]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/CodeGen/CGCall.cpp
Update clang to trunk r290819 and resolve conflicts.
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / CodeGen / CGCall.cpp
1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // These classes wrap the information about a call or function
11 // definition used to handle ABI compliancy.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "CGCall.h"
16 #include "ABIInfo.h"
17 #include "CGBlocks.h"
18 #include "CGCXXABI.h"
19 #include "CGCleanup.h"
20 #include "CodeGenFunction.h"
21 #include "CodeGenModule.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/Decl.h"
24 #include "clang/AST/DeclCXX.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/Basic/TargetBuiltins.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/CodeGen/CGFunctionInfo.h"
29 #include "clang/CodeGen/SwiftCallingConv.h"
30 #include "clang/Frontend/CodeGenOptions.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/CallingConv.h"
35 #include "llvm/IR/CallSite.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/InlineAsm.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/Transforms/Utils/Local.h"
41 using namespace clang;
42 using namespace CodeGen;
43
44 /***/
45
46 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
47   switch (CC) {
48   default: return llvm::CallingConv::C;
49   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
50   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
51   case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
52   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
53   case CC_X86_64Win64: return llvm::CallingConv::X86_64_Win64;
54   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
55   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
56   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
57   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
58   // TODO: Add support for __pascal to LLVM.
59   case CC_X86Pascal: return llvm::CallingConv::C;
60   // TODO: Add support for __vectorcall to LLVM.
61   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
62   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
63   case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
64   case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
65   case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
66   case CC_Swift: return llvm::CallingConv::Swift;
67   }
68 }
69
70 /// Derives the 'this' type for codegen purposes, i.e. ignoring method
71 /// qualification.
72 /// FIXME: address space qualification?
73 static CanQualType GetThisType(ASTContext &Context, const CXXRecordDecl *RD) {
74   QualType RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
75   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
76 }
77
78 /// Returns the canonical formal type of the given C++ method.
79 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
80   return MD->getType()->getCanonicalTypeUnqualified()
81            .getAs<FunctionProtoType>();
82 }
83
84 /// Returns the "extra-canonicalized" return type, which discards
85 /// qualifiers on the return type.  Codegen doesn't care about them,
86 /// and it makes ABI code a little easier to be able to assume that
87 /// all parameter and return types are top-level unqualified.
88 static CanQualType GetReturnType(QualType RetTy) {
89   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
90 }
91
92 /// Arrange the argument and result information for a value of the given
93 /// unprototyped freestanding function type.
94 const CGFunctionInfo &
95 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
96   // When translating an unprototyped function type, always use a
97   // variadic type.
98   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
99                                  /*instanceMethod=*/false,
100                                  /*chainCall=*/false, None,
101                                  FTNP->getExtInfo(), {}, RequiredArgs(0));
102 }
103
104 /// Adds the formal paramaters in FPT to the given prefix. If any parameter in
105 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
106 static void appendParameterTypes(const CodeGenTypes &CGT,
107                                  SmallVectorImpl<CanQualType> &prefix,
108               SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
109                                  CanQual<FunctionProtoType> FPT,
110                                  const FunctionDecl *FD) {
111   // Fill out paramInfos.
112   if (FPT->hasExtParameterInfos() || !paramInfos.empty()) {
113     assert(paramInfos.size() <= prefix.size());
114     auto protoParamInfos = FPT->getExtParameterInfos();
115     paramInfos.reserve(prefix.size() + protoParamInfos.size());
116     paramInfos.resize(prefix.size());
117     paramInfos.append(protoParamInfos.begin(), protoParamInfos.end());
118   }
119
120   // Fast path: unknown target.
121   if (FD == nullptr) {
122     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
123     return;
124   }
125
126   // In the vast majority cases, we'll have precisely FPT->getNumParams()
127   // parameters; the only thing that can change this is the presence of
128   // pass_object_size. So, we preallocate for the common case.
129   prefix.reserve(prefix.size() + FPT->getNumParams());
130
131   assert(FD->getNumParams() == FPT->getNumParams());
132   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
133     prefix.push_back(FPT->getParamType(I));
134     if (FD->getParamDecl(I)->hasAttr<PassObjectSizeAttr>())
135       prefix.push_back(CGT.getContext().getSizeType());
136   }
137 }
138
139 /// Arrange the LLVM function layout for a value of the given function
140 /// type, on top of any implicit parameters already stored.
141 static const CGFunctionInfo &
142 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
143                         SmallVectorImpl<CanQualType> &prefix,
144                         CanQual<FunctionProtoType> FTP,
145                         const FunctionDecl *FD) {
146   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
147   RequiredArgs Required =
148       RequiredArgs::forPrototypePlus(FTP, prefix.size(), FD);
149   // FIXME: Kill copy.
150   appendParameterTypes(CGT, prefix, paramInfos, FTP, FD);
151   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
152
153   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
154                                      /*chainCall=*/false, prefix,
155                                      FTP->getExtInfo(), paramInfos,
156                                      Required);
157 }
158
159 /// Arrange the argument and result information for a value of the
160 /// given freestanding function type.
161 const CGFunctionInfo &
162 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP,
163                                       const FunctionDecl *FD) {
164   SmallVector<CanQualType, 16> argTypes;
165   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
166                                    FTP, FD);
167 }
168
169 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
170   // Set the appropriate calling convention for the Function.
171   if (D->hasAttr<StdCallAttr>())
172     return CC_X86StdCall;
173
174   if (D->hasAttr<FastCallAttr>())
175     return CC_X86FastCall;
176
177   if (D->hasAttr<RegCallAttr>())
178     return CC_X86RegCall;
179
180   if (D->hasAttr<ThisCallAttr>())
181     return CC_X86ThisCall;
182
183   if (D->hasAttr<VectorCallAttr>())
184     return CC_X86VectorCall;
185
186   if (D->hasAttr<PascalAttr>())
187     return CC_X86Pascal;
188
189   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
190     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
191
192   if (D->hasAttr<IntelOclBiccAttr>())
193     return CC_IntelOclBicc;
194
195   if (D->hasAttr<MSABIAttr>())
196     return IsWindows ? CC_C : CC_X86_64Win64;
197
198   if (D->hasAttr<SysVABIAttr>())
199     return IsWindows ? CC_X86_64SysV : CC_C;
200
201   if (D->hasAttr<PreserveMostAttr>())
202     return CC_PreserveMost;
203
204   if (D->hasAttr<PreserveAllAttr>())
205     return CC_PreserveAll;
206
207   return CC_C;
208 }
209
210 /// Arrange the argument and result information for a call to an
211 /// unknown C++ non-static member function of the given abstract type.
212 /// (Zero value of RD means we don't have any meaningful "this" argument type,
213 ///  so fall back to a generic pointer type).
214 /// The member function must be an ordinary function, i.e. not a
215 /// constructor or destructor.
216 const CGFunctionInfo &
217 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
218                                    const FunctionProtoType *FTP,
219                                    const CXXMethodDecl *MD) {
220   SmallVector<CanQualType, 16> argTypes;
221
222   // Add the 'this' pointer.
223   if (RD)
224     argTypes.push_back(GetThisType(Context, RD));
225   else
226     argTypes.push_back(Context.VoidPtrTy);
227
228   return ::arrangeLLVMFunctionInfo(
229       *this, true, argTypes,
230       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>(), MD);
231 }
232
233 /// Arrange the argument and result information for a declaration or
234 /// definition of the given C++ non-static member function.  The
235 /// member function must be an ordinary function, i.e. not a
236 /// constructor or destructor.
237 const CGFunctionInfo &
238 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
239   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
240   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
241
242   CanQual<FunctionProtoType> prototype = GetFormalType(MD);
243
244   if (MD->isInstance()) {
245     // The abstract case is perfectly fine.
246     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
247     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
248   }
249
250   return arrangeFreeFunctionType(prototype, MD);
251 }
252
253 bool CodeGenTypes::inheritingCtorHasParams(
254     const InheritedConstructor &Inherited, CXXCtorType Type) {
255   // Parameters are unnecessary if we're constructing a base class subobject
256   // and the inherited constructor lives in a virtual base.
257   return Type == Ctor_Complete ||
258          !Inherited.getShadowDecl()->constructsVirtualBase() ||
259          !Target.getCXXABI().hasConstructorVariants();
260   }
261
262 const CGFunctionInfo &
263 CodeGenTypes::arrangeCXXStructorDeclaration(const CXXMethodDecl *MD,
264                                             StructorType Type) {
265
266   SmallVector<CanQualType, 16> argTypes;
267   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
268   argTypes.push_back(GetThisType(Context, MD->getParent()));
269
270   bool PassParams = true;
271
272   GlobalDecl GD;
273   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
274     GD = GlobalDecl(CD, toCXXCtorType(Type));
275
276     // A base class inheriting constructor doesn't get forwarded arguments
277     // needed to construct a virtual base (or base class thereof).
278     if (auto Inherited = CD->getInheritedConstructor())
279       PassParams = inheritingCtorHasParams(Inherited, toCXXCtorType(Type));
280   } else {
281     auto *DD = dyn_cast<CXXDestructorDecl>(MD);
282     GD = GlobalDecl(DD, toCXXDtorType(Type));
283   }
284
285   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
286
287   // Add the formal parameters.
288   if (PassParams)
289     appendParameterTypes(*this, argTypes, paramInfos, FTP, MD);
290
291   TheCXXABI.buildStructorSignature(MD, Type, argTypes);
292
293   RequiredArgs required =
294       (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
295                                       : RequiredArgs::All);
296
297   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
298   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
299                                ? argTypes.front()
300                                : TheCXXABI.hasMostDerivedReturn(GD)
301                                      ? CGM.getContext().VoidPtrTy
302                                      : Context.VoidTy;
303   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
304                                  /*chainCall=*/false, argTypes, extInfo,
305                                  paramInfos, required);
306 }
307
308 static SmallVector<CanQualType, 16>
309 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
310   SmallVector<CanQualType, 16> argTypes;
311   for (auto &arg : args)
312     argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
313   return argTypes;
314 }
315
316 static SmallVector<CanQualType, 16>
317 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
318   SmallVector<CanQualType, 16> argTypes;
319   for (auto &arg : args)
320     argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
321   return argTypes;
322 }
323
324 static void addExtParameterInfosForCall(
325          llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
326                                         const FunctionProtoType *proto,
327                                         unsigned prefixArgs,
328                                         unsigned totalArgs) {
329   assert(proto->hasExtParameterInfos());
330   assert(paramInfos.size() <= prefixArgs);
331   assert(proto->getNumParams() + prefixArgs <= totalArgs);
332
333   // Add default infos for any prefix args that don't already have infos.
334   paramInfos.resize(prefixArgs);
335
336   // Add infos for the prototype.
337   auto protoInfos = proto->getExtParameterInfos();
338   paramInfos.append(protoInfos.begin(), protoInfos.end());
339
340   // Add default infos for the variadic arguments.
341   paramInfos.resize(totalArgs);
342 }
343
344 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
345 getExtParameterInfosForCall(const FunctionProtoType *proto,
346                             unsigned prefixArgs, unsigned totalArgs) {
347   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
348   if (proto->hasExtParameterInfos()) {
349     addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
350   }
351   return result;
352 }
353
354 /// Arrange a call to a C++ method, passing the given arguments.
355 const CGFunctionInfo &
356 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
357                                         const CXXConstructorDecl *D,
358                                         CXXCtorType CtorKind,
359                                         unsigned ExtraArgs) {
360   // FIXME: Kill copy.
361   SmallVector<CanQualType, 16> ArgTypes;
362   for (const auto &Arg : args)
363     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
364
365   CanQual<FunctionProtoType> FPT = GetFormalType(D);
366   RequiredArgs Required = RequiredArgs::forPrototypePlus(FPT, 1 + ExtraArgs, D);
367   GlobalDecl GD(D, CtorKind);
368   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
369                                ? ArgTypes.front()
370                                : TheCXXABI.hasMostDerivedReturn(GD)
371                                      ? CGM.getContext().VoidPtrTy
372                                      : Context.VoidTy;
373
374   FunctionType::ExtInfo Info = FPT->getExtInfo();
375   auto ParamInfos = getExtParameterInfosForCall(FPT.getTypePtr(), 1 + ExtraArgs,
376                                                 ArgTypes.size());
377   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
378                                  /*chainCall=*/false, ArgTypes, Info,
379                                  ParamInfos, Required);
380 }
381
382 /// Arrange the argument and result information for the declaration or
383 /// definition of the given function.
384 const CGFunctionInfo &
385 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
386   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
387     if (MD->isInstance())
388       return arrangeCXXMethodDeclaration(MD);
389
390   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
391
392   assert(isa<FunctionType>(FTy));
393
394   // When declaring a function without a prototype, always use a
395   // non-variadic type.
396   if (isa<FunctionNoProtoType>(FTy)) {
397     CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>();
398     return arrangeLLVMFunctionInfo(
399         noProto->getReturnType(), /*instanceMethod=*/false,
400         /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
401   }
402
403   assert(isa<FunctionProtoType>(FTy));
404   return arrangeFreeFunctionType(FTy.getAs<FunctionProtoType>(), FD);
405 }
406
407 /// Arrange the argument and result information for the declaration or
408 /// definition of an Objective-C method.
409 const CGFunctionInfo &
410 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
411   // It happens that this is the same as a call with no optional
412   // arguments, except also using the formal 'self' type.
413   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
414 }
415
416 /// Arrange the argument and result information for the function type
417 /// through which to perform a send to the given Objective-C method,
418 /// using the given receiver type.  The receiver type is not always
419 /// the 'self' type of the method or even an Objective-C pointer type.
420 /// This is *not* the right method for actually performing such a
421 /// message send, due to the possibility of optional arguments.
422 const CGFunctionInfo &
423 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
424                                               QualType receiverType) {
425   SmallVector<CanQualType, 16> argTys;
426   argTys.push_back(Context.getCanonicalParamType(receiverType));
427   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
428   // FIXME: Kill copy?
429   for (const auto *I : MD->parameters()) {
430     argTys.push_back(Context.getCanonicalParamType(I->getType()));
431   }
432
433   FunctionType::ExtInfo einfo;
434   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
435   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
436
437   if (getContext().getLangOpts().ObjCAutoRefCount &&
438       MD->hasAttr<NSReturnsRetainedAttr>())
439     einfo = einfo.withProducesResult(true);
440
441   RequiredArgs required =
442     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
443
444   return arrangeLLVMFunctionInfo(
445       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
446       /*chainCall=*/false, argTys, einfo, {}, required);
447 }
448
449 const CGFunctionInfo &
450 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
451                                                  const CallArgList &args) {
452   auto argTypes = getArgTypesForCall(Context, args);
453   FunctionType::ExtInfo einfo;
454
455   return arrangeLLVMFunctionInfo(
456       GetReturnType(returnType), /*instanceMethod=*/false,
457       /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
458 }
459
460 const CGFunctionInfo &
461 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
462   // FIXME: Do we need to handle ObjCMethodDecl?
463   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
464
465   if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
466     return arrangeCXXStructorDeclaration(CD, getFromCtorType(GD.getCtorType()));
467
468   if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(FD))
469     return arrangeCXXStructorDeclaration(DD, getFromDtorType(GD.getDtorType()));
470
471   return arrangeFunctionDeclaration(FD);
472 }
473
474 /// Arrange a thunk that takes 'this' as the first parameter followed by
475 /// varargs.  Return a void pointer, regardless of the actual return type.
476 /// The body of the thunk will end in a musttail call to a function of the
477 /// correct type, and the caller will bitcast the function to the correct
478 /// prototype.
479 const CGFunctionInfo &
480 CodeGenTypes::arrangeMSMemberPointerThunk(const CXXMethodDecl *MD) {
481   assert(MD->isVirtual() && "only virtual memptrs have thunks");
482   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
483   CanQualType ArgTys[] = { GetThisType(Context, MD->getParent()) };
484   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
485                                  /*chainCall=*/false, ArgTys,
486                                  FTP->getExtInfo(), {}, RequiredArgs(1));
487 }
488
489 const CGFunctionInfo &
490 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
491                                    CXXCtorType CT) {
492   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
493
494   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
495   SmallVector<CanQualType, 2> ArgTys;
496   const CXXRecordDecl *RD = CD->getParent();
497   ArgTys.push_back(GetThisType(Context, RD));
498   if (CT == Ctor_CopyingClosure)
499     ArgTys.push_back(*FTP->param_type_begin());
500   if (RD->getNumVBases() > 0)
501     ArgTys.push_back(Context.IntTy);
502   CallingConv CC = Context.getDefaultCallingConvention(
503       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
504   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
505                                  /*chainCall=*/false, ArgTys,
506                                  FunctionType::ExtInfo(CC), {},
507                                  RequiredArgs::All);
508 }
509
510 /// Arrange a call as unto a free function, except possibly with an
511 /// additional number of formal parameters considered required.
512 static const CGFunctionInfo &
513 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
514                             CodeGenModule &CGM,
515                             const CallArgList &args,
516                             const FunctionType *fnType,
517                             unsigned numExtraRequiredArgs,
518                             bool chainCall) {
519   assert(args.size() >= numExtraRequiredArgs);
520
521   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
522
523   // In most cases, there are no optional arguments.
524   RequiredArgs required = RequiredArgs::All;
525
526   // If we have a variadic prototype, the required arguments are the
527   // extra prefix plus the arguments in the prototype.
528   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
529     if (proto->isVariadic())
530       required = RequiredArgs(proto->getNumParams() + numExtraRequiredArgs);
531
532     if (proto->hasExtParameterInfos())
533       addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
534                                   args.size());
535
536   // If we don't have a prototype at all, but we're supposed to
537   // explicitly use the variadic convention for unprototyped calls,
538   // treat all of the arguments as required but preserve the nominal
539   // possibility of variadics.
540   } else if (CGM.getTargetCodeGenInfo()
541                 .isNoProtoCallVariadic(args,
542                                        cast<FunctionNoProtoType>(fnType))) {
543     required = RequiredArgs(args.size());
544   }
545
546   // FIXME: Kill copy.
547   SmallVector<CanQualType, 16> argTypes;
548   for (const auto &arg : args)
549     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
550   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
551                                      /*instanceMethod=*/false, chainCall,
552                                      argTypes, fnType->getExtInfo(), paramInfos,
553                                      required);
554 }
555
556 /// Figure out the rules for calling a function with the given formal
557 /// type using the given arguments.  The arguments are necessary
558 /// because the function might be unprototyped, in which case it's
559 /// target-dependent in crazy ways.
