]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/CodeGen/CGClass.cpp
Update clang to trunk r256633.
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / CodeGen / CGClass.cpp
1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with C++ code generation of classes
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CGBlocks.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGRecordLayout.h"
18 #include "CodeGenFunction.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/EvaluatedExprVisitor.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtCXX.h"
24 #include "clang/Basic/TargetBuiltins.h"
25 #include "clang/CodeGen/CGFunctionInfo.h"
26 #include "clang/Frontend/CodeGenOptions.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/Metadata.h"
29
30 using namespace clang;
31 using namespace CodeGen;
32
33 /// Return the best known alignment for an unknown pointer to a
34 /// particular class.
35 CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) {
36   if (!RD->isCompleteDefinition())
37     return CharUnits::One(); // Hopefully won't be used anywhere.
38
39   auto &layout = getContext().getASTRecordLayout(RD);
40
41   // If the class is final, then we know that the pointer points to an
42   // object of that type and can use the full alignment.
43   if (RD->hasAttr<FinalAttr>()) {
44     return layout.getAlignment();
45
46   // Otherwise, we have to assume it could be a subclass.
47   } else {
48     return layout.getNonVirtualAlignment();
49   }
50 }
51
52 /// Return the best known alignment for a pointer to a virtual base,
53 /// given the alignment of a pointer to the derived class.
54 CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign,
55                                            const CXXRecordDecl *derivedClass,
56                                            const CXXRecordDecl *vbaseClass) {
57   // The basic idea here is that an underaligned derived pointer might
58   // indicate an underaligned base pointer.
59
60   assert(vbaseClass->isCompleteDefinition());
61   auto &baseLayout = getContext().getASTRecordLayout(vbaseClass);
62   CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment();
63
64   return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass,
65                                    expectedVBaseAlign);
66 }
67
68 CharUnits
69 CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign,
70                                          const CXXRecordDecl *baseDecl,
71                                          CharUnits expectedTargetAlign) {
72   // If the base is an incomplete type (which is, alas, possible with
73   // member pointers), be pessimistic.
74   if (!baseDecl->isCompleteDefinition())
75     return std::min(actualBaseAlign, expectedTargetAlign);
76
77   auto &baseLayout = getContext().getASTRecordLayout(baseDecl);
78   CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment();
79
80   // If the class is properly aligned, assume the target offset is, too.
81   //
82   // This actually isn't necessarily the right thing to do --- if the
83   // class is a complete object, but it's only properly aligned for a
84   // base subobject, then the alignments of things relative to it are
85   // probably off as well.  (Note that this requires the alignment of
86   // the target to be greater than the NV alignment of the derived
87   // class.)
88   //
89   // However, our approach to this kind of under-alignment can only
90   // ever be best effort; after all, we're never going to propagate
91   // alignments through variables or parameters.  Note, in particular,
92   // that constructing a polymorphic type in an address that's less
93   // than pointer-aligned will generally trap in the constructor,
94   // unless we someday add some sort of attribute to change the
95   // assumed alignment of 'this'.  So our goal here is pretty much
96   // just to allow the user to explicitly say that a pointer is
97   // under-aligned and then safely access its fields and v-tables.
98   if (actualBaseAlign >= expectedBaseAlign) {
99     return expectedTargetAlign;
100   }
101
102   // Otherwise, we might be offset by an arbitrary multiple of the
103   // actual alignment.  The correct adjustment is to take the min of
104   // the two alignments.
105   return std::min(actualBaseAlign, expectedTargetAlign);
106 }
107
108 Address CodeGenFunction::LoadCXXThisAddress() {
109   assert(CurFuncDecl && "loading 'this' without a func declaration?");
110   assert(isa<CXXMethodDecl>(CurFuncDecl));
111
112   // Lazily compute CXXThisAlignment.
113   if (CXXThisAlignment.isZero()) {
114     // Just use the best known alignment for the parent.
115     // TODO: if we're currently emitting a complete-object ctor/dtor,
116     // we can always use the complete-object alignment.
117     auto RD = cast<CXXMethodDecl>(CurFuncDecl)->getParent();
118     CXXThisAlignment = CGM.getClassPointerAlignment(RD);
119   }
120
121   return Address(LoadCXXThis(), CXXThisAlignment);
122 }
123
124 /// Emit the address of a field using a member data pointer.
125 ///
126 /// \param E Only used for emergency diagnostics
127 Address
128 CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
129                                                  llvm::Value *memberPtr,
130                                       const MemberPointerType *memberPtrType,
131                                                  AlignmentSource *alignSource) {
132   // Ask the ABI to compute the actual address.
133   llvm::Value *ptr =
134     CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base,
135                                                  memberPtr, memberPtrType);
136
137   QualType memberType = memberPtrType->getPointeeType();
138   CharUnits memberAlign = getNaturalTypeAlignment(memberType, alignSource);
139   memberAlign =
140     CGM.getDynamicOffsetAlignment(base.getAlignment(),
141                             memberPtrType->getClass()->getAsCXXRecordDecl(),
142                                   memberAlign);
143   return Address(ptr, memberAlign);
144 }
145
146 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset(
147     const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start,
148     CastExpr::path_const_iterator End) {
149   CharUnits Offset = CharUnits::Zero();
150
151   const ASTContext &Context = getContext();
152   const CXXRecordDecl *RD = DerivedClass;
153
154   for (CastExpr::path_const_iterator I = Start; I != End; ++I) {
155     const CXXBaseSpecifier *Base = *I;
156     assert(!Base->isVirtual() && "Should not see virtual bases here!");
157
158     // Get the layout.
159     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
160
161     const CXXRecordDecl *BaseDecl =
162       cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
163
164     // Add the offset.
165     Offset += Layout.getBaseClassOffset(BaseDecl);
166
167     RD = BaseDecl;
168   }
169
170   return Offset;
171 }
172
173 llvm::Constant *
174 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl,
175                                    CastExpr::path_const_iterator PathBegin,
176                                    CastExpr::path_const_iterator PathEnd) {
177   assert(PathBegin != PathEnd && "Base path should not be empty!");
178
179   CharUnits Offset =
180       computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd);
181   if (Offset.isZero())
182     return nullptr;
183
184   llvm::Type *PtrDiffTy =
185   Types.ConvertType(getContext().getPointerDiffType());
186
187   return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity());
188 }
189
190 /// Gets the address of a direct base class within a complete object.
191 /// This should only be used for (1) non-virtual bases or (2) virtual bases
192 /// when the type is known to be complete (e.g. in complete destructors).
193 ///
194 /// The object pointed to by 'This' is assumed to be non-null.
195 Address
196 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This,
197                                                    const CXXRecordDecl *Derived,
198                                                    const CXXRecordDecl *Base,
199                                                    bool BaseIsVirtual) {
200   // 'this' must be a pointer (in some address space) to Derived.
201   assert(This.getElementType() == ConvertType(Derived));
202
203   // Compute the offset of the virtual base.
204   CharUnits Offset;
205   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
206   if (BaseIsVirtual)
207     Offset = Layout.getVBaseClassOffset(Base);
208   else
209     Offset = Layout.getBaseClassOffset(Base);
210
211   // Shift and cast down to the base type.
212   // TODO: for complete types, this should be possible with a GEP.
213   Address V = This;
214   if (!Offset.isZero()) {
215     V = Builder.CreateElementBitCast(V, Int8Ty);
216     V = Builder.CreateConstInBoundsByteGEP(V, Offset);
217   }
218   V = Builder.CreateElementBitCast(V, ConvertType(Base));
219
220   return V;
221 }
222
223 static Address
224 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr,
225                                 CharUnits nonVirtualOffset,
226                                 llvm::Value *virtualOffset,
227                                 const CXXRecordDecl *derivedClass,
228                                 const CXXRecordDecl *nearestVBase) {
229   // Assert that we have something to do.
230   assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr);
231
232   // Compute the offset from the static and dynamic components.
233   llvm::Value *baseOffset;
234   if (!nonVirtualOffset.isZero()) {
235     baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy,
236                                         nonVirtualOffset.getQuantity());
237     if (virtualOffset) {
238       baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset);
239     }
240   } else {
241     baseOffset = virtualOffset;
242   }
243
244   // Apply the base offset.
245   llvm::Value *ptr = addr.getPointer();
246   ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy);
247   ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr");
248
249   // If we have a virtual component, the alignment of the result will
250   // be relative only to the known alignment of that vbase.
251   CharUnits alignment;
252   if (virtualOffset) {
253     assert(nearestVBase && "virtual offset without vbase?");
254     alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(),
255                                           derivedClass, nearestVBase);
256   } else {
257     alignment = addr.getAlignment();
258   }
259   alignment = alignment.alignmentAtOffset(nonVirtualOffset);
260
261   return Address(ptr, alignment);
262 }
263
264 Address CodeGenFunction::GetAddressOfBaseClass(
265     Address Value, const CXXRecordDecl *Derived,
266     CastExpr::path_const_iterator PathBegin,
267     CastExpr::path_const_iterator PathEnd, bool NullCheckValue,
268     SourceLocation Loc) {
269   assert(PathBegin != PathEnd && "Base path should not be empty!");
270
271   CastExpr::path_const_iterator Start = PathBegin;
272   const CXXRecordDecl *VBase = nullptr;
273
274   // Sema has done some convenient canonicalization here: if the
275   // access path involved any virtual steps, the conversion path will
276   // *start* with a step down to the correct virtual base subobject,
277   // and hence will not require any further steps.
278   if ((*Start)->isVirtual()) {
279     VBase =
280       cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl());
281     ++Start;
282   }
283
284   // Compute the static offset of the ultimate destination within its
285   // allocating subobject (the virtual base, if there is one, or else
286   // the "complete" object that we see).
287   CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset(
288       VBase ? VBase : Derived, Start, PathEnd);
289
290   // If there's a virtual step, we can sometimes "devirtualize" it.
291   // For now, that's limited to when the derived type is final.
292   // TODO: "devirtualize" this for accesses to known-complete objects.
293   if (VBase && Derived->hasAttr<FinalAttr>()) {
294     const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived);
295     CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase);
296     NonVirtualOffset += vBaseOffset;
297     VBase = nullptr; // we no longer have a virtual step
298   }
299
300   // Get the base pointer type.
301   llvm::Type *BasePtrTy =
302     ConvertType((PathEnd[-1])->getType())->getPointerTo();
303
304   QualType DerivedTy = getContext().getRecordType(Derived);
305   CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived);
306
307   // If the static offset is zero and we don't have a virtual step,
308   // just do a bitcast; null checks are unnecessary.
309   if (NonVirtualOffset.isZero() && !VBase) {
310     if (sanitizePerformTypeCheck()) {
311       EmitTypeCheck(TCK_Upcast, Loc, Value.getPointer(),
312                     DerivedTy, DerivedAlign, !NullCheckValue);
313     }
314     return Builder.CreateBitCast(Value, BasePtrTy);
315   }
316
317   llvm::BasicBlock *origBB = nullptr;
318   llvm::BasicBlock *endBB = nullptr;
319
320   // Skip over the offset (and the vtable load) if we're supposed to
321   // null-check the pointer.
322   if (NullCheckValue) {
323     origBB = Builder.GetInsertBlock();
324     llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull");
325     endBB = createBasicBlock("cast.end");
326
327     llvm::Value *isNull = Builder.CreateIsNull(Value.getPointer());
328     Builder.CreateCondBr(isNull, endBB, notNullBB);
329     EmitBlock(notNullBB);
330   }
331
332   if (sanitizePerformTypeCheck()) {
333     EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc,
334                   Value.getPointer(), DerivedTy, DerivedAlign, true);
335   }
336
337   // Compute the virtual offset.
338   llvm::Value *VirtualOffset = nullptr;
339   if (VBase) {
340     VirtualOffset =
341       CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase);
342   }
343
344   // Apply both offsets.
345   Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset,
346                                           VirtualOffset, Derived, VBase);
347
348   // Cast to the destination type.
349   Value = Builder.CreateBitCast(Value, BasePtrTy);
350
351   // Build a phi if we needed a null check.
352   if (NullCheckValue) {
353     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
354     Builder.CreateBr(endBB);
355     EmitBlock(endBB);
356
357     llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result");
358     PHI->addIncoming(Value.getPointer(), notNullBB);
359     PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB);
360     Value = Address(PHI, Value.getAlignment());
361   }
362
363   return Value;
364 }
365
366 Address
367 CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr,
368                                           const CXXRecordDecl *Derived,
369                                         CastExpr::path_const_iterator PathBegin,
370                                           CastExpr::path_const_iterator PathEnd,
371                                           bool NullCheckValue) {
372   assert(PathBegin != PathEnd && "Base path should not be empty!");
373
374   QualType DerivedTy =
375     getContext().getCanonicalType(getContext().getTagDeclType(Derived));
376   llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo();
377
378   llvm::Value *NonVirtualOffset =
379     CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd);
380
381   if (!NonVirtualOffset) {
382     // No offset, we can just cast back.
