]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/CodeGen/CGCall.cpp
Merge llvm, clang, compiler-rt, libc++, libunwind, lld, lldb and openmp
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / CodeGen / CGCall.cpp
1 //===--- CGCall.cpp - Encapsulate calling convention details --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CGCall.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGCleanup.h"
19 #include "CodeGenFunction.h"
20 #include "CodeGenModule.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/Decl.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/AST/DeclObjC.h"
25 #include "clang/Basic/CodeGenOptions.h"
26 #include "clang/Basic/TargetBuiltins.h"
27 #include "clang/Basic/TargetInfo.h"
28 #include "clang/CodeGen/CGFunctionInfo.h"
29 #include "clang/CodeGen/SwiftCallingConv.h"
30 #include "llvm/ADT/StringExtras.h"
31 #include "llvm/Transforms/Utils/Local.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/IR/Attributes.h"
34 #include "llvm/IR/CallingConv.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/InlineAsm.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/Intrinsics.h"
39 using namespace clang;
40 using namespace CodeGen;
41
42 /***/
43
44 unsigned CodeGenTypes::ClangCallConvToLLVMCallConv(CallingConv CC) {
45   switch (CC) {
46   default: return llvm::CallingConv::C;
47   case CC_X86StdCall: return llvm::CallingConv::X86_StdCall;
48   case CC_X86FastCall: return llvm::CallingConv::X86_FastCall;
49   case CC_X86RegCall: return llvm::CallingConv::X86_RegCall;
50   case CC_X86ThisCall: return llvm::CallingConv::X86_ThisCall;
51   case CC_Win64: return llvm::CallingConv::Win64;
52   case CC_X86_64SysV: return llvm::CallingConv::X86_64_SysV;
53   case CC_AAPCS: return llvm::CallingConv::ARM_AAPCS;
54   case CC_AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
55   case CC_IntelOclBicc: return llvm::CallingConv::Intel_OCL_BI;
56   // TODO: Add support for __pascal to LLVM.
57   case CC_X86Pascal: return llvm::CallingConv::C;
58   // TODO: Add support for __vectorcall to LLVM.
59   case CC_X86VectorCall: return llvm::CallingConv::X86_VectorCall;
60   case CC_AArch64VectorCall: return llvm::CallingConv::AArch64_VectorCall;
61   case CC_SpirFunction: return llvm::CallingConv::SPIR_FUNC;
62   case CC_OpenCLKernel: return CGM.getTargetCodeGenInfo().getOpenCLKernelCallingConv();
63   case CC_PreserveMost: return llvm::CallingConv::PreserveMost;
64   case CC_PreserveAll: return llvm::CallingConv::PreserveAll;
65   case CC_Swift: return llvm::CallingConv::Swift;
66   }
67 }
68
69 /// Derives the 'this' type for codegen purposes, i.e. ignoring method CVR
70 /// qualification. Either or both of RD and MD may be null. A null RD indicates
71 /// that there is no meaningful 'this' type, and a null MD can occur when
72 /// calling a method pointer.
73 CanQualType CodeGenTypes::DeriveThisType(const CXXRecordDecl *RD,
74                                          const CXXMethodDecl *MD) {
75   QualType RecTy;
76   if (RD)
77     RecTy = Context.getTagDeclType(RD)->getCanonicalTypeInternal();
78   else
79     RecTy = Context.VoidTy;
80
81   if (MD)
82     RecTy = Context.getAddrSpaceQualType(RecTy, MD->getMethodQualifiers().getAddressSpace());
83   return Context.getPointerType(CanQualType::CreateUnsafe(RecTy));
84 }
85
86 /// Returns the canonical formal type of the given C++ method.
87 static CanQual<FunctionProtoType> GetFormalType(const CXXMethodDecl *MD) {
88   return MD->getType()->getCanonicalTypeUnqualified()
89            .getAs<FunctionProtoType>();
90 }
91
92 /// Returns the "extra-canonicalized" return type, which discards
93 /// qualifiers on the return type.  Codegen doesn't care about them,
94 /// and it makes ABI code a little easier to be able to assume that
95 /// all parameter and return types are top-level unqualified.
96 static CanQualType GetReturnType(QualType RetTy) {
97   return RetTy->getCanonicalTypeUnqualified().getUnqualifiedType();
98 }
99
100 /// Arrange the argument and result information for a value of the given
101 /// unprototyped freestanding function type.
102 const CGFunctionInfo &
103 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionNoProtoType> FTNP) {
104   // When translating an unprototyped function type, always use a
105   // variadic type.
106   return arrangeLLVMFunctionInfo(FTNP->getReturnType().getUnqualifiedType(),
107                                  /*instanceMethod=*/false,
108                                  /*chainCall=*/false, None,
109                                  FTNP->getExtInfo(), {}, RequiredArgs(0));
110 }
111
112 static void addExtParameterInfosForCall(
113          llvm::SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
114                                         const FunctionProtoType *proto,
115                                         unsigned prefixArgs,
116                                         unsigned totalArgs) {
117   assert(proto->hasExtParameterInfos());
118   assert(paramInfos.size() <= prefixArgs);
119   assert(proto->getNumParams() + prefixArgs <= totalArgs);
120
121   paramInfos.reserve(totalArgs);
122
123   // Add default infos for any prefix args that don't already have infos.
124   paramInfos.resize(prefixArgs);
125
126   // Add infos for the prototype.
127   for (const auto &ParamInfo : proto->getExtParameterInfos()) {
128     paramInfos.push_back(ParamInfo);
129     // pass_object_size params have no parameter info.
130     if (ParamInfo.hasPassObjectSize())
131       paramInfos.emplace_back();
132   }
133
134   assert(paramInfos.size() <= totalArgs &&
135          "Did we forget to insert pass_object_size args?");
136   // Add default infos for the variadic and/or suffix arguments.
137   paramInfos.resize(totalArgs);
138 }
139
140 /// Adds the formal parameters in FPT to the given prefix. If any parameter in
141 /// FPT has pass_object_size attrs, then we'll add parameters for those, too.
142 static void appendParameterTypes(const CodeGenTypes &CGT,
143                                  SmallVectorImpl<CanQualType> &prefix,
144               SmallVectorImpl<FunctionProtoType::ExtParameterInfo> &paramInfos,
145                                  CanQual<FunctionProtoType> FPT) {
146   // Fast path: don't touch param info if we don't need to.
147   if (!FPT->hasExtParameterInfos()) {
148     assert(paramInfos.empty() &&
149            "We have paramInfos, but the prototype doesn't?");
150     prefix.append(FPT->param_type_begin(), FPT->param_type_end());
151     return;
152   }
153
154   unsigned PrefixSize = prefix.size();
155   // In the vast majority of cases, we'll have precisely FPT->getNumParams()
156   // parameters; the only thing that can change this is the presence of
157   // pass_object_size. So, we preallocate for the common case.
158   prefix.reserve(prefix.size() + FPT->getNumParams());
159
160   auto ExtInfos = FPT->getExtParameterInfos();
161   assert(ExtInfos.size() == FPT->getNumParams());
162   for (unsigned I = 0, E = FPT->getNumParams(); I != E; ++I) {
163     prefix.push_back(FPT->getParamType(I));
164     if (ExtInfos[I].hasPassObjectSize())
165       prefix.push_back(CGT.getContext().getSizeType());
166   }
167
168   addExtParameterInfosForCall(paramInfos, FPT.getTypePtr(), PrefixSize,
169                               prefix.size());
170 }
171
172 /// Arrange the LLVM function layout for a value of the given function
173 /// type, on top of any implicit parameters already stored.
174 static const CGFunctionInfo &
175 arrangeLLVMFunctionInfo(CodeGenTypes &CGT, bool instanceMethod,
176                         SmallVectorImpl<CanQualType> &prefix,
177                         CanQual<FunctionProtoType> FTP) {
178   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
179   RequiredArgs Required = RequiredArgs::forPrototypePlus(FTP, prefix.size());
180   // FIXME: Kill copy.
181   appendParameterTypes(CGT, prefix, paramInfos, FTP);
182   CanQualType resultType = FTP->getReturnType().getUnqualifiedType();
183
184   return CGT.arrangeLLVMFunctionInfo(resultType, instanceMethod,
185                                      /*chainCall=*/false, prefix,
186                                      FTP->getExtInfo(), paramInfos,
187                                      Required);
188 }
189
190 /// Arrange the argument and result information for a value of the
191 /// given freestanding function type.
192 const CGFunctionInfo &
193 CodeGenTypes::arrangeFreeFunctionType(CanQual<FunctionProtoType> FTP) {
194   SmallVector<CanQualType, 16> argTypes;
195   return ::arrangeLLVMFunctionInfo(*this, /*instanceMethod=*/false, argTypes,
196                                    FTP);
197 }
198
199 static CallingConv getCallingConventionForDecl(const Decl *D, bool IsWindows) {
200   // Set the appropriate calling convention for the Function.
201   if (D->hasAttr<StdCallAttr>())
202     return CC_X86StdCall;
203
204   if (D->hasAttr<FastCallAttr>())
205     return CC_X86FastCall;
206
207   if (D->hasAttr<RegCallAttr>())
208     return CC_X86RegCall;
209
210   if (D->hasAttr<ThisCallAttr>())
211     return CC_X86ThisCall;
212
213   if (D->hasAttr<VectorCallAttr>())
214     return CC_X86VectorCall;
215
216   if (D->hasAttr<PascalAttr>())
217     return CC_X86Pascal;
218
219   if (PcsAttr *PCS = D->getAttr<PcsAttr>())
220     return (PCS->getPCS() == PcsAttr::AAPCS ? CC_AAPCS : CC_AAPCS_VFP);
221
222   if (D->hasAttr<AArch64VectorPcsAttr>())
223     return CC_AArch64VectorCall;
224
225   if (D->hasAttr<IntelOclBiccAttr>())
226     return CC_IntelOclBicc;
227
228   if (D->hasAttr<MSABIAttr>())
229     return IsWindows ? CC_C : CC_Win64;
230
231   if (D->hasAttr<SysVABIAttr>())
232     return IsWindows ? CC_X86_64SysV : CC_C;
233
234   if (D->hasAttr<PreserveMostAttr>())
235     return CC_PreserveMost;
236
237   if (D->hasAttr<PreserveAllAttr>())
238     return CC_PreserveAll;
239
240   return CC_C;
241 }
242
243 /// Arrange the argument and result information for a call to an
244 /// unknown C++ non-static member function of the given abstract type.
245 /// (A null RD means we don't have any meaningful "this" argument type,
246 ///  so fall back to a generic pointer type).
247 /// The member function must be an ordinary function, i.e. not a
248 /// constructor or destructor.
249 const CGFunctionInfo &
250 CodeGenTypes::arrangeCXXMethodType(const CXXRecordDecl *RD,
251                                    const FunctionProtoType *FTP,
252                                    const CXXMethodDecl *MD) {
253   SmallVector<CanQualType, 16> argTypes;
254
255   // Add the 'this' pointer.
256   argTypes.push_back(DeriveThisType(RD, MD));
257
258   return ::arrangeLLVMFunctionInfo(
259       *this, true, argTypes,
260       FTP->getCanonicalTypeUnqualified().getAs<FunctionProtoType>());
261 }
262
263 /// Set calling convention for CUDA/HIP kernel.
264 static void setCUDAKernelCallingConvention(CanQualType &FTy, CodeGenModule &CGM,
265                                            const FunctionDecl *FD) {
266   if (FD->hasAttr<CUDAGlobalAttr>()) {
267     const FunctionType *FT = FTy->getAs<FunctionType>();
268     CGM.getTargetCodeGenInfo().setCUDAKernelCallingConvention(FT);
269     FTy = FT->getCanonicalTypeUnqualified();
270   }
271 }
272
273 /// Arrange the argument and result information for a declaration or
274 /// definition of the given C++ non-static member function.  The
275 /// member function must be an ordinary function, i.e. not a
276 /// constructor or destructor.
277 const CGFunctionInfo &
278 CodeGenTypes::arrangeCXXMethodDeclaration(const CXXMethodDecl *MD) {
279   assert(!isa<CXXConstructorDecl>(MD) && "wrong method for constructors!");
280   assert(!isa<CXXDestructorDecl>(MD) && "wrong method for destructors!");
281
282   CanQualType FT = GetFormalType(MD).getAs<Type>();
283   setCUDAKernelCallingConvention(FT, CGM, MD);
284   auto prototype = FT.getAs<FunctionProtoType>();
285
286   if (MD->isInstance()) {
287     // The abstract case is perfectly fine.
288     const CXXRecordDecl *ThisType = TheCXXABI.getThisArgumentTypeForMethod(MD);
289     return arrangeCXXMethodType(ThisType, prototype.getTypePtr(), MD);
290   }
291
292   return arrangeFreeFunctionType(prototype);
293 }
294
295 bool CodeGenTypes::inheritingCtorHasParams(
296     const InheritedConstructor &Inherited, CXXCtorType Type) {
297   // Parameters are unnecessary if we're constructing a base class subobject
298   // and the inherited constructor lives in a virtual base.
299   return Type == Ctor_Complete ||
300          !Inherited.getShadowDecl()->constructsVirtualBase() ||
301          !Target.getCXXABI().hasConstructorVariants();
302 }
303
304 const CGFunctionInfo &
305 CodeGenTypes::arrangeCXXStructorDeclaration(GlobalDecl GD) {
306   auto *MD = cast<CXXMethodDecl>(GD.getDecl());
307
308   SmallVector<CanQualType, 16> argTypes;
309   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
310   argTypes.push_back(DeriveThisType(MD->getParent(), MD));
311
312   bool PassParams = true;
313
314   if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) {
315     // A base class inheriting constructor doesn't get forwarded arguments
316     // needed to construct a virtual base (or base class thereof).
317     if (auto Inherited = CD->getInheritedConstructor())
318       PassParams = inheritingCtorHasParams(Inherited, GD.getCtorType());
319   }
320
321   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
322
323   // Add the formal parameters.
324   if (PassParams)
325     appendParameterTypes(*this, argTypes, paramInfos, FTP);
326
327   CGCXXABI::AddedStructorArgs AddedArgs =
328       TheCXXABI.buildStructorSignature(GD, argTypes);
329   if (!paramInfos.empty()) {
330     // Note: prefix implies after the first param.
331     if (AddedArgs.Prefix)
332       paramInfos.insert(paramInfos.begin() + 1, AddedArgs.Prefix,
333                         FunctionProtoType::ExtParameterInfo{});
334     if (AddedArgs.Suffix)
335       paramInfos.append(AddedArgs.Suffix,
336                         FunctionProtoType::ExtParameterInfo{});
337   }
338
339   RequiredArgs required =
340       (PassParams && MD->isVariadic() ? RequiredArgs(argTypes.size())
341                                       : RequiredArgs::All);
342
343   FunctionType::ExtInfo extInfo = FTP->getExtInfo();
344   CanQualType resultType = TheCXXABI.HasThisReturn(GD)
345                                ? argTypes.front()
346                                : TheCXXABI.hasMostDerivedReturn(GD)
347                                      ? CGM.getContext().VoidPtrTy
348                                      : Context.VoidTy;
349   return arrangeLLVMFunctionInfo(resultType, /*instanceMethod=*/true,
350                                  /*chainCall=*/false, argTypes, extInfo,
351                                  paramInfos, required);
352 }
353
354 static SmallVector<CanQualType, 16>
355 getArgTypesForCall(ASTContext &ctx, const CallArgList &args) {
356   SmallVector<CanQualType, 16> argTypes;
357   for (auto &arg : args)
358     argTypes.push_back(ctx.getCanonicalParamType(arg.Ty));
359   return argTypes;
360 }
361
362 static SmallVector<CanQualType, 16>
363 getArgTypesForDeclaration(ASTContext &ctx, const FunctionArgList &args) {
364   SmallVector<CanQualType, 16> argTypes;
365   for (auto &arg : args)
366     argTypes.push_back(ctx.getCanonicalParamType(arg->getType()));
367   return argTypes;
368 }
369
370 static llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16>
371 getExtParameterInfosForCall(const FunctionProtoType *proto,
372                             unsigned prefixArgs, unsigned totalArgs) {
373   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> result;
374   if (proto->hasExtParameterInfos()) {
375     addExtParameterInfosForCall(result, proto, prefixArgs, totalArgs);
376   }
377   return result;
378 }
379
380 /// Arrange a call to a C++ method, passing the given arguments.
381 ///
382 /// ExtraPrefixArgs is the number of ABI-specific args passed after the `this`
383 /// parameter.
384 /// ExtraSuffixArgs is the number of ABI-specific args passed at the end of
385 /// args.
386 /// PassProtoArgs indicates whether `args` has args for the parameters in the
387 /// given CXXConstructorDecl.
388 const CGFunctionInfo &
389 CodeGenTypes::arrangeCXXConstructorCall(const CallArgList &args,
390                                         const CXXConstructorDecl *D,
391                                         CXXCtorType CtorKind,
392                                         unsigned ExtraPrefixArgs,
393                                         unsigned ExtraSuffixArgs,
394                                         bool PassProtoArgs) {
395   // FIXME: Kill copy.
396   SmallVector<CanQualType, 16> ArgTypes;
397   for (const auto &Arg : args)
398     ArgTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
399
400   // +1 for implicit this, which should always be args[0].
401   unsigned TotalPrefixArgs = 1 + ExtraPrefixArgs;
402
403   CanQual<FunctionProtoType> FPT = GetFormalType(D);
404   RequiredArgs Required = PassProtoArgs
405                               ? RequiredArgs::forPrototypePlus(
406                                     FPT, TotalPrefixArgs + ExtraSuffixArgs)
407                               : RequiredArgs::All;
408
409   GlobalDecl GD(D, CtorKind);
410   CanQualType ResultType = TheCXXABI.HasThisReturn(GD)
411                                ? ArgTypes.front()
412                                : TheCXXABI.hasMostDerivedReturn(GD)
413                                      ? CGM.getContext().VoidPtrTy
414                                      : Context.VoidTy;
415
416   FunctionType::ExtInfo Info = FPT->getExtInfo();
417   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> ParamInfos;
418   // If the prototype args are elided, we should only have ABI-specific args,
419   // which never have param info.
420   if (PassProtoArgs && FPT->hasExtParameterInfos()) {
421     // ABI-specific suffix arguments are treated the same as variadic arguments.
422     addExtParameterInfosForCall(ParamInfos, FPT.getTypePtr(), TotalPrefixArgs,
423                                 ArgTypes.size());
424   }
425   return arrangeLLVMFunctionInfo(ResultType, /*instanceMethod=*/true,
426                                  /*chainCall=*/false, ArgTypes, Info,
427                                  ParamInfos, Required);
428 }
429
430 /// Arrange the argument and result information for the declaration or
431 /// definition of the given function.
432 const CGFunctionInfo &
433 CodeGenTypes::arrangeFunctionDeclaration(const FunctionDecl *FD) {
434   if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
435     if (MD->isInstance())
436       return arrangeCXXMethodDeclaration(MD);
437
438   CanQualType FTy = FD->getType()->getCanonicalTypeUnqualified();
439
440   assert(isa<FunctionType>(FTy));
441   setCUDAKernelCallingConvention(FTy, CGM, FD);
442
443   // When declaring a function without a prototype, always use a
444   // non-variadic type.
445   if (CanQual<FunctionNoProtoType> noProto = FTy.getAs<FunctionNoProtoType>()) {
446     return arrangeLLVMFunctionInfo(
447         noProto->getReturnType(), /*instanceMethod=*/false,
448         /*chainCall=*/false, None, noProto->getExtInfo(), {},RequiredArgs::All);
449   }
450
451   return arrangeFreeFunctionType(FTy.castAs<FunctionProtoType>());
452 }
453
454 /// Arrange the argument and result information for the declaration or
455 /// definition of an Objective-C method.
456 const CGFunctionInfo &
457 CodeGenTypes::arrangeObjCMethodDeclaration(const ObjCMethodDecl *MD) {
458   // It happens that this is the same as a call with no optional
459   // arguments, except also using the formal 'self' type.
460   return arrangeObjCMessageSendSignature(MD, MD->getSelfDecl()->getType());
461 }
462
463 /// Arrange the argument and result information for the function type
464 /// through which to perform a send to the given Objective-C method,
465 /// using the given receiver type.  The receiver type is not always
466 /// the 'self' type of the method or even an Objective-C pointer type.
467 /// This is *not* the right method for actually performing such a
468 /// message send, due to the possibility of optional arguments.
469 const CGFunctionInfo &
470 CodeGenTypes::arrangeObjCMessageSendSignature(const ObjCMethodDecl *MD,
471                                               QualType receiverType) {
472   SmallVector<CanQualType, 16> argTys;
473   SmallVector<FunctionProtoType::ExtParameterInfo, 4> extParamInfos(2);
474   argTys.push_back(Context.getCanonicalParamType(receiverType));
475   argTys.push_back(Context.getCanonicalParamType(Context.getObjCSelType()));
476   // FIXME: Kill copy?
477   for (const auto *I : MD->parameters()) {
478     argTys.push_back(Context.getCanonicalParamType(I->getType()));
479     auto extParamInfo = FunctionProtoType::ExtParameterInfo().withIsNoEscape(
480         I->hasAttr<NoEscapeAttr>());
481     extParamInfos.push_back(extParamInfo);
482   }
483
484   FunctionType::ExtInfo einfo;
485   bool IsWindows = getContext().getTargetInfo().getTriple().isOSWindows();
486   einfo = einfo.withCallingConv(getCallingConventionForDecl(MD, IsWindows));
487
488   if (getContext().getLangOpts().ObjCAutoRefCount &&
489       MD->hasAttr<NSReturnsRetainedAttr>())
490     einfo = einfo.withProducesResult(true);
491
492   RequiredArgs required =
493     (MD->isVariadic() ? RequiredArgs(argTys.size()) : RequiredArgs::All);
494
495   return arrangeLLVMFunctionInfo(
496       GetReturnType(MD->getReturnType()), /*instanceMethod=*/false,
497       /*chainCall=*/false, argTys, einfo, extParamInfos, required);
498 }
499
500 const CGFunctionInfo &
501 CodeGenTypes::arrangeUnprototypedObjCMessageSend(QualType returnType,
502                                                  const CallArgList &args) {
503   auto argTypes = getArgTypesForCall(Context, args);
504   FunctionType::ExtInfo einfo;
505
506   return arrangeLLVMFunctionInfo(
507       GetReturnType(returnType), /*instanceMethod=*/false,
508       /*chainCall=*/false, argTypes, einfo, {}, RequiredArgs::All);
509 }
510
511 const CGFunctionInfo &
512 CodeGenTypes::arrangeGlobalDeclaration(GlobalDecl GD) {
513   // FIXME: Do we need to handle ObjCMethodDecl?
514   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
515
516   if (isa<CXXConstructorDecl>(GD.getDecl()) ||
517       isa<CXXDestructorDecl>(GD.getDecl()))
518     return arrangeCXXStructorDeclaration(GD);
519
520   return arrangeFunctionDeclaration(FD);
521 }
522
523 /// Arrange a thunk that takes 'this' as the first parameter followed by
524 /// varargs.  Return a void pointer, regardless of the actual return type.
525 /// The body of the thunk will end in a musttail call to a function of the
526 /// correct type, and the caller will bitcast the function to the correct
527 /// prototype.
528 const CGFunctionInfo &
529 CodeGenTypes::arrangeUnprototypedMustTailThunk(const CXXMethodDecl *MD) {
530   assert(MD->isVirtual() && "only methods have thunks");
531   CanQual<FunctionProtoType> FTP = GetFormalType(MD);
532   CanQualType ArgTys[] = {DeriveThisType(MD->getParent(), MD)};
533   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/false,
534                                  /*chainCall=*/false, ArgTys,
535                                  FTP->getExtInfo(), {}, RequiredArgs(1));
536 }
537
538 const CGFunctionInfo &
539 CodeGenTypes::arrangeMSCtorClosure(const CXXConstructorDecl *CD,
540                                    CXXCtorType CT) {
541   assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
542
543   CanQual<FunctionProtoType> FTP = GetFormalType(CD);
544   SmallVector<CanQualType, 2> ArgTys;
545   const CXXRecordDecl *RD = CD->getParent();
546   ArgTys.push_back(DeriveThisType(RD, CD));
547   if (CT == Ctor_CopyingClosure)
548     ArgTys.push_back(*FTP->param_type_begin());
549   if (RD->getNumVBases() > 0)
550     ArgTys.push_back(Context.IntTy);
551   CallingConv CC = Context.getDefaultCallingConvention(
552       /*IsVariadic=*/false, /*IsCXXMethod=*/true);
553   return arrangeLLVMFunctionInfo(Context.VoidTy, /*instanceMethod=*/true,
554                                  /*chainCall=*/false, ArgTys,
555                                  FunctionType::ExtInfo(CC), {},
556                                  RequiredArgs::All);
557 }
558
559 /// Arrange a call as unto a free function, except possibly with an
560 /// additional number of formal parameters considered required.
561 static const CGFunctionInfo &
562 arrangeFreeFunctionLikeCall(CodeGenTypes &CGT,
563                             CodeGenModule &CGM,
564                             const CallArgList &args,
565                             const FunctionType *fnType,
566                             unsigned numExtraRequiredArgs,
567                             bool chainCall) {
568   assert(args.size() >= numExtraRequiredArgs);
569
570   llvm::SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
571
572   // In most cases, there are no optional arguments.
573   RequiredArgs required = RequiredArgs::All;
574
575   // If we have a variadic prototype, the required arguments are the
576   // extra prefix plus the arguments in the prototype.
577   if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fnType)) {
578     if (proto->isVariadic())
579       required = RequiredArgs::forPrototypePlus(proto, numExtraRequiredArgs);
580
581     if (proto->hasExtParameterInfos())
582       addExtParameterInfosForCall(paramInfos, proto, numExtraRequiredArgs,
583                                   args.size());
584
585   // If we don't have a prototype at all, but we're supposed to
586   // explicitly use the variadic convention for unprototyped calls,
587   // treat all of the arguments as required but preserve the nominal
588   // possibility of variadics.
589   } else if (CGM.getTargetCodeGenInfo()
590                 .isNoProtoCallVariadic(args,
591                                        cast<FunctionNoProtoType>(fnType))) {
592     required = RequiredArgs(args.size());
593   }
594
595   // FIXME: Kill copy.