560 const CGFunctionInfo &
561 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
562                                       const FunctionType *fnType,
563                                       bool chainCall) {
564   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
565                                      chainCall ? 1 : 0, chainCall);
566 }
567
568 /// A block function is essentially a free function with an
569 /// extra implicit argument.
570 const CGFunctionInfo &
571 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
572                                        const FunctionType *fnType) {
573   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
574                                      /*chainCall=*/false);
575 }
576
577 const CGFunctionInfo &
578 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
579                                               const FunctionArgList &params) {
580   auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
581   auto argTypes = getArgTypesForDeclaration(Context, params);
582
583   return arrangeLLVMFunctionInfo(
584       GetReturnType(proto->getReturnType()),
585       /*instanceMethod*/ false, /*chainCall*/ false, argTypes,
586       proto->getExtInfo(), paramInfos,
587       RequiredArgs::forPrototypePlus(proto, 1, nullptr));
588 }
589
590 const CGFunctionInfo &
591 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
592                                          const CallArgList &args) {
593   // FIXME: Kill copy.
594   SmallVector<CanQualType, 16> argTypes;
595   for (const auto &Arg : args)
596     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
597   return arrangeLLVMFunctionInfo(
598       GetReturnType(resultType), /*instanceMethod=*/false,
599       /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
600       /*paramInfos=*/ {}, RequiredArgs::All);
601 }
602
603 const CGFunctionInfo &
604 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
605                                                 const FunctionArgList &args) {
606   auto argTypes = getArgTypesForDeclaration(Context, args);
607
608   return arrangeLLVMFunctionInfo(
609       GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
610       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
611 }
612
613 const CGFunctionInfo &
614 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
615                                               ArrayRef<CanQualType> argTypes) {
616   return arrangeLLVMFunctionInfo(
617       resultType, /*instanceMethod=*/false, /*chainCall=*/false,
618       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
619 }
620
621 /// Arrange a call to a C++ method, passing the given arguments.
622 const CGFunctionInfo &
623 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
624                                    const FunctionProtoType *proto,
625                                    RequiredArgs required) {
626   unsigned numRequiredArgs =
627     (proto->isVariadic() ? required.getNumRequiredArgs() : args.size());
628   unsigned numPrefixArgs = numRequiredArgs - proto->getNumParams();
629   auto paramInfos =
630     getExtParameterInfosForCall(proto, numPrefixArgs, args.size());
631
632   // FIXME: Kill copy.
633   auto argTypes = getArgTypesForCall(Context, args);
634
635   FunctionType::ExtInfo info = proto->getExtInfo();
636   return arrangeLLVMFunctionInfo(
637       GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
638       /*chainCall=*/false, argTypes, info, paramInfos, required);
639 }
640
641 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
642   return arrangeLLVMFunctionInfo(
643       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
644       None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
645 }
646
647 const CGFunctionInfo &
648 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
649                           const CallArgList &args) {
650   assert(signature.arg_size() <= args.size());
651   if (signature.arg_size() == args.size())
652     return signature;
653
654   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
655   auto sigParamInfos = signature.getExtParameterInfos();
656   if (!sigParamInfos.empty()) {
657     paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
658     paramInfos.resize(args.size());
659   }
660
661   auto argTypes = getArgTypesForCall(Context, args);
662
663   assert(signature.getRequiredArgs().allowsOptionalArgs());
664   return arrangeLLVMFunctionInfo(signature.getReturnType(),
665                                  signature.isInstanceMethod(),
666                                  signature.isChainCall(),
667                                  argTypes,
668                                  signature.getExtInfo(),
669                                  paramInfos,
670                                  signature.getRequiredArgs());
671 }
672
673 /// Arrange the argument and result information for an abstract value
674 /// of a given function type.  This is the method which all of the
675 /// above functions ultimately defer to.
676 const CGFunctionInfo &
677 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
678                                       bool instanceMethod,
679                                       bool chainCall,
680                                       ArrayRef<CanQualType> argTypes,
681                                       FunctionType::ExtInfo info,
682                      ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
683                                       RequiredArgs required) {
684   assert(std::all_of(argTypes.begin(), argTypes.end(),
685                      std::mem_fun_ref(&CanQualType::isCanonicalAsParam)));
686
687   // Lookup or create unique function info.
688   llvm::FoldingSetNodeID ID;
689   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
690                           required, resultType, argTypes);
691
692   void *insertPos = nullptr;
693   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
694   if (FI)
695     return *FI;
696
697   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
698
699   // Construct the function info.  We co-allocate the ArgInfos.
700   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
701                               paramInfos, resultType, argTypes, required);
702   FunctionInfos.InsertNode(FI, insertPos);
703
704   bool inserted = FunctionsBeingProcessed.insert(FI).second;
705   (void)inserted;
706   assert(inserted && "Recursively being processed?");
707   
708   // Compute ABI information.
709   if (info.getCC() != CC_Swift) {
710     getABIInfo().computeInfo(*FI);
711   } else {
712     swiftcall::computeABIInfo(CGM, *FI);
713   }
714
715   // Loop over all of the computed argument and return value info.  If any of
716   // them are direct or extend without a specified coerce type, specify the
717   // default now.
718   ABIArgInfo &retInfo = FI->getReturnInfo();
719   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
720     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
721
722   for (auto &I : FI->arguments())
723     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
724       I.info.setCoerceToType(ConvertType(I.type));
725
726   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
727   assert(erased && "Not in set?");
728   
729   return *FI;
730 }
731
732 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
733                                        bool instanceMethod,
734                                        bool chainCall,
735                                        const FunctionType::ExtInfo &info,
736                                        ArrayRef<ExtParameterInfo> paramInfos,
737                                        CanQualType resultType,
738                                        ArrayRef<CanQualType> argTypes,
739                                        RequiredArgs required) {
740   assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
741
742   void *buffer =
743     operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
744                                   argTypes.size() + 1, paramInfos.size()));
745
746   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
747   FI->CallingConvention = llvmCC;
748   FI->EffectiveCallingConvention = llvmCC;
749   FI->ASTCallingConvention = info.getCC();
750   FI->InstanceMethod = instanceMethod;
751   FI->ChainCall = chainCall;
752   FI->NoReturn = info.getNoReturn();
753   FI->ReturnsRetained = info.getProducesResult();
754   FI->Required = required;
755   FI->HasRegParm = info.getHasRegParm();
756   FI->RegParm = info.getRegParm();
757   FI->ArgStruct = nullptr;
758   FI->ArgStructAlign = 0;
759   FI->NumArgs = argTypes.size();
760   FI->HasExtParameterInfos = !paramInfos.empty();
761   FI->getArgsBuffer()[0].type = resultType;
762   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
763     FI->getArgsBuffer()[i + 1].type = argTypes[i];
764   for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
765     FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
766   return FI;
767 }
768
769 /***/
770
771 namespace {
772 // ABIArgInfo::Expand implementation.
773
774 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
775 struct TypeExpansion {
776   enum TypeExpansionKind {
777     // Elements of constant arrays are expanded recursively.
778     TEK_ConstantArray,
779     // Record fields are expanded recursively (but if record is a union, only
780     // the field with the largest size is expanded).
781     TEK_Record,
782     // For complex types, real and imaginary parts are expanded recursively.
783     TEK_Complex,
784     // All other types are not expandable.
785     TEK_None
786   };
787
788   const TypeExpansionKind Kind;
789
790   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
791   virtual ~TypeExpansion() {}
792 };
793
794 struct ConstantArrayExpansion : TypeExpansion {
795   QualType EltTy;
796   uint64_t NumElts;
797
798   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
799       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
800   static bool classof(const TypeExpansion *TE) {
801     return TE->Kind == TEK_ConstantArray;
802   }
803 };
804
805 struct RecordExpansion : TypeExpansion {
806   SmallVector<const CXXBaseSpecifier *, 1> Bases;
807
808   SmallVector<const FieldDecl *, 1> Fields;
809
810   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
811                   SmallVector<const FieldDecl *, 1> &&Fields)
812       : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
813         Fields(std::move(Fields)) {}
814   static bool classof(const TypeExpansion *TE) {
815     return TE->Kind == TEK_Record;
816   }
817 };
818
819 struct ComplexExpansion : TypeExpansion {
820   QualType EltTy;
821
822   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
823   static bool classof(const TypeExpansion *TE) {
824     return TE->Kind == TEK_Complex;
825   }
826 };
827
828 struct NoExpansion : TypeExpansion {
829   NoExpansion() : TypeExpansion(TEK_None) {}
830   static bool classof(const TypeExpansion *TE) {
831     return TE->Kind == TEK_None;
832   }
833 };
834 }  // namespace
835
836 static std::unique_ptr<TypeExpansion>
837 getTypeExpansion(QualType Ty, const ASTContext &Context) {
838   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
839     return llvm::make_unique<ConstantArrayExpansion>(
840         AT->getElementType(), AT->getSize().getZExtValue());
841   }
842   if (const RecordType *RT = Ty->getAs<RecordType>()) {
843     SmallVector<const CXXBaseSpecifier *, 1> Bases;
844     SmallVector<const FieldDecl *, 1> Fields;
845     const RecordDecl *RD = RT->getDecl();
846     assert(!RD->hasFlexibleArrayMember() &&
847            "Cannot expand structure with flexible array.");
848     if (RD->isUnion()) {
849       // Unions can be here only in degenerative cases - all the fields are same
850       // after flattening. Thus we have to use the "largest" field.
851       const FieldDecl *LargestFD = nullptr;
852       CharUnits UnionSize = CharUnits::Zero();
853
854       for (const auto *FD : RD->fields()) {
855         // Skip zero length bitfields.
856         if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
857           continue;
858         assert(!FD->isBitField() &&
859                "Cannot expand structure with bit-field members.");
860         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
861         if (UnionSize < FieldSize) {
862           UnionSize = FieldSize;
863           LargestFD = FD;
864         }
865       }
866       if (LargestFD)
867         Fields.push_back(LargestFD);
868     } else {
869       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
870         assert(!CXXRD->isDynamicClass() &&
871                "cannot expand vtable pointers in dynamic classes");
872         for (const CXXBaseSpecifier &BS : CXXRD->bases())
873           Bases.push_back(&BS);
874       }
875
876       for (const auto *FD : RD->fields()) {
877         // Skip zero length bitfields.
878         if (FD->isBitField() && FD->getBitWidthValue(Context) == 0)
879           continue;
880         assert(!FD->isBitField() &&
881                "Cannot expand structure with bit-field members.");
882         Fields.push_back(FD);
883       }
884     }
885     return llvm::make_unique<RecordExpansion>(std::move(Bases),
886                                               std::move(Fields));
887   }
888   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
889     return llvm::make_unique<ComplexExpansion>(CT->getElementType());
890   }
891   return llvm::make_unique<NoExpansion>();
892 }
893
894 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
895   auto Exp = getTypeExpansion(Ty, Context);
896   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
897     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
898   }
899   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
900     int Res = 0;
901     for (auto BS : RExp->Bases)
902       Res += getExpansionSize(BS->getType(), Context);
903     for (auto FD : RExp->Fields)
904       Res += getExpansionSize(FD->getType(), Context);
905     return Res;
906   }
907   if (isa<ComplexExpansion>(Exp.get()))
908     return 2;
909   assert(isa<NoExpansion>(Exp.get()));
910   return 1;
911 }
912
913 void
914 CodeGenTypes::getExpandedTypes(QualType Ty,
915                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
916   auto Exp = getTypeExpansion(Ty, Context);
917   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
918     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
919       getExpandedTypes(CAExp->EltTy, TI);
920     }
921   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
922     for (auto BS : RExp->Bases)
923       getExpandedTypes(BS->getType(), TI);
924     for (auto FD : RExp->Fields)
925       getExpandedTypes(FD->getType(), TI);
926   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
927     llvm::Type *EltTy = ConvertType(CExp->EltTy);
928     *TI++ = EltTy;
929     *TI++ = EltTy;
930   } else {
931     assert(isa<NoExpansion>(Exp.get()));
932     *TI++ = ConvertType(Ty);
933   }
934 }
935
936 static void forConstantArrayExpansion(CodeGenFunction &CGF,
937                                       ConstantArrayExpansion *CAE,
938                                       Address BaseAddr,
939                                       llvm::function_ref<void(Address)> Fn) {
940   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
941   CharUnits EltAlign =
942     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
943
944   for (int i = 0, n = CAE->NumElts; i < n; i++) {
945     llvm::Value *EltAddr =
946       CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
947     Fn(Address(EltAddr, EltAlign));
948   }
949 }
950
951 void CodeGenFunction::ExpandTypeFromArgs(
952     QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) {
953   assert(LV.isSimple() &&
954          "Unexpected non-simple lvalue during struct expansion.");
955
956   auto Exp = getTypeExpansion(Ty, getContext());
957   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
958     forConstantArrayExpansion(*this, CAExp, LV.getAddress(),
959                               [&](Address EltAddr) {
960       LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
961       ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
962     });
963   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
964     Address This = LV.getAddress();
965     for (const CXXBaseSpecifier *BS : RExp->Bases) {
966       // Perform a single step derived-to-base conversion.
967       Address Base =
968           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
969                                 /*NullCheckValue=*/false, SourceLocation());
970       LValue SubLV = MakeAddrLValue(Base, BS->getType());
971
972       // Recurse onto bases.
973       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
974     }
975     for (auto FD : RExp->Fields) {
976       // FIXME: What are the right qualifiers here?
977       LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
978       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
979     }
980   } else if (isa<ComplexExpansion>(Exp.get())) {
981     auto realValue = *AI++;
982     auto imagValue = *AI++;
983     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
984   } else {
985     assert(isa<NoExpansion>(Exp.get()));
986     EmitStoreThroughLValue(RValue::get(*AI++), LV);
987   }
988 }
989
990 void CodeGenFunction::ExpandTypeToArgs(
991     QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
992     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
993   auto Exp = getTypeExpansion(Ty, getContext());
994   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
995     forConstantArrayExpansion(*this, CAExp, RV.getAggregateAddress(),
996                               [&](Address EltAddr) {
997       RValue EltRV =
998           convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation());
999       ExpandTypeToArgs(CAExp->EltTy, EltRV, IRFuncTy, IRCallArgs, IRCallArgPos);
1000     });
1001   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1002     Address This = RV.getAggregateAddress();
1003     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1004       // Perform a single step derived-to-base conversion.
1005       Address Base =
1006           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1007                                 /*NullCheckValue=*/false, SourceLocation());
1008       RValue BaseRV = RValue::getAggregate(Base);
1009
1010       // Recurse onto bases.
1011       ExpandTypeToArgs(BS->getType(), BaseRV, IRFuncTy, IRCallArgs,
1012                        IRCallArgPos);
1013     }
1014
1015     LValue LV = MakeAddrLValue(This, Ty);
1016     for (auto FD : RExp->Fields) {
1017       RValue FldRV = EmitRValueForField(LV, FD, SourceLocation());
1018       ExpandTypeToArgs(FD->getType(), FldRV, IRFuncTy, IRCallArgs,
1019                        IRCallArgPos);
1020     }
1021   } else if (isa<ComplexExpansion>(Exp.get())) {
1022     ComplexPairTy CV = RV.getComplexVal();
1023     IRCallArgs[IRCallArgPos++] = CV.first;
1024     IRCallArgs[IRCallArgPos++] = CV.second;
1025   } else {
1026     assert(isa<NoExpansion>(Exp.get()));
1027     assert(RV.isScalar() &&
1028            "Unexpected non-scalar rvalue during struct expansion.");
1029
1030     // Insert a bitcast as needed.
1031     llvm::Value *V = RV.getScalarVal();
1032     if (IRCallArgPos < IRFuncTy->getNumParams() &&
1033         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1034       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1035
1036     IRCallArgs[IRCallArgPos++] = V;
1037   }
1038 }
1039
1040 /// Create a temporary allocation for the purposes of coercion.
1041 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1042                                            CharUnits MinAlign) {
1043   // Don't use an alignment that's worse than what LLVM would prefer.
1044   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
1045   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1046
1047   return CGF.CreateTempAlloca(Ty, Align);
1048 }
1049
1050 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1051 /// accessing some number of bytes out of it, try to gep into the struct to get
1052 /// at its inner goodness.  Dive as deep as possible without entering an element
1053 /// with an in-memory size smaller than DstSize.
1054 static Address
1055 EnterStructPointerForCoercedAccess(Address SrcPtr,
1056                                    llvm::StructType *SrcSTy,
1057                                    uint64_t DstSize, CodeGenFunction &CGF) {
1058   // We can't dive into a zero-element struct.
1059   if (SrcSTy->getNumElements() == 0) return SrcPtr;
1060
1061   llvm::Type *FirstElt = SrcSTy->getElementType(0);
1062
1063   // If the first elt is at least as large as what we're looking for, or if the
1064   // first element is the same size as the whole struct, we can enter it. The
1065   // comparison must be made on the store size and not the alloca size. Using
1066   // the alloca size may overstate the size of the load.
1067   uint64_t FirstEltSize =
1068     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1069   if (FirstEltSize < DstSize &&
1070       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1071     return SrcPtr;
1072
1073   // GEP into the first element.
1074   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, CharUnits(), "coerce.dive");
1075
1076   // If the first element is a struct, recurse.
1077   llvm::Type *SrcTy = SrcPtr.getElementType();
1078   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1079     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1080
1081   return SrcPtr;
1082 }
1083
1084 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1085 /// are either integers or pointers.  This does a truncation of the value if it
1086 /// is too large or a zero extension if it is too small.
1087 ///
1088 /// This behaves as if the value were coerced through memory, so on big-endian
1089 /// targets the high bits are preserved in a truncation, while little-endian
1090 /// targets preserve the low bits.
1091 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1092                                              llvm::Type *Ty,
1093                                              CodeGenFunction &CGF) {
1094   if (Val->getType() == Ty)
1095     return Val;
1096
1097   if (isa<llvm::PointerType>(Val->getType())) {
1098     // If this is Pointer->Pointer avoid conversion to and from int.
1099     if (isa<llvm::PointerType>(Ty))
1100       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1101
1102     // Convert the pointer to an integer so we can play with its width.
1103     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1104   }
1105
1106   llvm::Type *DestIntTy = Ty;
1107   if (isa<llvm::PointerType>(DestIntTy))
1108     DestIntTy = CGF.IntPtrTy;
1109
1110   if (Val->getType() != DestIntTy) {
1111     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1112     if (DL.isBigEndian()) {
1113       // Preserve the high bits on big-endian targets.
1114       // That is what memory coercion does.
