]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/CodeGen/CGClass.cpp
Update llvm, clang, lld and lldb to release_39 branch r288513.
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / CodeGen / CGClass.cpp
1 //===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code dealing with C++ code generation of classes
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CGBlocks.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGRecordLayout.h"
18 #include "CodeGenFunction.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/EvaluatedExprVisitor.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtCXX.h"
24 #include "clang/Basic/TargetBuiltins.h"
25 #include "clang/CodeGen/CGFunctionInfo.h"
26 #include "clang/Frontend/CodeGenOptions.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/Metadata.h"
29 #include "llvm/Transforms/Utils/SanitizerStats.h"
30
31 using namespace clang;
32 using namespace CodeGen;
33
34 /// Return the best known alignment for an unknown pointer to a
35 /// particular class.
36 CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) {
37   if (!RD->isCompleteDefinition())
38     return CharUnits::One(); // Hopefully won't be used anywhere.
39
40   auto &layout = getContext().getASTRecordLayout(RD);
41
42   // If the class is final, then we know that the pointer points to an
43   // object of that type and can use the full alignment.
44   if (RD->hasAttr<FinalAttr>()) {
45     return layout.getAlignment();
46
47   // Otherwise, we have to assume it could be a subclass.
48   } else {
49     return layout.getNonVirtualAlignment();
50   }
51 }
52
53 /// Return the best known alignment for a pointer to a virtual base,
54 /// given the alignment of a pointer to the derived class.
55 CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign,
56                                            const CXXRecordDecl *derivedClass,
57                                            const CXXRecordDecl *vbaseClass) {
58   // The basic idea here is that an underaligned derived pointer might
59   // indicate an underaligned base pointer.
60
61   assert(vbaseClass->isCompleteDefinition());
62   auto &baseLayout = getContext().getASTRecordLayout(vbaseClass);
63   CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment();
64
65   return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass,
66                                    expectedVBaseAlign);
67 }
68
69 CharUnits
70 CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign,
71                                          const CXXRecordDecl *baseDecl,
72                                          CharUnits expectedTargetAlign) {
73   // If the base is an incomplete type (which is, alas, possible with
74   // member pointers), be pessimistic.
75   if (!baseDecl->isCompleteDefinition())
76     return std::min(actualBaseAlign, expectedTargetAlign);
77
78   auto &baseLayout = getContext().getASTRecordLayout(baseDecl);
79   CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment();
80
81   // If the class is properly aligned, assume the target offset is, too.
82   //
83   // This actually isn't necessarily the right thing to do --- if the
84   // class is a complete object, but it's only properly aligned for a
85   // base subobject, then the alignments of things relative to it are
86   // probably off as well.  (Note that this requires the alignment of
87   // the target to be greater than the NV alignment of the derived
88   // class.)
89   //
90   // However, our approach to this kind of under-alignment can only
91   // ever be best effort; after all, we're never going to propagate
92   // alignments through variables or parameters.  Note, in particular,
93   // that constructing a polymorphic type in an address that's less
94   // than pointer-aligned will generally trap in the constructor,
95   // unless we someday add some sort of attribute to change the
96   // assumed alignment of 'this'.  So our goal here is pretty much
97   // just to allow the user to explicitly say that a pointer is
98   // under-aligned and then safely access its fields and vtables.
99   if (actualBaseAlign >= expectedBaseAlign) {
100     return expectedTargetAlign;
101   }
102
103   // Otherwise, we might be offset by an arbitrary multiple of the
104   // actual alignment.  The correct adjustment is to take the min of
105   // the two alignments.
106   return std::min(actualBaseAlign, expectedTargetAlign);
107 }
108
109 Address CodeGenFunction::LoadCXXThisAddress() {
110   assert(CurFuncDecl && "loading 'this' without a func declaration?");
111   assert(isa<CXXMethodDecl>(CurFuncDecl));
112
113   // Lazily compute CXXThisAlignment.
114   if (CXXThisAlignment.isZero()) {
115     // Just use the best known alignment for the parent.
116     // TODO: if we're currently emitting a complete-object ctor/dtor,
117     // we can always use the complete-object alignment.
118     auto RD = cast<CXXMethodDecl>(CurFuncDecl)->getParent();
119     CXXThisAlignment = CGM.getClassPointerAlignment(RD);
120   }
121
122   return Address(LoadCXXThis(), CXXThisAlignment);
123 }
124
125 /// Emit the address of a field using a member data pointer.