383     return Builder.CreateBitCast(BaseAddr, DerivedPtrTy);
384   }
385
386   llvm::BasicBlock *CastNull = nullptr;
387   llvm::BasicBlock *CastNotNull = nullptr;
388   llvm::BasicBlock *CastEnd = nullptr;
389
390   if (NullCheckValue) {
391     CastNull = createBasicBlock("cast.null");
392     CastNotNull = createBasicBlock("cast.notnull");
393     CastEnd = createBasicBlock("cast.end");
394
395     llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr.getPointer());
396     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
397     EmitBlock(CastNotNull);
398   }
399
400   // Apply the offset.
401   llvm::Value *Value = Builder.CreateBitCast(BaseAddr.getPointer(), Int8PtrTy);
402   Value = Builder.CreateGEP(Value, Builder.CreateNeg(NonVirtualOffset),
403                             "sub.ptr");
404
405   // Just cast.
406   Value = Builder.CreateBitCast(Value, DerivedPtrTy);
407
408   // Produce a PHI if we had a null-check.
409   if (NullCheckValue) {
410     Builder.CreateBr(CastEnd);
411     EmitBlock(CastNull);
412     Builder.CreateBr(CastEnd);
413     EmitBlock(CastEnd);
414
415     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
416     PHI->addIncoming(Value, CastNotNull);
417     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
418     Value = PHI;
419   }
420
421   return Address(Value, CGM.getClassPointerAlignment(Derived));
422 }
423
424 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD,
425                                               bool ForVirtualBase,
426                                               bool Delegating) {
427   if (!CGM.getCXXABI().NeedsVTTParameter(GD)) {
428     // This constructor/destructor does not need a VTT parameter.
429     return nullptr;
430   }
431
432   const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent();
433   const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent();
434
435   llvm::Value *VTT;
436
437   uint64_t SubVTTIndex;
438
439   if (Delegating) {
440     // If this is a delegating constructor call, just load the VTT.
441     return LoadCXXVTT();
442   } else if (RD == Base) {
443     // If the record matches the base, this is the complete ctor/dtor
444     // variant calling the base variant in a class with virtual bases.
445     assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) &&
446            "doing no-op VTT offset in base dtor/ctor?");
447     assert(!ForVirtualBase && "Can't have same class as virtual base!");
448     SubVTTIndex = 0;
449   } else {
450     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
451     CharUnits BaseOffset = ForVirtualBase ?
452       Layout.getVBaseClassOffset(Base) :
453       Layout.getBaseClassOffset(Base);
454
455     SubVTTIndex =
456       CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset));
457     assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
458   }
459
460   if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
461     // A VTT parameter was passed to the constructor, use it.
462     VTT = LoadCXXVTT();
463     VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex);
464   } else {
465     // We're the complete constructor, so get the VTT by name.
466     VTT = CGM.getVTables().GetAddrOfVTT(RD);
467     VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex);
468   }
469
470   return VTT;
471 }
472
473 namespace {
474   /// Call the destructor for a direct base class.
475   struct CallBaseDtor final : EHScopeStack::Cleanup {
476     const CXXRecordDecl *BaseClass;
477     bool BaseIsVirtual;
478     CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual)
479       : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
480
481     void Emit(CodeGenFunction &CGF, Flags flags) override {
482       const CXXRecordDecl *DerivedClass =
483         cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
484
485       const CXXDestructorDecl *D = BaseClass->getDestructor();
486       Address Addr =
487         CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(),
488                                                   DerivedClass, BaseClass,
489                                                   BaseIsVirtual);
490       CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual,
491                                 /*Delegating=*/false, Addr);
492     }
493   };
494
495   /// A visitor which checks whether an initializer uses 'this' in a
496   /// way which requires the vtable to be properly set.
497   struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> {
498     typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super;
499
500     bool UsesThis;
501
502     DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {}
503
504     // Black-list all explicit and implicit references to 'this'.
505     //
506     // Do we need to worry about external references to 'this' derived
507     // from arbitrary code?  If so, then anything which runs arbitrary
508     // external code might potentially access the vtable.
509     void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; }
510   };
511 } // end anonymous namespace
512
513 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) {
514   DynamicThisUseChecker Checker(C);
515   Checker.Visit(Init);
516   return Checker.UsesThis;
517 }
518
519 static void EmitBaseInitializer(CodeGenFunction &CGF,
520                                 const CXXRecordDecl *ClassDecl,
521                                 CXXCtorInitializer *BaseInit,
522                                 CXXCtorType CtorType) {
523   assert(BaseInit->isBaseInitializer() &&
524          "Must have base initializer!");
525
526   Address ThisPtr = CGF.LoadCXXThisAddress();
527
528   const Type *BaseType = BaseInit->getBaseClass();
529   CXXRecordDecl *BaseClassDecl =
530     cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
531
532   bool isBaseVirtual = BaseInit->isBaseVirtual();
533
534   // The base constructor doesn't construct virtual bases.
535   if (CtorType == Ctor_Base && isBaseVirtual)
536     return;
537
538   // If the initializer for the base (other than the constructor
539   // itself) accesses 'this' in any way, we need to initialize the
540   // vtables.
541   if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit()))
542     CGF.InitializeVTablePointers(ClassDecl);
543
544   // We can pretend to be a complete class because it only matters for
545   // virtual bases, and we only do virtual bases for complete ctors.
546   Address V =
547     CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl,
548                                               BaseClassDecl,
549                                               isBaseVirtual);
550   AggValueSlot AggSlot =
551     AggValueSlot::forAddr(V, Qualifiers(),
552                           AggValueSlot::IsDestructed,
553                           AggValueSlot::DoesNotNeedGCBarriers,
554                           AggValueSlot::IsNotAliased);
555
556   CGF.EmitAggExpr(BaseInit->getInit(), AggSlot);
557
558   if (CGF.CGM.getLangOpts().Exceptions &&
559       !BaseClassDecl->hasTrivialDestructor())
560     CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl,
561                                           isBaseVirtual);
562 }
563
564 static void EmitAggMemberInitializer(CodeGenFunction &CGF,
565                                      LValue LHS,
566                                      Expr *Init,
567                                      Address ArrayIndexVar,
568                                      QualType T,
569                                      ArrayRef<VarDecl *> ArrayIndexes,
570                                      unsigned Index) {
571   if (Index == ArrayIndexes.size()) {
572     LValue LV = LHS;
573
574     if (ArrayIndexVar.isValid()) {
575       // If we have an array index variable, load it and use it as an offset.
576       // Then, increment the value.
577       llvm::Value *Dest = LHS.getPointer();
578       llvm::Value *ArrayIndex = CGF.Builder.CreateLoad(ArrayIndexVar);
579       Dest = CGF.Builder.CreateInBoundsGEP(Dest, ArrayIndex, "destaddress");
580       llvm::Value *Next = llvm::ConstantInt::get(ArrayIndex->getType(), 1);
581       Next = CGF.Builder.CreateAdd(ArrayIndex, Next, "inc");
582       CGF.Builder.CreateStore(Next, ArrayIndexVar);
583
584       // Update the LValue.
585       CharUnits EltSize = CGF.getContext().getTypeSizeInChars(T);
586       CharUnits Align = LV.getAlignment().alignmentOfArrayElement(EltSize);
587       LV.setAddress(Address(Dest, Align));
588     }
589
590     switch (CGF.getEvaluationKind(T)) {
591     case TEK_Scalar:
592       CGF.EmitScalarInit(Init, /*decl*/ nullptr, LV, false);
593       break;
594     case TEK_Complex:
595       CGF.EmitComplexExprIntoLValue(Init, LV, /*isInit*/ true);
596       break;
597     case TEK_Aggregate: {
598       AggValueSlot Slot =
599         AggValueSlot::forLValue(LV,
600                                 AggValueSlot::IsDestructed,
601                                 AggValueSlot::DoesNotNeedGCBarriers,
602                                 AggValueSlot::IsNotAliased);
603
604       CGF.EmitAggExpr(Init, Slot);
605       break;
606     }
607     }
608
609     return;
610   }
611
612   const ConstantArrayType *Array = CGF.getContext().getAsConstantArrayType(T);
613   assert(Array && "Array initialization without the array type?");
614   Address IndexVar = CGF.GetAddrOfLocalVar(ArrayIndexes[Index]);
615
616   // Initialize this index variable to zero.
617   llvm::Value* Zero
618     = llvm::Constant::getNullValue(IndexVar.getElementType());
619   CGF.Builder.CreateStore(Zero, IndexVar);
620
621   // Start the loop with a block that tests the condition.
622   llvm::BasicBlock *CondBlock = CGF.createBasicBlock("for.cond");
623   llvm::BasicBlock *AfterFor = CGF.createBasicBlock("for.end");
624
625   CGF.EmitBlock(CondBlock);
626
627   llvm::BasicBlock *ForBody = CGF.createBasicBlock("for.body");
628   // Generate: if (loop-index < number-of-elements) fall to the loop body,
629   // otherwise, go to the block after the for-loop.
630   uint64_t NumElements = Array->getSize().getZExtValue();
631   llvm::Value *Counter = CGF.Builder.CreateLoad(IndexVar);
632   llvm::Value *NumElementsPtr =
633     llvm::ConstantInt::get(Counter->getType(), NumElements);
634   llvm::Value *IsLess = CGF.Builder.CreateICmpULT(Counter, NumElementsPtr,
635                                                   "isless");
636
637   // If the condition is true, execute the body.
638   CGF.Builder.CreateCondBr(IsLess, ForBody, AfterFor);
639
640   CGF.EmitBlock(ForBody);
641   llvm::BasicBlock *ContinueBlock = CGF.createBasicBlock("for.inc");
642
643   // Inside the loop body recurse to emit the inner loop or, eventually, the
644   // constructor call.
645   EmitAggMemberInitializer(CGF, LHS, Init, ArrayIndexVar,
646                            Array->getElementType(), ArrayIndexes, Index + 1);
647
648   CGF.EmitBlock(ContinueBlock);
649
650   // Emit the increment of the loop counter.
651   llvm::Value *NextVal = llvm::ConstantInt::get(Counter->getType(), 1);
652   Counter = CGF.Builder.CreateLoad(IndexVar);
653   NextVal = CGF.Builder.CreateAdd(Counter, NextVal, "inc");
654   CGF.Builder.CreateStore(NextVal, IndexVar);
655
656   // Finally, branch back up to the condition for the next iteration.
657   CGF.EmitBranch(CondBlock);
658
659   // Emit the fall-through block.
660   CGF.EmitBlock(AfterFor, true);
661 }
662
663 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) {
664   auto *CD = dyn_cast<CXXConstructorDecl>(D);
665   if (!(CD && CD->isCopyOrMoveConstructor()) &&
666       !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator())
667     return false;
668
669   // We can emit a memcpy for a trivial copy or move constructor/assignment.
670   if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding())
671     return true;
672
673   // We *must* emit a memcpy for a defaulted union copy or move op.
674   if (D->getParent()->isUnion() && D->isDefaulted())
675     return true;
676
677   return false;
678 }
679
680 static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF,
681                                                 CXXCtorInitializer *MemberInit,
682                                                 LValue &LHS) {
683   FieldDecl *Field = MemberInit->getAnyMember();
684   if (MemberInit->isIndirectMemberInitializer()) {
685     // If we are initializing an anonymous union field, drill down to the field.
686     IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember();
687     for (const auto *I : IndirectField->chain())
688       LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I));
689   } else {
690     LHS = CGF.EmitLValueForFieldInitialization(LHS, Field);
691   }
692 }
693
694 static void EmitMemberInitializer(CodeGenFunction &CGF,
695                                   const CXXRecordDecl *ClassDecl,
696                                   CXXCtorInitializer *MemberInit,
697                                   const CXXConstructorDecl *Constructor,
698                                   FunctionArgList &Args) {
699   ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation());
700   assert(MemberInit->isAnyMemberInitializer() &&
701          "Must have member initializer!");
702   assert(MemberInit->getInit() && "Must have initializer!");
703
704   // non-static data member initializers.
