]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/CodeGen/CGClass.cpp
Merge llvm, clang, lld, lldb, compiler-rt and libc++ r303571, and update
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / CodeGen / CGClass.cpp
1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with C++ code generation of classes
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CGBlocks.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGRecordLayout.h"
18 #include "CodeGenFunction.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/EvaluatedExprVisitor.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtCXX.h"
24 #include "clang/Basic/TargetBuiltins.h"
25 #include "clang/CodeGen/CGFunctionInfo.h"
26 #include "clang/Frontend/CodeGenOptions.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/Metadata.h"
29 #include "llvm/Transforms/Utils/SanitizerStats.h"
30
31 using namespace clang;
32 using namespace CodeGen;
33
34 /// Return the best known alignment for an unknown pointer to a
35 /// particular class.
36 CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) {
37   if (!RD->isCompleteDefinition())
38     return CharUnits::One(); // Hopefully won't be used anywhere.
39
40   auto &layout = getContext().getASTRecordLayout(RD);
41
42   // If the class is final, then we know that the pointer points to an
43   // object of that type and can use the full alignment.
44   if (RD->hasAttr<FinalAttr>()) {
45     return layout.getAlignment();
46
47   // Otherwise, we have to assume it could be a subclass.
48   } else {
49     return layout.getNonVirtualAlignment();
50   }
51 }
52
53 /// Return the best known alignment for a pointer to a virtual base,
54 /// given the alignment of a pointer to the derived class.
55 CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign,
56                                            const CXXRecordDecl *derivedClass,
57                                            const CXXRecordDecl *vbaseClass) {
58   // The basic idea here is that an underaligned derived pointer might
59   // indicate an underaligned base pointer.
60
61   assert(vbaseClass->isCompleteDefinition());
62   auto &baseLayout = getContext().getASTRecordLayout(vbaseClass);
63   CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment();
64
65   return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass,
66                                    expectedVBaseAlign);
67 }
68
69 CharUnits
70 CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign,
71                                          const CXXRecordDecl *baseDecl,
72                                          CharUnits expectedTargetAlign) {
73   // If the base is an incomplete type (which is, alas, possible with
74   // member pointers), be pessimistic.
75   if (!baseDecl->isCompleteDefinition())
76     return std::min(actualBaseAlign, expectedTargetAlign);
77
78   auto &baseLayout = getContext().getASTRecordLayout(baseDecl);
79   CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment();
80
81   // If the class is properly aligned, assume the target offset is, too.
82   //
83   // This actually isn't necessarily the right thing to do --- if the
84   // class is a complete object, but it's only properly aligned for a
85   // base subobject, then the alignments of things relative to it are
86   // probably off as well.  (Note that this requires the alignment of
87   // the target to be greater than the NV alignment of the derived
88   // class.)
89   //
90   // However, our approach to this kind of under-alignment can only
91   // ever be best effort; after all, we're never going to propagate
92   // alignments through variables or parameters.  Note, in particular,
93   // that constructing a polymorphic type in an address that's less
94   // than pointer-aligned will generally trap in the constructor,
95   // unless we someday add some sort of attribute to change the
96   // assumed alignment of 'this'.  So our goal here is pretty much
97   // just to allow the user to explicitly say that a pointer is
98   // under-aligned and then safely access its fields and vtables.
99   if (actualBaseAlign >= expectedBaseAlign) {
100     return expectedTargetAlign;
101   }
102
103   // Otherwise, we might be offset by an arbitrary multiple of the
104   // actual alignment.  The correct adjustment is to take the min of
105   // the two alignments.
106   return std::min(actualBaseAlign, expectedTargetAlign);
107 }
108
109 Address CodeGenFunction::LoadCXXThisAddress() {
110   assert(CurFuncDecl && "loading 'this' without a func declaration?");
111   assert(isa<CXXMethodDecl>(CurFuncDecl));
112
113   // Lazily compute CXXThisAlignment.
114   if (CXXThisAlignment.isZero()) {
115     // Just use the best known alignment for the parent.
116     // TODO: if we're currently emitting a complete-object ctor/dtor,
117     // we can always use the complete-object alignment.
118     auto RD = cast<CXXMethodDecl>(CurFuncDecl)->getParent();
119     CXXThisAlignment = CGM.getClassPointerAlignment(RD);
120   }
121
122   return Address(LoadCXXThis(), CXXThisAlignment);
123 }
124
125 /// Emit the address of a field using a member data pointer.
126 ///
127 /// \param E Only used for emergency diagnostics
128 Address
129 CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
130                                                  llvm::Value *memberPtr,
131                                       const MemberPointerType *memberPtrType,
132                                                  LValueBaseInfo *BaseInfo) {
133   // Ask the ABI to compute the actual address.
134   llvm::Value *ptr =
135     CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base,
136                                                  memberPtr, memberPtrType);
137
138   QualType memberType = memberPtrType->getPointeeType();
139   CharUnits memberAlign = getNaturalTypeAlignment(memberType, BaseInfo);
140   memberAlign =
141     CGM.getDynamicOffsetAlignment(base.getAlignment(),
142                             memberPtrType->getClass()->getAsCXXRecordDecl(),
143                                   memberAlign);
144   return Address(ptr, memberAlign);
145 }
146
147 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset(
148     const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start,
149     CastExpr::path_const_iterator End) {
150   CharUnits Offset = CharUnits::Zero();
151
152   const ASTContext &Context = getContext();
153   const CXXRecordDecl *RD = DerivedClass;
154
155   for (CastExpr::path_const_iterator I = Start; I != End; ++I) {
156     const CXXBaseSpecifier *Base = *I;
157     assert(!Base->isVirtual() && "Should not see virtual bases here!");
158
159     // Get the layout.
160     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
161
162     const CXXRecordDecl *BaseDecl =
163       cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
164
165     // Add the offset.
166     Offset += Layout.getBaseClassOffset(BaseDecl);
167
168     RD = BaseDecl;
169   }
170
171   return Offset;
172 }
173
174 llvm::Constant *
175 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl,
176                                    CastExpr::path_const_iterator PathBegin,
177                                    CastExpr::path_const_iterator PathEnd) {
178   assert(PathBegin != PathEnd && "Base path should not be empty!");
179
180   CharUnits Offset =
181       computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd);
182   if (Offset.isZero())
183     return nullptr;
184
185   llvm::Type *PtrDiffTy =
186   Types.ConvertType(getContext().getPointerDiffType());
187
188   return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity());
189 }
190
191 /// Gets the address of a direct base class within a complete object.
192 /// This should only be used for (1) non-virtual bases or (2) virtual bases
193 /// when the type is known to be complete (e.g. in complete destructors).
194 ///
195 /// The object pointed to by 'This' is assumed to be non-null.
196 Address
197 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This,
198                                                    const CXXRecordDecl *Derived,
199                                                    const CXXRecordDecl *Base,
200                                                    bool BaseIsVirtual) {
201   // 'this' must be a pointer (in some address space) to Derived.
202   assert(This.getElementType() == ConvertType(Derived));
203
204   // Compute the offset of the virtual base.
205   CharUnits Offset;
206   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
207   if (BaseIsVirtual)
208     Offset = Layout.getVBaseClassOffset(Base);
209   else
210     Offset = Layout.getBaseClassOffset(Base);
211
212   // Shift and cast down to the base type.
213   // TODO: for complete types, this should be possible with a GEP.
214   Address V = This;
215   if (!Offset.isZero()) {
216     V = Builder.CreateElementBitCast(V, Int8Ty);
217     V = Builder.CreateConstInBoundsByteGEP(V, Offset);
218   }
219   V = Builder.CreateElementBitCast(V, ConvertType(Base));
220
221   return V;
222 }
223
224 static Address
225 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr,
226                                 CharUnits nonVirtualOffset,
227                                 llvm::Value *virtualOffset,
228                                 const CXXRecordDecl *derivedClass,
229                                 const CXXRecordDecl *nearestVBase) {
230   // Assert that we have something to do.
231   assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr);
232
233   // Compute the offset from the static and dynamic components.
234   llvm::Value *baseOffset;
235   if (!nonVirtualOffset.isZero()) {
236     baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy,
237                                         nonVirtualOffset.getQuantity());
238     if (virtualOffset) {
239       baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset);
240     }
241   } else {
242     baseOffset = virtualOffset;
243   }
244
245   // Apply the base offset.
246   llvm::Value *ptr = addr.getPointer();
247   ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy);
248   ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr");
249
250   // If we have a virtual component, the alignment of the result will
251   // be relative only to the known alignment of that vbase.
252   CharUnits alignment;
253   if (virtualOffset) {
254     assert(nearestVBase && "virtual offset without vbase?");
255     alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(),
256                                           derivedClass, nearestVBase);
257   } else {
258     alignment = addr.getAlignment();
259   }
260   alignment = alignment.alignmentAtOffset(nonVirtualOffset);
261
262   return Address(ptr, alignment);
263 }
264
265 Address CodeGenFunction::GetAddressOfBaseClass(
266     Address Value, const CXXRecordDecl *Derived,
267     CastExpr::path_const_iterator PathBegin,
268     CastExpr::path_const_iterator PathEnd, bool NullCheckValue,
269     SourceLocation Loc) {
270   assert(PathBegin != PathEnd && "Base path should not be empty!");
271
272   CastExpr::path_const_iterator Start = PathBegin;
273   const CXXRecordDecl *VBase = nullptr;
274
275   // Sema has done some convenient canonicalization here: if the
276   // access path involved any virtual steps, the conversion path will
277   // *start* with a step down to the correct virtual base subobject,
278   // and hence will not require any further steps.
279   if ((*Start)->isVirtual()) {
280     VBase =
281       cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl());
282     ++Start;
283   }
284
285   // Compute the static offset of the ultimate destination within its
286   // allocating subobject (the virtual base, if there is one, or else
287   // the "complete" object that we see).
288   CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset(
289       VBase ? VBase : Derived, Start, PathEnd);
290
291   // If there's a virtual step, we can sometimes "devirtualize" it.
292   // For now, that's limited to when the derived type is final.
293   // TODO: "devirtualize" this for accesses to known-complete objects.
294   if (VBase && Derived->hasAttr<FinalAttr>()) {
295     const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived);
296     CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase);
297     NonVirtualOffset += vBaseOffset;
298     VBase = nullptr; // we no longer have a virtual step
299   }
300
301   // Get the base pointer type.
302   llvm::Type *BasePtrTy =
303     ConvertType((PathEnd[-1])->getType())->getPointerTo();
304
305   QualType DerivedTy = getContext().getRecordType(Derived);
306   CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived);
307
308   // If the static offset is zero and we don't have a virtual step,
309   // just do a bitcast; null checks are unnecessary.
310   if (NonVirtualOffset.isZero() && !VBase) {
311     if (sanitizePerformTypeCheck()) {
312       SanitizerSet SkippedChecks;
313       SkippedChecks.set(SanitizerKind::Null, !NullCheckValue);
314       EmitTypeCheck(TCK_Upcast, Loc, Value.getPointer(),
315                     DerivedTy, DerivedAlign, SkippedChecks);
316     }
317     return Builder.CreateBitCast(Value, BasePtrTy);
318   }
319
320   llvm::BasicBlock *origBB = nullptr;
321   llvm::BasicBlock *endBB = nullptr;
322
323   // Skip over the offset (and the vtable load) if we're supposed to
324   // null-check the pointer.
325   if (NullCheckValue) {
326     origBB = Builder.GetInsertBlock();
327     llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull");
328     endBB = createBasicBlock("cast.end");
329
330     llvm::Value *isNull = Builder.CreateIsNull(Value.getPointer());
331     Builder.CreateCondBr(isNull, endBB, notNullBB);
332     EmitBlock(notNullBB);
333   }
334
335   if (sanitizePerformTypeCheck()) {
336     SanitizerSet SkippedChecks;
337     SkippedChecks.set(SanitizerKind::Null, true);
338     EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc,
339                   Value.getPointer(), DerivedTy, DerivedAlign, SkippedChecks);
340   }
341
342   // Compute the virtual offset.
343   llvm::Value *VirtualOffset = nullptr;
344   if (VBase) {
345     VirtualOffset =
346       CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase);
347   }
348
349   // Apply both offsets.
350   Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset,
351                                           VirtualOffset, Derived, VBase);
352
353   // Cast to the destination type.
354   Value = Builder.CreateBitCast(Value, BasePtrTy);
355
356   // Build a phi if we needed a null check.
357   if (NullCheckValue) {
358     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
359     Builder.CreateBr(endBB);
360     EmitBlock(endBB);
361
362     llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result");
363     PHI->addIncoming(Value.getPointer(), notNullBB);
364     PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB);
365     Value = Address(PHI, Value.getAlignment());
366   }
367
368   return Value;
369 }
370
371 Address
372 CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr,
373                                           const CXXRecordDecl *Derived,
374                                         CastExpr::path_const_iterator PathBegin,
375                                           CastExpr::path_const_iterator PathEnd,
376                                           bool NullCheckValue) {
377   assert(PathBegin != PathEnd && "Base path should not be empty!");
378
379   QualType DerivedTy =
380     getContext().getCanonicalType(getContext().getTagDeclType(Derived));
381   llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo();
382
383   llvm::Value *NonVirtualOffset =
384     CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd);
385
386   if (!NonVirtualOffset) {
387     // No offset, we can just cast back.