1115       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1116       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1117
1118       if (SrcSize > DstSize) {
1119         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1120         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1121       } else {
1122         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1123         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1124       }
1125     } else {
1126       // Little-endian targets preserve the low bits. No shifts required.
1127       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1128     }
1129   }
1130
1131   if (isa<llvm::PointerType>(Ty))
1132     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1133   return Val;
1134 }
1135
1136
1137
1138 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1139 /// a pointer to an object of type \arg Ty, known to be aligned to
1140 /// \arg SrcAlign bytes.
1141 ///
1142 /// This safely handles the case when the src type is smaller than the
1143 /// destination type; in this situation the values of bits which not
1144 /// present in the src are undefined.
1145 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1146                                       CodeGenFunction &CGF) {
1147   llvm::Type *SrcTy = Src.getElementType();
1148
1149   // If SrcTy and Ty are the same, just do a load.
1150   if (SrcTy == Ty)
1151     return CGF.Builder.CreateLoad(Src);
1152
1153   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1154
1155   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1156     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF);
1157     SrcTy = Src.getType()->getElementType();
1158   }
1159
1160   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1161
1162   // If the source and destination are integer or pointer types, just do an
1163   // extension or truncation to the desired type.
1164   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1165       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1166     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1167     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1168   }
1169
1170   // If load is legal, just bitcast the src pointer.
1171   if (SrcSize >= DstSize) {
1172     // Generally SrcSize is never greater than DstSize, since this means we are
1173     // losing bits. However, this can happen in cases where the structure has
1174     // additional padding, for example due to a user specified alignment.
1175     //
1176     // FIXME: Assert that we aren't truncating non-padding bits when have access
1177     // to that information.
1178     Src = CGF.Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(Ty));
1179     return CGF.Builder.CreateLoad(Src);
1180   }
1181
1182   // Otherwise do coercion through memory. This is stupid, but simple.
1183   Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment());
1184   Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy);
1185   Address SrcCasted = CGF.Builder.CreateBitCast(Src, CGF.Int8PtrTy);
1186   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
1187       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
1188       false);
1189   return CGF.Builder.CreateLoad(Tmp);
1190 }
1191
1192 // Function to store a first-class aggregate into memory.  We prefer to
1193 // store the elements rather than the aggregate to be more friendly to
1194 // fast-isel.
1195 // FIXME: Do we need to recurse here?
1196 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
1197                           Address Dest, bool DestIsVolatile) {
1198   // Prefer scalar stores to first-class aggregate stores.
1199   if (llvm::StructType *STy =
1200         dyn_cast<llvm::StructType>(Val->getType())) {
1201     const llvm::StructLayout *Layout =
1202       CGF.CGM.getDataLayout().getStructLayout(STy);
1203
1204     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1205       auto EltOffset = CharUnits::fromQuantity(Layout->getElementOffset(i));
1206       Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i, EltOffset);
1207       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
1208       CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1209     }
1210   } else {
1211     CGF.Builder.CreateStore(Val, Dest, DestIsVolatile);
1212   }
1213 }
1214
1215 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1216 /// where the source and destination may have different types.  The
1217 /// destination is known to be aligned to \arg DstAlign bytes.
1218 ///
1219 /// This safely handles the case when the src type is larger than the
1220 /// destination type; the upper bits of the src will be lost.
1221 static void CreateCoercedStore(llvm::Value *Src,
1222                                Address Dst,
1223                                bool DstIsVolatile,
1224                                CodeGenFunction &CGF) {
1225   llvm::Type *SrcTy = Src->getType();
1226   llvm::Type *DstTy = Dst.getType()->getElementType();
1227   if (SrcTy == DstTy) {
1228     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1229     return;
1230   }
1231
1232   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1233
1234   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1235     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF);
1236     DstTy = Dst.getType()->getElementType();
1237   }
1238
1239   // If the source and destination are integer or pointer types, just do an
1240   // extension or truncation to the desired type.
1241   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1242       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1243     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1244     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1245     return;
1246   }
1247
1248   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1249
1250   // If store is legal, just bitcast the src pointer.
1251   if (SrcSize <= DstSize) {
1252     Dst = CGF.Builder.CreateBitCast(Dst, llvm::PointerType::getUnqual(SrcTy));
1253     BuildAggStore(CGF, Src, Dst, DstIsVolatile);
1254   } else {
1255     // Otherwise do coercion through memory. This is stupid, but
1256     // simple.
1257
1258     // Generally SrcSize is never greater than DstSize, since this means we are
1259     // losing bits. However, this can happen in cases where the structure has
1260     // additional padding, for example due to a user specified alignment.
1261     //
1262     // FIXME: Assert that we aren't truncating non-padding bits when have access
1263     // to that information.
1264     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1265     CGF.Builder.CreateStore(Src, Tmp);
1266     Address Casted = CGF.Builder.CreateBitCast(Tmp, CGF.Int8PtrTy);
1267     Address DstCasted = CGF.Builder.CreateBitCast(Dst, CGF.Int8PtrTy);
1268     CGF.Builder.CreateMemCpy(DstCasted, Casted,
1269         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
1270         false);
1271   }
1272 }
1273
1274 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1275                                    const ABIArgInfo &info) {      
1276   if (unsigned offset = info.getDirectOffset()) {
1277     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1278     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1279                                              CharUnits::fromQuantity(offset));
1280     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1281   }
1282   return addr;
1283 }
1284
1285 namespace {
1286
1287 /// Encapsulates information about the way function arguments from
1288 /// CGFunctionInfo should be passed to actual LLVM IR function.
1289 class ClangToLLVMArgMapping {
1290   static const unsigned InvalidIndex = ~0U;
1291   unsigned InallocaArgNo;
1292   unsigned SRetArgNo;
1293   unsigned TotalIRArgs;
1294
1295   /// Arguments of LLVM IR function corresponding to single Clang argument.
1296   struct IRArgs {
1297     unsigned PaddingArgIndex;
1298     // Argument is expanded to IR arguments at positions
1299     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1300     unsigned FirstArgIndex;
1301     unsigned NumberOfArgs;
1302
1303     IRArgs()
1304         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1305           NumberOfArgs(0) {}
1306   };
1307
1308   SmallVector<IRArgs, 8> ArgInfo;
1309
1310 public:
1311   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1312                         bool OnlyRequiredArgs = false)
1313       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1314         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1315     construct(Context, FI, OnlyRequiredArgs);
1316   }
1317
1318   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1319   unsigned getInallocaArgNo() const {
1320     assert(hasInallocaArg());
1321     return InallocaArgNo;
1322   }
1323
1324   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1325   unsigned getSRetArgNo() const {
1326     assert(hasSRetArg());
1327     return SRetArgNo;
1328   }
1329
1330   unsigned totalIRArgs() const { return TotalIRArgs; }
1331
1332   bool hasPaddingArg(unsigned ArgNo) const {
1333     assert(ArgNo < ArgInfo.size());
1334     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1335   }
1336   unsigned getPaddingArgNo(unsigned ArgNo) const {
1337     assert(hasPaddingArg(ArgNo));
1338     return ArgInfo[ArgNo].PaddingArgIndex;
1339   }
1340
1341   /// Returns index of first IR argument corresponding to ArgNo, and their
1342   /// quantity.
1343   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1344     assert(ArgNo < ArgInfo.size());
1345     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1346                           ArgInfo[ArgNo].NumberOfArgs);
1347   }
1348
1349 private:
1350   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1351                  bool OnlyRequiredArgs);
1352 };
1353
1354 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1355                                       const CGFunctionInfo &FI,
1356                                       bool OnlyRequiredArgs) {
1357   unsigned IRArgNo = 0;
1358   bool SwapThisWithSRet = false;
1359   const ABIArgInfo &RetAI = FI.getReturnInfo();
1360
1361   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1362     SwapThisWithSRet = RetAI.isSRetAfterThis();
1363     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1364   }
1365
1366   unsigned ArgNo = 0;
1367   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1368   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1369        ++I, ++ArgNo) {
1370     assert(I != FI.arg_end());
1371     QualType ArgType = I->type;
1372     const ABIArgInfo &AI = I->info;
1373     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1374     auto &IRArgs = ArgInfo[ArgNo];
1375
1376     if (AI.getPaddingType())
1377       IRArgs.PaddingArgIndex = IRArgNo++;
1378
1379     switch (AI.getKind()) {
1380     case ABIArgInfo::Extend:
1381     case ABIArgInfo::Direct: {
1382       // FIXME: handle sseregparm someday...
1383       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1384       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1385         IRArgs.NumberOfArgs = STy->getNumElements();
1386       } else {
1387         IRArgs.NumberOfArgs = 1;
1388       }
1389       break;
1390     }
1391     case ABIArgInfo::Indirect:
1392       IRArgs.NumberOfArgs = 1;
1393       break;
1394     case ABIArgInfo::Ignore:
1395     case ABIArgInfo::InAlloca:
1396       // ignore and inalloca doesn't have matching LLVM parameters.
1397       IRArgs.NumberOfArgs = 0;
1398       break;
1399     case ABIArgInfo::CoerceAndExpand:
1400       IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1401       break;
1402     case ABIArgInfo::Expand:
1403       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1404       break;
1405     }
1406
1407     if (IRArgs.NumberOfArgs > 0) {
1408       IRArgs.FirstArgIndex = IRArgNo;
1409       IRArgNo += IRArgs.NumberOfArgs;
1410     }
1411
1412     // Skip over the sret parameter when it comes second.  We already handled it
1413     // above.
1414     if (IRArgNo == 1 && SwapThisWithSRet)
1415       IRArgNo++;
1416   }
1417   assert(ArgNo == ArgInfo.size());
1418
1419   if (FI.usesInAlloca())
1420     InallocaArgNo = IRArgNo++;
1421
1422   TotalIRArgs = IRArgNo;
1423 }
1424 }  // namespace
1425
1426 /***/
1427
1428 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1429   return FI.getReturnInfo().isIndirect();
1430 }
1431
1432 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1433   return ReturnTypeUsesSRet(FI) &&
1434          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1435 }
1436
1437 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1438   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1439     switch (BT->getKind()) {
1440     default:
1441       return false;
1442     case BuiltinType::Float:
1443       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1444     case BuiltinType::Double:
1445       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1446     case BuiltinType::LongDouble:
1447       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1448     }
1449   }
1450
1451   return false;
1452 }
1453
1454 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1455   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1456     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1457       if (BT->getKind() == BuiltinType::LongDouble)
1458         return getTarget().useObjCFP2RetForComplexLongDouble();
1459     }
1460   }
1461
1462   return false;
1463 }
1464
1465 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1466   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1467   return GetFunctionType(FI);
1468 }
1469
1470 llvm::FunctionType *
1471 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1472
1473   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1474   (void)Inserted;
1475   assert(Inserted && "Recursively being processed?");
1476
1477   llvm::Type *resultType = nullptr;
1478   const ABIArgInfo &retAI = FI.getReturnInfo();
1479   switch (retAI.getKind()) {
1480   case ABIArgInfo::Expand:
1481     llvm_unreachable("Invalid ABI kind for return argument");
1482
1483   case ABIArgInfo::Extend:
1484   case ABIArgInfo::Direct:
1485     resultType = retAI.getCoerceToType();
1486     break;
1487
1488   case ABIArgInfo::InAlloca:
1489     if (retAI.getInAllocaSRet()) {
1490       // sret things on win32 aren't void, they return the sret pointer.
1491       QualType ret = FI.getReturnType();
1492       llvm::Type *ty = ConvertType(ret);
1493       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1494       resultType = llvm::PointerType::get(ty, addressSpace);
1495     } else {
1496       resultType = llvm::Type::getVoidTy(getLLVMContext());
1497     }
1498     break;
1499
1500   case ABIArgInfo::Indirect:
1501   case ABIArgInfo::Ignore:
1502     resultType = llvm::Type::getVoidTy(getLLVMContext());
1503     break;
1504
1505   case ABIArgInfo::CoerceAndExpand:
1506     resultType = retAI.getUnpaddedCoerceAndExpandType();
1507     break;
1508   }
1509
1510   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1511   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1512
1513   // Add type for sret argument.
1514   if (IRFunctionArgs.hasSRetArg()) {
1515     QualType Ret = FI.getReturnType();
1516     llvm::Type *Ty = ConvertType(Ret);
1517     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1518     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1519         llvm::PointerType::get(Ty, AddressSpace);
1520   }
1521
1522   // Add type for inalloca argument.
1523   if (IRFunctionArgs.hasInallocaArg()) {
1524     auto ArgStruct = FI.getArgStruct();
1525     assert(ArgStruct);
1526     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1527   }
1528
1529   // Add in all of the required arguments.
1530   unsigned ArgNo = 0;
1531   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1532                                      ie = it + FI.getNumRequiredArgs();
1533   for (; it != ie; ++it, ++ArgNo) {
1534     const ABIArgInfo &ArgInfo = it->info;
1535
1536     // Insert a padding type to ensure proper alignment.
1537     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1538       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1539           ArgInfo.getPaddingType();
1540
1541     unsigned FirstIRArg, NumIRArgs;
1542     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1543
1544     switch (ArgInfo.getKind()) {
1545     case ABIArgInfo::Ignore:
1546     case ABIArgInfo::InAlloca:
1547       assert(NumIRArgs == 0);
1548       break;
1549
1550     case ABIArgInfo::Indirect: {
1551       assert(NumIRArgs == 1);
1552       // indirect arguments are always on the stack, which is addr space #0.
1553       llvm::Type *LTy = ConvertTypeForMem(it->type);
1554       ArgTypes[FirstIRArg] = LTy->getPointerTo();
1555       break;
1556     }
1557
1558     case ABIArgInfo::Extend:
1559     case ABIArgInfo::Direct: {
1560       // Fast-isel and the optimizer generally like scalar values better than
1561       // FCAs, so we flatten them if this is safe to do for this argument.
1562       llvm::Type *argType = ArgInfo.getCoerceToType();
1563       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1564       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1565         assert(NumIRArgs == st->getNumElements());
1566         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1567           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1568       } else {
1569         assert(NumIRArgs == 1);
1570         ArgTypes[FirstIRArg] = argType;
1571       }
1572       break;
1573     }
1574
1575     case ABIArgInfo::CoerceAndExpand: {
1576       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1577       for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1578         *ArgTypesIter++ = EltTy;
1579       }
1580       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1581       break;
1582     }
1583
1584     case ABIArgInfo::Expand:
1585       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1586       getExpandedTypes(it->type, ArgTypesIter);
1587       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1588       break;
1589     }
1590   }
1591
1592   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1593   assert(Erased && "Not in set?");
1594
1595   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1596 }
1597
1598 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1599   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1600   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1601
1602   if (!isFuncTypeConvertible(FPT))
1603     return llvm::StructType::get(getLLVMContext());
1604     
1605   const CGFunctionInfo *Info;
1606   if (isa<CXXDestructorDecl>(MD))
1607     Info =
1608         &arrangeCXXStructorDeclaration(MD, getFromDtorType(GD.getDtorType()));
1609   else
1610     Info = &arrangeCXXMethodDeclaration(MD);
1611   return GetFunctionType(*Info);
1612 }
1613
1614 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1615                                                llvm::AttrBuilder &FuncAttrs,
1616                                                const FunctionProtoType *FPT) {
1617   if (!FPT)
1618     return;
1619
1620   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1621       FPT->isNothrow(Ctx))
1622     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1623 }
1624
1625 void CodeGenModule::ConstructAttributeList(
1626     StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo,
1627     AttributeListType &PAL, unsigned &CallingConv, bool AttrOnCallSite) {
1628   llvm::AttrBuilder FuncAttrs;
1629   llvm::AttrBuilder RetAttrs;
1630   bool HasOptnone = false;
1631
1632   CallingConv = FI.getEffectiveCallingConvention();
1633
1634   if (FI.isNoReturn())
1635     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1636
1637   // If we have information about the function prototype, we can learn
1638   // attributes form there.
1639   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
1640                                      CalleeInfo.getCalleeFunctionProtoType());
1641
1642   const Decl *TargetDecl = CalleeInfo.getCalleeDecl();
1643
1644   bool HasAnyX86InterruptAttr = false;
1645   // FIXME: handle sseregparm someday...
1646   if (TargetDecl) {
1647     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1648       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1649     if (TargetDecl->hasAttr<NoThrowAttr>())
1650       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1651     if (TargetDecl->hasAttr<NoReturnAttr>())
1652       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1653     if (TargetDecl->hasAttr<NoDuplicateAttr>())
1654       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1655     if (TargetDecl->hasAttr<ConvergentAttr>())
1656       FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1657
1658     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1659       AddAttributesFromFunctionProtoType(
1660           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
1661       // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
1662       // These attributes are not inherited by overloads.
1663       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1664       if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
1665         FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1666     }
1667
1668     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
1669     if (TargetDecl->hasAttr<ConstAttr>()) {
1670       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1671       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1672     } else if (TargetDecl->hasAttr<PureAttr>()) {
1673       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1674       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1675     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
1676       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
1677       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1678     }
1679     if (TargetDecl->hasAttr<RestrictAttr>())
1680       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1681     if (TargetDecl->hasAttr<ReturnsNonNullAttr>())
1682       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1683
1684     HasAnyX86InterruptAttr = TargetDecl->hasAttr<AnyX86InterruptAttr>();
1685     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
1686     if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
1687       Optional<unsigned> NumElemsParam;
1688       // alloc_size args are base-1, 0 means not present.
1689       if (unsigned N = AllocSize->getNumElemsParam())
1690         NumElemsParam = N - 1;
1691       FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam() - 1,
1692                                  NumElemsParam);
1693     }
1694   }
1695
1696   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1697   if (!HasOptnone) {
1698     if (CodeGenOpts.OptimizeSize)
1699       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1700     if (CodeGenOpts.OptimizeSize == 2)
1701       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1702   }
1703
1704   if (CodeGenOpts.DisableRedZone)
1705     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1706   if (CodeGenOpts.NoImplicitFloat)
1707     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1708   if (CodeGenOpts.EnableSegmentedStacks &&
1709       !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
1710     FuncAttrs.addAttribute("split-stack");
1711
1712   if (AttrOnCallSite) {
1713     // Attributes that should go on the call site only.
1714     if (!CodeGenOpts.SimplifyLibCalls ||
1715         CodeGenOpts.isNoBuiltinFunc(Name.data()))
1716       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1717     if (!CodeGenOpts.TrapFuncName.empty())
1718       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1719   } else {
1720     // Attributes that should go on the function, but not the call site.