596   SmallVector<CanQualType, 16> argTypes;
597   for (const auto &arg : args)
598     argTypes.push_back(CGT.getContext().getCanonicalParamType(arg.Ty));
599   return CGT.arrangeLLVMFunctionInfo(GetReturnType(fnType->getReturnType()),
600                                      /*instanceMethod=*/false, chainCall,
601                                      argTypes, fnType->getExtInfo(), paramInfos,
602                                      required);
603 }
604
605 /// Figure out the rules for calling a function with the given formal
606 /// type using the given arguments.  The arguments are necessary
607 /// because the function might be unprototyped, in which case it's
608 /// target-dependent in crazy ways.
609 const CGFunctionInfo &
610 CodeGenTypes::arrangeFreeFunctionCall(const CallArgList &args,
611                                       const FunctionType *fnType,
612                                       bool chainCall) {
613   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType,
614                                      chainCall ? 1 : 0, chainCall);
615 }
616
617 /// A block function is essentially a free function with an
618 /// extra implicit argument.
619 const CGFunctionInfo &
620 CodeGenTypes::arrangeBlockFunctionCall(const CallArgList &args,
621                                        const FunctionType *fnType) {
622   return arrangeFreeFunctionLikeCall(*this, CGM, args, fnType, 1,
623                                      /*chainCall=*/false);
624 }
625
626 const CGFunctionInfo &
627 CodeGenTypes::arrangeBlockFunctionDeclaration(const FunctionProtoType *proto,
628                                               const FunctionArgList &params) {
629   auto paramInfos = getExtParameterInfosForCall(proto, 1, params.size());
630   auto argTypes = getArgTypesForDeclaration(Context, params);
631
632   return arrangeLLVMFunctionInfo(GetReturnType(proto->getReturnType()),
633                                  /*instanceMethod*/ false, /*chainCall*/ false,
634                                  argTypes, proto->getExtInfo(), paramInfos,
635                                  RequiredArgs::forPrototypePlus(proto, 1));
636 }
637
638 const CGFunctionInfo &
639 CodeGenTypes::arrangeBuiltinFunctionCall(QualType resultType,
640                                          const CallArgList &args) {
641   // FIXME: Kill copy.
642   SmallVector<CanQualType, 16> argTypes;
643   for (const auto &Arg : args)
644     argTypes.push_back(Context.getCanonicalParamType(Arg.Ty));
645   return arrangeLLVMFunctionInfo(
646       GetReturnType(resultType), /*instanceMethod=*/false,
647       /*chainCall=*/false, argTypes, FunctionType::ExtInfo(),
648       /*paramInfos=*/ {}, RequiredArgs::All);
649 }
650
651 const CGFunctionInfo &
652 CodeGenTypes::arrangeBuiltinFunctionDeclaration(QualType resultType,
653                                                 const FunctionArgList &args) {
654   auto argTypes = getArgTypesForDeclaration(Context, args);
655
656   return arrangeLLVMFunctionInfo(
657       GetReturnType(resultType), /*instanceMethod=*/false, /*chainCall=*/false,
658       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
659 }
660
661 const CGFunctionInfo &
662 CodeGenTypes::arrangeBuiltinFunctionDeclaration(CanQualType resultType,
663                                               ArrayRef<CanQualType> argTypes) {
664   return arrangeLLVMFunctionInfo(
665       resultType, /*instanceMethod=*/false, /*chainCall=*/false,
666       argTypes, FunctionType::ExtInfo(), {}, RequiredArgs::All);
667 }
668
669 /// Arrange a call to a C++ method, passing the given arguments.
670 ///
671 /// numPrefixArgs is the number of ABI-specific prefix arguments we have. It
672 /// does not count `this`.
673 const CGFunctionInfo &
674 CodeGenTypes::arrangeCXXMethodCall(const CallArgList &args,
675                                    const FunctionProtoType *proto,
676                                    RequiredArgs required,
677                                    unsigned numPrefixArgs) {
678   assert(numPrefixArgs + 1 <= args.size() &&
679          "Emitting a call with less args than the required prefix?");
680   // Add one to account for `this`. It's a bit awkward here, but we don't count
681   // `this` in similar places elsewhere.
682   auto paramInfos =
683     getExtParameterInfosForCall(proto, numPrefixArgs + 1, args.size());
684
685   // FIXME: Kill copy.
686   auto argTypes = getArgTypesForCall(Context, args);
687
688   FunctionType::ExtInfo info = proto->getExtInfo();
689   return arrangeLLVMFunctionInfo(
690       GetReturnType(proto->getReturnType()), /*instanceMethod=*/true,
691       /*chainCall=*/false, argTypes, info, paramInfos, required);
692 }
693
694 const CGFunctionInfo &CodeGenTypes::arrangeNullaryFunction() {
695   return arrangeLLVMFunctionInfo(
696       getContext().VoidTy, /*instanceMethod=*/false, /*chainCall=*/false,
697       None, FunctionType::ExtInfo(), {}, RequiredArgs::All);
698 }
699
700 const CGFunctionInfo &
701 CodeGenTypes::arrangeCall(const CGFunctionInfo &signature,
702                           const CallArgList &args) {
703   assert(signature.arg_size() <= args.size());
704   if (signature.arg_size() == args.size())
705     return signature;
706
707   SmallVector<FunctionProtoType::ExtParameterInfo, 16> paramInfos;
708   auto sigParamInfos = signature.getExtParameterInfos();
709   if (!sigParamInfos.empty()) {
710     paramInfos.append(sigParamInfos.begin(), sigParamInfos.end());
711     paramInfos.resize(args.size());
712   }
713
714   auto argTypes = getArgTypesForCall(Context, args);
715
716   assert(signature.getRequiredArgs().allowsOptionalArgs());
717   return arrangeLLVMFunctionInfo(signature.getReturnType(),
718                                  signature.isInstanceMethod(),
719                                  signature.isChainCall(),
720                                  argTypes,
721                                  signature.getExtInfo(),
722                                  paramInfos,
723                                  signature.getRequiredArgs());
724 }
725
726 namespace clang {
727 namespace CodeGen {
728 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI);
729 }
730 }
731
732 /// Arrange the argument and result information for an abstract value
733 /// of a given function type.  This is the method which all of the
734 /// above functions ultimately defer to.
735 const CGFunctionInfo &
736 CodeGenTypes::arrangeLLVMFunctionInfo(CanQualType resultType,
737                                       bool instanceMethod,
738                                       bool chainCall,
739                                       ArrayRef<CanQualType> argTypes,
740                                       FunctionType::ExtInfo info,
741                      ArrayRef<FunctionProtoType::ExtParameterInfo> paramInfos,
742                                       RequiredArgs required) {
743   assert(llvm::all_of(argTypes,
744                       [](CanQualType T) { return T.isCanonicalAsParam(); }));
745
746   // Lookup or create unique function info.
747   llvm::FoldingSetNodeID ID;
748   CGFunctionInfo::Profile(ID, instanceMethod, chainCall, info, paramInfos,
749                           required, resultType, argTypes);
750
751   void *insertPos = nullptr;
752   CGFunctionInfo *FI = FunctionInfos.FindNodeOrInsertPos(ID, insertPos);
753   if (FI)
754     return *FI;
755
756   unsigned CC = ClangCallConvToLLVMCallConv(info.getCC());
757
758   // Construct the function info.  We co-allocate the ArgInfos.
759   FI = CGFunctionInfo::create(CC, instanceMethod, chainCall, info,
760                               paramInfos, resultType, argTypes, required);
761   FunctionInfos.InsertNode(FI, insertPos);
762
763   bool inserted = FunctionsBeingProcessed.insert(FI).second;
764   (void)inserted;
765   assert(inserted && "Recursively being processed?");
766
767   // Compute ABI information.
768   if (CC == llvm::CallingConv::SPIR_KERNEL) {
769     // Force target independent argument handling for the host visible
770     // kernel functions.
771     computeSPIRKernelABIInfo(CGM, *FI);
772   } else if (info.getCC() == CC_Swift) {
773     swiftcall::computeABIInfo(CGM, *FI);
774   } else {
775     getABIInfo().computeInfo(*FI);
776   }
777
778   // Loop over all of the computed argument and return value info.  If any of
779   // them are direct or extend without a specified coerce type, specify the
780   // default now.
781   ABIArgInfo &retInfo = FI->getReturnInfo();
782   if (retInfo.canHaveCoerceToType() && retInfo.getCoerceToType() == nullptr)
783     retInfo.setCoerceToType(ConvertType(FI->getReturnType()));
784
785   for (auto &I : FI->arguments())
786     if (I.info.canHaveCoerceToType() && I.info.getCoerceToType() == nullptr)
787       I.info.setCoerceToType(ConvertType(I.type));
788
789   bool erased = FunctionsBeingProcessed.erase(FI); (void)erased;
790   assert(erased && "Not in set?");
791
792   return *FI;
793 }
794
795 CGFunctionInfo *CGFunctionInfo::create(unsigned llvmCC,
796                                        bool instanceMethod,
797                                        bool chainCall,
798                                        const FunctionType::ExtInfo &info,
799                                        ArrayRef<ExtParameterInfo> paramInfos,
800                                        CanQualType resultType,
801                                        ArrayRef<CanQualType> argTypes,
802                                        RequiredArgs required) {
803   assert(paramInfos.empty() || paramInfos.size() == argTypes.size());
804   assert(!required.allowsOptionalArgs() ||
805          required.getNumRequiredArgs() <= argTypes.size());
806
807   void *buffer =
808     operator new(totalSizeToAlloc<ArgInfo,             ExtParameterInfo>(
809                                   argTypes.size() + 1, paramInfos.size()));
810
811   CGFunctionInfo *FI = new(buffer) CGFunctionInfo();
812   FI->CallingConvention = llvmCC;
813   FI->EffectiveCallingConvention = llvmCC;
814   FI->ASTCallingConvention = info.getCC();
815   FI->InstanceMethod = instanceMethod;
816   FI->ChainCall = chainCall;
817   FI->NoReturn = info.getNoReturn();
818   FI->ReturnsRetained = info.getProducesResult();
819   FI->NoCallerSavedRegs = info.getNoCallerSavedRegs();
820   FI->NoCfCheck = info.getNoCfCheck();
821   FI->Required = required;
822   FI->HasRegParm = info.getHasRegParm();
823   FI->RegParm = info.getRegParm();
824   FI->ArgStruct = nullptr;
825   FI->ArgStructAlign = 0;
826   FI->NumArgs = argTypes.size();
827   FI->HasExtParameterInfos = !paramInfos.empty();
828   FI->getArgsBuffer()[0].type = resultType;
829   for (unsigned i = 0, e = argTypes.size(); i != e; ++i)
830     FI->getArgsBuffer()[i + 1].type = argTypes[i];
831   for (unsigned i = 0, e = paramInfos.size(); i != e; ++i)
832     FI->getExtParameterInfosBuffer()[i] = paramInfos[i];
833   return FI;
834 }
835
836 /***/
837
838 namespace {
839 // ABIArgInfo::Expand implementation.
840
841 // Specifies the way QualType passed as ABIArgInfo::Expand is expanded.
842 struct TypeExpansion {
843   enum TypeExpansionKind {
844     // Elements of constant arrays are expanded recursively.
845     TEK_ConstantArray,
846     // Record fields are expanded recursively (but if record is a union, only
847     // the field with the largest size is expanded).
848     TEK_Record,
849     // For complex types, real and imaginary parts are expanded recursively.
850     TEK_Complex,
851     // All other types are not expandable.
852     TEK_None
853   };
854
855   const TypeExpansionKind Kind;
856
857   TypeExpansion(TypeExpansionKind K) : Kind(K) {}
858   virtual ~TypeExpansion() {}
859 };
860
861 struct ConstantArrayExpansion : TypeExpansion {
862   QualType EltTy;
863   uint64_t NumElts;
864
865   ConstantArrayExpansion(QualType EltTy, uint64_t NumElts)
866       : TypeExpansion(TEK_ConstantArray), EltTy(EltTy), NumElts(NumElts) {}
867   static bool classof(const TypeExpansion *TE) {
868     return TE->Kind == TEK_ConstantArray;
869   }
870 };
871
872 struct RecordExpansion : TypeExpansion {
873   SmallVector<const CXXBaseSpecifier *, 1> Bases;
874
875   SmallVector<const FieldDecl *, 1> Fields;
876
877   RecordExpansion(SmallVector<const CXXBaseSpecifier *, 1> &&Bases,
878                   SmallVector<const FieldDecl *, 1> &&Fields)
879       : TypeExpansion(TEK_Record), Bases(std::move(Bases)),
880         Fields(std::move(Fields)) {}
881   static bool classof(const TypeExpansion *TE) {
882     return TE->Kind == TEK_Record;
883   }
884 };
885
886 struct ComplexExpansion : TypeExpansion {
887   QualType EltTy;
888
889   ComplexExpansion(QualType EltTy) : TypeExpansion(TEK_Complex), EltTy(EltTy) {}
890   static bool classof(const TypeExpansion *TE) {
891     return TE->Kind == TEK_Complex;
892   }
893 };
894
895 struct NoExpansion : TypeExpansion {
896   NoExpansion() : TypeExpansion(TEK_None) {}
897   static bool classof(const TypeExpansion *TE) {
898     return TE->Kind == TEK_None;
899   }
900 };
901 }  // namespace
902
903 static std::unique_ptr<TypeExpansion>
904 getTypeExpansion(QualType Ty, const ASTContext &Context) {
905   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
906     return llvm::make_unique<ConstantArrayExpansion>(
907         AT->getElementType(), AT->getSize().getZExtValue());
908   }
909   if (const RecordType *RT = Ty->getAs<RecordType>()) {
910     SmallVector<const CXXBaseSpecifier *, 1> Bases;
911     SmallVector<const FieldDecl *, 1> Fields;
912     const RecordDecl *RD = RT->getDecl();
913     assert(!RD->hasFlexibleArrayMember() &&
914            "Cannot expand structure with flexible array.");
915     if (RD->isUnion()) {
916       // Unions can be here only in degenerative cases - all the fields are same
917       // after flattening. Thus we have to use the "largest" field.
918       const FieldDecl *LargestFD = nullptr;
919       CharUnits UnionSize = CharUnits::Zero();
920
921       for (const auto *FD : RD->fields()) {
922         if (FD->isZeroLengthBitField(Context))
923           continue;
924         assert(!FD->isBitField() &&
925                "Cannot expand structure with bit-field members.");
926         CharUnits FieldSize = Context.getTypeSizeInChars(FD->getType());
927         if (UnionSize < FieldSize) {
928           UnionSize = FieldSize;
929           LargestFD = FD;
930         }
931       }
932       if (LargestFD)
933         Fields.push_back(LargestFD);
934     } else {
935       if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
936         assert(!CXXRD->isDynamicClass() &&
937                "cannot expand vtable pointers in dynamic classes");
938         for (const CXXBaseSpecifier &BS : CXXRD->bases())
939           Bases.push_back(&BS);
940       }
941
942       for (const auto *FD : RD->fields()) {
943         if (FD->isZeroLengthBitField(Context))
944           continue;
945         assert(!FD->isBitField() &&
946                "Cannot expand structure with bit-field members.");
947         Fields.push_back(FD);
948       }
949     }
950     return llvm::make_unique<RecordExpansion>(std::move(Bases),
951                                               std::move(Fields));
952   }
953   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
954     return llvm::make_unique<ComplexExpansion>(CT->getElementType());
955   }
956   return llvm::make_unique<NoExpansion>();
957 }
958
959 static int getExpansionSize(QualType Ty, const ASTContext &Context) {
960   auto Exp = getTypeExpansion(Ty, Context);
961   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
962     return CAExp->NumElts * getExpansionSize(CAExp->EltTy, Context);
963   }
964   if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
965     int Res = 0;
966     for (auto BS : RExp->Bases)
967       Res += getExpansionSize(BS->getType(), Context);
968     for (auto FD : RExp->Fields)
969       Res += getExpansionSize(FD->getType(), Context);
970     return Res;
971   }
972   if (isa<ComplexExpansion>(Exp.get()))
973     return 2;
974   assert(isa<NoExpansion>(Exp.get()));
975   return 1;
976 }
977
978 void
979 CodeGenTypes::getExpandedTypes(QualType Ty,
980                                SmallVectorImpl<llvm::Type *>::iterator &TI) {
981   auto Exp = getTypeExpansion(Ty, Context);
982   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
983     for (int i = 0, n = CAExp->NumElts; i < n; i++) {
984       getExpandedTypes(CAExp->EltTy, TI);
985     }
986   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
987     for (auto BS : RExp->Bases)
988       getExpandedTypes(BS->getType(), TI);
989     for (auto FD : RExp->Fields)
990       getExpandedTypes(FD->getType(), TI);
991   } else if (auto CExp = dyn_cast<ComplexExpansion>(Exp.get())) {
992     llvm::Type *EltTy = ConvertType(CExp->EltTy);
993     *TI++ = EltTy;
994     *TI++ = EltTy;
995   } else {
996     assert(isa<NoExpansion>(Exp.get()));
997     *TI++ = ConvertType(Ty);
998   }
999 }
1000
1001 static void forConstantArrayExpansion(CodeGenFunction &CGF,
1002                                       ConstantArrayExpansion *CAE,
1003                                       Address BaseAddr,
1004                                       llvm::function_ref<void(Address)> Fn) {
1005   CharUnits EltSize = CGF.getContext().getTypeSizeInChars(CAE->EltTy);
1006   CharUnits EltAlign =
1007     BaseAddr.getAlignment().alignmentOfArrayElement(EltSize);
1008
1009   for (int i = 0, n = CAE->NumElts; i < n; i++) {
1010     llvm::Value *EltAddr =
1011       CGF.Builder.CreateConstGEP2_32(nullptr, BaseAddr.getPointer(), 0, i);
1012     Fn(Address(EltAddr, EltAlign));
1013   }
1014 }
1015
1016 void CodeGenFunction::ExpandTypeFromArgs(
1017     QualType Ty, LValue LV, SmallVectorImpl<llvm::Value *>::iterator &AI) {
1018   assert(LV.isSimple() &&
1019          "Unexpected non-simple lvalue during struct expansion.");
1020
1021   auto Exp = getTypeExpansion(Ty, getContext());
1022   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1023     forConstantArrayExpansion(*this, CAExp, LV.getAddress(),
1024                               [&](Address EltAddr) {
1025       LValue LV = MakeAddrLValue(EltAddr, CAExp->EltTy);
1026       ExpandTypeFromArgs(CAExp->EltTy, LV, AI);
1027     });
1028   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1029     Address This = LV.getAddress();
1030     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1031       // Perform a single step derived-to-base conversion.
1032       Address Base =
1033           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1034                                 /*NullCheckValue=*/false, SourceLocation());
1035       LValue SubLV = MakeAddrLValue(Base, BS->getType());
1036
1037       // Recurse onto bases.
1038       ExpandTypeFromArgs(BS->getType(), SubLV, AI);
1039     }
1040     for (auto FD : RExp->Fields) {
1041       // FIXME: What are the right qualifiers here?
1042       LValue SubLV = EmitLValueForFieldInitialization(LV, FD);
1043       ExpandTypeFromArgs(FD->getType(), SubLV, AI);
1044     }
1045   } else if (isa<ComplexExpansion>(Exp.get())) {
1046     auto realValue = *AI++;
1047     auto imagValue = *AI++;
1048     EmitStoreOfComplex(ComplexPairTy(realValue, imagValue), LV, /*init*/ true);
1049   } else {
1050     assert(isa<NoExpansion>(Exp.get()));
1051     EmitStoreThroughLValue(RValue::get(*AI++), LV);
1052   }
1053 }
1054
1055 void CodeGenFunction::ExpandTypeToArgs(
1056     QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
1057     SmallVectorImpl<llvm::Value *> &IRCallArgs, unsigned &IRCallArgPos) {
1058   auto Exp = getTypeExpansion(Ty, getContext());
1059   if (auto CAExp = dyn_cast<ConstantArrayExpansion>(Exp.get())) {
1060     Address Addr = Arg.hasLValue() ? Arg.getKnownLValue().getAddress()
1061                                    : Arg.getKnownRValue().getAggregateAddress();
1062     forConstantArrayExpansion(
1063         *this, CAExp, Addr, [&](Address EltAddr) {
1064           CallArg EltArg = CallArg(
1065               convertTempToRValue(EltAddr, CAExp->EltTy, SourceLocation()),
1066               CAExp->EltTy);
1067           ExpandTypeToArgs(CAExp->EltTy, EltArg, IRFuncTy, IRCallArgs,
1068                            IRCallArgPos);
1069         });
1070   } else if (auto RExp = dyn_cast<RecordExpansion>(Exp.get())) {
1071     Address This = Arg.hasLValue() ? Arg.getKnownLValue().getAddress()
1072                                    : Arg.getKnownRValue().getAggregateAddress();
1073     for (const CXXBaseSpecifier *BS : RExp->Bases) {
1074       // Perform a single step derived-to-base conversion.
1075       Address Base =
1076           GetAddressOfBaseClass(This, Ty->getAsCXXRecordDecl(), &BS, &BS + 1,
1077                                 /*NullCheckValue=*/false, SourceLocation());
1078       CallArg BaseArg = CallArg(RValue::getAggregate(Base), BS->getType());
1079
1080       // Recurse onto bases.
1081       ExpandTypeToArgs(BS->getType(), BaseArg, IRFuncTy, IRCallArgs,
1082                        IRCallArgPos);
1083     }
1084
1085     LValue LV = MakeAddrLValue(This, Ty);
1086     for (auto FD : RExp->Fields) {
1087       CallArg FldArg =
1088           CallArg(EmitRValueForField(LV, FD, SourceLocation()), FD->getType());
1089       ExpandTypeToArgs(FD->getType(), FldArg, IRFuncTy, IRCallArgs,
1090                        IRCallArgPos);
1091     }
1092   } else if (isa<ComplexExpansion>(Exp.get())) {
1093     ComplexPairTy CV = Arg.getKnownRValue().getComplexVal();
1094     IRCallArgs[IRCallArgPos++] = CV.first;
1095     IRCallArgs[IRCallArgPos++] = CV.second;
1096   } else {
1097     assert(isa<NoExpansion>(Exp.get()));
1098     auto RV = Arg.getKnownRValue();
1099     assert(RV.isScalar() &&
1100            "Unexpected non-scalar rvalue during struct expansion.");
1101
1102     // Insert a bitcast as needed.
1103     llvm::Value *V = RV.getScalarVal();
1104     if (IRCallArgPos < IRFuncTy->getNumParams() &&
1105         V->getType() != IRFuncTy->getParamType(IRCallArgPos))
1106       V = Builder.CreateBitCast(V, IRFuncTy->getParamType(IRCallArgPos));
1107
1108     IRCallArgs[IRCallArgPos++] = V;
1109   }
1110 }
1111
1112 /// Create a temporary allocation for the purposes of coercion.
1113 static Address CreateTempAllocaForCoercion(CodeGenFunction &CGF, llvm::Type *Ty,
1114                                            CharUnits MinAlign) {
1115   // Don't use an alignment that's worse than what LLVM would prefer.
1116   auto PrefAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(Ty);
1117   CharUnits Align = std::max(MinAlign, CharUnits::fromQuantity(PrefAlign));
1118
1119   return CGF.CreateTempAlloca(Ty, Align);
1120 }
1121
1122 /// EnterStructPointerForCoercedAccess - Given a struct pointer that we are
1123 /// accessing some number of bytes out of it, try to gep into the struct to get
1124 /// at its inner goodness.  Dive as deep as possible without entering an element
1125 /// with an in-memory size smaller than DstSize.
1126 static Address
1127 EnterStructPointerForCoercedAccess(Address SrcPtr,
1128                                    llvm::StructType *SrcSTy,
1129                                    uint64_t DstSize, CodeGenFunction &CGF) {
1130   // We can't dive into a zero-element struct.
1131   if (SrcSTy->getNumElements() == 0) return SrcPtr;
1132
1133   llvm::Type *FirstElt = SrcSTy->getElementType(0);
1134
1135   // If the first elt is at least as large as what we're looking for, or if the
1136   // first element is the same size as the whole struct, we can enter it. The
1137   // comparison must be made on the store size and not the alloca size. Using
1138   // the alloca size may overstate the size of the load.
1139   uint64_t FirstEltSize =
1140     CGF.CGM.getDataLayout().getTypeStoreSize(FirstElt);
1141   if (FirstEltSize < DstSize &&
1142       FirstEltSize < CGF.CGM.getDataLayout().getTypeStoreSize(SrcSTy))
1143     return SrcPtr;
1144
1145   // GEP into the first element.
1146   SrcPtr = CGF.Builder.CreateStructGEP(SrcPtr, 0, "coerce.dive");
1147
1148   // If the first element is a struct, recurse.
1149   llvm::Type *SrcTy = SrcPtr.getElementType();
1150   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy))
1151     return EnterStructPointerForCoercedAccess(SrcPtr, SrcSTy, DstSize, CGF);
1152
1153   return SrcPtr;
1154 }
1155
1156 /// CoerceIntOrPtrToIntOrPtr - Convert a value Val to the specific Ty where both
1157 /// are either integers or pointers.  This does a truncation of the value if it
1158 /// is too large or a zero extension if it is too small.
1159 ///
1160 /// This behaves as if the value were coerced through memory, so on big-endian
1161 /// targets the high bits are preserved in a truncation, while little-endian
1162 /// targets preserve the low bits.
1163 static llvm::Value *CoerceIntOrPtrToIntOrPtr(llvm::Value *Val,
1164                                              llvm::Type *Ty,
1165                                              CodeGenFunction &CGF) {
1166   if (Val->getType() == Ty)
1167     return Val;
1168
1169   if (isa<llvm::PointerType>(Val->getType())) {
1170     // If this is Pointer->Pointer avoid conversion to and from int.
1171     if (isa<llvm::PointerType>(Ty))
1172       return CGF.Builder.CreateBitCast(Val, Ty, "coerce.val");
1173
1174     // Convert the pointer to an integer so we can play with its width.