705   FieldDecl *Field = MemberInit->getAnyMember();
706   QualType FieldType = Field->getType();
707
708   llvm::Value *ThisPtr = CGF.LoadCXXThis();
709   QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
710   LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
711
712   EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS);
713
714   // Special case: if we are in a copy or move constructor, and we are copying
715   // an array of PODs or classes with trivial copy constructors, ignore the
716   // AST and perform the copy we know is equivalent.
717   // FIXME: This is hacky at best... if we had a bit more explicit information
718   // in the AST, we could generalize it more easily.
719   const ConstantArrayType *Array
720     = CGF.getContext().getAsConstantArrayType(FieldType);
721   if (Array && Constructor->isDefaulted() &&
722       Constructor->isCopyOrMoveConstructor()) {
723     QualType BaseElementTy = CGF.getContext().getBaseElementType(Array);
724     CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
725     if (BaseElementTy.isPODType(CGF.getContext()) ||
726         (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) {
727       unsigned SrcArgIndex =
728           CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args);
729       llvm::Value *SrcPtr
730         = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex]));
731       LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
732       LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field);
733
734       // Copy the aggregate.
735       CGF.EmitAggregateCopy(LHS.getAddress(), Src.getAddress(), FieldType,
736                             LHS.isVolatileQualified());
737       // Ensure that we destroy the objects if an exception is thrown later in
738       // the constructor.
739       QualType::DestructionKind dtorKind = FieldType.isDestructedType();
740       if (CGF.needsEHCleanup(dtorKind))
741         CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 
742       return;
743     }
744   }
745
746   ArrayRef<VarDecl *> ArrayIndexes;
747   if (MemberInit->getNumArrayIndices())
748     ArrayIndexes = MemberInit->getArrayIndexes();
749   CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit(), ArrayIndexes);
750 }
751
752 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS,
753                                 Expr *Init, ArrayRef<VarDecl *> ArrayIndexes) {
754   QualType FieldType = Field->getType();
755   switch (getEvaluationKind(FieldType)) {
756   case TEK_Scalar:
757     if (LHS.isSimple()) {
758       EmitExprAsInit(Init, Field, LHS, false);
759     } else {
760       RValue RHS = RValue::get(EmitScalarExpr(Init));
761       EmitStoreThroughLValue(RHS, LHS);
762     }
763     break;
764   case TEK_Complex:
765     EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true);
766     break;
767   case TEK_Aggregate: {
768     Address ArrayIndexVar = Address::invalid();
769     if (ArrayIndexes.size()) {
770       // The LHS is a pointer to the first object we'll be constructing, as
771       // a flat array.
772       QualType BaseElementTy = getContext().getBaseElementType(FieldType);
773       llvm::Type *BasePtr = ConvertType(BaseElementTy);
774       BasePtr = llvm::PointerType::getUnqual(BasePtr);
775       Address BaseAddrPtr = Builder.CreateBitCast(LHS.getAddress(), BasePtr);
776       LHS = MakeAddrLValue(BaseAddrPtr, BaseElementTy);
777
778       // Create an array index that will be used to walk over all of the
779       // objects we're constructing.
780       ArrayIndexVar = CreateMemTemp(getContext().getSizeType(), "object.index");
781       llvm::Value *Zero =
782         llvm::Constant::getNullValue(ArrayIndexVar.getElementType());
783       Builder.CreateStore(Zero, ArrayIndexVar);
784
785       // Emit the block variables for the array indices, if any.
786       for (unsigned I = 0, N = ArrayIndexes.size(); I != N; ++I)
787         EmitAutoVarDecl(*ArrayIndexes[I]);
788     }
789
790     EmitAggMemberInitializer(*this, LHS, Init, ArrayIndexVar, FieldType,
791                              ArrayIndexes, 0);
792   }
793   }
794
795   // Ensure that we destroy this object if an exception is thrown
796   // later in the constructor.
797   QualType::DestructionKind dtorKind = FieldType.isDestructedType();
798   if (needsEHCleanup(dtorKind))
799     pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
800 }
801
802 /// Checks whether the given constructor is a valid subject for the
803 /// complete-to-base constructor delegation optimization, i.e.
804 /// emitting the complete constructor as a simple call to the base
805 /// constructor.
806 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor) {
807
808   // Currently we disable the optimization for classes with virtual
809   // bases because (1) the addresses of parameter variables need to be
810   // consistent across all initializers but (2) the delegate function
811   // call necessarily creates a second copy of the parameter variable.
812   //
813   // The limiting example (purely theoretical AFAIK):
814   //   struct A { A(int &c) { c++; } };
815   //   struct B : virtual A {
816   //     B(int count) : A(count) { printf("%d\n", count); }
817   //   };
818   // ...although even this example could in principle be emitted as a
819   // delegation since the address of the parameter doesn't escape.
820   if (Ctor->getParent()->getNumVBases()) {
821     // TODO: white-list trivial vbase initializers.  This case wouldn't
822     // be subject to the restrictions below.
823
824     // TODO: white-list cases where:
825     //  - there are no non-reference parameters to the constructor
826     //  - the initializers don't access any non-reference parameters
827     //  - the initializers don't take the address of non-reference
828     //    parameters
829     //  - etc.
830     // If we ever add any of the above cases, remember that:
831     //  - function-try-blocks will always blacklist this optimization
832     //  - we need to perform the constructor prologue and cleanup in
833     //    EmitConstructorBody.
834
835     return false;
836   }
837
838   // We also disable the optimization for variadic functions because
839   // it's impossible to "re-pass" varargs.
840   if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic())
841     return false;
842
843   // FIXME: Decide if we can do a delegation of a delegating constructor.
844   if (Ctor->isDelegatingConstructor())
845     return false;
846
847   return true;
848 }
849
850 // Emit code in ctor (Prologue==true) or dtor (Prologue==false)
851 // to poison the extra field paddings inserted under
852 // -fsanitize-address-field-padding=1|2.
853 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) {
854   ASTContext &Context = getContext();
855   const CXXRecordDecl *ClassDecl =
856       Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent()
857                : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent();
858   if (!ClassDecl->mayInsertExtraPadding()) return;
859
860   struct SizeAndOffset {
861     uint64_t Size;
862     uint64_t Offset;
863   };
864
865   unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits();
866   const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl);
867
868   // Populate sizes and offsets of fields.
869   SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount());
870   for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i)
871     SSV[i].Offset =
872         Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity();
873
874   size_t NumFields = 0;
875   for (const auto *Field : ClassDecl->fields()) {
876     const FieldDecl *D = Field;
877     std::pair<CharUnits, CharUnits> FieldInfo =
878         Context.getTypeInfoInChars(D->getType());
879     CharUnits FieldSize = FieldInfo.first;
880     assert(NumFields < SSV.size());
881     SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity();
882     NumFields++;
883   }
884   assert(NumFields == SSV.size());
885   if (SSV.size() <= 1) return;
886
887   // We will insert calls to __asan_* run-time functions.
888   // LLVM AddressSanitizer pass may decide to inline them later.
889   llvm::Type *Args[2] = {IntPtrTy, IntPtrTy};
890   llvm::FunctionType *FTy =
891       llvm::FunctionType::get(CGM.VoidTy, Args, false);
892   llvm::Constant *F = CGM.CreateRuntimeFunction(
893       FTy, Prologue ? "__asan_poison_intra_object_redzone"
894                     : "__asan_unpoison_intra_object_redzone");
895
896   llvm::Value *ThisPtr = LoadCXXThis();
897   ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy);
898   uint64_t TypeSize = Info.getNonVirtualSize().getQuantity();
899   // For each field check if it has sufficient padding,
900   // if so (un)poison it with a call.
901   for (size_t i = 0; i < SSV.size(); i++) {
902     uint64_t AsanAlignment = 8;
903     uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset;
904     uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size;
905     uint64_t EndOffset = SSV[i].Offset + SSV[i].Size;
906     if (PoisonSize < AsanAlignment || !SSV[i].Size ||
907         (NextField % AsanAlignment) != 0)
908       continue;
909     Builder.CreateCall(
910         F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)),
911             Builder.getIntN(PtrSize, PoisonSize)});
912   }
913 }
914
915 /// EmitConstructorBody - Emits the body of the current constructor.
916 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) {
917   EmitAsanPrologueOrEpilogue(true);
918   const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl());
919   CXXCtorType CtorType = CurGD.getCtorType();
920
921   assert((CGM.getTarget().getCXXABI().hasConstructorVariants() ||
922           CtorType == Ctor_Complete) &&
923          "can only generate complete ctor for this ABI");
924
925   // Before we go any further, try the complete->base constructor
926   // delegation optimization.
927   if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) &&
928       CGM.getTarget().getCXXABI().hasConstructorVariants()) {
929     EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getLocEnd());
930     return;
931   }
932
933   const FunctionDecl *Definition = nullptr;
934   Stmt *Body = Ctor->getBody(Definition);
935   assert(Definition == Ctor && "emitting wrong constructor body");
936
937   // Enter the function-try-block before the constructor prologue if
938   // applicable.
939   bool IsTryBody = (Body && isa<CXXTryStmt>(Body));
940   if (IsTryBody)
941     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
942
943   incrementProfileCounter(Body);
944
945   RunCleanupsScope RunCleanups(*this);
946
947   // TODO: in restricted cases, we can emit the vbase initializers of
948   // a complete ctor and then delegate to the base ctor.
949
950   // Emit the constructor prologue, i.e. the base and member
951   // initializers.
952   EmitCtorPrologue(Ctor, CtorType, Args);
953
954   // Emit the body of the statement.
955   if (IsTryBody)
956     EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
957   else if (Body)
958     EmitStmt(Body);
959
960   // Emit any cleanup blocks associated with the member or base
961   // initializers, which includes (along the exceptional path) the
962   // destructors for those members and bases that were fully
963   // constructed.
964   RunCleanups.ForceCleanup();
965
966   if (IsTryBody)
967     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
968 }
969
970 namespace {
971   /// RAII object to indicate that codegen is copying the value representation
972   /// instead of the object representation. Useful when copying a struct or
973   /// class which has uninitialized members and we're only performing
974   /// lvalue-to-rvalue conversion on the object but not its members.
975   class CopyingValueRepresentation {
976   public:
977     explicit CopyingValueRepresentation(CodeGenFunction &CGF)
978         : CGF(CGF), OldSanOpts(CGF.SanOpts) {
979       CGF.SanOpts.set(SanitizerKind::Bool, false);
980       CGF.SanOpts.set(SanitizerKind::Enum, false);
981     }
982     ~CopyingValueRepresentation() {
983       CGF.SanOpts = OldSanOpts;
984     }
985   private:
986     CodeGenFunction &CGF;
987     SanitizerSet OldSanOpts;
988   };
989 }
990  
991 namespace {
992   class FieldMemcpyizer {
993   public:
994     FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl,
995                     const VarDecl *SrcRec)
996       : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec),
997         RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)),
998         FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0),
999         LastFieldOffset(0), LastAddedFieldIndex(0) {}
1000
1001     bool isMemcpyableField(FieldDecl *F) const {
1002       // Never memcpy fields when we are adding poisoned paddings.
1003       if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding)
1004         return false;
1005       Qualifiers Qual = F->getType().getQualifiers();
1006       if (Qual.hasVolatile() || Qual.hasObjCLifetime())
1007         return false;
1008       return true;
1009     }
1010
1011     void addMemcpyableField(FieldDecl *F) {
1012       if (!FirstField)
1013         addInitialField(F);
1014       else
1015         addNextField(F);
1016     }
1017
1018     CharUnits getMemcpySize(uint64_t FirstByteOffset) const {
1019       unsigned LastFieldSize =
1020         LastField->isBitField() ?
1021           LastField->getBitWidthValue(CGF.getContext()) :
1022           CGF.getContext().getTypeSize(LastField->getType());
1023       uint64_t MemcpySizeBits =
1024         LastFieldOffset + LastFieldSize - FirstByteOffset +
1025         CGF.getContext().getCharWidth() - 1;
1026       CharUnits MemcpySize =
1027         CGF.getContext().toCharUnitsFromBits(MemcpySizeBits);
1028       return MemcpySize;
1029     }
1030
1031     void emitMemcpy() {
1032       // Give the subclass a chance to bail out if it feels the memcpy isn't
1033       // worth it (e.g. Hasn't aggregated enough data).
1034       if (!FirstField) {
1035         return;
1036       }
1037
1038       uint64_t FirstByteOffset;
1039       if (FirstField->isBitField()) {
1040         const CGRecordLayout &RL =
1041           CGF.getTypes().getCGRecordLayout(FirstField->getParent());
1042         const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField);
1043         // FirstFieldOffset is not appropriate for bitfields,
1044         // we need to use the storage offset instead.