1721     if (!CodeGenOpts.DisableFPElim) {
1722       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1723     } else if (CodeGenOpts.OmitLeafFramePointer) {
1724       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1725       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1726     } else {
1727       FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
1728       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1729     }
1730
1731     bool DisableTailCalls =
1732         CodeGenOpts.DisableTailCalls || HasAnyX86InterruptAttr ||
1733         (TargetDecl && TargetDecl->hasAttr<DisableTailCallsAttr>());
1734     FuncAttrs.addAttribute(
1735         "disable-tail-calls",
1736         llvm::toStringRef(DisableTailCalls));
1737
1738     FuncAttrs.addAttribute("less-precise-fpmad",
1739                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1740
1741     if (!CodeGenOpts.FPDenormalMode.empty())
1742       FuncAttrs.addAttribute("denormal-fp-math",
1743                              CodeGenOpts.FPDenormalMode);
1744
1745     FuncAttrs.addAttribute("no-trapping-math",
1746                            llvm::toStringRef(CodeGenOpts.NoTrappingMath));
1747
1748     // TODO: Are these all needed?
1749     // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1750     FuncAttrs.addAttribute("no-infs-fp-math",
1751                            llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1752     FuncAttrs.addAttribute("no-nans-fp-math",
1753                            llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1754     FuncAttrs.addAttribute("unsafe-fp-math",
1755                            llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1756     FuncAttrs.addAttribute("use-soft-float",
1757                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1758     FuncAttrs.addAttribute("stack-protector-buffer-size",
1759                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1760     FuncAttrs.addAttribute("no-signed-zeros-fp-math",
1761                            llvm::toStringRef(CodeGenOpts.NoSignedZeros));
1762     FuncAttrs.addAttribute(
1763         "correctly-rounded-divide-sqrt-fp-math",
1764         llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt));
1765
1766     // TODO: Reciprocal estimate codegen options should apply to instructions?
1767     std::vector<std::string> &Recips = getTarget().getTargetOpts().Reciprocals;
1768     if (!Recips.empty())
1769       FuncAttrs.addAttribute("reciprocal-estimates",
1770                              llvm::join(Recips.begin(), Recips.end(), ","));
1771
1772     if (CodeGenOpts.StackRealignment)
1773       FuncAttrs.addAttribute("stackrealign");
1774     if (CodeGenOpts.Backchain)
1775       FuncAttrs.addAttribute("backchain");
1776
1777     // Add target-cpu and target-features attributes to functions. If
1778     // we have a decl for the function and it has a target attribute then
1779     // parse that and add it to the feature set.
1780     StringRef TargetCPU = getTarget().getTargetOpts().CPU;
1781     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl);
1782     if (FD && FD->hasAttr<TargetAttr>()) {
1783       llvm::StringMap<bool> FeatureMap;
1784       getFunctionFeatureMap(FeatureMap, FD);
1785
1786       // Produce the canonical string for this set of features.
1787       std::vector<std::string> Features;
1788       for (llvm::StringMap<bool>::const_iterator it = FeatureMap.begin(),
1789                                                  ie = FeatureMap.end();
1790            it != ie; ++it)
1791         Features.push_back((it->second ? "+" : "-") + it->first().str());
1792
1793       // Now add the target-cpu and target-features to the function.
1794       // While we populated the feature map above, we still need to
1795       // get and parse the target attribute so we can get the cpu for
1796       // the function.
1797       const auto *TD = FD->getAttr<TargetAttr>();
1798       TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse();
1799       if (ParsedAttr.second != "")
1800         TargetCPU = ParsedAttr.second;
1801       if (TargetCPU != "")
1802         FuncAttrs.addAttribute("target-cpu", TargetCPU);
1803       if (!Features.empty()) {
1804         std::sort(Features.begin(), Features.end());
1805         FuncAttrs.addAttribute(
1806             "target-features",
1807             llvm::join(Features.begin(), Features.end(), ","));
1808       }
1809     } else {
1810       // Otherwise just add the existing target cpu and target features to the
1811       // function.
1812       std::vector<std::string> &Features = getTarget().getTargetOpts().Features;
1813       if (TargetCPU != "")
1814         FuncAttrs.addAttribute("target-cpu", TargetCPU);
1815       if (!Features.empty()) {
1816         std::sort(Features.begin(), Features.end());
1817         FuncAttrs.addAttribute(
1818             "target-features",
1819             llvm::join(Features.begin(), Features.end(), ","));
1820       }
1821     }
1822   }
1823
1824   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
1825     // Conservatively, mark all functions and calls in CUDA as convergent
1826     // (meaning, they may call an intrinsically convergent op, such as
1827     // __syncthreads(), and so can't have certain optimizations applied around
1828     // them).  LLVM will remove this attribute where it safely can.
1829     FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1830
1831     // Exceptions aren't supported in CUDA device code.
1832     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1833
1834     // Respect -fcuda-flush-denormals-to-zero.
1835     if (getLangOpts().CUDADeviceFlushDenormalsToZero)
1836       FuncAttrs.addAttribute("nvptx-f32ftz", "true");
1837   }
1838
1839   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
1840
1841   QualType RetTy = FI.getReturnType();
1842   const ABIArgInfo &RetAI = FI.getReturnInfo();
1843   switch (RetAI.getKind()) {
1844   case ABIArgInfo::Extend:
1845     if (RetTy->hasSignedIntegerRepresentation())
1846       RetAttrs.addAttribute(llvm::Attribute::SExt);
1847     else if (RetTy->hasUnsignedIntegerRepresentation())
1848       RetAttrs.addAttribute(llvm::Attribute::ZExt);
1849     // FALL THROUGH
1850   case ABIArgInfo::Direct:
1851     if (RetAI.getInReg())
1852       RetAttrs.addAttribute(llvm::Attribute::InReg);
1853     break;
1854   case ABIArgInfo::Ignore:
1855     break;
1856
1857   case ABIArgInfo::InAlloca:
1858   case ABIArgInfo::Indirect: {
1859     // inalloca and sret disable readnone and readonly
1860     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1861       .removeAttribute(llvm::Attribute::ReadNone);
1862     break;
1863   }
1864
1865   case ABIArgInfo::CoerceAndExpand:
1866     break;
1867
1868   case ABIArgInfo::Expand:
1869     llvm_unreachable("Invalid ABI kind for return argument");
1870   }
1871
1872   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
1873     QualType PTy = RefTy->getPointeeType();
1874     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1875       RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
1876                                         .getQuantity());
1877     else if (getContext().getTargetAddressSpace(PTy) == 0)
1878       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1879   }
1880
1881   // Attach return attributes.
1882   if (RetAttrs.hasAttributes()) {
1883     PAL.push_back(llvm::AttributeSet::get(
1884         getLLVMContext(), llvm::AttributeSet::ReturnIndex, RetAttrs));
1885   }
1886
1887   bool hasUsedSRet = false;
1888
1889   // Attach attributes to sret.
1890   if (IRFunctionArgs.hasSRetArg()) {
1891     llvm::AttrBuilder SRETAttrs;
1892     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
1893     hasUsedSRet = true;
1894     if (RetAI.getInReg())
1895       SRETAttrs.addAttribute(llvm::Attribute::InReg);
1896     PAL.push_back(llvm::AttributeSet::get(
1897         getLLVMContext(), IRFunctionArgs.getSRetArgNo() + 1, SRETAttrs));
1898   }
1899
1900   // Attach attributes to inalloca argument.
1901   if (IRFunctionArgs.hasInallocaArg()) {
1902     llvm::AttrBuilder Attrs;
1903     Attrs.addAttribute(llvm::Attribute::InAlloca);
1904     PAL.push_back(llvm::AttributeSet::get(
1905         getLLVMContext(), IRFunctionArgs.getInallocaArgNo() + 1, Attrs));
1906   }
1907
1908   unsigned ArgNo = 0;
1909   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
1910                                           E = FI.arg_end();
1911        I != E; ++I, ++ArgNo) {
1912     QualType ParamType = I->type;
1913     const ABIArgInfo &AI = I->info;
1914     llvm::AttrBuilder Attrs;
1915
1916     // Add attribute for padding argument, if necessary.
1917     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
1918       if (AI.getPaddingInReg())
1919         PAL.push_back(llvm::AttributeSet::get(
1920             getLLVMContext(), IRFunctionArgs.getPaddingArgNo(ArgNo) + 1,
1921             llvm::Attribute::InReg));
1922     }
1923
1924     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
1925     // have the corresponding parameter variable.  It doesn't make
1926     // sense to do it here because parameters are so messed up.
1927     switch (AI.getKind()) {
1928     case ABIArgInfo::Extend:
1929       if (ParamType->isSignedIntegerOrEnumerationType())
1930         Attrs.addAttribute(llvm::Attribute::SExt);
1931       else if (ParamType->isUnsignedIntegerOrEnumerationType()) {
1932         if (getTypes().getABIInfo().shouldSignExtUnsignedType(ParamType))
1933           Attrs.addAttribute(llvm::Attribute::SExt);
1934         else
1935           Attrs.addAttribute(llvm::Attribute::ZExt);
1936       }
1937       // FALL THROUGH
1938     case ABIArgInfo::Direct:
1939       if (ArgNo == 0 && FI.isChainCall())
1940         Attrs.addAttribute(llvm::Attribute::Nest);
1941       else if (AI.getInReg())
1942         Attrs.addAttribute(llvm::Attribute::InReg);
1943       break;
1944
1945     case ABIArgInfo::Indirect: {
1946       if (AI.getInReg())
1947         Attrs.addAttribute(llvm::Attribute::InReg);
1948
1949       if (AI.getIndirectByVal())
1950         Attrs.addAttribute(llvm::Attribute::ByVal);
1951
1952       CharUnits Align = AI.getIndirectAlign();
1953
1954       // In a byval argument, it is important that the required
1955       // alignment of the type is honored, as LLVM might be creating a
1956       // *new* stack object, and needs to know what alignment to give
1957       // it. (Sometimes it can deduce a sensible alignment on its own,
1958       // but not if clang decides it must emit a packed struct, or the
1959       // user specifies increased alignment requirements.)
1960       //
1961       // This is different from indirect *not* byval, where the object
1962       // exists already, and the align attribute is purely
1963       // informative.
1964       assert(!Align.isZero());
1965
1966       // For now, only add this when we have a byval argument.
1967       // TODO: be less lazy about updating test cases.
1968       if (AI.getIndirectByVal())
1969         Attrs.addAlignmentAttr(Align.getQuantity());
1970
1971       // byval disables readnone and readonly.
1972       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1973         .removeAttribute(llvm::Attribute::ReadNone);
1974       break;
1975     }
1976     case ABIArgInfo::Ignore:
1977     case ABIArgInfo::Expand:
1978     case ABIArgInfo::CoerceAndExpand:
1979       break;
1980
1981     case ABIArgInfo::InAlloca:
1982       // inalloca disables readnone and readonly.
1983       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1984           .removeAttribute(llvm::Attribute::ReadNone);
1985       continue;
1986     }
1987
1988     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
1989       QualType PTy = RefTy->getPointeeType();
1990       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1991         Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
1992                                        .getQuantity());
1993       else if (getContext().getTargetAddressSpace(PTy) == 0)
1994         Attrs.addAttribute(llvm::Attribute::NonNull);
1995     }
1996
1997     switch (FI.getExtParameterInfo(ArgNo).getABI()) {
1998     case ParameterABI::Ordinary:
1999       break;
2000
2001     case ParameterABI::SwiftIndirectResult: {
2002       // Add 'sret' if we haven't already used it for something, but
2003       // only if the result is void.
2004       if (!hasUsedSRet && RetTy->isVoidType()) {
2005         Attrs.addAttribute(llvm::Attribute::StructRet);
2006         hasUsedSRet = true;
2007       }
2008
2009       // Add 'noalias' in either case.
2010       Attrs.addAttribute(llvm::Attribute::NoAlias);
2011
2012       // Add 'dereferenceable' and 'alignment'.
2013       auto PTy = ParamType->getPointeeType();
2014       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2015         auto info = getContext().getTypeInfoInChars(PTy);
2016         Attrs.addDereferenceableAttr(info.first.getQuantity());
2017         Attrs.addAttribute(llvm::Attribute::getWithAlignment(getLLVMContext(),
2018                                                  info.second.getQuantity()));
2019       }
2020       break;
2021     }
2022
2023     case ParameterABI::SwiftErrorResult:
2024       Attrs.addAttribute(llvm::Attribute::SwiftError);
2025       break;
2026
2027     case ParameterABI::SwiftContext:
2028       Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2029       break;
2030     }
2031
2032     if (Attrs.hasAttributes()) {
2033       unsigned FirstIRArg, NumIRArgs;
2034       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2035       for (unsigned i = 0; i < NumIRArgs; i++)
2036         PAL.push_back(llvm::AttributeSet::get(getLLVMContext(),
2037                                               FirstIRArg + i + 1, Attrs));
2038     }
2039   }
2040   assert(ArgNo == FI.arg_size());
2041
2042   if (FuncAttrs.hasAttributes())
2043     PAL.push_back(llvm::
2044                   AttributeSet::get(getLLVMContext(),
2045                                     llvm::AttributeSet::FunctionIndex,
2046                                     FuncAttrs));
2047 }
2048
2049 /// An argument came in as a promoted argument; demote it back to its
2050 /// declared type.
2051 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2052                                          const VarDecl *var,
2053                                          llvm::Value *value) {
2054   llvm::Type *varType = CGF.ConvertType(var->getType());
2055
2056   // This can happen with promotions that actually don't change the
2057   // underlying type, like the enum promotions.
2058   if (value->getType() == varType) return value;
2059
2060   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2061          && "unexpected promotion type");
2062
2063   if (isa<llvm::IntegerType>(varType))
2064     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2065
2066   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2067 }
2068
2069 /// Returns the attribute (either parameter attribute, or function
2070 /// attribute), which declares argument ArgNo to be non-null.
2071 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2072                                          QualType ArgType, unsigned ArgNo) {
2073   // FIXME: __attribute__((nonnull)) can also be applied to:
2074   //   - references to pointers, where the pointee is known to be
2075   //     nonnull (apparently a Clang extension)
2076   //   - transparent unions containing pointers
2077   // In the former case, LLVM IR cannot represent the constraint. In
2078   // the latter case, we have no guarantee that the transparent union
2079   // is in fact passed as a pointer.
2080   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2081     return nullptr;
2082   // First, check attribute on parameter itself.
2083   if (PVD) {
2084     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2085       return ParmNNAttr;
2086   }
2087   // Check function attributes.
2088   if (!FD)
2089     return nullptr;
2090   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2091     if (NNAttr->isNonNull(ArgNo))
2092       return NNAttr;
2093   }
2094   return nullptr;
2095 }
2096
2097 namespace {
2098   struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2099     Address Temp;
2100     Address Arg;
2101     CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2102     void Emit(CodeGenFunction &CGF, Flags flags) override {
2103       llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2104       CGF.Builder.CreateStore(errorValue, Arg);
2105     }
2106   };
2107 }
2108
2109 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2110                                          llvm::Function *Fn,
2111                                          const FunctionArgList &Args) {
2112   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2113     // Naked functions don't have prologues.
2114     return;
2115
2116   // If this is an implicit-return-zero function, go ahead and
2117   // initialize the return value.  TODO: it might be nice to have
2118   // a more general mechanism for this that didn't require synthesized
2119   // return statements.
2120   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2121     if (FD->hasImplicitReturnZero()) {
2122       QualType RetTy = FD->getReturnType().getUnqualifiedType();
2123       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2124       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2125       Builder.CreateStore(Zero, ReturnValue);
2126     }
2127   }
2128
2129   // FIXME: We no longer need the types from FunctionArgList; lift up and
2130   // simplify.
2131
2132   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2133   // Flattened function arguments.
2134   SmallVector<llvm::Value *, 16> FnArgs;
2135   FnArgs.reserve(IRFunctionArgs.totalIRArgs());
2136   for (auto &Arg : Fn->args()) {
2137     FnArgs.push_back(&Arg);
2138   }
2139   assert(FnArgs.size() == IRFunctionArgs.totalIRArgs());
2140
2141   // If we're using inalloca, all the memory arguments are GEPs off of the last
2142   // parameter, which is a pointer to the complete memory area.
2143   Address ArgStruct = Address::invalid();
2144   const llvm::StructLayout *ArgStructLayout = nullptr;
2145   if (IRFunctionArgs.hasInallocaArg()) {
2146     ArgStructLayout = CGM.getDataLayout().getStructLayout(FI.getArgStruct());
2147     ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()],
2148                         FI.getArgStructAlignment());
2149
2150     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2151   }
2152
2153   // Name the struct return parameter.
2154   if (IRFunctionArgs.hasSRetArg()) {
2155     auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]);
2156     AI->setName("agg.result");
2157     AI->addAttr(llvm::AttributeSet::get(getLLVMContext(), AI->getArgNo() + 1,
2158                                         llvm::Attribute::NoAlias));
2159   }
2160
2161   // Track if we received the parameter as a pointer (indirect, byval, or
2162   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
2163   // into a local alloca for us.
2164   SmallVector<ParamValue, 16> ArgVals;
2165   ArgVals.reserve(Args.size());
2166
2167   // Create a pointer value for every parameter declaration.  This usually
2168   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
2169   // any cleanups or do anything that might unwind.  We do that separately, so
2170   // we can push the cleanups in the correct order for the ABI.
2171   assert(FI.arg_size() == Args.size() &&
2172          "Mismatch between function signature & arguments.");
2173   unsigned ArgNo = 0;
2174   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2175   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2176        i != e; ++i, ++info_it, ++ArgNo) {
2177     const VarDecl *Arg = *i;
2178     QualType Ty = info_it->type;
2179     const ABIArgInfo &ArgI = info_it->info;
2180
2181     bool isPromoted =
2182       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2183
2184     unsigned FirstIRArg, NumIRArgs;
2185     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2186
2187     switch (ArgI.getKind()) {
2188     case ABIArgInfo::InAlloca: {
2189       assert(NumIRArgs == 0);
2190       auto FieldIndex = ArgI.getInAllocaFieldIndex();
2191       CharUnits FieldOffset =
2192         CharUnits::fromQuantity(ArgStructLayout->getElementOffset(FieldIndex));
2193       Address V = Builder.CreateStructGEP(ArgStruct, FieldIndex, FieldOffset,
2194                                           Arg->getName());
2195       ArgVals.push_back(ParamValue::forIndirect(V));
2196       break;
2197     }
2198
2199     case ABIArgInfo::Indirect: {
2200       assert(NumIRArgs == 1);
2201       Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign());
2202
2203       if (!hasScalarEvaluationKind(Ty)) {
2204         // Aggregates and complex variables are accessed by reference.  All we
2205         // need to do is realign the value, if requested.
