_uaddl_overflow:
1737   case Builtin::BI__builtin_uaddll_overflow:
1738   case Builtin::BI__builtin_usub_overflow:
1739   case Builtin::BI__builtin_usubl_overflow:
1740   case Builtin::BI__builtin_usubll_overflow:
1741   case Builtin::BI__builtin_umul_overflow:
1742   case Builtin::BI__builtin_umull_overflow:
1743   case Builtin::BI__builtin_umulll_overflow:
1744   case Builtin::BI__builtin_sadd_overflow:
1745   case Builtin::BI__builtin_saddl_overflow:
1746   case Builtin::BI__builtin_saddll_overflow:
1747   case Builtin::BI__builtin_ssub_overflow:
1748   case Builtin::BI__builtin_ssubl_overflow:
1749   case Builtin::BI__builtin_ssubll_overflow:
1750   case Builtin::BI__builtin_smul_overflow:
1751   case Builtin::BI__builtin_smull_overflow:
1752   case Builtin::BI__builtin_smulll_overflow: {
1753
1754     // We translate all of these builtins directly to the relevant llvm IR node.
1755
1756     // Scalarize our inputs.
1757     llvm::Value *X = EmitScalarExpr(E->getArg(0));
1758     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
1759     Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2));
1760
1761     // Decide which of the overflow intrinsics we are lowering to:
1762     llvm::Intrinsic::ID IntrinsicId;
1763     switch (BuiltinID) {
1764     default: llvm_unreachable("Unknown overflow builtin id.");
1765     case Builtin::BI__builtin_uadd_overflow:
1766     case Builtin::BI__builtin_uaddl_overflow:
1767     case Builtin::BI__builtin_uaddll_overflow:
1768       IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
1769       break;
1770     case Builtin::BI__builtin_usub_overflow:
1771     case Builtin::BI__builtin_usubl_overflow:
1772     case Builtin::BI__builtin_usubll_overflow:
1773       IntrinsicId = llvm::Intrinsic::usub_with_overflow;
1774       break;
1775     case Builtin::BI__builtin_umul_overflow:
1776     case Builtin::BI__builtin_umull_overflow:
1777     case Builtin::BI__builtin_umulll_overflow:
1778       IntrinsicId = llvm::Intrinsic::umul_with_overflow;
1779       break;
1780     case Builtin::BI__builtin_sadd_overflow:
1781     case Builtin::BI__builtin_saddl_overflow:
1782     case Builtin::BI__builtin_saddll_overflow:
1783       IntrinsicId = llvm::Intrinsic::sadd_with_overflow;
1784       break;
1785     case Builtin::BI__builtin_ssub_overflow:
1786     case Builtin::BI__builtin_ssubl_overflow:
1787     case Builtin::BI__builtin_ssubll_overflow:
1788       IntrinsicId = llvm::Intrinsic::ssub_with_overflow;
1789       break;
1790     case Builtin::BI__builtin_smul_overflow:
1791     case Builtin::BI__builtin_smull_overflow:
1792     case Builtin::BI__builtin_smulll_overflow:
1793       IntrinsicId = llvm::Intrinsic::smul_with_overflow;
1794       break;
1795     }
1796
1797     
1798     llvm::Value *Carry;
1799     llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry);
1800     Builder.CreateStore(Sum, SumOutPtr);
1801
1802     return RValue::get(Carry);
1803   }
1804   case Builtin::BI__builtin_addressof:
1805     return RValue::get(EmitLValue(E->getArg(0)).getPointer());
1806   case Builtin::BI__builtin_operator_new:
1807     return EmitBuiltinNewDeleteCall(FD->getType()->castAs<FunctionProtoType>(),
1808                                     E->getArg(0), false);
1809   case Builtin::BI__builtin_operator_delete:
1810     return EmitBuiltinNewDeleteCall(FD->getType()->castAs<FunctionProtoType>(),
1811                                     E->getArg(0), true);
1812   case Builtin::BI__noop:
1813     // __noop always evaluates to an integer literal zero.
1814     return RValue::get(ConstantInt::get(IntTy, 0));
1815   case Builtin::BI__builtin_call_with_static_chain: {
1816     const CallExpr *Call = cast<CallExpr>(E->getArg(0));
1817     const Expr *Chain = E->getArg(1);
1818     return EmitCall(Call->getCallee()->getType(),
1819                     EmitScalarExpr(Call->getCallee()), Call, ReturnValue,
1820                     Call->getCalleeDecl(), EmitScalarExpr(Chain));
1821   }
1822   case Builtin::BI_InterlockedExchange:
1823   case Builtin::BI_InterlockedExchangePointer:
1824     return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
1825   case Builtin::BI_InterlockedCompareExchangePointer: {
1826     llvm::Type *RTy;
1827     llvm::IntegerType *IntType =
1828       IntegerType::get(getLLVMContext(),
1829                        getContext().getTypeSize(E->getType()));
1830     llvm::Type *IntPtrType = IntType->getPointerTo();
1831
1832     llvm::Value *Destination =
1833       Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType);
1834
1835     llvm::Value *Exchange = EmitScalarExpr(E->getArg(1));
1836     RTy = Exchange->getType();
1837     Exchange = Builder.CreatePtrToInt(Exchange, IntType);
1838
1839     llvm::Value *Comparand =
1840       Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType);
1841
1842     auto Result = Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
1843                                               SequentiallyConsistent,
1844                                               SequentiallyConsistent);
1845     Result->setVolatile(true);
1846
1847     return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result,
1848                                                                          0),
1849                                               RTy));
1850   }
1851   case Builtin::BI_InterlockedCompareExchange: {
1852     AtomicCmpXchgInst *CXI = Builder.CreateAtomicCmpXchg(
1853         EmitScalarExpr(E->getArg(0)),
1854         EmitScalarExpr(E->getArg(2)),
1855         EmitScalarExpr(E->getArg(1)),
1856         SequentiallyConsistent,
1857         SequentiallyConsistent);
1858       CXI->setVolatile(true);
1859       return RValue::get(Builder.CreateExtractValue(CXI, 0));
1860   }
1861   case Builtin::BI_InterlockedIncrement: {
1862     AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
1863       AtomicRMWInst::Add,
1864       EmitScalarExpr(E->getArg(0)),
1865       ConstantInt::get(Int32Ty, 1),
1866       llvm::SequentiallyConsistent);
1867     RMWI->setVolatile(true);
1868     return RValue::get(Builder.CreateAdd(RMWI, ConstantInt::get(Int32Ty, 1)));
1869   }
1870   case Builtin::BI_InterlockedDecrement: {
1871     AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
1872       AtomicRMWInst::Sub,
1873       EmitScalarExpr(E->getArg(0)),
1874       ConstantInt::get(Int32Ty, 1),
1875       llvm::SequentiallyConsistent);
1876     RMWI->setVolatile(true);
1877     return RValue::get(Builder.CreateSub(RMWI, ConstantInt::get(Int32Ty, 1)));
1878   }
1879   case Builtin::BI_InterlockedExchangeAdd: {
1880     AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
1881       AtomicRMWInst::Add,
1882       EmitScalarExpr(E->getArg(0)),
1883       EmitScalarExpr(E->getArg(1)),
1884       llvm::SequentiallyConsistent);
1885     RMWI->setVolatile(true);
1886     return RValue::get(RMWI);
1887   }
1888   case Builtin::BI__readfsdword: {
1889     Value *IntToPtr =
1890       Builder.CreateIntToPtr(EmitScalarExpr(E->getArg(0)),
1891                              llvm::PointerType::get(CGM.Int32Ty, 257));
1892     LoadInst *Load =
1893         Builder.CreateAlignedLoad(IntToPtr, /*Align=*/4, /*isVolatile=*/true);
1894     return RValue::get(Load);
1895   }
1896
1897   case Builtin::BI__exception_code:
1898   case Builtin::BI_exception_code:
1899     return RValue::get(EmitSEHExceptionCode());
1900   case Builtin::BI__exception_info:
1901   case Builtin::BI_exception_info:
1902     return RValue::get(EmitSEHExceptionInfo());
1903   case Builtin::BI__abnormal_termination:
1904   case Builtin::BI_abnormal_termination:
1905     return RValue::get(EmitSEHAbnormalTermination());
1906   case Builtin::BI_setjmpex: {
1907     if (getTarget().getTriple().isOSMSVCRT()) {
1908       llvm::Type *ArgTypes[] = {Int8PtrTy, Int8PtrTy};
1909       llvm::AttributeSet ReturnsTwiceAttr =
1910           AttributeSet::get(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
1911                             llvm::Attribute::ReturnsTwice);
1912       llvm::Constant *SetJmpEx = CGM.CreateRuntimeFunction(
1913           llvm::FunctionType::get(IntTy, ArgTypes, /*isVarArg=*/false),
1914           "_setjmpex", ReturnsTwiceAttr);
1915       llvm::Value *Buf = Builder.CreateBitOrPointerCast(
1916           EmitScalarExpr(E->getArg(0)), Int8PtrTy);
1917       llvm::Value *FrameAddr =
1918           Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress),
1919                              ConstantInt::get(Int32Ty, 0));
1920       llvm::Value *Args[] = {Buf, FrameAddr};
1921       llvm::CallSite CS = EmitRuntimeCallOrInvoke(SetJmpEx, Args);
1922       CS.setAttributes(ReturnsTwiceAttr);
1923       return RValue::get(CS.getInstruction());
1924     }
1925     break;
1926   }
1927   case Builtin::BI_setjmp: {
1928     if (getTarget().getTriple().isOSMSVCRT()) {
1929       llvm::AttributeSet ReturnsTwiceAttr =
1930           AttributeSet::get(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
1931                             llvm::Attribute::ReturnsTwice);
1932       llvm::Value *Buf = Builder.CreateBitOrPointerCast(
1933           EmitScalarExpr(E->getArg(0)), Int8PtrTy);
1934       llvm::CallSite CS;
1935       if (getTarget().getTriple().getArch() == llvm::Triple::x86) {
1936         llvm::Type *ArgTypes[] = {Int8PtrTy, IntTy};
1937         llvm::Constant *SetJmp3 = CGM.CreateRuntimeFunction(
1938             llvm::FunctionType::get(IntTy, ArgTypes, /*isVarArg=*/true),
1939             "_setjmp3", ReturnsTwiceAttr);
1940         llvm::Value *Count = ConstantInt::get(IntTy, 0);
1941         llvm::Value *Args[] = {Buf, Count};
1942         CS = EmitRuntimeCallOrInvoke(SetJmp3, Args);
1943       } else {
1944         llvm::Type *ArgTypes[] = {Int8PtrTy, Int8PtrTy};
1945         llvm::Constant *SetJmp = CGM.CreateRuntimeFunction(
1946             llvm::FunctionType::get(IntTy, ArgTypes, /*isVarArg=*/false),
1947             "_setjmp", ReturnsTwiceAttr);
1948         llvm::Value *FrameAddr =
1949             Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress),
1950                                ConstantInt::get(Int32Ty, 0));
1951         llvm::Value *Args[] = {Buf, FrameAddr};
1952         CS = EmitRuntimeCallOrInvoke(SetJmp, Args);
1953       }
1954       CS.setAttributes(ReturnsTwiceAttr);
1955       return RValue::get(CS.getInstruction());
1956     }
1957     break;
1958   }
1959
1960   case Builtin::BI__GetExceptionInfo: {
1961     if (llvm::GlobalVariable *GV =
1962             CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType()))
1963       return RValue::get(llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy));
1964     break;
1965   }
1966   }
1967
1968   // If this is an alias for a lib function (e.g. __builtin_sin), emit
1969   // the call using the normal call path, but using the unmangled
1970   // version of the function name.
1971   if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
1972     return emitLibraryCall(*this, FD, E,
1973                            CGM.getBuiltinLibFunction(FD, BuiltinID));
1974
1975   // If this is a predefined lib function (e.g. malloc), emit the call
1976   // using exactly the normal call path.
1977   if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
1978     return emitLibraryCall(*this, FD, E, EmitScalarExpr(E->getCallee()));
1979
1980   // Check that a call to a target specific builtin has the correct target
1981   // features.
1982   // This is down here to avoid non-target specific builtins, however, if
1983   // generic builtins start to require generic target features then we
1984   // can move this up to the beginning of the function.
1985   checkTargetFeatures(E, FD);
1986
1987   // See if we have a target specific intrinsic.
1988   const char *Name = getContext().BuiltinInfo.getName(BuiltinID);
1989   Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
1990   if (const char *Prefix =
1991           llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch())) {
1992     IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix, Name);
1993     // NOTE we dont need to perform a compatibility flag check here since the
1994     // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the
1995     // MS builtins via ALL_MS_LANGUAGES and are filtered earlier.
1996     if (IntrinsicID == Intrinsic::not_intrinsic)
1997       IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix, Name);
1998   }
1999
2000   if (IntrinsicID != Intrinsic::not_intrinsic) {
2001     SmallVector<Value*, 16> Args;
2002
2003     // Find out if any arguments are required to be integer constant
2004     // expressions.
2005     unsigned ICEArguments = 0;
2006     ASTContext::GetBuiltinTypeError Error;
2007     getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
2008     assert(Error == ASTContext::GE_None && "Should not codegen an error");
2009
2010     Function *F = CGM.getIntrinsic(IntrinsicID);
2011     llvm::FunctionType *FTy = F->getFunctionType();
2012
2013     for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
2014       Value *ArgValue;
2015       // If this is a normal argument, just emit it as a scalar.
2016       if ((ICEArguments & (1 << i)) == 0) {
2017         ArgValue = EmitScalarExpr(E->getArg(i));
2018       } else {
2019         // If this is required to be a constant, constant fold it so that we
2020         // know that the generated intrinsic gets a ConstantInt.
2021         llvm::APSInt Result;
2022         bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result,getContext());
2023         assert(IsConst && "Constant arg isn't actually constant?");
2024         (void)IsConst;
2025         ArgValue = llvm::ConstantInt::get(getLLVMContext(), Result);
2026       }
2027
2028       // If the intrinsic arg type is different from the builtin arg type
2029       // we need to do a bit cast.
2030       llvm::Type *PTy = FTy->getParamType(i);
2031       if (PTy != ArgValue->getType()) {
2032         assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
2033                "Must be able to losslessly bit cast to param");
2034         ArgValue = Builder.CreateBitCast(ArgValue, PTy);
2035       }
2036
2037       Args.push_back(ArgValue);
2038     }
2039
2040     Value *V = Builder.CreateCall(F, Args);
2041     QualType BuiltinRetType = E->getType();
2042
2043     llvm::Type *RetTy = VoidTy;
2044     if (!BuiltinRetType->isVoidType())
2045       RetTy = ConvertType(BuiltinRetType);
2046
2047     if (RetTy != V->getType()) {
2048       assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&
2049              "Must be able to losslessly bit cast result type");
2050       V = Builder.CreateBitCast(V, RetTy);
2051     }
2052
2053     return RValue::get(V);
2054   }
2055
2056   // See if we have a target specific builtin that needs to be lowered.
2057   if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E))
2058     return RValue::get(V);
2059
2060   ErrorUnsupported(E, "builtin function");
2061
2062   // Unknown builtin, for now just dump it out and return undef.
2063   return GetUndefRValue(E->getType());
2064 }
2065
2066 static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF,
2067                                         unsigned BuiltinID, const CallExpr *E,
2068                                         llvm::Triple::ArchType Arch) {
2069   switch (Arch) {
2070   case llvm::Triple::arm:
2071   case llvm::Triple::armeb:
2072   case llvm::Triple::thumb:
2073   case llvm::Triple::thumbeb:
2074     return CGF->EmitARMBuiltinExpr(BuiltinID, E);
2075   case llvm::Triple::aarch64:
2076   case llvm::Triple::aarch64_be:
2077     return CGF->EmitAArch64BuiltinExpr(BuiltinID, E);
2078   case llvm::Triple::x86:
2079   case llvm::Triple::x86_64:
2080     return CGF->EmitX86BuiltinExpr(BuiltinID, E);
2081   case llvm::Triple::ppc:
2082   case llvm::Triple::ppc64:
2083   case llvm::Triple::ppc64le:
2084     return CGF->EmitPPCBuiltinExpr(BuiltinID, E);
2085   case llvm::Triple::r600:
2086   case llvm::Triple::amdgcn:
2087     return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E);
2088   case llvm::Triple::systemz:
2089     return CGF->EmitSystemZBuiltinExpr(BuiltinID, E);
2090   case llvm::Triple::nvptx:
2091   case llvm::Triple::nvptx64:
2092     return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E);
2093   case llvm::Triple::wasm32:
2094   case llvm::Triple::wasm64:
2095     return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E);
2096   default:
2097     return nullptr;
2098   }
2099 }
2100
2101 Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
2102                                               const CallExpr *E) {
2103   if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
2104     assert(getContext().getAuxTargetInfo() && "Missing aux target info");
2105     return EmitTargetArchBuiltinExpr(
2106         this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E,
2107         getContext().getAuxTargetInfo()->getTriple().getArch());
2108   }
2109
2110   return EmitTargetArchBuiltinExpr(this, BuiltinID, E,
2111                                    getTarget().getTriple().getArch());
2112 }
2113
2114 static llvm::VectorType *GetNeonType(CodeGenFunction *CGF,
2115                                      NeonTypeFlags TypeFlags,
2116                                      bool V1Ty=false) {
2117   int IsQuad = TypeFlags.isQuad();
2118   switch (TypeFlags.getEltType()) {
2119   case NeonTypeFlags::Int8:
2120   case NeonTypeFlags::Poly8:
2121     return llvm::VectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad));
2122   case NeonTypeFlags::Int16:
2123   case NeonTypeFlags::Poly16:
2124   case NeonTypeFlags::Float16:
2125     return llvm::VectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
2126   case NeonTypeFlags::Int32:
2127     return llvm::VectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad));
2128   case NeonTypeFlags::Int64:
2129   case NeonTypeFlags::Poly64:
2130     return llvm::VectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad));
2131   case NeonTypeFlags::Poly128:
2132     // FIXME: i128 and f128 doesn't get fully support in Clang and llvm.
2133     // There is a lot of i128 and f128 API missing.
2134     // so we use v16i8 to represent poly128 and get pattern matched.
2135     return llvm::VectorType::get(CGF->Int8Ty, 16);
2136   case NeonTypeFlags::Float32:
2137     return llvm::VectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad));
2138   case NeonTypeFlags::Float64:
2139     return llvm::VectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad));
2140   }
2141   llvm_unreachable("Unknown vector element type!");
2142 }
2143
2144 static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF,
2145                                           NeonTypeFlags IntTypeFlags) {
2146   int IsQuad = IntTypeFlags.isQuad();
2147   switch (IntTypeFlags.getEltType()) {
2148   case NeonTypeFlags::Int32:
2149     return llvm::VectorType::get(CGF->FloatTy, (2 << IsQuad));
2150   case NeonTypeFlags::Int64:
2151     return llvm::VectorType::get(CGF->DoubleTy, (1 << IsQuad));
2152   default:
2153     llvm_unreachable("Type can't be converted to floating-point!");
2154   }
2155 }
2156
2157 Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
2158   unsigned nElts = cast<llvm::VectorType>(V->getType())->getNumElements();
2159   Value* SV = llvm::ConstantVector::getSplat(nElts, C);
2160   return Builder.CreateShuffleVector(V, V, SV, "lane");
2161 }
2162
2163 Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
2164                                      const char *name,
2165                                      unsigned shift, bool rightshift) {
2166   unsigned j = 0;
2167   for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
2168        ai != ae; ++ai, ++j)
2169     if (shift > 0 && shift == j)
2170       Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
2171     else
2172       Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
2173
2174   return Builder.CreateCall(F, Ops, name);
2175 }
2176
2177 Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
2178                                             bool neg) {
2179   int SV = cast<ConstantInt>(V)->getSExtValue();
2180   return ConstantInt::get(Ty, neg ? -SV : SV);
2181 }
2182
2183 // \brief Right-shift a vector by a constant.
2184 Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift,
2185                                           llvm::Type *Ty, bool usgn,
2186                                           const char *name) {
2187   llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
2188
2189   int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue();
2190   int EltSize = VTy->getScalarSizeInBits();
2191
2192   Vec = Builder.CreateBitCast(Vec, Ty);
2193
2194   // lshr/ashr are undefined when the shift amount is equal to the vector
2195   // element size.
2196   if (ShiftAmt == EltSize) {
2197     if (usgn) {
2198       // Right-shifting an unsigned value by its size yields 0.
2199       return llvm::ConstantAggregateZero::get(VTy);
2200     } else {
2201       // Right-shifting a signed value by its size is equivalent
2202       // to a shift of size-1.
2203       --ShiftAmt;
2204       Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt);
2205     }
2206   }
2207
2208   Shift = EmitNeonShiftVector(Shift, Ty, false);
2209   if (usgn)
2210     return Builder.CreateLShr(Vec, Shift, name);
2211   else
2212     return Builder.CreateAShr(Vec, Shift, name);
2213 }
2214
2215 enum {
2216   AddRetType = (1 << 0),
2217   Add1ArgType = (1 << 1),
2218   Add2ArgTypes = (1 << 2),
2219
2220   VectorizeRetType = (1 << 3),
2221   VectorizeArgTypes = (1 << 4),
2222
2223   InventFloatType = (1 << 5),
2224   UnsignedAlts = (1 << 6),
2225
2226   Use64BitVectors = (1 << 7),
2227   Use128BitVectors = (1 << 8),
2228
2229   Vectorize1ArgType = Add1ArgType | VectorizeArgTypes,
2230   VectorRet = AddRetType | VectorizeRetType,
2231   VectorRetGetArgs01 =
2232       AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes,
2233   FpCmpzModifiers =
2234       AddRetType | VectorizeRetType | Add1ArgType | InventFloatType
2235 };
2236
2237 namespace {
2238 struct NeonIntrinsicInfo {
2239   const char *NameHint;
2240   unsigned BuiltinID;
2241   unsigned LLVMIntrinsic;
2242   unsigned AltLLVMIntrinsic;
2243   unsigned TypeModifier;
2244
2245   bool operator<(unsigned RHSBuiltinID) const {
2246     return BuiltinID < RHSBuiltinID;
2247   }
2248   bool operator<(const NeonIntrinsicInfo &TE) const {
2249     return BuiltinID < TE.BuiltinID;
2250   }
2251 };
2252 } // end anonymous namespace
2253
2254 #define NEONMAP0(NameBase) \
2255   { #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 }
2256
2257 #define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
2258   { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
2259       Intrinsic::LLVMIntrinsic, 0, TypeModifier }
2260
2261 #define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \
2262   { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
2263       Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \
2264       TypeModifier }
2265
2266 static const NeonIntrinsicInfo ARMSIMDIntrinsicMap [] = {
2267   NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
2268   NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
2269   NEONMAP1(vabs_v, arm_neon_vabs, 0),
2270   NEONMAP1(vabsq_v, arm_neon_vabs, 0),
2271   NEONMAP0(vaddhn_v),
2272   NEONMAP1(vaesdq_v, arm_neon_aesd, 0),
2273   NEONMAP1(vaeseq_v, arm_neon_aese, 0),
2274   NEONMAP1(vaesimcq_v, arm_neon_aesimc, 0),
2275   NEONMAP1(vaesmcq_v, arm_neon_aesmc, 0),
2276   NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType),
2277   NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType),
2278   NEONMAP1(vcage_v, arm_neon_vacge, 0),
2279   NEONMAP1(vcageq_v, arm_neon_vacge, 0),
2280   NEONMAP1(vcagt_v, arm_neon_vacgt, 0),
2281   NEONMAP1(vcagtq_v, arm_neon_vacgt, 0),
2282   NEONMAP1(vcale_v, arm_neon_vacge, 0),
2283   NEONMAP1(vcaleq_v, arm_neon_vacge, 0),
2284   NEONMAP1(vcalt_v, arm_neon_vacgt, 0),
2285   NEONMAP1(vcaltq_v, arm_neon_vacgt, 0),
2286   NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType),
2287   NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType),
2288   NEONMAP1(vclz_v, ctlz, Add1ArgType),
2289   NEONMAP1(vclzq_v, ctlz, Add1ArgType),
2290   NEONMAP1(vcnt_v, ctpop, Add1ArgType),
2291   NEONMAP1(vcntq_v, ctpop, Add1ArgType),
2292   NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0),
2293   NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0),
2294   NEONMAP0(vcvt_f32_v),
2295   NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
2296   NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0),
2297   NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0),
2298   NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0),
2299   NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0),
2300   NEONMAP0(vcvt_s32_v),
2301   NEONMAP0(vcvt_s64_v),
2302   NEONMAP0(vcvt_u32_v),
2303   NEONMAP0(vcvt_u64_v),
2304   NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0),
2305   NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0),
2306   NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0),
2307   NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0),
2308   NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0),
2309   NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0),
2310   NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0),
2311   NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0),
2312   NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0),
2313   NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0),
2314   NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0),
2315   NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0),
2316   NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0),
2317   NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0),
2318   NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0),
2319   NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0),
2320   NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0),
2321   NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0),
2322   NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0),
2323   NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0),
2324   NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0),
2325   NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0),
2326   NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0),
2327   NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0),
2328   NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0),
2329   NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0),
2330   NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0),
2331   NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0),
2332   NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0),
2333   NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0),
2334   NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0),
2335   NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0),
2336   NEONMAP0(vcvtq_f32_v),
2337   NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
2338   NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0),
2339   NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0),
2340   NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0),
2341   NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0),
2342   NEONMAP0(vcvtq_s32_v),
2343   NEONMAP0(vcvtq_s64_v),
2344   NEONMAP0(vcvtq_u32_v),
2345   NEONMAP0(vcvtq_u64_v),
2346   NEONMAP0(vext_v),
2347   NEONMAP0(vextq_v),
2348   NEONMAP0(vfma_v),
2349   NEONMAP0(vfmaq_v),
2350   NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
2351   NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
2352   NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
2353   NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
2354   NEONMAP0(vld1_dup_v),
2355   NEONMAP1(vld1_v, arm_neon_vld1, 0),
2356   NEONMAP0(vld1q_dup_v),
2357   NEONMAP1(vld1q_v, arm_neon_vld1, 0),
2358   NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0),
2359   NEONMAP1(vld2_v, arm_neon_vld2, 0),
2360   NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0),
2361   NEONMAP1(vld2q_v, arm_neon_vld2, 0),
2362   NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0),
2363   NEONMAP1(vld3_v, arm_neon_vld3, 0),
2364   NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0),
2365   NEONMAP1(vld3q_v, arm_neon_vld3, 0),
2366   NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0),
2367   NEONMAP1(vld4_v, arm_neon_vld4, 0),
2368   NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0),
2369   NEONMAP1(vld4q_v, arm_neon_vld4, 0),
2370   NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
2371   NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType),
2372   NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType),
2373   NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
2374   NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
2375   NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType),
2376   NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType),
2377   NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
2378   NEONMAP0(vmovl_v),
2379   NEONMAP0(vmovn_v),
2380   NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType),
2381   NEONMAP0(vmull_v),
2382   NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType),
2383   NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
2384   NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
2385   NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType),
2386   NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
2387   NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
2388   NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType),
2389   NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts),
2390   NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts),
2391   NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType),
2392   NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType),
2393   NEONMAP2(vqadd_v, arm_neon_vqaddu, arm_neon_vqadds, Add1ArgType | UnsignedAlts),
2394   NEONMAP2(vqaddq_v, arm_neon_vqaddu, arm_neon_vqadds, Add1ArgType | UnsignedAlts),
2395   NEONMAP2(vqdmlal_v, arm_neon_vqdmull, arm_neon_vqadds, 0),
2396   NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, arm_neon_vqsubs, 0),
2397   NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType),
2398   NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType),
2399   NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType),
2400   NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts),
2401   NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType),
2402   NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType),
2403   NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType),
2404   NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType),
2405   NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType),
2406   NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
2407   NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
2408   NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
2409   NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
2410   NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
2411   NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
2412   NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0),
2413   NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0),
2414   NEONMAP2(vqsub_v, arm_neon_vqsubu, arm_neon_vqsubs, Add1ArgType | UnsignedAlts),
2415   NEONMAP2(vqsubq_v, arm_neon_vqsubu, arm_neon_vqsubs, Add1ArgType | UnsignedAlts),
2416   NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType),
2417   NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
2418   NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
2419   NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType),
2420   NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType),
2421   NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
2422   NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
2423   NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType),
2424   NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType),
2425   NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType),
2426   NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType),
2427   NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType),
2428   NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType),
2429   NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType),
2430   NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType),
2431   NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType),
2432   NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType),
2433   NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType),
2434   NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType),
2435   NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
2436   NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
2437   NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
2438   NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
2439   NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
2440   NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
2441   NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType),
2442   NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType),
2443   NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType),
2444   NEONMAP1(vsha1su0q_v, arm_neon_sha1su0, 0),
2445   NEONMAP1(vsha1su1q_v, arm_neon_sha1su1, 0),
2446   NEONMAP1(vsha256h2q_v, arm_neon_sha256h2, 0),
2447   NEONMAP1(vsha256hq_v, arm_neon_sha256h, 0),
2448   NEONMAP1(vsha256su0q_v, arm_neon_sha256su0, 0),
2449   NEONMAP1(vsha256su1q_v, arm_neon_sha256su1, 0),
2450   NEONMAP0(vshl_n_v),
2451   NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
2452   NEONMAP0(vshll_n_v),
2453   NEONMAP0(vshlq_n_v),
2454   NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
2455   NEONMAP0(vshr_n_v),
2456   NEONMAP0(vshrn_n_v),
2457   NEONMAP0(vshrq_n_v),
2458   NEONMAP1(vst1_v, arm_neon_vst1, 0),
2459   NEONMAP1(vst1q_v, arm_neon_vst1, 0),
2460   NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0),
2461   NEONMAP1(vst2_v, arm_neon_vst2, 0),
2462   NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0),
2463   NEONMAP1(vst2q_v, arm_neon_vst2, 0),
2464   NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0),
2465   NEONMAP1(vst3_v, arm_neon_vst3, 0),
2466   NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0),
2467   NEONMAP1(vst3q_v, arm_neon_vst3, 0),
2468   NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0),
2469   NEONMAP1(vst4_v, arm_neon_vst4, 0),
2470   NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0),
2471   NEONMAP1(vst4q_v, arm_neon_vst4, 0),
2472   NEONMAP0(vsubhn_v),
2473   NEONMAP0(vtrn_v),
2474   NEONMAP0(vtrnq_v),
2475   NEONMAP0(vtst_v),
2476   NEONMAP0(vtstq_v),
2477   NEONMAP0(vuzp_v),
2478   NEONMAP0(vuzpq_v),
2479   NEONMAP0(vzip_v),
2480   NEONMAP0(vzipq_v)
2481 };
2482
2483 static const NeonIntrinsicInfo AArch64SIMDIntrinsicMap[] = {
2484   NEONMAP1(vabs_v, aarch64_neon_abs, 0),
2485   NEONMAP1(vabsq_v, aarch64_neon_abs, 0),
2486   NEONMAP0(vaddhn_v),
2487   NEONMAP1(vaesdq_v, aarch64_crypto_aesd, 0),
2488   NEONMAP1(vaeseq_v, aarch64_crypto_aese, 0),
2489   NEONMAP1(vaesimcq_v, aarch64_crypto_aesimc, 0),
2490   NEONMAP1(vaesmcq_v, aarch64_crypto_aesmc, 0),
2491   NEONMAP1(vcage_v, aarch64_neon_facge, 0),
2492   NEONMAP1(vcageq_v, aarch64_neon_facge, 0),
2493   NEONMAP1(vcagt_v, aarch64_neon_facgt, 0),
2494   NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0),
2495   NEONMAP1(vcale_v, aarch64_neon_facge, 0),
2496   NEONMAP1(vcaleq_v, aarch64_neon_facge, 0),
2497   NEONMAP1(vcalt_v, aarch64_neon_facgt, 0),
2498   NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0),
2499   NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType),
2500   NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType),
2501   NEONMAP1(vclz_v, ctlz, Add1ArgType),
2502   NEONMAP1(vclzq_v, ctlz, Add1ArgType),
2503   NEONMAP1(vcnt_v, ctpop, Add1ArgType),
2504   NEONMAP1(vcntq_v, ctpop, Add1ArgType),
2505   NEONMAP1(vcvt_f16_f32, aarch64_neon_vcvtfp2hf, 0),
2506   NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0),
2507   NEONMAP0(vcvt_f32_v),
2508   NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
2509   NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
2510   NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
2511   NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
2512   NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
2513   NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
2514   NEONMAP0(vcvtq_f32_v),
2515   NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
2516   NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
2517   NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
2518   NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
2519   NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
2520   NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
2521   NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType),
2522   NEONMAP0(vext_v),
2523   NEONMAP0(vextq_v),
2524   NEONMAP0(vfma_v),
2525   NEONMAP0(vfmaq_v),
2526   NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
2527   NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
2528   NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
2529   NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
2530   NEONMAP0(vmovl_v),
2531   NEONMAP0(vmovn_v),
2532   NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType),
2533   NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType),
2534   NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType),
2535   NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
2536   NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
2537   NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType),
2538   NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType),
2539   NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType),
2540   NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
2541   NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
2542   NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0),
2543   NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0),
2544   NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType),
2545   NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType),
2546   NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType),
2547   NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts),
2548   NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType),
2549   NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType),
2550   NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType),
2551   NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType),
2552   NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType),
2553   NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
2554   NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
2555   NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts),
2556   NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
2557   NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts),
2558   NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