388     return Builder.CreateBitCast(BaseAddr, DerivedPtrTy);
389   }
390
391   llvm::BasicBlock *CastNull = nullptr;
392   llvm::BasicBlock *CastNotNull = nullptr;
393   llvm::BasicBlock *CastEnd = nullptr;
394
395   if (NullCheckValue) {
396     CastNull = createBasicBlock("cast.null");
397     CastNotNull = createBasicBlock("cast.notnull");
398     CastEnd = createBasicBlock("cast.end");
399
400     llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr.getPointer());
401     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
402     EmitBlock(CastNotNull);
403   }
404
405   // Apply the offset.
406   llvm::Value *Value = Builder.CreateBitCast(BaseAddr.getPointer(), Int8PtrTy);
407   Value = Builder.CreateGEP(Value, Builder.CreateNeg(NonVirtualOffset),
408                             "sub.ptr");
409
410   // Just cast.
411   Value = Builder.CreateBitCast(Value, DerivedPtrTy);
412
413   // Produce a PHI if we had a null-check.
414   if (NullCheckValue) {
415     Builder.CreateBr(CastEnd);
416     EmitBlock(CastNull);
417     Builder.CreateBr(CastEnd);
418     EmitBlock(CastEnd);
419
420     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
421     PHI->addIncoming(Value, CastNotNull);
422     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
423     Value = PHI;
424   }
425
426   return Address(Value, CGM.getClassPointerAlignment(Derived));
427 }
428
429 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD,
430                                               bool ForVirtualBase,
431                                               bool Delegating) {
432   if (!CGM.getCXXABI().NeedsVTTParameter(GD)) {
433     // This constructor/destructor does not need a VTT parameter.
434     return nullptr;
435   }
436
437   const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent();
438   const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent();
439
440   llvm::Value *VTT;
441
442   uint64_t SubVTTIndex;
443
444   if (Delegating) {
445     // If this is a delegating constructor call, just load the VTT.
446     return LoadCXXVTT();
447   } else if (RD == Base) {
448     // If the record matches the base, this is the complete ctor/dtor
449     // variant calling the base variant in a class with virtual bases.
450     assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) &&
451            "doing no-op VTT offset in base dtor/ctor?");
452     assert(!ForVirtualBase && "Can't have same class as virtual base!");
453     SubVTTIndex = 0;
454   } else {
455     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
456     CharUnits BaseOffset = ForVirtualBase ?
457       Layout.getVBaseClassOffset(Base) :
458       Layout.getBaseClassOffset(Base);
459
460     SubVTTIndex =
461       CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset));
462     assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
463   }
464
465   if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
466     // A VTT parameter was passed to the constructor, use it.
467     VTT = LoadCXXVTT();
468     VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex);
469   } else {
470     // We're the complete constructor, so get the VTT by name.
471     VTT = CGM.getVTables().GetAddrOfVTT(RD);
472     VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex);
473   }
474
475   return VTT;
476 }
477
478 namespace {
479   /// Call the destructor for a direct base class.
480   struct CallBaseDtor final : EHScopeStack::Cleanup {
481     const CXXRecordDecl *BaseClass;
482     bool BaseIsVirtual;
483     CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual)
484       : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
485
486     void Emit(CodeGenFunction &CGF, Flags flags) override {
487       const CXXRecordDecl *DerivedClass =
488         cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
489
490       const CXXDestructorDecl *D = BaseClass->getDestructor();
491       Address Addr =
492         CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(),
493                                                   DerivedClass, BaseClass,
494                                                   BaseIsVirtual);
495       CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual,
496                                 /*Delegating=*/false, Addr);
497     }
498   };
499
500   /// A visitor which checks whether an initializer uses 'this' in a
501   /// way which requires the vtable to be properly set.
502   struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> {
503     typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super;
504
505     bool UsesThis;
506
507     DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {}
508
509     // Black-list all explicit and implicit references to 'this'.
510     //
511     // Do we need to worry about external references to 'this' derived
512     // from arbitrary code?  If so, then anything which runs arbitrary
513     // external code might potentially access the vtable.
514     void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; }
515   };
516 } // end anonymous namespace
517
518 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) {
519   DynamicThisUseChecker Checker(C);
520   Checker.Visit(Init);
521   return Checker.UsesThis;
522 }
523
524 static void EmitBaseInitializer(CodeGenFunction &CGF,
525                                 const CXXRecordDecl *ClassDecl,
526                                 CXXCtorInitializer *BaseInit,
527                                 CXXCtorType CtorType) {
528   assert(BaseInit->isBaseInitializer() &&
529          "Must have base initializer!");
530
531   Address ThisPtr = CGF.LoadCXXThisAddress();
532
533   const Type *BaseType = BaseInit->getBaseClass();
534   CXXRecordDecl *BaseClassDecl =
535     cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
536
537   bool isBaseVirtual = BaseInit->isBaseVirtual();
538
539   // The base constructor doesn't construct virtual bases.
540   if (CtorType == Ctor_Base && isBaseVirtual)
541     return;
542
543   // If the initializer for the base (other than the constructor
544   // itself) accesses 'this' in any way, we need to initialize the
545   // vtables.
546   if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit()))
547     CGF.InitializeVTablePointers(ClassDecl);
548
549   // We can pretend to be a complete class because it only matters for
550   // virtual bases, and we only do virtual bases for complete ctors.
551   Address V =
552     CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl,
553                                               BaseClassDecl,
554                                               isBaseVirtual);
555   AggValueSlot AggSlot =
556     AggValueSlot::forAddr(V, Qualifiers(),
557                           AggValueSlot::IsDestructed,
558                           AggValueSlot::DoesNotNeedGCBarriers,
559                           AggValueSlot::IsNotAliased);
560
561   CGF.EmitAggExpr(BaseInit->getInit(), AggSlot);
562
563   if (CGF.CGM.getLangOpts().Exceptions &&
564       !BaseClassDecl->hasTrivialDestructor())
565     CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl,
566                                           isBaseVirtual);
567 }
568
569 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) {
570   auto *CD = dyn_cast<CXXConstructorDecl>(D);
571   if (!(CD && CD->isCopyOrMoveConstructor()) &&
572       !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator())
573     return false;
574
575   // We can emit a memcpy for a trivial copy or move constructor/assignment.
576   if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding())
577     return true;
578
579   // We *must* emit a memcpy for a defaulted union copy or move op.
580   if (D->getParent()->isUnion() && D->isDefaulted())
581     return true;
582
583   return false;
584 }
585
586 static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF,
587                                                 CXXCtorInitializer *MemberInit,
588                                                 LValue &LHS) {
589   FieldDecl *Field = MemberInit->getAnyMember();
590   if (MemberInit->isIndirectMemberInitializer()) {
591     // If we are initializing an anonymous union field, drill down to the field.
592     IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember();
593     for (const auto *I : IndirectField->chain())
594       LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I));
595   } else {
596     LHS = CGF.EmitLValueForFieldInitialization(LHS, Field);
597   }
598 }
599
600 static void EmitMemberInitializer(CodeGenFunction &CGF,
601                                   const CXXRecordDecl *ClassDecl,
602                                   CXXCtorInitializer *MemberInit,
603                                   const CXXConstructorDecl *Constructor,
604                                   FunctionArgList &Args) {
605   ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation());
606   assert(MemberInit->isAnyMemberInitializer() &&
607          "Must have member initializer!");
608   assert(MemberInit->getInit() && "Must have initializer!");
609
610   // non-static data member initializers.
611   FieldDecl *Field = MemberInit->getAnyMember();
612   QualType FieldType = Field->getType();
613
614   llvm::Value *ThisPtr = CGF.LoadCXXThis();
615   QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
616   LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
617
618   EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS);
619
620   // Special case: if we are in a copy or move constructor, and we are copying
621   // an array of PODs or classes with trivial copy constructors, ignore the
622   // AST and perform the copy we know is equivalent.
623   // FIXME: This is hacky at best... if we had a bit more explicit information
624   // in the AST, we could generalize it more easily.
625   const ConstantArrayType *Array
626     = CGF.getContext().getAsConstantArrayType(FieldType);
627   if (Array && Constructor->isDefaulted() &&
628       Constructor->isCopyOrMoveConstructor()) {
629     QualType BaseElementTy = CGF.getContext().getBaseElementType(Array);
630     CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
631     if (BaseElementTy.isPODType(CGF.getContext()) ||
632         (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) {
633       unsigned SrcArgIndex =
634           CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args);
635       llvm::Value *SrcPtr
636         = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex]));
637       LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
638       LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field);
639
640       // Copy the aggregate.
641       CGF.EmitAggregateCopy(LHS.getAddress(), Src.getAddress(), FieldType,
642                             LHS.isVolatileQualified());
643       // Ensure that we destroy the objects if an exception is thrown later in
644       // the constructor.
645       QualType::DestructionKind dtorKind = FieldType.isDestructedType();
646       if (CGF.needsEHCleanup(dtorKind))
647         CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 
648       return;
649     }
650   }
651
652   CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit());
653 }
654
655 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS,
656                                               Expr *Init) {
657   QualType FieldType = Field->getType();
658   switch (getEvaluationKind(FieldType)) {
659   case TEK_Scalar:
660     if (LHS.isSimple()) {
661       EmitExprAsInit(Init, Field, LHS, false);
662     } else {
663       RValue RHS = RValue::get(EmitScalarExpr(Init));
664       EmitStoreThroughLValue(RHS, LHS);
665     }
666     break;
667   case TEK_Complex:
668     EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true);
669     break;
670   case TEK_Aggregate: {
671     AggValueSlot Slot =
672       AggValueSlot::forLValue(LHS,
673                               AggValueSlot::IsDestructed,
674                               AggValueSlot::DoesNotNeedGCBarriers,
675                               AggValueSlot::IsNotAliased);
676     EmitAggExpr(Init, Slot);
677     break;
678   }
679   }
680
681   // Ensure that we destroy this object if an exception is thrown
682   // later in the constructor.
683   QualType::DestructionKind dtorKind = FieldType.isDestructedType();
684   if (needsEHCleanup(dtorKind))
685     pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
686 }
687
688 /// Checks whether the given constructor is a valid subject for the
689 /// complete-to-base constructor delegation optimization, i.e.
690 /// emitting the complete constructor as a simple call to the base
691 /// constructor.
692 bool CodeGenFunction::IsConstructorDelegationValid(
693     const CXXConstructorDecl *Ctor) {
694
695   // Currently we disable the optimization for classes with virtual
696   // bases because (1) the addresses of parameter variables need to be
697   // consistent across all initializers but (2) the delegate function
698   // call necessarily creates a second copy of the parameter variable.
699   //
700   // The limiting example (purely theoretical AFAIK):
701   //   struct A { A(int &c) { c++; } };
702   //   struct B : virtual A {
703   //     B(int count) : A(count) { printf("%d\n", count); }
704   //   };
705   // ...although even this example could in principle be emitted as a
706   // delegation since the address of the parameter doesn't escape.
707   if (Ctor->getParent()->getNumVBases()) {
708     // TODO: white-list trivial vbase initializers.  This case wouldn't
709     // be subject to the restrictions below.
710
711     // TODO: white-list cases where:
712     //  - there are no non-reference parameters to the constructor
713     //  - the initializers don't access any non-reference parameters
714     //  - the initializers don't take the address of non-reference
715     //    parameters
716     //  - etc.
717     // If we ever add any of the above cases, remember that:
718     //  - function-try-blocks will always blacklist this optimization
719     //  - we need to perform the constructor prologue and cleanup in
720     //    EmitConstructorBody.
721
722     return false;
723   }
724
725   // We also disable the optimization for variadic functions because
726   // it's impossible to "re-pass" varargs.
727   if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic())
728     return false;
729
730   // FIXME: Decide if we can do a delegation of a delegating constructor.
731   if (Ctor->isDelegatingConstructor())
732     return false;
733
734   return true;
735 }
736
737 // Emit code in ctor (Prologue==true) or dtor (Prologue==false)
738 // to poison the extra field paddings inserted under
739 // -fsanitize-address-field-padding=1|2.
740 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) {
741   ASTContext &Context = getContext();
742   const CXXRecordDecl *ClassDecl =
743       Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent()
744                : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent();
745   if (!ClassDecl->mayInsertExtraPadding()) return;
746
747   struct SizeAndOffset {
748     uint64_t Size;
749     uint64_t Offset;
750   };
751
752   unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits();
753   const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl);
754
755   // Populate sizes and offsets of fields.
756   SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount());
757   for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i)
758     SSV[i].Offset =
759         Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity();
760
761   size_t NumFields = 0;
762   for (const auto *Field : ClassDecl->fields()) {
763     const FieldDecl *D = Field;
764     std::pair<CharUnits, CharUnits> FieldInfo =
765         Context.getTypeInfoInChars(D->getType());
766     CharUnits FieldSize = FieldInfo.first;
767     assert(NumFields < SSV.size());
768     SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity();
769     NumFields++;
770   }
771   assert(NumFields == SSV.size());
772   if (SSV.size() <= 1) return;
773
774   // We will insert calls to __asan_* run-time functions.