2206         Address V = ParamAddr;
2207         if (ArgI.getIndirectRealign()) {
2208           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2209
2210           // Copy from the incoming argument pointer to the temporary with the
2211           // appropriate alignment.
2212           //
2213           // FIXME: We should have a common utility for generating an aggregate
2214           // copy.
2215           CharUnits Size = getContext().getTypeSizeInChars(Ty);
2216           auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity());
2217           Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy);
2218           Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy);
2219           Builder.CreateMemCpy(Dst, Src, SizeVal, false);
2220           V = AlignedTemp;
2221         }
2222         ArgVals.push_back(ParamValue::forIndirect(V));
2223       } else {
2224         // Load scalar value from indirect argument.
2225         llvm::Value *V =
2226           EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getLocStart());
2227
2228         if (isPromoted)
2229           V = emitArgumentDemotion(*this, Arg, V);
2230         ArgVals.push_back(ParamValue::forDirect(V));
2231       }
2232       break;
2233     }
2234
2235     case ABIArgInfo::Extend:
2236     case ABIArgInfo::Direct: {
2237
2238       // If we have the trivial case, handle it with no muss and fuss.
2239       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2240           ArgI.getCoerceToType() == ConvertType(Ty) &&
2241           ArgI.getDirectOffset() == 0) {
2242         assert(NumIRArgs == 1);
2243         llvm::Value *V = FnArgs[FirstIRArg];
2244         auto AI = cast<llvm::Argument>(V);
2245
2246         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2247           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2248                              PVD->getFunctionScopeIndex()))
2249             AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
2250                                                 AI->getArgNo() + 1,
2251                                                 llvm::Attribute::NonNull));
2252
2253           QualType OTy = PVD->getOriginalType();
2254           if (const auto *ArrTy =
2255               getContext().getAsConstantArrayType(OTy)) {
2256             // A C99 array parameter declaration with the static keyword also
2257             // indicates dereferenceability, and if the size is constant we can
2258             // use the dereferenceable attribute (which requires the size in
2259             // bytes).
2260             if (ArrTy->getSizeModifier() == ArrayType::Static) {
2261               QualType ETy = ArrTy->getElementType();
2262               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2263               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2264                   ArrSize) {
2265                 llvm::AttrBuilder Attrs;
2266                 Attrs.addDereferenceableAttr(
2267                   getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
2268                 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
2269                                                     AI->getArgNo() + 1, Attrs));
2270               } else if (getContext().getTargetAddressSpace(ETy) == 0) {
2271                 AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
2272                                                     AI->getArgNo() + 1,
2273                                                     llvm::Attribute::NonNull));
2274               }
2275             }
2276           } else if (const auto *ArrTy =
2277                      getContext().getAsVariableArrayType(OTy)) {
2278             // For C99 VLAs with the static keyword, we don't know the size so
2279             // we can't use the dereferenceable attribute, but in addrspace(0)
2280             // we know that it must be nonnull.
2281             if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
2282                 !getContext().getTargetAddressSpace(ArrTy->getElementType()))
2283               AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
2284                                                   AI->getArgNo() + 1,
2285                                                   llvm::Attribute::NonNull));
2286           }
2287
2288           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2289           if (!AVAttr)
2290             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
2291               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2292           if (AVAttr) {         
2293             llvm::Value *AlignmentValue =
2294               EmitScalarExpr(AVAttr->getAlignment());
2295             llvm::ConstantInt *AlignmentCI =
2296               cast<llvm::ConstantInt>(AlignmentValue);
2297             unsigned Alignment =
2298               std::min((unsigned) AlignmentCI->getZExtValue(),
2299                        +llvm::Value::MaximumAlignment);
2300
2301             llvm::AttrBuilder Attrs;
2302             Attrs.addAlignmentAttr(Alignment);
2303             AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
2304                                                 AI->getArgNo() + 1, Attrs));
2305           }
2306         }
2307
2308         if (Arg->getType().isRestrictQualified())
2309           AI->addAttr(llvm::AttributeSet::get(getLLVMContext(),
2310                                               AI->getArgNo() + 1,
2311                                               llvm::Attribute::NoAlias));
2312
2313         // LLVM expects swifterror parameters to be used in very restricted
2314         // ways.  Copy the value into a less-restricted temporary.
2315         if (FI.getExtParameterInfo(ArgNo).getABI()
2316               == ParameterABI::SwiftErrorResult) {
2317           QualType pointeeTy = Ty->getPointeeType();
2318           assert(pointeeTy->isPointerType());
2319           Address temp =
2320             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2321           Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy));
2322           llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2323           Builder.CreateStore(incomingErrorValue, temp);
2324           V = temp.getPointer();
2325
2326           // Push a cleanup to copy the value back at the end of the function.
2327           // The convention does not guarantee that the value will be written
2328           // back if the function exits with an unwind exception.
2329           EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2330         }
2331
2332         // Ensure the argument is the correct type.
2333         if (V->getType() != ArgI.getCoerceToType())
2334           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2335
2336         if (isPromoted)
2337           V = emitArgumentDemotion(*this, Arg, V);
2338
2339         // Because of merging of function types from multiple decls it is
2340         // possible for the type of an argument to not match the corresponding
2341         // type in the function type. Since we are codegening the callee
2342         // in here, add a cast to the argument type.
2343         llvm::Type *LTy = ConvertType(Arg->getType());
2344         if (V->getType() != LTy)
2345           V = Builder.CreateBitCast(V, LTy);
2346
2347         ArgVals.push_back(ParamValue::forDirect(V));
2348         break;
2349       }
2350
2351       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2352                                      Arg->getName());
2353
2354       // Pointer to store into.
2355       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2356
2357       // Fast-isel and the optimizer generally like scalar values better than
2358       // FCAs, so we flatten them if this is safe to do for this argument.
2359       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2360       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2361           STy->getNumElements() > 1) {
2362         auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
2363         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2364         llvm::Type *DstTy = Ptr.getElementType();
2365         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2366
2367         Address AddrToStoreInto = Address::invalid();
2368         if (SrcSize <= DstSize) {
2369           AddrToStoreInto =
2370             Builder.CreateBitCast(Ptr, llvm::PointerType::getUnqual(STy));
2371         } else {
2372           AddrToStoreInto =
2373             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2374         }
2375
2376         assert(STy->getNumElements() == NumIRArgs);
2377         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2378           auto AI = FnArgs[FirstIRArg + i];
2379           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2380           auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
2381           Address EltPtr =
2382             Builder.CreateStructGEP(AddrToStoreInto, i, Offset);
2383           Builder.CreateStore(AI, EltPtr);
2384         }
2385
2386         if (SrcSize > DstSize) {
2387           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2388         }
2389
2390       } else {
2391         // Simple case, just do a coerced store of the argument into the alloca.
2392         assert(NumIRArgs == 1);
2393         auto AI = FnArgs[FirstIRArg];
2394         AI->setName(Arg->getName() + ".coerce");
2395         CreateCoercedStore(AI, Ptr, /*DestIsVolatile=*/false, *this);
2396       }
2397
2398       // Match to what EmitParmDecl is expecting for this type.
2399       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2400         llvm::Value *V =
2401           EmitLoadOfScalar(Alloca, false, Ty, Arg->getLocStart());
2402         if (isPromoted)
2403           V = emitArgumentDemotion(*this, Arg, V);
2404         ArgVals.push_back(ParamValue::forDirect(V));
2405       } else {
2406         ArgVals.push_back(ParamValue::forIndirect(Alloca));
2407       }
2408       break;
2409     }
2410
2411     case ABIArgInfo::CoerceAndExpand: {
2412       // Reconstruct into a temporary.
2413       Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2414       ArgVals.push_back(ParamValue::forIndirect(alloca));
2415
2416       auto coercionType = ArgI.getCoerceAndExpandType();
2417       alloca = Builder.CreateElementBitCast(alloca, coercionType);
2418       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
2419
2420       unsigned argIndex = FirstIRArg;
2421       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2422         llvm::Type *eltType = coercionType->getElementType(i);
2423         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
2424           continue;
2425
2426         auto eltAddr = Builder.CreateStructGEP(alloca, i, layout);
2427         auto elt = FnArgs[argIndex++];
2428         Builder.CreateStore(elt, eltAddr);
2429       }
2430       assert(argIndex == FirstIRArg + NumIRArgs);
2431       break;
2432     }
2433
2434     case ABIArgInfo::Expand: {
2435       // If this structure was expanded into multiple arguments then
2436       // we need to create a temporary and reconstruct it from the
2437       // arguments.
2438       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2439       LValue LV = MakeAddrLValue(Alloca, Ty);
2440       ArgVals.push_back(ParamValue::forIndirect(Alloca));
2441
2442       auto FnArgIter = FnArgs.begin() + FirstIRArg;
2443       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2444       assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs);
2445       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2446         auto AI = FnArgs[FirstIRArg + i];
2447         AI->setName(Arg->getName() + "." + Twine(i));
2448       }
2449       break;
2450     }
2451
2452     case ABIArgInfo::Ignore:
2453       assert(NumIRArgs == 0);
2454       // Initialize the local variable appropriately.
2455       if (!hasScalarEvaluationKind(Ty)) {
2456         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2457       } else {
2458         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2459         ArgVals.push_back(ParamValue::forDirect(U));
2460       }
2461       break;
2462     }
2463   }
2464
2465   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2466     for (int I = Args.size() - 1; I >= 0; --I)
2467       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2468   } else {
2469     for (unsigned I = 0, E = Args.size(); I != E; ++I)
2470       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2471   }
2472 }
2473
2474 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2475   while (insn->use_empty()) {
2476     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2477     if (!bitcast) return;
2478
2479     // This is "safe" because we would have used a ConstantExpr otherwise.
2480     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2481     bitcast->eraseFromParent();
2482   }
2483 }
2484
2485 /// Try to emit a fused autorelease of a return result.
2486 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2487                                                     llvm::Value *result) {
2488   // We must be immediately followed the cast.
2489   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2490   if (BB->empty()) return nullptr;
2491   if (&BB->back() != result) return nullptr;
2492
2493   llvm::Type *resultType = result->getType();
2494
2495   // result is in a BasicBlock and is therefore an Instruction.
2496   llvm::Instruction *generator = cast<llvm::Instruction>(result);
2497
2498   SmallVector<llvm::Instruction *, 4> InstsToKill;
2499
2500   // Look for:
2501   //  %generator = bitcast %type1* %generator2 to %type2*
2502   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2503     // We would have emitted this as a constant if the operand weren't
2504     // an Instruction.
2505     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2506
2507     // Require the generator to be immediately followed by the cast.
2508     if (generator->getNextNode() != bitcast)
2509       return nullptr;
2510
2511     InstsToKill.push_back(bitcast);
2512   }
2513
2514   // Look for:
2515   //   %generator = call i8* @objc_retain(i8* %originalResult)
2516   // or
2517   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2518   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2519   if (!call) return nullptr;
2520
2521   bool doRetainAutorelease;
2522
2523   if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) {
2524     doRetainAutorelease = true;
2525   } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints()
2526                                           .objc_retainAutoreleasedReturnValue) {
2527     doRetainAutorelease = false;
2528
2529     // If we emitted an assembly marker for this call (and the
2530     // ARCEntrypoints field should have been set if so), go looking
2531     // for that call.  If we can't find it, we can't do this
2532     // optimization.  But it should always be the immediately previous
2533     // instruction, unless we needed bitcasts around the call.
2534     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
2535       llvm::Instruction *prev = call->getPrevNode();
2536       assert(prev);
2537       if (isa<llvm::BitCastInst>(prev)) {
2538         prev = prev->getPrevNode();
2539         assert(prev);
2540       }
2541       assert(isa<llvm::CallInst>(prev));
2542       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
2543                CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
2544       InstsToKill.push_back(prev);
2545     }
2546   } else {
2547     return nullptr;
2548   }
2549
2550   result = call->getArgOperand(0);
2551   InstsToKill.push_back(call);
2552
2553   // Keep killing bitcasts, for sanity.  Note that we no longer care
2554   // about precise ordering as long as there's exactly one use.
2555   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
2556     if (!bitcast->hasOneUse()) break;
2557     InstsToKill.push_back(bitcast);
2558     result = bitcast->getOperand(0);
2559   }
2560
2561   // Delete all the unnecessary instructions, from latest to earliest.
2562   for (auto *I : InstsToKill)
2563     I->eraseFromParent();
2564
2565   // Do the fused retain/autorelease if we were asked to.
2566   if (doRetainAutorelease)
2567     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
2568
2569   // Cast back to the result type.
2570   return CGF.Builder.CreateBitCast(result, resultType);
2571 }
2572
2573 /// If this is a +1 of the value of an immutable 'self', remove it.
2574 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
2575                                           llvm::Value *result) {
2576   // This is only applicable to a method with an immutable 'self'.
2577   const ObjCMethodDecl *method =
2578     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
2579   if (!method) return nullptr;
2580   const VarDecl *self = method->getSelfDecl();
2581   if (!self->getType().isConstQualified()) return nullptr;
2582
2583   // Look for a retain call.
2584   llvm::CallInst *retainCall =
2585     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
2586   if (!retainCall ||
2587       retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain)
2588     return nullptr;
2589
2590   // Look for an ordinary load of 'self'.
2591   llvm::Value *retainedValue = retainCall->getArgOperand(0);
2592   llvm::LoadInst *load =
2593     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
2594   if (!load || load->isAtomic() || load->isVolatile() || 
2595       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
2596     return nullptr;
2597
2598   // Okay!  Burn it all down.  This relies for correctness on the
2599   // assumption that the retain is emitted as part of the return and
2600   // that thereafter everything is used "linearly".
2601   llvm::Type *resultType = result->getType();
2602   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
2603   assert(retainCall->use_empty());
2604   retainCall->eraseFromParent();
2605   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
2606
2607   return CGF.Builder.CreateBitCast(load, resultType);
2608 }
2609
2610 /// Emit an ARC autorelease of the result of a function.
2611 ///
2612 /// \return the value to actually return from the function
2613 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
2614                                             llvm::Value *result) {
2615   // If we're returning 'self', kill the initial retain.  This is a
2616   // heuristic attempt to "encourage correctness" in the really unfortunate
2617   // case where we have a return of self during a dealloc and we desperately
2618   // need to avoid the possible autorelease.
2619   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
2620     return self;
2621
2622   // At -O0, try to emit a fused retain/autorelease.
2623   if (CGF.shouldUseFusedARCCalls())
2624     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
2625       return fused;
2626
2627   return CGF.EmitARCAutoreleaseReturnValue(result);
2628 }
2629
2630 /// Heuristically search for a dominating store to the return-value slot.
2631 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
2632   // Check if a User is a store which pointerOperand is the ReturnValue.
2633   // We are looking for stores to the ReturnValue, not for stores of the
2634   // ReturnValue to some other location.
2635   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
2636     auto *SI = dyn_cast<llvm::StoreInst>(U);
2637     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
2638       return nullptr;
2639     // These aren't actually possible for non-coerced returns, and we
2640     // only care about non-coerced returns on this code path.
2641     assert(!SI->isAtomic() && !SI->isVolatile());
2642     return SI;
2643   };
2644   // If there are multiple uses of the return-value slot, just check
2645   // for something immediately preceding the IP.  Sometimes this can
2646   // happen with how we generate implicit-returns; it can also happen
2647   // with noreturn cleanups.
2648   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
2649     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2650     if (IP->empty()) return nullptr;
2651     llvm::Instruction *I = &IP->back();
2652
2653     // Skip lifetime markers
2654     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
2655                                             IE = IP->rend();
2656          II != IE; ++II) {
2657       if (llvm::IntrinsicInst *Intrinsic =
2658               dyn_cast<llvm::IntrinsicInst>(&*II)) {
2659         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
2660           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
2661           ++II;
2662           if (II == IE)
2663             break;
2664           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
2665             continue;
2666         }
2667       }
2668       I = &*II;
2669       break;
2670     }
2671
2672     return GetStoreIfValid(I);
2673   }
2674
2675   llvm::StoreInst *store =
2676       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
2677   if (!store) return nullptr;
2678
2679   // Now do a first-and-dirty dominance check: just walk up the
2680   // single-predecessors chain from the current insertion point.
2681   llvm::BasicBlock *StoreBB = store->getParent();
2682   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2683   while (IP != StoreBB) {
2684     if (!(IP = IP->getSinglePredecessor()))
2685       return nullptr;
2686   }
2687
2688   // Okay, the store's basic block dominates the insertion point; we
2689   // can do our thing.
2690   return store;
2691 }
2692
2693 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
2694                                          bool EmitRetDbgLoc,
2695                                          SourceLocation EndLoc) {
2696   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
2697     // Naked functions don't have epilogues.
2698     Builder.CreateUnreachable();
2699     return;
2700   }
2701
2702   // Functions with no result always return void.
2703   if (!ReturnValue.isValid()) {
2704     Builder.CreateRetVoid();
2705     return;
2706   }
2707
2708   llvm::DebugLoc RetDbgLoc;
2709   llvm::Value *RV = nullptr;
2710   QualType RetTy = FI.getReturnType();
2711   const ABIArgInfo &RetAI = FI.getReturnInfo();
2712
2713   switch (RetAI.getKind()) {
2714   case ABIArgInfo::InAlloca:
2715     // Aggregrates get evaluated directly into the destination.  Sometimes we
2716     // need to return the sret value in a register, though.
2717     assert(hasAggregateEvaluationKind(RetTy));
2718     if (RetAI.getInAllocaSRet()) {
2719       llvm::Function::arg_iterator EI = CurFn->arg_end();
2720       --EI;
2721       llvm::Value *ArgStruct = &*EI;
2722       llvm::Value *SRet = Builder.CreateStructGEP(
2723           nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
2724       RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret");
2725     }
2726     break;
2727
2728   case ABIArgInfo::Indirect: {
2729     auto AI = CurFn->arg_begin();
2730     if (RetAI.isSRetAfterThis())
2731       ++AI;
2732     switch (getEvaluationKind(RetTy)) {
2733     case TEK_Complex: {
2734       ComplexPairTy RT =
2735         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
2736       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
2737                          /*isInit*/ true);
2738       break;
2739     }
2740     case TEK_Aggregate:
2741       // Do nothing; aggregrates get evaluated directly into the destination.