2559   NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0),
2560   NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0),
2561   NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
2562   NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
2563   NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType),
2564   NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
2565   NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
2566   NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType),
2567   NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType),
2568   NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
2569   NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
2570   NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
2571   NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
2572   NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
2573   NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
2574   NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
2575   NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
2576   NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType),
2577   NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType),
2578   NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType),
2579   NEONMAP1(vsha1su0q_v, aarch64_crypto_sha1su0, 0),
2580   NEONMAP1(vsha1su1q_v, aarch64_crypto_sha1su1, 0),
2581   NEONMAP1(vsha256h2q_v, aarch64_crypto_sha256h2, 0),
2582   NEONMAP1(vsha256hq_v, aarch64_crypto_sha256h, 0),
2583   NEONMAP1(vsha256su0q_v, aarch64_crypto_sha256su0, 0),
2584   NEONMAP1(vsha256su1q_v, aarch64_crypto_sha256su1, 0),
2585   NEONMAP0(vshl_n_v),
2586   NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
2587   NEONMAP0(vshll_n_v),
2588   NEONMAP0(vshlq_n_v),
2589   NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
2590   NEONMAP0(vshr_n_v),
2591   NEONMAP0(vshrn_n_v),
2592   NEONMAP0(vshrq_n_v),
2593   NEONMAP0(vsubhn_v),
2594   NEONMAP0(vtst_v),
2595   NEONMAP0(vtstq_v),
2596 };
2597
2598 static const NeonIntrinsicInfo AArch64SISDIntrinsicMap[] = {
2599   NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType),
2600   NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType),
2601   NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType),
2602   NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
2603   NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
2604   NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
2605   NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
2606   NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
2607   NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
2608   NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
2609   NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
2610   NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType),
2611   NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
2612   NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType),
2613   NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
2614   NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
2615   NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
2616   NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
2617   NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
2618   NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
2619   NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
2620   NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
2621   NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
2622   NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
2623   NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
2624   NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
2625   NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
2626   NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
2627   NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
2628   NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
2629   NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
2630   NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
2631   NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
2632   NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
2633   NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
2634   NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
2635   NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
2636   NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
2637   NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
2638   NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
2639   NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
2640   NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
2641   NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
2642   NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
2643   NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
2644   NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
2645   NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
2646   NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
2647   NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0),
2648   NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
2649   NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
2650   NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
2651   NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
2652   NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
2653   NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
2654   NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
2655   NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
2656   NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
2657   NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
2658   NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
2659   NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
2660   NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
2661   NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
2662   NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
2663   NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
2664   NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
2665   NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
2666   NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
2667   NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
2668   NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0),
2669   NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType),
2670   NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType),
2671   NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
2672   NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
2673   NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
2674   NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
2675   NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
2676   NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
2677   NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
2678   NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
2679   NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
2680   NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
2681   NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
2682   NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType),
2683   NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
2684   NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType),
2685   NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
2686   NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
2687   NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType),
2688   NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType),
2689   NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
2690   NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
2691   NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType),
2692   NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType),
2693   NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors),
2694   NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType),
2695   NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors),
2696   NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0),
2697   NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType),
2698   NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType),
2699   NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
2700   NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
2701   NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
2702   NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
2703   NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType),
2704   NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
2705   NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
2706   NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
2707   NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType),
2708   NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
2709   NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType),
2710   NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors),
2711   NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType),
2712   NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
2713   NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
2714   NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType),
2715   NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType),
2716   NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
2717   NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
2718   NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType),
2719   NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType),
2720   NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType),
2721   NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType),
2722   NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
2723   NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
2724   NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
2725   NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
2726   NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType),
2727   NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
2728   NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
2729   NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
2730   NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
2731   NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
2732   NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
2733   NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType),
2734   NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType),
2735   NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
2736   NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
2737   NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
2738   NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
2739   NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType),
2740   NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType),
2741   NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType),
2742   NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType),
2743   NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
2744   NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
2745   NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType),
2746   NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType),
2747   NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType),
2748   NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
2749   NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
2750   NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
2751   NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
2752   NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType),
2753   NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
2754   NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
2755   NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
2756   NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
2757   NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType),
2758   NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType),
2759   NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
2760   NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
2761   NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType),
2762   NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType),
2763   NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType),
2764   NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType),
2765   NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType),
2766   NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType),
2767   NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType),
2768   NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType),
2769   NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType),
2770   NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType),
2771   NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType),
2772   NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType),
2773   NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0),
2774   NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0),
2775   NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0),
2776   NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0),
2777   NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType),
2778   NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType),
2779   NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType),
2780   NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType),
2781   NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
2782   NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType),
2783   NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
2784   NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType),
2785   NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType),
2786   NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType),
2787   NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
2788   NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType),
2789   NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
2790   NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType),
2791 };
2792
2793 #undef NEONMAP0
2794 #undef NEONMAP1
2795 #undef NEONMAP2
2796
2797 static bool NEONSIMDIntrinsicsProvenSorted = false;
2798
2799 static bool AArch64SIMDIntrinsicsProvenSorted = false;
2800 static bool AArch64SISDIntrinsicsProvenSorted = false;
2801
2802
2803 static const NeonIntrinsicInfo *
2804 findNeonIntrinsicInMap(ArrayRef<NeonIntrinsicInfo> IntrinsicMap,
2805                        unsigned BuiltinID, bool &MapProvenSorted) {
2806
2807 #ifndef NDEBUG
2808   if (!MapProvenSorted) {
2809     assert(std::is_sorted(std::begin(IntrinsicMap), std::end(IntrinsicMap)));
2810     MapProvenSorted = true;
2811   }
2812 #endif
2813
2814   const NeonIntrinsicInfo *Builtin =
2815       std::lower_bound(IntrinsicMap.begin(), IntrinsicMap.end(), BuiltinID);
2816
2817   if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID)
2818     return Builtin;
2819
2820   return nullptr;
2821 }
2822
2823 Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
2824                                                    unsigned Modifier,
2825                                                    llvm::Type *ArgType,
2826                                                    const CallExpr *E) {
2827   int VectorSize = 0;
2828   if (Modifier & Use64BitVectors)
2829     VectorSize = 64;
2830   else if (Modifier & Use128BitVectors)
2831     VectorSize = 128;
2832
2833   // Return type.
2834   SmallVector<llvm::Type *, 3> Tys;
2835   if (Modifier & AddRetType) {
2836     llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
2837     if (Modifier & VectorizeRetType)
2838       Ty = llvm::VectorType::get(
2839           Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1);
2840
2841     Tys.push_back(Ty);
2842   }
2843
2844   // Arguments.
2845   if (Modifier & VectorizeArgTypes) {
2846     int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1;
2847     ArgType = llvm::VectorType::get(ArgType, Elts);
2848   }
2849
2850   if (Modifier & (Add1ArgType | Add2ArgTypes))
2851     Tys.push_back(ArgType);
2852
2853   if (Modifier & Add2ArgTypes)
2854     Tys.push_back(ArgType);
2855
2856   if (Modifier & InventFloatType)
2857     Tys.push_back(FloatTy);
2858
2859   return CGM.getIntrinsic(IntrinsicID, Tys);
2860 }
2861
2862 static Value *EmitCommonNeonSISDBuiltinExpr(CodeGenFunction &CGF,
2863                                             const NeonIntrinsicInfo &SISDInfo,
2864                                             SmallVectorImpl<Value *> &Ops,
2865                                             const CallExpr *E) {
2866   unsigned BuiltinID = SISDInfo.BuiltinID;
2867   unsigned int Int = SISDInfo.LLVMIntrinsic;
2868   unsigned Modifier = SISDInfo.TypeModifier;
2869   const char *s = SISDInfo.NameHint;
2870
2871   switch (BuiltinID) {
2872   case NEON::BI__builtin_neon_vcled_s64:
2873   case NEON::BI__builtin_neon_vcled_u64:
2874   case NEON::BI__builtin_neon_vcles_f32:
2875   case NEON::BI__builtin_neon_vcled_f64:
2876   case NEON::BI__builtin_neon_vcltd_s64:
2877   case NEON::BI__builtin_neon_vcltd_u64:
2878   case NEON::BI__builtin_neon_vclts_f32:
2879   case NEON::BI__builtin_neon_vcltd_f64:
2880   case NEON::BI__builtin_neon_vcales_f32:
2881   case NEON::BI__builtin_neon_vcaled_f64:
2882   case NEON::BI__builtin_neon_vcalts_f32:
2883   case NEON::BI__builtin_neon_vcaltd_f64:
2884     // Only one direction of comparisons actually exist, cmle is actually a cmge
2885     // with swapped operands. The table gives us the right intrinsic but we
2886     // still need to do the swap.
2887     std::swap(Ops[0], Ops[1]);
2888     break;
2889   }
2890
2891   assert(Int && "Generic code assumes a valid intrinsic");
2892
2893   // Determine the type(s) of this overloaded AArch64 intrinsic.
2894   const Expr *Arg = E->getArg(0);
2895   llvm::Type *ArgTy = CGF.ConvertType(Arg->getType());
2896   Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E);
2897
2898   int j = 0;
2899   ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0);
2900   for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
2901        ai != ae; ++ai, ++j) {
2902     llvm::Type *ArgTy = ai->getType();
2903     if (Ops[j]->getType()->getPrimitiveSizeInBits() ==
2904              ArgTy->getPrimitiveSizeInBits())
2905       continue;
2906
2907     assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy());
2908     // The constant argument to an _n_ intrinsic always has Int32Ty, so truncate
2909     // it before inserting.
2910     Ops[j] =
2911         CGF.Builder.CreateTruncOrBitCast(Ops[j], ArgTy->getVectorElementType());
2912     Ops[j] =
2913         CGF.Builder.CreateInsertElement(UndefValue::get(ArgTy), Ops[j], C0);
2914   }
2915
2916   Value *Result = CGF.EmitNeonCall(F, Ops, s);
2917   llvm::Type *ResultType = CGF.ConvertType(E->getType());
2918   if (ResultType->getPrimitiveSizeInBits() <
2919       Result->getType()->getPrimitiveSizeInBits())
2920     return CGF.Builder.CreateExtractElement(Result, C0);
2921
2922   return CGF.Builder.CreateBitCast(Result, ResultType, s);
2923 }
2924
2925 Value *CodeGenFunction::EmitCommonNeonBuiltinExpr(
2926     unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic,
2927     const char *NameHint, unsigned Modifier, const CallExpr *E,
2928     SmallVectorImpl<llvm::Value *> &Ops, Address PtrOp0, Address PtrOp1) {
2929   // Get the last argument, which specifies the vector type.
2930   llvm::APSInt NeonTypeConst;
2931   const Expr *Arg = E->getArg(E->getNumArgs() - 1);
2932   if (!Arg->isIntegerConstantExpr(NeonTypeConst, getContext()))
2933     return nullptr;
2934
2935   // Determine the type of this overloaded NEON intrinsic.
2936   NeonTypeFlags Type(NeonTypeConst.getZExtValue());
2937   bool Usgn = Type.isUnsigned();
2938   bool Quad = Type.isQuad();
2939
2940   llvm::VectorType *VTy = GetNeonType(this, Type);
2941   llvm::Type *Ty = VTy;
2942   if (!Ty)
2943     return nullptr;
2944
2945   auto getAlignmentValue32 = [&](Address addr) -> Value* {
2946     return Builder.getInt32(addr.getAlignment().getQuantity());
2947   };
2948
2949   unsigned Int = LLVMIntrinsic;
2950   if ((Modifier & UnsignedAlts) && !Usgn)
2951     Int = AltLLVMIntrinsic;
2952
2953   switch (BuiltinID) {
2954   default: break;
2955   case NEON::BI__builtin_neon_vabs_v:
2956   case NEON::BI__builtin_neon_vabsq_v:
2957     if (VTy->getElementType()->isFloatingPointTy())
2958       return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs");
2959     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs");
2960   case NEON::BI__builtin_neon_vaddhn_v: {
2961     llvm::VectorType *SrcTy =
2962         llvm::VectorType::getExtendedElementVectorType(VTy);
2963
2964     // %sum = add <4 x i32> %lhs, %rhs
2965     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
2966     Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
2967     Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn");
2968
2969     // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
2970     Constant *ShiftAmt =
2971         ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
2972     Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn");
2973
2974     // %res = trunc <4 x i32> %high to <4 x i16>
2975     return Builder.CreateTrunc(Ops[0], VTy, "vaddhn");
2976   }
2977   case NEON::BI__builtin_neon_vcale_v:
2978   case NEON::BI__builtin_neon_vcaleq_v:
2979   case NEON::BI__builtin_neon_vcalt_v:
2980   case NEON::BI__builtin_neon_vcaltq_v:
2981     std::swap(Ops[0], Ops[1]);
2982   case NEON::BI__builtin_neon_vcage_v:
2983   case NEON::BI__builtin_neon_vcageq_v:
2984   case NEON::BI__builtin_neon_vcagt_v:
2985   case NEON::BI__builtin_neon_vcagtq_v: {
2986     llvm::Type *VecFlt = llvm::VectorType::get(
2987         VTy->getScalarSizeInBits() == 32 ? FloatTy : DoubleTy,
2988         VTy->getNumElements());
2989     llvm::Type *Tys[] = { VTy, VecFlt };
2990     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
2991     return EmitNeonCall(F, Ops, NameHint);
2992   }
2993   case NEON::BI__builtin_neon_vclz_v:
2994   case NEON::BI__builtin_neon_vclzq_v:
2995     // We generate target-independent intrinsic, which needs a second argument
2996     // for whether or not clz of zero is undefined; on ARM it isn't.
2997     Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef()));
2998     break;
2999   case NEON::BI__builtin_neon_vcvt_f32_v:
3000   case NEON::BI__builtin_neon_vcvtq_f32_v:
3001     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3002     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad));
3003     return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
3004                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
3005   case NEON::BI__builtin_neon_vcvt_n_f32_v:
3006   case NEON::BI__builtin_neon_vcvt_n_f64_v:
3007   case NEON::BI__builtin_neon_vcvtq_n_f32_v:
3008   case NEON::BI__builtin_neon_vcvtq_n_f64_v: {
3009     llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty };
3010     Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
3011     Function *F = CGM.getIntrinsic(Int, Tys);
3012     return EmitNeonCall(F, Ops, "vcvt_n");
3013   }
3014   case NEON::BI__builtin_neon_vcvt_n_s32_v:
3015   case NEON::BI__builtin_neon_vcvt_n_u32_v:
3016   case NEON::BI__builtin_neon_vcvt_n_s64_v:
3017   case NEON::BI__builtin_neon_vcvt_n_u64_v:
3018   case NEON::BI__builtin_neon_vcvtq_n_s32_v:
3019   case NEON::BI__builtin_neon_vcvtq_n_u32_v:
3020   case NEON::BI__builtin_neon_vcvtq_n_s64_v:
3021   case NEON::BI__builtin_neon_vcvtq_n_u64_v: {
3022     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
3023     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
3024     return EmitNeonCall(F, Ops, "vcvt_n");
3025   }
3026   case NEON::BI__builtin_neon_vcvt_s32_v:
3027   case NEON::BI__builtin_neon_vcvt_u32_v:
3028   case NEON::BI__builtin_neon_vcvt_s64_v:
3029   case NEON::BI__builtin_neon_vcvt_u64_v:
3030   case NEON::BI__builtin_neon_vcvtq_s32_v:
3031   case NEON::BI__builtin_neon_vcvtq_u32_v:
3032   case NEON::BI__builtin_neon_vcvtq_s64_v:
3033   case NEON::BI__builtin_neon_vcvtq_u64_v: {
3034     Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
3035     return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
3036                 : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
3037   }
3038   case NEON::BI__builtin_neon_vcvta_s32_v:
3039   case NEON::BI__builtin_neon_vcvta_s64_v:
3040   case NEON::BI__builtin_neon_vcvta_u32_v:
3041   case NEON::BI__builtin_neon_vcvta_u64_v:
3042   case NEON::BI__builtin_neon_vcvtaq_s32_v:
3043   case NEON::BI__builtin_neon_vcvtaq_s64_v:
3044   case NEON::BI__builtin_neon_vcvtaq_u32_v:
3045   case NEON::BI__builtin_neon_vcvtaq_u64_v:
3046   case NEON::BI__builtin_neon_vcvtn_s32_v:
3047   case NEON::BI__builtin_neon_vcvtn_s64_v:
3048   case NEON::BI__builtin_neon_vcvtn_u32_v:
3049   case NEON::BI__builtin_neon_vcvtn_u64_v:
3050   case NEON::BI__builtin_neon_vcvtnq_s32_v:
3051   case NEON::BI__builtin_neon_vcvtnq_s64_v:
3052   case NEON::BI__builtin_neon_vcvtnq_u32_v:
3053   case NEON::BI__builtin_neon_vcvtnq_u64_v:
3054   case NEON::BI__builtin_neon_vcvtp_s32_v:
3055   case NEON::BI__builtin_neon_vcvtp_s64_v:
3056   case NEON::BI__builtin_neon_vcvtp_u32_v:
3057   case NEON::BI__builtin_neon_vcvtp_u64_v:
3058   case NEON::BI__builtin_neon_vcvtpq_s32_v:
3059   case NEON::BI__builtin_neon_vcvtpq_s64_v:
3060   case NEON::BI__builtin_neon_vcvtpq_u32_v:
3061   case NEON::BI__builtin_neon_vcvtpq_u64_v:
3062   case NEON::BI__builtin_neon_vcvtm_s32_v:
3063   case NEON::BI__builtin_neon_vcvtm_s64_v:
3064   case NEON::BI__builtin_neon_vcvtm_u32_v:
3065   case NEON::BI__builtin_neon_vcvtm_u64_v:
3066   case NEON::BI__builtin_neon_vcvtmq_s32_v:
3067   case NEON::BI__builtin_neon_vcvtmq_s64_v:
3068   case NEON::BI__builtin_neon_vcvtmq_u32_v:
3069   case NEON::BI__builtin_neon_vcvtmq_u64_v: {
3070     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
3071     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
3072   }
3073   case NEON::BI__builtin_neon_vext_v:
3074   case NEON::BI__builtin_neon_vextq_v: {
3075     int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
3076     SmallVector<Constant*, 16> Indices;
3077     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
3078       Indices.push_back(ConstantInt::get(Int32Ty, i+CV));
3079
3080     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3081     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3082     Value *SV = llvm::ConstantVector::get(Indices);
3083     return Builder.CreateShuffleVector(Ops[0], Ops[1], SV, "vext");
3084   }
3085   case NEON::BI__builtin_neon_vfma_v:
3086   case NEON::BI__builtin_neon_vfmaq_v: {
3087     Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
3088     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3089     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3090     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
3091
3092     // NEON intrinsic puts accumulator first, unlike the LLVM fma.
3093     return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
3094   }
3095   case NEON::BI__builtin_neon_vld1_v:
3096   case NEON::BI__builtin_neon_vld1q_v: {
3097     llvm::Type *Tys[] = {Ty, Int8PtrTy};
3098     Ops.push_back(getAlignmentValue32(PtrOp0));
3099     return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vld1");
3100   }
3101   case NEON::BI__builtin_neon_vld2_v:
3102   case NEON::BI__builtin_neon_vld2q_v:
3103   case NEON::BI__builtin_neon_vld3_v:
3104   case NEON::BI__builtin_neon_vld3q_v:
3105   case NEON::BI__builtin_neon_vld4_v:
3106   case NEON::BI__builtin_neon_vld4q_v: {
3107     llvm::Type *Tys[] = {Ty, Int8PtrTy};
3108     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
3109     Value *Align = getAlignmentValue32(PtrOp1);
3110     Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint);
3111     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
3112     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3113     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
3114   }
3115   case NEON::BI__builtin_neon_vld1_dup_v:
3116   case NEON::BI__builtin_neon_vld1q_dup_v: {
3117     Value *V = UndefValue::get(Ty);
3118     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
3119     PtrOp0 = Builder.CreateBitCast(PtrOp0, Ty);
3120     LoadInst *Ld = Builder.CreateLoad(PtrOp0);
3121     llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
3122     Ops[0] = Builder.CreateInsertElement(V, Ld, CI);
3123     return EmitNeonSplat(Ops[0], CI);
3124   }
3125   case NEON::BI__builtin_neon_vld2_lane_v:
3126   case NEON::BI__builtin_neon_vld2q_lane_v:
3127   case NEON::BI__builtin_neon_vld3_lane_v:
3128   case NEON::BI__builtin_neon_vld3q_lane_v:
3129   case NEON::BI__builtin_neon_vld4_lane_v:
3130   case NEON::BI__builtin_neon_vld4q_lane_v: {
3131     llvm::Type *Tys[] = {Ty, Int8PtrTy};
3132     Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
3133     for (unsigned I = 2; I < Ops.size() - 1; ++I)
3134       Ops[I] = Builder.CreateBitCast(Ops[I], Ty);
3135     Ops.push_back(getAlignmentValue32(PtrOp1));
3136     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), NameHint);
3137     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
3138     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3139     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
3140   }
3141   case NEON::BI__builtin_neon_vmovl_v: {
3142     llvm::Type *DTy =llvm::VectorType::getTruncatedElementVectorType(VTy);
3143     Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
3144     if (Usgn)
3145       return Builder.CreateZExt(Ops[0], Ty, "vmovl");
3146     return Builder.CreateSExt(Ops[0], Ty, "vmovl");
3147   }
3148   case NEON::BI__builtin_neon_vmovn_v: {
3149     llvm::Type *QTy = llvm::VectorType::getExtendedElementVectorType(VTy);
3150     Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
3151     return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
3152   }
3153   case NEON::BI__builtin_neon_vmull_v:
3154     // FIXME: the integer vmull operations could be emitted in terms of pure
3155     // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of
3156     // hoisting the exts outside loops. Until global ISel comes along that can
3157     // see through such movement this leads to bad CodeGen. So we need an
3158     // intrinsic for now.
3159     Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
3160     Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
3161     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
3162   case NEON::BI__builtin_neon_vpadal_v:
3163   case NEON::BI__builtin_neon_vpadalq_v: {
3164     // The source operand type has twice as many elements of half the size.
3165     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
3166     llvm::Type *EltTy =
3167       llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
3168     llvm::Type *NarrowTy =
3169       llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
3170     llvm::Type *Tys[2] = { Ty, NarrowTy };
3171     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
3172   }
3173   case NEON::BI__builtin_neon_vpaddl_v:
3174   case NEON::BI__builtin_neon_vpaddlq_v: {
3175     // The source operand type has twice as many elements of half the size.
3176     unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
3177     llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
3178     llvm::Type *NarrowTy =
3179       llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
3180     llvm::Type *Tys[2] = { Ty, NarrowTy };
3181     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
3182   }
3183   case NEON::BI__builtin_neon_vqdmlal_v:
3184   case NEON::BI__builtin_neon_vqdmlsl_v: {
3185     SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
3186     Ops[1] =
3187         EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), MulOps, "vqdmlal");
3188     Ops.resize(2);
3189     return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty), Ops, NameHint);
3190   }
3191   case NEON::BI__builtin_neon_vqshl_n_v:
3192   case NEON::BI__builtin_neon_vqshlq_n_v:
3193     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
3194                         1, false);
3195   case NEON::BI__builtin_neon_vqshlu_n_v:
3196   case NEON::BI__builtin_neon_vqshluq_n_v:
3197     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n",
3198                         1, false);
3199   case NEON::BI__builtin_neon_vrecpe_v:
3200   case NEON::BI__builtin_neon_vrecpeq_v:
3201   case NEON::BI__builtin_neon_vrsqrte_v:
3202   case NEON::BI__builtin_neon_vrsqrteq_v:
3203     Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic;
3204     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
3205
3206   case NEON::BI__builtin_neon_vrshr_n_v:
3207   case NEON::BI__builtin_neon_vrshrq_n_v:
3208     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n",
3209                         1, true);
3210   case NEON::BI__builtin_neon_vshl_n_v:
3211   case NEON::BI__builtin_neon_vshlq_n_v:
3212     Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
3213     return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1],
3214                              "vshl_n");
3215   case NEON::BI__builtin_neon_vshll_n_v: {
3216     llvm::Type *SrcTy = llvm::VectorType::getTruncatedElementVectorType(VTy);
3217     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
3218     if (Usgn)
3219       Ops[0] = Builder.CreateZExt(Ops[0], VTy);
3220     else
3221       Ops[0] = Builder.CreateSExt(Ops[0], VTy);
3222     Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false);
3223     return Builder.CreateShl(Ops[0], Ops[1], "vshll_n");
3224   }
3225   case NEON::BI__builtin_neon_vshrn_n_v: {
3226     llvm::Type *SrcTy = llvm::VectorType::getExtendedElementVectorType(VTy);
3227     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
3228     Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false);
3229     if (Usgn)
3230       Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]);
3231     else
3232       Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]);
3233     return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n");
3234   }
3235   case NEON::BI__builtin_neon_vshr_n_v:
3236   case NEON::BI__builtin_neon_vshrq_n_v:
3237     return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n");
3238   case NEON::BI__builtin_neon_vst1_v:
3239   case NEON::BI__builtin_neon_vst1q_v:
3240   case NEON::BI__builtin_neon_vst2_v:
3241   case NEON::BI__builtin_neon_vst2q_v:
3242   case NEON::BI__builtin_neon_vst3_v:
3243   case NEON::BI__builtin_neon_vst3q_v:
3244   case NEON::BI__builtin_neon_vst4_v:
3245   case NEON::BI__builtin_neon_vst4q_v:
3246   case NEON::BI__builtin_neon_vst2_lane_v:
3247   case NEON::BI__builtin_neon_vst2q_lane_v:
3248   case NEON::BI__builtin_neon_vst3_lane_v:
3249   case NEON::BI__builtin_neon_vst3q_lane_v:
3250   case NEON::BI__builtin_neon_vst4_lane_v:
3251   case NEON::BI__builtin_neon_vst4q_lane_v: {
3252     llvm::Type *Tys[] = {Int8PtrTy, Ty};
3253     Ops.push_back(getAlignmentValue32(PtrOp0));
3254     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "");
3255   }
3256   case NEON::BI__builtin_neon_vsubhn_v: {
3257     llvm::VectorType *SrcTy =
3258         llvm::VectorType::getExtendedElementVectorType(VTy);
3259
3260     // %sum = add <4 x i32> %lhs, %rhs
3261     Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
3262     Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
3263     Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn");
3264
3265     // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
3266     Constant *ShiftAmt =
3267         ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
3268     Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn");
3269
3270     // %res = trunc <4 x i32> %high to <4 x i16>
3271     return Builder.CreateTrunc(Ops[0], VTy, "vsubhn");
3272   }
3273   case NEON::BI__builtin_neon_vtrn_v:
3274   case NEON::BI__builtin_neon_vtrnq_v: {
3275     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
3276     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3277     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
3278     Value *SV = nullptr;
3279
3280     for (unsigned vi = 0; vi != 2; ++vi) {
3281       SmallVector<Constant*, 16> Indices;
3282       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
3283         Indices.push_back(Builder.getInt32(i+vi));
3284         Indices.push_back(Builder.getInt32(i+e+vi));
3285       }
3286       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
3287       SV = llvm::ConstantVector::get(Indices);
3288       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vtrn");
3289       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
3290     }
3291     return SV;
3292   }
3293   case NEON::BI__builtin_neon_vtst_v:
3294   case NEON::BI__builtin_neon_vtstq_v: {
3295     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
3296     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3297     Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
3298     Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
3299                                 ConstantAggregateZero::get(Ty));
3300     return Builder.CreateSExt(Ops[0], Ty, "vtst");
3301   }
3302   case NEON::BI__builtin_neon_vuzp_v:
3303   case NEON::BI__builtin_neon_vuzpq_v: {
3304     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
3305     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3306     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
3307     Value *SV = nullptr;
3308
3309     for (unsigned vi = 0; vi != 2; ++vi) {
3310       SmallVector<Constant*, 16> Indices;
3311       for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
3312         Indices.push_back(ConstantInt::get(Int32Ty, 2*i+vi));
3313
3314       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
3315       SV = llvm::ConstantVector::get(Indices);
3316       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vuzp");
3317       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
3318     }
3319     return SV;
3320   }
3321   case NEON::BI__builtin_neon_vzip_v:
3322   case NEON::BI__builtin_neon_vzipq_v: {
3323     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
3324     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3325     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
3326     Value *SV = nullptr;
3327
3328     for (unsigned vi = 0; vi != 2; ++vi) {
3329       SmallVector<Constant*, 16> Indices;
3330       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
3331         Indices.push_back(ConstantInt::get(Int32Ty, (i + vi*e) >> 1));
3332         Indices.push_back(ConstantInt::get(Int32Ty, ((i + vi*e) >> 1)+e));
3333       }
3334       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
3335       SV = llvm::ConstantVector::get(Indices);
3336       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vzip");
3337       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
3338     }
3339     return SV;
3340   }
3341   }
3342
3343   assert(Int && "Expected valid intrinsic number");
3344
3345   // Determine the type(s) of this overloaded AArch64 intrinsic.