775   // LLVM AddressSanitizer pass may decide to inline them later.
776   llvm::Type *Args[2] = {IntPtrTy, IntPtrTy};
777   llvm::FunctionType *FTy =
778       llvm::FunctionType::get(CGM.VoidTy, Args, false);
779   llvm::Constant *F = CGM.CreateRuntimeFunction(
780       FTy, Prologue ? "__asan_poison_intra_object_redzone"
781                     : "__asan_unpoison_intra_object_redzone");
782
783   llvm::Value *ThisPtr = LoadCXXThis();
784   ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy);
785   uint64_t TypeSize = Info.getNonVirtualSize().getQuantity();
786   // For each field check if it has sufficient padding,
787   // if so (un)poison it with a call.
788   for (size_t i = 0; i < SSV.size(); i++) {
789     uint64_t AsanAlignment = 8;
790     uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset;
791     uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size;
792     uint64_t EndOffset = SSV[i].Offset + SSV[i].Size;
793     if (PoisonSize < AsanAlignment || !SSV[i].Size ||
794         (NextField % AsanAlignment) != 0)
795       continue;
796     Builder.CreateCall(
797         F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)),
798             Builder.getIntN(PtrSize, PoisonSize)});
799   }
800 }
801
802 /// EmitConstructorBody - Emits the body of the current constructor.
803 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) {
804   EmitAsanPrologueOrEpilogue(true);
805   const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl());
806   CXXCtorType CtorType = CurGD.getCtorType();
807
808   assert((CGM.getTarget().getCXXABI().hasConstructorVariants() ||
809           CtorType == Ctor_Complete) &&
810          "can only generate complete ctor for this ABI");
811
812   // Before we go any further, try the complete->base constructor
813   // delegation optimization.
814   if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) &&
815       CGM.getTarget().getCXXABI().hasConstructorVariants()) {
816     EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getLocEnd());
817     return;
818   }
819
820   const FunctionDecl *Definition = nullptr;
821   Stmt *Body = Ctor->getBody(Definition);
822   assert(Definition == Ctor && "emitting wrong constructor body");
823
824   // Enter the function-try-block before the constructor prologue if
825   // applicable.
826   bool IsTryBody = (Body && isa<CXXTryStmt>(Body));
827   if (IsTryBody)
828     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
829
830   incrementProfileCounter(Body);
831
832   RunCleanupsScope RunCleanups(*this);
833
834   // TODO: in restricted cases, we can emit the vbase initializers of
835   // a complete ctor and then delegate to the base ctor.
836
837   // Emit the constructor prologue, i.e. the base and member
838   // initializers.
839   EmitCtorPrologue(Ctor, CtorType, Args);
840
841   // Emit the body of the statement.
842   if (IsTryBody)
843     EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
844   else if (Body)
845     EmitStmt(Body);
846
847   // Emit any cleanup blocks associated with the member or base
848   // initializers, which includes (along the exceptional path) the
849   // destructors for those members and bases that were fully
850   // constructed.
851   RunCleanups.ForceCleanup();
852
853   if (IsTryBody)
854     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
855 }
856
857 namespace {
858   /// RAII object to indicate that codegen is copying the value representation
859   /// instead of the object representation. Useful when copying a struct or
860   /// class which has uninitialized members and we're only performing
861   /// lvalue-to-rvalue conversion on the object but not its members.
862   class CopyingValueRepresentation {
863   public:
864     explicit CopyingValueRepresentation(CodeGenFunction &CGF)
865         : CGF(CGF), OldSanOpts(CGF.SanOpts) {
866       CGF.SanOpts.set(SanitizerKind::Bool, false);
867       CGF.SanOpts.set(SanitizerKind::Enum, false);
868     }
869     ~CopyingValueRepresentation() {
870       CGF.SanOpts = OldSanOpts;
871     }
872   private:
873     CodeGenFunction &CGF;
874     SanitizerSet OldSanOpts;
875   };
876 } // end anonymous namespace
877  
878 namespace {
879   class FieldMemcpyizer {
880   public:
881     FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl,
882                     const VarDecl *SrcRec)
883       : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec),
884         RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)),
885         FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0),
886         LastFieldOffset(0), LastAddedFieldIndex(0) {}
887
888     bool isMemcpyableField(FieldDecl *F) const {
889       // Never memcpy fields when we are adding poisoned paddings.
890       if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding)
891         return false;
892       Qualifiers Qual = F->getType().getQualifiers();
893       if (Qual.hasVolatile() || Qual.hasObjCLifetime())
894         return false;
895       return true;
896     }
897
898     void addMemcpyableField(FieldDecl *F) {
899       if (!FirstField)
900         addInitialField(F);
901       else
902         addNextField(F);
903     }
904
905     CharUnits getMemcpySize(uint64_t FirstByteOffset) const {
906       unsigned LastFieldSize =
907         LastField->isBitField() ?
908           LastField->getBitWidthValue(CGF.getContext()) :
909           CGF.getContext().getTypeSize(LastField->getType());
910       uint64_t MemcpySizeBits =
911         LastFieldOffset + LastFieldSize - FirstByteOffset +
912         CGF.getContext().getCharWidth() - 1;
913       CharUnits MemcpySize =
914         CGF.getContext().toCharUnitsFromBits(MemcpySizeBits);
915       return MemcpySize;
916     }
917
918     void emitMemcpy() {
919       // Give the subclass a chance to bail out if it feels the memcpy isn't
920       // worth it (e.g. Hasn't aggregated enough data).
921       if (!FirstField) {
922         return;
923       }
924
925       uint64_t FirstByteOffset;
926       if (FirstField->isBitField()) {
927         const CGRecordLayout &RL =
928           CGF.getTypes().getCGRecordLayout(FirstField->getParent());
929         const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField);
930         // FirstFieldOffset is not appropriate for bitfields,
931         // we need to use the storage offset instead.
932         FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset);
933       } else {
934         FirstByteOffset = FirstFieldOffset;
935       }
936
937       CharUnits MemcpySize = getMemcpySize(FirstByteOffset);
938       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
939       Address ThisPtr = CGF.LoadCXXThisAddress();
940       LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy);
941       LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField);
942       llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec));
943       LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
944       LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField);
945
946       emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(),
947                    Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(),
948                    MemcpySize);
949       reset();
950     }
951
952     void reset() {
953       FirstField = nullptr;
954     }
955
956   protected:
957     CodeGenFunction &CGF;
958     const CXXRecordDecl *ClassDecl;
959
960   private:
961     void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) {
962       llvm::PointerType *DPT = DestPtr.getType();
963       llvm::Type *DBP =
964         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace());
965       DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP);
966
967       llvm::PointerType *SPT = SrcPtr.getType();
968       llvm::Type *SBP =
969         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace());
970       SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP);
971
972       CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity());
973     }
974
975     void addInitialField(FieldDecl *F) {
976       FirstField = F;
977       LastField = F;
978       FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex());
979       LastFieldOffset = FirstFieldOffset;
980       LastAddedFieldIndex = F->getFieldIndex();
981     }
982
983     void addNextField(FieldDecl *F) {
984       // For the most part, the following invariant will hold:
985       //   F->getFieldIndex() == LastAddedFieldIndex + 1
986       // The one exception is that Sema won't add a copy-initializer for an
987       // unnamed bitfield, which will show up here as a gap in the sequence.
988       assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 &&
989              "Cannot aggregate fields out of order.");
990       LastAddedFieldIndex = F->getFieldIndex();
991
992       // The 'first' and 'last' fields are chosen by offset, rather than field
993       // index. This allows the code to support bitfields, as well as regular
994       // fields.
995       uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex());
996       if (FOffset < FirstFieldOffset) {
997         FirstField = F;
998         FirstFieldOffset = FOffset;
999       } else if (FOffset > LastFieldOffset) {
1000         LastField = F;
1001         LastFieldOffset = FOffset;
1002       }
1003     }
1004
1005     const VarDecl *SrcRec;
1006     const ASTRecordLayout &RecLayout;
1007     FieldDecl *FirstField;
1008     FieldDecl *LastField;
1009     uint64_t FirstFieldOffset, LastFieldOffset;
1010     unsigned LastAddedFieldIndex;
1011   };
1012
1013   class ConstructorMemcpyizer : public FieldMemcpyizer {
1014   private:
1015     /// Get source argument for copy constructor. Returns null if not a copy
1016     /// constructor.
1017     static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF,
1018                                                const CXXConstructorDecl *CD,
1019                                                FunctionArgList &Args) {
1020       if (CD->isCopyOrMoveConstructor() && CD->isDefaulted())
1021         return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)];
1022       return nullptr;
1023     }
1024
1025     // Returns true if a CXXCtorInitializer represents a member initialization
1026     // that can be rolled into a memcpy.
1027     bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const {
1028       if (!MemcpyableCtor)
1029         return false;
1030       FieldDecl *Field = MemberInit->getMember();
1031       assert(Field && "No field for member init.");
1032       QualType FieldType = Field->getType();
1033       CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
1034
1035       // Bail out on non-memcpyable, not-trivially-copyable members.
1036       if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) &&
1037           !(FieldType.isTriviallyCopyableType(CGF.getContext()) ||
1038             FieldType->isReferenceType()))
1039         return false;
1040
1041       // Bail out on volatile fields.
1042       if (!isMemcpyableField(Field))
1043         return false;
1044
1045       // Otherwise we're good.
1046       return true;
1047     }
1048
1049   public:
1050     ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD,
1051                           FunctionArgList &Args)
1052       : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)),
1053         ConstructorDecl(CD),
1054         MemcpyableCtor(CD->isDefaulted() &&
1055                        CD->isCopyOrMoveConstructor() &&
1056                        CGF.getLangOpts().getGC() == LangOptions::NonGC),
1057         Args(Args) { }
1058
1059     void addMemberInitializer(CXXCtorInitializer *MemberInit) {
1060       if (isMemberInitMemcpyable(MemberInit)) {
1061         AggregatedInits.push_back(MemberInit);
1062         addMemcpyableField(MemberInit->getMember());
1063       } else {
1064         emitAggregatedInits();
1065         EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit,
1066                               ConstructorDecl, Args);
1067       }
1068     }
1069
1070     void emitAggregatedInits() {
1071       if (AggregatedInits.size() <= 1) {
1072         // This memcpy is too small to be worthwhile. Fall back on default
1073         // codegen.
1074         if (!AggregatedInits.empty()) {
1075           CopyingValueRepresentation CVR(CGF);
1076           EmitMemberInitializer(CGF, ConstructorDecl->getParent(),
1077                                 AggregatedInits[0], ConstructorDecl, Args);
1078           AggregatedInits.clear();
1079         }
1080         reset();
1081         return;
1082       }
1083
1084       pushEHDestructors();
1085       emitMemcpy();
1086       AggregatedInits.clear();
1087     }
1088
1089     void pushEHDestructors() {
1090       Address ThisPtr = CGF.LoadCXXThisAddress();
1091       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
1092       LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy);
1093
1094       for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
1095         CXXCtorInitializer *MemberInit = AggregatedInits[i];
1096         QualType FieldType = MemberInit->getAnyMember()->getType();
1097         QualType::DestructionKind dtorKind = FieldType.isDestructedType();
1098         if (!CGF.needsEHCleanup(dtorKind))
1099           continue;
1100         LValue FieldLHS = LHS;
1101         EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS);
1102         CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(), FieldType);
1103       }
1104     }
1105
1106     void finish() {
1107       emitAggregatedInits();
1108     }
1109
1110   private:
1111     const CXXConstructorDecl *ConstructorDecl;
1112     bool MemcpyableCtor;
1113     FunctionArgList &Args;
1114     SmallVector<CXXCtorInitializer*, 16> AggregatedInits;
1115   };
1116
1117   class AssignmentMemcpyizer : public FieldMemcpyizer {
1118   private:
1119     // Returns the memcpyable field copied by the given statement, if one
1120     // exists. Otherwise returns null.
1121     FieldDecl *getMemcpyableField(Stmt *S) {
1122       if (!AssignmentsMemcpyable)
1123         return nullptr;
1124       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) {
1125         // Recognise trivial assignments.