2742       break;
2743     case TEK_Scalar:
2744       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
2745                         MakeNaturalAlignAddrLValue(&*AI, RetTy),
2746                         /*isInit*/ true);
2747       break;
2748     }
2749     break;
2750   }
2751
2752   case ABIArgInfo::Extend:
2753   case ABIArgInfo::Direct:
2754     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
2755         RetAI.getDirectOffset() == 0) {
2756       // The internal return value temp always will have pointer-to-return-type
2757       // type, just do a load.
2758
2759       // If there is a dominating store to ReturnValue, we can elide
2760       // the load, zap the store, and usually zap the alloca.
2761       if (llvm::StoreInst *SI =
2762               findDominatingStoreToReturnValue(*this)) {
2763         // Reuse the debug location from the store unless there is
2764         // cleanup code to be emitted between the store and return
2765         // instruction.
2766         if (EmitRetDbgLoc && !AutoreleaseResult)
2767           RetDbgLoc = SI->getDebugLoc();
2768         // Get the stored value and nuke the now-dead store.
2769         RV = SI->getValueOperand();
2770         SI->eraseFromParent();
2771
2772         // If that was the only use of the return value, nuke it as well now.
2773         auto returnValueInst = ReturnValue.getPointer();
2774         if (returnValueInst->use_empty()) {
2775           if (auto alloca = dyn_cast<llvm::AllocaInst>(returnValueInst)) {
2776             alloca->eraseFromParent();
2777             ReturnValue = Address::invalid();
2778           }
2779         }
2780
2781       // Otherwise, we have to do a simple load.
2782       } else {
2783         RV = Builder.CreateLoad(ReturnValue);
2784       }
2785     } else {
2786       // If the value is offset in memory, apply the offset now.
2787       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
2788
2789       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
2790     }
2791
2792     // In ARC, end functions that return a retainable type with a call
2793     // to objc_autoreleaseReturnValue.
2794     if (AutoreleaseResult) {
2795 #ifndef NDEBUG
2796       // Type::isObjCRetainabletype has to be called on a QualType that hasn't
2797       // been stripped of the typedefs, so we cannot use RetTy here. Get the
2798       // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
2799       // CurCodeDecl or BlockInfo.
2800       QualType RT;
2801
2802       if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
2803         RT = FD->getReturnType();
2804       else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
2805         RT = MD->getReturnType();
2806       else if (isa<BlockDecl>(CurCodeDecl))
2807         RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
2808       else
2809         llvm_unreachable("Unexpected function/method type");
2810
2811       assert(getLangOpts().ObjCAutoRefCount &&
2812              !FI.isReturnsRetained() &&
2813              RT->isObjCRetainableType());
2814 #endif
2815       RV = emitAutoreleaseOfResult(*this, RV);
2816     }
2817
2818     break;
2819
2820   case ABIArgInfo::Ignore:
2821     break;
2822
2823   case ABIArgInfo::CoerceAndExpand: {
2824     auto coercionType = RetAI.getCoerceAndExpandType();
2825     auto layout = CGM.getDataLayout().getStructLayout(coercionType);
2826
2827     // Load all of the coerced elements out into results.
2828     llvm::SmallVector<llvm::Value*, 4> results;
2829     Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
2830     for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2831       auto coercedEltType = coercionType->getElementType(i);
2832       if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
2833         continue;
2834
2835       auto eltAddr = Builder.CreateStructGEP(addr, i, layout);
2836       auto elt = Builder.CreateLoad(eltAddr);
2837       results.push_back(elt);
2838     }
2839
2840     // If we have one result, it's the single direct result type.
2841     if (results.size() == 1) {
2842       RV = results[0];
2843
2844     // Otherwise, we need to make a first-class aggregate.
2845     } else {
2846       // Construct a return type that lacks padding elements.
2847       llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
2848
2849       RV = llvm::UndefValue::get(returnType);
2850       for (unsigned i = 0, e = results.size(); i != e; ++i) {
2851         RV = Builder.CreateInsertValue(RV, results[i], i);
2852       }
2853     }
2854     break;
2855   }
2856
2857   case ABIArgInfo::Expand:
2858     llvm_unreachable("Invalid ABI kind for return argument");
2859   }
2860
2861   llvm::Instruction *Ret;
2862   if (RV) {
2863     if (CurCodeDecl && SanOpts.has(SanitizerKind::ReturnsNonnullAttribute)) {
2864       if (auto RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>()) {
2865         SanitizerScope SanScope(this);
2866         llvm::Value *Cond = Builder.CreateICmpNE(
2867             RV, llvm::Constant::getNullValue(RV->getType()));
2868         llvm::Constant *StaticData[] = {
2869             EmitCheckSourceLocation(EndLoc),
2870             EmitCheckSourceLocation(RetNNAttr->getLocation()),
2871         };
2872         EmitCheck(std::make_pair(Cond, SanitizerKind::ReturnsNonnullAttribute),
2873                   SanitizerHandler::NonnullReturn, StaticData, None);
2874       }
2875     }
2876     Ret = Builder.CreateRet(RV);
2877   } else {
2878     Ret = Builder.CreateRetVoid();
2879   }
2880
2881   if (RetDbgLoc)
2882     Ret->setDebugLoc(std::move(RetDbgLoc));
2883 }
2884
2885 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
2886   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
2887   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
2888 }
2889
2890 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
2891                                           QualType Ty) {
2892   // FIXME: Generate IR in one pass, rather than going back and fixing up these
2893   // placeholders.
2894   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
2895   llvm::Type *IRPtrTy = IRTy->getPointerTo();
2896   llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo());
2897
2898   // FIXME: When we generate this IR in one pass, we shouldn't need
2899   // this win32-specific alignment hack.
2900   CharUnits Align = CharUnits::fromQuantity(4);
2901   Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
2902
2903   return AggValueSlot::forAddr(Address(Placeholder, Align),
2904                                Ty.getQualifiers(),
2905                                AggValueSlot::IsNotDestructed,
2906                                AggValueSlot::DoesNotNeedGCBarriers,
2907                                AggValueSlot::IsNotAliased);
2908 }
2909
2910 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
2911                                           const VarDecl *param,
2912                                           SourceLocation loc) {
2913   // StartFunction converted the ABI-lowered parameter(s) into a
2914   // local alloca.  We need to turn that into an r-value suitable
2915   // for EmitCall.
2916   Address local = GetAddrOfLocalVar(param);
2917
2918   QualType type = param->getType();
2919
2920   assert(!isInAllocaArgument(CGM.getCXXABI(), type) &&
2921          "cannot emit delegate call arguments for inalloca arguments!");
2922
2923   // GetAddrOfLocalVar returns a pointer-to-pointer for references,
2924   // but the argument needs to be the original pointer.
2925   if (type->isReferenceType()) {
2926     args.add(RValue::get(Builder.CreateLoad(local)), type);
2927
2928   // In ARC, move out of consumed arguments so that the release cleanup
2929   // entered by StartFunction doesn't cause an over-release.  This isn't
2930   // optimal -O0 code generation, but it should get cleaned up when
2931   // optimization is enabled.  This also assumes that delegate calls are
2932   // performed exactly once for a set of arguments, but that should be safe.
2933   } else if (getLangOpts().ObjCAutoRefCount &&
2934              param->hasAttr<NSConsumedAttr>() &&
2935              type->isObjCRetainableType()) {
2936     llvm::Value *ptr = Builder.CreateLoad(local);
2937     auto null =
2938       llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
2939     Builder.CreateStore(null, local);
2940     args.add(RValue::get(ptr), type);
2941
2942   // For the most part, we just need to load the alloca, except that
2943   // aggregate r-values are actually pointers to temporaries.
2944   } else {
2945     args.add(convertTempToRValue(local, type, loc), type);
2946   }
2947 }
2948
2949 static bool isProvablyNull(llvm::Value *addr) {
2950   return isa<llvm::ConstantPointerNull>(addr);
2951 }
2952
2953 /// Emit the actual writing-back of a writeback.
2954 static void emitWriteback(CodeGenFunction &CGF,
2955                           const CallArgList::Writeback &writeback) {
2956   const LValue &srcLV = writeback.Source;
2957   Address srcAddr = srcLV.getAddress();
2958   assert(!isProvablyNull(srcAddr.getPointer()) &&
2959          "shouldn't have writeback for provably null argument");
2960
2961   llvm::BasicBlock *contBB = nullptr;
2962
2963   // If the argument wasn't provably non-null, we need to null check
2964   // before doing the store.
2965   bool provablyNonNull = llvm::isKnownNonNull(srcAddr.getPointer());
2966   if (!provablyNonNull) {
2967     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
2968     contBB = CGF.createBasicBlock("icr.done");
2969
2970     llvm::Value *isNull =
2971       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
2972     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
2973     CGF.EmitBlock(writebackBB);
2974   }
2975
2976   // Load the value to writeback.
2977   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
2978
2979   // Cast it back, in case we're writing an id to a Foo* or something.
2980   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
2981                                     "icr.writeback-cast");
2982   
2983   // Perform the writeback.
2984
2985   // If we have a "to use" value, it's something we need to emit a use
2986   // of.  This has to be carefully threaded in: if it's done after the
2987   // release it's potentially undefined behavior (and the optimizer
2988   // will ignore it), and if it happens before the retain then the
2989   // optimizer could move the release there.
2990   if (writeback.ToUse) {
2991     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
2992
2993     // Retain the new value.  No need to block-copy here:  the block's
2994     // being passed up the stack.
2995     value = CGF.EmitARCRetainNonBlock(value);
2996
2997     // Emit the intrinsic use here.
2998     CGF.EmitARCIntrinsicUse(writeback.ToUse);
2999
3000     // Load the old value (primitively).
3001     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
3002
3003     // Put the new value in place (primitively).
3004     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
3005
3006     // Release the old value.
3007     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
3008
3009   // Otherwise, we can just do a normal lvalue store.
3010   } else {
3011     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
3012   }
3013
3014   // Jump to the continuation block.
3015   if (!provablyNonNull)
3016     CGF.EmitBlock(contBB);
3017 }
3018
3019 static void emitWritebacks(CodeGenFunction &CGF,
3020                            const CallArgList &args) {
3021   for (const auto &I : args.writebacks())
3022     emitWriteback(CGF, I);
3023 }
3024
3025 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
3026                                             const CallArgList &CallArgs) {
3027   assert(CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee());
3028   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
3029     CallArgs.getCleanupsToDeactivate();
3030   // Iterate in reverse to increase the likelihood of popping the cleanup.
3031   for (const auto &I : llvm::reverse(Cleanups)) {
3032     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
3033     I.IsActiveIP->eraseFromParent();
3034   }
3035 }
3036
3037 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
3038   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
3039     if (uop->getOpcode() == UO_AddrOf)
3040       return uop->getSubExpr();
3041   return nullptr;
3042 }
3043
3044 /// Emit an argument that's being passed call-by-writeback.  That is,
3045 /// we are passing the address of an __autoreleased temporary; it
3046 /// might be copy-initialized with the current value of the given
3047 /// address, but it will definitely be copied out of after the call.
3048 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
3049                              const ObjCIndirectCopyRestoreExpr *CRE) {
3050   LValue srcLV;
3051
3052   // Make an optimistic effort to emit the address as an l-value.
3053   // This can fail if the argument expression is more complicated.
3054   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
3055     srcLV = CGF.EmitLValue(lvExpr);
3056
3057   // Otherwise, just emit it as a scalar.
3058   } else {
3059     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3060
3061     QualType srcAddrType =
3062       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3063     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3064   }
3065   Address srcAddr = srcLV.getAddress();
3066
3067   // The dest and src types don't necessarily match in LLVM terms
3068   // because of the crazy ObjC compatibility rules.
3069
3070   llvm::PointerType *destType =
3071     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3072
3073   // If the address is a constant null, just pass the appropriate null.
3074   if (isProvablyNull(srcAddr.getPointer())) {
3075     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3076              CRE->getType());
3077     return;
3078   }
3079
3080   // Create the temporary.
3081   Address temp = CGF.CreateTempAlloca(destType->getElementType(),
3082                                       CGF.getPointerAlign(),
3083                                       "icr.temp");
3084   // Loading an l-value can introduce a cleanup if the l-value is __weak,
3085   // and that cleanup will be conditional if we can't prove that the l-value
3086   // isn't null, so we need to register a dominating point so that the cleanups
3087   // system will make valid IR.
3088   CodeGenFunction::ConditionalEvaluation condEval(CGF);
3089   
3090   // Zero-initialize it if we're not doing a copy-initialization.
3091   bool shouldCopy = CRE->shouldCopy();
3092   if (!shouldCopy) {
3093     llvm::Value *null =
3094       llvm::ConstantPointerNull::get(
3095         cast<llvm::PointerType>(destType->getElementType()));
3096     CGF.Builder.CreateStore(null, temp);
3097   }
3098
3099   llvm::BasicBlock *contBB = nullptr;
3100   llvm::BasicBlock *originBB = nullptr;
3101
3102   // If the address is *not* known to be non-null, we need to switch.
3103   llvm::Value *finalArgument;
3104
3105   bool provablyNonNull = llvm::isKnownNonNull(srcAddr.getPointer());
3106   if (provablyNonNull) {
3107     finalArgument = temp.getPointer();
3108   } else {
3109     llvm::Value *isNull =
3110       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3111
3112     finalArgument = CGF.Builder.CreateSelect(isNull, 
3113                                    llvm::ConstantPointerNull::get(destType),
3114                                              temp.getPointer(), "icr.argument");
3115
3116     // If we need to copy, then the load has to be conditional, which
3117     // means we need control flow.
3118     if (shouldCopy) {
3119       originBB = CGF.Builder.GetInsertBlock();
3120       contBB = CGF.createBasicBlock("icr.cont");
3121       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
3122       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
3123       CGF.EmitBlock(copyBB);
3124       condEval.begin(CGF);
3125     }
3126   }
3127
3128   llvm::Value *valueToUse = nullptr;
3129
3130   // Perform a copy if necessary.
3131   if (shouldCopy) {
3132     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
3133     assert(srcRV.isScalar());
3134
3135     llvm::Value *src = srcRV.getScalarVal();
3136     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
3137                                     "icr.cast");
3138
3139     // Use an ordinary store, not a store-to-lvalue.
3140     CGF.Builder.CreateStore(src, temp);
3141
3142     // If optimization is enabled, and the value was held in a
3143     // __strong variable, we need to tell the optimizer that this
3144     // value has to stay alive until we're doing the store back.
3145     // This is because the temporary is effectively unretained,
3146     // and so otherwise we can violate the high-level semantics.
3147     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3148         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
3149       valueToUse = src;
3150     }
3151   }
3152   
3153   // Finish the control flow if we needed it.
3154   if (shouldCopy && !provablyNonNull) {
3155     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
3156     CGF.EmitBlock(contBB);
3157
3158     // Make a phi for the value to intrinsically use.
3159     if (valueToUse) {
3160       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
3161                                                       "icr.to-use");
3162       phiToUse->addIncoming(valueToUse, copyBB);
3163       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
3164                             originBB);
3165       valueToUse = phiToUse;
3166     }
3167
3168     condEval.end(CGF);
3169   }
3170
3171   args.addWriteback(srcLV, temp, valueToUse);
3172   args.add(RValue::get(finalArgument), CRE->getType());
3173 }
3174
3175 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
3176   assert(!StackBase);
3177
3178   // Save the stack.
3179   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
3180   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
3181 }
3182
3183 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
3184   if (StackBase) {
3185     // Restore the stack after the call.
3186     llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
3187     CGF.Builder.CreateCall(F, StackBase);
3188   }
3189 }
3190
3191 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
3192                                           SourceLocation ArgLoc,
3193                                           const FunctionDecl *FD,
3194                                           unsigned ParmNum) {
3195   if (!SanOpts.has(SanitizerKind::NonnullAttribute) || !FD)
3196     return;
3197   auto PVD = ParmNum < FD->getNumParams() ? FD->getParamDecl(ParmNum) : nullptr;
3198   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
3199   auto NNAttr = getNonNullAttr(FD, PVD, ArgType, ArgNo);
3200   if (!NNAttr)
3201     return;
3202   SanitizerScope SanScope(this);
3203   assert(RV.isScalar());
3204   llvm::Value *V = RV.getScalarVal();
3205   llvm::Value *Cond =
3206       Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
3207   llvm::Constant *StaticData[] = {
3208       EmitCheckSourceLocation(ArgLoc),
3209       EmitCheckSourceLocation(NNAttr->getLocation()),
3210       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
3211   };
3212   EmitCheck(std::make_pair(Cond, SanitizerKind::NonnullAttribute),
3213             SanitizerHandler::NonnullArg, StaticData, None);
3214 }
3215
3216 void CodeGenFunction::EmitCallArgs(
3217     CallArgList &Args, ArrayRef<QualType> ArgTypes,
3218     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3219     const FunctionDecl *CalleeDecl, unsigned ParamsToSkip,
3220     EvaluationOrder Order) {
3221   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
3222
3223   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg) {
3224     if (CalleeDecl == nullptr || I >= CalleeDecl->getNumParams())
3225       return;
3226     auto *PS = CalleeDecl->getParamDecl(I)->getAttr<PassObjectSizeAttr>();
3227     if (PS == nullptr)
3228       return;
3229
3230     const auto &Context = getContext();
3231     auto SizeTy = Context.getSizeType();
3232     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
3233     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T);
3234     Args.add(RValue::get(V), SizeTy);
3235   };
3236
3237   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
3238   // because arguments are destroyed left to right in the callee. As a special
3239   // case, there are certain language constructs that require left-to-right
3240   // evaluation, and in those cases we consider the evaluation order requirement
3241   // to trump the "destruction order is reverse construction order" guarantee.
3242   bool LeftToRight =
3243       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
3244           ? Order == EvaluationOrder::ForceLeftToRight
3245           : Order != EvaluationOrder::ForceRightToLeft;
3246
3247   // Insert a stack save if we're going to need any inalloca args.
3248   bool HasInAllocaArgs = false;
3249   if (CGM.getTarget().getCXXABI().isMicrosoft()) {
3250     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
3251          I != E && !HasInAllocaArgs; ++I)
3252       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
3253     if (HasInAllocaArgs) {
3254       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3255       Args.allocateArgumentMemory(*this);
3256     }
3257   }
3258
3259   // Evaluate each argument in the appropriate order.
3260   size_t CallArgsStart = Args.size();
3261   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
3262     unsigned Idx = LeftToRight ? I : E - I - 1;
3263     CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
3264     if (!LeftToRight) MaybeEmitImplicitObjectSize(Idx, *Arg);
3265     EmitCallArg(Args, *Arg, ArgTypes[Idx]);
3266     EmitNonNullArgCheck(Args.back().RV, ArgTypes[Idx], (*Arg)->getExprLoc(),
3267                         CalleeDecl, ParamsToSkip + Idx);
3268     if (LeftToRight) MaybeEmitImplicitObjectSize(Idx, *Arg);
3269   }
3270
3271   if (!LeftToRight) {
3272     // Un-reverse the arguments we just evaluated so they match up with the LLVM
3273     // IR function.