126 ///
127 /// \param E Only used for emergency diagnostics
128 Address
129 CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
130                                                  llvm::Value *memberPtr,
131                                       const MemberPointerType *memberPtrType,
132                                                  AlignmentSource *alignSource) {
133   // Ask the ABI to compute the actual address.
134   llvm::Value *ptr =
135     CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base,
136                                                  memberPtr, memberPtrType);
137
138   QualType memberType = memberPtrType->getPointeeType();
139   CharUnits memberAlign = getNaturalTypeAlignment(memberType, alignSource);
140   memberAlign =
141     CGM.getDynamicOffsetAlignment(base.getAlignment(),
142                             memberPtrType->getClass()->getAsCXXRecordDecl(),
143                                   memberAlign);
144   return Address(ptr, memberAlign);
145 }
146
147 CharUnits CodeGenModule::computeNonVirtualBaseClassOffset(
148     const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start,
149     CastExpr::path_const_iterator End) {
150   CharUnits Offset = CharUnits::Zero();
151
152   const ASTContext &Context = getContext();
153   const CXXRecordDecl *RD = DerivedClass;
154
155   for (CastExpr::path_const_iterator I = Start; I != End; ++I) {
156     const CXXBaseSpecifier *Base = *I;
157     assert(!Base->isVirtual() && "Should not see virtual bases here!");
158
159     // Get the layout.
160     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
161
162     const CXXRecordDecl *BaseDecl =
163       cast<CXXRecordDecl>(Base->getType()->getAs<RecordType>()->getDecl());
164
165     // Add the offset.
166     Offset += Layout.getBaseClassOffset(BaseDecl);
167
168     RD = BaseDecl;
169   }
170
171   return Offset;
172 }
173
174 llvm::Constant *
175 CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl,
176                                    CastExpr::path_const_iterator PathBegin,
177                                    CastExpr::path_const_iterator PathEnd) {
178   assert(PathBegin != PathEnd && "Base path should not be empty!");
179
180   CharUnits Offset =
181       computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd);
182   if (Offset.isZero())
183     return nullptr;
184
185   llvm::Type *PtrDiffTy =
186   Types.ConvertType(getContext().getPointerDiffType());
187
188   return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity());
189 }
190
191 /// Gets the address of a direct base class within a complete object.
192 /// This should only be used for (1) non-virtual bases or (2) virtual bases
193 /// when the type is known to be complete (e.g. in complete destructors).
194 ///
195 /// The object pointed to by 'This' is assumed to be non-null.
196 Address
197 CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This,
198                                                    const CXXRecordDecl *Derived,
199                                                    const CXXRecordDecl *Base,
200                                                    bool BaseIsVirtual) {
201   // 'this' must be a pointer (in some address space) to Derived.
202   assert(This.getElementType() == ConvertType(Derived));
203
204   // Compute the offset of the virtual base.
205   CharUnits Offset;
206   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
207   if (BaseIsVirtual)
208     Offset = Layout.getVBaseClassOffset(Base);
209   else
210     Offset = Layout.getBaseClassOffset(Base);
211
212   // Shift and cast down to the base type.
213   // TODO: for complete types, this should be possible with a GEP.
214   Address V = This;
215   if (!Offset.isZero()) {
216     V = Builder.CreateElementBitCast(V, Int8Ty);
217     V = Builder.CreateConstInBoundsByteGEP(V, Offset);
218   }
219   V = Builder.CreateElementBitCast(V, ConvertType(Base));
220
221   return V;
222 }
223
224 static Address
225 ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr,
226                                 CharUnits nonVirtualOffset,
227                                 llvm::Value *virtualOffset,
228                                 const CXXRecordDecl *derivedClass,
229                                 const CXXRecordDecl *nearestVBase) {
230   // Assert that we have something to do.
231   assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr);
232
233   // Compute the offset from the static and dynamic components.
234   llvm::Value *baseOffset;
235   if (!nonVirtualOffset.isZero()) {
236     baseOffset = llvm::ConstantInt::get(CGF.PtrDiffTy,
237                                         nonVirtualOffset.getQuantity());
238     if (virtualOffset) {
239       baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset);
240     }
241   } else {
242     baseOffset = virtualOffset;
243   }
244
245   // Apply the base offset.
246   llvm::Value *ptr = addr.getPointer();
247   ptr = CGF.Builder.CreateBitCast(ptr, CGF.Int8PtrTy);
248   ptr = CGF.Builder.CreateInBoundsGEP(ptr, baseOffset, "add.ptr");
249
250   // If we have a virtual component, the alignment of the result will
251   // be relative only to the known alignment of that vbase.