1126         if (BO->getOpcode() != BO_Assign)
1127           return nullptr;
1128         MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS());
1129         if (!ME)
1130           return nullptr;
1131         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1132         if (!Field || !isMemcpyableField(Field))
1133           return nullptr;
1134         Stmt *RHS = BO->getRHS();
1135         if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS))
1136           RHS = EC->getSubExpr();
1137         if (!RHS)
1138           return nullptr;
1139         if (MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS)) {
1140           if (ME2->getMemberDecl() == Field)
1141             return Field;
1142         }
1143         return nullptr;
1144       } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) {
1145         CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl());
1146         if (!(MD && isMemcpyEquivalentSpecialMember(MD)))
1147           return nullptr;
1148         MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument());
1149         if (!IOA)
1150           return nullptr;
1151         FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl());
1152         if (!Field || !isMemcpyableField(Field))
1153           return nullptr;
1154         MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0));
1155         if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl()))
1156           return nullptr;
1157         return Field;
1158       } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
1159         FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1160         if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy)
1161           return nullptr;
1162         Expr *DstPtr = CE->getArg(0);
1163         if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr))
1164           DstPtr = DC->getSubExpr();
1165         UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr);
1166         if (!DUO || DUO->getOpcode() != UO_AddrOf)
1167           return nullptr;
1168         MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr());
1169         if (!ME)
1170           return nullptr;
1171         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1172         if (!Field || !isMemcpyableField(Field))
1173           return nullptr;
1174         Expr *SrcPtr = CE->getArg(1);
1175         if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr))
1176           SrcPtr = SC->getSubExpr();
1177         UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr);
1178         if (!SUO || SUO->getOpcode() != UO_AddrOf)
1179           return nullptr;
1180         MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr());
1181         if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl()))
1182           return nullptr;
1183         return Field;
1184       }
1185
1186       return nullptr;
1187     }
1188
1189     bool AssignmentsMemcpyable;
1190     SmallVector<Stmt*, 16> AggregatedStmts;
1191
1192   public:
1193     AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD,
1194                          FunctionArgList &Args)
1195       : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]),
1196         AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) {
1197       assert(Args.size() == 2);
1198     }
1199
1200     void emitAssignment(Stmt *S) {
1201       FieldDecl *F = getMemcpyableField(S);
1202       if (F) {
1203         addMemcpyableField(F);
1204         AggregatedStmts.push_back(S);
1205       } else {
1206         emitAggregatedStmts();
1207         CGF.EmitStmt(S);
1208       }
1209     }
1210
1211     void emitAggregatedStmts() {
1212       if (AggregatedStmts.size() <= 1) {
1213         if (!AggregatedStmts.empty()) {
1214           CopyingValueRepresentation CVR(CGF);
1215           CGF.EmitStmt(AggregatedStmts[0]);
1216         }
1217         reset();
1218       }
1219
1220       emitMemcpy();
1221       AggregatedStmts.clear();
1222     }
1223
1224     void finish() {
1225       emitAggregatedStmts();
1226     }
1227   };
1228 } // end anonymous namespace
1229
1230 static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) {
1231   const Type *BaseType = BaseInit->getBaseClass();
1232   const auto *BaseClassDecl =
1233           cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
1234   return BaseClassDecl->isDynamicClass();
1235 }
1236
1237 /// EmitCtorPrologue - This routine generates necessary code to initialize
1238 /// base classes and non-static data members belonging to this constructor.
1239 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD,
1240                                        CXXCtorType CtorType,
1241                                        FunctionArgList &Args) {
1242   if (CD->isDelegatingConstructor())
1243     return EmitDelegatingCXXConstructorCall(CD, Args);
1244
1245   const CXXRecordDecl *ClassDecl = CD->getParent();
1246
1247   CXXConstructorDecl::init_const_iterator B = CD->init_begin(),
1248                                           E = CD->init_end();
1249
1250   llvm::BasicBlock *BaseCtorContinueBB = nullptr;
1251   if (ClassDecl->getNumVBases() &&
1252       !CGM.getTarget().getCXXABI().hasConstructorVariants()) {
1253     // The ABIs that don't have constructor variants need to put a branch
1254     // before the virtual base initialization code.
1255     BaseCtorContinueBB =
1256       CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl);
1257     assert(BaseCtorContinueBB);
1258   }
1259
1260   llvm::Value *const OldThis = CXXThisValue;
1261   // Virtual base initializers first.
1262   for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) {
1263     if (CGM.getCodeGenOpts().StrictVTablePointers &&
1264         CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1265         isInitializerOfDynamicClass(*B))
1266       CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis());
1267     EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
1268   }
1269
1270   if (BaseCtorContinueBB) {
1271     // Complete object handler should continue to the remaining initializers.
1272     Builder.CreateBr(BaseCtorContinueBB);
1273     EmitBlock(BaseCtorContinueBB);
1274   }
1275
1276   // Then, non-virtual base initializers.
1277   for (; B != E && (*B)->isBaseInitializer(); B++) {
1278     assert(!(*B)->isBaseVirtual());
1279
1280     if (CGM.getCodeGenOpts().StrictVTablePointers &&
1281         CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1282         isInitializerOfDynamicClass(*B))
1283       CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis());
1284     EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
1285   }
1286
1287   CXXThisValue = OldThis;
1288
1289   InitializeVTablePointers(ClassDecl);
1290
1291   // And finally, initialize class members.
1292   FieldConstructionScope FCS(*this, LoadCXXThisAddress());
1293   ConstructorMemcpyizer CM(*this, CD, Args);
1294   for (; B != E; B++) {
1295     CXXCtorInitializer *Member = (*B);
1296     assert(!Member->isBaseInitializer());
1297     assert(Member->isAnyMemberInitializer() &&
1298            "Delegating initializer on non-delegating constructor");
1299     CM.addMemberInitializer(Member);
1300   }
1301   CM.finish();
1302 }
1303
1304 static bool
1305 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field);
1306
1307 static bool
1308 HasTrivialDestructorBody(ASTContext &Context,
1309                          const CXXRecordDecl *BaseClassDecl,
1310                          const CXXRecordDecl *MostDerivedClassDecl)
1311 {
1312   // If the destructor is trivial we don't have to check anything else.
1313   if (BaseClassDecl->hasTrivialDestructor())
1314     return true;
1315
1316   if (!BaseClassDecl->getDestructor()->hasTrivialBody())
1317     return false;
1318
1319   // Check fields.
1320   for (const auto *Field : BaseClassDecl->fields())
1321     if (!FieldHasTrivialDestructorBody(Context, Field))
1322       return false;
1323
1324   // Check non-virtual bases.
1325   for (const auto &I : BaseClassDecl->bases()) {
1326     if (I.isVirtual())
1327       continue;
1328
1329     const CXXRecordDecl *NonVirtualBase =
1330       cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1331     if (!HasTrivialDestructorBody(Context, NonVirtualBase,
1332                                   MostDerivedClassDecl))
1333       return false;
1334   }
1335
1336   if (BaseClassDecl == MostDerivedClassDecl) {
1337     // Check virtual bases.
1338     for (const auto &I : BaseClassDecl->vbases()) {
1339       const CXXRecordDecl *VirtualBase =
1340         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1341       if (!HasTrivialDestructorBody(Context, VirtualBase,
1342                                     MostDerivedClassDecl))
1343         return false;
1344     }
1345   }
1346
1347   return true;
1348 }
1349
1350 static bool
1351 FieldHasTrivialDestructorBody(ASTContext &Context,
1352                                           const FieldDecl *Field)
1353 {
1354   QualType FieldBaseElementType = Context.getBaseElementType(Field->getType());
1355
1356   const RecordType *RT = FieldBaseElementType->getAs<RecordType>();
1357   if (!RT)
1358     return true;
1359
1360   CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1361
1362   // The destructor for an implicit anonymous union member is never invoked.
1363   if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
1364     return false;
1365
1366   return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl);
1367 }
1368
1369 /// CanSkipVTablePointerInitialization - Check whether we need to initialize
1370 /// any vtable pointers before calling this destructor.
1371 static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF,
1372                                                const CXXDestructorDecl *Dtor) {
1373   const CXXRecordDecl *ClassDecl = Dtor->getParent();
1374   if (!ClassDecl->isDynamicClass())
1375     return true;
1376
1377   if (!Dtor->hasTrivialBody())
1378     return false;
1379
1380   // Check the fields.
1381   for (const auto *Field : ClassDecl->fields())
1382     if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field))
1383       return false;
1384
1385   return true;
1386 }
1387
1388 /// EmitDestructorBody - Emits the body of the current destructor.
1389 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) {
1390   const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl());
1391   CXXDtorType DtorType = CurGD.getDtorType();
1392
1393   // For an abstract class, non-base destructors are never used (and can't
1394   // be emitted in general, because vbase dtors may not have been validated
1395   // by Sema), but the Itanium ABI doesn't make them optional and Clang may
1396   // in fact emit references to them from other compilations, so emit them
1397   // as functions containing a trap instruction.
1398   if (DtorType != Dtor_Base && Dtor->getParent()->isAbstract()) {
1399     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
1400     TrapCall->setDoesNotReturn();
1401     TrapCall->setDoesNotThrow();
1402     Builder.CreateUnreachable();
1403     Builder.ClearInsertionPoint();
1404     return;
1405   }
1406
1407   Stmt *Body = Dtor->getBody();
1408   if (Body)
1409     incrementProfileCounter(Body);
1410
1411   // The call to operator delete in a deleting destructor happens
1412   // outside of the function-try-block, which means it's always
1413   // possible to delegate the destructor body to the complete
1414   // destructor.  Do so.
1415   if (DtorType == Dtor_Deleting) {
1416     EnterDtorCleanups(Dtor, Dtor_Deleting);
1417     EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
1418                           /*Delegating=*/false, LoadCXXThisAddress());
1419     PopCleanupBlock();
1420     return;
1421   }
1422
1423   // If the body is a function-try-block, enter the try before
1424   // anything else.
1425   bool isTryBody = (Body && isa<CXXTryStmt>(Body));
1426   if (isTryBody)
1427     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1428   EmitAsanPrologueOrEpilogue(false);
1429
1430   // Enter the epilogue cleanups.
1431   RunCleanupsScope DtorEpilogue(*this);
1432
1433   // If this is the complete variant, just invoke the base variant;
1434   // the epilogue will destruct the virtual bases.  But we can't do
1435   // this optimization if the body is a function-try-block, because
1436   // we'd introduce *two* handler blocks.  In the Microsoft ABI, we
1437   // always delegate because we might not have a definition in this TU.
1438   switch (DtorType) {
1439   case Dtor_Comdat: llvm_unreachable("not expecting a COMDAT");
1440   case Dtor_Deleting: llvm_unreachable("already handled deleting case");
1441
1442   case Dtor_Complete:
1443     assert((Body || getTarget().getCXXABI().isMicrosoft()) &&
1444            "can't emit a dtor without a body for non-Microsoft ABIs");
1445
1446     // Enter the cleanup scopes for virtual bases.
1447     EnterDtorCleanups(Dtor, Dtor_Complete);
1448
1449     if (!isTryBody) {
1450       EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false,
1451                             /*Delegating=*/false, LoadCXXThisAddress());
1452       break;
1453     }
1454
1455     // Fallthrough: act like we're in the base variant.
1456     LLVM_FALLTHROUGH;
1457
1458   case Dtor_Base:
1459     assert(Body);
1460
1461     // Enter the cleanup scopes for fields and non-virtual bases.
1462     EnterDtorCleanups(Dtor, Dtor_Base);
1463
1464     // Initialize the vtable pointers before entering the body.
1465     if (!CanSkipVTablePointerInitialization(*this, Dtor)) {
1466       // Insert the llvm.invariant.group.barrier intrinsic before initializing
1467       // the vptrs to cancel any previous assumptions we might have made.
1468       if (CGM.getCodeGenOpts().StrictVTablePointers &&
1469           CGM.getCodeGenOpts().OptimizationLevel > 0)
1470         CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis());
1471       InitializeVTablePointers(Dtor->getParent());
1472     }
1473
1474     if (isTryBody)
1475       EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
1476     else if (Body)
1477       EmitStmt(Body);
1478     else {
1479       assert(Dtor->isImplicit() && "bodyless dtor not implicit");
1480       // nothing to do besides what's in the epilogue
1481     }
1482     // -fapple-kext must inline any call to this dtor into
1483     // the caller's body.
1484     if (getLangOpts().AppleKext)
1485       CurFn->addFnAttr(llvm::Attribute::AlwaysInline);
1486
1487     break;
1488   }
1489
1490   // Jump out through the epilogue cleanups.
1491   DtorEpilogue.ForceCleanup();
1492
1493   // Exit the try if applicable.
1494   if (isTryBody)
1495     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1496 }
1497
1498 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) {
1499   const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl());
1500   const Stmt *RootS = AssignOp->getBody();
1501   assert(isa<CompoundStmt>(RootS) &&
1502          "Body of an implicit assignment operator should be compound stmt.");
1503   const CompoundStmt *RootCS = cast<CompoundStmt>(RootS);
1504
1505   LexicalScope Scope(*this, RootCS->getSourceRange());
1506
1507   incrementProfileCounter(RootCS);
1508   AssignmentMemcpyizer AM(*this, AssignOp, Args);
1509   for (auto *I : RootCS->body())
1510     AM.emitAssignment(I);
1511   AM.finish();
1512 }
1513
1514 namespace {
1515   /// Call the operator delete associated with the current destructor.