1045         FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset);
1046       } else {
1047         FirstByteOffset = FirstFieldOffset;
1048       }
1049
1050       CharUnits MemcpySize = getMemcpySize(FirstByteOffset);
1051       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
1052       Address ThisPtr = CGF.LoadCXXThisAddress();
1053       LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy);
1054       LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField);
1055       llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec));
1056       LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
1057       LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField);
1058
1059       emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(),
1060                    Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(),
1061                    MemcpySize);
1062       reset();
1063     }
1064
1065     void reset() {
1066       FirstField = nullptr;
1067     }
1068
1069   protected:
1070     CodeGenFunction &CGF;
1071     const CXXRecordDecl *ClassDecl;
1072
1073   private:
1074
1075     void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) {
1076       llvm::PointerType *DPT = DestPtr.getType();
1077       llvm::Type *DBP =
1078         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace());
1079       DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP);
1080
1081       llvm::PointerType *SPT = SrcPtr.getType();
1082       llvm::Type *SBP =
1083         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace());
1084       SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP);
1085
1086       CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity());
1087     }
1088
1089     void addInitialField(FieldDecl *F) {
1090         FirstField = F;
1091         LastField = F;
1092         FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex());
1093         LastFieldOffset = FirstFieldOffset;
1094         LastAddedFieldIndex = F->getFieldIndex();
1095         return;
1096       }
1097
1098     void addNextField(FieldDecl *F) {
1099       // For the most part, the following invariant will hold:
1100       //   F->getFieldIndex() == LastAddedFieldIndex + 1
1101       // The one exception is that Sema won't add a copy-initializer for an
1102       // unnamed bitfield, which will show up here as a gap in the sequence.
1103       assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 &&
1104              "Cannot aggregate fields out of order.");
1105       LastAddedFieldIndex = F->getFieldIndex();
1106
1107       // The 'first' and 'last' fields are chosen by offset, rather than field
1108       // index. This allows the code to support bitfields, as well as regular
1109       // fields.
1110       uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex());
1111       if (FOffset < FirstFieldOffset) {
1112         FirstField = F;
1113         FirstFieldOffset = FOffset;
1114       } else if (FOffset > LastFieldOffset) {
1115         LastField = F;
1116         LastFieldOffset = FOffset;
1117       }
1118     }
1119
1120     const VarDecl *SrcRec;
1121     const ASTRecordLayout &RecLayout;
1122     FieldDecl *FirstField;
1123     FieldDecl *LastField;
1124     uint64_t FirstFieldOffset, LastFieldOffset;
1125     unsigned LastAddedFieldIndex;
1126   };
1127
1128   class ConstructorMemcpyizer : public FieldMemcpyizer {
1129   private:
1130
1131     /// Get source argument for copy constructor. Returns null if not a copy
1132     /// constructor.
1133     static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF,
1134                                                const CXXConstructorDecl *CD,
1135                                                FunctionArgList &Args) {
1136       if (CD->isCopyOrMoveConstructor() && CD->isDefaulted())
1137         return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)];
1138       return nullptr;
1139     }
1140
1141     // Returns true if a CXXCtorInitializer represents a member initialization
1142     // that can be rolled into a memcpy.
1143     bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const {
1144       if (!MemcpyableCtor)
1145         return false;
1146       FieldDecl *Field = MemberInit->getMember();
1147       assert(Field && "No field for member init.");
1148       QualType FieldType = Field->getType();
1149       CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
1150
1151       // Bail out on non-memcpyable, not-trivially-copyable members.
1152       if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) &&
1153           !(FieldType.isTriviallyCopyableType(CGF.getContext()) ||
1154             FieldType->isReferenceType()))
1155         return false;
1156
1157       // Bail out on volatile fields.
1158       if (!isMemcpyableField(Field))
1159         return false;
1160
1161       // Otherwise we're good.
1162       return true;
1163     }
1164
1165   public:
1166     ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD,
1167                           FunctionArgList &Args)
1168       : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)),
1169         ConstructorDecl(CD),
1170         MemcpyableCtor(CD->isDefaulted() &&
1171                        CD->isCopyOrMoveConstructor() &&
1172                        CGF.getLangOpts().getGC() == LangOptions::NonGC),
1173         Args(Args) { }
1174
1175     void addMemberInitializer(CXXCtorInitializer *MemberInit) {
1176       if (isMemberInitMemcpyable(MemberInit)) {
1177         AggregatedInits.push_back(MemberInit);
1178         addMemcpyableField(MemberInit->getMember());
1179       } else {
1180         emitAggregatedInits();
1181         EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit,
1182                               ConstructorDecl, Args);
1183       }
1184     }
1185
1186     void emitAggregatedInits() {
1187       if (AggregatedInits.size() <= 1) {
1188         // This memcpy is too small to be worthwhile. Fall back on default
1189         // codegen.
1190         if (!AggregatedInits.empty()) {
1191           CopyingValueRepresentation CVR(CGF);
1192           EmitMemberInitializer(CGF, ConstructorDecl->getParent(),
1193                                 AggregatedInits[0], ConstructorDecl, Args);
1194           AggregatedInits.clear();
1195         }
1196         reset();
1197         return;
1198       }
1199
1200       pushEHDestructors();
1201       emitMemcpy();
1202       AggregatedInits.clear();
1203     }
1204
1205     void pushEHDestructors() {
1206       Address ThisPtr = CGF.LoadCXXThisAddress();
1207       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
1208       LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy);
1209
1210       for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
1211         CXXCtorInitializer *MemberInit = AggregatedInits[i];
1212         QualType FieldType = MemberInit->getAnyMember()->getType();
1213         QualType::DestructionKind dtorKind = FieldType.isDestructedType();
1214         if (!CGF.needsEHCleanup(dtorKind))
1215           continue;
1216         LValue FieldLHS = LHS;
1217         EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS);
1218         CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(), FieldType);
1219       }
1220     }
1221
1222     void finish() {
1223       emitAggregatedInits();
1224     }
1225
1226   private:
1227     const CXXConstructorDecl *ConstructorDecl;
1228     bool MemcpyableCtor;
1229     FunctionArgList &Args;
1230     SmallVector<CXXCtorInitializer*, 16> AggregatedInits;
1231   };
1232
1233   class AssignmentMemcpyizer : public FieldMemcpyizer {
1234   private:
1235
1236     // Returns the memcpyable field copied by the given statement, if one
1237     // exists. Otherwise returns null.
1238     FieldDecl *getMemcpyableField(Stmt *S) {
1239       if (!AssignmentsMemcpyable)
1240         return nullptr;
1241       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) {
1242         // Recognise trivial assignments.
1243         if (BO->getOpcode() != BO_Assign)
1244           return nullptr;
1245         MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS());
1246         if (!ME)
1247           return nullptr;
1248         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1249         if (!Field || !isMemcpyableField(Field))
1250           return nullptr;
1251         Stmt *RHS = BO->getRHS();
1252         if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS))
1253           RHS = EC->getSubExpr();
1254         if (!RHS)
1255           return nullptr;
1256         MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS);
1257         if (dyn_cast<FieldDecl>(ME2->getMemberDecl()) != Field)
1258           return nullptr;
1259         return Field;
1260       } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) {
1261         CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl());
1262         if (!(MD && isMemcpyEquivalentSpecialMember(MD)))
1263           return nullptr;
1264         MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument());
1265         if (!IOA)
1266           return nullptr;
1267         FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl());
1268         if (!Field || !isMemcpyableField(Field))
1269           return nullptr;
1270         MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0));
1271         if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl()))
1272           return nullptr;
1273         return Field;
1274       } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
1275         FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1276         if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy)
1277           return nullptr;
1278         Expr *DstPtr = CE->getArg(0);
1279         if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr))
1280           DstPtr = DC->getSubExpr();
1281         UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr);
1282         if (!DUO || DUO->getOpcode() != UO_AddrOf)
1283           return nullptr;
1284         MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr());
1285         if (!ME)
1286           return nullptr;
1287         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1288         if (!Field || !isMemcpyableField(Field))
1289           return nullptr;
1290         Expr *SrcPtr = CE->getArg(1);
1291         if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr))
1292           SrcPtr = SC->getSubExpr();
1293         UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr);
1294         if (!SUO || SUO->getOpcode() != UO_AddrOf)
1295           return nullptr;
1296         MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr());
1297         if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl()))
1298           return nullptr;
1299         return Field;
1300       }
1301
1302       return nullptr;
1303     }
1304
1305     bool AssignmentsMemcpyable;
1306     SmallVector<Stmt*, 16> AggregatedStmts;
1307
1308   public:
1309
1310     AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD,
1311                          FunctionArgList &Args)
1312       : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]),
1313         AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) {
1314       assert(Args.size() == 2);
1315     }
1316
1317     void emitAssignment(Stmt *S) {
1318       FieldDecl *F = getMemcpyableField(S);
1319       if (F) {
1320         addMemcpyableField(F);
1321         AggregatedStmts.push_back(S);
1322       } else {
1323         emitAggregatedStmts();
1324         CGF.EmitStmt(S);
1325       }
1326     }
1327
1328     void emitAggregatedStmts() {
1329       if (AggregatedStmts.size() <= 1) {
1330         if (!AggregatedStmts.empty()) {
1331           CopyingValueRepresentation CVR(CGF);
1332           CGF.EmitStmt(AggregatedStmts[0]);
1333         }
1334         reset();
1335       }
1336
1337       emitMemcpy();
1338       AggregatedStmts.clear();
1339     }
1340
1341     void finish() {
1342       emitAggregatedStmts();
1343     }
1344   };
1345 } // end anonymous namespace
1346
1347 static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) {
1348   const Type *BaseType = BaseInit->getBaseClass();
1349   const auto *BaseClassDecl =
1350           cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
1351   return BaseClassDecl->isDynamicClass();
1352 }
1353
1354 /// EmitCtorPrologue - This routine generates necessary code to initialize
1355 /// base classes and non-static data members belonging to this constructor.
1356 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD,
1357                                        CXXCtorType CtorType,
1358                                        FunctionArgList &Args) {
1359   if (CD->isDelegatingConstructor())
1360     return EmitDelegatingCXXConstructorCall(CD, Args);
1361
1362   const CXXRecordDecl *ClassDecl = CD->getParent();
1363
1364   CXXConstructorDecl::init_const_iterator B = CD->init_begin(),
1365                                           E = CD->init_end();
1366
1367   llvm::BasicBlock *BaseCtorContinueBB = nullptr;
1368   if (ClassDecl->getNumVBases() &&
1369       !CGM.getTarget().getCXXABI().hasConstructorVariants()) {
1370     // The ABIs that don't have constructor variants need to put a branch
1371     // before the virtual base initialization code.
1372     BaseCtorContinueBB =
1373       CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl);
1374     assert(BaseCtorContinueBB);
1375   }
1376
1377   llvm::Value *const OldThis = CXXThisValue;
1378   // Virtual base initializers first.
1379   for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) {
1380     if (CGM.getCodeGenOpts().StrictVTablePointers &&
1381         CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1382         isInitializerOfDynamicClass(*B))
1383       CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis());
1384     EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
1385   }
1386
1387   if (BaseCtorContinueBB) {
1388     // Complete object handler should continue to the remaining initializers.
1389     Builder.CreateBr(BaseCtorContinueBB);
1390     EmitBlock(BaseCtorContinueBB);
1391   }
1392
1393   // Then, non-virtual base initializers.
1394   for (; B != E && (*B)->isBaseInitializer(); B++) {
1395     assert(!(*B)->isBaseVirtual());
1396
1397     if (CGM.getCodeGenOpts().StrictVTablePointers &&
1398         CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1399         isInitializerOfDynamicClass(*B))
1400       CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis());
1401     EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
1402   }
1403
1404   CXXThisValue = OldThis;
1405
1406   InitializeVTablePointers(ClassDecl);
1407
1408   // And finally, initialize class members.
1409   FieldConstructionScope FCS(*this, LoadCXXThisAddress());
1410   ConstructorMemcpyizer CM(*this, CD, Args);
1411   for (; B != E; B++) {
1412     CXXCtorInitializer *Member = (*B);
1413     assert(!Member->isBaseInitializer());
1414     assert(Member->isAnyMemberInitializer() &&
1415            "Delegating initializer on non-delegating constructor");
1416     CM.addMemberInitializer(Member);
1417   }
1418   CM.finish();
1419 }
1420
1421 static bool
1422 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field);
1423
1424 static bool
1425 HasTrivialDestructorBody(ASTContext &Context,
1426                          const CXXRecordDecl *BaseClassDecl,
1427                          const CXXRecordDecl *MostDerivedClassDecl)
1428 {
1429   // If the destructor is trivial we don't have to check anything else.