1175     Val = CGF.Builder.CreatePtrToInt(Val, CGF.IntPtrTy, "coerce.val.pi");
1176   }
1177
1178   llvm::Type *DestIntTy = Ty;
1179   if (isa<llvm::PointerType>(DestIntTy))
1180     DestIntTy = CGF.IntPtrTy;
1181
1182   if (Val->getType() != DestIntTy) {
1183     const llvm::DataLayout &DL = CGF.CGM.getDataLayout();
1184     if (DL.isBigEndian()) {
1185       // Preserve the high bits on big-endian targets.
1186       // That is what memory coercion does.
1187       uint64_t SrcSize = DL.getTypeSizeInBits(Val->getType());
1188       uint64_t DstSize = DL.getTypeSizeInBits(DestIntTy);
1189
1190       if (SrcSize > DstSize) {
1191         Val = CGF.Builder.CreateLShr(Val, SrcSize - DstSize, "coerce.highbits");
1192         Val = CGF.Builder.CreateTrunc(Val, DestIntTy, "coerce.val.ii");
1193       } else {
1194         Val = CGF.Builder.CreateZExt(Val, DestIntTy, "coerce.val.ii");
1195         Val = CGF.Builder.CreateShl(Val, DstSize - SrcSize, "coerce.highbits");
1196       }
1197     } else {
1198       // Little-endian targets preserve the low bits. No shifts required.
1199       Val = CGF.Builder.CreateIntCast(Val, DestIntTy, false, "coerce.val.ii");
1200     }
1201   }
1202
1203   if (isa<llvm::PointerType>(Ty))
1204     Val = CGF.Builder.CreateIntToPtr(Val, Ty, "coerce.val.ip");
1205   return Val;
1206 }
1207
1208
1209
1210 /// CreateCoercedLoad - Create a load from \arg SrcPtr interpreted as
1211 /// a pointer to an object of type \arg Ty, known to be aligned to
1212 /// \arg SrcAlign bytes.
1213 ///
1214 /// This safely handles the case when the src type is smaller than the
1215 /// destination type; in this situation the values of bits which not
1216 /// present in the src are undefined.
1217 static llvm::Value *CreateCoercedLoad(Address Src, llvm::Type *Ty,
1218                                       CodeGenFunction &CGF) {
1219   llvm::Type *SrcTy = Src.getElementType();
1220
1221   // If SrcTy and Ty are the same, just do a load.
1222   if (SrcTy == Ty)
1223     return CGF.Builder.CreateLoad(Src);
1224
1225   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(Ty);
1226
1227   if (llvm::StructType *SrcSTy = dyn_cast<llvm::StructType>(SrcTy)) {
1228     Src = EnterStructPointerForCoercedAccess(Src, SrcSTy, DstSize, CGF);
1229     SrcTy = Src.getType()->getElementType();
1230   }
1231
1232   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1233
1234   // If the source and destination are integer or pointer types, just do an
1235   // extension or truncation to the desired type.
1236   if ((isa<llvm::IntegerType>(Ty) || isa<llvm::PointerType>(Ty)) &&
1237       (isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy))) {
1238     llvm::Value *Load = CGF.Builder.CreateLoad(Src);
1239     return CoerceIntOrPtrToIntOrPtr(Load, Ty, CGF);
1240   }
1241
1242   // If load is legal, just bitcast the src pointer.
1243   if (SrcSize >= DstSize) {
1244     // Generally SrcSize is never greater than DstSize, since this means we are
1245     // losing bits. However, this can happen in cases where the structure has
1246     // additional padding, for example due to a user specified alignment.
1247     //
1248     // FIXME: Assert that we aren't truncating non-padding bits when have access
1249     // to that information.
1250     Src = CGF.Builder.CreateBitCast(Src,
1251                                     Ty->getPointerTo(Src.getAddressSpace()));
1252     return CGF.Builder.CreateLoad(Src);
1253   }
1254
1255   // Otherwise do coercion through memory. This is stupid, but simple.
1256   Address Tmp = CreateTempAllocaForCoercion(CGF, Ty, Src.getAlignment());
1257   Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty);
1258   Address SrcCasted = CGF.Builder.CreateElementBitCast(Src,CGF.Int8Ty);
1259   CGF.Builder.CreateMemCpy(Casted, SrcCasted,
1260       llvm::ConstantInt::get(CGF.IntPtrTy, SrcSize),
1261       false);
1262   return CGF.Builder.CreateLoad(Tmp);
1263 }
1264
1265 // Function to store a first-class aggregate into memory.  We prefer to
1266 // store the elements rather than the aggregate to be more friendly to
1267 // fast-isel.
1268 // FIXME: Do we need to recurse here?
1269 static void BuildAggStore(CodeGenFunction &CGF, llvm::Value *Val,
1270                           Address Dest, bool DestIsVolatile) {
1271   // Prefer scalar stores to first-class aggregate stores.
1272   if (llvm::StructType *STy =
1273         dyn_cast<llvm::StructType>(Val->getType())) {
1274     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1275       Address EltPtr = CGF.Builder.CreateStructGEP(Dest, i);
1276       llvm::Value *Elt = CGF.Builder.CreateExtractValue(Val, i);
1277       CGF.Builder.CreateStore(Elt, EltPtr, DestIsVolatile);
1278     }
1279   } else {
1280     CGF.Builder.CreateStore(Val, Dest, DestIsVolatile);
1281   }
1282 }
1283
1284 /// CreateCoercedStore - Create a store to \arg DstPtr from \arg Src,
1285 /// where the source and destination may have different types.  The
1286 /// destination is known to be aligned to \arg DstAlign bytes.
1287 ///
1288 /// This safely handles the case when the src type is larger than the
1289 /// destination type; the upper bits of the src will be lost.
1290 static void CreateCoercedStore(llvm::Value *Src,
1291                                Address Dst,
1292                                bool DstIsVolatile,
1293                                CodeGenFunction &CGF) {
1294   llvm::Type *SrcTy = Src->getType();
1295   llvm::Type *DstTy = Dst.getType()->getElementType();
1296   if (SrcTy == DstTy) {
1297     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1298     return;
1299   }
1300
1301   uint64_t SrcSize = CGF.CGM.getDataLayout().getTypeAllocSize(SrcTy);
1302
1303   if (llvm::StructType *DstSTy = dyn_cast<llvm::StructType>(DstTy)) {
1304     Dst = EnterStructPointerForCoercedAccess(Dst, DstSTy, SrcSize, CGF);
1305     DstTy = Dst.getType()->getElementType();
1306   }
1307
1308   // If the source and destination are integer or pointer types, just do an
1309   // extension or truncation to the desired type.
1310   if ((isa<llvm::IntegerType>(SrcTy) || isa<llvm::PointerType>(SrcTy)) &&
1311       (isa<llvm::IntegerType>(DstTy) || isa<llvm::PointerType>(DstTy))) {
1312     Src = CoerceIntOrPtrToIntOrPtr(Src, DstTy, CGF);
1313     CGF.Builder.CreateStore(Src, Dst, DstIsVolatile);
1314     return;
1315   }
1316
1317   uint64_t DstSize = CGF.CGM.getDataLayout().getTypeAllocSize(DstTy);
1318
1319   // If store is legal, just bitcast the src pointer.
1320   if (SrcSize <= DstSize) {
1321     Dst = CGF.Builder.CreateElementBitCast(Dst, SrcTy);
1322     BuildAggStore(CGF, Src, Dst, DstIsVolatile);
1323   } else {
1324     // Otherwise do coercion through memory. This is stupid, but
1325     // simple.
1326
1327     // Generally SrcSize is never greater than DstSize, since this means we are
1328     // losing bits. However, this can happen in cases where the structure has
1329     // additional padding, for example due to a user specified alignment.
1330     //
1331     // FIXME: Assert that we aren't truncating non-padding bits when have access
1332     // to that information.
1333     Address Tmp = CreateTempAllocaForCoercion(CGF, SrcTy, Dst.getAlignment());
1334     CGF.Builder.CreateStore(Src, Tmp);
1335     Address Casted = CGF.Builder.CreateElementBitCast(Tmp,CGF.Int8Ty);
1336     Address DstCasted = CGF.Builder.CreateElementBitCast(Dst,CGF.Int8Ty);
1337     CGF.Builder.CreateMemCpy(DstCasted, Casted,
1338         llvm::ConstantInt::get(CGF.IntPtrTy, DstSize),
1339         false);
1340   }
1341 }
1342
1343 static Address emitAddressAtOffset(CodeGenFunction &CGF, Address addr,
1344                                    const ABIArgInfo &info) {
1345   if (unsigned offset = info.getDirectOffset()) {
1346     addr = CGF.Builder.CreateElementBitCast(addr, CGF.Int8Ty);
1347     addr = CGF.Builder.CreateConstInBoundsByteGEP(addr,
1348                                              CharUnits::fromQuantity(offset));
1349     addr = CGF.Builder.CreateElementBitCast(addr, info.getCoerceToType());
1350   }
1351   return addr;
1352 }
1353
1354 namespace {
1355
1356 /// Encapsulates information about the way function arguments from
1357 /// CGFunctionInfo should be passed to actual LLVM IR function.
1358 class ClangToLLVMArgMapping {
1359   static const unsigned InvalidIndex = ~0U;
1360   unsigned InallocaArgNo;
1361   unsigned SRetArgNo;
1362   unsigned TotalIRArgs;
1363
1364   /// Arguments of LLVM IR function corresponding to single Clang argument.
1365   struct IRArgs {
1366     unsigned PaddingArgIndex;
1367     // Argument is expanded to IR arguments at positions
1368     // [FirstArgIndex, FirstArgIndex + NumberOfArgs).
1369     unsigned FirstArgIndex;
1370     unsigned NumberOfArgs;
1371
1372     IRArgs()
1373         : PaddingArgIndex(InvalidIndex), FirstArgIndex(InvalidIndex),
1374           NumberOfArgs(0) {}
1375   };
1376
1377   SmallVector<IRArgs, 8> ArgInfo;
1378
1379 public:
1380   ClangToLLVMArgMapping(const ASTContext &Context, const CGFunctionInfo &FI,
1381                         bool OnlyRequiredArgs = false)
1382       : InallocaArgNo(InvalidIndex), SRetArgNo(InvalidIndex), TotalIRArgs(0),
1383         ArgInfo(OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size()) {
1384     construct(Context, FI, OnlyRequiredArgs);
1385   }
1386
1387   bool hasInallocaArg() const { return InallocaArgNo != InvalidIndex; }
1388   unsigned getInallocaArgNo() const {
1389     assert(hasInallocaArg());
1390     return InallocaArgNo;
1391   }
1392
1393   bool hasSRetArg() const { return SRetArgNo != InvalidIndex; }
1394   unsigned getSRetArgNo() const {
1395     assert(hasSRetArg());
1396     return SRetArgNo;
1397   }
1398
1399   unsigned totalIRArgs() const { return TotalIRArgs; }
1400
1401   bool hasPaddingArg(unsigned ArgNo) const {
1402     assert(ArgNo < ArgInfo.size());
1403     return ArgInfo[ArgNo].PaddingArgIndex != InvalidIndex;
1404   }
1405   unsigned getPaddingArgNo(unsigned ArgNo) const {
1406     assert(hasPaddingArg(ArgNo));
1407     return ArgInfo[ArgNo].PaddingArgIndex;
1408   }
1409
1410   /// Returns index of first IR argument corresponding to ArgNo, and their
1411   /// quantity.
1412   std::pair<unsigned, unsigned> getIRArgs(unsigned ArgNo) const {
1413     assert(ArgNo < ArgInfo.size());
1414     return std::make_pair(ArgInfo[ArgNo].FirstArgIndex,
1415                           ArgInfo[ArgNo].NumberOfArgs);
1416   }
1417
1418 private:
1419   void construct(const ASTContext &Context, const CGFunctionInfo &FI,
1420                  bool OnlyRequiredArgs);
1421 };
1422
1423 void ClangToLLVMArgMapping::construct(const ASTContext &Context,
1424                                       const CGFunctionInfo &FI,
1425                                       bool OnlyRequiredArgs) {
1426   unsigned IRArgNo = 0;
1427   bool SwapThisWithSRet = false;
1428   const ABIArgInfo &RetAI = FI.getReturnInfo();
1429
1430   if (RetAI.getKind() == ABIArgInfo::Indirect) {
1431     SwapThisWithSRet = RetAI.isSRetAfterThis();
1432     SRetArgNo = SwapThisWithSRet ? 1 : IRArgNo++;
1433   }
1434
1435   unsigned ArgNo = 0;
1436   unsigned NumArgs = OnlyRequiredArgs ? FI.getNumRequiredArgs() : FI.arg_size();
1437   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(); ArgNo < NumArgs;
1438        ++I, ++ArgNo) {
1439     assert(I != FI.arg_end());
1440     QualType ArgType = I->type;
1441     const ABIArgInfo &AI = I->info;
1442     // Collect data about IR arguments corresponding to Clang argument ArgNo.
1443     auto &IRArgs = ArgInfo[ArgNo];
1444
1445     if (AI.getPaddingType())
1446       IRArgs.PaddingArgIndex = IRArgNo++;
1447
1448     switch (AI.getKind()) {
1449     case ABIArgInfo::Extend:
1450     case ABIArgInfo::Direct: {
1451       // FIXME: handle sseregparm someday...
1452       llvm::StructType *STy = dyn_cast<llvm::StructType>(AI.getCoerceToType());
1453       if (AI.isDirect() && AI.getCanBeFlattened() && STy) {
1454         IRArgs.NumberOfArgs = STy->getNumElements();
1455       } else {
1456         IRArgs.NumberOfArgs = 1;
1457       }
1458       break;
1459     }
1460     case ABIArgInfo::Indirect:
1461       IRArgs.NumberOfArgs = 1;
1462       break;
1463     case ABIArgInfo::Ignore:
1464     case ABIArgInfo::InAlloca:
1465       // ignore and inalloca doesn't have matching LLVM parameters.
1466       IRArgs.NumberOfArgs = 0;
1467       break;
1468     case ABIArgInfo::CoerceAndExpand:
1469       IRArgs.NumberOfArgs = AI.getCoerceAndExpandTypeSequence().size();
1470       break;
1471     case ABIArgInfo::Expand:
1472       IRArgs.NumberOfArgs = getExpansionSize(ArgType, Context);
1473       break;
1474     }
1475
1476     if (IRArgs.NumberOfArgs > 0) {
1477       IRArgs.FirstArgIndex = IRArgNo;
1478       IRArgNo += IRArgs.NumberOfArgs;
1479     }
1480
1481     // Skip over the sret parameter when it comes second.  We already handled it
1482     // above.
1483     if (IRArgNo == 1 && SwapThisWithSRet)
1484       IRArgNo++;
1485   }
1486   assert(ArgNo == ArgInfo.size());
1487
1488   if (FI.usesInAlloca())
1489     InallocaArgNo = IRArgNo++;
1490
1491   TotalIRArgs = IRArgNo;
1492 }
1493 }  // namespace
1494
1495 /***/
1496
1497 bool CodeGenModule::ReturnTypeUsesSRet(const CGFunctionInfo &FI) {
1498   const auto &RI = FI.getReturnInfo();
1499   return RI.isIndirect() || (RI.isInAlloca() && RI.getInAllocaSRet());
1500 }
1501
1502 bool CodeGenModule::ReturnSlotInterferesWithArgs(const CGFunctionInfo &FI) {
1503   return ReturnTypeUsesSRet(FI) &&
1504          getTargetCodeGenInfo().doesReturnSlotInterfereWithArgs();
1505 }
1506
1507 bool CodeGenModule::ReturnTypeUsesFPRet(QualType ResultType) {
1508   if (const BuiltinType *BT = ResultType->getAs<BuiltinType>()) {
1509     switch (BT->getKind()) {
1510     default:
1511       return false;
1512     case BuiltinType::Float:
1513       return getTarget().useObjCFPRetForRealType(TargetInfo::Float);
1514     case BuiltinType::Double:
1515       return getTarget().useObjCFPRetForRealType(TargetInfo::Double);
1516     case BuiltinType::LongDouble:
1517       return getTarget().useObjCFPRetForRealType(TargetInfo::LongDouble);
1518     }
1519   }
1520
1521   return false;
1522 }
1523
1524 bool CodeGenModule::ReturnTypeUsesFP2Ret(QualType ResultType) {
1525   if (const ComplexType *CT = ResultType->getAs<ComplexType>()) {
1526     if (const BuiltinType *BT = CT->getElementType()->getAs<BuiltinType>()) {
1527       if (BT->getKind() == BuiltinType::LongDouble)
1528         return getTarget().useObjCFP2RetForComplexLongDouble();
1529     }
1530   }
1531
1532   return false;
1533 }
1534
1535 llvm::FunctionType *CodeGenTypes::GetFunctionType(GlobalDecl GD) {
1536   const CGFunctionInfo &FI = arrangeGlobalDeclaration(GD);
1537   return GetFunctionType(FI);
1538 }
1539
1540 llvm::FunctionType *
1541 CodeGenTypes::GetFunctionType(const CGFunctionInfo &FI) {
1542
1543   bool Inserted = FunctionsBeingProcessed.insert(&FI).second;
1544   (void)Inserted;
1545   assert(Inserted && "Recursively being processed?");
1546
1547   llvm::Type *resultType = nullptr;
1548   const ABIArgInfo &retAI = FI.getReturnInfo();
1549   switch (retAI.getKind()) {
1550   case ABIArgInfo::Expand:
1551     llvm_unreachable("Invalid ABI kind for return argument");
1552
1553   case ABIArgInfo::Extend:
1554   case ABIArgInfo::Direct:
1555     resultType = retAI.getCoerceToType();
1556     break;
1557
1558   case ABIArgInfo::InAlloca:
1559     if (retAI.getInAllocaSRet()) {
1560       // sret things on win32 aren't void, they return the sret pointer.
1561       QualType ret = FI.getReturnType();
1562       llvm::Type *ty = ConvertType(ret);
1563       unsigned addressSpace = Context.getTargetAddressSpace(ret);
1564       resultType = llvm::PointerType::get(ty, addressSpace);
1565     } else {
1566       resultType = llvm::Type::getVoidTy(getLLVMContext());
1567     }
1568     break;
1569
1570   case ABIArgInfo::Indirect:
1571   case ABIArgInfo::Ignore:
1572     resultType = llvm::Type::getVoidTy(getLLVMContext());
1573     break;
1574
1575   case ABIArgInfo::CoerceAndExpand:
1576     resultType = retAI.getUnpaddedCoerceAndExpandType();
1577     break;
1578   }
1579
1580   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI, true);
1581   SmallVector<llvm::Type*, 8> ArgTypes(IRFunctionArgs.totalIRArgs());
1582
1583   // Add type for sret argument.
1584   if (IRFunctionArgs.hasSRetArg()) {
1585     QualType Ret = FI.getReturnType();
1586     llvm::Type *Ty = ConvertType(Ret);
1587     unsigned AddressSpace = Context.getTargetAddressSpace(Ret);
1588     ArgTypes[IRFunctionArgs.getSRetArgNo()] =
1589         llvm::PointerType::get(Ty, AddressSpace);
1590   }
1591
1592   // Add type for inalloca argument.
1593   if (IRFunctionArgs.hasInallocaArg()) {
1594     auto ArgStruct = FI.getArgStruct();
1595     assert(ArgStruct);
1596     ArgTypes[IRFunctionArgs.getInallocaArgNo()] = ArgStruct->getPointerTo();
1597   }
1598
1599   // Add in all of the required arguments.
1600   unsigned ArgNo = 0;
1601   CGFunctionInfo::const_arg_iterator it = FI.arg_begin(),
1602                                      ie = it + FI.getNumRequiredArgs();
1603   for (; it != ie; ++it, ++ArgNo) {
1604     const ABIArgInfo &ArgInfo = it->info;
1605
1606     // Insert a padding type to ensure proper alignment.
1607     if (IRFunctionArgs.hasPaddingArg(ArgNo))
1608       ArgTypes[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
1609           ArgInfo.getPaddingType();
1610
1611     unsigned FirstIRArg, NumIRArgs;
1612     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
1613
1614     switch (ArgInfo.getKind()) {
1615     case ABIArgInfo::Ignore:
1616     case ABIArgInfo::InAlloca:
1617       assert(NumIRArgs == 0);
1618       break;
1619
1620     case ABIArgInfo::Indirect: {
1621       assert(NumIRArgs == 1);
1622       // indirect arguments are always on the stack, which is alloca addr space.
1623       llvm::Type *LTy = ConvertTypeForMem(it->type);
1624       ArgTypes[FirstIRArg] = LTy->getPointerTo(
1625           CGM.getDataLayout().getAllocaAddrSpace());
1626       break;
1627     }
1628
1629     case ABIArgInfo::Extend:
1630     case ABIArgInfo::Direct: {
1631       // Fast-isel and the optimizer generally like scalar values better than
1632       // FCAs, so we flatten them if this is safe to do for this argument.
1633       llvm::Type *argType = ArgInfo.getCoerceToType();
1634       llvm::StructType *st = dyn_cast<llvm::StructType>(argType);
1635       if (st && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
1636         assert(NumIRArgs == st->getNumElements());
1637         for (unsigned i = 0, e = st->getNumElements(); i != e; ++i)
1638           ArgTypes[FirstIRArg + i] = st->getElementType(i);
1639       } else {
1640         assert(NumIRArgs == 1);
1641         ArgTypes[FirstIRArg] = argType;
1642       }
1643       break;
1644     }
1645
1646     case ABIArgInfo::CoerceAndExpand: {
1647       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1648       for (auto EltTy : ArgInfo.getCoerceAndExpandTypeSequence()) {
1649         *ArgTypesIter++ = EltTy;
1650       }
1651       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1652       break;
1653     }
1654
1655     case ABIArgInfo::Expand:
1656       auto ArgTypesIter = ArgTypes.begin() + FirstIRArg;
1657       getExpandedTypes(it->type, ArgTypesIter);
1658       assert(ArgTypesIter == ArgTypes.begin() + FirstIRArg + NumIRArgs);
1659       break;
1660     }
1661   }
1662
1663   bool Erased = FunctionsBeingProcessed.erase(&FI); (void)Erased;
1664   assert(Erased && "Not in set?");
1665
1666   return llvm::FunctionType::get(resultType, ArgTypes, FI.isVariadic());
1667 }
1668
1669 llvm::Type *CodeGenTypes::GetFunctionTypeForVTable(GlobalDecl GD) {
1670   const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1671   const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
1672
1673   if (!isFuncTypeConvertible(FPT))
1674     return llvm::StructType::get(getLLVMContext());
1675
1676   return GetFunctionType(GD);
1677 }
1678
1679 static void AddAttributesFromFunctionProtoType(ASTContext &Ctx,
1680                                                llvm::AttrBuilder &FuncAttrs,
1681                                                const FunctionProtoType *FPT) {
1682   if (!FPT)
1683     return;
1684
1685   if (!isUnresolvedExceptionSpec(FPT->getExceptionSpecType()) &&
1686       FPT->isNothrow())
1687     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1688 }
1689
1690 void CodeGenModule::ConstructDefaultFnAttrList(StringRef Name, bool HasOptnone,
1691                                                bool AttrOnCallSite,
1692                                                llvm::AttrBuilder &FuncAttrs) {
1693   // OptimizeNoneAttr takes precedence over -Os or -Oz. No warning needed.
1694   if (!HasOptnone) {
1695     if (CodeGenOpts.OptimizeSize)
1696       FuncAttrs.addAttribute(llvm::Attribute::OptimizeForSize);
1697     if (CodeGenOpts.OptimizeSize == 2)
1698       FuncAttrs.addAttribute(llvm::Attribute::MinSize);
1699   }
1700
1701   if (CodeGenOpts.DisableRedZone)
1702     FuncAttrs.addAttribute(llvm::Attribute::NoRedZone);
1703   if (CodeGenOpts.IndirectTlsSegRefs)
1704     FuncAttrs.addAttribute("indirect-tls-seg-refs");
1705   if (CodeGenOpts.NoImplicitFloat)
1706     FuncAttrs.addAttribute(llvm::Attribute::NoImplicitFloat);
1707
1708   if (AttrOnCallSite) {
1709     // Attributes that should go on the call site only.
1710     if (!CodeGenOpts.SimplifyLibCalls ||
1711         CodeGenOpts.isNoBuiltinFunc(Name.data()))
1712       FuncAttrs.addAttribute(llvm::Attribute::NoBuiltin);
1713     if (!CodeGenOpts.TrapFuncName.empty())
1714       FuncAttrs.addAttribute("trap-func-name", CodeGenOpts.TrapFuncName);
1715   } else {
1716     // Attributes that should go on the function, but not the call site.
1717     if (!CodeGenOpts.DisableFPElim) {
1718       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1719     } else if (CodeGenOpts.OmitLeafFramePointer) {
1720       FuncAttrs.addAttribute("no-frame-pointer-elim", "false");
1721       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1722     } else {
1723       FuncAttrs.addAttribute("no-frame-pointer-elim", "true");
1724       FuncAttrs.addAttribute("no-frame-pointer-elim-non-leaf");
1725     }
1726
1727     FuncAttrs.addAttribute("less-precise-fpmad",
1728                            llvm::toStringRef(CodeGenOpts.LessPreciseFPMAD));
1729
1730     if (CodeGenOpts.NullPointerIsValid)
1731       FuncAttrs.addAttribute("null-pointer-is-valid", "true");
1732     if (!CodeGenOpts.FPDenormalMode.empty())
1733       FuncAttrs.addAttribute("denormal-fp-math", CodeGenOpts.FPDenormalMode);
1734
1735     FuncAttrs.addAttribute("no-trapping-math",
1736                            llvm::toStringRef(CodeGenOpts.NoTrappingMath));
1737
1738     // Strict (compliant) code is the default, so only add this attribute to
1739     // indicate that we are trying to workaround a problem case.
1740     if (!CodeGenOpts.StrictFloatCastOverflow)
1741       FuncAttrs.addAttribute("strict-float-cast-overflow", "false");
1742
1743     // TODO: Are these all needed?
1744     // unsafe/inf/nan/nsz are handled by instruction-level FastMathFlags.