1516   struct CallDtorDelete final : EHScopeStack::Cleanup {
1517     CallDtorDelete() {}
1518
1519     void Emit(CodeGenFunction &CGF, Flags flags) override {
1520       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1521       const CXXRecordDecl *ClassDecl = Dtor->getParent();
1522       CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
1523                          CGF.getContext().getTagDeclType(ClassDecl));
1524     }
1525   };
1526
1527   struct CallDtorDeleteConditional final : EHScopeStack::Cleanup {
1528     llvm::Value *ShouldDeleteCondition;
1529
1530   public:
1531     CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition)
1532         : ShouldDeleteCondition(ShouldDeleteCondition) {
1533       assert(ShouldDeleteCondition != nullptr);
1534     }
1535
1536     void Emit(CodeGenFunction &CGF, Flags flags) override {
1537       llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete");
1538       llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue");
1539       llvm::Value *ShouldCallDelete
1540         = CGF.Builder.CreateIsNull(ShouldDeleteCondition);
1541       CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB);
1542
1543       CGF.EmitBlock(callDeleteBB);
1544       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1545       const CXXRecordDecl *ClassDecl = Dtor->getParent();
1546       CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
1547                          CGF.getContext().getTagDeclType(ClassDecl));
1548       CGF.Builder.CreateBr(continueBB);
1549
1550       CGF.EmitBlock(continueBB);
1551     }
1552   };
1553
1554   class DestroyField  final : public EHScopeStack::Cleanup {
1555     const FieldDecl *field;
1556     CodeGenFunction::Destroyer *destroyer;
1557     bool useEHCleanupForArray;
1558
1559   public:
1560     DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer,
1561                  bool useEHCleanupForArray)
1562         : field(field), destroyer(destroyer),
1563           useEHCleanupForArray(useEHCleanupForArray) {}
1564
1565     void Emit(CodeGenFunction &CGF, Flags flags) override {
1566       // Find the address of the field.
1567       Address thisValue = CGF.LoadCXXThisAddress();
1568       QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent());
1569       LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy);
1570       LValue LV = CGF.EmitLValueForField(ThisLV, field);
1571       assert(LV.isSimple());
1572
1573       CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer,
1574                       flags.isForNormalCleanup() && useEHCleanupForArray);
1575     }
1576   };
1577
1578  static void EmitSanitizerDtorCallback(CodeGenFunction &CGF, llvm::Value *Ptr,
1579              CharUnits::QuantityType PoisonSize) {
1580    // Pass in void pointer and size of region as arguments to runtime
1581    // function
1582    llvm::Value *Args[] = {CGF.Builder.CreateBitCast(Ptr, CGF.VoidPtrTy),
1583                           llvm::ConstantInt::get(CGF.SizeTy, PoisonSize)};
1584
1585    llvm::Type *ArgTypes[] = {CGF.VoidPtrTy, CGF.SizeTy};
1586
1587    llvm::FunctionType *FnType =
1588        llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false);
1589    llvm::Value *Fn =
1590        CGF.CGM.CreateRuntimeFunction(FnType, "__sanitizer_dtor_callback");
1591    CGF.EmitNounwindRuntimeCall(Fn, Args);
1592  }
1593
1594   class SanitizeDtorMembers final : public EHScopeStack::Cleanup {
1595     const CXXDestructorDecl *Dtor;
1596
1597   public:
1598     SanitizeDtorMembers(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {}
1599
1600     // Generate function call for handling object poisoning.
1601     // Disables tail call elimination, to prevent the current stack frame
1602     // from disappearing from the stack trace.
1603     void Emit(CodeGenFunction &CGF, Flags flags) override {
1604       const ASTRecordLayout &Layout =
1605           CGF.getContext().getASTRecordLayout(Dtor->getParent());
1606
1607       // Nothing to poison.
1608       if (Layout.getFieldCount() == 0)
1609         return;
1610
1611       // Prevent the current stack frame from disappearing from the stack trace.
1612       CGF.CurFn->addFnAttr("disable-tail-calls", "true");
1613
1614       // Construct pointer to region to begin poisoning, and calculate poison
1615       // size, so that only members declared in this class are poisoned.
1616       ASTContext &Context = CGF.getContext();
1617       unsigned fieldIndex = 0;
1618       int startIndex = -1;
1619       // RecordDecl::field_iterator Field;
1620       for (const FieldDecl *Field : Dtor->getParent()->fields()) {
1621         // Poison field if it is trivial
1622         if (FieldHasTrivialDestructorBody(Context, Field)) {
1623           // Start sanitizing at this field
1624           if (startIndex < 0)
1625             startIndex = fieldIndex;
1626
1627           // Currently on the last field, and it must be poisoned with the
1628           // current block.
1629           if (fieldIndex == Layout.getFieldCount() - 1) {
1630             PoisonMembers(CGF, startIndex, Layout.getFieldCount());
1631           }
1632         } else if (startIndex >= 0) {
1633           // No longer within a block of memory to poison, so poison the block
1634           PoisonMembers(CGF, startIndex, fieldIndex);
1635           // Re-set the start index
1636           startIndex = -1;
1637         }
1638         fieldIndex += 1;
1639       }
1640     }
1641
1642   private:
1643     /// \param layoutStartOffset index of the ASTRecordLayout field to
1644     ///     start poisoning (inclusive)
1645     /// \param layoutEndOffset index of the ASTRecordLayout field to
1646     ///     end poisoning (exclusive)
1647     void PoisonMembers(CodeGenFunction &CGF, unsigned layoutStartOffset,
1648                      unsigned layoutEndOffset) {
1649       ASTContext &Context = CGF.getContext();
1650       const ASTRecordLayout &Layout =
1651           Context.getASTRecordLayout(Dtor->getParent());
1652
1653       llvm::ConstantInt *OffsetSizePtr = llvm::ConstantInt::get(
1654           CGF.SizeTy,
1655           Context.toCharUnitsFromBits(Layout.getFieldOffset(layoutStartOffset))
1656               .getQuantity());
1657
1658       llvm::Value *OffsetPtr = CGF.Builder.CreateGEP(
1659           CGF.Builder.CreateBitCast(CGF.LoadCXXThis(), CGF.Int8PtrTy),
1660           OffsetSizePtr);
1661
1662       CharUnits::QuantityType PoisonSize;
1663       if (layoutEndOffset >= Layout.getFieldCount()) {
1664         PoisonSize = Layout.getNonVirtualSize().getQuantity() -
1665                      Context.toCharUnitsFromBits(
1666                                 Layout.getFieldOffset(layoutStartOffset))
1667                          .getQuantity();
1668       } else {
1669         PoisonSize = Context.toCharUnitsFromBits(
1670                                 Layout.getFieldOffset(layoutEndOffset) -
1671                                 Layout.getFieldOffset(layoutStartOffset))
1672                          .getQuantity();
1673       }
1674
1675       if (PoisonSize == 0)
1676         return;
1677
1678       EmitSanitizerDtorCallback(CGF, OffsetPtr, PoisonSize);
1679     }
1680   };
1681
1682  class SanitizeDtorVTable final : public EHScopeStack::Cleanup {
1683     const CXXDestructorDecl *Dtor;
1684
1685   public:
1686     SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {}
1687
1688     // Generate function call for handling vtable pointer poisoning.
1689     void Emit(CodeGenFunction &CGF, Flags flags) override {
1690       assert(Dtor->getParent()->isDynamicClass());
1691       (void)Dtor;
1692       ASTContext &Context = CGF.getContext();
1693       // Poison vtable and vtable ptr if they exist for this class.
1694       llvm::Value *VTablePtr = CGF.LoadCXXThis();
1695
1696       CharUnits::QuantityType PoisonSize =
1697           Context.toCharUnitsFromBits(CGF.PointerWidthInBits).getQuantity();
1698       // Pass in void pointer and size of region as arguments to runtime
1699       // function
1700       EmitSanitizerDtorCallback(CGF, VTablePtr, PoisonSize);
1701     }
1702  };
1703 } // end anonymous namespace
1704
1705 /// \brief Emit all code that comes at the end of class's
1706 /// destructor. This is to call destructors on members and base classes
1707 /// in reverse order of their construction.
1708 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD,
1709                                         CXXDtorType DtorType) {
1710   assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) &&
1711          "Should not emit dtor epilogue for non-exported trivial dtor!");
1712
1713   // The deleting-destructor phase just needs to call the appropriate
1714   // operator delete that Sema picked up.
1715   if (DtorType == Dtor_Deleting) {
1716     assert(DD->getOperatorDelete() &&
1717            "operator delete missing - EnterDtorCleanups");
1718     if (CXXStructorImplicitParamValue) {
1719       // If there is an implicit param to the deleting dtor, it's a boolean
1720       // telling whether we should call delete at the end of the dtor.
1721       EHStack.pushCleanup<CallDtorDeleteConditional>(
1722           NormalAndEHCleanup, CXXStructorImplicitParamValue);
1723     } else {
1724       EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup);
1725     }
1726     return;
1727   }
1728
1729   const CXXRecordDecl *ClassDecl = DD->getParent();
1730
1731   // Unions have no bases and do not call field destructors.
1732   if (ClassDecl->isUnion())
1733     return;
1734
1735   // The complete-destructor phase just destructs all the virtual bases.
1736   if (DtorType == Dtor_Complete) {
1737     // Poison the vtable pointer such that access after the base
1738     // and member destructors are invoked is invalid.
1739     if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1740         SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() &&
1741         ClassDecl->isPolymorphic())
1742       EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
1743
1744     // We push them in the forward order so that they'll be popped in
1745     // the reverse order.
1746     for (const auto &Base : ClassDecl->vbases()) {
1747       CXXRecordDecl *BaseClassDecl
1748         = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
1749
1750       // Ignore trivial destructors.
1751       if (BaseClassDecl->hasTrivialDestructor())
1752         continue;
1753
1754       EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1755                                         BaseClassDecl,
1756                                         /*BaseIsVirtual*/ true);
1757     }
1758
1759     return;
1760   }
1761
1762   assert(DtorType == Dtor_Base);
1763   // Poison the vtable pointer if it has no virtual bases, but inherits
1764   // virtual functions.
1765   if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1766       SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() &&
1767       ClassDecl->isPolymorphic())
1768     EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
1769
1770   // Destroy non-virtual bases.
1771   for (const auto &Base : ClassDecl->bases()) {
1772     // Ignore virtual bases.
1773     if (Base.isVirtual())
1774       continue;
1775
1776     CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl();
1777
1778     // Ignore trivial destructors.
1779     if (BaseClassDecl->hasTrivialDestructor())
1780       continue;
1781
1782     EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1783                                       BaseClassDecl,
1784                                       /*BaseIsVirtual*/ false);
1785   }
1786
1787   // Poison fields such that access after their destructors are
1788   // invoked, and before the base class destructor runs, is invalid.
1789   if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1790       SanOpts.has(SanitizerKind::Memory))
1791     EHStack.pushCleanup<SanitizeDtorMembers>(NormalAndEHCleanup, DD);
1792
1793   // Destroy direct fields.
1794   for (const auto *Field : ClassDecl->fields()) {
1795     QualType type = Field->getType();
1796     QualType::DestructionKind dtorKind = type.isDestructedType();
1797     if (!dtorKind) continue;
1798
1799     // Anonymous union members do not have their destructors called.
1800     const RecordType *RT = type->getAsUnionType();
1801     if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue;
1802
1803     CleanupKind cleanupKind = getCleanupKind(dtorKind);
1804     EHStack.pushCleanup<DestroyField>(cleanupKind, Field,
1805                                       getDestroyer(dtorKind),
1806                                       cleanupKind & EHCleanup);
1807   }
1808 }
1809
1810 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1811 /// constructor for each of several members of an array.
1812 ///
1813 /// \param ctor the constructor to call for each element
1814 /// \param arrayType the type of the array to initialize
1815 /// \param arrayBegin an arrayType*
1816 /// \param zeroInitialize true if each element should be
1817 ///   zero-initialized before it is constructed
1818 void CodeGenFunction::EmitCXXAggrConstructorCall(
1819     const CXXConstructorDecl *ctor, const ArrayType *arrayType,
1820     Address arrayBegin, const CXXConstructExpr *E, bool zeroInitialize) {
1821   QualType elementType;
1822   llvm::Value *numElements =
1823     emitArrayLength(arrayType, elementType, arrayBegin);
1824
1825   EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, zeroInitialize);
1826 }
1827
1828 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1829 /// constructor for each of several members of an array.
1830 ///
1831 /// \param ctor the constructor to call for each element
1832 /// \param numElements the number of elements in the array;
1833 ///   may be zero
1834 /// \param arrayBase a T*, where T is the type constructed by ctor
1835 /// \param zeroInitialize true if each element should be
1836 ///   zero-initialized before it is constructed
1837 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
1838                                                  llvm::Value *numElements,
1839                                                  Address arrayBase,
1840                                                  const CXXConstructExpr *E,
1841                                                  bool zeroInitialize) {
1842   // It's legal for numElements to be zero.  This can happen both
1843   // dynamically, because x can be zero in 'new A[x]', and statically,
1844   // because of GCC extensions that permit zero-length arrays.  There
1845   // are probably legitimate places where we could assume that this
1846   // doesn't happen, but it's not clear that it's worth it.
1847   llvm::BranchInst *zeroCheckBranch = nullptr;
1848
1849   // Optimize for a constant count.
1850   llvm::ConstantInt *constantCount
1851     = dyn_cast<llvm::ConstantInt>(numElements);
1852   if (constantCount) {
1853     // Just skip out if the constant count is zero.
1854     if (constantCount->isZero()) return;
1855
1856   // Otherwise, emit the check.
1857   } else {
1858     llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop");
1859     llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty");
1860     zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB);
1861     EmitBlock(loopBB);
1862   }
1863
1864   // Find the end of the array.