3346   Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E);
3347
3348   Value *Result = EmitNeonCall(F, Ops, NameHint);
3349   llvm::Type *ResultType = ConvertType(E->getType());
3350   // AArch64 intrinsic one-element vector type cast to
3351   // scalar type expected by the builtin
3352   return Builder.CreateBitCast(Result, ResultType, NameHint);
3353 }
3354
3355 Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr(
3356     Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp,
3357     const CmpInst::Predicate Ip, const Twine &Name) {
3358   llvm::Type *OTy = Op->getType();
3359
3360   // FIXME: this is utterly horrific. We should not be looking at previous
3361   // codegen context to find out what needs doing. Unfortunately TableGen
3362   // currently gives us exactly the same calls for vceqz_f32 and vceqz_s32
3363   // (etc).
3364   if (BitCastInst *BI = dyn_cast<BitCastInst>(Op))
3365     OTy = BI->getOperand(0)->getType();
3366
3367   Op = Builder.CreateBitCast(Op, OTy);
3368   if (OTy->getScalarType()->isFloatingPointTy()) {
3369     Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy));
3370   } else {
3371     Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy));
3372   }
3373   return Builder.CreateSExt(Op, Ty, Name);
3374 }
3375
3376 static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
3377                                  Value *ExtOp, Value *IndexOp,
3378                                  llvm::Type *ResTy, unsigned IntID,
3379                                  const char *Name) {
3380   SmallVector<Value *, 2> TblOps;
3381   if (ExtOp)
3382     TblOps.push_back(ExtOp);
3383
3384   // Build a vector containing sequential number like (0, 1, 2, ..., 15)  
3385   SmallVector<Constant*, 16> Indices;
3386   llvm::VectorType *TblTy = cast<llvm::VectorType>(Ops[0]->getType());
3387   for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) {
3388     Indices.push_back(ConstantInt::get(CGF.Int32Ty, 2*i));
3389     Indices.push_back(ConstantInt::get(CGF.Int32Ty, 2*i+1));
3390   }
3391   Value *SV = llvm::ConstantVector::get(Indices);
3392
3393   int PairPos = 0, End = Ops.size() - 1;
3394   while (PairPos < End) {
3395     TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
3396                                                      Ops[PairPos+1], SV, Name));
3397     PairPos += 2;
3398   }
3399
3400   // If there's an odd number of 64-bit lookup table, fill the high 64-bit
3401   // of the 128-bit lookup table with zero.
3402   if (PairPos == End) {
3403     Value *ZeroTbl = ConstantAggregateZero::get(TblTy);
3404     TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
3405                                                      ZeroTbl, SV, Name));
3406   }
3407
3408   Function *TblF;
3409   TblOps.push_back(IndexOp);
3410   TblF = CGF.CGM.getIntrinsic(IntID, ResTy);
3411   
3412   return CGF.EmitNeonCall(TblF, TblOps, Name);
3413 }
3414
3415 Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) {
3416   unsigned Value;
3417   switch (BuiltinID) {
3418   default:
3419     return nullptr;
3420   case ARM::BI__builtin_arm_nop:
3421     Value = 0;
3422     break;
3423   case ARM::BI__builtin_arm_yield:
3424   case ARM::BI__yield:
3425     Value = 1;
3426     break;
3427   case ARM::BI__builtin_arm_wfe:
3428   case ARM::BI__wfe:
3429     Value = 2;
3430     break;
3431   case ARM::BI__builtin_arm_wfi:
3432   case ARM::BI__wfi:
3433     Value = 3;
3434     break;
3435   case ARM::BI__builtin_arm_sev:
3436   case ARM::BI__sev:
3437     Value = 4;
3438     break;
3439   case ARM::BI__builtin_arm_sevl:
3440   case ARM::BI__sevl:
3441     Value = 5;
3442     break;
3443   }
3444
3445   return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
3446                             llvm::ConstantInt::get(Int32Ty, Value));
3447 }
3448
3449 // Generates the IR for the read/write special register builtin,
3450 // ValueType is the type of the value that is to be written or read,
3451 // RegisterType is the type of the register being written to or read from.
3452 static Value *EmitSpecialRegisterBuiltin(CodeGenFunction &CGF,
3453                                          const CallExpr *E,
3454                                          llvm::Type *RegisterType,
3455                                          llvm::Type *ValueType, bool IsRead) {
3456   // write and register intrinsics only support 32 and 64 bit operations.
3457   assert((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64))
3458           && "Unsupported size for register.");
3459
3460   CodeGen::CGBuilderTy &Builder = CGF.Builder;
3461   CodeGen::CodeGenModule &CGM = CGF.CGM;
3462   LLVMContext &Context = CGM.getLLVMContext();
3463
3464   const Expr *SysRegStrExpr = E->getArg(0)->IgnoreParenCasts();
3465   StringRef SysReg = cast<StringLiteral>(SysRegStrExpr)->getString();
3466
3467   llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysReg) };
3468   llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
3469   llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
3470
3471   llvm::Type *Types[] = { RegisterType };
3472
3473   bool MixedTypes = RegisterType->isIntegerTy(64) && ValueType->isIntegerTy(32);
3474   assert(!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64))
3475             && "Can't fit 64-bit value in 32-bit register");
3476
3477   if (IsRead) {
3478     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
3479     llvm::Value *Call = Builder.CreateCall(F, Metadata);
3480
3481     if (MixedTypes)
3482       // Read into 64 bit register and then truncate result to 32 bit.
3483       return Builder.CreateTrunc(Call, ValueType);
3484
3485     if (ValueType->isPointerTy())
3486       // Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*).
3487       return Builder.CreateIntToPtr(Call, ValueType);
3488
3489     return Call;
3490   }
3491
3492   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
3493   llvm::Value *ArgValue = CGF.EmitScalarExpr(E->getArg(1));
3494   if (MixedTypes) {
3495     // Extend 32 bit write value to 64 bit to pass to write.
3496     ArgValue = Builder.CreateZExt(ArgValue, RegisterType);
3497     return Builder.CreateCall(F, { Metadata, ArgValue });
3498   }
3499
3500   if (ValueType->isPointerTy()) {
3501     // Have VoidPtrTy ArgValue but want to return an i32/i64.
3502     ArgValue = Builder.CreatePtrToInt(ArgValue, RegisterType);
3503     return Builder.CreateCall(F, { Metadata, ArgValue });
3504   }
3505
3506   return Builder.CreateCall(F, { Metadata, ArgValue });
3507 }
3508
3509 /// Return true if BuiltinID is an overloaded Neon intrinsic with an extra
3510 /// argument that specifies the vector type.
3511 static bool HasExtraNeonArgument(unsigned BuiltinID) {
3512   switch (BuiltinID) {
3513   default: break;
3514   case NEON::BI__builtin_neon_vget_lane_i8:
3515   case NEON::BI__builtin_neon_vget_lane_i16:
3516   case NEON::BI__builtin_neon_vget_lane_i32:
3517   case NEON::BI__builtin_neon_vget_lane_i64:
3518   case NEON::BI__builtin_neon_vget_lane_f32:
3519   case NEON::BI__builtin_neon_vgetq_lane_i8:
3520   case NEON::BI__builtin_neon_vgetq_lane_i16:
3521   case NEON::BI__builtin_neon_vgetq_lane_i32:
3522   case NEON::BI__builtin_neon_vgetq_lane_i64:
3523   case NEON::BI__builtin_neon_vgetq_lane_f32:
3524   case NEON::BI__builtin_neon_vset_lane_i8:
3525   case NEON::BI__builtin_neon_vset_lane_i16:
3526   case NEON::BI__builtin_neon_vset_lane_i32:
3527   case NEON::BI__builtin_neon_vset_lane_i64:
3528   case NEON::BI__builtin_neon_vset_lane_f32:
3529   case NEON::BI__builtin_neon_vsetq_lane_i8:
3530   case NEON::BI__builtin_neon_vsetq_lane_i16:
3531   case NEON::BI__builtin_neon_vsetq_lane_i32:
3532   case NEON::BI__builtin_neon_vsetq_lane_i64:
3533   case NEON::BI__builtin_neon_vsetq_lane_f32:
3534   case NEON::BI__builtin_neon_vsha1h_u32:
3535   case NEON::BI__builtin_neon_vsha1cq_u32:
3536   case NEON::BI__builtin_neon_vsha1pq_u32:
3537   case NEON::BI__builtin_neon_vsha1mq_u32:
3538   case ARM::BI_MoveToCoprocessor:
3539   case ARM::BI_MoveToCoprocessor2:
3540     return false;
3541   }
3542   return true;
3543 }
3544
3545 Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
3546                                            const CallExpr *E) {
3547   if (auto Hint = GetValueForARMHint(BuiltinID))
3548     return Hint;
3549
3550   if (BuiltinID == ARM::BI__emit) {
3551     bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb;
3552     llvm::FunctionType *FTy =
3553         llvm::FunctionType::get(VoidTy, /*Variadic=*/false);
3554
3555     APSInt Value;
3556     if (!E->getArg(0)->EvaluateAsInt(Value, CGM.getContext()))
3557       llvm_unreachable("Sema will ensure that the parameter is constant");
3558
3559     uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue();
3560
3561     llvm::InlineAsm *Emit =
3562         IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "",
3563                                  /*SideEffects=*/true)
3564                 : InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "",
3565                                  /*SideEffects=*/true);
3566
3567     return Builder.CreateCall(Emit);
3568   }
3569
3570   if (BuiltinID == ARM::BI__builtin_arm_dbg) {
3571     Value *Option = EmitScalarExpr(E->getArg(0));
3572     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option);
3573   }
3574
3575   if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
3576     Value *Address = EmitScalarExpr(E->getArg(0));
3577     Value *RW      = EmitScalarExpr(E->getArg(1));
3578     Value *IsData  = EmitScalarExpr(E->getArg(2));
3579
3580     // Locality is not supported on ARM target
3581     Value *Locality = llvm::ConstantInt::get(Int32Ty, 3);
3582
3583     Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
3584     return Builder.CreateCall(F, {Address, RW, Locality, IsData});
3585   }
3586
3587   if (BuiltinID == ARM::BI__builtin_arm_rbit) {
3588     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_rbit),
3589                                                EmitScalarExpr(E->getArg(0)),
3590                               "rbit");
3591   }
3592
3593   if (BuiltinID == ARM::BI__clear_cache) {
3594     assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
3595     const FunctionDecl *FD = E->getDirectCallee();
3596     Value *Ops[2];
3597     for (unsigned i = 0; i < 2; i++)
3598       Ops[i] = EmitScalarExpr(E->getArg(i));
3599     llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
3600     llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
3601     StringRef Name = FD->getName();
3602     return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
3603   }
3604
3605   if (BuiltinID == ARM::BI__builtin_arm_ldrexd ||
3606       ((BuiltinID == ARM::BI__builtin_arm_ldrex ||
3607         BuiltinID == ARM::BI__builtin_arm_ldaex) &&
3608        getContext().getTypeSize(E->getType()) == 64) ||
3609       BuiltinID == ARM::BI__ldrexd) {
3610     Function *F;
3611
3612     switch (BuiltinID) {
3613     default: llvm_unreachable("unexpected builtin");
3614     case ARM::BI__builtin_arm_ldaex:
3615       F = CGM.getIntrinsic(Intrinsic::arm_ldaexd);
3616       break;
3617     case ARM::BI__builtin_arm_ldrexd:
3618     case ARM::BI__builtin_arm_ldrex:
3619     case ARM::BI__ldrexd:
3620       F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
3621       break;
3622     }
3623
3624     Value *LdPtr = EmitScalarExpr(E->getArg(0));
3625     Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
3626                                     "ldrexd");
3627
3628     Value *Val0 = Builder.CreateExtractValue(Val, 1);
3629     Value *Val1 = Builder.CreateExtractValue(Val, 0);
3630     Val0 = Builder.CreateZExt(Val0, Int64Ty);
3631     Val1 = Builder.CreateZExt(Val1, Int64Ty);
3632
3633     Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
3634     Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
3635     Val = Builder.CreateOr(Val, Val1);
3636     return Builder.CreateBitCast(Val, ConvertType(E->getType()));
3637   }
3638
3639   if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
3640       BuiltinID == ARM::BI__builtin_arm_ldaex) {
3641     Value *LoadAddr = EmitScalarExpr(E->getArg(0));
3642
3643     QualType Ty = E->getType();
3644     llvm::Type *RealResTy = ConvertType(Ty);
3645     llvm::Type *IntResTy = llvm::IntegerType::get(getLLVMContext(),
3646                                                   getContext().getTypeSize(Ty));
3647     LoadAddr = Builder.CreateBitCast(LoadAddr, IntResTy->getPointerTo());
3648
3649     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_ldaex
3650                                        ? Intrinsic::arm_ldaex
3651                                        : Intrinsic::arm_ldrex,
3652                                    LoadAddr->getType());
3653     Value *Val = Builder.CreateCall(F, LoadAddr, "ldrex");
3654
3655     if (RealResTy->isPointerTy())
3656       return Builder.CreateIntToPtr(Val, RealResTy);
3657     else {
3658       Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
3659       return Builder.CreateBitCast(Val, RealResTy);
3660     }
3661   }
3662
3663   if (BuiltinID == ARM::BI__builtin_arm_strexd ||
3664       ((BuiltinID == ARM::BI__builtin_arm_stlex ||
3665         BuiltinID == ARM::BI__builtin_arm_strex) &&
3666        getContext().getTypeSize(E->getArg(0)->getType()) == 64)) {
3667     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
3668                                        ? Intrinsic::arm_stlexd
3669                                        : Intrinsic::arm_strexd);
3670     llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, nullptr);
3671
3672     Address Tmp = CreateMemTemp(E->getArg(0)->getType());
3673     Value *Val = EmitScalarExpr(E->getArg(0));
3674     Builder.CreateStore(Val, Tmp);
3675
3676     Address LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy));
3677     Val = Builder.CreateLoad(LdPtr);
3678
3679     Value *Arg0 = Builder.CreateExtractValue(Val, 0);
3680     Value *Arg1 = Builder.CreateExtractValue(Val, 1);
3681     Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy);
3682     return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd");
3683   }
3684
3685   if (BuiltinID == ARM::BI__builtin_arm_strex ||
3686       BuiltinID == ARM::BI__builtin_arm_stlex) {
3687     Value *StoreVal = EmitScalarExpr(E->getArg(0));
3688     Value *StoreAddr = EmitScalarExpr(E->getArg(1));
3689
3690     QualType Ty = E->getArg(0)->getType();
3691     llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
3692                                                  getContext().getTypeSize(Ty));
3693     StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
3694
3695     if (StoreVal->getType()->isPointerTy())
3696       StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty);
3697     else {
3698       StoreVal = Builder.CreateBitCast(StoreVal, StoreTy);
3699       StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty);
3700     }
3701
3702     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
3703                                        ? Intrinsic::arm_stlex
3704                                        : Intrinsic::arm_strex,
3705                                    StoreAddr->getType());
3706     return Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex");
3707   }
3708
3709   if (BuiltinID == ARM::BI__builtin_arm_clrex) {
3710     Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex);
3711     return Builder.CreateCall(F);
3712   }
3713
3714   // CRC32
3715   Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
3716   switch (BuiltinID) {
3717   case ARM::BI__builtin_arm_crc32b:
3718     CRCIntrinsicID = Intrinsic::arm_crc32b; break;
3719   case ARM::BI__builtin_arm_crc32cb:
3720     CRCIntrinsicID = Intrinsic::arm_crc32cb; break;
3721   case ARM::BI__builtin_arm_crc32h:
3722     CRCIntrinsicID = Intrinsic::arm_crc32h; break;
3723   case ARM::BI__builtin_arm_crc32ch:
3724     CRCIntrinsicID = Intrinsic::arm_crc32ch; break;
3725   case ARM::BI__builtin_arm_crc32w:
3726   case ARM::BI__builtin_arm_crc32d:
3727     CRCIntrinsicID = Intrinsic::arm_crc32w; break;
3728   case ARM::BI__builtin_arm_crc32cw:
3729   case ARM::BI__builtin_arm_crc32cd:
3730     CRCIntrinsicID = Intrinsic::arm_crc32cw; break;
3731   }
3732
3733   if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
3734     Value *Arg0 = EmitScalarExpr(E->getArg(0));
3735     Value *Arg1 = EmitScalarExpr(E->getArg(1));
3736
3737     // crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w
3738     // intrinsics, hence we need different codegen for these cases.
3739     if (BuiltinID == ARM::BI__builtin_arm_crc32d ||
3740         BuiltinID == ARM::BI__builtin_arm_crc32cd) {
3741       Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
3742       Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty);
3743       Value *Arg1b = Builder.CreateLShr(Arg1, C1);
3744       Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty);
3745
3746       Function *F = CGM.getIntrinsic(CRCIntrinsicID);
3747       Value *Res = Builder.CreateCall(F, {Arg0, Arg1a});
3748       return Builder.CreateCall(F, {Res, Arg1b});
3749     } else {
3750       Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty);
3751
3752       Function *F = CGM.getIntrinsic(CRCIntrinsicID);
3753       return Builder.CreateCall(F, {Arg0, Arg1});
3754     }
3755   }
3756
3757   if (BuiltinID == ARM::BI__builtin_arm_rsr ||
3758       BuiltinID == ARM::BI__builtin_arm_rsr64 ||
3759       BuiltinID == ARM::BI__builtin_arm_rsrp ||
3760       BuiltinID == ARM::BI__builtin_arm_wsr ||
3761       BuiltinID == ARM::BI__builtin_arm_wsr64 ||
3762       BuiltinID == ARM::BI__builtin_arm_wsrp) {
3763
3764     bool IsRead = BuiltinID == ARM::BI__builtin_arm_rsr ||
3765                   BuiltinID == ARM::BI__builtin_arm_rsr64 ||
3766                   BuiltinID == ARM::BI__builtin_arm_rsrp;
3767
3768     bool IsPointerBuiltin = BuiltinID == ARM::BI__builtin_arm_rsrp ||
3769                             BuiltinID == ARM::BI__builtin_arm_wsrp;
3770
3771     bool Is64Bit = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
3772                    BuiltinID == ARM::BI__builtin_arm_wsr64;
3773
3774     llvm::Type *ValueType;
3775     llvm::Type *RegisterType;
3776     if (IsPointerBuiltin) {
3777       ValueType = VoidPtrTy;
3778       RegisterType = Int32Ty;
3779     } else if (Is64Bit) {
3780       ValueType = RegisterType = Int64Ty;
3781     } else {
3782       ValueType = RegisterType = Int32Ty;
3783     }
3784
3785     return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, IsRead);
3786   }
3787
3788   // Find out if any arguments are required to be integer constant
3789   // expressions.
3790   unsigned ICEArguments = 0;
3791   ASTContext::GetBuiltinTypeError Error;
3792   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
3793   assert(Error == ASTContext::GE_None && "Should not codegen an error");
3794
3795   auto getAlignmentValue32 = [&](Address addr) -> Value* {
3796     return Builder.getInt32(addr.getAlignment().getQuantity());
3797   };
3798
3799   Address PtrOp0 = Address::invalid();
3800   Address PtrOp1 = Address::invalid();
3801   SmallVector<Value*, 4> Ops;
3802   bool HasExtraArg = HasExtraNeonArgument(BuiltinID);
3803   unsigned NumArgs = E->getNumArgs() - (HasExtraArg ? 1 : 0);
3804   for (unsigned i = 0, e = NumArgs; i != e; i++) {
3805     if (i == 0) {
3806       switch (BuiltinID) {
3807       case NEON::BI__builtin_neon_vld1_v:
3808       case NEON::BI__builtin_neon_vld1q_v:
3809       case NEON::BI__builtin_neon_vld1q_lane_v:
3810       case NEON::BI__builtin_neon_vld1_lane_v:
3811       case NEON::BI__builtin_neon_vld1_dup_v:
3812       case NEON::BI__builtin_neon_vld1q_dup_v:
3813       case NEON::BI__builtin_neon_vst1_v:
3814       case NEON::BI__builtin_neon_vst1q_v:
3815       case NEON::BI__builtin_neon_vst1q_lane_v:
3816       case NEON::BI__builtin_neon_vst1_lane_v:
3817       case NEON::BI__builtin_neon_vst2_v:
3818       case NEON::BI__builtin_neon_vst2q_v:
3819       case NEON::BI__builtin_neon_vst2_lane_v:
3820       case NEON::BI__builtin_neon_vst2q_lane_v:
3821       case NEON::BI__builtin_neon_vst3_v:
3822       case NEON::BI__builtin_neon_vst3q_v:
3823       case NEON::BI__builtin_neon_vst3_lane_v:
3824       case NEON::BI__builtin_neon_vst3q_lane_v:
3825       case NEON::BI__builtin_neon_vst4_v:
3826       case NEON::BI__builtin_neon_vst4q_v:
3827       case NEON::BI__builtin_neon_vst4_lane_v:
3828       case NEON::BI__builtin_neon_vst4q_lane_v:
3829         // Get the alignment for the argument in addition to the value;
3830         // we'll use it later.
3831         PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
3832         Ops.push_back(PtrOp0.getPointer());
3833         continue;
3834       }
3835     }
3836     if (i == 1) {
3837       switch (BuiltinID) {
3838       case NEON::BI__builtin_neon_vld2_v:
3839       case NEON::BI__builtin_neon_vld2q_v:
3840       case NEON::BI__builtin_neon_vld3_v:
3841       case NEON::BI__builtin_neon_vld3q_v:
3842       case NEON::BI__builtin_neon_vld4_v:
3843       case NEON::BI__builtin_neon_vld4q_v:
3844       case NEON::BI__builtin_neon_vld2_lane_v:
3845       case NEON::BI__builtin_neon_vld2q_lane_v:
3846       case NEON::BI__builtin_neon_vld3_lane_v:
3847       case NEON::BI__builtin_neon_vld3q_lane_v:
3848       case NEON::BI__builtin_neon_vld4_lane_v:
3849       case NEON::BI__builtin_neon_vld4q_lane_v:
3850       case NEON::BI__builtin_neon_vld2_dup_v:
3851       case NEON::BI__builtin_neon_vld3_dup_v:
3852       case NEON::BI__builtin_neon_vld4_dup_v:
3853         // Get the alignment for the argument in addition to the value;
3854         // we'll use it later.
3855         PtrOp1 = EmitPointerWithAlignment(E->getArg(1));
3856         Ops.push_back(PtrOp1.getPointer());
3857         continue;
3858       }
3859     }
3860
3861     if ((ICEArguments & (1 << i)) == 0) {
3862       Ops.push_back(EmitScalarExpr(E->getArg(i)));
3863     } else {
3864       // If this is required to be a constant, constant fold it so that we know
3865       // that the generated intrinsic gets a ConstantInt.
3866       llvm::APSInt Result;
3867       bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
3868       assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst;
3869       Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
3870     }
3871   }
3872
3873   switch (BuiltinID) {
3874   default: break;
3875
3876   case NEON::BI__builtin_neon_vget_lane_i8:
3877   case NEON::BI__builtin_neon_vget_lane_i16:
3878   case NEON::BI__builtin_neon_vget_lane_i32:
3879   case NEON::BI__builtin_neon_vget_lane_i64:
3880   case NEON::BI__builtin_neon_vget_lane_f32:
3881   case NEON::BI__builtin_neon_vgetq_lane_i8:
3882   case NEON::BI__builtin_neon_vgetq_lane_i16:
3883   case NEON::BI__builtin_neon_vgetq_lane_i32:
3884   case NEON::BI__builtin_neon_vgetq_lane_i64:
3885   case NEON::BI__builtin_neon_vgetq_lane_f32:
3886     return Builder.CreateExtractElement(Ops[0], Ops[1], "vget_lane");
3887
3888   case NEON::BI__builtin_neon_vset_lane_i8:
3889   case NEON::BI__builtin_neon_vset_lane_i16:
3890   case NEON::BI__builtin_neon_vset_lane_i32:
3891   case NEON::BI__builtin_neon_vset_lane_i64:
3892   case NEON::BI__builtin_neon_vset_lane_f32:
3893   case NEON::BI__builtin_neon_vsetq_lane_i8:
3894   case NEON::BI__builtin_neon_vsetq_lane_i16:
3895   case NEON::BI__builtin_neon_vsetq_lane_i32:
3896   case NEON::BI__builtin_neon_vsetq_lane_i64:
3897   case NEON::BI__builtin_neon_vsetq_lane_f32:
3898     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
3899
3900   case NEON::BI__builtin_neon_vsha1h_u32:
3901     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops,
3902                         "vsha1h");
3903   case NEON::BI__builtin_neon_vsha1cq_u32:
3904     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops,
3905                         "vsha1h");
3906   case NEON::BI__builtin_neon_vsha1pq_u32:
3907     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops,
3908                         "vsha1h");
3909   case NEON::BI__builtin_neon_vsha1mq_u32:
3910     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops,
3911                         "vsha1h");
3912
3913   // The ARM _MoveToCoprocessor builtins put the input register value as
3914   // the first argument, but the LLVM intrinsic expects it as the third one.
3915   case ARM::BI_MoveToCoprocessor:
3916   case ARM::BI_MoveToCoprocessor2: {
3917     Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI_MoveToCoprocessor ? 
3918                                    Intrinsic::arm_mcr : Intrinsic::arm_mcr2);
3919     return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0],
3920                                   Ops[3], Ops[4], Ops[5]});
3921   }
3922   }
3923
3924   // Get the last argument, which specifies the vector type.
3925   assert(HasExtraArg);
3926   llvm::APSInt Result;
3927   const Expr *Arg = E->getArg(E->getNumArgs()-1);
3928   if (!Arg->isIntegerConstantExpr(Result, getContext()))
3929     return nullptr;
3930
3931   if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f ||
3932       BuiltinID == ARM::BI__builtin_arm_vcvtr_d) {
3933     // Determine the overloaded type of this builtin.
3934     llvm::Type *Ty;
3935     if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f)
3936       Ty = FloatTy;
3937     else
3938       Ty = DoubleTy;
3939
3940     // Determine whether this is an unsigned conversion or not.
3941     bool usgn = Result.getZExtValue() == 1;
3942     unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
3943
3944     // Call the appropriate intrinsic.
3945     Function *F = CGM.getIntrinsic(Int, Ty);
3946     return Builder.CreateCall(F, Ops, "vcvtr");
3947   }
3948
3949   // Determine the type of this overloaded NEON intrinsic.
3950   NeonTypeFlags Type(Result.getZExtValue());
3951   bool usgn = Type.isUnsigned();
3952   bool rightShift = false;
3953
3954   llvm::VectorType *VTy = GetNeonType(this, Type);
3955   llvm::Type *Ty = VTy;
3956   if (!Ty)
3957     return nullptr;
3958
3959   // Many NEON builtins have identical semantics and uses in ARM and
3960   // AArch64. Emit these in a single function.