1745     FuncAttrs.addAttribute("no-infs-fp-math",
1746                            llvm::toStringRef(CodeGenOpts.NoInfsFPMath));
1747     FuncAttrs.addAttribute("no-nans-fp-math",
1748                            llvm::toStringRef(CodeGenOpts.NoNaNsFPMath));
1749     FuncAttrs.addAttribute("unsafe-fp-math",
1750                            llvm::toStringRef(CodeGenOpts.UnsafeFPMath));
1751     FuncAttrs.addAttribute("use-soft-float",
1752                            llvm::toStringRef(CodeGenOpts.SoftFloat));
1753     FuncAttrs.addAttribute("stack-protector-buffer-size",
1754                            llvm::utostr(CodeGenOpts.SSPBufferSize));
1755     FuncAttrs.addAttribute("no-signed-zeros-fp-math",
1756                            llvm::toStringRef(CodeGenOpts.NoSignedZeros));
1757     FuncAttrs.addAttribute(
1758         "correctly-rounded-divide-sqrt-fp-math",
1759         llvm::toStringRef(CodeGenOpts.CorrectlyRoundedDivSqrt));
1760
1761     if (getLangOpts().OpenCL)
1762       FuncAttrs.addAttribute("denorms-are-zero",
1763                              llvm::toStringRef(CodeGenOpts.FlushDenorm));
1764
1765     // TODO: Reciprocal estimate codegen options should apply to instructions?
1766     const std::vector<std::string> &Recips = CodeGenOpts.Reciprocals;
1767     if (!Recips.empty())
1768       FuncAttrs.addAttribute("reciprocal-estimates",
1769                              llvm::join(Recips, ","));
1770
1771     if (!CodeGenOpts.PreferVectorWidth.empty() &&
1772         CodeGenOpts.PreferVectorWidth != "none")
1773       FuncAttrs.addAttribute("prefer-vector-width",
1774                              CodeGenOpts.PreferVectorWidth);
1775
1776     if (CodeGenOpts.StackRealignment)
1777       FuncAttrs.addAttribute("stackrealign");
1778     if (CodeGenOpts.Backchain)
1779       FuncAttrs.addAttribute("backchain");
1780
1781     if (CodeGenOpts.SpeculativeLoadHardening)
1782       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1783   }
1784
1785   if (getLangOpts().assumeFunctionsAreConvergent()) {
1786     // Conservatively, mark all functions and calls in CUDA and OpenCL as
1787     // convergent (meaning, they may call an intrinsically convergent op, such
1788     // as __syncthreads() / barrier(), and so can't have certain optimizations
1789     // applied around them).  LLVM will remove this attribute where it safely
1790     // can.
1791     FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1792   }
1793
1794   if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice) {
1795     // Exceptions aren't supported in CUDA device code.
1796     FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1797
1798     // Respect -fcuda-flush-denormals-to-zero.
1799     if (CodeGenOpts.FlushDenorm)
1800       FuncAttrs.addAttribute("nvptx-f32ftz", "true");
1801   }
1802
1803   for (StringRef Attr : CodeGenOpts.DefaultFunctionAttrs) {
1804     StringRef Var, Value;
1805     std::tie(Var, Value) = Attr.split('=');
1806     FuncAttrs.addAttribute(Var, Value);
1807   }
1808 }
1809
1810 void CodeGenModule::AddDefaultFnAttrs(llvm::Function &F) {
1811   llvm::AttrBuilder FuncAttrs;
1812   ConstructDefaultFnAttrList(F.getName(), F.hasOptNone(),
1813                              /* AttrOnCallSite = */ false, FuncAttrs);
1814   F.addAttributes(llvm::AttributeList::FunctionIndex, FuncAttrs);
1815 }
1816
1817 void CodeGenModule::ConstructAttributeList(
1818     StringRef Name, const CGFunctionInfo &FI, CGCalleeInfo CalleeInfo,
1819     llvm::AttributeList &AttrList, unsigned &CallingConv, bool AttrOnCallSite) {
1820   llvm::AttrBuilder FuncAttrs;
1821   llvm::AttrBuilder RetAttrs;
1822
1823   CallingConv = FI.getEffectiveCallingConvention();
1824   if (FI.isNoReturn())
1825     FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1826
1827   // If we have information about the function prototype, we can learn
1828   // attributes from there.
1829   AddAttributesFromFunctionProtoType(getContext(), FuncAttrs,
1830                                      CalleeInfo.getCalleeFunctionProtoType());
1831
1832   const Decl *TargetDecl = CalleeInfo.getCalleeDecl().getDecl();
1833
1834   bool HasOptnone = false;
1835   // FIXME: handle sseregparm someday...
1836   if (TargetDecl) {
1837     if (TargetDecl->hasAttr<ReturnsTwiceAttr>())
1838       FuncAttrs.addAttribute(llvm::Attribute::ReturnsTwice);
1839     if (TargetDecl->hasAttr<NoThrowAttr>())
1840       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1841     if (TargetDecl->hasAttr<NoReturnAttr>())
1842       FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1843     if (TargetDecl->hasAttr<ColdAttr>())
1844       FuncAttrs.addAttribute(llvm::Attribute::Cold);
1845     if (TargetDecl->hasAttr<NoDuplicateAttr>())
1846       FuncAttrs.addAttribute(llvm::Attribute::NoDuplicate);
1847     if (TargetDecl->hasAttr<ConvergentAttr>())
1848       FuncAttrs.addAttribute(llvm::Attribute::Convergent);
1849
1850     if (const FunctionDecl *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1851       AddAttributesFromFunctionProtoType(
1852           getContext(), FuncAttrs, Fn->getType()->getAs<FunctionProtoType>());
1853       // Don't use [[noreturn]] or _Noreturn for a call to a virtual function.
1854       // These attributes are not inherited by overloads.
1855       const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn);
1856       if (Fn->isNoReturn() && !(AttrOnCallSite && MD && MD->isVirtual()))
1857         FuncAttrs.addAttribute(llvm::Attribute::NoReturn);
1858     }
1859
1860     // 'const', 'pure' and 'noalias' attributed functions are also nounwind.
1861     if (TargetDecl->hasAttr<ConstAttr>()) {
1862       FuncAttrs.addAttribute(llvm::Attribute::ReadNone);
1863       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1864     } else if (TargetDecl->hasAttr<PureAttr>()) {
1865       FuncAttrs.addAttribute(llvm::Attribute::ReadOnly);
1866       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1867     } else if (TargetDecl->hasAttr<NoAliasAttr>()) {
1868       FuncAttrs.addAttribute(llvm::Attribute::ArgMemOnly);
1869       FuncAttrs.addAttribute(llvm::Attribute::NoUnwind);
1870     }
1871     if (TargetDecl->hasAttr<RestrictAttr>())
1872       RetAttrs.addAttribute(llvm::Attribute::NoAlias);
1873     if (TargetDecl->hasAttr<ReturnsNonNullAttr>() &&
1874         !CodeGenOpts.NullPointerIsValid)
1875       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1876     if (TargetDecl->hasAttr<AnyX86NoCallerSavedRegistersAttr>())
1877       FuncAttrs.addAttribute("no_caller_saved_registers");
1878     if (TargetDecl->hasAttr<AnyX86NoCfCheckAttr>())
1879       FuncAttrs.addAttribute(llvm::Attribute::NoCfCheck);
1880
1881     HasOptnone = TargetDecl->hasAttr<OptimizeNoneAttr>();
1882     if (auto *AllocSize = TargetDecl->getAttr<AllocSizeAttr>()) {
1883       Optional<unsigned> NumElemsParam;
1884       if (AllocSize->getNumElemsParam().isValid())
1885         NumElemsParam = AllocSize->getNumElemsParam().getLLVMIndex();
1886       FuncAttrs.addAllocSizeAttr(AllocSize->getElemSizeParam().getLLVMIndex(),
1887                                  NumElemsParam);
1888     }
1889   }
1890
1891   ConstructDefaultFnAttrList(Name, HasOptnone, AttrOnCallSite, FuncAttrs);
1892
1893   // This must run after constructing the default function attribute list
1894   // to ensure that the speculative load hardening attribute is removed
1895   // in the case where the -mspeculative-load-hardening flag was passed.
1896   if (TargetDecl) {
1897     if (TargetDecl->hasAttr<NoSpeculativeLoadHardeningAttr>())
1898       FuncAttrs.removeAttribute(llvm::Attribute::SpeculativeLoadHardening);
1899     if (TargetDecl->hasAttr<SpeculativeLoadHardeningAttr>())
1900       FuncAttrs.addAttribute(llvm::Attribute::SpeculativeLoadHardening);
1901   }
1902
1903   if (CodeGenOpts.EnableSegmentedStacks &&
1904       !(TargetDecl && TargetDecl->hasAttr<NoSplitStackAttr>()))
1905     FuncAttrs.addAttribute("split-stack");
1906
1907   // Add NonLazyBind attribute to function declarations when -fno-plt
1908   // is used.
1909   if (TargetDecl && CodeGenOpts.NoPLT) {
1910     if (auto *Fn = dyn_cast<FunctionDecl>(TargetDecl)) {
1911       if (!Fn->isDefined() && !AttrOnCallSite) {
1912         FuncAttrs.addAttribute(llvm::Attribute::NonLazyBind);
1913       }
1914     }
1915   }
1916
1917   if (TargetDecl && TargetDecl->hasAttr<OpenCLKernelAttr>()) {
1918     if (getLangOpts().OpenCLVersion <= 120) {
1919       // OpenCL v1.2 Work groups are always uniform
1920       FuncAttrs.addAttribute("uniform-work-group-size", "true");
1921     } else {
1922       // OpenCL v2.0 Work groups may be whether uniform or not.
1923       // '-cl-uniform-work-group-size' compile option gets a hint
1924       // to the compiler that the global work-size be a multiple of
1925       // the work-group size specified to clEnqueueNDRangeKernel
1926       // (i.e. work groups are uniform).
1927       FuncAttrs.addAttribute("uniform-work-group-size",
1928                              llvm::toStringRef(CodeGenOpts.UniformWGSize));
1929     }
1930   }
1931
1932   if (!AttrOnCallSite) {
1933     bool DisableTailCalls = false;
1934
1935     if (CodeGenOpts.DisableTailCalls)
1936       DisableTailCalls = true;
1937     else if (TargetDecl) {
1938       if (TargetDecl->hasAttr<DisableTailCallsAttr>() ||
1939           TargetDecl->hasAttr<AnyX86InterruptAttr>())
1940         DisableTailCalls = true;
1941       else if (CodeGenOpts.NoEscapingBlockTailCalls) {
1942         if (const auto *BD = dyn_cast<BlockDecl>(TargetDecl))
1943           if (!BD->doesNotEscape())
1944             DisableTailCalls = true;
1945       }
1946     }
1947
1948     FuncAttrs.addAttribute("disable-tail-calls",
1949                            llvm::toStringRef(DisableTailCalls));
1950     GetCPUAndFeaturesAttributes(CalleeInfo.getCalleeDecl(), FuncAttrs);
1951   }
1952
1953   ClangToLLVMArgMapping IRFunctionArgs(getContext(), FI);
1954
1955   QualType RetTy = FI.getReturnType();
1956   const ABIArgInfo &RetAI = FI.getReturnInfo();
1957   switch (RetAI.getKind()) {
1958   case ABIArgInfo::Extend:
1959     if (RetAI.isSignExt())
1960       RetAttrs.addAttribute(llvm::Attribute::SExt);
1961     else
1962       RetAttrs.addAttribute(llvm::Attribute::ZExt);
1963     LLVM_FALLTHROUGH;
1964   case ABIArgInfo::Direct:
1965     if (RetAI.getInReg())
1966       RetAttrs.addAttribute(llvm::Attribute::InReg);
1967     break;
1968   case ABIArgInfo::Ignore:
1969     break;
1970
1971   case ABIArgInfo::InAlloca:
1972   case ABIArgInfo::Indirect: {
1973     // inalloca and sret disable readnone and readonly
1974     FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
1975       .removeAttribute(llvm::Attribute::ReadNone);
1976     break;
1977   }
1978
1979   case ABIArgInfo::CoerceAndExpand:
1980     break;
1981
1982   case ABIArgInfo::Expand:
1983     llvm_unreachable("Invalid ABI kind for return argument");
1984   }
1985
1986   if (const auto *RefTy = RetTy->getAs<ReferenceType>()) {
1987     QualType PTy = RefTy->getPointeeType();
1988     if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
1989       RetAttrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
1990                                         .getQuantity());
1991     else if (getContext().getTargetAddressSpace(PTy) == 0 &&
1992              !CodeGenOpts.NullPointerIsValid)
1993       RetAttrs.addAttribute(llvm::Attribute::NonNull);
1994   }
1995
1996   bool hasUsedSRet = false;
1997   SmallVector<llvm::AttributeSet, 4> ArgAttrs(IRFunctionArgs.totalIRArgs());
1998
1999   // Attach attributes to sret.
2000   if (IRFunctionArgs.hasSRetArg()) {
2001     llvm::AttrBuilder SRETAttrs;
2002     SRETAttrs.addAttribute(llvm::Attribute::StructRet);
2003     hasUsedSRet = true;
2004     if (RetAI.getInReg())
2005       SRETAttrs.addAttribute(llvm::Attribute::InReg);
2006     ArgAttrs[IRFunctionArgs.getSRetArgNo()] =
2007         llvm::AttributeSet::get(getLLVMContext(), SRETAttrs);
2008   }
2009
2010   // Attach attributes to inalloca argument.
2011   if (IRFunctionArgs.hasInallocaArg()) {
2012     llvm::AttrBuilder Attrs;
2013     Attrs.addAttribute(llvm::Attribute::InAlloca);
2014     ArgAttrs[IRFunctionArgs.getInallocaArgNo()] =
2015         llvm::AttributeSet::get(getLLVMContext(), Attrs);
2016   }
2017
2018   unsigned ArgNo = 0;
2019   for (CGFunctionInfo::const_arg_iterator I = FI.arg_begin(),
2020                                           E = FI.arg_end();
2021        I != E; ++I, ++ArgNo) {
2022     QualType ParamType = I->type;
2023     const ABIArgInfo &AI = I->info;
2024     llvm::AttrBuilder Attrs;
2025
2026     // Add attribute for padding argument, if necessary.
2027     if (IRFunctionArgs.hasPaddingArg(ArgNo)) {
2028       if (AI.getPaddingInReg()) {
2029         ArgAttrs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
2030             llvm::AttributeSet::get(
2031                 getLLVMContext(),
2032                 llvm::AttrBuilder().addAttribute(llvm::Attribute::InReg));
2033       }
2034     }
2035
2036     // 'restrict' -> 'noalias' is done in EmitFunctionProlog when we
2037     // have the corresponding parameter variable.  It doesn't make
2038     // sense to do it here because parameters are so messed up.
2039     switch (AI.getKind()) {
2040     case ABIArgInfo::Extend:
2041       if (AI.isSignExt())
2042         Attrs.addAttribute(llvm::Attribute::SExt);
2043       else
2044         Attrs.addAttribute(llvm::Attribute::ZExt);
2045       LLVM_FALLTHROUGH;
2046     case ABIArgInfo::Direct:
2047       if (ArgNo == 0 && FI.isChainCall())
2048         Attrs.addAttribute(llvm::Attribute::Nest);
2049       else if (AI.getInReg())
2050         Attrs.addAttribute(llvm::Attribute::InReg);
2051       break;
2052
2053     case ABIArgInfo::Indirect: {
2054       if (AI.getInReg())
2055         Attrs.addAttribute(llvm::Attribute::InReg);
2056
2057       if (AI.getIndirectByVal())
2058         Attrs.addByValAttr(getTypes().ConvertTypeForMem(ParamType));
2059
2060       CharUnits Align = AI.getIndirectAlign();
2061
2062       // In a byval argument, it is important that the required
2063       // alignment of the type is honored, as LLVM might be creating a
2064       // *new* stack object, and needs to know what alignment to give
2065       // it. (Sometimes it can deduce a sensible alignment on its own,
2066       // but not if clang decides it must emit a packed struct, or the
2067       // user specifies increased alignment requirements.)
2068       //
2069       // This is different from indirect *not* byval, where the object
2070       // exists already, and the align attribute is purely
2071       // informative.
2072       assert(!Align.isZero());
2073
2074       // For now, only add this when we have a byval argument.
2075       // TODO: be less lazy about updating test cases.
2076       if (AI.getIndirectByVal())
2077         Attrs.addAlignmentAttr(Align.getQuantity());
2078
2079       // byval disables readnone and readonly.
2080       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2081         .removeAttribute(llvm::Attribute::ReadNone);
2082       break;
2083     }
2084     case ABIArgInfo::Ignore:
2085     case ABIArgInfo::Expand:
2086     case ABIArgInfo::CoerceAndExpand:
2087       break;
2088
2089     case ABIArgInfo::InAlloca:
2090       // inalloca disables readnone and readonly.
2091       FuncAttrs.removeAttribute(llvm::Attribute::ReadOnly)
2092           .removeAttribute(llvm::Attribute::ReadNone);
2093       continue;
2094     }
2095
2096     if (const auto *RefTy = ParamType->getAs<ReferenceType>()) {
2097       QualType PTy = RefTy->getPointeeType();
2098       if (!PTy->isIncompleteType() && PTy->isConstantSizeType())
2099         Attrs.addDereferenceableAttr(getContext().getTypeSizeInChars(PTy)
2100                                        .getQuantity());
2101       else if (getContext().getTargetAddressSpace(PTy) == 0 &&
2102                !CodeGenOpts.NullPointerIsValid)
2103         Attrs.addAttribute(llvm::Attribute::NonNull);
2104     }
2105
2106     switch (FI.getExtParameterInfo(ArgNo).getABI()) {
2107     case ParameterABI::Ordinary:
2108       break;
2109
2110     case ParameterABI::SwiftIndirectResult: {
2111       // Add 'sret' if we haven't already used it for something, but
2112       // only if the result is void.
2113       if (!hasUsedSRet && RetTy->isVoidType()) {
2114         Attrs.addAttribute(llvm::Attribute::StructRet);
2115         hasUsedSRet = true;
2116       }
2117
2118       // Add 'noalias' in either case.
2119       Attrs.addAttribute(llvm::Attribute::NoAlias);
2120
2121       // Add 'dereferenceable' and 'alignment'.
2122       auto PTy = ParamType->getPointeeType();
2123       if (!PTy->isIncompleteType() && PTy->isConstantSizeType()) {
2124         auto info = getContext().getTypeInfoInChars(PTy);
2125         Attrs.addDereferenceableAttr(info.first.getQuantity());
2126         Attrs.addAttribute(llvm::Attribute::getWithAlignment(getLLVMContext(),
2127                                                  info.second.getQuantity()));
2128       }
2129       break;
2130     }
2131
2132     case ParameterABI::SwiftErrorResult:
2133       Attrs.addAttribute(llvm::Attribute::SwiftError);
2134       break;
2135
2136     case ParameterABI::SwiftContext:
2137       Attrs.addAttribute(llvm::Attribute::SwiftSelf);
2138       break;
2139     }
2140
2141     if (FI.getExtParameterInfo(ArgNo).isNoEscape())
2142       Attrs.addAttribute(llvm::Attribute::NoCapture);
2143
2144     if (Attrs.hasAttributes()) {
2145       unsigned FirstIRArg, NumIRArgs;
2146       std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2147       for (unsigned i = 0; i < NumIRArgs; i++)
2148         ArgAttrs[FirstIRArg + i] =
2149             llvm::AttributeSet::get(getLLVMContext(), Attrs);
2150     }
2151   }
2152   assert(ArgNo == FI.arg_size());
2153
2154   AttrList = llvm::AttributeList::get(
2155       getLLVMContext(), llvm::AttributeSet::get(getLLVMContext(), FuncAttrs),
2156       llvm::AttributeSet::get(getLLVMContext(), RetAttrs), ArgAttrs);
2157 }
2158
2159 /// An argument came in as a promoted argument; demote it back to its
2160 /// declared type.
2161 static llvm::Value *emitArgumentDemotion(CodeGenFunction &CGF,
2162                                          const VarDecl *var,
2163                                          llvm::Value *value) {
2164   llvm::Type *varType = CGF.ConvertType(var->getType());
2165
2166   // This can happen with promotions that actually don't change the
2167   // underlying type, like the enum promotions.
2168   if (value->getType() == varType) return value;
2169
2170   assert((varType->isIntegerTy() || varType->isFloatingPointTy())
2171          && "unexpected promotion type");
2172
2173   if (isa<llvm::IntegerType>(varType))
2174     return CGF.Builder.CreateTrunc(value, varType, "arg.unpromote");
2175
2176   return CGF.Builder.CreateFPCast(value, varType, "arg.unpromote");
2177 }
2178
2179 /// Returns the attribute (either parameter attribute, or function
2180 /// attribute), which declares argument ArgNo to be non-null.
2181 static const NonNullAttr *getNonNullAttr(const Decl *FD, const ParmVarDecl *PVD,
2182                                          QualType ArgType, unsigned ArgNo) {
2183   // FIXME: __attribute__((nonnull)) can also be applied to:
2184   //   - references to pointers, where the pointee is known to be
2185   //     nonnull (apparently a Clang extension)
2186   //   - transparent unions containing pointers
2187   // In the former case, LLVM IR cannot represent the constraint. In
2188   // the latter case, we have no guarantee that the transparent union
2189   // is in fact passed as a pointer.
2190   if (!ArgType->isAnyPointerType() && !ArgType->isBlockPointerType())
2191     return nullptr;
2192   // First, check attribute on parameter itself.
2193   if (PVD) {
2194     if (auto ParmNNAttr = PVD->getAttr<NonNullAttr>())
2195       return ParmNNAttr;
2196   }
2197   // Check function attributes.
2198   if (!FD)
2199     return nullptr;
2200   for (const auto *NNAttr : FD->specific_attrs<NonNullAttr>()) {
2201     if (NNAttr->isNonNull(ArgNo))
2202       return NNAttr;
2203   }
2204   return nullptr;
2205 }
2206
2207 namespace {
2208   struct CopyBackSwiftError final : EHScopeStack::Cleanup {
2209     Address Temp;
2210     Address Arg;
2211     CopyBackSwiftError(Address temp, Address arg) : Temp(temp), Arg(arg) {}
2212     void Emit(CodeGenFunction &CGF, Flags flags) override {
2213       llvm::Value *errorValue = CGF.Builder.CreateLoad(Temp);
2214       CGF.Builder.CreateStore(errorValue, Arg);
2215     }
2216   };
2217 }
2218
2219 void CodeGenFunction::EmitFunctionProlog(const CGFunctionInfo &FI,
2220                                          llvm::Function *Fn,
2221                                          const FunctionArgList &Args) {
2222   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>())
2223     // Naked functions don't have prologues.
2224     return;
2225
2226   // If this is an implicit-return-zero function, go ahead and
2227   // initialize the return value.  TODO: it might be nice to have
2228   // a more general mechanism for this that didn't require synthesized
2229   // return statements.
2230   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl)) {
2231     if (FD->hasImplicitReturnZero()) {
2232       QualType RetTy = FD->getReturnType().getUnqualifiedType();
2233       llvm::Type* LLVMTy = CGM.getTypes().ConvertType(RetTy);
2234       llvm::Constant* Zero = llvm::Constant::getNullValue(LLVMTy);
2235       Builder.CreateStore(Zero, ReturnValue);
2236     }
2237   }
2238
2239   // FIXME: We no longer need the types from FunctionArgList; lift up and
2240   // simplify.
2241
2242   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), FI);
2243   // Flattened function arguments.
2244   SmallVector<llvm::Value *, 16> FnArgs;
2245   FnArgs.reserve(IRFunctionArgs.totalIRArgs());
2246   for (auto &Arg : Fn->args()) {
2247     FnArgs.push_back(&Arg);
2248   }
2249   assert(FnArgs.size() == IRFunctionArgs.totalIRArgs());
2250
2251   // If we're using inalloca, all the memory arguments are GEPs off of the last
2252   // parameter, which is a pointer to the complete memory area.
2253   Address ArgStruct = Address::invalid();
2254   if (IRFunctionArgs.hasInallocaArg()) {
2255     ArgStruct = Address(FnArgs[IRFunctionArgs.getInallocaArgNo()],
2256                         FI.getArgStructAlignment());
2257
2258     assert(ArgStruct.getType() == FI.getArgStruct()->getPointerTo());
2259   }
2260
2261   // Name the struct return parameter.
2262   if (IRFunctionArgs.hasSRetArg()) {
2263     auto AI = cast<llvm::Argument>(FnArgs[IRFunctionArgs.getSRetArgNo()]);
2264     AI->setName("agg.result");
2265     AI->addAttr(llvm::Attribute::NoAlias);
2266   }
2267
2268   // Track if we received the parameter as a pointer (indirect, byval, or
2269   // inalloca).  If already have a pointer, EmitParmDecl doesn't need to copy it
2270   // into a local alloca for us.
2271   SmallVector<ParamValue, 16> ArgVals;
2272   ArgVals.reserve(Args.size());
2273
2274   // Create a pointer value for every parameter declaration.  This usually
2275   // entails copying one or more LLVM IR arguments into an alloca.  Don't push
2276   // any cleanups or do anything that might unwind.  We do that separately, so
2277   // we can push the cleanups in the correct order for the ABI.
2278   assert(FI.arg_size() == Args.size() &&
2279          "Mismatch between function signature & arguments.");
2280   unsigned ArgNo = 0;
2281   CGFunctionInfo::const_arg_iterator info_it = FI.arg_begin();
2282   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
2283        i != e; ++i, ++info_it, ++ArgNo) {
2284     const VarDecl *Arg = *i;
2285     const ABIArgInfo &ArgI = info_it->info;
2286
2287     bool isPromoted =
2288       isa<ParmVarDecl>(Arg) && cast<ParmVarDecl>(Arg)->isKNRPromoted();
2289     // We are converting from ABIArgInfo type to VarDecl type directly, unless
2290     // the parameter is promoted. In this case we convert to
2291     // CGFunctionInfo::ArgInfo type with subsequent argument demotion.