1865   llvm::Value *arrayBegin = arrayBase.getPointer();
1866   llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements,
1867                                                     "arrayctor.end");
1868
1869   // Enter the loop, setting up a phi for the current location to initialize.
1870   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1871   llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop");
1872   EmitBlock(loopBB);
1873   llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2,
1874                                          "arrayctor.cur");
1875   cur->addIncoming(arrayBegin, entryBB);
1876
1877   // Inside the loop body, emit the constructor call on the array element.
1878
1879   // The alignment of the base, adjusted by the size of a single element,
1880   // provides a conservative estimate of the alignment of every element.
1881   // (This assumes we never start tracking offsetted alignments.)
1882   // 
1883   // Note that these are complete objects and so we don't need to
1884   // use the non-virtual size or alignment.
1885   QualType type = getContext().getTypeDeclType(ctor->getParent());
1886   CharUnits eltAlignment =
1887     arrayBase.getAlignment()
1888              .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
1889   Address curAddr = Address(cur, eltAlignment);
1890
1891   // Zero initialize the storage, if requested.
1892   if (zeroInitialize)
1893     EmitNullInitialization(curAddr, type);
1894
1895   // C++ [class.temporary]p4:
1896   // There are two contexts in which temporaries are destroyed at a different
1897   // point than the end of the full-expression. The first context is when a
1898   // default constructor is called to initialize an element of an array.
1899   // If the constructor has one or more default arguments, the destruction of
1900   // every temporary created in a default argument expression is sequenced
1901   // before the construction of the next array element, if any.
1902
1903   {
1904     RunCleanupsScope Scope(*this);
1905
1906     // Evaluate the constructor and its arguments in a regular
1907     // partial-destroy cleanup.
1908     if (getLangOpts().Exceptions &&
1909         !ctor->getParent()->hasTrivialDestructor()) {
1910       Destroyer *destroyer = destroyCXXObject;
1911       pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment,
1912                                      *destroyer);
1913     }
1914
1915     EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false,
1916                            /*Delegating=*/false, curAddr, E);
1917   }
1918
1919   // Go to the next element.
1920   llvm::Value *next =
1921     Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1),
1922                               "arrayctor.next");
1923   cur->addIncoming(next, Builder.GetInsertBlock());
1924
1925   // Check whether that's the end of the loop.
1926   llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done");
1927   llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont");
1928   Builder.CreateCondBr(done, contBB, loopBB);
1929
1930   // Patch the earlier check to skip over the loop.
1931   if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB);
1932
1933   EmitBlock(contBB);
1934 }
1935
1936 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF,
1937                                        Address addr,
1938                                        QualType type) {
1939   const RecordType *rtype = type->castAs<RecordType>();
1940   const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl());
1941   const CXXDestructorDecl *dtor = record->getDestructor();
1942   assert(!dtor->isTrivial());
1943   CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false,
1944                             /*Delegating=*/false, addr);
1945 }
1946
1947 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
1948                                              CXXCtorType Type,
1949                                              bool ForVirtualBase,
1950                                              bool Delegating, Address This,
1951                                              const CXXConstructExpr *E) {
1952   CallArgList Args;
1953
1954   // Push the this ptr.
1955   Args.add(RValue::get(This.getPointer()), D->getThisType(getContext()));
1956
1957   // If this is a trivial constructor, emit a memcpy now before we lose
1958   // the alignment information on the argument.
1959   // FIXME: It would be better to preserve alignment information into CallArg.
1960   if (isMemcpyEquivalentSpecialMember(D)) {
1961     assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
1962
1963     const Expr *Arg = E->getArg(0);
1964     QualType SrcTy = Arg->getType();
1965     Address Src = EmitLValue(Arg).getAddress();
1966     QualType DestTy = getContext().getTypeDeclType(D->getParent());
1967     EmitAggregateCopyCtor(This, Src, DestTy, SrcTy);
1968     return;
1969   }
1970
1971   // Add the rest of the user-supplied arguments.
1972   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
1973   EvaluationOrder Order = E->isListInitialization()
1974                               ? EvaluationOrder::ForceLeftToRight
1975                               : EvaluationOrder::Default;
1976   EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor(),
1977                /*ParamsToSkip*/ 0, Order);
1978
1979   EmitCXXConstructorCall(D, Type, ForVirtualBase, Delegating, This, Args);
1980 }
1981
1982 static bool canEmitDelegateCallArgs(CodeGenFunction &CGF,
1983                                     const CXXConstructorDecl *Ctor,
1984                                     CXXCtorType Type, CallArgList &Args) {
1985   // We can't forward a variadic call.
1986   if (Ctor->isVariadic())
1987     return false;
1988
1989   if (CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
1990     // If the parameters are callee-cleanup, it's not safe to forward.
1991     for (auto *P : Ctor->parameters())
1992       if (P->getType().isDestructedType())
1993         return false;
1994
1995     // Likewise if they're inalloca.
1996     const CGFunctionInfo &Info =
1997         CGF.CGM.getTypes().arrangeCXXConstructorCall(Args, Ctor, Type, 0, 0);
1998     if (Info.usesInAlloca())
1999       return false;
2000   }
2001
2002   // Anything else should be OK.
2003   return true;
2004 }
2005
2006 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
2007                                              CXXCtorType Type,
2008                                              bool ForVirtualBase,
2009                                              bool Delegating,
2010                                              Address This,
2011                                              CallArgList &Args) {
2012   const CXXRecordDecl *ClassDecl = D->getParent();
2013
2014   // C++11 [class.mfct.non-static]p2:
2015   //   If a non-static member function of a class X is called for an object that
2016   //   is not of type X, or of a type derived from X, the behavior is undefined.
2017   // FIXME: Provide a source location here.
2018   EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, SourceLocation(),
2019                 This.getPointer(), getContext().getRecordType(ClassDecl));
2020
2021   if (D->isTrivial() && D->isDefaultConstructor()) {
2022     assert(Args.size() == 1 && "trivial default ctor with args");
2023     return;
2024   }
2025
2026   // If this is a trivial constructor, just emit what's needed. If this is a
2027   // union copy constructor, we must emit a memcpy, because the AST does not
2028   // model that copy.
2029   if (isMemcpyEquivalentSpecialMember(D)) {
2030     assert(Args.size() == 2 && "unexpected argcount for trivial ctor");
2031
2032     QualType SrcTy = D->getParamDecl(0)->getType().getNonReferenceType();
2033     Address Src(Args[1].RV.getScalarVal(), getNaturalTypeAlignment(SrcTy));
2034     QualType DestTy = getContext().getTypeDeclType(ClassDecl);
2035     EmitAggregateCopyCtor(This, Src, DestTy, SrcTy);
2036     return;
2037   }
2038
2039   bool PassPrototypeArgs = true;
2040   // Check whether we can actually emit the constructor before trying to do so.
2041   if (auto Inherited = D->getInheritedConstructor()) {
2042     PassPrototypeArgs = getTypes().inheritingCtorHasParams(Inherited, Type);
2043     if (PassPrototypeArgs && !canEmitDelegateCallArgs(*this, D, Type, Args)) {
2044       EmitInlinedInheritingCXXConstructorCall(D, Type, ForVirtualBase,
2045                                               Delegating, Args);
2046       return;
2047     }
2048   }
2049
2050   // Insert any ABI-specific implicit constructor arguments.
2051   CGCXXABI::AddedStructorArgs ExtraArgs =
2052       CGM.getCXXABI().addImplicitConstructorArgs(*this, D, Type, ForVirtualBase,
2053                                                  Delegating, Args);
2054
2055   // Emit the call.
2056   llvm::Constant *CalleePtr =
2057     CGM.getAddrOfCXXStructor(D, getFromCtorType(Type));
2058   const CGFunctionInfo &Info = CGM.getTypes().arrangeCXXConstructorCall(
2059       Args, D, Type, ExtraArgs.Prefix, ExtraArgs.Suffix, PassPrototypeArgs);
2060   CGCallee Callee = CGCallee::forDirect(CalleePtr, D);
2061   EmitCall(Info, Callee, ReturnValueSlot(), Args);
2062
2063   // Generate vtable assumptions if we're constructing a complete object
2064   // with a vtable.  We don't do this for base subobjects for two reasons:
2065   // first, it's incorrect for classes with virtual bases, and second, we're
2066   // about to overwrite the vptrs anyway.
2067   // We also have to make sure if we can refer to vtable:
2068   // - Otherwise we can refer to vtable if it's safe to speculatively emit.
2069   // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are
2070   // sure that definition of vtable is not hidden,
2071   // then we are always safe to refer to it.
2072   // FIXME: It looks like InstCombine is very inefficient on dealing with
2073   // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily.
2074   if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2075       ClassDecl->isDynamicClass() && Type != Ctor_Base &&
2076       CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) &&
2077       CGM.getCodeGenOpts().StrictVTablePointers)
2078     EmitVTableAssumptionLoads(ClassDecl, This);
2079 }
2080
2081 void CodeGenFunction::EmitInheritedCXXConstructorCall(
2082     const CXXConstructorDecl *D, bool ForVirtualBase, Address This,
2083     bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E) {
2084   CallArgList Args;
2085   CallArg ThisArg(RValue::get(This.getPointer()), D->getThisType(getContext()),
2086                   /*NeedsCopy=*/false);
2087
2088   // Forward the parameters.
2089   if (InheritedFromVBase &&
2090       CGM.getTarget().getCXXABI().hasConstructorVariants()) {
2091     // Nothing to do; this construction is not responsible for constructing
2092     // the base class containing the inherited constructor.
2093     // FIXME: Can we just pass undef's for the remaining arguments if we don't
2094     // have constructor variants?
2095     Args.push_back(ThisArg);
2096   } else if (!CXXInheritedCtorInitExprArgs.empty()) {
2097     // The inheriting constructor was inlined; just inject its arguments.
2098     assert(CXXInheritedCtorInitExprArgs.size() >= D->getNumParams() &&
2099            "wrong number of parameters for inherited constructor call");
2100     Args = CXXInheritedCtorInitExprArgs;
2101     Args[0] = ThisArg;
2102   } else {
2103     // The inheriting constructor was not inlined. Emit delegating arguments.
2104     Args.push_back(ThisArg);
2105     const auto *OuterCtor = cast<CXXConstructorDecl>(CurCodeDecl);
2106     assert(OuterCtor->getNumParams() == D->getNumParams());
2107     assert(!OuterCtor->isVariadic() && "should have been inlined");
2108
2109     for (const auto *Param : OuterCtor->parameters()) {
2110       assert(getContext().hasSameUnqualifiedType(
2111           OuterCtor->getParamDecl(Param->getFunctionScopeIndex())->getType(),
2112           Param->getType()));
2113       EmitDelegateCallArg(Args, Param, E->getLocation());
2114
2115       // Forward __attribute__(pass_object_size).
2116       if (Param->hasAttr<PassObjectSizeAttr>()) {
2117         auto *POSParam = SizeArguments[Param];
2118         assert(POSParam && "missing pass_object_size value for forwarding");
2119         EmitDelegateCallArg(Args, POSParam, E->getLocation());
2120       }
2121     }
2122   }
2123
2124   EmitCXXConstructorCall(D, Ctor_Base, ForVirtualBase, /*Delegating*/false,
2125                          This, Args);
2126 }
2127
2128 void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall(
2129     const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase,
2130     bool Delegating, CallArgList &Args) {
2131   GlobalDecl GD(Ctor, CtorType);
2132   InlinedInheritingConstructorScope Scope(*this, GD);
2133   ApplyInlineDebugLocation DebugScope(*this, GD);
2134
2135   // Save the arguments to be passed to the inherited constructor.
2136   CXXInheritedCtorInitExprArgs = Args;
2137
2138   FunctionArgList Params;
2139   QualType RetType = BuildFunctionArgList(CurGD, Params);
2140   FnRetTy = RetType;
2141
2142   // Insert any ABI-specific implicit constructor arguments.
2143   CGM.getCXXABI().addImplicitConstructorArgs(*this, Ctor, CtorType,
2144                                              ForVirtualBase, Delegating, Args);
2145
2146   // Emit a simplified prolog. We only need to emit the implicit params.
2147   assert(Args.size() >= Params.size() && "too few arguments for call");
2148   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
2149     if (I < Params.size() && isa<ImplicitParamDecl>(Params[I])) {
2150       const RValue &RV = Args[I].RV;
2151       assert(!RV.isComplex() && "complex indirect params not supported");
2152       ParamValue Val = RV.isScalar()
2153                            ? ParamValue::forDirect(RV.getScalarVal())
2154                            : ParamValue::forIndirect(RV.getAggregateAddress());
2155       EmitParmDecl(*Params[I], Val, I + 1);
2156     }
2157   }
2158
2159   // Create a return value slot if the ABI implementation wants one.
2160   // FIXME: This is dumb, we should ask the ABI not to try to set the return
2161   // value instead.
2162   if (!RetType->isVoidType())
2163     ReturnValue = CreateIRTemp(RetType, "retval.inhctor");
2164
2165   CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
2166   CXXThisValue = CXXABIThisValue;
2167
2168   // Directly emit the constructor initializers.
2169   EmitCtorPrologue(Ctor, CtorType, Params);
2170 }
2171
2172 void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) {
2173   llvm::Value *VTableGlobal =
2174       CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass);
2175   if (!VTableGlobal)
2176     return;
2177
2178   // We can just use the base offset in the complete class.