3961   auto IntrinsicMap = makeArrayRef(ARMSIMDIntrinsicMap);
3962   const NeonIntrinsicInfo *Builtin = findNeonIntrinsicInMap(
3963       IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted);
3964   if (Builtin)
3965     return EmitCommonNeonBuiltinExpr(
3966         Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
3967         Builtin->NameHint, Builtin->TypeModifier, E, Ops, PtrOp0, PtrOp1);
3968
3969   unsigned Int;
3970   switch (BuiltinID) {
3971   default: return nullptr;
3972   case NEON::BI__builtin_neon_vld1q_lane_v:
3973     // Handle 64-bit integer elements as a special case.  Use shuffles of
3974     // one-element vectors to avoid poor code for i64 in the backend.
3975     if (VTy->getElementType()->isIntegerTy(64)) {
3976       // Extract the other lane.
3977       Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3978       uint32_t Lane = cast<ConstantInt>(Ops[2])->getZExtValue();
3979       Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane));
3980       Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
3981       // Load the value as a one-element vector.
3982       Ty = llvm::VectorType::get(VTy->getElementType(), 1);
3983       llvm::Type *Tys[] = {Ty, Int8PtrTy};
3984       Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Tys);
3985       Value *Align = getAlignmentValue32(PtrOp0);
3986       Value *Ld = Builder.CreateCall(F, {Ops[0], Align});
3987       // Combine them.
3988       uint32_t Indices[] = {1 - Lane, Lane};
3989       SV = llvm::ConstantDataVector::get(getLLVMContext(), Indices);
3990       return Builder.CreateShuffleVector(Ops[1], Ld, SV, "vld1q_lane");
3991     }
3992     // fall through
3993   case NEON::BI__builtin_neon_vld1_lane_v: {
3994     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
3995     PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType());
3996     Value *Ld = Builder.CreateLoad(PtrOp0);
3997     return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
3998   }
3999   case NEON::BI__builtin_neon_vld2_dup_v:
4000   case NEON::BI__builtin_neon_vld3_dup_v:
4001   case NEON::BI__builtin_neon_vld4_dup_v: {
4002     // Handle 64-bit elements as a special-case.  There is no "dup" needed.
4003     if (VTy->getElementType()->getPrimitiveSizeInBits() == 64) {
4004       switch (BuiltinID) {
4005       case NEON::BI__builtin_neon_vld2_dup_v:
4006         Int = Intrinsic::arm_neon_vld2;
4007         break;
4008       case NEON::BI__builtin_neon_vld3_dup_v:
4009         Int = Intrinsic::arm_neon_vld3;
4010         break;
4011       case NEON::BI__builtin_neon_vld4_dup_v:
4012         Int = Intrinsic::arm_neon_vld4;
4013         break;
4014       default: llvm_unreachable("unknown vld_dup intrinsic?");
4015       }
4016       llvm::Type *Tys[] = {Ty, Int8PtrTy};
4017       Function *F = CGM.getIntrinsic(Int, Tys);
4018       llvm::Value *Align = getAlignmentValue32(PtrOp1);
4019       Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, "vld_dup");
4020       Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
4021       Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4022       return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
4023     }
4024     switch (BuiltinID) {
4025     case NEON::BI__builtin_neon_vld2_dup_v:
4026       Int = Intrinsic::arm_neon_vld2lane;
4027       break;
4028     case NEON::BI__builtin_neon_vld3_dup_v:
4029       Int = Intrinsic::arm_neon_vld3lane;
4030       break;
4031     case NEON::BI__builtin_neon_vld4_dup_v:
4032       Int = Intrinsic::arm_neon_vld4lane;
4033       break;
4034     default: llvm_unreachable("unknown vld_dup intrinsic?");
4035     }
4036     llvm::Type *Tys[] = {Ty, Int8PtrTy};
4037     Function *F = CGM.getIntrinsic(Int, Tys);
4038     llvm::StructType *STy = cast<llvm::StructType>(F->getReturnType());
4039
4040     SmallVector<Value*, 6> Args;
4041     Args.push_back(Ops[1]);
4042     Args.append(STy->getNumElements(), UndefValue::get(Ty));
4043
4044     llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
4045     Args.push_back(CI);
4046     Args.push_back(getAlignmentValue32(PtrOp1));
4047
4048     Ops[1] = Builder.CreateCall(F, Args, "vld_dup");
4049     // splat lane 0 to all elts in each vector of the result.
4050     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
4051       Value *Val = Builder.CreateExtractValue(Ops[1], i);
4052       Value *Elt = Builder.CreateBitCast(Val, Ty);
4053       Elt = EmitNeonSplat(Elt, CI);
4054       Elt = Builder.CreateBitCast(Elt, Val->getType());
4055       Ops[1] = Builder.CreateInsertValue(Ops[1], Elt, i);
4056     }
4057     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
4058     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4059     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
4060   }
4061   case NEON::BI__builtin_neon_vqrshrn_n_v:
4062     Int =
4063       usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
4064     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
4065                         1, true);
4066   case NEON::BI__builtin_neon_vqrshrun_n_v:
4067     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
4068                         Ops, "vqrshrun_n", 1, true);
4069   case NEON::BI__builtin_neon_vqshrn_n_v:
4070     Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
4071     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
4072                         1, true);
4073   case NEON::BI__builtin_neon_vqshrun_n_v:
4074     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
4075                         Ops, "vqshrun_n", 1, true);
4076   case NEON::BI__builtin_neon_vrecpe_v:
4077   case NEON::BI__builtin_neon_vrecpeq_v:
4078     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
4079                         Ops, "vrecpe");
4080   case NEON::BI__builtin_neon_vrshrn_n_v:
4081     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
4082                         Ops, "vrshrn_n", 1, true);
4083   case NEON::BI__builtin_neon_vrsra_n_v:
4084   case NEON::BI__builtin_neon_vrsraq_n_v:
4085     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4086     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4087     Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
4088     Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
4089     Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]});
4090     return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
4091   case NEON::BI__builtin_neon_vsri_n_v:
4092   case NEON::BI__builtin_neon_vsriq_n_v:
4093     rightShift = true;
4094   case NEON::BI__builtin_neon_vsli_n_v:
4095   case NEON::BI__builtin_neon_vsliq_n_v:
4096     Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
4097     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
4098                         Ops, "vsli_n");
4099   case NEON::BI__builtin_neon_vsra_n_v:
4100   case NEON::BI__builtin_neon_vsraq_n_v:
4101     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
4102     Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
4103     return Builder.CreateAdd(Ops[0], Ops[1]);
4104   case NEON::BI__builtin_neon_vst1q_lane_v:
4105     // Handle 64-bit integer elements as a special case.  Use a shuffle to get
4106     // a one-element vector and avoid poor code for i64 in the backend.
4107     if (VTy->getElementType()->isIntegerTy(64)) {
4108       Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4109       Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2]));
4110       Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
4111       Ops[2] = getAlignmentValue32(PtrOp0);
4112       llvm::Type *Tys[] = {Int8PtrTy, Ops[1]->getType()};
4113       return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1,
4114                                                  Tys), Ops);
4115     }
4116     // fall through
4117   case NEON::BI__builtin_neon_vst1_lane_v: {
4118     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
4119     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
4120     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
4121     auto St = Builder.CreateStore(Ops[1], Builder.CreateBitCast(PtrOp0, Ty));
4122     return St;
4123   }
4124   case NEON::BI__builtin_neon_vtbl1_v:
4125     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
4126                         Ops, "vtbl1");
4127   case NEON::BI__builtin_neon_vtbl2_v:
4128     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
4129                         Ops, "vtbl2");
4130   case NEON::BI__builtin_neon_vtbl3_v:
4131     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
4132                         Ops, "vtbl3");
4133   case NEON::BI__builtin_neon_vtbl4_v:
4134     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
4135                         Ops, "vtbl4");
4136   case NEON::BI__builtin_neon_vtbx1_v:
4137     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
4138                         Ops, "vtbx1");
4139   case NEON::BI__builtin_neon_vtbx2_v:
4140     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
4141                         Ops, "vtbx2");
4142   case NEON::BI__builtin_neon_vtbx3_v:
4143     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
4144                         Ops, "vtbx3");
4145   case NEON::BI__builtin_neon_vtbx4_v:
4146     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
4147                         Ops, "vtbx4");
4148   }
4149 }
4150
4151 static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID,
4152                                       const CallExpr *E,
4153                                       SmallVectorImpl<Value *> &Ops) {
4154   unsigned int Int = 0;
4155   const char *s = nullptr;
4156
4157   switch (BuiltinID) {
4158   default:
4159     return nullptr;
4160   case NEON::BI__builtin_neon_vtbl1_v:
4161   case NEON::BI__builtin_neon_vqtbl1_v:
4162   case NEON::BI__builtin_neon_vqtbl1q_v:
4163   case NEON::BI__builtin_neon_vtbl2_v:
4164   case NEON::BI__builtin_neon_vqtbl2_v:
4165   case NEON::BI__builtin_neon_vqtbl2q_v:
4166   case NEON::BI__builtin_neon_vtbl3_v:
4167   case NEON::BI__builtin_neon_vqtbl3_v:
4168   case NEON::BI__builtin_neon_vqtbl3q_v:
4169   case NEON::BI__builtin_neon_vtbl4_v:
4170   case NEON::BI__builtin_neon_vqtbl4_v:
4171   case NEON::BI__builtin_neon_vqtbl4q_v:
4172     break;
4173   case NEON::BI__builtin_neon_vtbx1_v:
4174   case NEON::BI__builtin_neon_vqtbx1_v:
4175   case NEON::BI__builtin_neon_vqtbx1q_v:
4176   case NEON::BI__builtin_neon_vtbx2_v:
4177   case NEON::BI__builtin_neon_vqtbx2_v:
4178   case NEON::BI__builtin_neon_vqtbx2q_v:
4179   case NEON::BI__builtin_neon_vtbx3_v:
4180   case NEON::BI__builtin_neon_vqtbx3_v:
4181   case NEON::BI__builtin_neon_vqtbx3q_v:
4182   case NEON::BI__builtin_neon_vtbx4_v:
4183   case NEON::BI__builtin_neon_vqtbx4_v:
4184   case NEON::BI__builtin_neon_vqtbx4q_v:
4185     break;
4186   }
4187
4188   assert(E->getNumArgs() >= 3);
4189
4190   // Get the last argument, which specifies the vector type.
4191   llvm::APSInt Result;
4192   const Expr *Arg = E->getArg(E->getNumArgs() - 1);
4193   if (!Arg->isIntegerConstantExpr(Result, CGF.getContext()))
4194     return nullptr;
4195
4196   // Determine the type of this overloaded NEON intrinsic.
4197   NeonTypeFlags Type(Result.getZExtValue());
4198   llvm::VectorType *Ty = GetNeonType(&CGF, Type);
4199   if (!Ty)
4200     return nullptr;
4201
4202   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4203
4204   // AArch64 scalar builtins are not overloaded, they do not have an extra
4205   // argument that specifies the vector type, need to handle each case.
4206   switch (BuiltinID) {
4207   case NEON::BI__builtin_neon_vtbl1_v: {
4208     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 1), nullptr,
4209                               Ops[1], Ty, Intrinsic::aarch64_neon_tbl1,
4210                               "vtbl1");
4211   }
4212   case NEON::BI__builtin_neon_vtbl2_v: {
4213     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 2), nullptr,
4214                               Ops[2], Ty, Intrinsic::aarch64_neon_tbl1,
4215                               "vtbl1");
4216   }
4217   case NEON::BI__builtin_neon_vtbl3_v: {
4218     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 3), nullptr,
4219                               Ops[3], Ty, Intrinsic::aarch64_neon_tbl2,
4220                               "vtbl2");
4221   }
4222   case NEON::BI__builtin_neon_vtbl4_v: {
4223     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 4), nullptr,
4224                               Ops[4], Ty, Intrinsic::aarch64_neon_tbl2,
4225                               "vtbl2");
4226   }
4227   case NEON::BI__builtin_neon_vtbx1_v: {
4228     Value *TblRes =
4229         packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 1), nullptr, Ops[2],
4230                            Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1");
4231
4232     llvm::Constant *EightV = ConstantInt::get(Ty, 8);
4233     Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV);
4234     CmpRes = Builder.CreateSExt(CmpRes, Ty);
4235
4236     Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
4237     Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
4238     return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
4239   }
4240   case NEON::BI__builtin_neon_vtbx2_v: {
4241     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 2), Ops[0],
4242                               Ops[3], Ty, Intrinsic::aarch64_neon_tbx1,
4243                               "vtbx1");
4244   }
4245   case NEON::BI__builtin_neon_vtbx3_v: {
4246     Value *TblRes =
4247         packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 3), nullptr, Ops[4],
4248                            Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2");
4249
4250     llvm::Constant *TwentyFourV = ConstantInt::get(Ty, 24);
4251     Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4],
4252                                            TwentyFourV);
4253     CmpRes = Builder.CreateSExt(CmpRes, Ty);
4254
4255     Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
4256     Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
4257     return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
4258   }
4259   case NEON::BI__builtin_neon_vtbx4_v: {
4260     return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 4), Ops[0],
4261                               Ops[5], Ty, Intrinsic::aarch64_neon_tbx2,
4262                               "vtbx2");
4263   }
4264   case NEON::BI__builtin_neon_vqtbl1_v:
4265   case NEON::BI__builtin_neon_vqtbl1q_v:
4266     Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break;
4267   case NEON::BI__builtin_neon_vqtbl2_v:
4268   case NEON::BI__builtin_neon_vqtbl2q_v: {
4269     Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break;
4270   case NEON::BI__builtin_neon_vqtbl3_v:
4271   case NEON::BI__builtin_neon_vqtbl3q_v:
4272     Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break;
4273   case NEON::BI__builtin_neon_vqtbl4_v:
4274   case NEON::BI__builtin_neon_vqtbl4q_v:
4275     Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break;
4276   case NEON::BI__builtin_neon_vqtbx1_v:
4277   case NEON::BI__builtin_neon_vqtbx1q_v:
4278     Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break;
4279   case NEON::BI__builtin_neon_vqtbx2_v:
4280   case NEON::BI__builtin_neon_vqtbx2q_v:
4281     Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break;
4282   case NEON::BI__builtin_neon_vqtbx3_v:
4283   case NEON::BI__builtin_neon_vqtbx3q_v:
4284     Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break;
4285   case NEON::BI__builtin_neon_vqtbx4_v:
4286   case NEON::BI__builtin_neon_vqtbx4q_v:
4287     Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break;
4288   }
4289   }
4290
4291   if (!Int)
4292     return nullptr;
4293
4294   Function *F = CGF.CGM.getIntrinsic(Int, Ty);
4295   return CGF.EmitNeonCall(F, Ops, s);
4296 }
4297
4298 Value *CodeGenFunction::vectorWrapScalar16(Value *Op) {
4299   llvm::Type *VTy = llvm::VectorType::get(Int16Ty, 4);
4300   Op = Builder.CreateBitCast(Op, Int16Ty);
4301   Value *V = UndefValue::get(VTy);
4302   llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
4303   Op = Builder.CreateInsertElement(V, Op, CI);
4304   return Op;
4305 }
4306
4307 Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID,
4308                                                const CallExpr *E) {
4309   unsigned HintID = static_cast<unsigned>(-1);
4310   switch (BuiltinID) {
4311   default: break;
4312   case AArch64::BI__builtin_arm_nop:
4313     HintID = 0;
4314     break;
4315   case AArch64::BI__builtin_arm_yield:
4316     HintID = 1;
4317     break;
4318   case AArch64::BI__builtin_arm_wfe:
4319     HintID = 2;
4320     break;
4321   case AArch64::BI__builtin_arm_wfi:
4322     HintID = 3;
4323     break;
4324   case AArch64::BI__builtin_arm_sev:
4325     HintID = 4;
4326     break;
4327   case AArch64::BI__builtin_arm_sevl:
4328     HintID = 5;
4329     break;
4330   }
4331
4332   if (HintID != static_cast<unsigned>(-1)) {
4333     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint);
4334     return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID));
4335   }
4336
4337   if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
4338     Value *Address         = EmitScalarExpr(E->getArg(0));
4339     Value *RW              = EmitScalarExpr(E->getArg(1));
4340     Value *CacheLevel      = EmitScalarExpr(E->getArg(2));
4341     Value *RetentionPolicy = EmitScalarExpr(E->getArg(3));
4342     Value *IsData          = EmitScalarExpr(E->getArg(4));
4343
4344     Value *Locality = nullptr;
4345     if (cast<llvm::ConstantInt>(RetentionPolicy)->isZero()) {
4346       // Temporal fetch, needs to convert cache level to locality.
4347       Locality = llvm::ConstantInt::get(Int32Ty,
4348         -cast<llvm::ConstantInt>(CacheLevel)->getValue() + 3);
4349     } else {
4350       // Streaming fetch.
4351       Locality = llvm::ConstantInt::get(Int32Ty, 0);
4352     }
4353
4354     // FIXME: We need AArch64 specific LLVM intrinsic if we want to specify
4355     // PLDL3STRM or PLDL2STRM.
4356     Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
4357     return Builder.CreateCall(F, {Address, RW, Locality, IsData});
4358   }
4359
4360   if (BuiltinID == AArch64::BI__builtin_arm_rbit) {
4361     assert((getContext().getTypeSize(E->getType()) == 32) &&
4362            "rbit of unusual size!");
4363     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
4364     return Builder.CreateCall(
4365         CGM.getIntrinsic(Intrinsic::aarch64_rbit, Arg->getType()), Arg, "rbit");
4366   }
4367   if (BuiltinID == AArch64::BI__builtin_arm_rbit64) {
4368     assert((getContext().getTypeSize(E->getType()) == 64) &&
4369            "rbit of unusual size!");
4370     llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
4371     return Builder.CreateCall(
4372         CGM.getIntrinsic(Intrinsic::aarch64_rbit, Arg->getType()), Arg, "rbit");
4373   }
4374
4375   if (BuiltinID == AArch64::BI__clear_cache) {
4376     assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
4377     const FunctionDecl *FD = E->getDirectCallee();
4378     Value *Ops[2];
4379     for (unsigned i = 0; i < 2; i++)
4380       Ops[i] = EmitScalarExpr(E->getArg(i));
4381     llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
4382     llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
4383     StringRef Name = FD->getName();
4384     return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
4385   }
4386
4387   if ((BuiltinID == AArch64::BI__builtin_arm_ldrex ||
4388       BuiltinID == AArch64::BI__builtin_arm_ldaex) &&
4389       getContext().getTypeSize(E->getType()) == 128) {
4390     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
4391                                        ? Intrinsic::aarch64_ldaxp
4392                                        : Intrinsic::aarch64_ldxp);
4393
4394     Value *LdPtr = EmitScalarExpr(E->getArg(0));
4395     Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
4396                                     "ldxp");
4397
4398     Value *Val0 = Builder.CreateExtractValue(Val, 1);
4399     Value *Val1 = Builder.CreateExtractValue(Val, 0);
4400     llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
4401     Val0 = Builder.CreateZExt(Val0, Int128Ty);
4402     Val1 = Builder.CreateZExt(Val1, Int128Ty);
4403
4404     Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64);
4405     Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
4406     Val = Builder.CreateOr(Val, Val1);
4407     return Builder.CreateBitCast(Val, ConvertType(E->getType()));
4408   } else if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
4409              BuiltinID == AArch64::BI__builtin_arm_ldaex) {
4410     Value *LoadAddr = EmitScalarExpr(E->getArg(0));
4411
4412     QualType Ty = E->getType();
4413     llvm::Type *RealResTy = ConvertType(Ty);
4414     llvm::Type *IntResTy = llvm::IntegerType::get(getLLVMContext(),
4415                                                   getContext().getTypeSize(Ty));
4416     LoadAddr = Builder.CreateBitCast(LoadAddr, IntResTy->getPointerTo());
4417
4418     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
4419                                        ? Intrinsic::aarch64_ldaxr
4420                                        : Intrinsic::aarch64_ldxr,
4421                                    LoadAddr->getType());
4422     Value *Val = Builder.CreateCall(F, LoadAddr, "ldxr");
4423
4424     if (RealResTy->isPointerTy())
4425       return Builder.CreateIntToPtr(Val, RealResTy);
4426
4427     Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
4428     return Builder.CreateBitCast(Val, RealResTy);
4429   }
4430
4431   if ((BuiltinID == AArch64::BI__builtin_arm_strex ||
4432        BuiltinID == AArch64::BI__builtin_arm_stlex) &&
4433       getContext().getTypeSize(E->getArg(0)->getType()) == 128) {
4434     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
4435                                        ? Intrinsic::aarch64_stlxp
4436                                        : Intrinsic::aarch64_stxp);
4437     llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty, nullptr);
4438
4439     Address Tmp = CreateMemTemp(E->getArg(0)->getType());
4440     EmitAnyExprToMem(E->getArg(0), Tmp, Qualifiers(), /*init*/ true);
4441
4442     Tmp = Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(STy));
4443     llvm::Value *Val = Builder.CreateLoad(Tmp);
4444
4445     Value *Arg0 = Builder.CreateExtractValue(Val, 0);
4446     Value *Arg1 = Builder.CreateExtractValue(Val, 1);
4447     Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)),
4448                                          Int8PtrTy);
4449     return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp");
4450   }
4451
4452   if (BuiltinID == AArch64::BI__builtin_arm_strex ||
4453       BuiltinID == AArch64::BI__builtin_arm_stlex) {
4454     Value *StoreVal = EmitScalarExpr(E->getArg(0));
4455     Value *StoreAddr = EmitScalarExpr(E->getArg(1));
4456
4457     QualType Ty = E->getArg(0)->getType();
4458     llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
4459                                                  getContext().getTypeSize(Ty));
4460     StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
4461
4462     if (StoreVal->getType()->isPointerTy())
4463       StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty);
4464     else {
4465       StoreVal = Builder.CreateBitCast(StoreVal, StoreTy);
4466       StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty);
4467     }
4468
4469     Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
4470                                        ? Intrinsic::aarch64_stlxr
4471                                        : Intrinsic::aarch64_stxr,
4472                                    StoreAddr->getType());
4473     return Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr");
4474   }
4475
4476   if (BuiltinID == AArch64::BI__builtin_arm_clrex) {
4477     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex);
4478     return Builder.CreateCall(F);
4479   }
4480
4481   if (BuiltinID == AArch64::BI__builtin_thread_pointer) {
4482     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_thread_pointer);
4483     return Builder.CreateCall(F);
4484   }
4485
4486   // CRC32
4487   Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
4488   switch (BuiltinID) {
4489   case AArch64::BI__builtin_arm_crc32b:
4490     CRCIntrinsicID = Intrinsic::aarch64_crc32b; break;
4491   case AArch64::BI__builtin_arm_crc32cb:
4492     CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break;
4493   case AArch64::BI__builtin_arm_crc32h:
4494     CRCIntrinsicID = Intrinsic::aarch64_crc32h; break;
4495   case AArch64::BI__builtin_arm_crc32ch:
4496     CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break;
4497   case AArch64::BI__builtin_arm_crc32w:
4498     CRCIntrinsicID = Intrinsic::aarch64_crc32w; break;
4499   case AArch64::BI__builtin_arm_crc32cw:
4500     CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break;
4501   case AArch64::BI__builtin_arm_crc32d:
4502     CRCIntrinsicID = Intrinsic::aarch64_crc32x; break;
4503   case AArch64::BI__builtin_arm_crc32cd:
4504     CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break;
4505   }
4506
4507   if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
4508     Value *Arg0 = EmitScalarExpr(E->getArg(0));
4509     Value *Arg1 = EmitScalarExpr(E->getArg(1));
4510     Function *F = CGM.getIntrinsic(CRCIntrinsicID);
4511
4512     llvm::Type *DataTy = F->getFunctionType()->getParamType(1);
4513     Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy);
4514
4515     return Builder.CreateCall(F, {Arg0, Arg1});
4516   }
4517
4518   if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
4519       BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
4520       BuiltinID == AArch64::BI__builtin_arm_rsrp ||
4521       BuiltinID == AArch64::BI__builtin_arm_wsr ||
4522       BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
4523       BuiltinID == AArch64::BI__builtin_arm_wsrp) {
4524
4525     bool IsRead = BuiltinID == AArch64::BI__builtin_arm_rsr ||
4526                   BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
4527                   BuiltinID == AArch64::BI__builtin_arm_rsrp;
4528
4529     bool IsPointerBuiltin = BuiltinID == AArch64::BI__builtin_arm_rsrp ||
4530                             BuiltinID == AArch64::BI__builtin_arm_wsrp;
4531
4532     bool Is64Bit = BuiltinID != AArch64::BI__builtin_arm_rsr &&
4533                    BuiltinID != AArch64::BI__builtin_arm_wsr;
4534
4535     llvm::Type *ValueType;
4536     llvm::Type *RegisterType = Int64Ty;
4537     if (IsPointerBuiltin) {
4538       ValueType = VoidPtrTy;
4539     } else if (Is64Bit) {
4540       ValueType = Int64Ty;
4541     } else {
4542       ValueType = Int32Ty;
4543     }
4544
4545     return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, IsRead);
4546   }
4547
4548   // Find out if any arguments are required to be integer constant
4549   // expressions.
4550   unsigned ICEArguments = 0;
4551   ASTContext::GetBuiltinTypeError Error;
4552   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
4553   assert(Error == ASTContext::GE_None && "Should not codegen an error");
4554
4555   llvm::SmallVector<Value*, 4> Ops;
4556   for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
4557     if ((ICEArguments & (1 << i)) == 0) {
4558       Ops.push_back(EmitScalarExpr(E->getArg(i)));
4559     } else {
4560       // If this is required to be a constant, constant fold it so that we know
4561       // that the generated intrinsic gets a ConstantInt.
4562       llvm::APSInt Result;
4563       bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
4564       assert(IsConst && "Constant arg isn't actually constant?");
4565       (void)IsConst;
4566       Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
4567     }
4568   }
4569
4570   auto SISDMap = makeArrayRef(AArch64SISDIntrinsicMap);
4571   const NeonIntrinsicInfo *Builtin = findNeonIntrinsicInMap(
4572       SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted);
4573
4574   if (Builtin) {
4575     Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1)));
4576     Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E);
4577     assert(Result && "SISD intrinsic should have been handled");
4578     return Result;
4579   }
4580
4581   llvm::APSInt Result;
4582   const Expr *Arg = E->getArg(E->getNumArgs()-1);
4583   NeonTypeFlags Type(0);
4584   if (Arg->isIntegerConstantExpr(Result, getContext()))
4585     // Determine the type of this overloaded NEON intrinsic.
4586     Type = NeonTypeFlags(Result.getZExtValue());
4587
4588   bool usgn = Type.isUnsigned();
4589   bool quad = Type.isQuad();
4590
4591   // Handle non-overloaded intrinsics first.
4592   switch (BuiltinID) {
4593   default: break;
4594   case NEON::BI__builtin_neon_vldrq_p128: {
4595     llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128);
4596     Value *Ptr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PTy);
4597     return Builder.CreateDefaultAlignedLoad(Ptr);
4598   }
4599   case NEON::BI__builtin_neon_vstrq_p128: {
4600     llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128);
4601     Value *Ptr = Builder.CreateBitCast(Ops[0], Int128PTy);
4602     return Builder.CreateDefaultAlignedStore(EmitScalarExpr(E->getArg(1)), Ptr);
4603   }
4604   case NEON::BI__builtin_neon_vcvts_u32_f32:
4605   case NEON::BI__builtin_neon_vcvtd_u64_f64:
4606     usgn = true;
4607     // FALL THROUGH
4608   case NEON::BI__builtin_neon_vcvts_s32_f32:
4609   case NEON::BI__builtin_neon_vcvtd_s64_f64: {
4610     Ops.push_back(EmitScalarExpr(E->getArg(0)));
4611     bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
4612     llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
4613     llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
4614     Ops[0] = Builder.CreateBitCast(Ops[0], FTy);
4615     if (usgn)
4616       return Builder.CreateFPToUI(Ops[0], InTy);
4617     return Builder.CreateFPToSI(Ops[0], InTy);
4618   }
4619   case NEON::BI__builtin_neon_vcvts_f32_u32:
4620   case NEON::BI__builtin_neon_vcvtd_f64_u64:
4621     usgn = true;
4622     // FALL THROUGH
4623   case NEON::BI__builtin_neon_vcvts_f32_s32:
4624   case NEON::BI__builtin_neon_vcvtd_f64_s64: {
4625     Ops.push_back(EmitScalarExpr(E->getArg(0)));
4626     bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
4627     llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
4628     llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
4629     Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
4630     if (usgn)
4631       return Builder.CreateUIToFP(Ops[0], FTy);
4632     return Builder.CreateSIToFP(Ops[0], FTy);
4633   }
4634   case NEON::BI__builtin_neon_vpaddd_s64: {
4635     llvm::Type *Ty = llvm::VectorType::get(Int64Ty, 2);
4636     Value *Vec = EmitScalarExpr(E->getArg(0));
4637     // The vector is v2f64, so make sure it's bitcast to that.
4638     Vec = Builder.CreateBitCast(Vec, Ty, "v2i64");
4639     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
4640     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
4641     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
4642     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
4643     // Pairwise addition of a v2f64 into a scalar f64.
4644     return Builder.CreateAdd(Op0, Op1, "vpaddd");
4645   }
4646   case NEON::BI__builtin_neon_vpaddd_f64: {
4647     llvm::Type *Ty =
4648       llvm::VectorType::get(DoubleTy, 2);
4649     Value *Vec = EmitScalarExpr(E->getArg(0));
4650     // The vector is v2f64, so make sure it's bitcast to that.
4651     Vec = Builder.CreateBitCast(Vec, Ty, "v2f64");
4652     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
4653     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
4654     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
4655     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
4656     // Pairwise addition of a v2f64 into a scalar f64.