3274     std::reverse(Args.begin() + CallArgsStart, Args.end());
3275   }
3276 }
3277
3278 namespace {
3279
3280 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
3281   DestroyUnpassedArg(Address Addr, QualType Ty)
3282       : Addr(Addr), Ty(Ty) {}
3283
3284   Address Addr;
3285   QualType Ty;
3286
3287   void Emit(CodeGenFunction &CGF, Flags flags) override {
3288     const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
3289     assert(!Dtor->isTrivial());
3290     CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
3291                               /*Delegating=*/false, Addr);
3292   }
3293 };
3294
3295 struct DisableDebugLocationUpdates {
3296   CodeGenFunction &CGF;
3297   bool disabledDebugInfo;
3298   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
3299     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
3300       CGF.disableDebugInfo();
3301   }
3302   ~DisableDebugLocationUpdates() {
3303     if (disabledDebugInfo)
3304       CGF.enableDebugInfo();
3305   }
3306 };
3307
3308 } // end anonymous namespace
3309
3310 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
3311                                   QualType type) {
3312   DisableDebugLocationUpdates Dis(*this, E);
3313   if (const ObjCIndirectCopyRestoreExpr *CRE
3314         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
3315     assert(getLangOpts().ObjCAutoRefCount);
3316     assert(getContext().hasSameUnqualifiedType(E->getType(), type));
3317     return emitWritebackArg(*this, args, CRE);
3318   }
3319
3320   assert(type->isReferenceType() == E->isGLValue() &&
3321          "reference binding to unmaterialized r-value!");
3322
3323   if (E->isGLValue()) {
3324     assert(E->getObjectKind() == OK_Ordinary);
3325     return args.add(EmitReferenceBindingToExpr(E), type);
3326   }
3327
3328   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
3329
3330   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
3331   // However, we still have to push an EH-only cleanup in case we unwind before
3332   // we make it to the call.
3333   if (HasAggregateEvalKind &&
3334       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
3335     // If we're using inalloca, use the argument memory.  Otherwise, use a
3336     // temporary.
3337     AggValueSlot Slot;
3338     if (args.isUsingInAlloca())
3339       Slot = createPlaceholderSlot(*this, type);
3340     else
3341       Slot = CreateAggTemp(type, "agg.tmp");
3342
3343     const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
3344     bool DestroyedInCallee =
3345         RD && RD->hasNonTrivialDestructor() &&
3346         CGM.getCXXABI().getRecordArgABI(RD) != CGCXXABI::RAA_Default;
3347     if (DestroyedInCallee)
3348       Slot.setExternallyDestructed();
3349
3350     EmitAggExpr(E, Slot);
3351     RValue RV = Slot.asRValue();
3352     args.add(RV, type);
3353
3354     if (DestroyedInCallee) {
3355       // Create a no-op GEP between the placeholder and the cleanup so we can
3356       // RAUW it successfully.  It also serves as a marker of the first
3357       // instruction where the cleanup is active.
3358       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
3359                                               type);
3360       // This unreachable is a temporary marker which will be removed later.
3361       llvm::Instruction *IsActive = Builder.CreateUnreachable();
3362       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
3363     }
3364     return;
3365   }
3366
3367   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
3368       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
3369     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
3370     assert(L.isSimple());
3371     if (L.getAlignment() >= getContext().getTypeAlignInChars(type)) {
3372       args.add(L.asAggregateRValue(), type, /*NeedsCopy*/true);
3373     } else {
3374       // We can't represent a misaligned lvalue in the CallArgList, so copy
3375       // to an aligned temporary now.
3376       Address tmp = CreateMemTemp(type);
3377       EmitAggregateCopy(tmp, L.getAddress(), type, L.isVolatile());
3378       args.add(RValue::getAggregate(tmp), type);
3379     }
3380     return;
3381   }
3382
3383   args.add(EmitAnyExprToTemp(E), type);
3384 }
3385
3386 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
3387   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
3388   // implicitly widens null pointer constants that are arguments to varargs
3389   // functions to pointer-sized ints.
3390   if (!getTarget().getTriple().isOSWindows())
3391     return Arg->getType();
3392
3393   if (Arg->getType()->isIntegerType() &&
3394       getContext().getTypeSize(Arg->getType()) <
3395           getContext().getTargetInfo().getPointerWidth(0) &&
3396       Arg->isNullPointerConstant(getContext(),
3397                                  Expr::NPC_ValueDependentIsNotNull)) {
3398     return getContext().getIntPtrType();
3399   }
3400
3401   return Arg->getType();
3402 }
3403
3404 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3405 // optimizer it can aggressively ignore unwind edges.
3406 void
3407 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
3408   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3409       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
3410     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
3411                       CGM.getNoObjCARCExceptionsMetadata());
3412 }
3413
3414 /// Emits a call to the given no-arguments nounwind runtime function.
3415 llvm::CallInst *
3416 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
3417                                          const llvm::Twine &name) {
3418   return EmitNounwindRuntimeCall(callee, None, name);
3419 }
3420
3421 /// Emits a call to the given nounwind runtime function.
3422 llvm::CallInst *
3423 CodeGenFunction::EmitNounwindRuntimeCall(llvm::Value *callee,
3424                                          ArrayRef<llvm::Value*> args,
3425                                          const llvm::Twine &name) {
3426   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
3427   call->setDoesNotThrow();
3428   return call;
3429 }
3430
3431 /// Emits a simple call (never an invoke) to the given no-arguments
3432 /// runtime function.
3433 llvm::CallInst *
3434 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
3435                                  const llvm::Twine &name) {
3436   return EmitRuntimeCall(callee, None, name);
3437 }
3438
3439 // Calls which may throw must have operand bundles indicating which funclet
3440 // they are nested within.
3441 static void
3442 getBundlesForFunclet(llvm::Value *Callee, llvm::Instruction *CurrentFuncletPad,
3443                      SmallVectorImpl<llvm::OperandBundleDef> &BundleList) {
3444   // There is no need for a funclet operand bundle if we aren't inside a
3445   // funclet.
3446   if (!CurrentFuncletPad)
3447     return;
3448
3449   // Skip intrinsics which cannot throw.
3450   auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
3451   if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
3452     return;
3453
3454   BundleList.emplace_back("funclet", CurrentFuncletPad);
3455 }
3456
3457 /// Emits a simple call (never an invoke) to the given runtime function.
3458 llvm::CallInst *
3459 CodeGenFunction::EmitRuntimeCall(llvm::Value *callee,
3460                                  ArrayRef<llvm::Value*> args,
3461                                  const llvm::Twine &name) {
3462   SmallVector<llvm::OperandBundleDef, 1> BundleList;
3463   getBundlesForFunclet(callee, CurrentFuncletPad, BundleList);
3464
3465   llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList, name);
3466   call->setCallingConv(getRuntimeCC());
3467   return call;
3468 }
3469
3470 /// Emits a call or invoke to the given noreturn runtime function.
3471 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
3472                                                ArrayRef<llvm::Value*> args) {
3473   SmallVector<llvm::OperandBundleDef, 1> BundleList;
3474   getBundlesForFunclet(callee, CurrentFuncletPad, BundleList);
3475
3476   if (getInvokeDest()) {
3477     llvm::InvokeInst *invoke = 
3478       Builder.CreateInvoke(callee,
3479                            getUnreachableBlock(),
3480                            getInvokeDest(),
3481                            args,
3482                            BundleList);
3483     invoke->setDoesNotReturn();
3484     invoke->setCallingConv(getRuntimeCC());
3485   } else {
3486     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
3487     call->setDoesNotReturn();
3488     call->setCallingConv(getRuntimeCC());
3489     Builder.CreateUnreachable();
3490   }
3491 }
3492
3493 /// Emits a call or invoke instruction to the given nullary runtime function.
3494 llvm::CallSite
3495 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
3496                                          const Twine &name) {
3497   return EmitRuntimeCallOrInvoke(callee, None, name);
3498 }
3499
3500 /// Emits a call or invoke instruction to the given runtime function.
3501 llvm::CallSite
3502 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::Value *callee,
3503                                          ArrayRef<llvm::Value*> args,
3504                                          const Twine &name) {
3505   llvm::CallSite callSite = EmitCallOrInvoke(callee, args, name);
3506   callSite.setCallingConv(getRuntimeCC());
3507   return callSite;
3508 }
3509
3510 /// Emits a call or invoke instruction to the given function, depending
3511 /// on the current state of the EH stack.
3512 llvm::CallSite
3513 CodeGenFunction::EmitCallOrInvoke(llvm::Value *Callee,
3514                                   ArrayRef<llvm::Value *> Args,
3515                                   const Twine &Name) {
3516   llvm::BasicBlock *InvokeDest = getInvokeDest();
3517   SmallVector<llvm::OperandBundleDef, 1> BundleList;
3518   getBundlesForFunclet(Callee, CurrentFuncletPad, BundleList);
3519
3520   llvm::Instruction *Inst;
3521   if (!InvokeDest)
3522     Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
3523   else {
3524     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
3525     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
3526                                 Name);
3527     EmitBlock(ContBB);
3528   }
3529
3530   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3531   // optimizer it can aggressively ignore unwind edges.
3532   if (CGM.getLangOpts().ObjCAutoRefCount)
3533     AddObjCARCExceptionMetadata(Inst);
3534
3535   return llvm::CallSite(Inst);
3536 }
3537
3538 /// \brief Store a non-aggregate value to an address to initialize it.  For
3539 /// initialization, a non-atomic store will be used.
3540 static void EmitInitStoreOfNonAggregate(CodeGenFunction &CGF, RValue Src,
3541                                         LValue Dst) {
3542   if (Src.isScalar())
3543     CGF.EmitStoreOfScalar(Src.getScalarVal(), Dst, /*init=*/true);
3544   else
3545     CGF.EmitStoreOfComplex(Src.getComplexVal(), Dst, /*init=*/true);
3546 }
3547
3548 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
3549                                                   llvm::Value *New) {
3550   DeferredReplacements.push_back(std::make_pair(Old, New));
3551 }
3552
3553 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
3554                                  const CGCallee &Callee,
3555                                  ReturnValueSlot ReturnValue,
3556                                  const CallArgList &CallArgs,
3557                                  llvm::Instruction **callOrInvoke) {
3558   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
3559
3560   assert(Callee.isOrdinary());
3561
3562   // Handle struct-return functions by passing a pointer to the
3563   // location that we would like to return into.
3564   QualType RetTy = CallInfo.getReturnType();
3565   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
3566
3567   llvm::FunctionType *IRFuncTy = Callee.getFunctionType();
3568
3569   // 1. Set up the arguments.
3570
3571   // If we're using inalloca, insert the allocation after the stack save.
3572   // FIXME: Do this earlier rather than hacking it in here!
3573   Address ArgMemory = Address::invalid();
3574   const llvm::StructLayout *ArgMemoryLayout = nullptr;
3575   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
3576     ArgMemoryLayout = CGM.getDataLayout().getStructLayout(ArgStruct);
3577     llvm::Instruction *IP = CallArgs.getStackBase();
3578     llvm::AllocaInst *AI;
3579     if (IP) {
3580       IP = IP->getNextNode();
3581       AI = new llvm::AllocaInst(ArgStruct, "argmem", IP);
3582     } else {
3583       AI = CreateTempAlloca(ArgStruct, "argmem");
3584     }
3585     auto Align = CallInfo.getArgStructAlignment();
3586     AI->setAlignment(Align.getQuantity());
3587     AI->setUsedWithInAlloca(true);
3588     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
3589     ArgMemory = Address(AI, Align);
3590   }
3591
3592   // Helper function to drill into the inalloca allocation.
3593   auto createInAllocaStructGEP = [&](unsigned FieldIndex) -> Address {
3594     auto FieldOffset =
3595       CharUnits::fromQuantity(ArgMemoryLayout->getElementOffset(FieldIndex));
3596     return Builder.CreateStructGEP(ArgMemory, FieldIndex, FieldOffset);
3597   };
3598
3599   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
3600   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
3601
3602   // If the call returns a temporary with struct return, create a temporary
3603   // alloca to hold the result, unless one is given to us.
3604   Address SRetPtr = Address::invalid();
3605   size_t UnusedReturnSize = 0;
3606   if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
3607     if (!ReturnValue.isNull()) {
3608       SRetPtr = ReturnValue.getValue();
3609     } else {
3610       SRetPtr = CreateMemTemp(RetTy);
3611       if (HaveInsertPoint() && ReturnValue.isUnused()) {
3612         uint64_t size =
3613             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
3614         if (EmitLifetimeStart(size, SRetPtr.getPointer()))
3615           UnusedReturnSize = size;
3616       }
3617     }
3618     if (IRFunctionArgs.hasSRetArg()) {
3619       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
3620     } else if (RetAI.isInAlloca()) {
3621       Address Addr = createInAllocaStructGEP(RetAI.getInAllocaFieldIndex());
3622       Builder.CreateStore(SRetPtr.getPointer(), Addr);
3623     }
3624   }
3625
3626   Address swiftErrorTemp = Address::invalid();
3627   Address swiftErrorArg = Address::invalid();
3628
3629   // Translate all of the arguments as necessary to match the IR lowering.
3630   assert(CallInfo.arg_size() == CallArgs.size() &&
3631          "Mismatch between function signature & arguments.");
3632   unsigned ArgNo = 0;
3633   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
3634   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
3635        I != E; ++I, ++info_it, ++ArgNo) {
3636     const ABIArgInfo &ArgInfo = info_it->info;
3637     RValue RV = I->RV;
3638
3639     // Insert a padding argument to ensure proper alignment.
3640     if (IRFunctionArgs.hasPaddingArg(ArgNo))
3641       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
3642           llvm::UndefValue::get(ArgInfo.getPaddingType());
3643
3644     unsigned FirstIRArg, NumIRArgs;
3645     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
3646
3647     switch (ArgInfo.getKind()) {
3648     case ABIArgInfo::InAlloca: {
3649       assert(NumIRArgs == 0);
3650       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3651       if (RV.isAggregate()) {
3652         // Replace the placeholder with the appropriate argument slot GEP.
3653         llvm::Instruction *Placeholder =
3654             cast<llvm::Instruction>(RV.getAggregatePointer());
3655         CGBuilderTy::InsertPoint IP = Builder.saveIP();
3656         Builder.SetInsertPoint(Placeholder);
3657         Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
3658         Builder.restoreIP(IP);
3659         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
3660       } else {
3661         // Store the RValue into the argument struct.
3662         Address Addr = createInAllocaStructGEP(ArgInfo.getInAllocaFieldIndex());
3663         unsigned AS = Addr.getType()->getPointerAddressSpace();
3664         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
3665         // There are some cases where a trivial bitcast is not avoidable.  The
3666         // definition of a type later in a translation unit may change it's type
3667         // from {}* to (%struct.foo*)*.
3668         if (Addr.getType() != MemType)
3669           Addr = Builder.CreateBitCast(Addr, MemType);
3670         LValue argLV = MakeAddrLValue(Addr, I->Ty);
3671         EmitInitStoreOfNonAggregate(*this, RV, argLV);
3672       }
3673       break;
3674     }
3675
3676     case ABIArgInfo::Indirect: {
3677       assert(NumIRArgs == 1);
3678       if (RV.isScalar() || RV.isComplex()) {
3679         // Make a temporary alloca to pass the argument.
3680         Address Addr = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign());
3681         IRCallArgs[FirstIRArg] = Addr.getPointer();
3682
3683         LValue argLV = MakeAddrLValue(Addr, I->Ty);
3684         EmitInitStoreOfNonAggregate(*this, RV, argLV);
3685       } else {
3686         // We want to avoid creating an unnecessary temporary+copy here;
3687         // however, we need one in three cases:
3688         // 1. If the argument is not byval, and we are required to copy the
3689         //    source.  (This case doesn't occur on any common architecture.)
3690         // 2. If the argument is byval, RV is not sufficiently aligned, and
3691         //    we cannot force it to be sufficiently aligned.
3692         // 3. If the argument is byval, but RV is located in an address space
3693         //    different than that of the argument (0).
3694         Address Addr = RV.getAggregateAddress();
3695         CharUnits Align = ArgInfo.getIndirectAlign();
3696         const llvm::DataLayout *TD = &CGM.getDataLayout();
3697         const unsigned RVAddrSpace = Addr.getType()->getAddressSpace();
3698         const unsigned ArgAddrSpace =
3699             (FirstIRArg < IRFuncTy->getNumParams()
3700                  ? IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace()
3701                  : 0);
3702         if ((!ArgInfo.getIndirectByVal() && I->NeedsCopy) ||
3703             (ArgInfo.getIndirectByVal() && Addr.getAlignment() < Align &&
3704              llvm::getOrEnforceKnownAlignment(Addr.getPointer(),
3705                                               Align.getQuantity(), *TD)
3706                < Align.getQuantity()) ||
3707             (ArgInfo.getIndirectByVal() && (RVAddrSpace != ArgAddrSpace))) {
3708           // Create an aligned temporary, and copy to it.
3709           Address AI = CreateMemTemp(I->Ty, ArgInfo.getIndirectAlign());
3710           IRCallArgs[FirstIRArg] = AI.getPointer();
3711           EmitAggregateCopy(AI, Addr, I->Ty, RV.isVolatileQualified());
3712         } else {
3713           // Skip the extra memcpy call.
3714           IRCallArgs[FirstIRArg] = Addr.getPointer();
3715         }
3716       }
3717       break;
3718     }
3719
3720     case ABIArgInfo::Ignore:
3721       assert(NumIRArgs == 0);
3722       break;
3723
3724     case ABIArgInfo::Extend:
3725     case ABIArgInfo::Direct: {
3726       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
3727           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
3728           ArgInfo.getDirectOffset() == 0) {
3729         assert(NumIRArgs == 1);
3730         llvm::Value *V;
3731         if (RV.isScalar())
3732           V = RV.getScalarVal();
3733         else
3734           V = Builder.CreateLoad(RV.getAggregateAddress());
3735
3736         // Implement swifterror by copying into a new swifterror argument.
3737         // We'll write back in the normal path out of the call.