2179   CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset();
2180
2181   if (!NonVirtualOffset.isZero())
2182     This =
2183         ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr,
2184                                         Vptr.VTableClass, Vptr.NearestVBase);
2185
2186   llvm::Value *VPtrValue =
2187       GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass);
2188   llvm::Value *Cmp =
2189       Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables");
2190   Builder.CreateAssumption(Cmp);
2191 }
2192
2193 void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl,
2194                                                 Address This) {
2195   if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl))
2196     for (const VPtr &Vptr : getVTablePointers(ClassDecl))
2197       EmitVTableAssumptionLoad(Vptr, This);
2198 }
2199
2200 void
2201 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2202                                                 Address This, Address Src,
2203                                                 const CXXConstructExpr *E) {
2204   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
2205
2206   CallArgList Args;
2207
2208   // Push the this ptr.
2209   Args.add(RValue::get(This.getPointer()), D->getThisType(getContext()));
2210
2211   // Push the src ptr.
2212   QualType QT = *(FPT->param_type_begin());
2213   llvm::Type *t = CGM.getTypes().ConvertType(QT);
2214   Src = Builder.CreateBitCast(Src, t);
2215   Args.add(RValue::get(Src.getPointer()), QT);
2216
2217   // Skip over first argument (Src).
2218   EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(),
2219                /*ParamsToSkip*/ 1);
2220
2221   EmitCXXConstructorCall(D, Ctor_Complete, false, false, This, Args);
2222 }
2223
2224 void
2225 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2226                                                 CXXCtorType CtorType,
2227                                                 const FunctionArgList &Args,
2228                                                 SourceLocation Loc) {
2229   CallArgList DelegateArgs;
2230
2231   FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
2232   assert(I != E && "no parameters to constructor");
2233
2234   // this
2235   Address This = LoadCXXThisAddress();
2236   DelegateArgs.add(RValue::get(This.getPointer()), (*I)->getType());
2237   ++I;
2238
2239   // FIXME: The location of the VTT parameter in the parameter list is
2240   // specific to the Itanium ABI and shouldn't be hardcoded here.
2241   if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
2242     assert(I != E && "cannot skip vtt parameter, already done with args");
2243     assert((*I)->getType()->isPointerType() &&
2244            "skipping parameter not of vtt type");
2245     ++I;
2246   }
2247
2248   // Explicit arguments.
2249   for (; I != E; ++I) {
2250     const VarDecl *param = *I;
2251     // FIXME: per-argument source location
2252     EmitDelegateCallArg(DelegateArgs, param, Loc);
2253   }
2254
2255   EmitCXXConstructorCall(Ctor, CtorType, /*ForVirtualBase=*/false,
2256                          /*Delegating=*/true, This, DelegateArgs);
2257 }
2258
2259 namespace {
2260   struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup {
2261     const CXXDestructorDecl *Dtor;
2262     Address Addr;
2263     CXXDtorType Type;
2264
2265     CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr,
2266                            CXXDtorType Type)
2267       : Dtor(D), Addr(Addr), Type(Type) {}
2268
2269     void Emit(CodeGenFunction &CGF, Flags flags) override {
2270       CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false,
2271                                 /*Delegating=*/true, Addr);
2272     }
2273   };
2274 } // end anonymous namespace
2275
2276 void
2277 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2278                                                   const FunctionArgList &Args) {
2279   assert(Ctor->isDelegatingConstructor());
2280
2281   Address ThisPtr = LoadCXXThisAddress();
2282
2283   AggValueSlot AggSlot =
2284     AggValueSlot::forAddr(ThisPtr, Qualifiers(),
2285                           AggValueSlot::IsDestructed,
2286                           AggValueSlot::DoesNotNeedGCBarriers,
2287                           AggValueSlot::IsNotAliased);
2288
2289   EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot);
2290
2291   const CXXRecordDecl *ClassDecl = Ctor->getParent();
2292   if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) {
2293     CXXDtorType Type =
2294       CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base;
2295
2296     EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup,
2297                                                 ClassDecl->getDestructor(),
2298                                                 ThisPtr, Type);
2299   }
2300 }
2301
2302 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD,
2303                                             CXXDtorType Type,
2304                                             bool ForVirtualBase,
2305                                             bool Delegating,
2306                                             Address This) {
2307   CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase,
2308                                      Delegating, This);
2309 }
2310
2311 namespace {
2312   struct CallLocalDtor final : EHScopeStack::Cleanup {
2313     const CXXDestructorDecl *Dtor;
2314     Address Addr;
2315
2316     CallLocalDtor(const CXXDestructorDecl *D, Address Addr)
2317       : Dtor(D), Addr(Addr) {}
2318
2319     void Emit(CodeGenFunction &CGF, Flags flags) override {
2320       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
2321                                 /*ForVirtualBase=*/false,
2322                                 /*Delegating=*/false, Addr);
2323     }
2324   };
2325 } // end anonymous namespace
2326
2327 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D,
2328                                             Address Addr) {
2329   EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr);
2330 }
2331
2332 void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) {
2333   CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl();
2334   if (!ClassDecl) return;
2335   if (ClassDecl->hasTrivialDestructor()) return;
2336
2337   const CXXDestructorDecl *D = ClassDecl->getDestructor();
2338   assert(D && D->isUsed() && "destructor not marked as used!");
2339   PushDestructorCleanup(D, Addr);
2340 }
2341
2342 void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) {
2343   // Compute the address point.
2344   llvm::Value *VTableAddressPoint =
2345       CGM.getCXXABI().getVTableAddressPointInStructor(
2346           *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase);
2347
2348   if (!VTableAddressPoint)
2349     return;
2350
2351   // Compute where to store the address point.
2352   llvm::Value *VirtualOffset = nullptr;
2353   CharUnits NonVirtualOffset = CharUnits::Zero();
2354
2355   if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) {
2356     // We need to use the virtual base offset offset because the virtual base
2357     // might have a different offset in the most derived class.
2358
2359     VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(
2360         *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase);
2361     NonVirtualOffset = Vptr.OffsetFromNearestVBase;
2362   } else {
2363     // We can just use the base offset in the complete class.
2364     NonVirtualOffset = Vptr.Base.getBaseOffset();
2365   }
2366
2367   // Apply the offsets.
2368   Address VTableField = LoadCXXThisAddress();
2369
2370   if (!NonVirtualOffset.isZero() || VirtualOffset)
2371     VTableField = ApplyNonVirtualAndVirtualOffset(
2372         *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass,
2373         Vptr.NearestVBase);
2374
2375   // Finally, store the address point. Use the same LLVM types as the field to
2376   // support optimization.
2377   llvm::Type *VTablePtrTy =
2378       llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true)
2379           ->getPointerTo()
2380           ->getPointerTo();
2381   VTableField = Builder.CreateBitCast(VTableField, VTablePtrTy->getPointerTo());
2382   VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy);
2383
2384   llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField);
2385   CGM.DecorateInstructionWithTBAA(Store, CGM.getTBAAInfoForVTablePtr());
2386   if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2387       CGM.getCodeGenOpts().StrictVTablePointers)
2388     CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass);
2389 }
2390
2391 CodeGenFunction::VPtrsVector
2392 CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) {
2393   CodeGenFunction::VPtrsVector VPtrsResult;
2394   VisitedVirtualBasesSetTy VBases;
2395   getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()),
2396                     /*NearestVBase=*/nullptr,
2397                     /*OffsetFromNearestVBase=*/CharUnits::Zero(),
2398                     /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases,
2399                     VPtrsResult);
2400   return VPtrsResult;
2401 }
2402
2403 void CodeGenFunction::getVTablePointers(BaseSubobject Base,
2404                                         const CXXRecordDecl *NearestVBase,
2405                                         CharUnits OffsetFromNearestVBase,
2406                                         bool BaseIsNonVirtualPrimaryBase,
2407                                         const CXXRecordDecl *VTableClass,
2408                                         VisitedVirtualBasesSetTy &VBases,
2409                                         VPtrsVector &Vptrs) {
2410   // If this base is a non-virtual primary base the address point has already
2411   // been set.
2412   if (!BaseIsNonVirtualPrimaryBase) {
2413     // Initialize the vtable pointer for this base.
2414     VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass};
2415     Vptrs.push_back(Vptr);
2416   }
2417
2418   const CXXRecordDecl *RD = Base.getBase();
2419
2420   // Traverse bases.
2421   for (const auto &I : RD->bases()) {
2422     CXXRecordDecl *BaseDecl
2423       = cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2424
2425     // Ignore classes without a vtable.
2426     if (!BaseDecl->isDynamicClass())
2427       continue;
2428
2429     CharUnits BaseOffset;
2430     CharUnits BaseOffsetFromNearestVBase;
2431     bool BaseDeclIsNonVirtualPrimaryBase;
2432
2433     if (I.isVirtual()) {
2434       // Check if we've visited this virtual base before.
2435       if (!VBases.insert(BaseDecl).second)
2436         continue;
2437
2438       const ASTRecordLayout &Layout =
2439         getContext().getASTRecordLayout(VTableClass);
2440
2441       BaseOffset = Layout.getVBaseClassOffset(BaseDecl);
2442       BaseOffsetFromNearestVBase = CharUnits::Zero();
2443       BaseDeclIsNonVirtualPrimaryBase = false;
2444     } else {
2445       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2446
2447       BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl);
2448       BaseOffsetFromNearestVBase =
2449         OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl);
2450       BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl;
2451     }
2452
2453     getVTablePointers(
2454         BaseSubobject(BaseDecl, BaseOffset),
2455         I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase,
2456         BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs);
2457   }
2458 }
2459
2460 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) {
2461   // Ignore classes without a vtable.
2462   if (!RD->isDynamicClass())
2463     return;
2464
2465   // Initialize the vtable pointers for this class and all of its bases.
2466   if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD))
2467     for (const VPtr &Vptr : getVTablePointers(RD))
2468       InitializeVTablePointer(Vptr);
2469
2470   if (RD->getNumVBases())
2471     CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD);
2472 }
2473
2474 llvm::Value *CodeGenFunction::GetVTablePtr(Address This,
2475                                            llvm::Type *VTableTy,
2476                                            const CXXRecordDecl *RD) {
2477   Address VTablePtrSrc = Builder.CreateElementBitCast(This, VTableTy);
2478   llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable");
2479   CGM.DecorateInstructionWithTBAA(VTable, CGM.getTBAAInfoForVTablePtr());
2480
2481   if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2482       CGM.getCodeGenOpts().StrictVTablePointers)
2483     CGM.DecorateInstructionWithInvariantGroup(VTable, RD);
2484
2485   return VTable;
2486 }
2487
2488 // If a class has a single non-virtual base and does not introduce or override
2489 // virtual member functions or fields, it will have the same layout as its base.
2490 // This function returns the least derived such class.
2491 //
2492 // Casting an instance of a base class to such a derived class is technically
2493 // undefined behavior, but it is a relatively common hack for introducing member
2494 // functions on class instances with specific properties (e.g. llvm::Operator)
2495 // that works under most compilers and should not have security implications, so
2496 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict.
2497 static const CXXRecordDecl *
2498 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) {
2499   if (!RD->field_empty())
2500     return RD;
2501
2502   if (RD->getNumVBases() != 0)
2503     return RD;
2504
2505   if (RD->getNumBases() != 1)
2506     return RD;
2507
2508   for (const CXXMethodDecl *MD : RD->methods()) {
2509     if (MD->isVirtual()) {
2510       // Virtual member functions are only ok if they are implicit destructors
2511       // because the implicit destructor will have the same semantics as the
2512       // base class's destructor if no fields are added.