4657     return Builder.CreateFAdd(Op0, Op1, "vpaddd");
4658   }
4659   case NEON::BI__builtin_neon_vpadds_f32: {
4660     llvm::Type *Ty =
4661       llvm::VectorType::get(FloatTy, 2);
4662     Value *Vec = EmitScalarExpr(E->getArg(0));
4663     // The vector is v2f32, so make sure it's bitcast to that.
4664     Vec = Builder.CreateBitCast(Vec, Ty, "v2f32");
4665     llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
4666     llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
4667     Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
4668     Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
4669     // Pairwise addition of a v2f32 into a scalar f32.
4670     return Builder.CreateFAdd(Op0, Op1, "vpaddd");
4671   }
4672   case NEON::BI__builtin_neon_vceqzd_s64:
4673   case NEON::BI__builtin_neon_vceqzd_f64:
4674   case NEON::BI__builtin_neon_vceqzs_f32:
4675     Ops.push_back(EmitScalarExpr(E->getArg(0)));
4676     return EmitAArch64CompareBuiltinExpr(
4677         Ops[0], ConvertType(E->getCallReturnType(getContext())),
4678         ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz");
4679   case NEON::BI__builtin_neon_vcgezd_s64:
4680   case NEON::BI__builtin_neon_vcgezd_f64:
4681   case NEON::BI__builtin_neon_vcgezs_f32:
4682     Ops.push_back(EmitScalarExpr(E->getArg(0)));
4683     return EmitAArch64CompareBuiltinExpr(
4684         Ops[0], ConvertType(E->getCallReturnType(getContext())),
4685         ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez");
4686   case NEON::BI__builtin_neon_vclezd_s64:
4687   case NEON::BI__builtin_neon_vclezd_f64:
4688   case NEON::BI__builtin_neon_vclezs_f32:
4689     Ops.push_back(EmitScalarExpr(E->getArg(0)));
4690     return EmitAArch64CompareBuiltinExpr(
4691         Ops[0], ConvertType(E->getCallReturnType(getContext())),
4692         ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez");
4693   case NEON::BI__builtin_neon_vcgtzd_s64:
4694   case NEON::BI__builtin_neon_vcgtzd_f64:
4695   case NEON::BI__builtin_neon_vcgtzs_f32:
4696     Ops.push_back(EmitScalarExpr(E->getArg(0)));
4697     return EmitAArch64CompareBuiltinExpr(
4698         Ops[0], ConvertType(E->getCallReturnType(getContext())),
4699         ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz");
4700   case NEON::BI__builtin_neon_vcltzd_s64:
4701   case NEON::BI__builtin_neon_vcltzd_f64:
4702   case NEON::BI__builtin_neon_vcltzs_f32:
4703     Ops.push_back(EmitScalarExpr(E->getArg(0)));
4704     return EmitAArch64CompareBuiltinExpr(
4705         Ops[0], ConvertType(E->getCallReturnType(getContext())),
4706         ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz");
4707
4708   case NEON::BI__builtin_neon_vceqzd_u64: {
4709     Ops.push_back(EmitScalarExpr(E->getArg(0)));
4710     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
4711     Ops[0] =
4712         Builder.CreateICmpEQ(Ops[0], llvm::Constant::getNullValue(Int64Ty));
4713     return Builder.CreateSExt(Ops[0], Int64Ty, "vceqzd");
4714   }
4715   case NEON::BI__builtin_neon_vceqd_f64:
4716   case NEON::BI__builtin_neon_vcled_f64:
4717   case NEON::BI__builtin_neon_vcltd_f64:
4718   case NEON::BI__builtin_neon_vcged_f64:
4719   case NEON::BI__builtin_neon_vcgtd_f64: {
4720     llvm::CmpInst::Predicate P;
4721     switch (BuiltinID) {
4722     default: llvm_unreachable("missing builtin ID in switch!");
4723     case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break;
4724     case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break;
4725     case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break;
4726     case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break;
4727     case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break;
4728     }
4729     Ops.push_back(EmitScalarExpr(E->getArg(1)));
4730     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
4731     Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
4732     Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
4733     return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd");
4734   }
4735   case NEON::BI__builtin_neon_vceqs_f32:
4736   case NEON::BI__builtin_neon_vcles_f32:
4737   case NEON::BI__builtin_neon_vclts_f32:
4738   case NEON::BI__builtin_neon_vcges_f32:
4739   case NEON::BI__builtin_neon_vcgts_f32: {
4740     llvm::CmpInst::Predicate P;
4741     switch (BuiltinID) {
4742     default: llvm_unreachable("missing builtin ID in switch!");
4743     case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break;
4744     case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break;
4745     case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break;
4746     case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break;
4747     case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break;
4748     }
4749     Ops.push_back(EmitScalarExpr(E->getArg(1)));
4750     Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
4751     Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy);
4752     Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
4753     return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd");
4754   }
4755   case NEON::BI__builtin_neon_vceqd_s64:
4756   case NEON::BI__builtin_neon_vceqd_u64:
4757   case NEON::BI__builtin_neon_vcgtd_s64:
4758   case NEON::BI__builtin_neon_vcgtd_u64:
4759   case NEON::BI__builtin_neon_vcltd_s64:
4760   case NEON::BI__builtin_neon_vcltd_u64:
4761   case NEON::BI__builtin_neon_vcged_u64:
4762   case NEON::BI__builtin_neon_vcged_s64:
4763   case NEON::BI__builtin_neon_vcled_u64:
4764   case NEON::BI__builtin_neon_vcled_s64: {
4765     llvm::CmpInst::Predicate P;
4766     switch (BuiltinID) {
4767     default: llvm_unreachable("missing builtin ID in switch!");
4768     case NEON::BI__builtin_neon_vceqd_s64:
4769     case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break;
4770     case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break;
4771     case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break;
4772     case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break;
4773     case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break;
4774     case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break;
4775     case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break;
4776     case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break;
4777     case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break;
4778     }
4779     Ops.push_back(EmitScalarExpr(E->getArg(1)));
4780     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
4781     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
4782     Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]);
4783     return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd");
4784   }
4785   case NEON::BI__builtin_neon_vtstd_s64:
4786   case NEON::BI__builtin_neon_vtstd_u64: {
4787     Ops.push_back(EmitScalarExpr(E->getArg(1)));
4788     Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
4789     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
4790     Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
4791     Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
4792                                 llvm::Constant::getNullValue(Int64Ty));
4793     return Builder.CreateSExt(Ops[0], Int64Ty, "vtstd");
4794   }
4795   case NEON::BI__builtin_neon_vset_lane_i8:
4796   case NEON::BI__builtin_neon_vset_lane_i16:
4797   case NEON::BI__builtin_neon_vset_lane_i32:
4798   case NEON::BI__builtin_neon_vset_lane_i64:
4799   case NEON::BI__builtin_neon_vset_lane_f32:
4800   case NEON::BI__builtin_neon_vsetq_lane_i8:
4801   case NEON::BI__builtin_neon_vsetq_lane_i16:
4802   case NEON::BI__builtin_neon_vsetq_lane_i32:
4803   case NEON::BI__builtin_neon_vsetq_lane_i64:
4804   case NEON::BI__builtin_neon_vsetq_lane_f32:
4805     Ops.push_back(EmitScalarExpr(E->getArg(2)));
4806     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
4807   case NEON::BI__builtin_neon_vset_lane_f64:
4808     // The vector type needs a cast for the v1f64 variant.
4809     Ops[1] = Builder.CreateBitCast(Ops[1],
4810                                    llvm::VectorType::get(DoubleTy, 1));
4811     Ops.push_back(EmitScalarExpr(E->getArg(2)));
4812     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
4813   case NEON::BI__builtin_neon_vsetq_lane_f64:
4814     // The vector type needs a cast for the v2f64 variant.
4815     Ops[1] = Builder.CreateBitCast(Ops[1],
4816         llvm::VectorType::get(DoubleTy, 2));
4817     Ops.push_back(EmitScalarExpr(E->getArg(2)));
4818     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
4819
4820   case NEON::BI__builtin_neon_vget_lane_i8:
4821   case NEON::BI__builtin_neon_vdupb_lane_i8:
4822     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int8Ty, 8));
4823     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
4824                                         "vget_lane");
4825   case NEON::BI__builtin_neon_vgetq_lane_i8:
4826   case NEON::BI__builtin_neon_vdupb_laneq_i8:
4827     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int8Ty, 16));
4828     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
4829                                         "vgetq_lane");
4830   case NEON::BI__builtin_neon_vget_lane_i16:
4831   case NEON::BI__builtin_neon_vduph_lane_i16:
4832     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int16Ty, 4));
4833     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
4834                                         "vget_lane");
4835   case NEON::BI__builtin_neon_vgetq_lane_i16:
4836   case NEON::BI__builtin_neon_vduph_laneq_i16:
4837     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int16Ty, 8));
4838     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
4839                                         "vgetq_lane");
4840   case NEON::BI__builtin_neon_vget_lane_i32:
4841   case NEON::BI__builtin_neon_vdups_lane_i32:
4842     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 2));
4843     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
4844                                         "vget_lane");
4845   case NEON::BI__builtin_neon_vdups_lane_f32:
4846     Ops[0] = Builder.CreateBitCast(Ops[0],
4847         llvm::VectorType::get(FloatTy, 2));
4848     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
4849                                         "vdups_lane");
4850   case NEON::BI__builtin_neon_vgetq_lane_i32:
4851   case NEON::BI__builtin_neon_vdups_laneq_i32:
4852     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4));
4853     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
4854                                         "vgetq_lane");
4855   case NEON::BI__builtin_neon_vget_lane_i64:
4856   case NEON::BI__builtin_neon_vdupd_lane_i64:
4857     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 1));
4858     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
4859                                         "vget_lane");
4860   case NEON::BI__builtin_neon_vdupd_lane_f64:
4861     Ops[0] = Builder.CreateBitCast(Ops[0],
4862         llvm::VectorType::get(DoubleTy, 1));
4863     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
4864                                         "vdupd_lane");
4865   case NEON::BI__builtin_neon_vgetq_lane_i64:
4866   case NEON::BI__builtin_neon_vdupd_laneq_i64:
4867     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
4868     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
4869                                         "vgetq_lane");
4870   case NEON::BI__builtin_neon_vget_lane_f32:
4871     Ops[0] = Builder.CreateBitCast(Ops[0],
4872         llvm::VectorType::get(FloatTy, 2));
4873     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
4874                                         "vget_lane");
4875   case NEON::BI__builtin_neon_vget_lane_f64:
4876     Ops[0] = Builder.CreateBitCast(Ops[0],
4877         llvm::VectorType::get(DoubleTy, 1));
4878     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
4879                                         "vget_lane");
4880   case NEON::BI__builtin_neon_vgetq_lane_f32:
4881   case NEON::BI__builtin_neon_vdups_laneq_f32:
4882     Ops[0] = Builder.CreateBitCast(Ops[0],
4883         llvm::VectorType::get(FloatTy, 4));
4884     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
4885                                         "vgetq_lane");
4886   case NEON::BI__builtin_neon_vgetq_lane_f64:
4887   case NEON::BI__builtin_neon_vdupd_laneq_f64:
4888     Ops[0] = Builder.CreateBitCast(Ops[0],
4889         llvm::VectorType::get(DoubleTy, 2));
4890     return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
4891                                         "vgetq_lane");
4892   case NEON::BI__builtin_neon_vaddd_s64:
4893   case NEON::BI__builtin_neon_vaddd_u64:
4894     return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd");
4895   case NEON::BI__builtin_neon_vsubd_s64:
4896   case NEON::BI__builtin_neon_vsubd_u64:
4897     return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd");
4898   case NEON::BI__builtin_neon_vqdmlalh_s16:
4899   case NEON::BI__builtin_neon_vqdmlslh_s16: {
4900     SmallVector<Value *, 2> ProductOps;
4901     ProductOps.push_back(vectorWrapScalar16(Ops[1]));
4902     ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2))));
4903     llvm::Type *VTy = llvm::VectorType::get(Int32Ty, 4);
4904     Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
4905                           ProductOps, "vqdmlXl");
4906     Constant *CI = ConstantInt::get(SizeTy, 0);
4907     Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
4908
4909     unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16
4910                                         ? Intrinsic::aarch64_neon_sqadd
4911                                         : Intrinsic::aarch64_neon_sqsub;
4912     return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl");
4913   }
4914   case NEON::BI__builtin_neon_vqshlud_n_s64: {
4915     Ops.push_back(EmitScalarExpr(E->getArg(1)));
4916     Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
4917     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty),
4918                         Ops, "vqshlu_n");
4919   }
4920   case NEON::BI__builtin_neon_vqshld_n_u64:
4921   case NEON::BI__builtin_neon_vqshld_n_s64: {
4922     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64
4923                                    ? Intrinsic::aarch64_neon_uqshl
4924                                    : Intrinsic::aarch64_neon_sqshl;
4925     Ops.push_back(EmitScalarExpr(E->getArg(1)));
4926     Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
4927     return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n");
4928   }
4929   case NEON::BI__builtin_neon_vrshrd_n_u64:
4930   case NEON::BI__builtin_neon_vrshrd_n_s64: {
4931     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64
4932                                    ? Intrinsic::aarch64_neon_urshl
4933                                    : Intrinsic::aarch64_neon_srshl;
4934     Ops.push_back(EmitScalarExpr(E->getArg(1)));
4935     int SV = cast<ConstantInt>(Ops[1])->getSExtValue();
4936     Ops[1] = ConstantInt::get(Int64Ty, -SV);
4937     return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n");
4938   }
4939   case NEON::BI__builtin_neon_vrsrad_n_u64:
4940   case NEON::BI__builtin_neon_vrsrad_n_s64: {
4941     unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64
4942                                    ? Intrinsic::aarch64_neon_urshl
4943                                    : Intrinsic::aarch64_neon_srshl;
4944     Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
4945     Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2))));
4946     Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty),
4947                                 {Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)});
4948     return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty));
4949   }
4950   case NEON::BI__builtin_neon_vshld_n_s64:
4951   case NEON::BI__builtin_neon_vshld_n_u64: {
4952     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
4953     return Builder.CreateShl(
4954         Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n");
4955   }
4956   case NEON::BI__builtin_neon_vshrd_n_s64: {
4957     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
4958     return Builder.CreateAShr(
4959         Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
4960                                                    Amt->getZExtValue())),
4961         "shrd_n");
4962   }
4963   case NEON::BI__builtin_neon_vshrd_n_u64: {
4964     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
4965     uint64_t ShiftAmt = Amt->getZExtValue();
4966     // Right-shifting an unsigned value by its size yields 0.
4967     if (ShiftAmt == 64)
4968       return ConstantInt::get(Int64Ty, 0);
4969     return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt),
4970                               "shrd_n");
4971   }
4972   case NEON::BI__builtin_neon_vsrad_n_s64: {
4973     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
4974     Ops[1] = Builder.CreateAShr(
4975         Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
4976                                                    Amt->getZExtValue())),
4977         "shrd_n");
4978     return Builder.CreateAdd(Ops[0], Ops[1]);
4979   }
4980   case NEON::BI__builtin_neon_vsrad_n_u64: {
4981     llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
4982     uint64_t ShiftAmt = Amt->getZExtValue();
4983     // Right-shifting an unsigned value by its size yields 0.
4984     // As Op + 0 = Op, return Ops[0] directly.
4985     if (ShiftAmt == 64)
4986       return Ops[0];
4987     Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt),
4988                                 "shrd_n");
4989     return Builder.CreateAdd(Ops[0], Ops[1]);
4990   }
4991   case NEON::BI__builtin_neon_vqdmlalh_lane_s16:
4992   case NEON::BI__builtin_neon_vqdmlalh_laneq_s16:
4993   case NEON::BI__builtin_neon_vqdmlslh_lane_s16:
4994   case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: {
4995     Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
4996                                           "lane");
4997     SmallVector<Value *, 2> ProductOps;
4998     ProductOps.push_back(vectorWrapScalar16(Ops[1]));
4999     ProductOps.push_back(vectorWrapScalar16(Ops[2]));
5000     llvm::Type *VTy = llvm::VectorType::get(Int32Ty, 4);
5001     Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
5002                           ProductOps, "vqdmlXl");
5003     Constant *CI = ConstantInt::get(SizeTy, 0);
5004     Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
5005     Ops.pop_back();
5006
5007     unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 ||
5008                        BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16)
5009                           ? Intrinsic::aarch64_neon_sqadd
5010                           : Intrinsic::aarch64_neon_sqsub;
5011     return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl");
5012   }
5013   case NEON::BI__builtin_neon_vqdmlals_s32:
5014   case NEON::BI__builtin_neon_vqdmlsls_s32: {
5015     SmallVector<Value *, 2> ProductOps;
5016     ProductOps.push_back(Ops[1]);
5017     ProductOps.push_back(EmitScalarExpr(E->getArg(2)));
5018     Ops[1] =
5019         EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
5020                      ProductOps, "vqdmlXl");
5021
5022     unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32
5023                                         ? Intrinsic::aarch64_neon_sqadd
5024                                         : Intrinsic::aarch64_neon_sqsub;
5025     return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl");
5026   }
5027   case NEON::BI__builtin_neon_vqdmlals_lane_s32:
5028   case NEON::BI__builtin_neon_vqdmlals_laneq_s32:
5029   case NEON::BI__builtin_neon_vqdmlsls_lane_s32:
5030   case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: {
5031     Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
5032                                           "lane");
5033     SmallVector<Value *, 2> ProductOps;
5034     ProductOps.push_back(Ops[1]);
5035     ProductOps.push_back(Ops[2]);
5036     Ops[1] =
5037         EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
5038                      ProductOps, "vqdmlXl");
5039     Ops.pop_back();
5040
5041     unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 ||
5042                        BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32)
5043                           ? Intrinsic::aarch64_neon_sqadd
5044                           : Intrinsic::aarch64_neon_sqsub;
5045     return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl");
5046   }
5047   }
5048
5049   llvm::VectorType *VTy = GetNeonType(this, Type);
5050   llvm::Type *Ty = VTy;
5051   if (!Ty)
5052     return nullptr;
5053
5054   // Not all intrinsics handled by the common case work for AArch64 yet, so only
5055   // defer to common code if it's been added to our special map.
5056   Builtin = findNeonIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID,
5057                                    AArch64SIMDIntrinsicsProvenSorted);
5058
5059   if (Builtin)
5060     return EmitCommonNeonBuiltinExpr(
5061         Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
5062         Builtin->NameHint, Builtin->TypeModifier, E, Ops,
5063         /*never use addresses*/ Address::invalid(), Address::invalid());
5064
5065   if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops))
5066     return V;
5067
5068   unsigned Int;
5069   switch (BuiltinID) {
5070   default: return nullptr;
5071   case NEON::BI__builtin_neon_vbsl_v:
5072   case NEON::BI__builtin_neon_vbslq_v: {
5073     llvm::Type *BitTy = llvm::VectorType::getInteger(VTy);
5074     Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl");
5075     Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl");
5076     Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl");
5077
5078     Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl");
5079     Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl");
5080     Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl");
5081     return Builder.CreateBitCast(Ops[0], Ty);
5082   }
5083   case NEON::BI__builtin_neon_vfma_lane_v:
5084   case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types
5085     // The ARM builtins (and instructions) have the addend as the first
5086     // operand, but the 'fma' intrinsics have it last. Swap it around here.
5087     Value *Addend = Ops[0];
5088     Value *Multiplicand = Ops[1];
5089     Value *LaneSource = Ops[2];
5090     Ops[0] = Multiplicand;
5091     Ops[1] = LaneSource;
5092     Ops[2] = Addend;
5093
5094     // Now adjust things to handle the lane access.
5095     llvm::Type *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v ?
5096       llvm::VectorType::get(VTy->getElementType(), VTy->getNumElements() / 2) :
5097       VTy;
5098     llvm::Constant *cst = cast<Constant>(Ops[3]);
5099     Value *SV = llvm::ConstantVector::getSplat(VTy->getNumElements(), cst);
5100     Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy);
5101     Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane");
5102
5103     Ops.pop_back();
5104     Int = Intrinsic::fma;
5105     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla");
5106   }
5107   case NEON::BI__builtin_neon_vfma_laneq_v: {
5108     llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
5109     // v1f64 fma should be mapped to Neon scalar f64 fma
5110     if (VTy && VTy->getElementType() == DoubleTy) {
5111       Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
5112       Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
5113       llvm::Type *VTy = GetNeonType(this,
5114         NeonTypeFlags(NeonTypeFlags::Float64, false, true));
5115       Ops[2] = Builder.CreateBitCast(Ops[2], VTy);
5116       Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
5117       Value *F = CGM.getIntrinsic(Intrinsic::fma, DoubleTy);
5118       Value *Result = Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
5119       return Builder.CreateBitCast(Result, Ty);
5120     }
5121     Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
5122     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5123     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5124
5125     llvm::Type *STy = llvm::VectorType::get(VTy->getElementType(),
5126                                             VTy->getNumElements() * 2);
5127     Ops[2] = Builder.CreateBitCast(Ops[2], STy);
5128     Value* SV = llvm::ConstantVector::getSplat(VTy->getNumElements(),
5129                                                cast<ConstantInt>(Ops[3]));
5130     Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane");
5131
5132     return Builder.CreateCall(F, {Ops[2], Ops[1], Ops[0]});
5133   }
5134   case NEON::BI__builtin_neon_vfmaq_laneq_v: {
5135     Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
5136     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5137     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5138
5139     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
5140     Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3]));
5141     return Builder.CreateCall(F, {Ops[2], Ops[1], Ops[0]});
5142   }
5143   case NEON::BI__builtin_neon_vfmas_lane_f32:
5144   case NEON::BI__builtin_neon_vfmas_laneq_f32:
5145   case NEON::BI__builtin_neon_vfmad_lane_f64:
5146   case NEON::BI__builtin_neon_vfmad_laneq_f64: {
5147     Ops.push_back(EmitScalarExpr(E->getArg(3)));
5148     llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
5149     Value *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
5150     Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
5151     return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
5152   }
5153   case NEON::BI__builtin_neon_vfms_v:
5154   case NEON::BI__builtin_neon_vfmsq_v: {  // Only used for FP types
5155     // FIXME: probably remove when we no longer support aarch64_simd.h
5156     // (arm_neon.h delegates to vfma).
5157
5158     // The ARM builtins (and instructions) have the addend as the first
5159     // operand, but the 'fma' intrinsics have it last. Swap it around here.
5160     Value *Subtrahend = Ops[0];
5161     Value *Multiplicand = Ops[2];
5162     Ops[0] = Multiplicand;
5163     Ops[2] = Subtrahend;
5164     Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
5165     Ops[1] = Builder.CreateFNeg(Ops[1]);
5166     Int = Intrinsic::fma;
5167     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmls");
5168   }
5169   case NEON::BI__builtin_neon_vmull_v:
5170     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
5171     Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull;
5172     if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull;
5173     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
5174   case NEON::BI__builtin_neon_vmax_v:
5175   case NEON::BI__builtin_neon_vmaxq_v:
5176     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
5177     Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax;
5178     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax;
5179     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
5180   case NEON::BI__builtin_neon_vmin_v:
5181   case NEON::BI__builtin_neon_vminq_v:
5182     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
5183     Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin;
5184     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin;
5185     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
5186   case NEON::BI__builtin_neon_vabd_v:
5187   case NEON::BI__builtin_neon_vabdq_v:
5188     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
5189     Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd;
5190     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd;
5191     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
5192   case NEON::BI__builtin_neon_vpadal_v:
5193   case NEON::BI__builtin_neon_vpadalq_v: {
5194     unsigned ArgElts = VTy->getNumElements();
5195     llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType());
5196     unsigned BitWidth = EltTy->getBitWidth();
5197     llvm::Type *ArgTy = llvm::VectorType::get(
5198         llvm::IntegerType::get(getLLVMContext(), BitWidth/2), 2*ArgElts);
5199     llvm::Type* Tys[2] = { VTy, ArgTy };
5200     Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp;
5201     SmallVector<llvm::Value*, 1> TmpOps;
5202     TmpOps.push_back(Ops[1]);
5203     Function *F = CGM.getIntrinsic(Int, Tys);
5204     llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal");
5205     llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType());
5206     return Builder.CreateAdd(tmp, addend);
5207   }
5208   case NEON::BI__builtin_neon_vpmin_v:
5209   case NEON::BI__builtin_neon_vpminq_v:
5210     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
5211     Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp;
5212     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp;
5213     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
5214   case NEON::BI__builtin_neon_vpmax_v:
5215   case NEON::BI__builtin_neon_vpmaxq_v:
5216     // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
5217     Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp;
5218     if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp;
5219     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
5220   case NEON::BI__builtin_neon_vminnm_v:
5221   case NEON::BI__builtin_neon_vminnmq_v:
5222     Int = Intrinsic::aarch64_neon_fminnm;
5223     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm");
5224   case NEON::BI__builtin_neon_vmaxnm_v:
5225   case NEON::BI__builtin_neon_vmaxnmq_v:
5226     Int = Intrinsic::aarch64_neon_fmaxnm;
5227     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm");
5228   case NEON::BI__builtin_neon_vrecpss_f32: {
5229     Ops.push_back(EmitScalarExpr(E->getArg(1)));
5230     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, FloatTy),
5231                         Ops, "vrecps");
5232   }
5233   case NEON::BI__builtin_neon_vrecpsd_f64: {
5234     Ops.push_back(EmitScalarExpr(E->getArg(1)));
5235     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, DoubleTy),
5236                         Ops, "vrecps");
5237   }
5238   case NEON::BI__builtin_neon_vqshrun_n_v:
5239     Int = Intrinsic::aarch64_neon_sqshrun;
5240     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n");
5241   case NEON::BI__builtin_neon_vqrshrun_n_v:
5242     Int = Intrinsic::aarch64_neon_sqrshrun;
5243     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n");
5244   case NEON::BI__builtin_neon_vqshrn_n_v:
5245     Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn;
5246     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n");
5247   case NEON::BI__builtin_neon_vrshrn_n_v:
5248     Int = Intrinsic::aarch64_neon_rshrn;
5249     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n");
5250   case NEON::BI__builtin_neon_vqrshrn_n_v:
5251     Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn;
5252     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n");
5253   case NEON::BI__builtin_neon_vrnda_v:
5254   case NEON::BI__builtin_neon_vrndaq_v: {
5255     Int = Intrinsic::round;
5256     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda");
5257   }
5258   case NEON::BI__builtin_neon_vrndi_v:
5259   case NEON::BI__builtin_neon_vrndiq_v: {
5260     Int = Intrinsic::nearbyint;
5261     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndi");
5262   }
5263   case NEON::BI__builtin_neon_vrndm_v:
5264   case NEON::BI__builtin_neon_vrndmq_v: {
5265     Int = Intrinsic::floor;
5266     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm");
5267   }
5268   case NEON::BI__builtin_neon_vrndn_v:
5269   case NEON::BI__builtin_neon_vrndnq_v: {
5270     Int = Intrinsic::aarch64_neon_frintn;
5271     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn");
5272   }
5273   case NEON::BI__builtin_neon_vrndp_v:
5274   case NEON::BI__builtin_neon_vrndpq_v: {
5275     Int = Intrinsic::ceil;
5276     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp");
5277   }
5278   case NEON::BI__builtin_neon_vrndx_v:
5279   case NEON::BI__builtin_neon_vrndxq_v: {
5280     Int = Intrinsic::rint;
5281     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx");
5282   }
5283   case NEON::BI__builtin_neon_vrnd_v:
5284   case NEON::BI__builtin_neon_vrndq_v: {
5285     Int = Intrinsic::trunc;
5286     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz");
5287   }
5288   case NEON::BI__builtin_neon_vceqz_v:
5289   case NEON::BI__builtin_neon_vceqzq_v:
5290     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ,
5291                                          ICmpInst::ICMP_EQ, "vceqz");
5292   case NEON::BI__builtin_neon_vcgez_v:
5293   case NEON::BI__builtin_neon_vcgezq_v:
5294     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE,
5295                                          ICmpInst::ICMP_SGE, "vcgez");
5296   case NEON::BI__builtin_neon_vclez_v:
5297   case NEON::BI__builtin_neon_vclezq_v:
5298     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE,
5299                                          ICmpInst::ICMP_SLE, "vclez");
5300   case NEON::BI__builtin_neon_vcgtz_v:
5301   case NEON::BI__builtin_neon_vcgtzq_v:
5302     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT,
5303                                          ICmpInst::ICMP_SGT, "vcgtz");
5304   case NEON::BI__builtin_neon_vcltz_v:
5305   case NEON::BI__builtin_neon_vcltzq_v:
5306     return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT,
5307                                          ICmpInst::ICMP_SLT, "vcltz");
5308   case NEON::BI__builtin_neon_vcvt_f64_v:
5309   case NEON::BI__builtin_neon_vcvtq_f64_v:
5310     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5311     Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad));
5312     return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
5313                 : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
5314   case NEON::BI__builtin_neon_vcvt_f64_f32: {
5315     assert(Type.getEltType() == NeonTypeFlags::Float64 && quad &&
5316            "unexpected vcvt_f64_f32 builtin");
5317     NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false);
5318     Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
5319
5320     return Builder.CreateFPExt(Ops[0], Ty, "vcvt");
5321   }
5322   case NEON::BI__builtin_neon_vcvt_f32_f64: {
5323     assert(Type.getEltType() == NeonTypeFlags::Float32 &&
5324            "unexpected vcvt_f32_f64 builtin");
5325     NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true);
5326     Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
5327
5328     return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt");
5329   }
5330   case NEON::BI__builtin_neon_vcvt_s32_v:
5331   case NEON::BI__builtin_neon_vcvt_u32_v:
5332   case NEON::BI__builtin_neon_vcvt_s64_v:
5333   case NEON::BI__builtin_neon_vcvt_u64_v:
5334   case NEON::BI__builtin_neon_vcvtq_s32_v:
5335   case NEON::BI__builtin_neon_vcvtq_u32_v:
5336   case NEON::BI__builtin_neon_vcvtq_s64_v:
5337   case NEON::BI__builtin_neon_vcvtq_u64_v: {
5338     Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
5339     if (usgn)
5340       return Builder.CreateFPToUI(Ops[0], Ty);
5341     return Builder.CreateFPToSI(Ops[0], Ty);
5342   }
5343   case NEON::BI__builtin_neon_vcvta_s32_v:
5344   case NEON::BI__builtin_neon_vcvtaq_s32_v:
5345   case NEON::BI__builtin_neon_vcvta_u32_v:
5346   case NEON::BI__builtin_neon_vcvtaq_u32_v:
5347   case NEON::BI__builtin_neon_vcvta_s64_v:
5348   case NEON::BI__builtin_neon_vcvtaq_s64_v:
5349   case NEON::BI__builtin_neon_vcvta_u64_v:
5350   case NEON::BI__builtin_neon_vcvtaq_u64_v: {
5351     Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas;
5352     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
5353     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta");
5354   }
5355   case NEON::BI__builtin_neon_vcvtm_s32_v:
5356   case NEON::BI__builtin_neon_vcvtmq_s32_v:
5357   case NEON::BI__builtin_neon_vcvtm_u32_v:
5358   case NEON::BI__builtin_neon_vcvtmq_u32_v:
5359   case NEON::BI__builtin_neon_vcvtm_s64_v:
5360   case NEON::BI__builtin_neon_vcvtmq_s64_v:
5361   case NEON::BI__builtin_neon_vcvtm_u64_v:
5362   case NEON::BI__builtin_neon_vcvtmq_u64_v: {
5363     Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms;
5364     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
5365     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm");
5366   }
5367   case NEON::BI__builtin_neon_vcvtn_s32_v:
5368   case NEON::BI__builtin_neon_vcvtnq_s32_v:
5369   case NEON::BI__builtin_neon_vcvtn_u32_v:
5370   case NEON::BI__builtin_neon_vcvtnq_u32_v:
5371   case NEON::BI__builtin_neon_vcvtn_s64_v:
5372   case NEON::BI__builtin_neon_vcvtnq_s64_v:
5373   case NEON::BI__builtin_neon_vcvtn_u64_v:
5374   case NEON::BI__builtin_neon_vcvtnq_u64_v: {
5375     Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns;
5376     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
5377     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn");
5378   }
5379   case NEON::BI__builtin_neon_vcvtp_s32_v:
5380   case NEON::BI__builtin_neon_vcvtpq_s32_v:
5381   case NEON::BI__builtin_neon_vcvtp_u32_v:
5382   case NEON::BI__builtin_neon_vcvtpq_u32_v:
5383   case NEON::BI__builtin_neon_vcvtp_s64_v:
5384   case NEON::BI__builtin_neon_vcvtpq_s64_v:
5385   case NEON::BI__builtin_neon_vcvtp_u64_v:
5386   case NEON::BI__builtin_neon_vcvtpq_u64_v: {
5387     Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps;
5388     llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
5389     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp");
5390   }
5391   case NEON::BI__builtin_neon_vmulx_v:
5392   case NEON::BI__builtin_neon_vmulxq_v: {
5393     Int = Intrinsic::aarch64_neon_fmulx;
5394     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx");
5395   }
5396   case NEON::BI__builtin_neon_vmul_lane_v:
5397   case NEON::BI__builtin_neon_vmul_laneq_v: {
5398     // v1f64 vmul_lane should be mapped to Neon scalar mul lane
5399     bool Quad = false;
5400     if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v)
5401       Quad = true;
5402     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
5403     llvm::Type *VTy = GetNeonType(this,
5404       NeonTypeFlags(NeonTypeFlags::Float64, false, Quad));
5405     Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
5406     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
5407     Value *Result = Builder.CreateFMul(Ops[0], Ops[1]);
5408     return Builder.CreateBitCast(Result, Ty);
5409   }
5410   case NEON::BI__builtin_neon_vnegd_s64:
5411     return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd");
5412   case NEON::BI__builtin_neon_vpmaxnm_v:
5413   case NEON::BI__builtin_neon_vpmaxnmq_v: {
5414     Int = Intrinsic::aarch64_neon_fmaxnmp;
5415     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm");
5416   }
5417   case NEON::BI__builtin_neon_vpminnm_v:
5418   case NEON::BI__builtin_neon_vpminnmq_v: {
5419     Int = Intrinsic::aarch64_neon_fminnmp;
5420     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm");
5421   }
5422   case NEON::BI__builtin_neon_vsqrt_v:
5423   case NEON::BI__builtin_neon_vsqrtq_v: {
5424     Int = Intrinsic::sqrt;
5425     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5426     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt");
5427   }
5428   case NEON::BI__builtin_neon_vrbit_v:
5429   case NEON::BI__builtin_neon_vrbitq_v: {
5430     Int = Intrinsic::aarch64_neon_rbit;
5431     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit");
5432   }
5433   case NEON::BI__builtin_neon_vaddv_u8:
5434     // FIXME: These are handled by the AArch64 scalar code.