1430   if (BaseClassDecl->hasTrivialDestructor())
1431     return true;
1432
1433   if (!BaseClassDecl->getDestructor()->hasTrivialBody())
1434     return false;
1435
1436   // Check fields.
1437   for (const auto *Field : BaseClassDecl->fields())
1438     if (!FieldHasTrivialDestructorBody(Context, Field))
1439       return false;
1440
1441   // Check non-virtual bases.
1442   for (const auto &I : BaseClassDecl->bases()) {
1443     if (I.isVirtual())
1444       continue;
1445
1446     const CXXRecordDecl *NonVirtualBase =
1447       cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1448     if (!HasTrivialDestructorBody(Context, NonVirtualBase,
1449                                   MostDerivedClassDecl))
1450       return false;
1451   }
1452
1453   if (BaseClassDecl == MostDerivedClassDecl) {
1454     // Check virtual bases.
1455     for (const auto &I : BaseClassDecl->vbases()) {
1456       const CXXRecordDecl *VirtualBase =
1457         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1458       if (!HasTrivialDestructorBody(Context, VirtualBase,
1459                                     MostDerivedClassDecl))
1460         return false;
1461     }
1462   }
1463
1464   return true;
1465 }
1466
1467 static bool
1468 FieldHasTrivialDestructorBody(ASTContext &Context,
1469                                           const FieldDecl *Field)
1470 {
1471   QualType FieldBaseElementType = Context.getBaseElementType(Field->getType());
1472
1473   const RecordType *RT = FieldBaseElementType->getAs<RecordType>();
1474   if (!RT)
1475     return true;
1476
1477   CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1478
1479   // The destructor for an implicit anonymous union member is never invoked.
1480   if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
1481     return false;
1482
1483   return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl);
1484 }
1485
1486 /// CanSkipVTablePointerInitialization - Check whether we need to initialize
1487 /// any vtable pointers before calling this destructor.
1488 static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF,
1489                                                const CXXDestructorDecl *Dtor) {
1490   const CXXRecordDecl *ClassDecl = Dtor->getParent();
1491   if (!ClassDecl->isDynamicClass())
1492     return true;
1493
1494   if (!Dtor->hasTrivialBody())
1495     return false;
1496
1497   // Check the fields.
1498   for (const auto *Field : ClassDecl->fields())
1499     if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field))
1500       return false;
1501
1502   return true;
1503 }
1504
1505 /// EmitDestructorBody - Emits the body of the current destructor.
1506 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) {
1507   const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl());
1508   CXXDtorType DtorType = CurGD.getDtorType();
1509
1510   Stmt *Body = Dtor->getBody();
1511   if (Body)
1512     incrementProfileCounter(Body);
1513
1514   // The call to operator delete in a deleting destructor happens
1515   // outside of the function-try-block, which means it's always
1516   // possible to delegate the destructor body to the complete
1517   // destructor.  Do so.
1518   if (DtorType == Dtor_Deleting) {
1519     EnterDtorCleanups(Dtor, Dtor_Deleting);
1520     EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
1521                           /*Delegating=*/false, LoadCXXThisAddress());
1522     PopCleanupBlock();
1523     return;
1524   }
1525
1526   // If the body is a function-try-block, enter the try before
1527   // anything else.
1528   bool isTryBody = (Body && isa<CXXTryStmt>(Body));
1529   if (isTryBody)
1530     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1531   EmitAsanPrologueOrEpilogue(false);
1532
1533   // Enter the epilogue cleanups.
1534   RunCleanupsScope DtorEpilogue(*this);
1535
1536   // If this is the complete variant, just invoke the base variant;
1537   // the epilogue will destruct the virtual bases.  But we can't do
1538   // this optimization if the body is a function-try-block, because
1539   // we'd introduce *two* handler blocks.  In the Microsoft ABI, we
1540   // always delegate because we might not have a definition in this TU.
1541   switch (DtorType) {
1542   case Dtor_Comdat:
1543     llvm_unreachable("not expecting a COMDAT");
1544
1545   case Dtor_Deleting: llvm_unreachable("already handled deleting case");
1546
1547   case Dtor_Complete:
1548     assert((Body || getTarget().getCXXABI().isMicrosoft()) &&
1549            "can't emit a dtor without a body for non-Microsoft ABIs");
1550
1551     // Enter the cleanup scopes for virtual bases.
1552     EnterDtorCleanups(Dtor, Dtor_Complete);
1553
1554     if (!isTryBody) {
1555       EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false,
1556                             /*Delegating=*/false, LoadCXXThisAddress());
1557       break;
1558     }
1559     // Fallthrough: act like we're in the base variant.
1560
1561   case Dtor_Base:
1562     assert(Body);
1563
1564     // Enter the cleanup scopes for fields and non-virtual bases.
1565     EnterDtorCleanups(Dtor, Dtor_Base);
1566
1567     // Initialize the vtable pointers before entering the body.
1568     if (!CanSkipVTablePointerInitialization(*this, Dtor)) {
1569       // Insert the llvm.invariant.group.barrier intrinsic before initializing
1570       // the vptrs to cancel any previous assumptions we might have made.
1571       if (CGM.getCodeGenOpts().StrictVTablePointers &&
1572           CGM.getCodeGenOpts().OptimizationLevel > 0)
1573         CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis());
1574       InitializeVTablePointers(Dtor->getParent());
1575     }
1576
1577     if (isTryBody)
1578       EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
1579     else if (Body)
1580       EmitStmt(Body);
1581     else {
1582       assert(Dtor->isImplicit() && "bodyless dtor not implicit");
1583       // nothing to do besides what's in the epilogue
1584     }
1585     // -fapple-kext must inline any call to this dtor into
1586     // the caller's body.
1587     if (getLangOpts().AppleKext)
1588       CurFn->addFnAttr(llvm::Attribute::AlwaysInline);
1589
1590     break;
1591   }
1592
1593   // Jump out through the epilogue cleanups.
1594   DtorEpilogue.ForceCleanup();
1595
1596   // Exit the try if applicable.
1597   if (isTryBody)
1598     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1599 }
1600
1601 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) {
1602   const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl());
1603   const Stmt *RootS = AssignOp->getBody();
1604   assert(isa<CompoundStmt>(RootS) &&
1605          "Body of an implicit assignment operator should be compound stmt.");
1606   const CompoundStmt *RootCS = cast<CompoundStmt>(RootS);
1607
1608   LexicalScope Scope(*this, RootCS->getSourceRange());
1609
1610   AssignmentMemcpyizer AM(*this, AssignOp, Args);
1611   for (auto *I : RootCS->body())
1612     AM.emitAssignment(I);
1613   AM.finish();
1614 }
1615
1616 namespace {
1617   /// Call the operator delete associated with the current destructor.
1618   struct CallDtorDelete final : EHScopeStack::Cleanup {
1619     CallDtorDelete() {}
1620
1621     void Emit(CodeGenFunction &CGF, Flags flags) override {
1622       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1623       const CXXRecordDecl *ClassDecl = Dtor->getParent();
1624       CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
1625                          CGF.getContext().getTagDeclType(ClassDecl));
1626     }
1627   };
1628
1629   struct CallDtorDeleteConditional final : EHScopeStack::Cleanup {
1630     llvm::Value *ShouldDeleteCondition;
1631   public:
1632     CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition)
1633         : ShouldDeleteCondition(ShouldDeleteCondition) {
1634       assert(ShouldDeleteCondition != nullptr);
1635     }
1636
1637     void Emit(CodeGenFunction &CGF, Flags flags) override {
1638       llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete");
1639       llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue");
1640       llvm::Value *ShouldCallDelete
1641         = CGF.Builder.CreateIsNull(ShouldDeleteCondition);
1642       CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB);
1643
1644       CGF.EmitBlock(callDeleteBB);
1645       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1646       const CXXRecordDecl *ClassDecl = Dtor->getParent();
1647       CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
1648                          CGF.getContext().getTagDeclType(ClassDecl));
1649       CGF.Builder.CreateBr(continueBB);
1650
1651       CGF.EmitBlock(continueBB);
1652     }
1653   };
1654
1655   class DestroyField  final : public EHScopeStack::Cleanup {
1656     const FieldDecl *field;
1657     CodeGenFunction::Destroyer *destroyer;
1658     bool useEHCleanupForArray;
1659
1660   public:
1661     DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer,
1662                  bool useEHCleanupForArray)
1663         : field(field), destroyer(destroyer),
1664           useEHCleanupForArray(useEHCleanupForArray) {}
1665
1666     void Emit(CodeGenFunction &CGF, Flags flags) override {
1667       // Find the address of the field.
1668       Address thisValue = CGF.LoadCXXThisAddress();
1669       QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent());
1670       LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy);
1671       LValue LV = CGF.EmitLValueForField(ThisLV, field);
1672       assert(LV.isSimple());
1673
1674       CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer,
1675                       flags.isForNormalCleanup() && useEHCleanupForArray);
1676     }
1677   };
1678
1679  static void EmitSanitizerDtorCallback(CodeGenFunction &CGF, llvm::Value *Ptr,
1680              CharUnits::QuantityType PoisonSize) {
1681    // Pass in void pointer and size of region as arguments to runtime
1682    // function
1683    llvm::Value *Args[] = {CGF.Builder.CreateBitCast(Ptr, CGF.VoidPtrTy),
1684                           llvm::ConstantInt::get(CGF.SizeTy, PoisonSize)};
1685
1686    llvm::Type *ArgTypes[] = {CGF.VoidPtrTy, CGF.SizeTy};
1687
1688    llvm::FunctionType *FnType =
1689        llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false);
1690    llvm::Value *Fn =
1691        CGF.CGM.CreateRuntimeFunction(FnType, "__sanitizer_dtor_callback");
1692    CGF.EmitNounwindRuntimeCall(Fn, Args);
1693  }
1694
1695   class SanitizeDtorMembers final : public EHScopeStack::Cleanup {
1696     const CXXDestructorDecl *Dtor;
1697
1698   public:
1699     SanitizeDtorMembers(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {}
1700
1701     // Generate function call for handling object poisoning.
1702     // Disables tail call elimination, to prevent the current stack frame
1703     // from disappearing from the stack trace.
1704     void Emit(CodeGenFunction &CGF, Flags flags) override {
1705       const ASTRecordLayout &Layout =
1706           CGF.getContext().getASTRecordLayout(Dtor->getParent());
1707
1708       // Nothing to poison.
1709       if (Layout.getFieldCount() == 0)
1710         return;
1711
1712       // Prevent the current stack frame from disappearing from the stack trace.
1713       CGF.CurFn->addFnAttr("disable-tail-calls", "true");
1714
1715       // Construct pointer to region to begin poisoning, and calculate poison
1716       // size, so that only members declared in this class are poisoned.
1717       ASTContext &Context = CGF.getContext();
1718       unsigned fieldIndex = 0;
1719       int startIndex = -1;
1720       // RecordDecl::field_iterator Field;
1721       for (const FieldDecl *Field : Dtor->getParent()->fields()) {
1722         // Poison field if it is trivial
1723         if (FieldHasTrivialDestructorBody(Context, Field)) {
1724           // Start sanitizing at this field
1725           if (startIndex < 0)
1726             startIndex = fieldIndex;
1727
1728           // Currently on the last field, and it must be poisoned with the
1729           // current block.