252   CharUnits alignment;
253   if (virtualOffset) {
254     assert(nearestVBase && "virtual offset without vbase?");
255     alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(),
256                                           derivedClass, nearestVBase);
257   } else {
258     alignment = addr.getAlignment();
259   }
260   alignment = alignment.alignmentAtOffset(nonVirtualOffset);
261
262   return Address(ptr, alignment);
263 }
264
265 Address CodeGenFunction::GetAddressOfBaseClass(
266     Address Value, const CXXRecordDecl *Derived,
267     CastExpr::path_const_iterator PathBegin,
268     CastExpr::path_const_iterator PathEnd, bool NullCheckValue,
269     SourceLocation Loc) {
270   assert(PathBegin != PathEnd && "Base path should not be empty!");
271
272   CastExpr::path_const_iterator Start = PathBegin;
273   const CXXRecordDecl *VBase = nullptr;
274
275   // Sema has done some convenient canonicalization here: if the
276   // access path involved any virtual steps, the conversion path will
277   // *start* with a step down to the correct virtual base subobject,
278   // and hence will not require any further steps.
279   if ((*Start)->isVirtual()) {
280     VBase =
281       cast<CXXRecordDecl>((*Start)->getType()->getAs<RecordType>()->getDecl());
282     ++Start;
283   }
284
285   // Compute the static offset of the ultimate destination within its
286   // allocating subobject (the virtual base, if there is one, or else
287   // the "complete" object that we see).
288   CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset(
289       VBase ? VBase : Derived, Start, PathEnd);
290
291   // If there's a virtual step, we can sometimes "devirtualize" it.
292   // For now, that's limited to when the derived type is final.
293   // TODO: "devirtualize" this for accesses to known-complete objects.
294   if (VBase && Derived->hasAttr<FinalAttr>()) {
295     const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived);
296     CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase);
297     NonVirtualOffset += vBaseOffset;
298     VBase = nullptr; // we no longer have a virtual step
299   }
300
301   // Get the base pointer type.
302   llvm::Type *BasePtrTy =
303     ConvertType((PathEnd[-1])->getType())->getPointerTo();
304
305   QualType DerivedTy = getContext().getRecordType(Derived);
306   CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived);
307
308   // If the static offset is zero and we don't have a virtual step,
309   // just do a bitcast; null checks are unnecessary.
310   if (NonVirtualOffset.isZero() && !VBase) {
311     if (sanitizePerformTypeCheck()) {
312       EmitTypeCheck(TCK_Upcast, Loc, Value.getPointer(),
313                     DerivedTy, DerivedAlign, !NullCheckValue);
314     }
315     return Builder.CreateBitCast(Value, BasePtrTy);
316   }
317
318   llvm::BasicBlock *origBB = nullptr;
319   llvm::BasicBlock *endBB = nullptr;
320
321   // Skip over the offset (and the vtable load) if we're supposed to
322   // null-check the pointer.
323   if (NullCheckValue) {
324     origBB = Builder.GetInsertBlock();
325     llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull");
326     endBB = createBasicBlock("cast.end");
327
328     llvm::Value *isNull = Builder.CreateIsNull(Value.getPointer());
329     Builder.CreateCondBr(isNull, endBB, notNullBB);
330     EmitBlock(notNullBB);
331   }
332
333   if (sanitizePerformTypeCheck()) {
334     EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc,
335                   Value.getPointer(), DerivedTy, DerivedAlign, true);
336   }
337
338   // Compute the virtual offset.
339   llvm::Value *VirtualOffset = nullptr;
340   if (VBase) {
341     VirtualOffset =
342       CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase);
343   }
344
345   // Apply both offsets.
346   Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset,
347                                           VirtualOffset, Derived, VBase);
348
349   // Cast to the destination type.
350   Value = Builder.CreateBitCast(Value, BasePtrTy);
351
352   // Build a phi if we needed a null check.
353   if (NullCheckValue) {
354     llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
355     Builder.CreateBr(endBB);
356     EmitBlock(endBB);
357
358     llvm::PHINode *PHI = Builder.CreatePHI(BasePtrTy, 2, "cast.result");
359     PHI->addIncoming(Value.getPointer(), notNullBB);
360     PHI->addIncoming(llvm::Constant::getNullValue(BasePtrTy), origBB);
361     Value = Address(PHI, Value.getAlignment());
362   }
363
364   return Value;
365 }
366
367 Address
368 CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr,
369                                           const CXXRecordDecl *Derived,
370                                         CastExpr::path_const_iterator PathBegin,
371                                           CastExpr::path_const_iterator PathEnd,
372                                           bool NullCheckValue) {
373   assert(PathBegin != PathEnd && "Base path should not be empty!");
374
375   QualType DerivedTy =
376     getContext().getCanonicalType(getContext().getTagDeclType(Derived));
377   llvm::Type *DerivedPtrTy = ConvertType(DerivedTy)->getPointerTo();
378
379   llvm::Value *NonVirtualOffset =
380     CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd);
381
382   if (!NonVirtualOffset) {
383     // No offset, we can just cast back.