2292     QualType Ty = isPromoted ? info_it->type : Arg->getType();
2293     assert(hasScalarEvaluationKind(Ty) ==
2294            hasScalarEvaluationKind(Arg->getType()));
2295
2296     unsigned FirstIRArg, NumIRArgs;
2297     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
2298
2299     switch (ArgI.getKind()) {
2300     case ABIArgInfo::InAlloca: {
2301       assert(NumIRArgs == 0);
2302       auto FieldIndex = ArgI.getInAllocaFieldIndex();
2303       Address V =
2304           Builder.CreateStructGEP(ArgStruct, FieldIndex, Arg->getName());
2305       ArgVals.push_back(ParamValue::forIndirect(V));
2306       break;
2307     }
2308
2309     case ABIArgInfo::Indirect: {
2310       assert(NumIRArgs == 1);
2311       Address ParamAddr = Address(FnArgs[FirstIRArg], ArgI.getIndirectAlign());
2312
2313       if (!hasScalarEvaluationKind(Ty)) {
2314         // Aggregates and complex variables are accessed by reference.  All we
2315         // need to do is realign the value, if requested.
2316         Address V = ParamAddr;
2317         if (ArgI.getIndirectRealign()) {
2318           Address AlignedTemp = CreateMemTemp(Ty, "coerce");
2319
2320           // Copy from the incoming argument pointer to the temporary with the
2321           // appropriate alignment.
2322           //
2323           // FIXME: We should have a common utility for generating an aggregate
2324           // copy.
2325           CharUnits Size = getContext().getTypeSizeInChars(Ty);
2326           auto SizeVal = llvm::ConstantInt::get(IntPtrTy, Size.getQuantity());
2327           Address Dst = Builder.CreateBitCast(AlignedTemp, Int8PtrTy);
2328           Address Src = Builder.CreateBitCast(ParamAddr, Int8PtrTy);
2329           Builder.CreateMemCpy(Dst, Src, SizeVal, false);
2330           V = AlignedTemp;
2331         }
2332         ArgVals.push_back(ParamValue::forIndirect(V));
2333       } else {
2334         // Load scalar value from indirect argument.
2335         llvm::Value *V =
2336             EmitLoadOfScalar(ParamAddr, false, Ty, Arg->getBeginLoc());
2337
2338         if (isPromoted)
2339           V = emitArgumentDemotion(*this, Arg, V);
2340         ArgVals.push_back(ParamValue::forDirect(V));
2341       }
2342       break;
2343     }
2344
2345     case ABIArgInfo::Extend:
2346     case ABIArgInfo::Direct: {
2347
2348       // If we have the trivial case, handle it with no muss and fuss.
2349       if (!isa<llvm::StructType>(ArgI.getCoerceToType()) &&
2350           ArgI.getCoerceToType() == ConvertType(Ty) &&
2351           ArgI.getDirectOffset() == 0) {
2352         assert(NumIRArgs == 1);
2353         llvm::Value *V = FnArgs[FirstIRArg];
2354         auto AI = cast<llvm::Argument>(V);
2355
2356         if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(Arg)) {
2357           if (getNonNullAttr(CurCodeDecl, PVD, PVD->getType(),
2358                              PVD->getFunctionScopeIndex()) &&
2359               !CGM.getCodeGenOpts().NullPointerIsValid)
2360             AI->addAttr(llvm::Attribute::NonNull);
2361
2362           QualType OTy = PVD->getOriginalType();
2363           if (const auto *ArrTy =
2364               getContext().getAsConstantArrayType(OTy)) {
2365             // A C99 array parameter declaration with the static keyword also
2366             // indicates dereferenceability, and if the size is constant we can
2367             // use the dereferenceable attribute (which requires the size in
2368             // bytes).
2369             if (ArrTy->getSizeModifier() == ArrayType::Static) {
2370               QualType ETy = ArrTy->getElementType();
2371               uint64_t ArrSize = ArrTy->getSize().getZExtValue();
2372               if (!ETy->isIncompleteType() && ETy->isConstantSizeType() &&
2373                   ArrSize) {
2374                 llvm::AttrBuilder Attrs;
2375                 Attrs.addDereferenceableAttr(
2376                   getContext().getTypeSizeInChars(ETy).getQuantity()*ArrSize);
2377                 AI->addAttrs(Attrs);
2378               } else if (getContext().getTargetAddressSpace(ETy) == 0 &&
2379                          !CGM.getCodeGenOpts().NullPointerIsValid) {
2380                 AI->addAttr(llvm::Attribute::NonNull);
2381               }
2382             }
2383           } else if (const auto *ArrTy =
2384                      getContext().getAsVariableArrayType(OTy)) {
2385             // For C99 VLAs with the static keyword, we don't know the size so
2386             // we can't use the dereferenceable attribute, but in addrspace(0)
2387             // we know that it must be nonnull.
2388             if (ArrTy->getSizeModifier() == VariableArrayType::Static &&
2389                 !getContext().getTargetAddressSpace(ArrTy->getElementType()) &&
2390                 !CGM.getCodeGenOpts().NullPointerIsValid)
2391               AI->addAttr(llvm::Attribute::NonNull);
2392           }
2393
2394           const auto *AVAttr = PVD->getAttr<AlignValueAttr>();
2395           if (!AVAttr)
2396             if (const auto *TOTy = dyn_cast<TypedefType>(OTy))
2397               AVAttr = TOTy->getDecl()->getAttr<AlignValueAttr>();
2398           if (AVAttr && !SanOpts.has(SanitizerKind::Alignment)) {
2399             // If alignment-assumption sanitizer is enabled, we do *not* add
2400             // alignment attribute here, but emit normal alignment assumption,
2401             // so the UBSAN check could function.
2402             llvm::Value *AlignmentValue =
2403               EmitScalarExpr(AVAttr->getAlignment());
2404             llvm::ConstantInt *AlignmentCI =
2405               cast<llvm::ConstantInt>(AlignmentValue);
2406             unsigned Alignment = std::min((unsigned)AlignmentCI->getZExtValue(),
2407                                           +llvm::Value::MaximumAlignment);
2408             AI->addAttrs(llvm::AttrBuilder().addAlignmentAttr(Alignment));
2409           }
2410         }
2411
2412         if (Arg->getType().isRestrictQualified())
2413           AI->addAttr(llvm::Attribute::NoAlias);
2414
2415         // LLVM expects swifterror parameters to be used in very restricted
2416         // ways.  Copy the value into a less-restricted temporary.
2417         if (FI.getExtParameterInfo(ArgNo).getABI()
2418               == ParameterABI::SwiftErrorResult) {
2419           QualType pointeeTy = Ty->getPointeeType();
2420           assert(pointeeTy->isPointerType());
2421           Address temp =
2422             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
2423           Address arg = Address(V, getContext().getTypeAlignInChars(pointeeTy));
2424           llvm::Value *incomingErrorValue = Builder.CreateLoad(arg);
2425           Builder.CreateStore(incomingErrorValue, temp);
2426           V = temp.getPointer();
2427
2428           // Push a cleanup to copy the value back at the end of the function.
2429           // The convention does not guarantee that the value will be written
2430           // back if the function exits with an unwind exception.
2431           EHStack.pushCleanup<CopyBackSwiftError>(NormalCleanup, temp, arg);
2432         }
2433
2434         // Ensure the argument is the correct type.
2435         if (V->getType() != ArgI.getCoerceToType())
2436           V = Builder.CreateBitCast(V, ArgI.getCoerceToType());
2437
2438         if (isPromoted)
2439           V = emitArgumentDemotion(*this, Arg, V);
2440
2441         // Because of merging of function types from multiple decls it is
2442         // possible for the type of an argument to not match the corresponding
2443         // type in the function type. Since we are codegening the callee
2444         // in here, add a cast to the argument type.
2445         llvm::Type *LTy = ConvertType(Arg->getType());
2446         if (V->getType() != LTy)
2447           V = Builder.CreateBitCast(V, LTy);
2448
2449         ArgVals.push_back(ParamValue::forDirect(V));
2450         break;
2451       }
2452
2453       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg),
2454                                      Arg->getName());
2455
2456       // Pointer to store into.
2457       Address Ptr = emitAddressAtOffset(*this, Alloca, ArgI);
2458
2459       // Fast-isel and the optimizer generally like scalar values better than
2460       // FCAs, so we flatten them if this is safe to do for this argument.
2461       llvm::StructType *STy = dyn_cast<llvm::StructType>(ArgI.getCoerceToType());
2462       if (ArgI.isDirect() && ArgI.getCanBeFlattened() && STy &&
2463           STy->getNumElements() > 1) {
2464         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(STy);
2465         llvm::Type *DstTy = Ptr.getElementType();
2466         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(DstTy);
2467
2468         Address AddrToStoreInto = Address::invalid();
2469         if (SrcSize <= DstSize) {
2470           AddrToStoreInto = Builder.CreateElementBitCast(Ptr, STy);
2471         } else {
2472           AddrToStoreInto =
2473             CreateTempAlloca(STy, Alloca.getAlignment(), "coerce");
2474         }
2475
2476         assert(STy->getNumElements() == NumIRArgs);
2477         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2478           auto AI = FnArgs[FirstIRArg + i];
2479           AI->setName(Arg->getName() + ".coerce" + Twine(i));
2480           Address EltPtr = Builder.CreateStructGEP(AddrToStoreInto, i);
2481           Builder.CreateStore(AI, EltPtr);
2482         }
2483
2484         if (SrcSize > DstSize) {
2485           Builder.CreateMemCpy(Ptr, AddrToStoreInto, DstSize);
2486         }
2487
2488       } else {
2489         // Simple case, just do a coerced store of the argument into the alloca.
2490         assert(NumIRArgs == 1);
2491         auto AI = FnArgs[FirstIRArg];
2492         AI->setName(Arg->getName() + ".coerce");
2493         CreateCoercedStore(AI, Ptr, /*DstIsVolatile=*/false, *this);
2494       }
2495
2496       // Match to what EmitParmDecl is expecting for this type.
2497       if (CodeGenFunction::hasScalarEvaluationKind(Ty)) {
2498         llvm::Value *V =
2499             EmitLoadOfScalar(Alloca, false, Ty, Arg->getBeginLoc());
2500         if (isPromoted)
2501           V = emitArgumentDemotion(*this, Arg, V);
2502         ArgVals.push_back(ParamValue::forDirect(V));
2503       } else {
2504         ArgVals.push_back(ParamValue::forIndirect(Alloca));
2505       }
2506       break;
2507     }
2508
2509     case ABIArgInfo::CoerceAndExpand: {
2510       // Reconstruct into a temporary.
2511       Address alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2512       ArgVals.push_back(ParamValue::forIndirect(alloca));
2513
2514       auto coercionType = ArgI.getCoerceAndExpandType();
2515       alloca = Builder.CreateElementBitCast(alloca, coercionType);
2516
2517       unsigned argIndex = FirstIRArg;
2518       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2519         llvm::Type *eltType = coercionType->getElementType(i);
2520         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType))
2521           continue;
2522
2523         auto eltAddr = Builder.CreateStructGEP(alloca, i);
2524         auto elt = FnArgs[argIndex++];
2525         Builder.CreateStore(elt, eltAddr);
2526       }
2527       assert(argIndex == FirstIRArg + NumIRArgs);
2528       break;
2529     }
2530
2531     case ABIArgInfo::Expand: {
2532       // If this structure was expanded into multiple arguments then
2533       // we need to create a temporary and reconstruct it from the
2534       // arguments.
2535       Address Alloca = CreateMemTemp(Ty, getContext().getDeclAlign(Arg));
2536       LValue LV = MakeAddrLValue(Alloca, Ty);
2537       ArgVals.push_back(ParamValue::forIndirect(Alloca));
2538
2539       auto FnArgIter = FnArgs.begin() + FirstIRArg;
2540       ExpandTypeFromArgs(Ty, LV, FnArgIter);
2541       assert(FnArgIter == FnArgs.begin() + FirstIRArg + NumIRArgs);
2542       for (unsigned i = 0, e = NumIRArgs; i != e; ++i) {
2543         auto AI = FnArgs[FirstIRArg + i];
2544         AI->setName(Arg->getName() + "." + Twine(i));
2545       }
2546       break;
2547     }
2548
2549     case ABIArgInfo::Ignore:
2550       assert(NumIRArgs == 0);
2551       // Initialize the local variable appropriately.
2552       if (!hasScalarEvaluationKind(Ty)) {
2553         ArgVals.push_back(ParamValue::forIndirect(CreateMemTemp(Ty)));
2554       } else {
2555         llvm::Value *U = llvm::UndefValue::get(ConvertType(Arg->getType()));
2556         ArgVals.push_back(ParamValue::forDirect(U));
2557       }
2558       break;
2559     }
2560   }
2561
2562   if (getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2563     for (int I = Args.size() - 1; I >= 0; --I)
2564       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2565   } else {
2566     for (unsigned I = 0, E = Args.size(); I != E; ++I)
2567       EmitParmDecl(*Args[I], ArgVals[I], I + 1);
2568   }
2569 }
2570
2571 static void eraseUnusedBitCasts(llvm::Instruction *insn) {
2572   while (insn->use_empty()) {
2573     llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(insn);
2574     if (!bitcast) return;
2575
2576     // This is "safe" because we would have used a ConstantExpr otherwise.
2577     insn = cast<llvm::Instruction>(bitcast->getOperand(0));
2578     bitcast->eraseFromParent();
2579   }
2580 }
2581
2582 /// Try to emit a fused autorelease of a return result.
2583 static llvm::Value *tryEmitFusedAutoreleaseOfResult(CodeGenFunction &CGF,
2584                                                     llvm::Value *result) {
2585   // We must be immediately followed the cast.
2586   llvm::BasicBlock *BB = CGF.Builder.GetInsertBlock();
2587   if (BB->empty()) return nullptr;
2588   if (&BB->back() != result) return nullptr;
2589
2590   llvm::Type *resultType = result->getType();
2591
2592   // result is in a BasicBlock and is therefore an Instruction.
2593   llvm::Instruction *generator = cast<llvm::Instruction>(result);
2594
2595   SmallVector<llvm::Instruction *, 4> InstsToKill;
2596
2597   // Look for:
2598   //  %generator = bitcast %type1* %generator2 to %type2*
2599   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(generator)) {
2600     // We would have emitted this as a constant if the operand weren't
2601     // an Instruction.
2602     generator = cast<llvm::Instruction>(bitcast->getOperand(0));
2603
2604     // Require the generator to be immediately followed by the cast.
2605     if (generator->getNextNode() != bitcast)
2606       return nullptr;
2607
2608     InstsToKill.push_back(bitcast);
2609   }
2610
2611   // Look for:
2612   //   %generator = call i8* @objc_retain(i8* %originalResult)
2613   // or
2614   //   %generator = call i8* @objc_retainAutoreleasedReturnValue(i8* %originalResult)
2615   llvm::CallInst *call = dyn_cast<llvm::CallInst>(generator);
2616   if (!call) return nullptr;
2617
2618   bool doRetainAutorelease;
2619
2620   if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints().objc_retain) {
2621     doRetainAutorelease = true;
2622   } else if (call->getCalledValue() == CGF.CGM.getObjCEntrypoints()
2623                                           .objc_retainAutoreleasedReturnValue) {
2624     doRetainAutorelease = false;
2625
2626     // If we emitted an assembly marker for this call (and the
2627     // ARCEntrypoints field should have been set if so), go looking
2628     // for that call.  If we can't find it, we can't do this
2629     // optimization.  But it should always be the immediately previous
2630     // instruction, unless we needed bitcasts around the call.
2631     if (CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker) {
2632       llvm::Instruction *prev = call->getPrevNode();
2633       assert(prev);
2634       if (isa<llvm::BitCastInst>(prev)) {
2635         prev = prev->getPrevNode();
2636         assert(prev);
2637       }
2638       assert(isa<llvm::CallInst>(prev));
2639       assert(cast<llvm::CallInst>(prev)->getCalledValue() ==
2640                CGF.CGM.getObjCEntrypoints().retainAutoreleasedReturnValueMarker);
2641       InstsToKill.push_back(prev);
2642     }
2643   } else {
2644     return nullptr;
2645   }
2646
2647   result = call->getArgOperand(0);
2648   InstsToKill.push_back(call);
2649
2650   // Keep killing bitcasts, for sanity.  Note that we no longer care
2651   // about precise ordering as long as there's exactly one use.
2652   while (llvm::BitCastInst *bitcast = dyn_cast<llvm::BitCastInst>(result)) {
2653     if (!bitcast->hasOneUse()) break;
2654     InstsToKill.push_back(bitcast);
2655     result = bitcast->getOperand(0);
2656   }
2657
2658   // Delete all the unnecessary instructions, from latest to earliest.
2659   for (auto *I : InstsToKill)
2660     I->eraseFromParent();
2661
2662   // Do the fused retain/autorelease if we were asked to.
2663   if (doRetainAutorelease)
2664     result = CGF.EmitARCRetainAutoreleaseReturnValue(result);
2665
2666   // Cast back to the result type.
2667   return CGF.Builder.CreateBitCast(result, resultType);
2668 }
2669
2670 /// If this is a +1 of the value of an immutable 'self', remove it.
2671 static llvm::Value *tryRemoveRetainOfSelf(CodeGenFunction &CGF,
2672                                           llvm::Value *result) {
2673   // This is only applicable to a method with an immutable 'self'.
2674   const ObjCMethodDecl *method =
2675     dyn_cast_or_null<ObjCMethodDecl>(CGF.CurCodeDecl);
2676   if (!method) return nullptr;
2677   const VarDecl *self = method->getSelfDecl();
2678   if (!self->getType().isConstQualified()) return nullptr;
2679
2680   // Look for a retain call.
2681   llvm::CallInst *retainCall =
2682     dyn_cast<llvm::CallInst>(result->stripPointerCasts());
2683   if (!retainCall ||
2684       retainCall->getCalledValue() != CGF.CGM.getObjCEntrypoints().objc_retain)
2685     return nullptr;
2686
2687   // Look for an ordinary load of 'self'.
2688   llvm::Value *retainedValue = retainCall->getArgOperand(0);
2689   llvm::LoadInst *load =
2690     dyn_cast<llvm::LoadInst>(retainedValue->stripPointerCasts());
2691   if (!load || load->isAtomic() || load->isVolatile() ||
2692       load->getPointerOperand() != CGF.GetAddrOfLocalVar(self).getPointer())
2693     return nullptr;
2694
2695   // Okay!  Burn it all down.  This relies for correctness on the
2696   // assumption that the retain is emitted as part of the return and
2697   // that thereafter everything is used "linearly".
2698   llvm::Type *resultType = result->getType();
2699   eraseUnusedBitCasts(cast<llvm::Instruction>(result));
2700   assert(retainCall->use_empty());
2701   retainCall->eraseFromParent();
2702   eraseUnusedBitCasts(cast<llvm::Instruction>(retainedValue));
2703
2704   return CGF.Builder.CreateBitCast(load, resultType);
2705 }
2706
2707 /// Emit an ARC autorelease of the result of a function.
2708 ///
2709 /// \return the value to actually return from the function
2710 static llvm::Value *emitAutoreleaseOfResult(CodeGenFunction &CGF,
2711                                             llvm::Value *result) {
2712   // If we're returning 'self', kill the initial retain.  This is a
2713   // heuristic attempt to "encourage correctness" in the really unfortunate
2714   // case where we have a return of self during a dealloc and we desperately
2715   // need to avoid the possible autorelease.
2716   if (llvm::Value *self = tryRemoveRetainOfSelf(CGF, result))
2717     return self;
2718
2719   // At -O0, try to emit a fused retain/autorelease.
2720   if (CGF.shouldUseFusedARCCalls())
2721     if (llvm::Value *fused = tryEmitFusedAutoreleaseOfResult(CGF, result))
2722       return fused;
2723
2724   return CGF.EmitARCAutoreleaseReturnValue(result);
2725 }
2726
2727 /// Heuristically search for a dominating store to the return-value slot.
2728 static llvm::StoreInst *findDominatingStoreToReturnValue(CodeGenFunction &CGF) {
2729   // Check if a User is a store which pointerOperand is the ReturnValue.
2730   // We are looking for stores to the ReturnValue, not for stores of the
2731   // ReturnValue to some other location.
2732   auto GetStoreIfValid = [&CGF](llvm::User *U) -> llvm::StoreInst * {
2733     auto *SI = dyn_cast<llvm::StoreInst>(U);
2734     if (!SI || SI->getPointerOperand() != CGF.ReturnValue.getPointer())
2735       return nullptr;
2736     // These aren't actually possible for non-coerced returns, and we
2737     // only care about non-coerced returns on this code path.
2738     assert(!SI->isAtomic() && !SI->isVolatile());
2739     return SI;
2740   };
2741   // If there are multiple uses of the return-value slot, just check
2742   // for something immediately preceding the IP.  Sometimes this can
2743   // happen with how we generate implicit-returns; it can also happen
2744   // with noreturn cleanups.
2745   if (!CGF.ReturnValue.getPointer()->hasOneUse()) {
2746     llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2747     if (IP->empty()) return nullptr;
2748     llvm::Instruction *I = &IP->back();
2749
2750     // Skip lifetime markers
2751     for (llvm::BasicBlock::reverse_iterator II = IP->rbegin(),
2752                                             IE = IP->rend();
2753          II != IE; ++II) {
2754       if (llvm::IntrinsicInst *Intrinsic =
2755               dyn_cast<llvm::IntrinsicInst>(&*II)) {
2756         if (Intrinsic->getIntrinsicID() == llvm::Intrinsic::lifetime_end) {
2757           const llvm::Value *CastAddr = Intrinsic->getArgOperand(1);
2758           ++II;
2759           if (II == IE)
2760             break;
2761           if (isa<llvm::BitCastInst>(&*II) && (CastAddr == &*II))
2762             continue;
2763         }
2764       }
2765       I = &*II;
2766       break;
2767     }
2768
2769     return GetStoreIfValid(I);
2770   }
2771
2772   llvm::StoreInst *store =
2773       GetStoreIfValid(CGF.ReturnValue.getPointer()->user_back());
2774   if (!store) return nullptr;
2775
2776   // Now do a first-and-dirty dominance check: just walk up the
2777   // single-predecessors chain from the current insertion point.
2778   llvm::BasicBlock *StoreBB = store->getParent();
2779   llvm::BasicBlock *IP = CGF.Builder.GetInsertBlock();
2780   while (IP != StoreBB) {
2781     if (!(IP = IP->getSinglePredecessor()))
2782       return nullptr;
2783   }
2784
2785   // Okay, the store's basic block dominates the insertion point; we
2786   // can do our thing.
2787   return store;
2788 }
2789
2790 void CodeGenFunction::EmitFunctionEpilog(const CGFunctionInfo &FI,
2791                                          bool EmitRetDbgLoc,
2792                                          SourceLocation EndLoc) {
2793   if (FI.isNoReturn()) {
2794     // Noreturn functions don't return.
2795     EmitUnreachable(EndLoc);
2796     return;
2797   }
2798
2799   if (CurCodeDecl && CurCodeDecl->hasAttr<NakedAttr>()) {
2800     // Naked functions don't have epilogues.
2801     Builder.CreateUnreachable();
2802     return;
2803   }
2804
2805   // Functions with no result always return void.
2806   if (!ReturnValue.isValid()) {
2807     Builder.CreateRetVoid();
2808     return;
2809   }
2810
2811   llvm::DebugLoc RetDbgLoc;
2812   llvm::Value *RV = nullptr;
2813   QualType RetTy = FI.getReturnType();
2814   const ABIArgInfo &RetAI = FI.getReturnInfo();
2815
2816   switch (RetAI.getKind()) {
2817   case ABIArgInfo::InAlloca:
2818     // Aggregrates get evaluated directly into the destination.  Sometimes we
2819     // need to return the sret value in a register, though.
2820     assert(hasAggregateEvaluationKind(RetTy));
2821     if (RetAI.getInAllocaSRet()) {
2822       llvm::Function::arg_iterator EI = CurFn->arg_end();
2823       --EI;
2824       llvm::Value *ArgStruct = &*EI;
2825       llvm::Value *SRet = Builder.CreateStructGEP(
2826           nullptr, ArgStruct, RetAI.getInAllocaFieldIndex());
2827       RV = Builder.CreateAlignedLoad(SRet, getPointerAlign(), "sret");
2828     }
2829     break;
2830
2831   case ABIArgInfo::Indirect: {
2832     auto AI = CurFn->arg_begin();
2833     if (RetAI.isSRetAfterThis())
2834       ++AI;
2835     switch (getEvaluationKind(RetTy)) {
2836     case TEK_Complex: {
2837       ComplexPairTy RT =
2838         EmitLoadOfComplex(MakeAddrLValue(ReturnValue, RetTy), EndLoc);
2839       EmitStoreOfComplex(RT, MakeNaturalAlignAddrLValue(&*AI, RetTy),
2840                          /*isInit*/ true);
2841       break;
2842     }
2843     case TEK_Aggregate:
2844       // Do nothing; aggregrates get evaluated directly into the destination.
2845       break;
2846     case TEK_Scalar:
2847       EmitStoreOfScalar(Builder.CreateLoad(ReturnValue),
2848                         MakeNaturalAlignAddrLValue(&*AI, RetTy),
2849                         /*isInit*/ true);
2850       break;
2851     }
2852     break;
2853   }
2854
2855   case ABIArgInfo::Extend:
2856   case ABIArgInfo::Direct:
2857     if (RetAI.getCoerceToType() == ConvertType(RetTy) &&
2858         RetAI.getDirectOffset() == 0) {
2859       // The internal return value temp always will have pointer-to-return-type
2860       // type, just do a load.
2861
2862       // If there is a dominating store to ReturnValue, we can elide
2863       // the load, zap the store, and usually zap the alloca.
2864       if (llvm::StoreInst *SI =
2865               findDominatingStoreToReturnValue(*this)) {
2866         // Reuse the debug location from the store unless there is
2867         // cleanup code to be emitted between the store and return
2868         // instruction.
2869         if (EmitRetDbgLoc && !AutoreleaseResult)
2870           RetDbgLoc = SI->getDebugLoc();
2871         // Get the stored value and nuke the now-dead store.
2872         RV = SI->getValueOperand();
2873         SI->eraseFromParent();
2874
2875       // Otherwise, we have to do a simple load.
2876       } else {
2877         RV = Builder.CreateLoad(ReturnValue);
2878       }
2879     } else {
2880       // If the value is offset in memory, apply the offset now.