5435     usgn = true;
5436     // FALLTHROUGH
5437   case NEON::BI__builtin_neon_vaddv_s8: {
5438     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
5439     Ty = Int32Ty;
5440     VTy = llvm::VectorType::get(Int8Ty, 8);
5441     llvm::Type *Tys[2] = { Ty, VTy };
5442     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5443     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
5444     return Builder.CreateTrunc(Ops[0], Int8Ty);
5445   }
5446   case NEON::BI__builtin_neon_vaddv_u16:
5447     usgn = true;
5448     // FALLTHROUGH
5449   case NEON::BI__builtin_neon_vaddv_s16: {
5450     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
5451     Ty = Int32Ty;
5452     VTy = llvm::VectorType::get(Int16Ty, 4);
5453     llvm::Type *Tys[2] = { Ty, VTy };
5454     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5455     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
5456     return Builder.CreateTrunc(Ops[0], Int16Ty);
5457   }
5458   case NEON::BI__builtin_neon_vaddvq_u8:
5459     usgn = true;
5460     // FALLTHROUGH
5461   case NEON::BI__builtin_neon_vaddvq_s8: {
5462     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
5463     Ty = Int32Ty;
5464     VTy = llvm::VectorType::get(Int8Ty, 16);
5465     llvm::Type *Tys[2] = { Ty, VTy };
5466     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5467     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
5468     return Builder.CreateTrunc(Ops[0], Int8Ty);
5469   }
5470   case NEON::BI__builtin_neon_vaddvq_u16:
5471     usgn = true;
5472     // FALLTHROUGH
5473   case NEON::BI__builtin_neon_vaddvq_s16: {
5474     Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
5475     Ty = Int32Ty;
5476     VTy = llvm::VectorType::get(Int16Ty, 8);
5477     llvm::Type *Tys[2] = { Ty, VTy };
5478     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5479     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
5480     return Builder.CreateTrunc(Ops[0], Int16Ty);
5481   }
5482   case NEON::BI__builtin_neon_vmaxv_u8: {
5483     Int = Intrinsic::aarch64_neon_umaxv;
5484     Ty = Int32Ty;
5485     VTy = llvm::VectorType::get(Int8Ty, 8);
5486     llvm::Type *Tys[2] = { Ty, VTy };
5487     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5488     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
5489     return Builder.CreateTrunc(Ops[0], Int8Ty);
5490   }
5491   case NEON::BI__builtin_neon_vmaxv_u16: {
5492     Int = Intrinsic::aarch64_neon_umaxv;
5493     Ty = Int32Ty;
5494     VTy = llvm::VectorType::get(Int16Ty, 4);
5495     llvm::Type *Tys[2] = { Ty, VTy };
5496     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5497     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
5498     return Builder.CreateTrunc(Ops[0], Int16Ty);
5499   }
5500   case NEON::BI__builtin_neon_vmaxvq_u8: {
5501     Int = Intrinsic::aarch64_neon_umaxv;
5502     Ty = Int32Ty;
5503     VTy = llvm::VectorType::get(Int8Ty, 16);
5504     llvm::Type *Tys[2] = { Ty, VTy };
5505     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5506     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
5507     return Builder.CreateTrunc(Ops[0], Int8Ty);
5508   }
5509   case NEON::BI__builtin_neon_vmaxvq_u16: {
5510     Int = Intrinsic::aarch64_neon_umaxv;
5511     Ty = Int32Ty;
5512     VTy = llvm::VectorType::get(Int16Ty, 8);
5513     llvm::Type *Tys[2] = { Ty, VTy };
5514     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5515     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
5516     return Builder.CreateTrunc(Ops[0], Int16Ty);
5517   }
5518   case NEON::BI__builtin_neon_vmaxv_s8: {
5519     Int = Intrinsic::aarch64_neon_smaxv;
5520     Ty = Int32Ty;
5521     VTy = llvm::VectorType::get(Int8Ty, 8);
5522     llvm::Type *Tys[2] = { Ty, VTy };
5523     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5524     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
5525     return Builder.CreateTrunc(Ops[0], Int8Ty);
5526   }
5527   case NEON::BI__builtin_neon_vmaxv_s16: {
5528     Int = Intrinsic::aarch64_neon_smaxv;
5529     Ty = Int32Ty;
5530     VTy = llvm::VectorType::get(Int16Ty, 4);
5531     llvm::Type *Tys[2] = { Ty, VTy };
5532     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5533     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
5534     return Builder.CreateTrunc(Ops[0], Int16Ty);
5535   }
5536   case NEON::BI__builtin_neon_vmaxvq_s8: {
5537     Int = Intrinsic::aarch64_neon_smaxv;
5538     Ty = Int32Ty;
5539     VTy = llvm::VectorType::get(Int8Ty, 16);
5540     llvm::Type *Tys[2] = { Ty, VTy };
5541     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5542     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
5543     return Builder.CreateTrunc(Ops[0], Int8Ty);
5544   }
5545   case NEON::BI__builtin_neon_vmaxvq_s16: {
5546     Int = Intrinsic::aarch64_neon_smaxv;
5547     Ty = Int32Ty;
5548     VTy = llvm::VectorType::get(Int16Ty, 8);
5549     llvm::Type *Tys[2] = { Ty, VTy };
5550     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5551     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
5552     return Builder.CreateTrunc(Ops[0], Int16Ty);
5553   }
5554   case NEON::BI__builtin_neon_vminv_u8: {
5555     Int = Intrinsic::aarch64_neon_uminv;
5556     Ty = Int32Ty;
5557     VTy = llvm::VectorType::get(Int8Ty, 8);
5558     llvm::Type *Tys[2] = { Ty, VTy };
5559     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5560     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
5561     return Builder.CreateTrunc(Ops[0], Int8Ty);
5562   }
5563   case NEON::BI__builtin_neon_vminv_u16: {
5564     Int = Intrinsic::aarch64_neon_uminv;
5565     Ty = Int32Ty;
5566     VTy = llvm::VectorType::get(Int16Ty, 4);
5567     llvm::Type *Tys[2] = { Ty, VTy };
5568     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5569     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
5570     return Builder.CreateTrunc(Ops[0], Int16Ty);
5571   }
5572   case NEON::BI__builtin_neon_vminvq_u8: {
5573     Int = Intrinsic::aarch64_neon_uminv;
5574     Ty = Int32Ty;
5575     VTy = llvm::VectorType::get(Int8Ty, 16);
5576     llvm::Type *Tys[2] = { Ty, VTy };
5577     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5578     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
5579     return Builder.CreateTrunc(Ops[0], Int8Ty);
5580   }
5581   case NEON::BI__builtin_neon_vminvq_u16: {
5582     Int = Intrinsic::aarch64_neon_uminv;
5583     Ty = Int32Ty;
5584     VTy = llvm::VectorType::get(Int16Ty, 8);
5585     llvm::Type *Tys[2] = { Ty, VTy };
5586     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5587     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
5588     return Builder.CreateTrunc(Ops[0], Int16Ty);
5589   }
5590   case NEON::BI__builtin_neon_vminv_s8: {
5591     Int = Intrinsic::aarch64_neon_sminv;
5592     Ty = Int32Ty;
5593     VTy = llvm::VectorType::get(Int8Ty, 8);
5594     llvm::Type *Tys[2] = { Ty, VTy };
5595     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5596     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
5597     return Builder.CreateTrunc(Ops[0], Int8Ty);
5598   }
5599   case NEON::BI__builtin_neon_vminv_s16: {
5600     Int = Intrinsic::aarch64_neon_sminv;
5601     Ty = Int32Ty;
5602     VTy = llvm::VectorType::get(Int16Ty, 4);
5603     llvm::Type *Tys[2] = { Ty, VTy };
5604     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5605     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
5606     return Builder.CreateTrunc(Ops[0], Int16Ty);
5607   }
5608   case NEON::BI__builtin_neon_vminvq_s8: {
5609     Int = Intrinsic::aarch64_neon_sminv;
5610     Ty = Int32Ty;
5611     VTy = llvm::VectorType::get(Int8Ty, 16);
5612     llvm::Type *Tys[2] = { Ty, VTy };
5613     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5614     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
5615     return Builder.CreateTrunc(Ops[0], Int8Ty);
5616   }
5617   case NEON::BI__builtin_neon_vminvq_s16: {
5618     Int = Intrinsic::aarch64_neon_sminv;
5619     Ty = Int32Ty;
5620     VTy = llvm::VectorType::get(Int16Ty, 8);
5621     llvm::Type *Tys[2] = { Ty, VTy };
5622     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5623     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
5624     return Builder.CreateTrunc(Ops[0], Int16Ty);
5625   }
5626   case NEON::BI__builtin_neon_vmul_n_f64: {
5627     Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
5628     Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy);
5629     return Builder.CreateFMul(Ops[0], RHS);
5630   }
5631   case NEON::BI__builtin_neon_vaddlv_u8: {
5632     Int = Intrinsic::aarch64_neon_uaddlv;
5633     Ty = Int32Ty;
5634     VTy = llvm::VectorType::get(Int8Ty, 8);
5635     llvm::Type *Tys[2] = { Ty, VTy };
5636     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5637     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
5638     return Builder.CreateTrunc(Ops[0], Int16Ty);
5639   }
5640   case NEON::BI__builtin_neon_vaddlv_u16: {
5641     Int = Intrinsic::aarch64_neon_uaddlv;
5642     Ty = Int32Ty;
5643     VTy = llvm::VectorType::get(Int16Ty, 4);
5644     llvm::Type *Tys[2] = { Ty, VTy };
5645     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5646     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
5647   }
5648   case NEON::BI__builtin_neon_vaddlvq_u8: {
5649     Int = Intrinsic::aarch64_neon_uaddlv;
5650     Ty = Int32Ty;
5651     VTy = llvm::VectorType::get(Int8Ty, 16);
5652     llvm::Type *Tys[2] = { Ty, VTy };
5653     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5654     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
5655     return Builder.CreateTrunc(Ops[0], Int16Ty);
5656   }
5657   case NEON::BI__builtin_neon_vaddlvq_u16: {
5658     Int = Intrinsic::aarch64_neon_uaddlv;
5659     Ty = Int32Ty;
5660     VTy = llvm::VectorType::get(Int16Ty, 8);
5661     llvm::Type *Tys[2] = { Ty, VTy };
5662     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5663     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
5664   }
5665   case NEON::BI__builtin_neon_vaddlv_s8: {
5666     Int = Intrinsic::aarch64_neon_saddlv;
5667     Ty = Int32Ty;
5668     VTy = llvm::VectorType::get(Int8Ty, 8);
5669     llvm::Type *Tys[2] = { Ty, VTy };
5670     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5671     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
5672     return Builder.CreateTrunc(Ops[0], Int16Ty);
5673   }
5674   case NEON::BI__builtin_neon_vaddlv_s16: {
5675     Int = Intrinsic::aarch64_neon_saddlv;
5676     Ty = Int32Ty;
5677     VTy = llvm::VectorType::get(Int16Ty, 4);
5678     llvm::Type *Tys[2] = { Ty, VTy };
5679     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5680     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
5681   }
5682   case NEON::BI__builtin_neon_vaddlvq_s8: {
5683     Int = Intrinsic::aarch64_neon_saddlv;
5684     Ty = Int32Ty;
5685     VTy = llvm::VectorType::get(Int8Ty, 16);
5686     llvm::Type *Tys[2] = { Ty, VTy };
5687     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5688     Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
5689     return Builder.CreateTrunc(Ops[0], Int16Ty);
5690   }
5691   case NEON::BI__builtin_neon_vaddlvq_s16: {
5692     Int = Intrinsic::aarch64_neon_saddlv;
5693     Ty = Int32Ty;
5694     VTy = llvm::VectorType::get(Int16Ty, 8);
5695     llvm::Type *Tys[2] = { Ty, VTy };
5696     Ops.push_back(EmitScalarExpr(E->getArg(0)));
5697     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
5698   }
5699   case NEON::BI__builtin_neon_vsri_n_v:
5700   case NEON::BI__builtin_neon_vsriq_n_v: {
5701     Int = Intrinsic::aarch64_neon_vsri;
5702     llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
5703     return EmitNeonCall(Intrin, Ops, "vsri_n");
5704   }
5705   case NEON::BI__builtin_neon_vsli_n_v:
5706   case NEON::BI__builtin_neon_vsliq_n_v: {
5707     Int = Intrinsic::aarch64_neon_vsli;
5708     llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
5709     return EmitNeonCall(Intrin, Ops, "vsli_n");
5710   }
5711   case NEON::BI__builtin_neon_vsra_n_v:
5712   case NEON::BI__builtin_neon_vsraq_n_v:
5713     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5714     Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
5715     return Builder.CreateAdd(Ops[0], Ops[1]);
5716   case NEON::BI__builtin_neon_vrsra_n_v:
5717   case NEON::BI__builtin_neon_vrsraq_n_v: {
5718     Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl;
5719     SmallVector<llvm::Value*,2> TmpOps;
5720     TmpOps.push_back(Ops[1]);
5721     TmpOps.push_back(Ops[2]);
5722     Function* F = CGM.getIntrinsic(Int, Ty);
5723     llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true);
5724     Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
5725     return Builder.CreateAdd(Ops[0], tmp);
5726   }
5727     // FIXME: Sharing loads & stores with 32-bit is complicated by the absence
5728     // of an Align parameter here.
5729   case NEON::BI__builtin_neon_vld1_x2_v:
5730   case NEON::BI__builtin_neon_vld1q_x2_v:
5731   case NEON::BI__builtin_neon_vld1_x3_v:
5732   case NEON::BI__builtin_neon_vld1q_x3_v:
5733   case NEON::BI__builtin_neon_vld1_x4_v:
5734   case NEON::BI__builtin_neon_vld1q_x4_v: {
5735     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getVectorElementType());
5736     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
5737     llvm::Type *Tys[2] = { VTy, PTy };
5738     unsigned Int;
5739     switch (BuiltinID) {
5740     case NEON::BI__builtin_neon_vld1_x2_v:
5741     case NEON::BI__builtin_neon_vld1q_x2_v:
5742       Int = Intrinsic::aarch64_neon_ld1x2;
5743       break;
5744     case NEON::BI__builtin_neon_vld1_x3_v:
5745     case NEON::BI__builtin_neon_vld1q_x3_v:
5746       Int = Intrinsic::aarch64_neon_ld1x3;
5747       break;
5748     case NEON::BI__builtin_neon_vld1_x4_v:
5749     case NEON::BI__builtin_neon_vld1q_x4_v:
5750       Int = Intrinsic::aarch64_neon_ld1x4;
5751       break;
5752     }
5753     Function *F = CGM.getIntrinsic(Int, Tys);
5754     Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN");
5755     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5756     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5757     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
5758   }
5759   case NEON::BI__builtin_neon_vst1_x2_v:
5760   case NEON::BI__builtin_neon_vst1q_x2_v:
5761   case NEON::BI__builtin_neon_vst1_x3_v:
5762   case NEON::BI__builtin_neon_vst1q_x3_v:
5763   case NEON::BI__builtin_neon_vst1_x4_v:
5764   case NEON::BI__builtin_neon_vst1q_x4_v: {
5765     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getVectorElementType());
5766     llvm::Type *Tys[2] = { VTy, PTy };
5767     unsigned Int;
5768     switch (BuiltinID) {
5769     case NEON::BI__builtin_neon_vst1_x2_v:
5770     case NEON::BI__builtin_neon_vst1q_x2_v:
5771       Int = Intrinsic::aarch64_neon_st1x2;
5772       break;
5773     case NEON::BI__builtin_neon_vst1_x3_v:
5774     case NEON::BI__builtin_neon_vst1q_x3_v:
5775       Int = Intrinsic::aarch64_neon_st1x3;
5776       break;
5777     case NEON::BI__builtin_neon_vst1_x4_v:
5778     case NEON::BI__builtin_neon_vst1q_x4_v:
5779       Int = Intrinsic::aarch64_neon_st1x4;
5780       break;
5781     }
5782     std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
5783     return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "");
5784   }
5785   case NEON::BI__builtin_neon_vld1_v:
5786   case NEON::BI__builtin_neon_vld1q_v:
5787     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
5788     return Builder.CreateDefaultAlignedLoad(Ops[0]);
5789   case NEON::BI__builtin_neon_vst1_v:
5790   case NEON::BI__builtin_neon_vst1q_v:
5791     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
5792     Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
5793     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
5794   case NEON::BI__builtin_neon_vld1_lane_v:
5795   case NEON::BI__builtin_neon_vld1q_lane_v:
5796     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5797     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
5798     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5799     Ops[0] = Builder.CreateDefaultAlignedLoad(Ops[0]);
5800     return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane");
5801   case NEON::BI__builtin_neon_vld1_dup_v:
5802   case NEON::BI__builtin_neon_vld1q_dup_v: {
5803     Value *V = UndefValue::get(Ty);
5804     Ty = llvm::PointerType::getUnqual(VTy->getElementType());
5805     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5806     Ops[0] = Builder.CreateDefaultAlignedLoad(Ops[0]);
5807     llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
5808     Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI);
5809     return EmitNeonSplat(Ops[0], CI);
5810   }
5811   case NEON::BI__builtin_neon_vst1_lane_v:
5812   case NEON::BI__builtin_neon_vst1q_lane_v:
5813     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5814     Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
5815     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5816     return Builder.CreateDefaultAlignedStore(Ops[1],
5817                                              Builder.CreateBitCast(Ops[0], Ty));
5818   case NEON::BI__builtin_neon_vld2_v:
5819   case NEON::BI__builtin_neon_vld2q_v: {
5820     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
5821     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
5822     llvm::Type *Tys[2] = { VTy, PTy };
5823     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys);
5824     Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
5825     Ops[0] = Builder.CreateBitCast(Ops[0],
5826                 llvm::PointerType::getUnqual(Ops[1]->getType()));
5827     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
5828   }
5829   case NEON::BI__builtin_neon_vld3_v:
5830   case NEON::BI__builtin_neon_vld3q_v: {
5831     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
5832     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
5833     llvm::Type *Tys[2] = { VTy, PTy };
5834     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys);
5835     Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
5836     Ops[0] = Builder.CreateBitCast(Ops[0],
5837                 llvm::PointerType::getUnqual(Ops[1]->getType()));
5838     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
5839   }
5840   case NEON::BI__builtin_neon_vld4_v:
5841   case NEON::BI__builtin_neon_vld4q_v: {
5842     llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
5843     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
5844     llvm::Type *Tys[2] = { VTy, PTy };
5845     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys);
5846     Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
5847     Ops[0] = Builder.CreateBitCast(Ops[0],
5848                 llvm::PointerType::getUnqual(Ops[1]->getType()));
5849     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
5850   }
5851   case NEON::BI__builtin_neon_vld2_dup_v:
5852   case NEON::BI__builtin_neon_vld2q_dup_v: {
5853     llvm::Type *PTy =
5854       llvm::PointerType::getUnqual(VTy->getElementType());
5855     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
5856     llvm::Type *Tys[2] = { VTy, PTy };
5857     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys);
5858     Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
5859     Ops[0] = Builder.CreateBitCast(Ops[0],
5860                 llvm::PointerType::getUnqual(Ops[1]->getType()));
5861     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
5862   }
5863   case NEON::BI__builtin_neon_vld3_dup_v:
5864   case NEON::BI__builtin_neon_vld3q_dup_v: {
5865     llvm::Type *PTy =
5866       llvm::PointerType::getUnqual(VTy->getElementType());
5867     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
5868     llvm::Type *Tys[2] = { VTy, PTy };
5869     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys);
5870     Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
5871     Ops[0] = Builder.CreateBitCast(Ops[0],
5872                 llvm::PointerType::getUnqual(Ops[1]->getType()));
5873     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
5874   }
5875   case NEON::BI__builtin_neon_vld4_dup_v:
5876   case NEON::BI__builtin_neon_vld4q_dup_v: {
5877     llvm::Type *PTy =
5878       llvm::PointerType::getUnqual(VTy->getElementType());
5879     Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
5880     llvm::Type *Tys[2] = { VTy, PTy };
5881     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys);
5882     Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
5883     Ops[0] = Builder.CreateBitCast(Ops[0],
5884                 llvm::PointerType::getUnqual(Ops[1]->getType()));
5885     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
5886   }
5887   case NEON::BI__builtin_neon_vld2_lane_v:
5888   case NEON::BI__builtin_neon_vld2q_lane_v: {
5889     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
5890     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys);
5891     Ops.push_back(Ops[1]);
5892     Ops.erase(Ops.begin()+1);
5893     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5894     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
5895     Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
5896     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane");
5897     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5898     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5899     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
5900   }
5901   case NEON::BI__builtin_neon_vld3_lane_v:
5902   case NEON::BI__builtin_neon_vld3q_lane_v: {
5903     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
5904     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys);
5905     Ops.push_back(Ops[1]);
5906     Ops.erase(Ops.begin()+1);
5907     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5908     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
5909     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
5910     Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
5911     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
5912     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5913     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5914     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
5915   }
5916   case NEON::BI__builtin_neon_vld4_lane_v:
5917   case NEON::BI__builtin_neon_vld4q_lane_v: {
5918     llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
5919     Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys);
5920     Ops.push_back(Ops[1]);
5921     Ops.erase(Ops.begin()+1);
5922     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5923     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
5924     Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
5925     Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
5926     Ops[5] = Builder.CreateZExt(Ops[5], Int64Ty);
5927     Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld4_lane");
5928     Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
5929     Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
5930     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
5931   }
5932   case NEON::BI__builtin_neon_vst2_v:
5933   case NEON::BI__builtin_neon_vst2q_v: {
5934     Ops.push_back(Ops[0]);
5935     Ops.erase(Ops.begin());
5936     llvm::Type *Tys[2] = { VTy, Ops[2]->getType() };
5937     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys),
5938                         Ops, "");
5939   }
5940   case NEON::BI__builtin_neon_vst2_lane_v:
5941   case NEON::BI__builtin_neon_vst2q_lane_v: {
5942     Ops.push_back(Ops[0]);
5943     Ops.erase(Ops.begin());
5944     Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
5945     llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
5946     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys),
5947                         Ops, "");
5948   }
5949   case NEON::BI__builtin_neon_vst3_v:
5950   case NEON::BI__builtin_neon_vst3q_v: {
5951     Ops.push_back(Ops[0]);
5952     Ops.erase(Ops.begin());
5953     llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
5954     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys),
5955                         Ops, "");
5956   }
5957   case NEON::BI__builtin_neon_vst3_lane_v:
5958   case NEON::BI__builtin_neon_vst3q_lane_v: {
5959     Ops.push_back(Ops[0]);
5960     Ops.erase(Ops.begin());
5961     Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
5962     llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
5963     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys),
5964                         Ops, "");
5965   }
5966   case NEON::BI__builtin_neon_vst4_v:
5967   case NEON::BI__builtin_neon_vst4q_v: {
5968     Ops.push_back(Ops[0]);
5969     Ops.erase(Ops.begin());
5970     llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
5971     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys),
5972                         Ops, "");
5973   }
5974   case NEON::BI__builtin_neon_vst4_lane_v:
5975   case NEON::BI__builtin_neon_vst4q_lane_v: {
5976     Ops.push_back(Ops[0]);
5977     Ops.erase(Ops.begin());
5978     Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
5979     llvm::Type *Tys[2] = { VTy, Ops[5]->getType() };
5980     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys),
5981                         Ops, "");
5982   }
5983   case NEON::BI__builtin_neon_vtrn_v:
5984   case NEON::BI__builtin_neon_vtrnq_v: {
5985     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
5986     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
5987     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
5988     Value *SV = nullptr;
5989
5990     for (unsigned vi = 0; vi != 2; ++vi) {
5991       SmallVector<Constant*, 16> Indices;
5992       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
5993         Indices.push_back(ConstantInt::get(Int32Ty, i+vi));
5994         Indices.push_back(ConstantInt::get(Int32Ty, i+e+vi));
5995       }
5996       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
5997       SV = llvm::ConstantVector::get(Indices);
5998       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vtrn");
5999       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
6000     }
6001     return SV;
6002   }
6003   case NEON::BI__builtin_neon_vuzp_v:
6004   case NEON::BI__builtin_neon_vuzpq_v: {
6005     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
6006     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6007     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
6008     Value *SV = nullptr;
6009
6010     for (unsigned vi = 0; vi != 2; ++vi) {
6011       SmallVector<Constant*, 16> Indices;
6012       for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
6013         Indices.push_back(ConstantInt::get(Int32Ty, 2*i+vi));
6014
6015       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
6016       SV = llvm::ConstantVector::get(Indices);
6017       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vuzp");
6018       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
6019     }
6020     return SV;
6021   }
6022   case NEON::BI__builtin_neon_vzip_v:
6023   case NEON::BI__builtin_neon_vzipq_v: {
6024     Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
6025     Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
6026     Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
6027     Value *SV = nullptr;
6028
6029     for (unsigned vi = 0; vi != 2; ++vi) {
6030       SmallVector<Constant*, 16> Indices;
6031       for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
6032         Indices.push_back(ConstantInt::get(Int32Ty, (i + vi*e) >> 1));
6033         Indices.push_back(ConstantInt::get(Int32Ty, ((i + vi*e) >> 1)+e));
6034       }
6035       Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
6036       SV = llvm::ConstantVector::get(Indices);
6037       SV = Builder.CreateShuffleVector(Ops[1], Ops[2], SV, "vzip");
6038       SV = Builder.CreateDefaultAlignedStore(SV, Addr);
6039     }
6040     return SV;
6041   }
6042   case NEON::BI__builtin_neon_vqtbl1q_v: {
6043     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty),
6044                         Ops, "vtbl1");
6045   }
6046   case NEON::BI__builtin_neon_vqtbl2q_v: {
6047     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty),
6048                         Ops, "vtbl2");
6049   }
6050   case NEON::BI__builtin_neon_vqtbl3q_v: {
6051     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty),
6052                         Ops, "vtbl3");
6053   }
6054   case NEON::BI__builtin_neon_vqtbl4q_v: {
6055     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty),
6056                         Ops, "vtbl4");
6057   }
6058   case NEON::BI__builtin_neon_vqtbx1q_v: {
6059     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty),
6060                         Ops, "vtbx1");
6061   }
6062   case NEON::BI__builtin_neon_vqtbx2q_v: {
6063     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty),
6064                         Ops, "vtbx2");
6065   }
6066   case NEON::BI__builtin_neon_vqtbx3q_v: {
6067     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty),
6068                         Ops, "vtbx3");
6069   }
6070   case NEON::BI__builtin_neon_vqtbx4q_v: {
6071     return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty),
6072                         Ops, "vtbx4");
6073   }
6074   case NEON::BI__builtin_neon_vsqadd_v:
6075   case NEON::BI__builtin_neon_vsqaddq_v: {
6076     Int = Intrinsic::aarch64_neon_usqadd;
6077     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd");
6078   }
6079   case NEON::BI__builtin_neon_vuqadd_v:
6080   case NEON::BI__builtin_neon_vuqaddq_v: {
6081     Int = Intrinsic::aarch64_neon_suqadd;
6082     return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd");
6083   }
6084   }
6085 }
6086
6087 llvm::Value *CodeGenFunction::
6088 BuildVector(ArrayRef<llvm::Value*> Ops) {
6089   assert((Ops.size() & (Ops.size() - 1)) == 0 &&
6090          "Not a power-of-two sized vector!");
6091   bool AllConstants = true;
6092   for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
6093     AllConstants &= isa<Constant>(Ops[i]);
6094
6095   // If this is a constant vector, create a ConstantVector.