384     return Builder.CreateBitCast(BaseAddr, DerivedPtrTy);
385   }
386
387   llvm::BasicBlock *CastNull = nullptr;
388   llvm::BasicBlock *CastNotNull = nullptr;
389   llvm::BasicBlock *CastEnd = nullptr;
390
391   if (NullCheckValue) {
392     CastNull = createBasicBlock("cast.null");
393     CastNotNull = createBasicBlock("cast.notnull");
394     CastEnd = createBasicBlock("cast.end");
395
396     llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr.getPointer());
397     Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
398     EmitBlock(CastNotNull);
399   }
400
401   // Apply the offset.
402   llvm::Value *Value = Builder.CreateBitCast(BaseAddr.getPointer(), Int8PtrTy);
403   Value = Builder.CreateGEP(Value, Builder.CreateNeg(NonVirtualOffset),
404                             "sub.ptr");
405
406   // Just cast.
407   Value = Builder.CreateBitCast(Value, DerivedPtrTy);
408
409   // Produce a PHI if we had a null-check.
410   if (NullCheckValue) {
411     Builder.CreateBr(CastEnd);
412     EmitBlock(CastNull);
413     Builder.CreateBr(CastEnd);
414     EmitBlock(CastEnd);
415
416     llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
417     PHI->addIncoming(Value, CastNotNull);
418     PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
419     Value = PHI;
420   }
421
422   return Address(Value, CGM.getClassPointerAlignment(Derived));
423 }
424
425 llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD,
426                                               bool ForVirtualBase,
427                                               bool Delegating) {
428   if (!CGM.getCXXABI().NeedsVTTParameter(GD)) {
429     // This constructor/destructor does not need a VTT parameter.
430     return nullptr;
431   }
432
433   const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent();
434   const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent();
435
436   llvm::Value *VTT;
437
438   uint64_t SubVTTIndex;
439
440   if (Delegating) {
441     // If this is a delegating constructor call, just load the VTT.
442     return LoadCXXVTT();
443   } else if (RD == Base) {
444     // If the record matches the base, this is the complete ctor/dtor
445     // variant calling the base variant in a class with virtual bases.
446     assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) &&
447            "doing no-op VTT offset in base dtor/ctor?");
448     assert(!ForVirtualBase && "Can't have same class as virtual base!");
449     SubVTTIndex = 0;
450   } else {
451     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
452     CharUnits BaseOffset = ForVirtualBase ?
453       Layout.getVBaseClassOffset(Base) :
454       Layout.getBaseClassOffset(Base);
455
456     SubVTTIndex =
457       CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset));
458     assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
459   }
460
461   if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
462     // A VTT parameter was passed to the constructor, use it.
463     VTT = LoadCXXVTT();
464     VTT = Builder.CreateConstInBoundsGEP1_64(VTT, SubVTTIndex);
465   } else {
466     // We're the complete constructor, so get the VTT by name.
467     VTT = CGM.getVTables().GetAddrOfVTT(RD);
468     VTT = Builder.CreateConstInBoundsGEP2_64(VTT, 0, SubVTTIndex);
469   }
470
471   return VTT;
472 }
473
474 namespace {
475   /// Call the destructor for a direct base class.
476   struct CallBaseDtor final : EHScopeStack::Cleanup {
477     const CXXRecordDecl *BaseClass;
478     bool BaseIsVirtual;
479     CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual)
480       : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
481
482     void Emit(CodeGenFunction &CGF, Flags flags) override {
483       const CXXRecordDecl *DerivedClass =
484         cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
485
486       const CXXDestructorDecl *D = BaseClass->getDestructor();
487       Address Addr =
488         CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(),
489                                                   DerivedClass, BaseClass,
490                                                   BaseIsVirtual);
491       CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual,
492                                 /*Delegating=*/false, Addr);
493     }
494   };
495
496   /// A visitor which checks whether an initializer uses 'this' in a
497   /// way which requires the vtable to be properly set.
498   struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> {
499     typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super;
500
501     bool UsesThis;
502
503     DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {}
504
505     // Black-list all explicit and implicit references to 'this'.