2881       Address V = emitAddressAtOffset(*this, ReturnValue, RetAI);
2882
2883       RV = CreateCoercedLoad(V, RetAI.getCoerceToType(), *this);
2884     }
2885
2886     // In ARC, end functions that return a retainable type with a call
2887     // to objc_autoreleaseReturnValue.
2888     if (AutoreleaseResult) {
2889 #ifndef NDEBUG
2890       // Type::isObjCRetainabletype has to be called on a QualType that hasn't
2891       // been stripped of the typedefs, so we cannot use RetTy here. Get the
2892       // original return type of FunctionDecl, CurCodeDecl, and BlockDecl from
2893       // CurCodeDecl or BlockInfo.
2894       QualType RT;
2895
2896       if (auto *FD = dyn_cast<FunctionDecl>(CurCodeDecl))
2897         RT = FD->getReturnType();
2898       else if (auto *MD = dyn_cast<ObjCMethodDecl>(CurCodeDecl))
2899         RT = MD->getReturnType();
2900       else if (isa<BlockDecl>(CurCodeDecl))
2901         RT = BlockInfo->BlockExpression->getFunctionType()->getReturnType();
2902       else
2903         llvm_unreachable("Unexpected function/method type");
2904
2905       assert(getLangOpts().ObjCAutoRefCount &&
2906              !FI.isReturnsRetained() &&
2907              RT->isObjCRetainableType());
2908 #endif
2909       RV = emitAutoreleaseOfResult(*this, RV);
2910     }
2911
2912     break;
2913
2914   case ABIArgInfo::Ignore:
2915     break;
2916
2917   case ABIArgInfo::CoerceAndExpand: {
2918     auto coercionType = RetAI.getCoerceAndExpandType();
2919
2920     // Load all of the coerced elements out into results.
2921     llvm::SmallVector<llvm::Value*, 4> results;
2922     Address addr = Builder.CreateElementBitCast(ReturnValue, coercionType);
2923     for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
2924       auto coercedEltType = coercionType->getElementType(i);
2925       if (ABIArgInfo::isPaddingForCoerceAndExpand(coercedEltType))
2926         continue;
2927
2928       auto eltAddr = Builder.CreateStructGEP(addr, i);
2929       auto elt = Builder.CreateLoad(eltAddr);
2930       results.push_back(elt);
2931     }
2932
2933     // If we have one result, it's the single direct result type.
2934     if (results.size() == 1) {
2935       RV = results[0];
2936
2937     // Otherwise, we need to make a first-class aggregate.
2938     } else {
2939       // Construct a return type that lacks padding elements.
2940       llvm::Type *returnType = RetAI.getUnpaddedCoerceAndExpandType();
2941
2942       RV = llvm::UndefValue::get(returnType);
2943       for (unsigned i = 0, e = results.size(); i != e; ++i) {
2944         RV = Builder.CreateInsertValue(RV, results[i], i);
2945       }
2946     }
2947     break;
2948   }
2949
2950   case ABIArgInfo::Expand:
2951     llvm_unreachable("Invalid ABI kind for return argument");
2952   }
2953
2954   llvm::Instruction *Ret;
2955   if (RV) {
2956     EmitReturnValueCheck(RV);
2957     Ret = Builder.CreateRet(RV);
2958   } else {
2959     Ret = Builder.CreateRetVoid();
2960   }
2961
2962   if (RetDbgLoc)
2963     Ret->setDebugLoc(std::move(RetDbgLoc));
2964 }
2965
2966 void CodeGenFunction::EmitReturnValueCheck(llvm::Value *RV) {
2967   // A current decl may not be available when emitting vtable thunks.
2968   if (!CurCodeDecl)
2969     return;
2970
2971   ReturnsNonNullAttr *RetNNAttr = nullptr;
2972   if (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute))
2973     RetNNAttr = CurCodeDecl->getAttr<ReturnsNonNullAttr>();
2974
2975   if (!RetNNAttr && !requiresReturnValueNullabilityCheck())
2976     return;
2977
2978   // Prefer the returns_nonnull attribute if it's present.
2979   SourceLocation AttrLoc;
2980   SanitizerMask CheckKind;
2981   SanitizerHandler Handler;
2982   if (RetNNAttr) {
2983     assert(!requiresReturnValueNullabilityCheck() &&
2984            "Cannot check nullability and the nonnull attribute");
2985     AttrLoc = RetNNAttr->getLocation();
2986     CheckKind = SanitizerKind::ReturnsNonnullAttribute;
2987     Handler = SanitizerHandler::NonnullReturn;
2988   } else {
2989     if (auto *DD = dyn_cast<DeclaratorDecl>(CurCodeDecl))
2990       if (auto *TSI = DD->getTypeSourceInfo())
2991         if (auto FTL = TSI->getTypeLoc().castAs<FunctionTypeLoc>())
2992           AttrLoc = FTL.getReturnLoc().findNullabilityLoc();
2993     CheckKind = SanitizerKind::NullabilityReturn;
2994     Handler = SanitizerHandler::NullabilityReturn;
2995   }
2996
2997   SanitizerScope SanScope(this);
2998
2999   // Make sure the "return" source location is valid. If we're checking a
3000   // nullability annotation, make sure the preconditions for the check are met.
3001   llvm::BasicBlock *Check = createBasicBlock("nullcheck");
3002   llvm::BasicBlock *NoCheck = createBasicBlock("no.nullcheck");
3003   llvm::Value *SLocPtr = Builder.CreateLoad(ReturnLocation, "return.sloc.load");
3004   llvm::Value *CanNullCheck = Builder.CreateIsNotNull(SLocPtr);
3005   if (requiresReturnValueNullabilityCheck())
3006     CanNullCheck =
3007         Builder.CreateAnd(CanNullCheck, RetValNullabilityPrecondition);
3008   Builder.CreateCondBr(CanNullCheck, Check, NoCheck);
3009   EmitBlock(Check);
3010
3011   // Now do the null check.
3012   llvm::Value *Cond = Builder.CreateIsNotNull(RV);
3013   llvm::Constant *StaticData[] = {EmitCheckSourceLocation(AttrLoc)};
3014   llvm::Value *DynamicData[] = {SLocPtr};
3015   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, DynamicData);
3016
3017   EmitBlock(NoCheck);
3018
3019 #ifndef NDEBUG
3020   // The return location should not be used after the check has been emitted.
3021   ReturnLocation = Address::invalid();
3022 #endif
3023 }
3024
3025 static bool isInAllocaArgument(CGCXXABI &ABI, QualType type) {
3026   const CXXRecordDecl *RD = type->getAsCXXRecordDecl();
3027   return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory;
3028 }
3029
3030 static AggValueSlot createPlaceholderSlot(CodeGenFunction &CGF,
3031                                           QualType Ty) {
3032   // FIXME: Generate IR in one pass, rather than going back and fixing up these
3033   // placeholders.
3034   llvm::Type *IRTy = CGF.ConvertTypeForMem(Ty);
3035   llvm::Type *IRPtrTy = IRTy->getPointerTo();
3036   llvm::Value *Placeholder = llvm::UndefValue::get(IRPtrTy->getPointerTo());
3037
3038   // FIXME: When we generate this IR in one pass, we shouldn't need
3039   // this win32-specific alignment hack.
3040   CharUnits Align = CharUnits::fromQuantity(4);
3041   Placeholder = CGF.Builder.CreateAlignedLoad(IRPtrTy, Placeholder, Align);
3042
3043   return AggValueSlot::forAddr(Address(Placeholder, Align),
3044                                Ty.getQualifiers(),
3045                                AggValueSlot::IsNotDestructed,
3046                                AggValueSlot::DoesNotNeedGCBarriers,
3047                                AggValueSlot::IsNotAliased,
3048                                AggValueSlot::DoesNotOverlap);
3049 }
3050
3051 void CodeGenFunction::EmitDelegateCallArg(CallArgList &args,
3052                                           const VarDecl *param,
3053                                           SourceLocation loc) {
3054   // StartFunction converted the ABI-lowered parameter(s) into a
3055   // local alloca.  We need to turn that into an r-value suitable
3056   // for EmitCall.
3057   Address local = GetAddrOfLocalVar(param);
3058
3059   QualType type = param->getType();
3060
3061   if (isInAllocaArgument(CGM.getCXXABI(), type)) {
3062     CGM.ErrorUnsupported(param, "forwarded non-trivially copyable parameter");
3063   }
3064
3065   // GetAddrOfLocalVar returns a pointer-to-pointer for references,
3066   // but the argument needs to be the original pointer.
3067   if (type->isReferenceType()) {
3068     args.add(RValue::get(Builder.CreateLoad(local)), type);
3069
3070   // In ARC, move out of consumed arguments so that the release cleanup
3071   // entered by StartFunction doesn't cause an over-release.  This isn't
3072   // optimal -O0 code generation, but it should get cleaned up when
3073   // optimization is enabled.  This also assumes that delegate calls are
3074   // performed exactly once for a set of arguments, but that should be safe.
3075   } else if (getLangOpts().ObjCAutoRefCount &&
3076              param->hasAttr<NSConsumedAttr>() &&
3077              type->isObjCRetainableType()) {
3078     llvm::Value *ptr = Builder.CreateLoad(local);
3079     auto null =
3080       llvm::ConstantPointerNull::get(cast<llvm::PointerType>(ptr->getType()));
3081     Builder.CreateStore(null, local);
3082     args.add(RValue::get(ptr), type);
3083
3084   // For the most part, we just need to load the alloca, except that
3085   // aggregate r-values are actually pointers to temporaries.
3086   } else {
3087     args.add(convertTempToRValue(local, type, loc), type);
3088   }
3089
3090   // Deactivate the cleanup for the callee-destructed param that was pushed.
3091   if (hasAggregateEvaluationKind(type) && !CurFuncIsThunk &&
3092       type->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee() &&
3093       type.isDestructedType()) {
3094     EHScopeStack::stable_iterator cleanup =
3095         CalleeDestructedParamCleanups.lookup(cast<ParmVarDecl>(param));
3096     assert(cleanup.isValid() &&
3097            "cleanup for callee-destructed param not recorded");
3098     // This unreachable is a temporary marker which will be removed later.
3099     llvm::Instruction *isActive = Builder.CreateUnreachable();
3100     args.addArgCleanupDeactivation(cleanup, isActive);
3101   }
3102 }
3103
3104 static bool isProvablyNull(llvm::Value *addr) {
3105   return isa<llvm::ConstantPointerNull>(addr);
3106 }
3107
3108 /// Emit the actual writing-back of a writeback.
3109 static void emitWriteback(CodeGenFunction &CGF,
3110                           const CallArgList::Writeback &writeback) {
3111   const LValue &srcLV = writeback.Source;
3112   Address srcAddr = srcLV.getAddress();
3113   assert(!isProvablyNull(srcAddr.getPointer()) &&
3114          "shouldn't have writeback for provably null argument");
3115
3116   llvm::BasicBlock *contBB = nullptr;
3117
3118   // If the argument wasn't provably non-null, we need to null check
3119   // before doing the store.
3120   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3121                                               CGF.CGM.getDataLayout());
3122   if (!provablyNonNull) {
3123     llvm::BasicBlock *writebackBB = CGF.createBasicBlock("icr.writeback");
3124     contBB = CGF.createBasicBlock("icr.done");
3125
3126     llvm::Value *isNull =
3127       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3128     CGF.Builder.CreateCondBr(isNull, contBB, writebackBB);
3129     CGF.EmitBlock(writebackBB);
3130   }
3131
3132   // Load the value to writeback.
3133   llvm::Value *value = CGF.Builder.CreateLoad(writeback.Temporary);
3134
3135   // Cast it back, in case we're writing an id to a Foo* or something.
3136   value = CGF.Builder.CreateBitCast(value, srcAddr.getElementType(),
3137                                     "icr.writeback-cast");
3138
3139   // Perform the writeback.
3140
3141   // If we have a "to use" value, it's something we need to emit a use
3142   // of.  This has to be carefully threaded in: if it's done after the
3143   // release it's potentially undefined behavior (and the optimizer
3144   // will ignore it), and if it happens before the retain then the
3145   // optimizer could move the release there.
3146   if (writeback.ToUse) {
3147     assert(srcLV.getObjCLifetime() == Qualifiers::OCL_Strong);
3148
3149     // Retain the new value.  No need to block-copy here:  the block's
3150     // being passed up the stack.
3151     value = CGF.EmitARCRetainNonBlock(value);
3152
3153     // Emit the intrinsic use here.
3154     CGF.EmitARCIntrinsicUse(writeback.ToUse);
3155
3156     // Load the old value (primitively).
3157     llvm::Value *oldValue = CGF.EmitLoadOfScalar(srcLV, SourceLocation());
3158
3159     // Put the new value in place (primitively).
3160     CGF.EmitStoreOfScalar(value, srcLV, /*init*/ false);
3161
3162     // Release the old value.
3163     CGF.EmitARCRelease(oldValue, srcLV.isARCPreciseLifetime());
3164
3165   // Otherwise, we can just do a normal lvalue store.
3166   } else {
3167     CGF.EmitStoreThroughLValue(RValue::get(value), srcLV);
3168   }
3169
3170   // Jump to the continuation block.
3171   if (!provablyNonNull)
3172     CGF.EmitBlock(contBB);
3173 }
3174
3175 static void emitWritebacks(CodeGenFunction &CGF,
3176                            const CallArgList &args) {
3177   for (const auto &I : args.writebacks())
3178     emitWriteback(CGF, I);
3179 }
3180
3181 static void deactivateArgCleanupsBeforeCall(CodeGenFunction &CGF,
3182                                             const CallArgList &CallArgs) {
3183   ArrayRef<CallArgList::CallArgCleanup> Cleanups =
3184     CallArgs.getCleanupsToDeactivate();
3185   // Iterate in reverse to increase the likelihood of popping the cleanup.
3186   for (const auto &I : llvm::reverse(Cleanups)) {
3187     CGF.DeactivateCleanupBlock(I.Cleanup, I.IsActiveIP);
3188     I.IsActiveIP->eraseFromParent();
3189   }
3190 }
3191
3192 static const Expr *maybeGetUnaryAddrOfOperand(const Expr *E) {
3193   if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E->IgnoreParens()))
3194     if (uop->getOpcode() == UO_AddrOf)
3195       return uop->getSubExpr();
3196   return nullptr;
3197 }
3198
3199 /// Emit an argument that's being passed call-by-writeback.  That is,
3200 /// we are passing the address of an __autoreleased temporary; it
3201 /// might be copy-initialized with the current value of the given
3202 /// address, but it will definitely be copied out of after the call.
3203 static void emitWritebackArg(CodeGenFunction &CGF, CallArgList &args,
3204                              const ObjCIndirectCopyRestoreExpr *CRE) {
3205   LValue srcLV;
3206
3207   // Make an optimistic effort to emit the address as an l-value.
3208   // This can fail if the argument expression is more complicated.
3209   if (const Expr *lvExpr = maybeGetUnaryAddrOfOperand(CRE->getSubExpr())) {
3210     srcLV = CGF.EmitLValue(lvExpr);
3211
3212   // Otherwise, just emit it as a scalar.
3213   } else {
3214     Address srcAddr = CGF.EmitPointerWithAlignment(CRE->getSubExpr());
3215
3216     QualType srcAddrType =
3217       CRE->getSubExpr()->getType()->castAs<PointerType>()->getPointeeType();
3218     srcLV = CGF.MakeAddrLValue(srcAddr, srcAddrType);
3219   }
3220   Address srcAddr = srcLV.getAddress();
3221
3222   // The dest and src types don't necessarily match in LLVM terms
3223   // because of the crazy ObjC compatibility rules.
3224
3225   llvm::PointerType *destType =
3226     cast<llvm::PointerType>(CGF.ConvertType(CRE->getType()));
3227
3228   // If the address is a constant null, just pass the appropriate null.
3229   if (isProvablyNull(srcAddr.getPointer())) {
3230     args.add(RValue::get(llvm::ConstantPointerNull::get(destType)),
3231              CRE->getType());
3232     return;
3233   }
3234
3235   // Create the temporary.
3236   Address temp = CGF.CreateTempAlloca(destType->getElementType(),
3237                                       CGF.getPointerAlign(),
3238                                       "icr.temp");
3239   // Loading an l-value can introduce a cleanup if the l-value is __weak,
3240   // and that cleanup will be conditional if we can't prove that the l-value
3241   // isn't null, so we need to register a dominating point so that the cleanups
3242   // system will make valid IR.
3243   CodeGenFunction::ConditionalEvaluation condEval(CGF);
3244
3245   // Zero-initialize it if we're not doing a copy-initialization.
3246   bool shouldCopy = CRE->shouldCopy();
3247   if (!shouldCopy) {
3248     llvm::Value *null =
3249       llvm::ConstantPointerNull::get(
3250         cast<llvm::PointerType>(destType->getElementType()));
3251     CGF.Builder.CreateStore(null, temp);
3252   }
3253
3254   llvm::BasicBlock *contBB = nullptr;
3255   llvm::BasicBlock *originBB = nullptr;
3256
3257   // If the address is *not* known to be non-null, we need to switch.
3258   llvm::Value *finalArgument;
3259
3260   bool provablyNonNull = llvm::isKnownNonZero(srcAddr.getPointer(),
3261                                               CGF.CGM.getDataLayout());
3262   if (provablyNonNull) {
3263     finalArgument = temp.getPointer();
3264   } else {
3265     llvm::Value *isNull =
3266       CGF.Builder.CreateIsNull(srcAddr.getPointer(), "icr.isnull");
3267
3268     finalArgument = CGF.Builder.CreateSelect(isNull,
3269                                    llvm::ConstantPointerNull::get(destType),
3270                                              temp.getPointer(), "icr.argument");
3271
3272     // If we need to copy, then the load has to be conditional, which
3273     // means we need control flow.
3274     if (shouldCopy) {
3275       originBB = CGF.Builder.GetInsertBlock();
3276       contBB = CGF.createBasicBlock("icr.cont");
3277       llvm::BasicBlock *copyBB = CGF.createBasicBlock("icr.copy");
3278       CGF.Builder.CreateCondBr(isNull, contBB, copyBB);
3279       CGF.EmitBlock(copyBB);
3280       condEval.begin(CGF);
3281     }
3282   }
3283
3284   llvm::Value *valueToUse = nullptr;
3285
3286   // Perform a copy if necessary.
3287   if (shouldCopy) {
3288     RValue srcRV = CGF.EmitLoadOfLValue(srcLV, SourceLocation());
3289     assert(srcRV.isScalar());
3290
3291     llvm::Value *src = srcRV.getScalarVal();
3292     src = CGF.Builder.CreateBitCast(src, destType->getElementType(),
3293                                     "icr.cast");
3294
3295     // Use an ordinary store, not a store-to-lvalue.
3296     CGF.Builder.CreateStore(src, temp);
3297
3298     // If optimization is enabled, and the value was held in a
3299     // __strong variable, we need to tell the optimizer that this
3300     // value has to stay alive until we're doing the store back.
3301     // This is because the temporary is effectively unretained,
3302     // and so otherwise we can violate the high-level semantics.
3303     if (CGF.CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3304         srcLV.getObjCLifetime() == Qualifiers::OCL_Strong) {
3305       valueToUse = src;
3306     }
3307   }
3308
3309   // Finish the control flow if we needed it.
3310   if (shouldCopy && !provablyNonNull) {
3311     llvm::BasicBlock *copyBB = CGF.Builder.GetInsertBlock();
3312     CGF.EmitBlock(contBB);
3313
3314     // Make a phi for the value to intrinsically use.
3315     if (valueToUse) {
3316       llvm::PHINode *phiToUse = CGF.Builder.CreatePHI(valueToUse->getType(), 2,
3317                                                       "icr.to-use");
3318       phiToUse->addIncoming(valueToUse, copyBB);
3319       phiToUse->addIncoming(llvm::UndefValue::get(valueToUse->getType()),
3320                             originBB);
3321       valueToUse = phiToUse;
3322     }
3323
3324     condEval.end(CGF);
3325   }
3326
3327   args.addWriteback(srcLV, temp, valueToUse);
3328   args.add(RValue::get(finalArgument), CRE->getType());
3329 }
3330
3331 void CallArgList::allocateArgumentMemory(CodeGenFunction &CGF) {
3332   assert(!StackBase);
3333
3334   // Save the stack.
3335   llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stacksave);
3336   StackBase = CGF.Builder.CreateCall(F, {}, "inalloca.save");
3337 }
3338
3339 void CallArgList::freeArgumentMemory(CodeGenFunction &CGF) const {
3340   if (StackBase) {
3341     // Restore the stack after the call.
3342     llvm::Function *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
3343     CGF.Builder.CreateCall(F, StackBase);
3344   }
3345 }
3346
3347 void CodeGenFunction::EmitNonNullArgCheck(RValue RV, QualType ArgType,
3348                                           SourceLocation ArgLoc,
3349                                           AbstractCallee AC,
3350                                           unsigned ParmNum) {
3351   if (!AC.getDecl() || !(SanOpts.has(SanitizerKind::NonnullAttribute) ||
3352                          SanOpts.has(SanitizerKind::NullabilityArg)))
3353     return;
3354
3355   // The param decl may be missing in a variadic function.
3356   auto PVD = ParmNum < AC.getNumParams() ? AC.getParamDecl(ParmNum) : nullptr;
3357   unsigned ArgNo = PVD ? PVD->getFunctionScopeIndex() : ParmNum;
3358
3359   // Prefer the nonnull attribute if it's present.
3360   const NonNullAttr *NNAttr = nullptr;
3361   if (SanOpts.has(SanitizerKind::NonnullAttribute))
3362     NNAttr = getNonNullAttr(AC.getDecl(), PVD, ArgType, ArgNo);
3363
3364   bool CanCheckNullability = false;
3365   if (SanOpts.has(SanitizerKind::NullabilityArg) && !NNAttr && PVD) {
3366     auto Nullability = PVD->getType()->getNullability(getContext());
3367     CanCheckNullability = Nullability &&
3368                           *Nullability == NullabilityKind::NonNull &&
3369                           PVD->getTypeSourceInfo();
3370   }
3371
3372   if (!NNAttr && !CanCheckNullability)
3373     return;
3374
3375   SourceLocation AttrLoc;
3376   SanitizerMask CheckKind;
3377   SanitizerHandler Handler;
3378   if (NNAttr) {
3379     AttrLoc = NNAttr->getLocation();
3380     CheckKind = SanitizerKind::NonnullAttribute;
3381     Handler = SanitizerHandler::NonnullArg;
3382   } else {
3383     AttrLoc = PVD->getTypeSourceInfo()->getTypeLoc().findNullabilityLoc();
3384     CheckKind = SanitizerKind::NullabilityArg;
3385     Handler = SanitizerHandler::NullabilityArg;
3386   }
3387
3388   SanitizerScope SanScope(this);
3389   assert(RV.isScalar());
3390   llvm::Value *V = RV.getScalarVal();
3391   llvm::Value *Cond =
3392       Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
3393   llvm::Constant *StaticData[] = {
3394       EmitCheckSourceLocation(ArgLoc), EmitCheckSourceLocation(AttrLoc),
3395       llvm::ConstantInt::get(Int32Ty, ArgNo + 1),
3396   };
3397   EmitCheck(std::make_pair(Cond, CheckKind), Handler, StaticData, None);
3398 }
3399
3400 void CodeGenFunction::EmitCallArgs(
3401     CallArgList &Args, ArrayRef<QualType> ArgTypes,
3402     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
3403     AbstractCallee AC, unsigned ParamsToSkip, EvaluationOrder Order) {
3404   assert((int)ArgTypes.size() == (ArgRange.end() - ArgRange.begin()));
3405
3406   // We *have* to evaluate arguments from right to left in the MS C++ ABI,
3407   // because arguments are destroyed left to right in the callee. As a special
3408   // case, there are certain language constructs that require left-to-right
3409   // evaluation, and in those cases we consider the evaluation order requirement
3410   // to trump the "destruction order is reverse construction order" guarantee.
3411   bool LeftToRight =
3412       CGM.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()
3413           ? Order == EvaluationOrder::ForceLeftToRight
3414           : Order != EvaluationOrder::ForceRightToLeft;
3415
3416   auto MaybeEmitImplicitObjectSize = [&](unsigned I, const Expr *Arg,
3417                                          RValue EmittedArg) {
3418     if (!AC.hasFunctionDecl() || I >= AC.getNumParams())
3419       return;
3420     auto *PS = AC.getParamDecl(I)->getAttr<PassObjectSizeAttr>();
3421     if (PS == nullptr)
3422       return;
3423
3424     const auto &Context = getContext();
3425     auto SizeTy = Context.getSizeType();
3426     auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
3427     assert(EmittedArg.getScalarVal() && "We emitted nothing for the arg?");
3428     llvm::Value *V = evaluateOrEmitBuiltinObjectSize(Arg, PS->getType(), T,
3429                                                      EmittedArg.getScalarVal(),
3430                                                      PS->isDynamic());
3431     Args.add(RValue::get(V), SizeTy);
3432     // If we're emitting args in reverse, be sure to do so with
3433     // pass_object_size, as well.
3434     if (!LeftToRight)
3435       std::swap(Args.back(), *(&Args.back() - 1));
3436   };
3437
3438   // Insert a stack save if we're going to need any inalloca args.
3439   bool HasInAllocaArgs = false;
3440   if (CGM.getTarget().getCXXABI().isMicrosoft()) {
3441     for (ArrayRef<QualType>::iterator I = ArgTypes.begin(), E = ArgTypes.end();
3442          I != E && !HasInAllocaArgs; ++I)
3443       HasInAllocaArgs = isInAllocaArgument(CGM.getCXXABI(), *I);
3444     if (HasInAllocaArgs) {
3445       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3446       Args.allocateArgumentMemory(*this);
3447     }
3448   }
3449
3450   // Evaluate each argument in the appropriate order.
3451   size_t CallArgsStart = Args.size();
3452   for (unsigned I = 0, E = ArgTypes.size(); I != E; ++I) {
3453     unsigned Idx = LeftToRight ? I : E - I - 1;
3454     CallExpr::const_arg_iterator Arg = ArgRange.begin() + Idx;
3455     unsigned InitialArgSize = Args.size();
3456     // If *Arg is an ObjCIndirectCopyRestoreExpr, check that either the types of
3457     // the argument and parameter match or the objc method is parameterized.