6096   if (AllConstants) {
6097     SmallVector<llvm::Constant*, 16> CstOps;
6098     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
6099       CstOps.push_back(cast<Constant>(Ops[i]));
6100     return llvm::ConstantVector::get(CstOps);
6101   }
6102
6103   // Otherwise, insertelement the values to build the vector.
6104   Value *Result =
6105     llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), Ops.size()));
6106
6107   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
6108     Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i));
6109
6110   return Result;
6111 }
6112
6113 Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
6114                                            const CallExpr *E) {
6115   if (BuiltinID == X86::BI__builtin_ms_va_start ||
6116       BuiltinID == X86::BI__builtin_ms_va_end)
6117     return EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).getPointer(),
6118                           BuiltinID == X86::BI__builtin_ms_va_start);
6119   if (BuiltinID == X86::BI__builtin_ms_va_copy) {
6120     // Lower this manually. We can't reliably determine whether or not any
6121     // given va_copy() is for a Win64 va_list from the calling convention
6122     // alone, because it's legal to do this from a System V ABI function.
6123     // With opaque pointer types, we won't have enough information in LLVM
6124     // IR to determine this from the argument types, either. Best to do it
6125     // now, while we have enough information.
6126     Address DestAddr = EmitMSVAListRef(E->getArg(0));
6127     Address SrcAddr = EmitMSVAListRef(E->getArg(1));
6128
6129     llvm::Type *BPP = Int8PtrPtrTy;
6130
6131     DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), BPP, "cp"),
6132                        DestAddr.getAlignment());
6133     SrcAddr = Address(Builder.CreateBitCast(SrcAddr.getPointer(), BPP, "ap"),
6134                       SrcAddr.getAlignment());
6135
6136     Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val");
6137     return Builder.CreateStore(ArgPtr, DestAddr);
6138   }
6139
6140   SmallVector<Value*, 4> Ops;
6141
6142   // Find out if any arguments are required to be integer constant expressions.
6143   unsigned ICEArguments = 0;
6144   ASTContext::GetBuiltinTypeError Error;
6145   getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
6146   assert(Error == ASTContext::GE_None && "Should not codegen an error");
6147
6148   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
6149     // If this is a normal argument, just emit it as a scalar.
6150     if ((ICEArguments & (1 << i)) == 0) {
6151       Ops.push_back(EmitScalarExpr(E->getArg(i)));
6152       continue;
6153     }
6154
6155     // If this is required to be a constant, constant fold it so that we know
6156     // that the generated intrinsic gets a ConstantInt.
6157     llvm::APSInt Result;
6158     bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
6159     assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst;
6160     Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
6161   }
6162
6163   switch (BuiltinID) {
6164   default: return nullptr;
6165   case X86::BI__builtin_cpu_supports: {
6166     const Expr *FeatureExpr = E->getArg(0)->IgnoreParenCasts();
6167     StringRef FeatureStr = cast<StringLiteral>(FeatureExpr)->getString();
6168
6169     // TODO: When/if this becomes more than x86 specific then use a TargetInfo
6170     // based mapping.
6171     // Processor features and mapping to processor feature value.
6172     enum X86Features {
6173       CMOV = 0,
6174       MMX,
6175       POPCNT,
6176       SSE,
6177       SSE2,
6178       SSE3,
6179       SSSE3,
6180       SSE4_1,
6181       SSE4_2,
6182       AVX,
6183       AVX2,
6184       SSE4_A,
6185       FMA4,
6186       XOP,
6187       FMA,
6188       AVX512F,
6189       BMI,
6190       BMI2,
6191       MAX
6192     };
6193
6194     X86Features Feature = StringSwitch<X86Features>(FeatureStr)
6195                               .Case("cmov", X86Features::CMOV)
6196                               .Case("mmx", X86Features::MMX)
6197                               .Case("popcnt", X86Features::POPCNT)
6198                               .Case("sse", X86Features::SSE)
6199                               .Case("sse2", X86Features::SSE2)
6200                               .Case("sse3", X86Features::SSE3)
6201                               .Case("sse4.1", X86Features::SSE4_1)
6202                               .Case("sse4.2", X86Features::SSE4_2)
6203                               .Case("avx", X86Features::AVX)
6204                               .Case("avx2", X86Features::AVX2)
6205                               .Case("sse4a", X86Features::SSE4_A)
6206                               .Case("fma4", X86Features::FMA4)
6207                               .Case("xop", X86Features::XOP)
6208                               .Case("fma", X86Features::FMA)
6209                               .Case("avx512f", X86Features::AVX512F)
6210                               .Case("bmi", X86Features::BMI)
6211                               .Case("bmi2", X86Features::BMI2)
6212                               .Default(X86Features::MAX);
6213     assert(Feature != X86Features::MAX && "Invalid feature!");
6214
6215     // Matching the struct layout from the compiler-rt/libgcc structure that is
6216     // filled in:
6217     // unsigned int __cpu_vendor;
6218     // unsigned int __cpu_type;
6219     // unsigned int __cpu_subtype;
6220     // unsigned int __cpu_features[1];
6221     llvm::Type *STy = llvm::StructType::get(
6222         Int32Ty, Int32Ty, Int32Ty, llvm::ArrayType::get(Int32Ty, 1), nullptr);
6223
6224     // Grab the global __cpu_model.
6225     llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
6226
6227     // Grab the first (0th) element from the field __cpu_features off of the
6228     // global in the struct STy.
6229     Value *Idxs[] = {
6230       ConstantInt::get(Int32Ty, 0),
6231       ConstantInt::get(Int32Ty, 3),
6232       ConstantInt::get(Int32Ty, 0)
6233     };
6234     Value *CpuFeatures = Builder.CreateGEP(STy, CpuModel, Idxs);
6235     Value *Features = Builder.CreateAlignedLoad(CpuFeatures,
6236                                                 CharUnits::fromQuantity(4));
6237
6238     // Check the value of the bit corresponding to the feature requested.
6239     Value *Bitset = Builder.CreateAnd(
6240         Features, llvm::ConstantInt::get(Int32Ty, 1 << Feature));
6241     return Builder.CreateICmpNE(Bitset, llvm::ConstantInt::get(Int32Ty, 0));
6242   }
6243   case X86::BI_mm_prefetch: {
6244     Value *Address = Ops[0];
6245     Value *RW = ConstantInt::get(Int32Ty, 0);
6246     Value *Locality = Ops[1];
6247     Value *Data = ConstantInt::get(Int32Ty, 1);
6248     Value *F = CGM.getIntrinsic(Intrinsic::prefetch);
6249     return Builder.CreateCall(F, {Address, RW, Locality, Data});
6250   }
6251   case X86::BI__builtin_ia32_undef128:
6252   case X86::BI__builtin_ia32_undef256:
6253   case X86::BI__builtin_ia32_undef512:
6254     return UndefValue::get(ConvertType(E->getType()));
6255   case X86::BI__builtin_ia32_vec_init_v8qi:
6256   case X86::BI__builtin_ia32_vec_init_v4hi:
6257   case X86::BI__builtin_ia32_vec_init_v2si:
6258     return Builder.CreateBitCast(BuildVector(Ops),
6259                                  llvm::Type::getX86_MMXTy(getLLVMContext()));
6260   case X86::BI__builtin_ia32_vec_ext_v2si:
6261     return Builder.CreateExtractElement(Ops[0],
6262                                   llvm::ConstantInt::get(Ops[1]->getType(), 0));
6263   case X86::BI__builtin_ia32_ldmxcsr: {
6264     Address Tmp = CreateMemTemp(E->getArg(0)->getType());
6265     Builder.CreateStore(Ops[0], Tmp);
6266     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
6267                           Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
6268   }
6269   case X86::BI__builtin_ia32_stmxcsr: {
6270     Address Tmp = CreateMemTemp(E->getType());
6271     Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
6272                        Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
6273     return Builder.CreateLoad(Tmp, "stmxcsr");
6274   }
6275   case X86::BI__builtin_ia32_xsave:
6276   case X86::BI__builtin_ia32_xsave64:
6277   case X86::BI__builtin_ia32_xrstor:
6278   case X86::BI__builtin_ia32_xrstor64:
6279   case X86::BI__builtin_ia32_xsaveopt:
6280   case X86::BI__builtin_ia32_xsaveopt64:
6281   case X86::BI__builtin_ia32_xrstors:
6282   case X86::BI__builtin_ia32_xrstors64:
6283   case X86::BI__builtin_ia32_xsavec:
6284   case X86::BI__builtin_ia32_xsavec64:
6285   case X86::BI__builtin_ia32_xsaves:
6286   case X86::BI__builtin_ia32_xsaves64: {
6287     Intrinsic::ID ID;
6288 #define INTRINSIC_X86_XSAVE_ID(NAME) \
6289     case X86::BI__builtin_ia32_##NAME: \
6290       ID = Intrinsic::x86_##NAME; \
6291       break
6292     switch (BuiltinID) {
6293     default: llvm_unreachable("Unsupported intrinsic!");
6294     INTRINSIC_X86_XSAVE_ID(xsave);
6295     INTRINSIC_X86_XSAVE_ID(xsave64);
6296     INTRINSIC_X86_XSAVE_ID(xrstor);
6297     INTRINSIC_X86_XSAVE_ID(xrstor64);
6298     INTRINSIC_X86_XSAVE_ID(xsaveopt);
6299     INTRINSIC_X86_XSAVE_ID(xsaveopt64);
6300     INTRINSIC_X86_XSAVE_ID(xrstors);
6301     INTRINSIC_X86_XSAVE_ID(xrstors64);
6302     INTRINSIC_X86_XSAVE_ID(xsavec);
6303     INTRINSIC_X86_XSAVE_ID(xsavec64);
6304     INTRINSIC_X86_XSAVE_ID(xsaves);
6305     INTRINSIC_X86_XSAVE_ID(xsaves64);
6306     }
6307 #undef INTRINSIC_X86_XSAVE_ID
6308     Value *Mhi = Builder.CreateTrunc(
6309       Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, 32)), Int32Ty);
6310     Value *Mlo = Builder.CreateTrunc(Ops[1], Int32Ty);
6311     Ops[1] = Mhi;
6312     Ops.push_back(Mlo);
6313     return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
6314   }
6315   case X86::BI__builtin_ia32_storehps:
6316   case X86::BI__builtin_ia32_storelps: {
6317     llvm::Type *PtrTy = llvm::PointerType::getUnqual(Int64Ty);
6318     llvm::Type *VecTy = llvm::VectorType::get(Int64Ty, 2);
6319
6320     // cast val v2i64
6321     Ops[1] = Builder.CreateBitCast(Ops[1], VecTy, "cast");
6322
6323     // extract (0, 1)
6324     unsigned Index = BuiltinID == X86::BI__builtin_ia32_storelps ? 0 : 1;
6325     llvm::Value *Idx = llvm::ConstantInt::get(SizeTy, Index);
6326     Ops[1] = Builder.CreateExtractElement(Ops[1], Idx, "extract");
6327
6328     // cast pointer to i64 & store
6329     Ops[0] = Builder.CreateBitCast(Ops[0], PtrTy);
6330     return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
6331   }
6332   case X86::BI__builtin_ia32_palignr128:
6333   case X86::BI__builtin_ia32_palignr256: {
6334     unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
6335
6336     unsigned NumElts =
6337       cast<llvm::VectorType>(Ops[0]->getType())->getNumElements();
6338     assert(NumElts % 16 == 0);
6339     unsigned NumLanes = NumElts / 16;
6340     unsigned NumLaneElts = NumElts / NumLanes;
6341
6342     // If palignr is shifting the pair of vectors more than the size of two
6343     // lanes, emit zero.
6344     if (ShiftVal >= (2 * NumLaneElts))
6345       return llvm::Constant::getNullValue(ConvertType(E->getType()));
6346
6347     // If palignr is shifting the pair of input vectors more than one lane,
6348     // but less than two lanes, convert to shifting in zeroes.
6349     if (ShiftVal > NumLaneElts) {
6350       ShiftVal -= NumLaneElts;
6351       Ops[1] = Ops[0];
6352       Ops[0] = llvm::Constant::getNullValue(Ops[0]->getType());
6353     }
6354
6355     uint32_t Indices[32];
6356     // 256-bit palignr operates on 128-bit lanes so we need to handle that
6357     for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
6358       for (unsigned i = 0; i != NumLaneElts; ++i) {
6359         unsigned Idx = ShiftVal + i;
6360         if (Idx >= NumLaneElts)
6361           Idx += NumElts - NumLaneElts; // End of lane, switch operand.
6362         Indices[l + i] = Idx + l;
6363       }
6364     }
6365
6366     Value *SV = llvm::ConstantDataVector::get(getLLVMContext(),
6367                                               makeArrayRef(Indices, NumElts));
6368     return Builder.CreateShuffleVector(Ops[1], Ops[0], SV, "palignr");
6369   }
6370   case X86::BI__builtin_ia32_pslldqi256: {
6371     // Shift value is in bits so divide by 8.
6372     unsigned shiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() >> 3;
6373
6374     // If pslldq is shifting the vector more than 15 bytes, emit zero.
6375     if (shiftVal >= 16)
6376       return llvm::Constant::getNullValue(ConvertType(E->getType()));
6377
6378     uint32_t Indices[32];
6379     // 256-bit pslldq operates on 128-bit lanes so we need to handle that
6380     for (unsigned l = 0; l != 32; l += 16) {
6381       for (unsigned i = 0; i != 16; ++i) {
6382         unsigned Idx = 32 + i - shiftVal;
6383         if (Idx < 32) Idx -= 16; // end of lane, switch operand.
6384         Indices[l + i] = Idx + l;
6385       }
6386     }
6387
6388     llvm::Type *VecTy = llvm::VectorType::get(Int8Ty, 32);
6389     Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
6390     Value *Zero = llvm::Constant::getNullValue(VecTy);
6391
6392     Value *SV = llvm::ConstantDataVector::get(getLLVMContext(), Indices);
6393     SV = Builder.CreateShuffleVector(Zero, Ops[0], SV, "pslldq");
6394     llvm::Type *ResultType = ConvertType(E->getType());
6395     return Builder.CreateBitCast(SV, ResultType, "cast");
6396   }
6397   case X86::BI__builtin_ia32_psrldqi256: {
6398     // Shift value is in bits so divide by 8.
6399     unsigned shiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() >> 3;
6400
6401     // If psrldq is shifting the vector more than 15 bytes, emit zero.
6402     if (shiftVal >= 16)
6403       return llvm::Constant::getNullValue(ConvertType(E->getType()));
6404
6405     uint32_t Indices[32];
6406     // 256-bit psrldq operates on 128-bit lanes so we need to handle that
6407     for (unsigned l = 0; l != 32; l += 16) {
6408       for (unsigned i = 0; i != 16; ++i) {
6409         unsigned Idx = i + shiftVal;
6410         if (Idx >= 16) Idx += 16; // end of lane, switch operand.
6411         Indices[l + i] = Idx + l;
6412       }
6413     }
6414
6415     llvm::Type *VecTy = llvm::VectorType::get(Int8Ty, 32);
6416     Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
6417     Value *Zero = llvm::Constant::getNullValue(VecTy);
6418
6419     Value *SV = llvm::ConstantDataVector::get(getLLVMContext(), Indices);
6420     SV = Builder.CreateShuffleVector(Ops[0], Zero, SV, "psrldq");
6421     llvm::Type *ResultType = ConvertType(E->getType());
6422     return Builder.CreateBitCast(SV, ResultType, "cast");
6423   }
6424   case X86::BI__builtin_ia32_movntps:
6425   case X86::BI__builtin_ia32_movntps256:
6426   case X86::BI__builtin_ia32_movntpd:
6427   case X86::BI__builtin_ia32_movntpd256:
6428   case X86::BI__builtin_ia32_movntdq:
6429   case X86::BI__builtin_ia32_movntdq256:
6430   case X86::BI__builtin_ia32_movnti:
6431   case X86::BI__builtin_ia32_movnti64: {
6432     llvm::MDNode *Node = llvm::MDNode::get(
6433         getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
6434
6435     // Convert the type of the pointer to a pointer to the stored type.
6436     Value *BC = Builder.CreateBitCast(Ops[0],
6437                                 llvm::PointerType::getUnqual(Ops[1]->getType()),
6438                                       "cast");
6439     StoreInst *SI = Builder.CreateDefaultAlignedStore(Ops[1], BC);
6440     SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
6441
6442     // If the operand is an integer, we can't assume alignment. Otherwise,
6443     // assume natural alignment.
6444     QualType ArgTy = E->getArg(1)->getType();
6445     unsigned Align;
6446     if (ArgTy->isIntegerType())
6447       Align = 1;
6448     else
6449       Align = getContext().getTypeSizeInChars(ArgTy).getQuantity();
6450     SI->setAlignment(Align);
6451     return SI;
6452   }
6453   // 3DNow!
6454   case X86::BI__builtin_ia32_pswapdsf:
6455   case X86::BI__builtin_ia32_pswapdsi: {
6456     llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext());
6457     Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast");
6458     llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_3dnowa_pswapd);
6459     return Builder.CreateCall(F, Ops, "pswapd");
6460   }
6461   case X86::BI__builtin_ia32_rdrand16_step:
6462   case X86::BI__builtin_ia32_rdrand32_step:
6463   case X86::BI__builtin_ia32_rdrand64_step:
6464   case X86::BI__builtin_ia32_rdseed16_step:
6465   case X86::BI__builtin_ia32_rdseed32_step:
6466   case X86::BI__builtin_ia32_rdseed64_step: {
6467     Intrinsic::ID ID;
6468     switch (BuiltinID) {
6469     default: llvm_unreachable("Unsupported intrinsic!");
6470     case X86::BI__builtin_ia32_rdrand16_step:
6471       ID = Intrinsic::x86_rdrand_16;
6472       break;
6473     case X86::BI__builtin_ia32_rdrand32_step:
6474       ID = Intrinsic::x86_rdrand_32;
6475       break;
6476     case X86::BI__builtin_ia32_rdrand64_step:
6477       ID = Intrinsic::x86_rdrand_64;
6478       break;
6479     case X86::BI__builtin_ia32_rdseed16_step:
6480       ID = Intrinsic::x86_rdseed_16;
6481       break;
6482     case X86::BI__builtin_ia32_rdseed32_step:
6483       ID = Intrinsic::x86_rdseed_32;
6484       break;
6485     case X86::BI__builtin_ia32_rdseed64_step:
6486       ID = Intrinsic::x86_rdseed_64;
6487       break;
6488     }
6489
6490     Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID));
6491     Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 0),
6492                                       Ops[0]);
6493     return Builder.CreateExtractValue(Call, 1);
6494   }
6495   // SSE comparison intrisics
6496   case X86::BI__builtin_ia32_cmpeqps:
6497   case X86::BI__builtin_ia32_cmpltps:
6498   case X86::BI__builtin_ia32_cmpleps:
6499   case X86::BI__builtin_ia32_cmpunordps:
6500   case X86::BI__builtin_ia32_cmpneqps:
6501   case X86::BI__builtin_ia32_cmpnltps:
6502   case X86::BI__builtin_ia32_cmpnleps:
6503   case X86::BI__builtin_ia32_cmpordps:
6504   case X86::BI__builtin_ia32_cmpeqss:
6505   case X86::BI__builtin_ia32_cmpltss:
6506   case X86::BI__builtin_ia32_cmpless:
6507   case X86::BI__builtin_ia32_cmpunordss:
6508   case X86::BI__builtin_ia32_cmpneqss:
6509   case X86::BI__builtin_ia32_cmpnltss:
6510   case X86::BI__builtin_ia32_cmpnless:
6511   case X86::BI__builtin_ia32_cmpordss:
6512   case X86::BI__builtin_ia32_cmpeqpd:
6513   case X86::BI__builtin_ia32_cmpltpd:
6514   case X86::BI__builtin_ia32_cmplepd:
6515   case X86::BI__builtin_ia32_cmpunordpd:
6516   case X86::BI__builtin_ia32_cmpneqpd:
6517   case X86::BI__builtin_ia32_cmpnltpd:
6518   case X86::BI__builtin_ia32_cmpnlepd:
6519   case X86::BI__builtin_ia32_cmpordpd:
6520   case X86::BI__builtin_ia32_cmpeqsd:
6521   case X86::BI__builtin_ia32_cmpltsd:
6522   case X86::BI__builtin_ia32_cmplesd:
6523   case X86::BI__builtin_ia32_cmpunordsd:
6524   case X86::BI__builtin_ia32_cmpneqsd:
6525   case X86::BI__builtin_ia32_cmpnltsd:
6526   case X86::BI__builtin_ia32_cmpnlesd:
6527   case X86::BI__builtin_ia32_cmpordsd:
6528     // These exist so that the builtin that takes an immediate can be bounds
6529     // checked by clang to avoid passing bad immediates to the backend. Since
6530     // AVX has a larger immediate than SSE we would need separate builtins to
6531     // do the different bounds checking. Rather than create a clang specific
6532     // SSE only builtin, this implements eight separate builtins to match gcc
6533     // implementation.
6534
6535     // Choose the immediate.
6536     unsigned Imm;
6537     switch (BuiltinID) {
6538     default: llvm_unreachable("Unsupported intrinsic!");
6539     case X86::BI__builtin_ia32_cmpeqps:
6540     case X86::BI__builtin_ia32_cmpeqss:
6541     case X86::BI__builtin_ia32_cmpeqpd:
6542     case X86::BI__builtin_ia32_cmpeqsd:
6543       Imm = 0;
6544       break;
6545     case X86::BI__builtin_ia32_cmpltps:
6546     case X86::BI__builtin_ia32_cmpltss:
6547     case X86::BI__builtin_ia32_cmpltpd:
6548     case X86::BI__builtin_ia32_cmpltsd:
6549       Imm = 1;
6550       break;
6551     case X86::BI__builtin_ia32_cmpleps:
6552     case X86::BI__builtin_ia32_cmpless:
6553     case X86::BI__builtin_ia32_cmplepd:
6554     case X86::BI__builtin_ia32_cmplesd:
6555       Imm = 2;
6556       break;
6557     case X86::BI__builtin_ia32_cmpunordps:
6558     case X86::BI__builtin_ia32_cmpunordss:
6559     case X86::BI__builtin_ia32_cmpunordpd:
6560     case X86::BI__builtin_ia32_cmpunordsd:
6561       Imm = 3;
6562       break;
6563     case X86::BI__builtin_ia32_cmpneqps:
6564     case X86::BI__builtin_ia32_cmpneqss:
6565     case X86::BI__builtin_ia32_cmpneqpd:
6566     case X86::BI__builtin_ia32_cmpneqsd:
6567       Imm = 4;
6568       break;
6569     case X86::BI__builtin_ia32_cmpnltps:
6570     case X86::BI__builtin_ia32_cmpnltss:
6571     case X86::BI__builtin_ia32_cmpnltpd:
6572     case X86::BI__builtin_ia32_cmpnltsd:
6573       Imm = 5;
6574       break;
6575     case X86::BI__builtin_ia32_cmpnleps:
6576     case X86::BI__builtin_ia32_cmpnless:
6577     case X86::BI__builtin_ia32_cmpnlepd:
6578     case X86::BI__builtin_ia32_cmpnlesd:
6579       Imm = 6;
6580       break;
6581     case X86::BI__builtin_ia32_cmpordps:
6582     case X86::BI__builtin_ia32_cmpordss:
6583     case X86::BI__builtin_ia32_cmpordpd:
6584     case X86::BI__builtin_ia32_cmpordsd:
6585       Imm = 7;
6586       break;
6587     }
6588
6589     // Choose the intrinsic ID.
6590     const char *name;
6591     Intrinsic::ID ID;
6592     switch (BuiltinID) {
6593     default: llvm_unreachable("Unsupported intrinsic!");
6594     case X86::BI__builtin_ia32_cmpeqps:
6595     case X86::BI__builtin_ia32_cmpltps:
6596     case X86::BI__builtin_ia32_cmpleps:
6597     case X86::BI__builtin_ia32_cmpunordps:
6598     case X86::BI__builtin_ia32_cmpneqps:
6599     case X86::BI__builtin_ia32_cmpnltps:
6600     case X86::BI__builtin_ia32_cmpnleps:
6601     case X86::BI__builtin_ia32_cmpordps:
6602       name = "cmpps";
6603       ID = Intrinsic::x86_sse_cmp_ps;
6604       break;
6605     case X86::BI__builtin_ia32_cmpeqss:
6606     case X86::BI__builtin_ia32_cmpltss:
6607     case X86::BI__builtin_ia32_cmpless:
6608     case X86::BI__builtin_ia32_cmpunordss:
6609     case X86::BI__builtin_ia32_cmpneqss:
6610     case X86::BI__builtin_ia32_cmpnltss:
6611     case X86::BI__builtin_ia32_cmpnless:
6612     case X86::BI__builtin_ia32_cmpordss:
6613       name = "cmpss";
6614       ID = Intrinsic::x86_sse_cmp_ss;
6615       break;
6616     case X86::BI__builtin_ia32_cmpeqpd:
6617     case X86::BI__builtin_ia32_cmpltpd:
6618     case X86::BI__builtin_ia32_cmplepd:
6619     case X86::BI__builtin_ia32_cmpunordpd:
6620     case X86::BI__builtin_ia32_cmpneqpd:
6621     case X86::BI__builtin_ia32_cmpnltpd:
6622     case X86::BI__builtin_ia32_cmpnlepd:
6623     case X86::BI__builtin_ia32_cmpordpd:
6624       name = "cmppd";
6625       ID = Intrinsic::x86_sse2_cmp_pd;
6626       break;
6627     case X86::BI__builtin_ia32_cmpeqsd:
6628     case X86::BI__builtin_ia32_cmpltsd:
6629     case X86::BI__builtin_ia32_cmplesd:
6630     case X86::BI__builtin_ia32_cmpunordsd:
6631     case X86::BI__builtin_ia32_cmpneqsd:
6632     case X86::BI__builtin_ia32_cmpnltsd:
6633     case X86::BI__builtin_ia32_cmpnlesd:
6634     case X86::BI__builtin_ia32_cmpordsd:
6635       name = "cmpsd";
6636       ID = Intrinsic::x86_sse2_cmp_sd;
6637       break;
6638     }
6639
6640     Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm));
6641     llvm::Function *F = CGM.getIntrinsic(ID);
6642     return Builder.CreateCall(F, Ops, name);
6643   }
6644 }
6645
6646
6647 Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
6648                                            const CallExpr *E) {
6649   SmallVector<Value*, 4> Ops;
6650
6651   for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
6652     Ops.push_back(EmitScalarExpr(E->getArg(i)));
6653
6654   Intrinsic::ID ID = Intrinsic::not_intrinsic;
6655
6656   switch (BuiltinID) {
6657   default: return nullptr;
6658
6659   // __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we
6660   // call __builtin_readcyclecounter.