1730           if (fieldIndex == Layout.getFieldCount() - 1) {
1731             PoisonMembers(CGF, startIndex, Layout.getFieldCount());
1732           }
1733         } else if (startIndex >= 0) {
1734           // No longer within a block of memory to poison, so poison the block
1735           PoisonMembers(CGF, startIndex, fieldIndex);
1736           // Re-set the start index
1737           startIndex = -1;
1738         }
1739         fieldIndex += 1;
1740       }
1741     }
1742
1743   private:
1744     /// \param layoutStartOffset index of the ASTRecordLayout field to
1745     ///     start poisoning (inclusive)
1746     /// \param layoutEndOffset index of the ASTRecordLayout field to
1747     ///     end poisoning (exclusive)
1748     void PoisonMembers(CodeGenFunction &CGF, unsigned layoutStartOffset,
1749                      unsigned layoutEndOffset) {
1750       ASTContext &Context = CGF.getContext();
1751       const ASTRecordLayout &Layout =
1752           Context.getASTRecordLayout(Dtor->getParent());
1753
1754       llvm::ConstantInt *OffsetSizePtr = llvm::ConstantInt::get(
1755           CGF.SizeTy,
1756           Context.toCharUnitsFromBits(Layout.getFieldOffset(layoutStartOffset))
1757               .getQuantity());
1758
1759       llvm::Value *OffsetPtr = CGF.Builder.CreateGEP(
1760           CGF.Builder.CreateBitCast(CGF.LoadCXXThis(), CGF.Int8PtrTy),
1761           OffsetSizePtr);
1762
1763       CharUnits::QuantityType PoisonSize;
1764       if (layoutEndOffset >= Layout.getFieldCount()) {
1765         PoisonSize = Layout.getNonVirtualSize().getQuantity() -
1766                      Context.toCharUnitsFromBits(
1767                                 Layout.getFieldOffset(layoutStartOffset))
1768                          .getQuantity();
1769       } else {
1770         PoisonSize = Context.toCharUnitsFromBits(
1771                                 Layout.getFieldOffset(layoutEndOffset) -
1772                                 Layout.getFieldOffset(layoutStartOffset))
1773                          .getQuantity();
1774       }
1775
1776       if (PoisonSize == 0)
1777         return;
1778
1779       EmitSanitizerDtorCallback(CGF, OffsetPtr, PoisonSize);
1780     }
1781   };
1782
1783  class SanitizeDtorVTable final : public EHScopeStack::Cleanup {
1784     const CXXDestructorDecl *Dtor;
1785
1786   public:
1787     SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {}
1788
1789     // Generate function call for handling vtable pointer poisoning.
1790     void Emit(CodeGenFunction &CGF, Flags flags) override {
1791       assert(Dtor->getParent()->isDynamicClass());
1792       (void)Dtor;
1793       ASTContext &Context = CGF.getContext();
1794       // Poison vtable and vtable ptr if they exist for this class.
1795       llvm::Value *VTablePtr = CGF.LoadCXXThis();
1796
1797       CharUnits::QuantityType PoisonSize =
1798           Context.toCharUnitsFromBits(CGF.PointerWidthInBits).getQuantity();
1799       // Pass in void pointer and size of region as arguments to runtime
1800       // function
1801       EmitSanitizerDtorCallback(CGF, VTablePtr, PoisonSize);
1802     }
1803  };
1804 } // end anonymous namespace
1805
1806 /// \brief Emit all code that comes at the end of class's
1807 /// destructor. This is to call destructors on members and base classes
1808 /// in reverse order of their construction.
1809 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD,
1810                                         CXXDtorType DtorType) {
1811   assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) &&
1812          "Should not emit dtor epilogue for non-exported trivial dtor!");
1813
1814   // The deleting-destructor phase just needs to call the appropriate
1815   // operator delete that Sema picked up.
1816   if (DtorType == Dtor_Deleting) {
1817     assert(DD->getOperatorDelete() &&
1818            "operator delete missing - EnterDtorCleanups");
1819     if (CXXStructorImplicitParamValue) {
1820       // If there is an implicit param to the deleting dtor, it's a boolean
1821       // telling whether we should call delete at the end of the dtor.
1822       EHStack.pushCleanup<CallDtorDeleteConditional>(
1823           NormalAndEHCleanup, CXXStructorImplicitParamValue);
1824     } else {
1825       EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup);
1826     }
1827     return;
1828   }
1829
1830   const CXXRecordDecl *ClassDecl = DD->getParent();
1831
1832   // Unions have no bases and do not call field destructors.
1833   if (ClassDecl->isUnion())
1834     return;
1835
1836   // The complete-destructor phase just destructs all the virtual bases.
1837   if (DtorType == Dtor_Complete) {
1838     // Poison the vtable pointer such that access after the base
1839     // and member destructors are invoked is invalid.
1840     if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1841         SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() &&
1842         ClassDecl->isPolymorphic())
1843       EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
1844
1845     // We push them in the forward order so that they'll be popped in
1846     // the reverse order.
1847     for (const auto &Base : ClassDecl->vbases()) {
1848       CXXRecordDecl *BaseClassDecl
1849         = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
1850
1851       // Ignore trivial destructors.
1852       if (BaseClassDecl->hasTrivialDestructor())
1853         continue;
1854
1855       EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1856                                         BaseClassDecl,
1857                                         /*BaseIsVirtual*/ true);
1858     }
1859
1860     return;
1861   }
1862
1863   assert(DtorType == Dtor_Base);
1864   // Poison the vtable pointer if it has no virtual bases, but inherits
1865   // virtual functions.
1866   if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1867       SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() &&
1868       ClassDecl->isPolymorphic())
1869     EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
1870
1871   // Destroy non-virtual bases.
1872   for (const auto &Base : ClassDecl->bases()) {
1873     // Ignore virtual bases.
1874     if (Base.isVirtual())
1875       continue;
1876
1877     CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl();
1878
1879     // Ignore trivial destructors.
1880     if (BaseClassDecl->hasTrivialDestructor())
1881       continue;
1882
1883     EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1884                                       BaseClassDecl,
1885                                       /*BaseIsVirtual*/ false);
1886   }
1887
1888   // Poison fields such that access after their destructors are
1889   // invoked, and before the base class destructor runs, is invalid.
1890   if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1891       SanOpts.has(SanitizerKind::Memory))
1892     EHStack.pushCleanup<SanitizeDtorMembers>(NormalAndEHCleanup, DD);
1893
1894   // Destroy direct fields.
1895   for (const auto *Field : ClassDecl->fields()) {
1896     QualType type = Field->getType();
1897     QualType::DestructionKind dtorKind = type.isDestructedType();
1898     if (!dtorKind) continue;
1899
1900     // Anonymous union members do not have their destructors called.
1901     const RecordType *RT = type->getAsUnionType();
1902     if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue;
1903
1904     CleanupKind cleanupKind = getCleanupKind(dtorKind);
1905     EHStack.pushCleanup<DestroyField>(cleanupKind, Field,
1906                                       getDestroyer(dtorKind),
1907                                       cleanupKind & EHCleanup);
1908   }
1909 }
1910
1911 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1912 /// constructor for each of several members of an array.
1913 ///
1914 /// \param ctor the constructor to call for each element
1915 /// \param arrayType the type of the array to initialize
1916 /// \param arrayBegin an arrayType*
1917 /// \param zeroInitialize true if each element should be
1918 ///   zero-initialized before it is constructed
1919 void CodeGenFunction::EmitCXXAggrConstructorCall(
1920     const CXXConstructorDecl *ctor, const ConstantArrayType *arrayType,
1921     Address arrayBegin, const CXXConstructExpr *E, bool zeroInitialize) {
1922   QualType elementType;
1923   llvm::Value *numElements =
1924     emitArrayLength(arrayType, elementType, arrayBegin);
1925
1926   EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, zeroInitialize);
1927 }
1928
1929 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1930 /// constructor for each of several members of an array.
1931 ///
1932 /// \param ctor the constructor to call for each element
1933 /// \param numElements the number of elements in the array;
1934 ///   may be zero
1935 /// \param arrayBase a T*, where T is the type constructed by ctor
1936 /// \param zeroInitialize true if each element should be
1937 ///   zero-initialized before it is constructed
1938 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
1939                                                  llvm::Value *numElements,
1940                                                  Address arrayBase,
1941                                                  const CXXConstructExpr *E,
1942                                                  bool zeroInitialize) {
1943   // It's legal for numElements to be zero.  This can happen both
1944   // dynamically, because x can be zero in 'new A[x]', and statically,
1945   // because of GCC extensions that permit zero-length arrays.  There
1946   // are probably legitimate places where we could assume that this
1947   // doesn't happen, but it's not clear that it's worth it.
1948   llvm::BranchInst *zeroCheckBranch = nullptr;
1949
1950   // Optimize for a constant count.
1951   llvm::ConstantInt *constantCount
1952     = dyn_cast<llvm::ConstantInt>(numElements);
1953   if (constantCount) {
1954     // Just skip out if the constant count is zero.
1955     if (constantCount->isZero()) return;
1956
1957   // Otherwise, emit the check.
1958   } else {
1959     llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop");
1960     llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty");
1961     zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB);
1962     EmitBlock(loopBB);
1963   }
1964
1965   // Find the end of the array.
1966   llvm::Value *arrayBegin = arrayBase.getPointer();
1967   llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements,
1968                                                     "arrayctor.end");
1969
1970   // Enter the loop, setting up a phi for the current location to initialize.
1971   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1972   llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop");
1973   EmitBlock(loopBB);
1974   llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2,
1975                                          "arrayctor.cur");
1976   cur->addIncoming(arrayBegin, entryBB);
1977
1978   // Inside the loop body, emit the constructor call on the array element.
1979
1980   // The alignment of the base, adjusted by the size of a single element,
1981   // provides a conservative estimate of the alignment of every element.
1982   // (This assumes we never start tracking offsetted alignments.)
1983   // 
1984   // Note that these are complete objects and so we don't need to
1985   // use the non-virtual size or alignment.
1986   QualType type = getContext().getTypeDeclType(ctor->getParent());
1987   CharUnits eltAlignment =
1988     arrayBase.getAlignment()
1989              .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
1990   Address curAddr = Address(cur, eltAlignment);
1991
1992   // Zero initialize the storage, if requested.
1993   if (zeroInitialize)
1994     EmitNullInitialization(curAddr, type);
1995
1996   // C++ [class.temporary]p4:
1997   // There are two contexts in which temporaries are destroyed at a different
1998   // point than the end of the full-expression. The first context is when a
1999   // default constructor is called to initialize an element of an array.
2000   // If the constructor has one or more default arguments, the destruction of
2001   // every temporary created in a default argument expression is sequenced
2002   // before the construction of the next array element, if any.
2003
2004   {
2005     RunCleanupsScope Scope(*this);
2006
2007     // Evaluate the constructor and its arguments in a regular
2008     // partial-destroy cleanup.
2009     if (getLangOpts().Exceptions &&
2010         !ctor->getParent()->hasTrivialDestructor()) {
2011       Destroyer *destroyer = destroyCXXObject;
2012       pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment,
2013                                      *destroyer);
2014     }
2015
2016     EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false,
2017                            /*Delegating=*/false, curAddr, E);
2018   }
2019
2020   // Go to the next element.
2021   llvm::Value *next =
2022     Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1),
2023                               "arrayctor.next");
2024   cur->addIncoming(next, Builder.GetInsertBlock());
2025
2026   // Check whether that's the end of the loop.
2027   llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done");
2028   llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont");
2029   Builder.CreateCondBr(done, contBB, loopBB);
2030
2031   // Patch the earlier check to skip over the loop.
2032   if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB);
2033
2034   EmitBlock(contBB);
2035 }
2036
2037 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF,
2038                                        Address addr,
2039                                        QualType type) {
2040   const RecordType *rtype = type->castAs<RecordType>();
2041   const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl());
2042   const CXXDestructorDecl *dtor = record->getDestructor();
2043   assert(!dtor->isTrivial());
2044   CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false,
2045                             /*Delegating=*/false, addr);
2046 }
2047
2048 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
2049                                              CXXCtorType Type,
2050                                              bool ForVirtualBase,
2051                                              bool Delegating, Address This,
2052                                              const CXXConstructExpr *E) {
2053   const CXXRecordDecl *ClassDecl = D->getParent();
2054
2055   // C++11 [class.mfct.non-static]p2:
2056   //   If a non-static member function of a class X is called for an object that
2057   //   is not of type X, or of a type derived from X, the behavior is undefined.
2058   // FIXME: Provide a source location here.
2059   EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, SourceLocation(),
2060                 This.getPointer(), getContext().getRecordType(ClassDecl));
2061
2062   if (D->isTrivial() && D->isDefaultConstructor()) {
2063     assert(E->getNumArgs() == 0 && "trivial default ctor with args");
2064     return;
2065   }
2066
2067   // If this is a trivial constructor, just emit what's needed. If this is a
2068   // union copy constructor, we must emit a memcpy, because the AST does not
2069   // model that copy.
2070   if (isMemcpyEquivalentSpecialMember(D)) {
2071     assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
2072
2073     const Expr *Arg = E->getArg(0);
2074     QualType SrcTy = Arg->getType();
2075     Address Src = EmitLValue(Arg).getAddress();
2076     QualType DestTy = getContext().getTypeDeclType(ClassDecl);
2077     EmitAggregateCopyCtor(This, Src, DestTy, SrcTy);
2078     return;
2079   }
2080
2081   CallArgList Args;
2082
2083   // Push the this ptr.
2084   Args.add(RValue::get(This.getPointer()), D->getThisType(getContext()));
2085
2086   // Add the rest of the user-supplied arguments.
2087   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
2088   EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor());
2089
2090   // Insert any ABI-specific implicit constructor arguments.