3458     assert((!isa<ObjCIndirectCopyRestoreExpr>(*Arg) ||
3459             getContext().hasSameUnqualifiedType((*Arg)->getType(),
3460                                                 ArgTypes[Idx]) ||
3461             (isa<ObjCMethodDecl>(AC.getDecl()) &&
3462              isObjCMethodWithTypeParams(cast<ObjCMethodDecl>(AC.getDecl())))) &&
3463            "Argument and parameter types don't match");
3464     EmitCallArg(Args, *Arg, ArgTypes[Idx]);
3465     // In particular, we depend on it being the last arg in Args, and the
3466     // objectsize bits depend on there only being one arg if !LeftToRight.
3467     assert(InitialArgSize + 1 == Args.size() &&
3468            "The code below depends on only adding one arg per EmitCallArg");
3469     (void)InitialArgSize;
3470     // Since pointer argument are never emitted as LValue, it is safe to emit
3471     // non-null argument check for r-value only.
3472     if (!Args.back().hasLValue()) {
3473       RValue RVArg = Args.back().getKnownRValue();
3474       EmitNonNullArgCheck(RVArg, ArgTypes[Idx], (*Arg)->getExprLoc(), AC,
3475                           ParamsToSkip + Idx);
3476       // @llvm.objectsize should never have side-effects and shouldn't need
3477       // destruction/cleanups, so we can safely "emit" it after its arg,
3478       // regardless of right-to-leftness
3479       MaybeEmitImplicitObjectSize(Idx, *Arg, RVArg);
3480     }
3481   }
3482
3483   if (!LeftToRight) {
3484     // Un-reverse the arguments we just evaluated so they match up with the LLVM
3485     // IR function.
3486     std::reverse(Args.begin() + CallArgsStart, Args.end());
3487   }
3488 }
3489
3490 namespace {
3491
3492 struct DestroyUnpassedArg final : EHScopeStack::Cleanup {
3493   DestroyUnpassedArg(Address Addr, QualType Ty)
3494       : Addr(Addr), Ty(Ty) {}
3495
3496   Address Addr;
3497   QualType Ty;
3498
3499   void Emit(CodeGenFunction &CGF, Flags flags) override {
3500     QualType::DestructionKind DtorKind = Ty.isDestructedType();
3501     if (DtorKind == QualType::DK_cxx_destructor) {
3502       const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
3503       assert(!Dtor->isTrivial());
3504       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, /*for vbase*/ false,
3505                                 /*Delegating=*/false, Addr, Ty);
3506     } else {
3507       CGF.callCStructDestructor(CGF.MakeAddrLValue(Addr, Ty));
3508     }
3509   }
3510 };
3511
3512 struct DisableDebugLocationUpdates {
3513   CodeGenFunction &CGF;
3514   bool disabledDebugInfo;
3515   DisableDebugLocationUpdates(CodeGenFunction &CGF, const Expr *E) : CGF(CGF) {
3516     if ((disabledDebugInfo = isa<CXXDefaultArgExpr>(E) && CGF.getDebugInfo()))
3517       CGF.disableDebugInfo();
3518   }
3519   ~DisableDebugLocationUpdates() {
3520     if (disabledDebugInfo)
3521       CGF.enableDebugInfo();
3522   }
3523 };
3524
3525 } // end anonymous namespace
3526
3527 RValue CallArg::getRValue(CodeGenFunction &CGF) const {
3528   if (!HasLV)
3529     return RV;
3530   LValue Copy = CGF.MakeAddrLValue(CGF.CreateMemTemp(Ty), Ty);
3531   CGF.EmitAggregateCopy(Copy, LV, Ty, AggValueSlot::DoesNotOverlap,
3532                         LV.isVolatile());
3533   IsUsed = true;
3534   return RValue::getAggregate(Copy.getAddress());
3535 }
3536
3537 void CallArg::copyInto(CodeGenFunction &CGF, Address Addr) const {
3538   LValue Dst = CGF.MakeAddrLValue(Addr, Ty);
3539   if (!HasLV && RV.isScalar())
3540     CGF.EmitStoreOfScalar(RV.getScalarVal(), Dst, /*isInit=*/true);
3541   else if (!HasLV && RV.isComplex())
3542     CGF.EmitStoreOfComplex(RV.getComplexVal(), Dst, /*init=*/true);
3543   else {
3544     auto Addr = HasLV ? LV.getAddress() : RV.getAggregateAddress();
3545     LValue SrcLV = CGF.MakeAddrLValue(Addr, Ty);
3546     // We assume that call args are never copied into subobjects.
3547     CGF.EmitAggregateCopy(Dst, SrcLV, Ty, AggValueSlot::DoesNotOverlap,
3548                           HasLV ? LV.isVolatileQualified()
3549                                 : RV.isVolatileQualified());
3550   }
3551   IsUsed = true;
3552 }
3553
3554 void CodeGenFunction::EmitCallArg(CallArgList &args, const Expr *E,
3555                                   QualType type) {
3556   DisableDebugLocationUpdates Dis(*this, E);
3557   if (const ObjCIndirectCopyRestoreExpr *CRE
3558         = dyn_cast<ObjCIndirectCopyRestoreExpr>(E)) {
3559     assert(getLangOpts().ObjCAutoRefCount);
3560     return emitWritebackArg(*this, args, CRE);
3561   }
3562
3563   assert(type->isReferenceType() == E->isGLValue() &&
3564          "reference binding to unmaterialized r-value!");
3565
3566   if (E->isGLValue()) {
3567     assert(E->getObjectKind() == OK_Ordinary);
3568     return args.add(EmitReferenceBindingToExpr(E), type);
3569   }
3570
3571   bool HasAggregateEvalKind = hasAggregateEvaluationKind(type);
3572
3573   // In the Microsoft C++ ABI, aggregate arguments are destructed by the callee.
3574   // However, we still have to push an EH-only cleanup in case we unwind before
3575   // we make it to the call.
3576   if (HasAggregateEvalKind &&
3577       type->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
3578     // If we're using inalloca, use the argument memory.  Otherwise, use a
3579     // temporary.
3580     AggValueSlot Slot;
3581     if (args.isUsingInAlloca())
3582       Slot = createPlaceholderSlot(*this, type);
3583     else
3584       Slot = CreateAggTemp(type, "agg.tmp");
3585
3586     bool DestroyedInCallee = true, NeedsEHCleanup = true;
3587     if (const auto *RD = type->getAsCXXRecordDecl())
3588       DestroyedInCallee = RD->hasNonTrivialDestructor();
3589     else
3590       NeedsEHCleanup = needsEHCleanup(type.isDestructedType());
3591
3592     if (DestroyedInCallee)
3593       Slot.setExternallyDestructed();
3594
3595     EmitAggExpr(E, Slot);
3596     RValue RV = Slot.asRValue();
3597     args.add(RV, type);
3598
3599     if (DestroyedInCallee && NeedsEHCleanup) {
3600       // Create a no-op GEP between the placeholder and the cleanup so we can
3601       // RAUW it successfully.  It also serves as a marker of the first
3602       // instruction where the cleanup is active.
3603       pushFullExprCleanup<DestroyUnpassedArg>(EHCleanup, Slot.getAddress(),
3604                                               type);
3605       // This unreachable is a temporary marker which will be removed later.
3606       llvm::Instruction *IsActive = Builder.CreateUnreachable();
3607       args.addArgCleanupDeactivation(EHStack.getInnermostEHScope(), IsActive);
3608     }
3609     return;
3610   }
3611
3612   if (HasAggregateEvalKind && isa<ImplicitCastExpr>(E) &&
3613       cast<CastExpr>(E)->getCastKind() == CK_LValueToRValue) {
3614     LValue L = EmitLValue(cast<CastExpr>(E)->getSubExpr());
3615     assert(L.isSimple());
3616     args.addUncopiedAggregate(L, type);
3617     return;
3618   }
3619
3620   args.add(EmitAnyExprToTemp(E), type);
3621 }
3622
3623 QualType CodeGenFunction::getVarArgType(const Expr *Arg) {
3624   // System headers on Windows define NULL to 0 instead of 0LL on Win64. MSVC
3625   // implicitly widens null pointer constants that are arguments to varargs
3626   // functions to pointer-sized ints.
3627   if (!getTarget().getTriple().isOSWindows())
3628     return Arg->getType();
3629
3630   if (Arg->getType()->isIntegerType() &&
3631       getContext().getTypeSize(Arg->getType()) <
3632           getContext().getTargetInfo().getPointerWidth(0) &&
3633       Arg->isNullPointerConstant(getContext(),
3634                                  Expr::NPC_ValueDependentIsNotNull)) {
3635     return getContext().getIntPtrType();
3636   }
3637
3638   return Arg->getType();
3639 }
3640
3641 // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3642 // optimizer it can aggressively ignore unwind edges.
3643 void
3644 CodeGenFunction::AddObjCARCExceptionMetadata(llvm::Instruction *Inst) {
3645   if (CGM.getCodeGenOpts().OptimizationLevel != 0 &&
3646       !CGM.getCodeGenOpts().ObjCAutoRefCountExceptions)
3647     Inst->setMetadata("clang.arc.no_objc_arc_exceptions",
3648                       CGM.getNoObjCARCExceptionsMetadata());
3649 }
3650
3651 /// Emits a call to the given no-arguments nounwind runtime function.
3652 llvm::CallInst *
3653 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3654                                          const llvm::Twine &name) {
3655   return EmitNounwindRuntimeCall(callee, None, name);
3656 }
3657
3658 /// Emits a call to the given nounwind runtime function.
3659 llvm::CallInst *
3660 CodeGenFunction::EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
3661                                          ArrayRef<llvm::Value *> args,
3662                                          const llvm::Twine &name) {
3663   llvm::CallInst *call = EmitRuntimeCall(callee, args, name);
3664   call->setDoesNotThrow();
3665   return call;
3666 }
3667
3668 /// Emits a simple call (never an invoke) to the given no-arguments
3669 /// runtime function.
3670 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
3671                                                  const llvm::Twine &name) {
3672   return EmitRuntimeCall(callee, None, name);
3673 }
3674
3675 // Calls which may throw must have operand bundles indicating which funclet
3676 // they are nested within.
3677 SmallVector<llvm::OperandBundleDef, 1>
3678 CodeGenFunction::getBundlesForFunclet(llvm::Value *Callee) {
3679   SmallVector<llvm::OperandBundleDef, 1> BundleList;
3680   // There is no need for a funclet operand bundle if we aren't inside a
3681   // funclet.
3682   if (!CurrentFuncletPad)
3683     return BundleList;
3684
3685   // Skip intrinsics which cannot throw.
3686   auto *CalleeFn = dyn_cast<llvm::Function>(Callee->stripPointerCasts());
3687   if (CalleeFn && CalleeFn->isIntrinsic() && CalleeFn->doesNotThrow())
3688     return BundleList;
3689
3690   BundleList.emplace_back("funclet", CurrentFuncletPad);
3691   return BundleList;
3692 }
3693
3694 /// Emits a simple call (never an invoke) to the given runtime function.
3695 llvm::CallInst *CodeGenFunction::EmitRuntimeCall(llvm::FunctionCallee callee,
3696                                                  ArrayRef<llvm::Value *> args,
3697                                                  const llvm::Twine &name) {
3698   llvm::CallInst *call = Builder.CreateCall(
3699       callee, args, getBundlesForFunclet(callee.getCallee()), name);
3700   call->setCallingConv(getRuntimeCC());
3701   return call;
3702 }
3703
3704 /// Emits a call or invoke to the given noreturn runtime function.
3705 void CodeGenFunction::EmitNoreturnRuntimeCallOrInvoke(
3706     llvm::FunctionCallee callee, ArrayRef<llvm::Value *> args) {
3707   SmallVector<llvm::OperandBundleDef, 1> BundleList =
3708       getBundlesForFunclet(callee.getCallee());
3709
3710   if (getInvokeDest()) {
3711     llvm::InvokeInst *invoke =
3712       Builder.CreateInvoke(callee,
3713                            getUnreachableBlock(),
3714                            getInvokeDest(),
3715                            args,
3716                            BundleList);
3717     invoke->setDoesNotReturn();
3718     invoke->setCallingConv(getRuntimeCC());
3719   } else {
3720     llvm::CallInst *call = Builder.CreateCall(callee, args, BundleList);
3721     call->setDoesNotReturn();
3722     call->setCallingConv(getRuntimeCC());
3723     Builder.CreateUnreachable();
3724   }
3725 }
3726
3727 /// Emits a call or invoke instruction to the given nullary runtime function.
3728 llvm::CallBase *
3729 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3730                                          const Twine &name) {
3731   return EmitRuntimeCallOrInvoke(callee, None, name);
3732 }
3733
3734 /// Emits a call or invoke instruction to the given runtime function.
3735 llvm::CallBase *
3736 CodeGenFunction::EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
3737                                          ArrayRef<llvm::Value *> args,
3738                                          const Twine &name) {
3739   llvm::CallBase *call = EmitCallOrInvoke(callee, args, name);
3740   call->setCallingConv(getRuntimeCC());
3741   return call;
3742 }
3743
3744 /// Emits a call or invoke instruction to the given function, depending
3745 /// on the current state of the EH stack.
3746 llvm::CallBase *CodeGenFunction::EmitCallOrInvoke(llvm::FunctionCallee Callee,
3747                                                   ArrayRef<llvm::Value *> Args,
3748                                                   const Twine &Name) {
3749   llvm::BasicBlock *InvokeDest = getInvokeDest();
3750   SmallVector<llvm::OperandBundleDef, 1> BundleList =
3751       getBundlesForFunclet(Callee.getCallee());
3752
3753   llvm::CallBase *Inst;
3754   if (!InvokeDest)
3755     Inst = Builder.CreateCall(Callee, Args, BundleList, Name);
3756   else {
3757     llvm::BasicBlock *ContBB = createBasicBlock("invoke.cont");
3758     Inst = Builder.CreateInvoke(Callee, ContBB, InvokeDest, Args, BundleList,
3759                                 Name);
3760     EmitBlock(ContBB);
3761   }
3762
3763   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
3764   // optimizer it can aggressively ignore unwind edges.
3765   if (CGM.getLangOpts().ObjCAutoRefCount)
3766     AddObjCARCExceptionMetadata(Inst);
3767
3768   return Inst;
3769 }
3770
3771 void CodeGenFunction::deferPlaceholderReplacement(llvm::Instruction *Old,
3772                                                   llvm::Value *New) {
3773   DeferredReplacements.push_back(std::make_pair(Old, New));
3774 }
3775
3776 RValue CodeGenFunction::EmitCall(const CGFunctionInfo &CallInfo,
3777                                  const CGCallee &Callee,
3778                                  ReturnValueSlot ReturnValue,
3779                                  const CallArgList &CallArgs,
3780                                  llvm::CallBase **callOrInvoke,
3781                                  SourceLocation Loc) {
3782   // FIXME: We no longer need the types from CallArgs; lift up and simplify.
3783
3784   assert(Callee.isOrdinary() || Callee.isVirtual());
3785
3786   // Handle struct-return functions by passing a pointer to the
3787   // location that we would like to return into.
3788   QualType RetTy = CallInfo.getReturnType();
3789   const ABIArgInfo &RetAI = CallInfo.getReturnInfo();
3790
3791   llvm::FunctionType *IRFuncTy = getTypes().GetFunctionType(CallInfo);
3792
3793   const Decl *TargetDecl = Callee.getAbstractInfo().getCalleeDecl().getDecl();
3794   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
3795     // We can only guarantee that a function is called from the correct
3796     // context/function based on the appropriate target attributes,
3797     // so only check in the case where we have both always_inline and target
3798     // since otherwise we could be making a conditional call after a check for
3799     // the proper cpu features (and it won't cause code generation issues due to
3800     // function based code generation).
3801     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
3802         TargetDecl->hasAttr<TargetAttr>())
3803       checkTargetFeatures(Loc, FD);
3804
3805 #ifndef NDEBUG
3806   if (!(CallInfo.isVariadic() && CallInfo.getArgStruct())) {
3807     // For an inalloca varargs function, we don't expect CallInfo to match the
3808     // function pointer's type, because the inalloca struct a will have extra
3809     // fields in it for the varargs parameters.  Code later in this function
3810     // bitcasts the function pointer to the type derived from CallInfo.
3811     //
3812     // In other cases, we assert that the types match up (until pointers stop
3813     // having pointee types).
3814     llvm::Type *TypeFromVal;
3815     if (Callee.isVirtual())
3816       TypeFromVal = Callee.getVirtualFunctionType();
3817     else
3818       TypeFromVal =
3819           Callee.getFunctionPointer()->getType()->getPointerElementType();
3820     assert(IRFuncTy == TypeFromVal);
3821   }
3822 #endif
3823
3824   // 1. Set up the arguments.
3825
3826   // If we're using inalloca, insert the allocation after the stack save.
3827   // FIXME: Do this earlier rather than hacking it in here!
3828   Address ArgMemory = Address::invalid();
3829   if (llvm::StructType *ArgStruct = CallInfo.getArgStruct()) {
3830     const llvm::DataLayout &DL = CGM.getDataLayout();
3831     llvm::Instruction *IP = CallArgs.getStackBase();
3832     llvm::AllocaInst *AI;
3833     if (IP) {
3834       IP = IP->getNextNode();
3835       AI = new llvm::AllocaInst(ArgStruct, DL.getAllocaAddrSpace(),
3836                                 "argmem", IP);
3837     } else {
3838       AI = CreateTempAlloca(ArgStruct, "argmem");
3839     }
3840     auto Align = CallInfo.getArgStructAlignment();
3841     AI->setAlignment(Align.getQuantity());
3842     AI->setUsedWithInAlloca(true);
3843     assert(AI->isUsedWithInAlloca() && !AI->isStaticAlloca());
3844     ArgMemory = Address(AI, Align);
3845   }
3846
3847   ClangToLLVMArgMapping IRFunctionArgs(CGM.getContext(), CallInfo);
3848   SmallVector<llvm::Value *, 16> IRCallArgs(IRFunctionArgs.totalIRArgs());
3849
3850   // If the call returns a temporary with struct return, create a temporary
3851   // alloca to hold the result, unless one is given to us.
3852   Address SRetPtr = Address::invalid();
3853   Address SRetAlloca = Address::invalid();
3854   llvm::Value *UnusedReturnSizePtr = nullptr;
3855   if (RetAI.isIndirect() || RetAI.isInAlloca() || RetAI.isCoerceAndExpand()) {
3856     if (!ReturnValue.isNull()) {
3857       SRetPtr = ReturnValue.getValue();
3858     } else {
3859       SRetPtr = CreateMemTemp(RetTy, "tmp", &SRetAlloca);
3860       if (HaveInsertPoint() && ReturnValue.isUnused()) {
3861         uint64_t size =
3862             CGM.getDataLayout().getTypeAllocSize(ConvertTypeForMem(RetTy));
3863         UnusedReturnSizePtr = EmitLifetimeStart(size, SRetAlloca.getPointer());
3864       }
3865     }
3866     if (IRFunctionArgs.hasSRetArg()) {
3867       IRCallArgs[IRFunctionArgs.getSRetArgNo()] = SRetPtr.getPointer();
3868     } else if (RetAI.isInAlloca()) {
3869       Address Addr =
3870           Builder.CreateStructGEP(ArgMemory, RetAI.getInAllocaFieldIndex());
3871       Builder.CreateStore(SRetPtr.getPointer(), Addr);
3872     }
3873   }
3874
3875   Address swiftErrorTemp = Address::invalid();
3876   Address swiftErrorArg = Address::invalid();
3877
3878   // Translate all of the arguments as necessary to match the IR lowering.
3879   assert(CallInfo.arg_size() == CallArgs.size() &&
3880          "Mismatch between function signature & arguments.");
3881   unsigned ArgNo = 0;
3882   CGFunctionInfo::const_arg_iterator info_it = CallInfo.arg_begin();
3883   for (CallArgList::const_iterator I = CallArgs.begin(), E = CallArgs.end();
3884        I != E; ++I, ++info_it, ++ArgNo) {
3885     const ABIArgInfo &ArgInfo = info_it->info;
3886
3887     // Insert a padding argument to ensure proper alignment.
3888     if (IRFunctionArgs.hasPaddingArg(ArgNo))
3889       IRCallArgs[IRFunctionArgs.getPaddingArgNo(ArgNo)] =
3890           llvm::UndefValue::get(ArgInfo.getPaddingType());
3891
3892     unsigned FirstIRArg, NumIRArgs;
3893     std::tie(FirstIRArg, NumIRArgs) = IRFunctionArgs.getIRArgs(ArgNo);
3894
3895     switch (ArgInfo.getKind()) {
3896     case ABIArgInfo::InAlloca: {
3897       assert(NumIRArgs == 0);
3898       assert(getTarget().getTriple().getArch() == llvm::Triple::x86);
3899       if (I->isAggregate()) {
3900         // Replace the placeholder with the appropriate argument slot GEP.
3901         Address Addr = I->hasLValue()
3902                            ? I->getKnownLValue().getAddress()
3903                            : I->getKnownRValue().getAggregateAddress();
3904         llvm::Instruction *Placeholder =
3905             cast<llvm::Instruction>(Addr.getPointer());
3906         CGBuilderTy::InsertPoint IP = Builder.saveIP();
3907         Builder.SetInsertPoint(Placeholder);
3908         Addr =
3909             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
3910         Builder.restoreIP(IP);
3911         deferPlaceholderReplacement(Placeholder, Addr.getPointer());
3912       } else {
3913         // Store the RValue into the argument struct.
3914         Address Addr =
3915             Builder.CreateStructGEP(ArgMemory, ArgInfo.getInAllocaFieldIndex());
3916         unsigned AS = Addr.getType()->getPointerAddressSpace();
3917         llvm::Type *MemType = ConvertTypeForMem(I->Ty)->getPointerTo(AS);
3918         // There are some cases where a trivial bitcast is not avoidable.  The
3919         // definition of a type later in a translation unit may change it's type
3920         // from {}* to (%struct.foo*)*.
3921         if (Addr.getType() != MemType)
3922           Addr = Builder.CreateBitCast(Addr, MemType);
3923         I->copyInto(*this, Addr);
3924       }
3925       break;
3926     }
3927
3928     case ABIArgInfo::Indirect: {
3929       assert(NumIRArgs == 1);
3930       if (!I->isAggregate()) {
3931         // Make a temporary alloca to pass the argument.
3932         Address Addr = CreateMemTempWithoutCast(
3933             I->Ty, ArgInfo.getIndirectAlign(), "indirect-arg-temp");
3934         IRCallArgs[FirstIRArg] = Addr.getPointer();
3935
3936         I->copyInto(*this, Addr);
3937       } else {
3938         // We want to avoid creating an unnecessary temporary+copy here;
3939         // however, we need one in three cases:
3940         // 1. If the argument is not byval, and we are required to copy the
3941         //    source.  (This case doesn't occur on any common architecture.)
3942         // 2. If the argument is byval, RV is not sufficiently aligned, and
3943         //    we cannot force it to be sufficiently aligned.
3944         // 3. If the argument is byval, but RV is not located in default
3945         //    or alloca address space.
3946         Address Addr = I->hasLValue()
3947                            ? I->getKnownLValue().getAddress()
3948                            : I->getKnownRValue().getAggregateAddress();
3949         llvm::Value *V = Addr.getPointer();
3950         CharUnits Align = ArgInfo.getIndirectAlign();
3951         const llvm::DataLayout *TD = &CGM.getDataLayout();
3952
3953         assert((FirstIRArg >= IRFuncTy->getNumParams() ||
3954                 IRFuncTy->getParamType(FirstIRArg)->getPointerAddressSpace() ==
3955                     TD->getAllocaAddrSpace()) &&
3956                "indirect argument must be in alloca address space");
3957
3958         bool NeedCopy = false;
3959
3960         if (Addr.getAlignment() < Align &&
3961             llvm::getOrEnforceKnownAlignment(V, Align.getQuantity(), *TD) <
3962                 Align.getQuantity()) {
3963           NeedCopy = true;
3964         } else if (I->hasLValue()) {
3965           auto LV = I->getKnownLValue();
3966           auto AS = LV.getAddressSpace();
3967
3968           if ((!ArgInfo.getIndirectByVal() &&
3969                (LV.getAlignment() >=
3970                 getContext().getTypeAlignInChars(I->Ty)))) {
3971             NeedCopy = true;
3972           }
3973           if (!getLangOpts().OpenCL) {
3974             if ((ArgInfo.getIndirectByVal() &&
3975                 (AS != LangAS::Default &&
3976                  AS != CGM.getASTAllocaAddressSpace()))) {
3977               NeedCopy = true;
3978             }
3979           }
3980           // For OpenCL even if RV is located in default or alloca address space
3981           // we don't want to perform address space cast for it.
3982           else if ((ArgInfo.getIndirectByVal() &&
3983                     Addr.getType()->getAddressSpace() != IRFuncTy->
3984                       getParamType(FirstIRArg)->getPointerAddressSpace())) {
3985             NeedCopy = true;
3986           }
3987         }
3988
3989         if (NeedCopy) {
3990           // Create an aligned temporary, and copy to it.
3991           Address AI = CreateMemTempWithoutCast(
3992               I->Ty, ArgInfo.getIndirectAlign(), "byval-temp");
3993           IRCallArgs[FirstIRArg] = AI.getPointer();
3994           I->copyInto(*this, AI);
3995         } else {
3996           // Skip the extra memcpy call.
3997           auto *T = V->getType()->getPointerElementType()->getPointerTo(
3998               CGM.getDataLayout().getAllocaAddrSpace());
3999           IRCallArgs[FirstIRArg] = getTargetHooks().performAddrSpaceCast(
4000               *this, V, LangAS::Default, CGM.getASTAllocaAddressSpace(), T,
4001               true);
4002         }
4003       }
4004       break;
4005     }
4006
4007     case ABIArgInfo::Ignore:
4008       assert(NumIRArgs == 0);
4009       break;
4010
4011     case ABIArgInfo::Extend:
4012     case ABIArgInfo::Direct: {
4013       if (!isa<llvm::StructType>(ArgInfo.getCoerceToType()) &&
4014           ArgInfo.getCoerceToType() == ConvertType(info_it->type) &&
4015           ArgInfo.getDirectOffset() == 0) {
4016         assert(NumIRArgs == 1);
4017         llvm::Value *V;
4018         if (!I->isAggregate())
4019           V = I->getKnownRValue().getScalarVal();
4020         else
4021           V = Builder.CreateLoad(
4022               I->hasLValue() ? I->getKnownLValue().getAddress()
4023                              : I->getKnownRValue().getAggregateAddress());
4024
4025         // Implement swifterror by copying into a new swifterror argument.