6661   case PPC::BI__builtin_ppc_get_timebase:
6662     return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::readcyclecounter));
6663
6664   // vec_ld, vec_lvsl, vec_lvsr
6665   case PPC::BI__builtin_altivec_lvx:
6666   case PPC::BI__builtin_altivec_lvxl:
6667   case PPC::BI__builtin_altivec_lvebx:
6668   case PPC::BI__builtin_altivec_lvehx:
6669   case PPC::BI__builtin_altivec_lvewx:
6670   case PPC::BI__builtin_altivec_lvsl:
6671   case PPC::BI__builtin_altivec_lvsr:
6672   case PPC::BI__builtin_vsx_lxvd2x:
6673   case PPC::BI__builtin_vsx_lxvw4x:
6674   {
6675     Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
6676
6677     Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]);
6678     Ops.pop_back();
6679
6680     switch (BuiltinID) {
6681     default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!");
6682     case PPC::BI__builtin_altivec_lvx:
6683       ID = Intrinsic::ppc_altivec_lvx;
6684       break;
6685     case PPC::BI__builtin_altivec_lvxl:
6686       ID = Intrinsic::ppc_altivec_lvxl;
6687       break;
6688     case PPC::BI__builtin_altivec_lvebx:
6689       ID = Intrinsic::ppc_altivec_lvebx;
6690       break;
6691     case PPC::BI__builtin_altivec_lvehx:
6692       ID = Intrinsic::ppc_altivec_lvehx;
6693       break;
6694     case PPC::BI__builtin_altivec_lvewx:
6695       ID = Intrinsic::ppc_altivec_lvewx;
6696       break;
6697     case PPC::BI__builtin_altivec_lvsl:
6698       ID = Intrinsic::ppc_altivec_lvsl;
6699       break;
6700     case PPC::BI__builtin_altivec_lvsr:
6701       ID = Intrinsic::ppc_altivec_lvsr;
6702       break;
6703     case PPC::BI__builtin_vsx_lxvd2x:
6704       ID = Intrinsic::ppc_vsx_lxvd2x;
6705       break;
6706     case PPC::BI__builtin_vsx_lxvw4x:
6707       ID = Intrinsic::ppc_vsx_lxvw4x;
6708       break;
6709     }
6710     llvm::Function *F = CGM.getIntrinsic(ID);
6711     return Builder.CreateCall(F, Ops, "");
6712   }
6713
6714   // vec_st
6715   case PPC::BI__builtin_altivec_stvx:
6716   case PPC::BI__builtin_altivec_stvxl:
6717   case PPC::BI__builtin_altivec_stvebx:
6718   case PPC::BI__builtin_altivec_stvehx:
6719   case PPC::BI__builtin_altivec_stvewx:
6720   case PPC::BI__builtin_vsx_stxvd2x:
6721   case PPC::BI__builtin_vsx_stxvw4x:
6722   {
6723     Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
6724     Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]);
6725     Ops.pop_back();
6726
6727     switch (BuiltinID) {
6728     default: llvm_unreachable("Unsupported st intrinsic!");
6729     case PPC::BI__builtin_altivec_stvx:
6730       ID = Intrinsic::ppc_altivec_stvx;
6731       break;
6732     case PPC::BI__builtin_altivec_stvxl:
6733       ID = Intrinsic::ppc_altivec_stvxl;
6734       break;
6735     case PPC::BI__builtin_altivec_stvebx:
6736       ID = Intrinsic::ppc_altivec_stvebx;
6737       break;
6738     case PPC::BI__builtin_altivec_stvehx:
6739       ID = Intrinsic::ppc_altivec_stvehx;
6740       break;
6741     case PPC::BI__builtin_altivec_stvewx:
6742       ID = Intrinsic::ppc_altivec_stvewx;
6743       break;
6744     case PPC::BI__builtin_vsx_stxvd2x:
6745       ID = Intrinsic::ppc_vsx_stxvd2x;
6746       break;
6747     case PPC::BI__builtin_vsx_stxvw4x:
6748       ID = Intrinsic::ppc_vsx_stxvw4x;
6749       break;
6750     }
6751     llvm::Function *F = CGM.getIntrinsic(ID);
6752     return Builder.CreateCall(F, Ops, "");
6753   }
6754   // Square root
6755   case PPC::BI__builtin_vsx_xvsqrtsp:
6756   case PPC::BI__builtin_vsx_xvsqrtdp: {
6757     llvm::Type *ResultType = ConvertType(E->getType());
6758     Value *X = EmitScalarExpr(E->getArg(0));
6759     ID = Intrinsic::sqrt;
6760     llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
6761     return Builder.CreateCall(F, X);
6762   }
6763   // Count leading zeros
6764   case PPC::BI__builtin_altivec_vclzb:
6765   case PPC::BI__builtin_altivec_vclzh:
6766   case PPC::BI__builtin_altivec_vclzw:
6767   case PPC::BI__builtin_altivec_vclzd: {
6768     llvm::Type *ResultType = ConvertType(E->getType());
6769     Value *X = EmitScalarExpr(E->getArg(0));
6770     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
6771     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
6772     return Builder.CreateCall(F, {X, Undef});
6773   }
6774   // Copy sign
6775   case PPC::BI__builtin_vsx_xvcpsgnsp:
6776   case PPC::BI__builtin_vsx_xvcpsgndp: {
6777     llvm::Type *ResultType = ConvertType(E->getType());
6778     Value *X = EmitScalarExpr(E->getArg(0));
6779     Value *Y = EmitScalarExpr(E->getArg(1));
6780     ID = Intrinsic::copysign;
6781     llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
6782     return Builder.CreateCall(F, {X, Y});
6783   }
6784   // Rounding/truncation
6785   case PPC::BI__builtin_vsx_xvrspip:
6786   case PPC::BI__builtin_vsx_xvrdpip:
6787   case PPC::BI__builtin_vsx_xvrdpim:
6788   case PPC::BI__builtin_vsx_xvrspim:
6789   case PPC::BI__builtin_vsx_xvrdpi:
6790   case PPC::BI__builtin_vsx_xvrspi:
6791   case PPC::BI__builtin_vsx_xvrdpic:
6792   case PPC::BI__builtin_vsx_xvrspic:
6793   case PPC::BI__builtin_vsx_xvrdpiz:
6794   case PPC::BI__builtin_vsx_xvrspiz: {
6795     llvm::Type *ResultType = ConvertType(E->getType());
6796     Value *X = EmitScalarExpr(E->getArg(0));
6797     if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim ||
6798         BuiltinID == PPC::BI__builtin_vsx_xvrspim)
6799       ID = Intrinsic::floor;
6800     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi ||
6801              BuiltinID == PPC::BI__builtin_vsx_xvrspi)
6802       ID = Intrinsic::round;
6803     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic ||
6804              BuiltinID == PPC::BI__builtin_vsx_xvrspic)
6805       ID = Intrinsic::nearbyint;
6806     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip ||
6807              BuiltinID == PPC::BI__builtin_vsx_xvrspip)
6808       ID = Intrinsic::ceil;
6809     else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz ||
6810              BuiltinID == PPC::BI__builtin_vsx_xvrspiz)
6811       ID = Intrinsic::trunc;
6812     llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
6813     return Builder.CreateCall(F, X);
6814   }
6815   // FMA variations
6816   case PPC::BI__builtin_vsx_xvmaddadp:
6817   case PPC::BI__builtin_vsx_xvmaddasp:
6818   case PPC::BI__builtin_vsx_xvnmaddadp:
6819   case PPC::BI__builtin_vsx_xvnmaddasp:
6820   case PPC::BI__builtin_vsx_xvmsubadp:
6821   case PPC::BI__builtin_vsx_xvmsubasp:
6822   case PPC::BI__builtin_vsx_xvnmsubadp:
6823   case PPC::BI__builtin_vsx_xvnmsubasp: {
6824     llvm::Type *ResultType = ConvertType(E->getType());
6825     Value *X = EmitScalarExpr(E->getArg(0));
6826     Value *Y = EmitScalarExpr(E->getArg(1));
6827     Value *Z = EmitScalarExpr(E->getArg(2));
6828     Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
6829     llvm::Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
6830     switch (BuiltinID) {
6831       case PPC::BI__builtin_vsx_xvmaddadp:
6832       case PPC::BI__builtin_vsx_xvmaddasp:
6833         return Builder.CreateCall(F, {X, Y, Z});
6834       case PPC::BI__builtin_vsx_xvnmaddadp:
6835       case PPC::BI__builtin_vsx_xvnmaddasp:
6836         return Builder.CreateFSub(Zero,
6837                                   Builder.CreateCall(F, {X, Y, Z}), "sub");
6838       case PPC::BI__builtin_vsx_xvmsubadp:
6839       case PPC::BI__builtin_vsx_xvmsubasp:
6840         return Builder.CreateCall(F,
6841                                   {X, Y, Builder.CreateFSub(Zero, Z, "sub")});
6842       case PPC::BI__builtin_vsx_xvnmsubadp:
6843       case PPC::BI__builtin_vsx_xvnmsubasp:
6844         Value *FsubRes =
6845           Builder.CreateCall(F, {X, Y, Builder.CreateFSub(Zero, Z, "sub")});
6846         return Builder.CreateFSub(Zero, FsubRes, "sub");
6847     }
6848     llvm_unreachable("Unknown FMA operation");
6849     return nullptr; // Suppress no-return warning
6850   }
6851   }
6852 }
6853
6854 // Emit an intrinsic that has 1 float or double.
6855 static Value *emitUnaryFPBuiltin(CodeGenFunction &CGF,
6856                                  const CallExpr *E,
6857                                  unsigned IntrinsicID) {
6858   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
6859
6860   Value *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
6861   return CGF.Builder.CreateCall(F, Src0);
6862 }
6863
6864 // Emit an intrinsic that has 3 float or double operands.
6865 static Value *emitTernaryFPBuiltin(CodeGenFunction &CGF,
6866                                    const CallExpr *E,
6867                                    unsigned IntrinsicID) {
6868   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
6869   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
6870   llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
6871
6872   Value *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
6873   return CGF.Builder.CreateCall(F, {Src0, Src1, Src2});
6874 }
6875
6876 // Emit an intrinsic that has 1 float or double operand, and 1 integer.
6877 static Value *emitFPIntBuiltin(CodeGenFunction &CGF,
6878                                const CallExpr *E,
6879                                unsigned IntrinsicID) {
6880   llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
6881   llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
6882
6883   Value *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
6884   return CGF.Builder.CreateCall(F, {Src0, Src1});
6885 }
6886
6887 Value *CodeGenFunction::EmitAMDGPUBuiltinExpr(unsigned BuiltinID,
6888                                               const CallExpr *E) {
6889   switch (BuiltinID) {
6890   case AMDGPU::BI__builtin_amdgpu_div_scale:
6891   case AMDGPU::BI__builtin_amdgpu_div_scalef: {
6892     // Translate from the intrinsics's struct return to the builtin's out
6893     // argument.
6894
6895     Address FlagOutPtr = EmitPointerWithAlignment(E->getArg(3));
6896
6897     llvm::Value *X = EmitScalarExpr(E->getArg(0));
6898     llvm::Value *Y = EmitScalarExpr(E->getArg(1));
6899     llvm::Value *Z = EmitScalarExpr(E->getArg(2));
6900
6901     llvm::Value *Callee = CGM.getIntrinsic(Intrinsic::AMDGPU_div_scale,
6902                                            X->getType());
6903
6904     llvm::Value *Tmp = Builder.CreateCall(Callee, {X, Y, Z});
6905
6906     llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0);
6907     llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1);
6908
6909     llvm::Type *RealFlagType
6910       = FlagOutPtr.getPointer()->getType()->getPointerElementType();
6911
6912     llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType);
6913     Builder.CreateStore(FlagExt, FlagOutPtr);
6914     return Result;
6915   }
6916   case AMDGPU::BI__builtin_amdgpu_div_fmas:
6917   case AMDGPU::BI__builtin_amdgpu_div_fmasf: {
6918     llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
6919     llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
6920     llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
6921     llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
6922
6923     llvm::Value *F = CGM.getIntrinsic(Intrinsic::AMDGPU_div_fmas,
6924                                       Src0->getType());
6925     llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3);
6926     return Builder.CreateCall(F, {Src0, Src1, Src2, Src3ToBool});
6927   }
6928   case AMDGPU::BI__builtin_amdgpu_div_fixup:
6929   case AMDGPU::BI__builtin_amdgpu_div_fixupf:
6930     return emitTernaryFPBuiltin(*this, E, Intrinsic::AMDGPU_div_fixup);
6931   case AMDGPU::BI__builtin_amdgpu_trig_preop:
6932   case AMDGPU::BI__builtin_amdgpu_trig_preopf:
6933     return emitFPIntBuiltin(*this, E, Intrinsic::AMDGPU_trig_preop);
6934   case AMDGPU::BI__builtin_amdgpu_rcp:
6935   case AMDGPU::BI__builtin_amdgpu_rcpf:
6936     return emitUnaryFPBuiltin(*this, E, Intrinsic::AMDGPU_rcp);
6937   case AMDGPU::BI__builtin_amdgpu_rsq:
6938   case AMDGPU::BI__builtin_amdgpu_rsqf:
6939     return emitUnaryFPBuiltin(*this, E, Intrinsic::AMDGPU_rsq);
6940   case AMDGPU::BI__builtin_amdgpu_rsq_clamped:
6941   case AMDGPU::BI__builtin_amdgpu_rsq_clampedf:
6942     return emitUnaryFPBuiltin(*this, E, Intrinsic::AMDGPU_rsq_clamped);
6943   case AMDGPU::BI__builtin_amdgpu_ldexp:
6944   case AMDGPU::BI__builtin_amdgpu_ldexpf:
6945     return emitFPIntBuiltin(*this, E, Intrinsic::AMDGPU_ldexp);
6946   case AMDGPU::BI__builtin_amdgpu_class:
6947   case AMDGPU::BI__builtin_amdgpu_classf:
6948     return emitFPIntBuiltin(*this, E, Intrinsic::AMDGPU_class);
6949    default:
6950     return nullptr;
6951   }
6952 }
6953
6954 /// Handle a SystemZ function in which the final argument is a pointer
6955 /// to an int that receives the post-instruction CC value.  At the LLVM level
6956 /// this is represented as a function that returns a {result, cc} pair.
6957 static Value *EmitSystemZIntrinsicWithCC(CodeGenFunction &CGF,
6958                                          unsigned IntrinsicID,
6959                                          const CallExpr *E) {
6960   unsigned NumArgs = E->getNumArgs() - 1;
6961   SmallVector<Value *, 8> Args(NumArgs);
6962   for (unsigned I = 0; I < NumArgs; ++I)
6963     Args[I] = CGF.EmitScalarExpr(E->getArg(I));
6964   Address CCPtr = CGF.EmitPointerWithAlignment(E->getArg(NumArgs));
6965   Value *F = CGF.CGM.getIntrinsic(IntrinsicID);
6966   Value *Call = CGF.Builder.CreateCall(F, Args);
6967   Value *CC = CGF.Builder.CreateExtractValue(Call, 1);
6968   CGF.Builder.CreateStore(CC, CCPtr);
6969   return CGF.Builder.CreateExtractValue(Call, 0);
6970 }
6971
6972 Value *CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID,
6973                                                const CallExpr *E) {
6974   switch (BuiltinID) {
6975   case SystemZ::BI__builtin_tbegin: {
6976     Value *TDB = EmitScalarExpr(E->getArg(0));
6977     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
6978     Value *F = CGM.getIntrinsic(Intrinsic::s390_tbegin);
6979     return Builder.CreateCall(F, {TDB, Control});
6980   }
6981   case SystemZ::BI__builtin_tbegin_nofloat: {
6982     Value *TDB = EmitScalarExpr(E->getArg(0));
6983     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
6984     Value *F = CGM.getIntrinsic(Intrinsic::s390_tbegin_nofloat);
6985     return Builder.CreateCall(F, {TDB, Control});
6986   }
6987   case SystemZ::BI__builtin_tbeginc: {
6988     Value *TDB = llvm::ConstantPointerNull::get(Int8PtrTy);
6989     Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff08);
6990     Value *F = CGM.getIntrinsic(Intrinsic::s390_tbeginc);
6991     return Builder.CreateCall(F, {TDB, Control});
6992   }
6993   case SystemZ::BI__builtin_tabort: {
6994     Value *Data = EmitScalarExpr(E->getArg(0));
6995     Value *F = CGM.getIntrinsic(Intrinsic::s390_tabort);
6996     return Builder.CreateCall(F, Builder.CreateSExt(Data, Int64Ty, "tabort"));
6997   }
6998   case SystemZ::BI__builtin_non_tx_store: {
6999     Value *Address = EmitScalarExpr(E->getArg(0));
7000     Value *Data = EmitScalarExpr(E->getArg(1));
7001     Value *F = CGM.getIntrinsic(Intrinsic::s390_ntstg);
7002     return Builder.CreateCall(F, {Data, Address});
7003   }
7004
7005   // Vector builtins.  Note that most vector builtins are mapped automatically
7006   // to target-specific LLVM intrinsics.  The ones handled specially here can
7007   // be represented via standard LLVM IR, which is preferable to enable common
7008   // LLVM optimizations.
7009
7010   case SystemZ::BI__builtin_s390_vpopctb:
7011   case SystemZ::BI__builtin_s390_vpopcth:
7012   case SystemZ::BI__builtin_s390_vpopctf:
7013   case SystemZ::BI__builtin_s390_vpopctg: {
7014     llvm::Type *ResultType = ConvertType(E->getType());
7015     Value *X = EmitScalarExpr(E->getArg(0));
7016     Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
7017     return Builder.CreateCall(F, X);
7018   }
7019
7020   case SystemZ::BI__builtin_s390_vclzb:
7021   case SystemZ::BI__builtin_s390_vclzh:
7022   case SystemZ::BI__builtin_s390_vclzf:
7023   case SystemZ::BI__builtin_s390_vclzg: {
7024     llvm::Type *ResultType = ConvertType(E->getType());
7025     Value *X = EmitScalarExpr(E->getArg(0));
7026     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
7027     Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
7028     return Builder.CreateCall(F, {X, Undef});
7029   }
7030
7031   case SystemZ::BI__builtin_s390_vctzb:
7032   case SystemZ::BI__builtin_s390_vctzh:
7033   case SystemZ::BI__builtin_s390_vctzf:
7034   case SystemZ::BI__builtin_s390_vctzg: {
7035     llvm::Type *ResultType = ConvertType(E->getType());
7036     Value *X = EmitScalarExpr(E->getArg(0));
7037     Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
7038     Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
7039     return Builder.CreateCall(F, {X, Undef});
7040   }
7041
7042   case SystemZ::BI__builtin_s390_vfsqdb: {
7043     llvm::Type *ResultType = ConvertType(E->getType());
7044     Value *X = EmitScalarExpr(E->getArg(0));
7045     Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
7046     return Builder.CreateCall(F, X);
7047   }
7048   case SystemZ::BI__builtin_s390_vfmadb: {
7049     llvm::Type *ResultType = ConvertType(E->getType());
7050     Value *X = EmitScalarExpr(E->getArg(0));
7051     Value *Y = EmitScalarExpr(E->getArg(1));
7052     Value *Z = EmitScalarExpr(E->getArg(2));
7053     Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
7054     return Builder.CreateCall(F, {X, Y, Z});
7055   }
7056   case SystemZ::BI__builtin_s390_vfmsdb: {
7057     llvm::Type *ResultType = ConvertType(E->getType());
7058     Value *X = EmitScalarExpr(E->getArg(0));
7059     Value *Y = EmitScalarExpr(E->getArg(1));
7060     Value *Z = EmitScalarExpr(E->getArg(2));
7061     Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
7062     Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
7063     return Builder.CreateCall(F, {X, Y, Builder.CreateFSub(Zero, Z, "sub")});
7064   }
7065   case SystemZ::BI__builtin_s390_vflpdb: {
7066     llvm::Type *ResultType = ConvertType(E->getType());
7067     Value *X = EmitScalarExpr(E->getArg(0));
7068     Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
7069     return Builder.CreateCall(F, X);
7070   }
7071   case SystemZ::BI__builtin_s390_vflndb: {
7072     llvm::Type *ResultType = ConvertType(E->getType());
7073     Value *X = EmitScalarExpr(E->getArg(0));
7074     Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
7075     Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
7076     return Builder.CreateFSub(Zero, Builder.CreateCall(F, X), "sub");
7077   }
7078   case SystemZ::BI__builtin_s390_vfidb: {
7079     llvm::Type *ResultType = ConvertType(E->getType());
7080     Value *X = EmitScalarExpr(E->getArg(0));
7081     // Constant-fold the M4 and M5 mask arguments.
7082     llvm::APSInt M4, M5;
7083     bool IsConstM4 = E->getArg(1)->isIntegerConstantExpr(M4, getContext());
7084     bool IsConstM5 = E->getArg(2)->isIntegerConstantExpr(M5, getContext());
7085     assert(IsConstM4 && IsConstM5 && "Constant arg isn't actually constant?");
7086     (void)IsConstM4; (void)IsConstM5;
7087     // Check whether this instance of vfidb can be represented via a LLVM
7088     // standard intrinsic.  We only support some combinations of M4 and M5.
7089     Intrinsic::ID ID = Intrinsic::not_intrinsic;
7090     switch (M4.getZExtValue()) {
7091     default: break;
7092     case 0:  // IEEE-inexact exception allowed
7093       switch (M5.getZExtValue()) {
7094       default: break;
7095       case 0: ID = Intrinsic::rint; break;
7096       }
7097       break;
7098     case 4:  // IEEE-inexact exception suppressed
7099       switch (M5.getZExtValue()) {
7100       default: break;
7101       case 0: ID = Intrinsic::nearbyint; break;
7102       case 1: ID = Intrinsic::round; break;
7103       case 5: ID = Intrinsic::trunc; break;
7104       case 6: ID = Intrinsic::ceil; break;
7105       case 7: ID = Intrinsic::floor; break;
7106       }
7107       break;
7108     }
7109     if (ID != Intrinsic::not_intrinsic) {
7110       Function *F = CGM.getIntrinsic(ID, ResultType);
7111       return Builder.CreateCall(F, X);
7112     }
7113     Function *F = CGM.getIntrinsic(Intrinsic::s390_vfidb);
7114     Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
7115     Value *M5Value = llvm::ConstantInt::get(getLLVMContext(), M5);
7116     return Builder.CreateCall(F, {X, M4Value, M5Value});
7117   }
7118
7119   // Vector intrisincs that output the post-instruction CC value.
7120
7121 #define INTRINSIC_WITH_CC(NAME) \
7122     case SystemZ::BI__builtin_##NAME: \
7123       return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E)
7124
7125   INTRINSIC_WITH_CC(s390_vpkshs);
7126   INTRINSIC_WITH_CC(s390_vpksfs);
7127   INTRINSIC_WITH_CC(s390_vpksgs);
7128
7129   INTRINSIC_WITH_CC(s390_vpklshs);
7130   INTRINSIC_WITH_CC(s390_vpklsfs);
7131   INTRINSIC_WITH_CC(s390_vpklsgs);
7132
7133   INTRINSIC_WITH_CC(s390_vceqbs);
7134   INTRINSIC_WITH_CC(s390_vceqhs);
7135   INTRINSIC_WITH_CC(s390_vceqfs);
7136   INTRINSIC_WITH_CC(s390_vceqgs);
7137
7138   INTRINSIC_WITH_CC(s390_vchbs);
7139   INTRINSIC_WITH_CC(s390_vchhs);
7140   INTRINSIC_WITH_CC(s390_vchfs);
7141   INTRINSIC_WITH_CC(s390_vchgs);
7142
7143   INTRINSIC_WITH_CC(s390_vchlbs);
7144   INTRINSIC_WITH_CC(s390_vchlhs);
7145   INTRINSIC_WITH_CC(s390_vchlfs);
7146   INTRINSIC_WITH_CC(s390_vchlgs);
7147
7148   INTRINSIC_WITH_CC(s390_vfaebs);
7149   INTRINSIC_WITH_CC(s390_vfaehs);
7150   INTRINSIC_WITH_CC(s390_vfaefs);
7151
7152   INTRINSIC_WITH_CC(s390_vfaezbs);
7153   INTRINSIC_WITH_CC(s390_vfaezhs);
7154   INTRINSIC_WITH_CC(s390_vfaezfs);
7155
7156   INTRINSIC_WITH_CC(s390_vfeebs);
7157   INTRINSIC_WITH_CC(s390_vfeehs);
7158   INTRINSIC_WITH_CC(s390_vfeefs);
7159
7160   INTRINSIC_WITH_CC(s390_vfeezbs);
7161   INTRINSIC_WITH_CC(s390_vfeezhs);
7162   INTRINSIC_WITH_CC(s390_vfeezfs);
7163
7164   INTRINSIC_WITH_CC(s390_vfenebs);
7165   INTRINSIC_WITH_CC(s390_vfenehs);
7166   INTRINSIC_WITH_CC(s390_vfenefs);
7167
7168   INTRINSIC_WITH_CC(s390_vfenezbs);
7169   INTRINSIC_WITH_CC(s390_vfenezhs);
7170   INTRINSIC_WITH_CC(s390_vfenezfs);
7171
7172   INTRINSIC_WITH_CC(s390_vistrbs);
7173   INTRINSIC_WITH_CC(s390_vistrhs);
7174   INTRINSIC_WITH_CC(s390_vistrfs);
7175
7176   INTRINSIC_WITH_CC(s390_vstrcbs);
7177   INTRINSIC_WITH_CC(s390_vstrchs);
7178   INTRINSIC_WITH_CC(s390_vstrcfs);
7179
7180   INTRINSIC_WITH_CC(s390_vstrczbs);
7181   INTRINSIC_WITH_CC(s390_vstrczhs);
7182   INTRINSIC_WITH_CC(s390_vstrczfs);
7183
7184   INTRINSIC_WITH_CC(s390_vfcedbs);
7185   INTRINSIC_WITH_CC(s390_vfchdbs);
7186   INTRINSIC_WITH_CC(s390_vfchedbs);
7187
7188   INTRINSIC_WITH_CC(s390_vftcidb);
7189
7190 #undef INTRINSIC_WITH_CC
7191
7192   default:
7193     return nullptr;
7194   }
7195 }
7196
7197 Value *CodeGenFunction::EmitNVPTXBuiltinExpr(unsigned BuiltinID,
7198                                              const CallExpr *E) {
7199   switch (BuiltinID) {
7200   case NVPTX::BI__nvvm_atom_add_gen_i:
7201   case NVPTX::BI__nvvm_atom_add_gen_l:
7202   case NVPTX::BI__nvvm_atom_add_gen_ll:
7203     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Add, E);
7204
7205   case NVPTX::BI__nvvm_atom_sub_gen_i:
7206   case NVPTX::BI__nvvm_atom_sub_gen_l:
7207   case NVPTX::BI__nvvm_atom_sub_gen_ll:
7208     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Sub, E);
7209
7210   case NVPTX::BI__nvvm_atom_and_gen_i:
7211   case NVPTX::BI__nvvm_atom_and_gen_l:
7212   case NVPTX::BI__nvvm_atom_and_gen_ll:
7213     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::And, E);
7214
7215   case NVPTX::BI__nvvm_atom_or_gen_i:
7216   case NVPTX::BI__nvvm_atom_or_gen_l:
7217   case NVPTX::BI__nvvm_atom_or_gen_ll:
7218     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Or, E);
7219
7220   case NVPTX::BI__nvvm_atom_xor_gen_i:
7221   case NVPTX::BI__nvvm_atom_xor_gen_l:
7222   case NVPTX::BI__nvvm_atom_xor_gen_ll:
7223     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xor, E);
7224
7225   case NVPTX::BI__nvvm_atom_xchg_gen_i:
7226   case NVPTX::BI__nvvm_atom_xchg_gen_l:
7227   case NVPTX::BI__nvvm_atom_xchg_gen_ll:
7228     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xchg, E);
7229
7230   case NVPTX::BI__nvvm_atom_max_gen_i:
7231   case NVPTX::BI__nvvm_atom_max_gen_l:
7232   case NVPTX::BI__nvvm_atom_max_gen_ll:
7233     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Max, E);
7234
7235   case NVPTX::BI__nvvm_atom_max_gen_ui:
7236   case NVPTX::BI__nvvm_atom_max_gen_ul:
7237   case NVPTX::BI__nvvm_atom_max_gen_ull:
7238     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMax, E);
7239
7240   case NVPTX::BI__nvvm_atom_min_gen_i:
7241   case NVPTX::BI__nvvm_atom_min_gen_l:
7242   case NVPTX::BI__nvvm_atom_min_gen_ll:
7243     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Min, E);
7244
7245   case NVPTX::BI__nvvm_atom_min_gen_ui:
7246   case NVPTX::BI__nvvm_atom_min_gen_ul:
7247   case NVPTX::BI__nvvm_atom_min_gen_ull:
7248     return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMin, E);
7249
7250   case NVPTX::BI__nvvm_atom_cas_gen_i:
7251   case NVPTX::BI__nvvm_atom_cas_gen_l:
7252   case NVPTX::BI__nvvm_atom_cas_gen_ll:
7253     // __nvvm_atom_cas_gen_* should return the old value rather than the
7254     // success flag.
7255     return MakeAtomicCmpXchgValue(*this, E, /*ReturnBool=*/false);
7256
7257   case NVPTX::BI__nvvm_atom_add_gen_f: {
7258     Value *Ptr = EmitScalarExpr(E->getArg(0));
7259     Value *Val = EmitScalarExpr(E->getArg(1));
7260     // atomicrmw only deals with integer arguments so we need to use
7261     // LLVM's nvvm_atomic_load_add_f32 intrinsic for that.
7262     Value *FnALAF32 =
7263         CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_add_f32, Ptr->getType());
7264     return Builder.CreateCall(FnALAF32, {Ptr, Val});
7265   }
7266
7267   default:
7268     return nullptr;
7269   }
7270 }
7271
7272 Value *CodeGenFunction::EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
7273                                                    const CallExpr *E) {
7274   switch (BuiltinID) {
7275   case WebAssembly::BI__builtin_wasm_memory_size: {
7276     llvm::Type *ResultType = ConvertType(E->getType());
7277     Value *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_size, ResultType);
7278     return Builder.CreateCall(Callee);
7279   }
7280   case WebAssembly::BI__builtin_wasm_grow_memory: {
7281     Value *X = EmitScalarExpr(E->getArg(0));
7282     Value *Callee = CGM.getIntrinsic(Intrinsic::wasm_grow_memory, X->getType());
7283     return Builder.CreateCall(Callee, X);
7284   }
7285
7286   default:
7287     return nullptr;
7288   }
7289 }