2091   unsigned ExtraArgs = CGM.getCXXABI().addImplicitConstructorArgs(
2092       *this, D, Type, ForVirtualBase, Delegating, Args);
2093
2094   // Emit the call.
2095   llvm::Value *Callee = CGM.getAddrOfCXXStructor(D, getFromCtorType(Type));
2096   const CGFunctionInfo &Info =
2097       CGM.getTypes().arrangeCXXConstructorCall(Args, D, Type, ExtraArgs);
2098   EmitCall(Info, Callee, ReturnValueSlot(), Args, D);
2099
2100   // Generate vtable assumptions if we're constructing a complete object
2101   // with a vtable.  We don't do this for base subobjects for two reasons:
2102   // first, it's incorrect for classes with virtual bases, and second, we're
2103   // about to overwrite the vptrs anyway.
2104   // We also have to make sure if we can refer to vtable:
2105   // - Otherwise we can refer to vtable if it's safe to speculatively emit.
2106   // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are
2107   // sure that definition of vtable is not hidden,
2108   // then we are always safe to refer to it.
2109   // FIXME: It looks like InstCombine is very inefficient on dealing with
2110   // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily.
2111   if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2112       ClassDecl->isDynamicClass() && Type != Ctor_Base &&
2113       CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) &&
2114       CGM.getCodeGenOpts().StrictVTablePointers)
2115     EmitVTableAssumptionLoads(ClassDecl, This);
2116 }
2117
2118 void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) {
2119   llvm::Value *VTableGlobal =
2120       CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass);
2121   if (!VTableGlobal)
2122     return;
2123
2124   // We can just use the base offset in the complete class.
2125   CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset();
2126
2127   if (!NonVirtualOffset.isZero())
2128     This =
2129         ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr,
2130                                         Vptr.VTableClass, Vptr.NearestVBase);
2131
2132   llvm::Value *VPtrValue =
2133       GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass);
2134   llvm::Value *Cmp =
2135       Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables");
2136   Builder.CreateAssumption(Cmp);
2137 }
2138
2139 void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl,
2140                                                 Address This) {
2141   if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl))
2142     for (const VPtr &Vptr : getVTablePointers(ClassDecl))
2143       EmitVTableAssumptionLoad(Vptr, This);
2144 }
2145
2146 void
2147 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2148                                                 Address This, Address Src,
2149                                                 const CXXConstructExpr *E) {
2150   if (isMemcpyEquivalentSpecialMember(D)) {
2151     assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
2152     assert(D->isCopyOrMoveConstructor() &&
2153            "trivial 1-arg ctor not a copy/move ctor");
2154     EmitAggregateCopyCtor(This, Src,
2155                           getContext().getTypeDeclType(D->getParent()),
2156                           (*E->arg_begin())->getType());
2157     return;
2158   }
2159   llvm::Value *Callee = CGM.getAddrOfCXXStructor(D, StructorType::Complete);
2160   assert(D->isInstance() &&
2161          "Trying to emit a member call expr on a static method!");
2162
2163   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
2164
2165   CallArgList Args;
2166
2167   // Push the this ptr.
2168   Args.add(RValue::get(This.getPointer()), D->getThisType(getContext()));
2169
2170   // Push the src ptr.
2171   QualType QT = *(FPT->param_type_begin());
2172   llvm::Type *t = CGM.getTypes().ConvertType(QT);
2173   Src = Builder.CreateBitCast(Src, t);
2174   Args.add(RValue::get(Src.getPointer()), QT);
2175
2176   // Skip over first argument (Src).
2177   EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(),
2178                /*ParamsToSkip*/ 1);
2179
2180   EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, RequiredArgs::All),
2181            Callee, ReturnValueSlot(), Args, D);
2182 }
2183
2184 void
2185 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2186                                                 CXXCtorType CtorType,
2187                                                 const FunctionArgList &Args,
2188                                                 SourceLocation Loc) {
2189   CallArgList DelegateArgs;
2190
2191   FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
2192   assert(I != E && "no parameters to constructor");
2193
2194   // this
2195   DelegateArgs.add(RValue::get(LoadCXXThis()), (*I)->getType());
2196   ++I;
2197
2198   // vtt
2199   if (llvm::Value *VTT = GetVTTParameter(GlobalDecl(Ctor, CtorType),
2200                                          /*ForVirtualBase=*/false,
2201                                          /*Delegating=*/true)) {
2202     QualType VoidPP = getContext().getPointerType(getContext().VoidPtrTy);
2203     DelegateArgs.add(RValue::get(VTT), VoidPP);
2204
2205     if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
2206       assert(I != E && "cannot skip vtt parameter, already done with args");
2207       assert((*I)->getType() == VoidPP && "skipping parameter not of vtt type");
2208       ++I;
2209     }
2210   }
2211
2212   // Explicit arguments.
2213   for (; I != E; ++I) {
2214     const VarDecl *param = *I;
2215     // FIXME: per-argument source location
2216     EmitDelegateCallArg(DelegateArgs, param, Loc);
2217   }
2218
2219   llvm::Value *Callee =
2220       CGM.getAddrOfCXXStructor(Ctor, getFromCtorType(CtorType));
2221   EmitCall(CGM.getTypes()
2222                .arrangeCXXStructorDeclaration(Ctor, getFromCtorType(CtorType)),
2223            Callee, ReturnValueSlot(), DelegateArgs, Ctor);
2224 }
2225
2226 namespace {
2227   struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup {
2228     const CXXDestructorDecl *Dtor;
2229     Address Addr;
2230     CXXDtorType Type;
2231
2232     CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr,
2233                            CXXDtorType Type)
2234       : Dtor(D), Addr(Addr), Type(Type) {}
2235
2236     void Emit(CodeGenFunction &CGF, Flags flags) override {
2237       CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false,
2238                                 /*Delegating=*/true, Addr);
2239     }
2240   };
2241 } // end anonymous namespace
2242
2243 void
2244 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2245                                                   const FunctionArgList &Args) {
2246   assert(Ctor->isDelegatingConstructor());
2247
2248   Address ThisPtr = LoadCXXThisAddress();
2249
2250   AggValueSlot AggSlot =
2251     AggValueSlot::forAddr(ThisPtr, Qualifiers(),
2252                           AggValueSlot::IsDestructed,
2253                           AggValueSlot::DoesNotNeedGCBarriers,
2254                           AggValueSlot::IsNotAliased);
2255
2256   EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot);
2257
2258   const CXXRecordDecl *ClassDecl = Ctor->getParent();
2259   if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) {
2260     CXXDtorType Type =
2261       CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base;
2262
2263     EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup,
2264                                                 ClassDecl->getDestructor(),
2265                                                 ThisPtr, Type);
2266   }
2267 }
2268
2269 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD,
2270                                             CXXDtorType Type,
2271                                             bool ForVirtualBase,
2272                                             bool Delegating,
2273                                             Address This) {
2274   CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase,
2275                                      Delegating, This);
2276 }
2277
2278 namespace {
2279   struct CallLocalDtor final : EHScopeStack::Cleanup {
2280     const CXXDestructorDecl *Dtor;
2281     Address Addr;
2282
2283     CallLocalDtor(const CXXDestructorDecl *D, Address Addr)
2284       : Dtor(D), Addr(Addr) {}
2285
2286     void Emit(CodeGenFunction &CGF, Flags flags) override {
2287       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
2288                                 /*ForVirtualBase=*/false,
2289                                 /*Delegating=*/false, Addr);
2290     }
2291   };
2292 }
2293
2294 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D,
2295                                             Address Addr) {
2296   EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr);
2297 }
2298
2299 void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) {
2300   CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl();
2301   if (!ClassDecl) return;
2302   if (ClassDecl->hasTrivialDestructor()) return;
2303
2304   const CXXDestructorDecl *D = ClassDecl->getDestructor();
2305   assert(D && D->isUsed() && "destructor not marked as used!");
2306   PushDestructorCleanup(D, Addr);
2307 }
2308
2309 void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) {
2310   // Compute the address point.
2311   llvm::Value *VTableAddressPoint =
2312       CGM.getCXXABI().getVTableAddressPointInStructor(
2313           *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase);
2314
2315   if (!VTableAddressPoint)
2316     return;
2317
2318   // Compute where to store the address point.
2319   llvm::Value *VirtualOffset = nullptr;
2320   CharUnits NonVirtualOffset = CharUnits::Zero();
2321
2322   if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) {
2323     // We need to use the virtual base offset offset because the virtual base
2324     // might have a different offset in the most derived class.
2325
2326     VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(
2327         *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase);
2328     NonVirtualOffset = Vptr.OffsetFromNearestVBase;
2329   } else {
2330     // We can just use the base offset in the complete class.
2331     NonVirtualOffset = Vptr.Base.getBaseOffset();
2332   }
2333
2334   // Apply the offsets.
2335   Address VTableField = LoadCXXThisAddress();
2336
2337   if (!NonVirtualOffset.isZero() || VirtualOffset)
2338     VTableField = ApplyNonVirtualAndVirtualOffset(
2339         *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass,
2340         Vptr.NearestVBase);
2341
2342   // Finally, store the address point. Use the same LLVM types as the field to
2343   // support optimization.
2344   llvm::Type *VTablePtrTy =
2345       llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true)
2346           ->getPointerTo()
2347           ->getPointerTo();
2348   VTableField = Builder.CreateBitCast(VTableField, VTablePtrTy->getPointerTo());
2349   VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy);
2350
2351   llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField);
2352   CGM.DecorateInstructionWithTBAA(Store, CGM.getTBAAInfoForVTablePtr());
2353   if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2354       CGM.getCodeGenOpts().StrictVTablePointers)
2355     CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass);
2356 }
2357
2358 CodeGenFunction::VPtrsVector
2359 CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) {
2360   CodeGenFunction::VPtrsVector VPtrsResult;
2361   VisitedVirtualBasesSetTy VBases;
2362   getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()),
2363                     /*NearestVBase=*/nullptr,
2364                     /*OffsetFromNearestVBase=*/CharUnits::Zero(),
2365                     /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases,
2366                     VPtrsResult);
2367   return VPtrsResult;
2368 }
2369
2370 void CodeGenFunction::getVTablePointers(BaseSubobject Base,
2371                                         const CXXRecordDecl *NearestVBase,
2372                                         CharUnits OffsetFromNearestVBase,
2373                                         bool BaseIsNonVirtualPrimaryBase,
2374                                         const CXXRecordDecl *VTableClass,
2375                                         VisitedVirtualBasesSetTy &VBases,
2376                                         VPtrsVector &Vptrs) {
2377   // If this base is a non-virtual primary base the address point has already
2378   // been set.
2379   if (!BaseIsNonVirtualPrimaryBase) {
2380     // Initialize the vtable pointer for this base.
2381     VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass};
2382     Vptrs.push_back(Vptr);
2383   }
2384
2385   const CXXRecordDecl *RD = Base.getBase();
2386
2387   // Traverse bases.
2388   for (const auto &I : RD->bases()) {
2389     CXXRecordDecl *BaseDecl
2390       = cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2391
2392     // Ignore classes without a vtable.
2393     if (!BaseDecl->isDynamicClass())
2394       continue;
2395
2396     CharUnits BaseOffset;
2397     CharUnits BaseOffsetFromNearestVBase;
2398     bool BaseDeclIsNonVirtualPrimaryBase;
2399
2400     if (I.isVirtual()) {
2401       // Check if we've visited this virtual base before.
2402       if (!VBases.insert(BaseDecl).second)
2403         continue;
2404
2405       const ASTRecordLayout &Layout =
2406         getContext().getASTRecordLayout(VTableClass);
2407
2408       BaseOffset = Layout.getVBaseClassOffset(BaseDecl);
2409       BaseOffsetFromNearestVBase = CharUnits::Zero();
2410       BaseDeclIsNonVirtualPrimaryBase = false;
2411     } else {
2412       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2413
2414       BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl);
2415       BaseOffsetFromNearestVBase =
2416         OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl);
2417       BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl;
2418     }
2419
2420     getVTablePointers(
2421         BaseSubobject(BaseDecl, BaseOffset),
2422         I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase,
2423         BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs);
2424   }
2425 }
2426
2427 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) {
2428   // Ignore classes without a vtable.
2429   if (!RD->isDynamicClass())
2430     return;
2431
2432   // Initialize the vtable pointers for this class and all of its bases.