4026         // We'll write back in the normal path out of the call.
4027         if (CallInfo.getExtParameterInfo(ArgNo).getABI()
4028               == ParameterABI::SwiftErrorResult) {
4029           assert(!swiftErrorTemp.isValid() && "multiple swifterror args");
4030
4031           QualType pointeeTy = I->Ty->getPointeeType();
4032           swiftErrorArg =
4033             Address(V, getContext().getTypeAlignInChars(pointeeTy));
4034
4035           swiftErrorTemp =
4036             CreateMemTemp(pointeeTy, getPointerAlign(), "swifterror.temp");
4037           V = swiftErrorTemp.getPointer();
4038           cast<llvm::AllocaInst>(V)->setSwiftError(true);
4039
4040           llvm::Value *errorValue = Builder.CreateLoad(swiftErrorArg);
4041           Builder.CreateStore(errorValue, swiftErrorTemp);
4042         }
4043
4044         // We might have to widen integers, but we should never truncate.
4045         if (ArgInfo.getCoerceToType() != V->getType() &&
4046             V->getType()->isIntegerTy())
4047           V = Builder.CreateZExt(V, ArgInfo.getCoerceToType());
4048
4049         // If the argument doesn't match, perform a bitcast to coerce it.  This
4050         // can happen due to trivial type mismatches.
4051         if (FirstIRArg < IRFuncTy->getNumParams() &&
4052             V->getType() != IRFuncTy->getParamType(FirstIRArg))
4053           V = Builder.CreateBitCast(V, IRFuncTy->getParamType(FirstIRArg));
4054
4055         IRCallArgs[FirstIRArg] = V;
4056         break;
4057       }
4058
4059       // FIXME: Avoid the conversion through memory if possible.
4060       Address Src = Address::invalid();
4061       if (!I->isAggregate()) {
4062         Src = CreateMemTemp(I->Ty, "coerce");
4063         I->copyInto(*this, Src);
4064       } else {
4065         Src = I->hasLValue() ? I->getKnownLValue().getAddress()
4066                              : I->getKnownRValue().getAggregateAddress();
4067       }
4068
4069       // If the value is offset in memory, apply the offset now.
4070       Src = emitAddressAtOffset(*this, Src, ArgInfo);
4071
4072       // Fast-isel and the optimizer generally like scalar values better than
4073       // FCAs, so we flatten them if this is safe to do for this argument.
4074       llvm::StructType *STy =
4075             dyn_cast<llvm::StructType>(ArgInfo.getCoerceToType());
4076       if (STy && ArgInfo.isDirect() && ArgInfo.getCanBeFlattened()) {
4077         llvm::Type *SrcTy = Src.getType()->getElementType();
4078         uint64_t SrcSize = CGM.getDataLayout().getTypeAllocSize(SrcTy);
4079         uint64_t DstSize = CGM.getDataLayout().getTypeAllocSize(STy);
4080
4081         // If the source type is smaller than the destination type of the
4082         // coerce-to logic, copy the source value into a temp alloca the size
4083         // of the destination type to allow loading all of it. The bits past
4084         // the source value are left undef.
4085         if (SrcSize < DstSize) {
4086           Address TempAlloca
4087             = CreateTempAlloca(STy, Src.getAlignment(),
4088                                Src.getName() + ".coerce");
4089           Builder.CreateMemCpy(TempAlloca, Src, SrcSize);
4090           Src = TempAlloca;
4091         } else {
4092           Src = Builder.CreateBitCast(Src,
4093                                       STy->getPointerTo(Src.getAddressSpace()));
4094         }
4095
4096         assert(NumIRArgs == STy->getNumElements());
4097         for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
4098           Address EltPtr = Builder.CreateStructGEP(Src, i);
4099           llvm::Value *LI = Builder.CreateLoad(EltPtr);
4100           IRCallArgs[FirstIRArg + i] = LI;
4101         }
4102       } else {
4103         // In the simple case, just pass the coerced loaded value.
4104         assert(NumIRArgs == 1);
4105         IRCallArgs[FirstIRArg] =
4106           CreateCoercedLoad(Src, ArgInfo.getCoerceToType(), *this);
4107       }
4108
4109       break;
4110     }
4111
4112     case ABIArgInfo::CoerceAndExpand: {
4113       auto coercionType = ArgInfo.getCoerceAndExpandType();
4114       auto layout = CGM.getDataLayout().getStructLayout(coercionType);
4115
4116       llvm::Value *tempSize = nullptr;
4117       Address addr = Address::invalid();
4118       Address AllocaAddr = Address::invalid();
4119       if (I->isAggregate()) {
4120         addr = I->hasLValue() ? I->getKnownLValue().getAddress()
4121                               : I->getKnownRValue().getAggregateAddress();
4122
4123       } else {
4124         RValue RV = I->getKnownRValue();
4125         assert(RV.isScalar()); // complex should always just be direct
4126
4127         llvm::Type *scalarType = RV.getScalarVal()->getType();
4128         auto scalarSize = CGM.getDataLayout().getTypeAllocSize(scalarType);
4129         auto scalarAlign = CGM.getDataLayout().getPrefTypeAlignment(scalarType);
4130
4131         // Materialize to a temporary.
4132         addr = CreateTempAlloca(RV.getScalarVal()->getType(),
4133                                 CharUnits::fromQuantity(std::max(
4134                                     layout->getAlignment(), scalarAlign)),
4135                                 "tmp",
4136                                 /*ArraySize=*/nullptr, &AllocaAddr);
4137         tempSize = EmitLifetimeStart(scalarSize, AllocaAddr.getPointer());
4138
4139         Builder.CreateStore(RV.getScalarVal(), addr);
4140       }
4141
4142       addr = Builder.CreateElementBitCast(addr, coercionType);
4143
4144       unsigned IRArgPos = FirstIRArg;
4145       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4146         llvm::Type *eltType = coercionType->getElementType(i);
4147         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4148         Address eltAddr = Builder.CreateStructGEP(addr, i);
4149         llvm::Value *elt = Builder.CreateLoad(eltAddr);
4150         IRCallArgs[IRArgPos++] = elt;
4151       }
4152       assert(IRArgPos == FirstIRArg + NumIRArgs);
4153
4154       if (tempSize) {
4155         EmitLifetimeEnd(tempSize, AllocaAddr.getPointer());
4156       }
4157
4158       break;
4159     }
4160
4161     case ABIArgInfo::Expand:
4162       unsigned IRArgPos = FirstIRArg;
4163       ExpandTypeToArgs(I->Ty, *I, IRFuncTy, IRCallArgs, IRArgPos);
4164       assert(IRArgPos == FirstIRArg + NumIRArgs);
4165       break;
4166     }
4167   }
4168
4169   const CGCallee &ConcreteCallee = Callee.prepareConcreteCallee(*this);
4170   llvm::Value *CalleePtr = ConcreteCallee.getFunctionPointer();
4171
4172   // If we're using inalloca, set up that argument.
4173   if (ArgMemory.isValid()) {
4174     llvm::Value *Arg = ArgMemory.getPointer();
4175     if (CallInfo.isVariadic()) {
4176       // When passing non-POD arguments by value to variadic functions, we will
4177       // end up with a variadic prototype and an inalloca call site.  In such
4178       // cases, we can't do any parameter mismatch checks.  Give up and bitcast
4179       // the callee.
4180       unsigned CalleeAS = CalleePtr->getType()->getPointerAddressSpace();
4181       CalleePtr =
4182           Builder.CreateBitCast(CalleePtr, IRFuncTy->getPointerTo(CalleeAS));
4183     } else {
4184       llvm::Type *LastParamTy =
4185           IRFuncTy->getParamType(IRFuncTy->getNumParams() - 1);
4186       if (Arg->getType() != LastParamTy) {
4187 #ifndef NDEBUG
4188         // Assert that these structs have equivalent element types.
4189         llvm::StructType *FullTy = CallInfo.getArgStruct();
4190         llvm::StructType *DeclaredTy = cast<llvm::StructType>(
4191             cast<llvm::PointerType>(LastParamTy)->getElementType());
4192         assert(DeclaredTy->getNumElements() == FullTy->getNumElements());
4193         for (llvm::StructType::element_iterator DI = DeclaredTy->element_begin(),
4194                                                 DE = DeclaredTy->element_end(),
4195                                                 FI = FullTy->element_begin();
4196              DI != DE; ++DI, ++FI)
4197           assert(*DI == *FI);
4198 #endif
4199         Arg = Builder.CreateBitCast(Arg, LastParamTy);
4200       }
4201     }
4202     assert(IRFunctionArgs.hasInallocaArg());
4203     IRCallArgs[IRFunctionArgs.getInallocaArgNo()] = Arg;
4204   }
4205
4206   // 2. Prepare the function pointer.
4207
4208   // If the callee is a bitcast of a non-variadic function to have a
4209   // variadic function pointer type, check to see if we can remove the
4210   // bitcast.  This comes up with unprototyped functions.
4211   //
4212   // This makes the IR nicer, but more importantly it ensures that we
4213   // can inline the function at -O0 if it is marked always_inline.
4214   auto simplifyVariadicCallee = [](llvm::FunctionType *CalleeFT,
4215                                    llvm::Value *Ptr) -> llvm::Function * {
4216     if (!CalleeFT->isVarArg())
4217       return nullptr;
4218
4219     // Get underlying value if it's a bitcast
4220     if (llvm::ConstantExpr *CE = dyn_cast<llvm::ConstantExpr>(Ptr)) {
4221       if (CE->getOpcode() == llvm::Instruction::BitCast)
4222         Ptr = CE->getOperand(0);
4223     }
4224
4225     llvm::Function *OrigFn = dyn_cast<llvm::Function>(Ptr);
4226     if (!OrigFn)
4227       return nullptr;
4228
4229     llvm::FunctionType *OrigFT = OrigFn->getFunctionType();
4230
4231     // If the original type is variadic, or if any of the component types
4232     // disagree, we cannot remove the cast.
4233     if (OrigFT->isVarArg() ||
4234         OrigFT->getNumParams() != CalleeFT->getNumParams() ||
4235         OrigFT->getReturnType() != CalleeFT->getReturnType())
4236       return nullptr;
4237
4238     for (unsigned i = 0, e = OrigFT->getNumParams(); i != e; ++i)
4239       if (OrigFT->getParamType(i) != CalleeFT->getParamType(i))
4240         return nullptr;
4241
4242     return OrigFn;
4243   };
4244
4245   if (llvm::Function *OrigFn = simplifyVariadicCallee(IRFuncTy, CalleePtr)) {
4246     CalleePtr = OrigFn;
4247     IRFuncTy = OrigFn->getFunctionType();
4248   }
4249
4250   // 3. Perform the actual call.
4251
4252   // Deactivate any cleanups that we're supposed to do immediately before
4253   // the call.
4254   if (!CallArgs.getCleanupsToDeactivate().empty())
4255     deactivateArgCleanupsBeforeCall(*this, CallArgs);
4256
4257   // Assert that the arguments we computed match up.  The IR verifier
4258   // will catch this, but this is a common enough source of problems
4259   // during IRGen changes that it's way better for debugging to catch
4260   // it ourselves here.
4261 #ifndef NDEBUG
4262   assert(IRCallArgs.size() == IRFuncTy->getNumParams() || IRFuncTy->isVarArg());
4263   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4264     // Inalloca argument can have different type.
4265     if (IRFunctionArgs.hasInallocaArg() &&
4266         i == IRFunctionArgs.getInallocaArgNo())
4267       continue;
4268     if (i < IRFuncTy->getNumParams())
4269       assert(IRCallArgs[i]->getType() == IRFuncTy->getParamType(i));
4270   }
4271 #endif
4272
4273   // Update the largest vector width if any arguments have vector types.
4274   for (unsigned i = 0; i < IRCallArgs.size(); ++i) {
4275     if (auto *VT = dyn_cast<llvm::VectorType>(IRCallArgs[i]->getType()))
4276       LargestVectorWidth = std::max(LargestVectorWidth,
4277                                     VT->getPrimitiveSizeInBits());
4278   }
4279
4280   // Compute the calling convention and attributes.
4281   unsigned CallingConv;
4282   llvm::AttributeList Attrs;
4283   CGM.ConstructAttributeList(CalleePtr->getName(), CallInfo,
4284                              Callee.getAbstractInfo(), Attrs, CallingConv,
4285                              /*AttrOnCallSite=*/true);
4286
4287   // Apply some call-site-specific attributes.
4288   // TODO: work this into building the attribute set.
4289
4290   // Apply always_inline to all calls within flatten functions.
4291   // FIXME: should this really take priority over __try, below?
4292   if (CurCodeDecl && CurCodeDecl->hasAttr<FlattenAttr>() &&
4293       !(TargetDecl && TargetDecl->hasAttr<NoInlineAttr>())) {
4294     Attrs =
4295         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4296                            llvm::Attribute::AlwaysInline);
4297   }
4298
4299   // Disable inlining inside SEH __try blocks.
4300   if (isSEHTryScope()) {
4301     Attrs =
4302         Attrs.addAttribute(getLLVMContext(), llvm::AttributeList::FunctionIndex,
4303                            llvm::Attribute::NoInline);
4304   }
4305
4306   // Decide whether to use a call or an invoke.
4307   bool CannotThrow;
4308   if (currentFunctionUsesSEHTry()) {
4309     // SEH cares about asynchronous exceptions, so everything can "throw."
4310     CannotThrow = false;
4311   } else if (isCleanupPadScope() &&
4312              EHPersonality::get(*this).isMSVCXXPersonality()) {
4313     // The MSVC++ personality will implicitly terminate the program if an
4314     // exception is thrown during a cleanup outside of a try/catch.
4315     // We don't need to model anything in IR to get this behavior.
4316     CannotThrow = true;
4317   } else {
4318     // Otherwise, nounwind call sites will never throw.
4319     CannotThrow = Attrs.hasAttribute(llvm::AttributeList::FunctionIndex,
4320                                      llvm::Attribute::NoUnwind);
4321   }
4322
4323   // If we made a temporary, be sure to clean up after ourselves. Note that we
4324   // can't depend on being inside of an ExprWithCleanups, so we need to manually
4325   // pop this cleanup later on. Being eager about this is OK, since this
4326   // temporary is 'invisible' outside of the callee.
4327   if (UnusedReturnSizePtr)
4328     pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, SRetAlloca,
4329                                          UnusedReturnSizePtr);
4330
4331   llvm::BasicBlock *InvokeDest = CannotThrow ? nullptr : getInvokeDest();
4332
4333   SmallVector<llvm::OperandBundleDef, 1> BundleList =
4334       getBundlesForFunclet(CalleePtr);
4335
4336   // Emit the actual call/invoke instruction.
4337   llvm::CallBase *CI;
4338   if (!InvokeDest) {
4339     CI = Builder.CreateCall(IRFuncTy, CalleePtr, IRCallArgs, BundleList);
4340   } else {
4341     llvm::BasicBlock *Cont = createBasicBlock("invoke.cont");
4342     CI = Builder.CreateInvoke(IRFuncTy, CalleePtr, Cont, InvokeDest, IRCallArgs,
4343                               BundleList);
4344     EmitBlock(Cont);
4345   }
4346   if (callOrInvoke)
4347     *callOrInvoke = CI;
4348
4349   // Apply the attributes and calling convention.
4350   CI->setAttributes(Attrs);
4351   CI->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
4352
4353   // Apply various metadata.
4354
4355   if (!CI->getType()->isVoidTy())
4356     CI->setName("call");
4357
4358   // Update largest vector width from the return type.
4359   if (auto *VT = dyn_cast<llvm::VectorType>(CI->getType()))
4360     LargestVectorWidth = std::max(LargestVectorWidth,
4361                                   VT->getPrimitiveSizeInBits());
4362
4363   // Insert instrumentation or attach profile metadata at indirect call sites.
4364   // For more details, see the comment before the definition of
4365   // IPVK_IndirectCallTarget in InstrProfData.inc.
4366   if (!CI->getCalledFunction())
4367     PGO.valueProfile(Builder, llvm::IPVK_IndirectCallTarget,
4368                      CI, CalleePtr);
4369
4370   // In ObjC ARC mode with no ObjC ARC exception safety, tell the ARC
4371   // optimizer it can aggressively ignore unwind edges.
4372   if (CGM.getLangOpts().ObjCAutoRefCount)
4373     AddObjCARCExceptionMetadata(CI);
4374
4375   // Suppress tail calls if requested.
4376   if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(CI)) {
4377     if (TargetDecl && TargetDecl->hasAttr<NotTailCalledAttr>())
4378       Call->setTailCallKind(llvm::CallInst::TCK_NoTail);
4379   }
4380
4381   // Add metadata for calls to MSAllocator functions
4382   if (getDebugInfo() && TargetDecl &&
4383       TargetDecl->hasAttr<MSAllocatorAttr>())
4384     getDebugInfo()->addHeapAllocSiteMetadata(CI, RetTy, Loc);
4385
4386   // 4. Finish the call.
4387
4388   // If the call doesn't return, finish the basic block and clear the
4389   // insertion point; this allows the rest of IRGen to discard
4390   // unreachable code.
4391   if (CI->doesNotReturn()) {
4392     if (UnusedReturnSizePtr)
4393       PopCleanupBlock();
4394
4395     // Strip away the noreturn attribute to better diagnose unreachable UB.
4396     if (SanOpts.has(SanitizerKind::Unreachable)) {
4397       // Also remove from function since CallBase::hasFnAttr additionally checks
4398       // attributes of the called function.
4399       if (auto *F = CI->getCalledFunction())
4400         F->removeFnAttr(llvm::Attribute::NoReturn);
4401       CI->removeAttribute(llvm::AttributeList::FunctionIndex,
4402                           llvm::Attribute::NoReturn);
4403
4404       // Avoid incompatibility with ASan which relies on the `noreturn`
4405       // attribute to insert handler calls.
4406       if (SanOpts.hasOneOf(SanitizerKind::Address |
4407                            SanitizerKind::KernelAddress)) {
4408         SanitizerScope SanScope(this);
4409         llvm::IRBuilder<>::InsertPointGuard IPGuard(Builder);
4410         Builder.SetInsertPoint(CI);
4411         auto *FnType = llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
4412         llvm::FunctionCallee Fn =
4413             CGM.CreateRuntimeFunction(FnType, "__asan_handle_no_return");
4414         EmitNounwindRuntimeCall(Fn);
4415       }
4416     }
4417
4418     EmitUnreachable(Loc);
4419     Builder.ClearInsertionPoint();
4420
4421     // FIXME: For now, emit a dummy basic block because expr emitters in
4422     // generally are not ready to handle emitting expressions at unreachable
4423     // points.
4424     EnsureInsertPoint();
4425
4426     // Return a reasonable RValue.
4427     return GetUndefRValue(RetTy);
4428   }
4429
4430   // Perform the swifterror writeback.
4431   if (swiftErrorTemp.isValid()) {
4432     llvm::Value *errorResult = Builder.CreateLoad(swiftErrorTemp);
4433     Builder.CreateStore(errorResult, swiftErrorArg);
4434   }
4435
4436   // Emit any call-associated writebacks immediately.  Arguably this
4437   // should happen after any return-value munging.
4438   if (CallArgs.hasWritebacks())
4439     emitWritebacks(*this, CallArgs);
4440
4441   // The stack cleanup for inalloca arguments has to run out of the normal
4442   // lexical order, so deactivate it and run it manually here.
4443   CallArgs.freeArgumentMemory(*this);
4444
4445   // Extract the return value.
4446   RValue Ret = [&] {
4447     switch (RetAI.getKind()) {
4448     case ABIArgInfo::CoerceAndExpand: {
4449       auto coercionType = RetAI.getCoerceAndExpandType();
4450
4451       Address addr = SRetPtr;
4452       addr = Builder.CreateElementBitCast(addr, coercionType);
4453
4454       assert(CI->getType() == RetAI.getUnpaddedCoerceAndExpandType());
4455       bool requiresExtract = isa<llvm::StructType>(CI->getType());
4456
4457       unsigned unpaddedIndex = 0;
4458       for (unsigned i = 0, e = coercionType->getNumElements(); i != e; ++i) {
4459         llvm::Type *eltType = coercionType->getElementType(i);
4460         if (ABIArgInfo::isPaddingForCoerceAndExpand(eltType)) continue;
4461         Address eltAddr = Builder.CreateStructGEP(addr, i);
4462         llvm::Value *elt = CI;
4463         if (requiresExtract)
4464           elt = Builder.CreateExtractValue(elt, unpaddedIndex++);
4465         else
4466           assert(unpaddedIndex == 0);
4467         Builder.CreateStore(elt, eltAddr);
4468       }
4469       // FALLTHROUGH
4470       LLVM_FALLTHROUGH;
4471     }
4472
4473     case ABIArgInfo::InAlloca:
4474     case ABIArgInfo::Indirect: {
4475       RValue ret = convertTempToRValue(SRetPtr, RetTy, SourceLocation());
4476       if (UnusedReturnSizePtr)
4477         PopCleanupBlock();
4478       return ret;
4479     }
4480
4481     case ABIArgInfo::Ignore:
4482       // If we are ignoring an argument that had a result, make sure to
4483       // construct the appropriate return value for our caller.
4484       return GetUndefRValue(RetTy);
4485
4486     case ABIArgInfo::Extend:
4487     case ABIArgInfo::Direct: {
4488       llvm::Type *RetIRTy = ConvertType(RetTy);
4489       if (RetAI.getCoerceToType() == RetIRTy && RetAI.getDirectOffset() == 0) {
4490         switch (getEvaluationKind(RetTy)) {
4491         case TEK_Complex: {
4492           llvm::Value *Real = Builder.CreateExtractValue(CI, 0);
4493           llvm::Value *Imag = Builder.CreateExtractValue(CI, 1);
4494           return RValue::getComplex(std::make_pair(Real, Imag));
4495         }
4496         case TEK_Aggregate: {
4497           Address DestPtr = ReturnValue.getValue();
4498           bool DestIsVolatile = ReturnValue.isVolatile();
4499
4500           if (!DestPtr.isValid()) {
4501             DestPtr = CreateMemTemp(RetTy, "agg.tmp");
4502             DestIsVolatile = false;
4503           }
4504           BuildAggStore(*this, CI, DestPtr, DestIsVolatile);
4505           return RValue::getAggregate(DestPtr);
4506         }
4507         case TEK_Scalar: {
4508           // If the argument doesn't match, perform a bitcast to coerce it.  This
4509           // can happen due to trivial type mismatches.
4510           llvm::Value *V = CI;
4511           if (V->getType() != RetIRTy)
4512             V = Builder.CreateBitCast(V, RetIRTy);
4513           return RValue::get(V);
4514         }
4515         }
4516         llvm_unreachable("bad evaluation kind");
4517       }
4518
4519       Address DestPtr = ReturnValue.getValue();
4520       bool DestIsVolatile = ReturnValue.isVolatile();
4521
4522       if (!DestPtr.isValid()) {
4523         DestPtr = CreateMemTemp(RetTy, "coerce");
4524         DestIsVolatile = false;
4525       }
4526
4527       // If the value is offset in memory, apply the offset now.
4528       Address StorePtr = emitAddressAtOffset(*this, DestPtr, RetAI);
4529       CreateCoercedStore(CI, StorePtr, DestIsVolatile, *this);
4530
4531       return convertTempToRValue(DestPtr, RetTy, SourceLocation());
4532     }
4533
4534     case ABIArgInfo::Expand:
4535       llvm_unreachable("Invalid ABI kind for return argument");
4536     }
4537
4538     llvm_unreachable("Unhandled ABIArgInfo::Kind");
4539   } ();
4540
4541   // Emit the assume_aligned check on the return value.
4542   if (Ret.isScalar() && TargetDecl) {
4543     if (const auto *AA = TargetDecl->getAttr<AssumeAlignedAttr>()) {
4544       llvm::Value *OffsetValue = nullptr;
4545       if (const auto *Offset = AA->getOffset())
4546         OffsetValue = EmitScalarExpr(Offset);
4547
4548       llvm::Value *Alignment = EmitScalarExpr(AA->getAlignment());
4549       llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(Alignment);
4550       EmitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, AA->getLocation(),
4551                               AlignmentCI->getZExtValue(), OffsetValue);
4552     } else if (const auto *AA = TargetDecl->getAttr<AllocAlignAttr>()) {
4553       llvm::Value *AlignmentVal = CallArgs[AA->getParamIndex().getLLVMIndex()]
4554                                       .getRValue(*this)
4555                                       .getScalarVal();
4556       EmitAlignmentAssumption(Ret.getScalarVal(), RetTy, Loc, AA->getLocation(),
4557                               AlignmentVal);
4558     }
4559   }
4560
4561   return Ret;
4562 }
4563
4564 CGCallee CGCallee::prepareConcreteCallee(CodeGenFunction &CGF) const {
4565   if (isVirtual()) {
4566     const CallExpr *CE = getVirtualCallExpr();
4567     return CGF.CGM.getCXXABI().getVirtualFunctionPointer(
4568         CGF, getVirtualMethodDecl(), getThisAddress(), getVirtualFunctionType(),
4569         CE ? CE->getBeginLoc() : SourceLocation());
4570   }
4571
4572   return *this;
4573 }
4574
4575 /* VarArg handling */
4576
4577 Address CodeGenFunction::EmitVAArg(VAArgExpr *VE, Address &VAListAddr) {
4578   VAListAddr = VE->isMicrosoftABI()
4579                  ? EmitMSVAListRef(VE->getSubExpr())
4580                  : EmitVAListRef(VE->getSubExpr());
4581   QualType Ty = VE->getType();
4582   if (VE->isMicrosoftABI())
4583     return CGM.getTypes().getABIInfo().EmitMSVAArg(*this, VAListAddr, Ty);
4584   return CGM.getTypes().getABIInfo().EmitVAArg(*this, VAListAddr, Ty);
4585 }