3738         if (CallInfo.getExtParameterInfo(ArgNo).getABI()
3739               == ParameterABI::SwiftErrorResult) {
3740           assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
3741
3742           QualType pointeeTy = I->Ty->getPointeeType();
3743           swiftErrorArg =
3744             Address(V, getContext().getTypeAlignInChars(pointeeTy));
3745
3746           swiftErrorTemp =
3747             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
3748           V = swiftErrorTemp.getPointer();
3749           cast<llvm::AllocaInst>(V)->setSwiftError(true);
3750
3751           llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
3752           Builder.CreateStore(errorValue, swiftErrorTemp);
3753         }
3754
3755         // We might have to widen integers, but we should never truncate.
3756         if (ArgInfo.getCoerceToType() != V->getType() &&
3757             V->getType()->isIntegerTy())
3758           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
3759
3760         // If the argument doesn't match, perform a bitcast to coerce it.  This
3761         // can happen due to trivial type mismatches.
3762         if (FirstIRArg < IRFuncTy->getNumParams() &&
3763             V->getType() != IRFuncTy->getParamType(FirstIRArg))
3764           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
3765
3766         IRCallArgs[FirstIRArg] = V;
3767         break;
3768       }
3769
3770       // FIXME: Avoid the conversion through memory if possible.
3771       Address Src = Address::invalid();
3772       if (RV.isScalar() || RV.isComplex()) {
3773         Src = CreateMemTemp(I->Ty, "coerce");
3774         LValue SrcLV = MakeAddrLValue(Src, I->Ty);
3775         EmitInitStoreOfNonAggregate(*this, RV, SrcLV);
3776       } else {
3777         Src = RV.getAggregateAddress();
3778       }
3779
3780       // If the value is offset in memory, apply the offset now.
3781       Src = emitAddressAtOffset(*this, Src, ArgInfo);
3782
3783       // Fast-isel and the optimizer generally like scalar values better than
3784       // FCAs, so we flatten them if this is safe to do for this argument.
3785       llvm::StructType *STy =
3786             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
3787       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
3788         llvm::Type *SrcTy = Src.getType()->getElementType();
3789         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
3790         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
3791
3792         // If the source type is smaller than the destination type of the
3793         // coerce-to logic, copy the source value into a temp alloca the size
3794         // of the destination type to allow loading all of it. The bits past
3795         // the source value are left undef.
3796         if (SrcSize < DstSize) {
3797           Address TempAlloca
3798             = CreateTempAlloca(STy, Src.getAlignment(),
3799                                Src.getName() + ".coerce");
3800           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
3801           Src = TempAlloca;
3802         } else {
3803           Src = Builder.CreateBitCast(Src, llvm::PointerType::getUnqual(STy));
3804         }
3805
3806         auto SrcLayout = CGM.getDataLayout().getStructLayout(STy);
3807         assert(NumIRArgs == STy->getNumElements());
3808         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
3809           auto Offset = CharUnits::fromQuantity(SrcLayout->getElementOffset(i));
3810           Address EltPtr = Builder.CreateStructGEP(Src, i, Offset);
3811           llvm::Value *LI = Builder.CreateLoad(EltPtr);
3812           IRCallArgs[FirstIRArg + i] = LI;
3813         }
3814       } else {
3815         // In the simple case, just pass the coerced loaded value.
3816         assert(NumIRArgs == 1);
3817         IRCallArgs[FirstIRArg] =
3818           CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
3819       }
3820
3821       break;
3822     }
3823
3824     case ABIArgInfo::CoerceAndExpand: {
3825       auto coercionType = ArgInfo.getCoerceAndExpandType();
3826       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
3827
3828       llvm::Value *tempSize = nullptr;
3829       Address addr = Address::invalid();
3830       if (RV.isAggregate()) {
3831         addr = RV.getAggregateAddress();
3832       } else {
3833         assert(RV.isScalar()); // complex should always just be direct
3834
3835         llvm::Type *scalarType = RV.getScalarVal()->getType();
3836         auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
3837         auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
3838
3839         tempSize = llvm::ConstantInt::get(CGM.Int64Ty, scalarSize);
3840
3841         // Materialize to a temporary.
3842         addr = CreateTempAlloca(RV.getScalarVal()->getType(),
3843                  CharUnits::fromQuantity(std::max(layout->getAlignment(),
3844                                                   scalarAlign)));
3845         EmitLifetimeStart(scalarSize, addr.getPointer());
3846
3847         Builder.CreateStore(RV.getScalarVal(), addr);
3848       }
3849
3850       addr = Builder.CreateElementBitCast(addr, coercionType);
3851
3852       unsigned IRArgPos = FirstIRArg;
3853       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
3854         llvm::Type *eltType = coercionType->getElementType(i);
3855         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
3856         Address eltAddr = Builder.CreateStructGEP(addr, i, layout);
3857         llvm::Value *elt = Builder.CreateLoad(eltAddr);
3858         IRCallArgs[IRArgPos++] = elt;
3859       }
3860       assert(IRArgPos == FirstIRArg + NumIRArgs);
3861
3862       if (tempSize) {
3863         EmitLifetimeEnd(tempSize, addr.getPointer());
3864       }
3865
3866       break;
3867     }
3868
3869     case ABIArgInfo::Expand:
3870       unsigned IRArgPos = FirstIRArg;
3871       ExpandTypeToArgs(I->Ty, RV, IRFuncTy, IRCallArgs, IRArgPos);
3872       assert(IRArgPos == FirstIRArg + NumIRArgs);
3873       break;
3874     }
3875   }
3876
3877   llvm::Value *CalleePtr = Callee.getFunctionPointer();
3878
3879   // If we're using inalloca, set up that argument.
3880   if (ArgMemory.isValid()) {
3881     llvm::Value *Arg = ArgMemory.getPointer();
3882     if (CallInfo.isVariadic()) {
3883       // When passing non-POD arguments by value to variadic functions, we will
3884       // end up with a variadic prototype and an inalloca call site.  In such
3885       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
3886       // the callee.
3887       unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
3888       auto FnTy = getTypes().GetFunctionType(CallInfo)->getPointerTo(CalleeAS);
3889       CalleePtr = Builder.CreateBitCast(CalleePtr, FnTy);
3890     } else {
3891       llvm::Type *LastParamTy =
3892           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
3893       if (Arg->getType() != LastParamTy) {
3894 #ifndef NDEBUG
3895         // Assert that these structs have equivalent element types.
3896         llvm::StructType *FullTy = CallInfo.getArgStruct();
3897         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
3898             cast<llvm::PointerType>(LastParamTy)->getElementType());
3899         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
3900         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
3901                                                 DE = DeclaredTy->element_end(),
3902                                                 FI = FullTy->element_begin();
3903              DI != DE; ++DI, ++FI)
3904           assert(*DI == *FI);
3905 #endif
3906         Arg = Builder.CreateBitCast(Arg, LastParamTy);
3907       }
3908     }
3909     assert(IRFunctionArgs.hasInallocaArg());
3910     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
3911   }
3912
3913   // 2. Prepare the function pointer.
3914
3915   // If the callee is a bitcast of a non-variadic function to have a
3916   // variadic function pointer type, check to see if we can remove the
3917   // bitcast.  This comes up with unprototyped functions.
3918   //
3919   // This makes the IR nicer, but more importantly it ensures that we
3920   // can inline the function at -O0 if it is marked always_inline.
3921   auto simplifyVariadicCallee = [](llvm::Value *Ptr) -> llvm::Value* {
3922     llvm::FunctionType *CalleeFT =
3923       cast<llvm::FunctionType>(Ptr->getType()->getPointerElementType());
3924     if (!CalleeFT->isVarArg())
3925       return Ptr;
3926
3927     llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr);
3928     if (!CE || CE->getOpcode() != llvm::Instruction::BitCast)
3929       return Ptr;
3930
3931     llvm::Function *OrigFn = dyn_cast<llvm::Function>(CE->getOperand(0));
3932     if (!OrigFn)
3933       return Ptr;
3934
3935     llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
3936
3937     // If the original type is variadic, or if any of the component types
3938     // disagree, we cannot remove the cast.
3939     if (OrigFT->isVarArg() ||
3940         OrigFT->getNumParams() != CalleeFT->getNumParams() ||
3941         OrigFT->getReturnType() != CalleeFT->getReturnType())
3942       return Ptr;
3943
3944     for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
3945       if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
3946         return Ptr;
3947
3948     return OrigFn;
3949   };
3950   CalleePtr = simplifyVariadicCallee(CalleePtr);
3951
3952   // 3. Perform the actual call.
3953
3954   // Deactivate any cleanups that we're supposed to do immediately before
3955   // the call.
3956   if (!CallArgs.getCleanupsToDeactivate().empty())
3957     deactivateArgCleanupsBeforeCall(*this, CallArgs);
3958
3959   // Assert that the arguments we computed match up.  The IR verifier
3960   // will catch this, but this is a common enough source of problems
3961   // during IRGen changes that it's way better for debugging to catch
3962   // it ourselves here.
3963 #ifndef NDEBUG
3964   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
3965   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
3966     // Inalloca argument can have different type.
3967     if (IRFunctionArgs.hasInallocaArg() &&
3968         i == IRFunctionArgs.getInallocaArgNo())
3969       continue;
3970     if (i < IRFuncTy->getNumParams())
3971       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
3972   }
3973 #endif
3974
3975   // Compute the calling convention and attributes.
3976   unsigned CallingConv;
3977   CodeGen::AttributeListType AttributeList;
3978   CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
3979                              Callee.getAbstractInfo(),
3980                              AttributeList, CallingConv,
3981                              /*AttrOnCallSite=*/true);
3982   llvm::AttributeSet Attrs = llvm::AttributeSet::get(getLLVMContext(),
3983                                                      AttributeList);
3984
3985   // Apply some call-site-specific attributes.
3986   // TODO: work this into building the attribute set.
3987
3988   // Apply always_inline to all calls within flatten functions.
3989   // FIXME: should this really take priority over __try, below?
3990   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
3991       !(Callee.getAbstractInfo().getCalleeDecl() &&
3992         Callee.getAbstractInfo().getCalleeDecl()->hasAttr<NoInlineAttr>())) {
3993     Attrs =
3994         Attrs.addAttribute(getLLVMContext(),
3995                            llvm::AttributeSet::FunctionIndex,
3996                            llvm::Attribute::AlwaysInline);
3997   }
3998
3999   // Disable inlining inside SEH __try blocks.
4000   if (isSEHTryScope()) {
4001     Attrs =
4002         Attrs.addAttribute(getLLVMContext(), llvm::AttributeSet::FunctionIndex,
4003                            llvm::Attribute::NoInline);
4004   }
4005
4006   // Decide whether to use a call or an invoke.
4007   bool CannotThrow;
4008   if (currentFunctionUsesSEHTry()) {
4009     // SEH cares about asynchronous exceptions, so everything can "throw."
4010     CannotThrow = false;
4011   } else if (isCleanupPadScope() &&
4012              EHPersonality::get(*this).isMSVCXXPersonality()) {
4013     // The MSVC++ personality will implicitly terminate the program if an
4014     // exception is thrown during a cleanup outside of a try/catch.
4015     // We don't need to model anything in IR to get this behavior.
4016     CannotThrow = true;
4017   } else {
4018     // Otherwise, nounwind call sites will never throw.
4019     CannotThrow = Attrs.hasAttribute(llvm::AttributeSet::FunctionIndex,
4020                                      llvm::Attribute::NoUnwind);
4021   }
4022   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
4023
4024   SmallVector<llvm::OperandBundleDef, 1> BundleList;
4025   getBundlesForFunclet(CalleePtr, CurrentFuncletPad, BundleList);
4026
4027   // Emit the actual call/invoke instruction.
4028   llvm::CallSite CS;
4029   if (!InvokeDest) {
4030     CS = Builder.CreateCall(CalleePtr, IRCallArgs, BundleList);
4031   } else {
4032     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
4033     CS = Builder.CreateInvoke(CalleePtr, Cont, InvokeDest, IRCallArgs,
4034                               BundleList);
4035     EmitBlock(Cont);
4036   }
4037   llvm::Instruction *CI = CS.getInstruction();
4038   if (callOrInvoke)
4039     *callOrInvoke = CI;
4040
4041   // Apply the attributes and calling convention.
4042   CS.setAttributes(Attrs);
4043   CS.setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
4044
4045   // Apply various metadata.
4046
4047   if (!CI->getType()->isVoidTy())
4048     CI->setName("call");
4049
4050   // Insert instrumentation or attach profile metadata at indirect call sites.
4051   // For more details, see the comment before the definition of
4052   // IPVK_IndirectCallTarget in InstrProfData.inc.
4053   if (!CS.getCalledFunction())
4054     PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
4055                      CI, CalleePtr);
4056
4057   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4058   // optimizer it can aggressively ignore unwind edges.
4059   if (CGM.getLangOpts().ObjCAutoRefCount)
4060     AddObjCARCExceptionMetadata(CI);
4061
4062   // Suppress tail calls if requested.
4063   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
4064     const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl();
4065     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
4066       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
4067   }
4068
4069   // 4. Finish the call.
4070
4071   // If the call doesn't return, finish the basic block and clear the
4072   // insertion point; this allows the rest of IRGen to discard
4073   // unreachable code.
4074   if (CS.doesNotReturn()) {
4075     if (UnusedReturnSize)
4076       EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize),
4077                       SRetPtr.getPointer());
4078
4079     Builder.CreateUnreachable();
4080     Builder.ClearInsertionPoint();
4081
4082     // FIXME: For now, emit a dummy basic block because expr emitters in
4083     // generally are not ready to handle emitting expressions at unreachable
4084     // points.
4085     EnsureInsertPoint();
4086
4087     // Return a reasonable RValue.
4088     return GetUndefRValue(RetTy);
4089   }
4090
4091   // Perform the swifterror writeback.
4092   if (swiftErrorTemp.isValid()) {
4093     llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
4094     Builder.CreateStore(errorResult, swiftErrorArg);
4095   }
4096
4097   // Emit any call-associated writebacks immediately.  Arguably this
4098   // should happen after any return-value munging.
4099   if (CallArgs.hasWritebacks())
4100     emitWritebacks(*this, CallArgs);
4101
4102   // The stack cleanup for inalloca arguments has to run out of the normal
4103   // lexical order, so deactivate it and run it manually here.
4104   CallArgs.freeArgumentMemory(*this);
4105
4106   // Extract the return value.
4107   RValue Ret = [&] {
4108     switch (RetAI.getKind()) {
4109     case ABIArgInfo::CoerceAndExpand: {
4110       auto coercionType = RetAI.getCoerceAndExpandType();
4111       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4112
4113       Address addr = SRetPtr;
4114       addr = Builder.CreateElementBitCast(addr, coercionType);
4115
4116       assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
4117       bool requiresExtract = isa<llvm::StructType>(CI->getType());
4118
4119       unsigned unpaddedIndex = 0;
4120       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4121         llvm::Type *eltType = coercionType->getElementType(i);
4122         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4123         Address eltAddr = Builder.CreateStructGEP(addr, i, layout);
4124         llvm::Value *elt = CI;
4125         if (requiresExtract)
4126           elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
4127         else
4128           assert(unpaddedIndex == 0);
4129         Builder.CreateStore(elt, eltAddr);
4130       }
4131       // FALLTHROUGH
4132     }
4133
4134     case ABIArgInfo::InAlloca:
4135     case ABIArgInfo::Indirect: {
4136       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
4137       if (UnusedReturnSize)
4138         EmitLifetimeEnd(llvm::ConstantInt::get(Int64Ty, UnusedReturnSize),
4139                         SRetPtr.getPointer());
4140       return ret;
4141     }
4142
4143     case ABIArgInfo::Ignore:
4144       // If we are ignoring an argument that had a result, make sure to
4145       // construct the appropriate return value for our caller.
4146       return GetUndefRValue(RetTy);
4147
4148     case ABIArgInfo::Extend:
4149     case ABIArgInfo::Direct: {
4150       llvm::Type *RetIRTy = ConvertType(RetTy);
4151       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
4152         switch (getEvaluationKind(RetTy)) {
4153         case TEK_Complex: {
4154           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
4155           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
4156           return RValue::getComplex(std::make_pair(Real, Imag));
4157         }
4158         case TEK_Aggregate: {
4159           Address DestPtr = ReturnValue.getValue();
4160           bool DestIsVolatile = ReturnValue.isVolatile();
4161
4162           if (!DestPtr.isValid()) {
4163             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
4164             DestIsVolatile = false;
4165           }
4166           BuildAggStore(*this, CI, DestPtr, DestIsVolatile);
4167           return RValue::getAggregate(DestPtr);
4168         }
4169         case TEK_Scalar: {
4170           // If the argument doesn't match, perform a bitcast to coerce it.  This
4171           // can happen due to trivial type mismatches.
4172           llvm::Value *V = CI;
4173           if (V->getType() != RetIRTy)
4174             V = Builder.CreateBitCast(V, RetIRTy);
4175           return RValue::get(V);
4176         }
4177         }
4178         llvm_unreachable("bad evaluation kind");
4179       }
4180
4181       Address DestPtr = ReturnValue.getValue();
4182       bool DestIsVolatile = ReturnValue.isVolatile();
4183
4184       if (!DestPtr.isValid()) {
4185         DestPtr = CreateMemTemp(RetTy, "coerce");
4186         DestIsVolatile = false;
4187       }
4188
4189       // If the value is offset in memory, apply the offset now.
4190       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
4191       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
4192
4193       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
4194     }
4195
4196     case ABIArgInfo::Expand:
4197       llvm_unreachable("Invalid ABI kind for return argument");
4198     }
4199
4200     llvm_unreachable("Unhandled ABIArgInfo::Kind");
4201   } ();
4202
4203   // Emit the assume_aligned check on the return value.
4204   const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl();
4205   if (Ret.isScalar() && TargetDecl) {
4206     if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) {
4207       llvm::Value *OffsetValue = nullptr;
4208       if (const auto *Offset = AA->getOffset())
4209         OffsetValue = EmitScalarExpr(Offset);
4210
4211       llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment());
4212       llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment);
4213       EmitAlignmentAssumption(Ret.getScalarVal(), AlignmentCI->getZExtValue(),
4214                               OffsetValue);
4215     }
4216   }
4217
4218   return Ret;
4219 }
4220
4221 /* VarArg handling */
4222
4223 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
4224   VAListAddr = VE->isMicrosoftABI()
4225                  ? EmitMSVAListRef(VE->getSubExpr())
4226                  : EmitVAListRef(VE->getSubExpr());
4227   QualType Ty = VE->getType();
4228   if (VE->isMicrosoftABI())
4229     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
4230   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
4231 }