2433   if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD))
2434     for (const VPtr &Vptr : getVTablePointers(RD))
2435       InitializeVTablePointer(Vptr);
2436
2437   if (RD->getNumVBases())
2438     CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD);
2439 }
2440
2441 llvm::Value *CodeGenFunction::GetVTablePtr(Address This,
2442                                            llvm::Type *VTableTy,
2443                                            const CXXRecordDecl *RD) {
2444   Address VTablePtrSrc = Builder.CreateElementBitCast(This, VTableTy);
2445   llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable");
2446   CGM.DecorateInstructionWithTBAA(VTable, CGM.getTBAAInfoForVTablePtr());
2447
2448   if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2449       CGM.getCodeGenOpts().StrictVTablePointers)
2450     CGM.DecorateInstructionWithInvariantGroup(VTable, RD);
2451
2452   return VTable;
2453 }
2454
2455 // If a class has a single non-virtual base and does not introduce or override
2456 // virtual member functions or fields, it will have the same layout as its base.
2457 // This function returns the least derived such class.
2458 //
2459 // Casting an instance of a base class to such a derived class is technically
2460 // undefined behavior, but it is a relatively common hack for introducing member
2461 // functions on class instances with specific properties (e.g. llvm::Operator)
2462 // that works under most compilers and should not have security implications, so
2463 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict.
2464 static const CXXRecordDecl *
2465 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) {
2466   if (!RD->field_empty())
2467     return RD;
2468
2469   if (RD->getNumVBases() != 0)
2470     return RD;
2471
2472   if (RD->getNumBases() != 1)
2473     return RD;
2474
2475   for (const CXXMethodDecl *MD : RD->methods()) {
2476     if (MD->isVirtual()) {
2477       // Virtual member functions are only ok if they are implicit destructors
2478       // because the implicit destructor will have the same semantics as the
2479       // base class's destructor if no fields are added.
2480       if (isa<CXXDestructorDecl>(MD) && MD->isImplicit())
2481         continue;
2482       return RD;
2483     }
2484   }
2485
2486   return LeastDerivedClassWithSameLayout(
2487       RD->bases_begin()->getType()->getAsCXXRecordDecl());
2488 }
2489
2490 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXMethodDecl *MD,
2491                                                 llvm::Value *VTable,
2492                                                 CFITypeCheckKind TCK,
2493                                                 SourceLocation Loc) {
2494   const CXXRecordDecl *ClassDecl = MD->getParent();
2495   if (!SanOpts.has(SanitizerKind::CFICastStrict))
2496     ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl);
2497
2498   EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc);
2499 }
2500
2501 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T,
2502                                                 llvm::Value *Derived,
2503                                                 bool MayBeNull,
2504                                                 CFITypeCheckKind TCK,
2505                                                 SourceLocation Loc) {
2506   if (!getLangOpts().CPlusPlus)
2507     return;
2508
2509   auto *ClassTy = T->getAs<RecordType>();
2510   if (!ClassTy)
2511     return;
2512
2513   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl());
2514
2515   if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass())
2516     return;
2517
2518   if (!SanOpts.has(SanitizerKind::CFICastStrict))
2519     ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl);
2520
2521   llvm::BasicBlock *ContBlock = nullptr;
2522
2523   if (MayBeNull) {
2524     llvm::Value *DerivedNotNull =
2525         Builder.CreateIsNotNull(Derived, "cast.nonnull");
2526
2527     llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check");
2528     ContBlock = createBasicBlock("cast.cont");
2529
2530     Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock);
2531
2532     EmitBlock(CheckBlock);
2533   }
2534
2535   llvm::Value *VTable =
2536     GetVTablePtr(Address(Derived, getPointerAlign()), Int8PtrTy, ClassDecl);
2537
2538   EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc);
2539
2540   if (MayBeNull) {
2541     Builder.CreateBr(ContBlock);
2542     EmitBlock(ContBlock);
2543   }
2544 }
2545
2546 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD,
2547                                          llvm::Value *VTable,
2548                                          CFITypeCheckKind TCK,
2549                                          SourceLocation Loc) {
2550   if (CGM.IsCFIBlacklistedRecord(RD))
2551     return;
2552
2553   SanitizerScope SanScope(this);
2554
2555   llvm::Metadata *MD =
2556       CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2557   llvm::Value *BitSetName = llvm::MetadataAsValue::get(getLLVMContext(), MD);
2558
2559   llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy);
2560   llvm::Value *BitSetTest =
2561       Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::bitset_test),
2562                          {CastedVTable, BitSetName});
2563
2564   if (CGM.getCodeGenOpts().SanitizeCfiCrossDso) {
2565     if (auto TypeId = CGM.CreateCfiIdForTypeMetadata(MD)) {
2566       EmitCfiSlowPathCheck(BitSetTest, TypeId, CastedVTable);
2567       return;
2568     }
2569   }
2570
2571   SanitizerMask M;
2572   switch (TCK) {
2573   case CFITCK_VCall:
2574     M = SanitizerKind::CFIVCall;
2575     break;
2576   case CFITCK_NVCall:
2577     M = SanitizerKind::CFINVCall;
2578     break;
2579   case CFITCK_DerivedCast:
2580     M = SanitizerKind::CFIDerivedCast;
2581     break;
2582   case CFITCK_UnrelatedCast:
2583     M = SanitizerKind::CFIUnrelatedCast;
2584     break;
2585   }
2586
2587   llvm::Constant *StaticData[] = {
2588       EmitCheckSourceLocation(Loc),
2589       EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)),
2590       llvm::ConstantInt::get(Int8Ty, TCK),
2591   };
2592   EmitCheck(std::make_pair(BitSetTest, M), "cfi_bad_type", StaticData,
2593             CastedVTable);
2594 }
2595
2596 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do
2597 // quite what we want.
2598 static const Expr *skipNoOpCastsAndParens(const Expr *E) {
2599   while (true) {
2600     if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
2601       E = PE->getSubExpr();
2602       continue;
2603     }
2604
2605     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
2606       if (CE->getCastKind() == CK_NoOp) {
2607         E = CE->getSubExpr();
2608         continue;
2609       }
2610     }
2611     if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
2612       if (UO->getOpcode() == UO_Extension) {
2613         E = UO->getSubExpr();
2614         continue;
2615       }
2616     }
2617     return E;
2618   }
2619 }
2620
2621 bool
2622 CodeGenFunction::CanDevirtualizeMemberFunctionCall(const Expr *Base,
2623                                                    const CXXMethodDecl *MD) {
2624   // When building with -fapple-kext, all calls must go through the vtable since
2625   // the kernel linker can do runtime patching of vtables.
2626   if (getLangOpts().AppleKext)
2627     return false;
2628
2629   // If the most derived class is marked final, we know that no subclass can
2630   // override this member function and so we can devirtualize it. For example:
2631   //
2632   // struct A { virtual void f(); }
2633   // struct B final : A { };
2634   //
2635   // void f(B *b) {
2636   //   b->f();
2637   // }
2638   //
2639   const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
2640   if (MostDerivedClassDecl->hasAttr<FinalAttr>())
2641     return true;
2642
2643   // If the member function is marked 'final', we know that it can't be
2644   // overridden and can therefore devirtualize it.
2645   if (MD->hasAttr<FinalAttr>())
2646     return true;
2647
2648   // Similarly, if the class itself is marked 'final' it can't be overridden
2649   // and we can therefore devirtualize the member function call.
2650   if (MD->getParent()->hasAttr<FinalAttr>())
2651     return true;
2652
2653   Base = skipNoOpCastsAndParens(Base);
2654   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
2655     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
2656       // This is a record decl. We know the type and can devirtualize it.
2657       return VD->getType()->isRecordType();
2658     }
2659
2660     return false;
2661   }
2662
2663   // We can devirtualize calls on an object accessed by a class member access
2664   // expression, since by C++11 [basic.life]p6 we know that it can't refer to
2665   // a derived class object constructed in the same location.
2666   if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base))
2667     if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl()))
2668       return VD->getType()->isRecordType();
2669
2670   // We can always devirtualize calls on temporary object expressions.
2671   if (isa<CXXConstructExpr>(Base))
2672     return true;
2673
2674   // And calls on bound temporaries.
2675   if (isa<CXXBindTemporaryExpr>(Base))
2676     return true;
2677
2678   // Check if this is a call expr that returns a record type.
2679   if (const CallExpr *CE = dyn_cast<CallExpr>(Base))
2680     return CE->getCallReturnType(getContext())->isRecordType();
2681
2682   // We can't devirtualize the call.
2683   return false;
2684 }
2685
2686 void CodeGenFunction::EmitForwardingCallToLambda(
2687                                       const CXXMethodDecl *callOperator,
2688                                       CallArgList &callArgs) {
2689   // Get the address of the call operator.
2690   const CGFunctionInfo &calleeFnInfo =
2691     CGM.getTypes().arrangeCXXMethodDeclaration(callOperator);
2692   llvm::Value *callee =
2693     CGM.GetAddrOfFunction(GlobalDecl(callOperator),
2694                           CGM.getTypes().GetFunctionType(calleeFnInfo));
2695
2696   // Prepare the return slot.
2697   const FunctionProtoType *FPT =
2698     callOperator->getType()->castAs<FunctionProtoType>();
2699   QualType resultType = FPT->getReturnType();
2700   ReturnValueSlot returnSlot;
2701   if (!resultType->isVoidType() &&
2702       calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect &&
2703       !hasScalarEvaluationKind(calleeFnInfo.getReturnType()))
2704     returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified());
2705
2706   // We don't need to separately arrange the call arguments because
2707   // the call can't be variadic anyway --- it's impossible to forward
2708   // variadic arguments.
2709
2710   // Now emit our call.
2711   RValue RV = EmitCall(calleeFnInfo, callee, returnSlot,
2712                        callArgs, callOperator);
2713
2714   // If necessary, copy the returned value into the slot.
2715   if (!resultType->isVoidType() && returnSlot.isNull())
2716     EmitReturnOfRValue(RV, resultType);
2717   else
2718     EmitBranchThroughCleanup(ReturnBlock);
2719 }
2720
2721 void CodeGenFunction::EmitLambdaBlockInvokeBody() {
2722   const BlockDecl *BD = BlockInfo->getBlockDecl();
2723   const VarDecl *variable = BD->capture_begin()->getVariable();
2724   const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl();
2725
2726   // Start building arguments for forwarding call
2727   CallArgList CallArgs;
2728
2729   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2730   Address ThisPtr = GetAddrOfBlockDecl(variable, false);
2731   CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType);
2732
2733   // Add the rest of the parameters.
2734   for (auto param : BD->params())
2735     EmitDelegateCallArg(CallArgs, param, param->getLocStart());
2736
2737   assert(!Lambda->isGenericLambda() &&
2738             "generic lambda interconversion to block not implemented");
2739   EmitForwardingCallToLambda(Lambda->getLambdaCallOperator(), CallArgs);
2740 }
2741
2742 void CodeGenFunction::EmitLambdaToBlockPointerBody(FunctionArgList &Args) {
2743   if (cast<CXXMethodDecl>(CurCodeDecl)->isVariadic()) {
2744     // FIXME: Making this work correctly is nasty because it requires either
2745     // cloning the body of the call operator or making the call operator forward.
2746     CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function");
2747     return;
2748   }
2749
2750   EmitFunctionBody(Args, cast<FunctionDecl>(CurGD.getDecl())->getBody());
2751 }
2752
2753 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) {
2754   const CXXRecordDecl *Lambda = MD->getParent();
2755
2756   // Start building arguments for forwarding call
2757   CallArgList CallArgs;
2758
2759   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2760   llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType));
2761   CallArgs.add(RValue::get(ThisPtr), ThisType);
2762
2763   // Add the rest of the parameters.
2764   for (auto Param : MD->params())
2765     EmitDelegateCallArg(CallArgs, Param, Param->getLocStart());
2766
2767   const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
2768   // For a generic lambda, find the corresponding call operator specialization
2769   // to which the call to the static-invoker shall be forwarded.
2770   if (Lambda->isGenericLambda()) {
2771     assert(MD->isFunctionTemplateSpecialization());
2772     const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
2773     FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate();
2774     void *InsertPos = nullptr;
2775     FunctionDecl *CorrespondingCallOpSpecialization =
2776         CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
2777     assert(CorrespondingCallOpSpecialization);
2778     CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
2779   }
2780   EmitForwardingCallToLambda(CallOp, CallArgs);
2781 }
2782
2783 void CodeGenFunction::EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD) {
2784   if (MD->isVariadic()) {
2785     // FIXME: Making this work correctly is nasty because it requires either
2786     // cloning the body of the call operator or making the call operator forward.
2787     CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
2788     return;
2789   }
2790
2791   EmitLambdaDelegatingInvokeBody(MD);
2792 }