2513       if (isa<CXXDestructorDecl>(MD) && MD->isImplicit())
2514         continue;
2515       return RD;
2516     }
2517   }
2518
2519   return LeastDerivedClassWithSameLayout(
2520       RD->bases_begin()->getType()->getAsCXXRecordDecl());
2521 }
2522
2523 void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
2524                                                    llvm::Value *VTable,
2525                                                    SourceLocation Loc) {
2526   if (CGM.getCodeGenOpts().WholeProgramVTables &&
2527       CGM.HasHiddenLTOVisibility(RD)) {
2528     llvm::Metadata *MD =
2529         CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2530     llvm::Value *TypeId =
2531         llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD);
2532
2533     llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy);
2534     llvm::Value *TypeTest =
2535         Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
2536                            {CastedVTable, TypeId});
2537     Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::assume), TypeTest);
2538   }
2539
2540   if (SanOpts.has(SanitizerKind::CFIVCall))
2541     EmitVTablePtrCheckForCall(RD, VTable, CodeGenFunction::CFITCK_VCall, Loc);
2542 }
2543
2544 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl *RD,
2545                                                 llvm::Value *VTable,
2546                                                 CFITypeCheckKind TCK,
2547                                                 SourceLocation Loc) {
2548   if (!SanOpts.has(SanitizerKind::CFICastStrict))
2549     RD = LeastDerivedClassWithSameLayout(RD);
2550
2551   EmitVTablePtrCheck(RD, VTable, TCK, Loc);
2552 }
2553
2554 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T,
2555                                                 llvm::Value *Derived,
2556                                                 bool MayBeNull,
2557                                                 CFITypeCheckKind TCK,
2558                                                 SourceLocation Loc) {
2559   if (!getLangOpts().CPlusPlus)
2560     return;
2561
2562   auto *ClassTy = T->getAs<RecordType>();
2563   if (!ClassTy)
2564     return;
2565
2566   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl());
2567
2568   if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass())
2569     return;
2570
2571   if (!SanOpts.has(SanitizerKind::CFICastStrict))
2572     ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl);
2573
2574   llvm::BasicBlock *ContBlock = nullptr;
2575
2576   if (MayBeNull) {
2577     llvm::Value *DerivedNotNull =
2578         Builder.CreateIsNotNull(Derived, "cast.nonnull");
2579
2580     llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check");
2581     ContBlock = createBasicBlock("cast.cont");
2582
2583     Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock);
2584
2585     EmitBlock(CheckBlock);
2586   }
2587
2588   llvm::Value *VTable =
2589     GetVTablePtr(Address(Derived, getPointerAlign()), Int8PtrTy, ClassDecl);
2590
2591   EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc);
2592
2593   if (MayBeNull) {
2594     Builder.CreateBr(ContBlock);
2595     EmitBlock(ContBlock);
2596   }
2597 }
2598
2599 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD,
2600                                          llvm::Value *VTable,
2601                                          CFITypeCheckKind TCK,
2602                                          SourceLocation Loc) {
2603   if (!CGM.getCodeGenOpts().SanitizeCfiCrossDso &&
2604       !CGM.HasHiddenLTOVisibility(RD))
2605     return;
2606
2607   std::string TypeName = RD->getQualifiedNameAsString();
2608   if (getContext().getSanitizerBlacklist().isBlacklistedType(TypeName))
2609     return;
2610
2611   SanitizerScope SanScope(this);
2612   llvm::SanitizerStatKind SSK;
2613   switch (TCK) {
2614   case CFITCK_VCall:
2615     SSK = llvm::SanStat_CFI_VCall;
2616     break;
2617   case CFITCK_NVCall:
2618     SSK = llvm::SanStat_CFI_NVCall;
2619     break;
2620   case CFITCK_DerivedCast:
2621     SSK = llvm::SanStat_CFI_DerivedCast;
2622     break;
2623   case CFITCK_UnrelatedCast:
2624     SSK = llvm::SanStat_CFI_UnrelatedCast;
2625     break;
2626   case CFITCK_ICall:
2627     llvm_unreachable("not expecting CFITCK_ICall");
2628   }
2629   EmitSanitizerStatReport(SSK);
2630
2631   llvm::Metadata *MD =
2632       CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2633   llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
2634
2635   llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy);
2636   llvm::Value *TypeTest = Builder.CreateCall(
2637       CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, TypeId});
2638
2639   SanitizerMask M;
2640   switch (TCK) {
2641   case CFITCK_VCall:
2642     M = SanitizerKind::CFIVCall;
2643     break;
2644   case CFITCK_NVCall:
2645     M = SanitizerKind::CFINVCall;
2646     break;
2647   case CFITCK_DerivedCast:
2648     M = SanitizerKind::CFIDerivedCast;
2649     break;
2650   case CFITCK_UnrelatedCast:
2651     M = SanitizerKind::CFIUnrelatedCast;
2652     break;
2653   case CFITCK_ICall:
2654     llvm_unreachable("not expecting CFITCK_ICall");
2655   }
2656
2657   llvm::Constant *StaticData[] = {
2658       llvm::ConstantInt::get(Int8Ty, TCK),
2659       EmitCheckSourceLocation(Loc),
2660       EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)),
2661   };
2662
2663   auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
2664   if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
2665     EmitCfiSlowPathCheck(M, TypeTest, CrossDsoTypeId, CastedVTable, StaticData);
2666     return;
2667   }
2668
2669   if (CGM.getCodeGenOpts().SanitizeTrap.has(M)) {
2670     EmitTrapCheck(TypeTest);
2671     return;
2672   }
2673
2674   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
2675       CGM.getLLVMContext(),
2676       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
2677   llvm::Value *ValidVtable = Builder.CreateCall(
2678       CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, AllVtables});
2679   EmitCheck(std::make_pair(TypeTest, M), SanitizerHandler::CFICheckFail,
2680             StaticData, {CastedVTable, ValidVtable});
2681 }
2682
2683 bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD) {
2684   if (!CGM.getCodeGenOpts().WholeProgramVTables ||
2685       !SanOpts.has(SanitizerKind::CFIVCall) ||
2686       !CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIVCall) ||
2687       !CGM.HasHiddenLTOVisibility(RD))
2688     return false;
2689
2690   std::string TypeName = RD->getQualifiedNameAsString();
2691   return !getContext().getSanitizerBlacklist().isBlacklistedType(TypeName);
2692 }
2693
2694 llvm::Value *CodeGenFunction::EmitVTableTypeCheckedLoad(
2695     const CXXRecordDecl *RD, llvm::Value *VTable, uint64_t VTableByteOffset) {
2696   SanitizerScope SanScope(this);
2697
2698   EmitSanitizerStatReport(llvm::SanStat_CFI_VCall);
2699
2700   llvm::Metadata *MD =
2701       CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2702   llvm::Value *TypeId = llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD);
2703
2704   llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy);
2705   llvm::Value *CheckedLoad = Builder.CreateCall(
2706       CGM.getIntrinsic(llvm::Intrinsic::type_checked_load),
2707       {CastedVTable, llvm::ConstantInt::get(Int32Ty, VTableByteOffset),
2708        TypeId});
2709   llvm::Value *CheckResult = Builder.CreateExtractValue(CheckedLoad, 1);
2710
2711   EmitCheck(std::make_pair(CheckResult, SanitizerKind::CFIVCall),
2712             SanitizerHandler::CFICheckFail, nullptr, nullptr);
2713
2714   return Builder.CreateBitCast(
2715       Builder.CreateExtractValue(CheckedLoad, 0),
2716       cast<llvm::PointerType>(VTable->getType())->getElementType());
2717 }
2718
2719 bool
2720 CodeGenFunction::CanDevirtualizeMemberFunctionCall(const Expr *Base,
2721                                                    const CXXMethodDecl *MD) {
2722   // When building with -fapple-kext, all calls must go through the vtable since
2723   // the kernel linker can do runtime patching of vtables.
2724   if (getLangOpts().AppleKext)
2725     return false;
2726
2727   // If the member function is marked 'final', we know that it can't be
2728   // overridden and can therefore devirtualize it unless it's pure virtual.
2729   if (MD->hasAttr<FinalAttr>())
2730     return !MD->isPure();
2731
2732   // If the base expression (after skipping derived-to-base conversions) is a
2733   // class prvalue, then we can devirtualize.
2734   Base = Base->getBestDynamicClassTypeExpr();
2735   if (Base->isRValue() && Base->getType()->isRecordType())
2736     return true;
2737
2738   // If we don't even know what we would call, we can't devirtualize.
2739   const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
2740   if (!BestDynamicDecl)
2741     return false;
2742
2743   // There may be a method corresponding to MD in a derived class.
2744   const CXXMethodDecl *DevirtualizedMethod =
2745       MD->getCorrespondingMethodInClass(BestDynamicDecl);
2746
2747   // If that method is pure virtual, we can't devirtualize. If this code is
2748   // reached, the result would be UB, not a direct call to the derived class
2749   // function, and we can't assume the derived class function is defined.
2750   if (DevirtualizedMethod->isPure())
2751     return false;
2752
2753   // If that method is marked final, we can devirtualize it.
2754   if (DevirtualizedMethod->hasAttr<FinalAttr>())
2755     return true;
2756
2757   // Similarly, if the class itself is marked 'final' it can't be overridden
2758   // and we can therefore devirtualize the member function call.
2759   if (BestDynamicDecl->hasAttr<FinalAttr>())
2760     return true;
2761
2762   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
2763     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
2764       // This is a record decl. We know the type and can devirtualize it.
2765       return VD->getType()->isRecordType();
2766     }
2767
2768     return false;
2769   }
2770
2771   // We can devirtualize calls on an object accessed by a class member access
2772   // expression, since by C++11 [basic.life]p6 we know that it can't refer to
2773   // a derived class object constructed in the same location.
2774   if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base))
2775     if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl()))
2776       return VD->getType()->isRecordType();
2777
2778   // Likewise for calls on an object accessed by a (non-reference) pointer to
2779   // member access.
2780   if (auto *BO = dyn_cast<BinaryOperator>(Base)) {
2781     if (BO->isPtrMemOp()) {
2782       auto *MPT = BO->getRHS()->getType()->castAs<MemberPointerType>();
2783       if (MPT->getPointeeType()->isRecordType())
2784         return true;
2785     }
2786   }
2787
2788   // We can't devirtualize the call.
2789   return false;
2790 }
2791
2792 void CodeGenFunction::EmitForwardingCallToLambda(
2793                                       const CXXMethodDecl *callOperator,
2794                                       CallArgList &callArgs) {
2795   // Get the address of the call operator.
2796   const CGFunctionInfo &calleeFnInfo =
2797     CGM.getTypes().arrangeCXXMethodDeclaration(callOperator);
2798   llvm::Constant *calleePtr =
2799     CGM.GetAddrOfFunction(GlobalDecl(callOperator),
2800                           CGM.getTypes().GetFunctionType(calleeFnInfo));
2801
2802   // Prepare the return slot.
2803   const FunctionProtoType *FPT =
2804     callOperator->getType()->castAs<FunctionProtoType>();
2805   QualType resultType = FPT->getReturnType();
2806   ReturnValueSlot returnSlot;
2807   if (!resultType->isVoidType() &&
2808       calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect &&
2809       !hasScalarEvaluationKind(calleeFnInfo.getReturnType()))
2810     returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified());
2811
2812   // We don't need to separately arrange the call arguments because
2813   // the call can't be variadic anyway --- it's impossible to forward
2814   // variadic arguments.
2815
2816   // Now emit our call.
2817   auto callee = CGCallee::forDirect(calleePtr, callOperator);
2818   RValue RV = EmitCall(calleeFnInfo, callee, returnSlot, callArgs);
2819
2820   // If necessary, copy the returned value into the slot.
2821   if (!resultType->isVoidType() && returnSlot.isNull())
2822     EmitReturnOfRValue(RV, resultType);
2823   else
2824     EmitBranchThroughCleanup(ReturnBlock);
2825 }
2826
2827 void CodeGenFunction::EmitLambdaBlockInvokeBody() {
2828   const BlockDecl *BD = BlockInfo->getBlockDecl();
2829   const VarDecl *variable = BD->capture_begin()->getVariable();
2830   const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl();
2831
2832   // Start building arguments for forwarding call
2833   CallArgList CallArgs;
2834
2835   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2836   Address ThisPtr = GetAddrOfBlockDecl(variable, false);
2837   CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType);
2838
2839   // Add the rest of the parameters.
2840   for (auto param : BD->parameters())
2841     EmitDelegateCallArg(CallArgs, param, param->getLocStart());
2842
2843   assert(!Lambda->isGenericLambda() &&
2844             "generic lambda interconversion to block not implemented");
2845   EmitForwardingCallToLambda(Lambda->getLambdaCallOperator(), CallArgs);
2846 }
2847
2848 void CodeGenFunction::EmitLambdaToBlockPointerBody(FunctionArgList &Args) {
2849   if (cast<CXXMethodDecl>(CurCodeDecl)->isVariadic()) {
2850     // FIXME: Making this work correctly is nasty because it requires either
2851     // cloning the body of the call operator or making the call operator forward.
2852     CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function");
2853     return;
2854   }
2855
2856   EmitFunctionBody(Args, cast<FunctionDecl>(CurGD.getDecl())->getBody());
2857 }
2858
2859 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) {
2860   const CXXRecordDecl *Lambda = MD->getParent();
2861
2862   // Start building arguments for forwarding call
2863   CallArgList CallArgs;
2864
2865   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2866   llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType));
2867   CallArgs.add(RValue::get(ThisPtr), ThisType);
2868
2869   // Add the rest of the parameters.
2870   for (auto Param : MD->parameters())
2871     EmitDelegateCallArg(CallArgs, Param, Param->getLocStart());
2872
2873   const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
2874   // For a generic lambda, find the corresponding call operator specialization
2875   // to which the call to the static-invoker shall be forwarded.
2876   if (Lambda->isGenericLambda()) {
2877     assert(MD->isFunctionTemplateSpecialization());
2878     const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
2879     FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate();
2880     void *InsertPos = nullptr;
2881     FunctionDecl *CorrespondingCallOpSpecialization =
2882         CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
2883     assert(CorrespondingCallOpSpecialization);
2884     CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
2885   }
2886   EmitForwardingCallToLambda(CallOp, CallArgs);
2887 }
2888
2889 void CodeGenFunction::EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD) {
2890   if (MD->isVariadic()) {
2891     // FIXME: Making this work correctly is nasty because it requires either
2892     // cloning the body of the call operator or making the call operator forward.
2893     CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
2894     return;
2895   }
2896
2897   EmitLambdaDelegatingInvokeBody(MD);
2898 }