506     //
507     // Do we need to worry about external references to 'this' derived
508     // from arbitrary code?  If so, then anything which runs arbitrary
509     // external code might potentially access the vtable.
510     void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; }
511   };
512 } // end anonymous namespace
513
514 static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) {
515   DynamicThisUseChecker Checker(C);
516   Checker.Visit(Init);
517   return Checker.UsesThis;
518 }
519
520 static void EmitBaseInitializer(CodeGenFunction &CGF,
521                                 const CXXRecordDecl *ClassDecl,
522                                 CXXCtorInitializer *BaseInit,
523                                 CXXCtorType CtorType) {
524   assert(BaseInit->isBaseInitializer() &&
525          "Must have base initializer!");
526
527   Address ThisPtr = CGF.LoadCXXThisAddress();
528
529   const Type *BaseType = BaseInit->getBaseClass();
530   CXXRecordDecl *BaseClassDecl =
531     cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
532
533   bool isBaseVirtual = BaseInit->isBaseVirtual();
534
535   // The base constructor doesn't construct virtual bases.
536   if (CtorType == Ctor_Base && isBaseVirtual)
537     return;
538
539   // If the initializer for the base (other than the constructor
540   // itself) accesses 'this' in any way, we need to initialize the
541   // vtables.
542   if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit()))
543     CGF.InitializeVTablePointers(ClassDecl);
544
545   // We can pretend to be a complete class because it only matters for
546   // virtual bases, and we only do virtual bases for complete ctors.
547   Address V =
548     CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl,
549                                               BaseClassDecl,
550                                               isBaseVirtual);
551   AggValueSlot AggSlot =
552     AggValueSlot::forAddr(V, Qualifiers(),
553                           AggValueSlot::IsDestructed,
554                           AggValueSlot::DoesNotNeedGCBarriers,
555                           AggValueSlot::IsNotAliased);
556
557   CGF.EmitAggExpr(BaseInit->getInit(), AggSlot);
558
559   if (CGF.CGM.getLangOpts().Exceptions &&
560       !BaseClassDecl->hasTrivialDestructor())
561     CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl,
562                                           isBaseVirtual);
563 }
564
565 static void EmitAggMemberInitializer(CodeGenFunction &CGF,
566                                      LValue LHS,
567                                      Expr *Init,
568                                      Address ArrayIndexVar,
569                                      QualType T,
570                                      ArrayRef<VarDecl *> ArrayIndexes,
571                                      unsigned Index) {
572   if (Index == ArrayIndexes.size()) {
573     LValue LV = LHS;
574
575     if (ArrayIndexVar.isValid()) {
576       // If we have an array index variable, load it and use it as an offset.
577       // Then, increment the value.
578       llvm::Value *Dest = LHS.getPointer();
579       llvm::Value *ArrayIndex = CGF.Builder.CreateLoad(ArrayIndexVar);
580       Dest = CGF.Builder.CreateInBoundsGEP(Dest, ArrayIndex, "destaddress");
581       llvm::Value *Next = llvm::ConstantInt::get(ArrayIndex->getType(), 1);
582       Next = CGF.Builder.CreateAdd(ArrayIndex, Next, "inc");
583       CGF.Builder.CreateStore(Next, ArrayIndexVar);
584
585       // Update the LValue.
586       CharUnits EltSize = CGF.getContext().getTypeSizeInChars(T);
587       CharUnits Align = LV.getAlignment().alignmentOfArrayElement(EltSize);
588       LV.setAddress(Address(Dest, Align));
589     }
590
591     switch (CGF.getEvaluationKind(T)) {
592     case TEK_Scalar:
593       CGF.EmitScalarInit(Init, /*decl*/ nullptr, LV, false);
594       break;
595     case TEK_Complex:
596       CGF.EmitComplexExprIntoLValue(Init, LV, /*isInit*/ true);
597       break;
598     case TEK_Aggregate: {
599       AggValueSlot Slot =
600         AggValueSlot::forLValue(LV,
601                                 AggValueSlot::IsDestructed,
602                                 AggValueSlot::DoesNotNeedGCBarriers,
603                                 AggValueSlot::IsNotAliased);
604
605       CGF.EmitAggExpr(Init, Slot);
606       break;
607     }
608     }
609
610     return;
611   }
612
613   const ConstantArrayType *Array = CGF.getContext().getAsConstantArrayType(T);
614   assert(Array && "Array initialization without the array type?");
615   Address IndexVar = CGF.GetAddrOfLocalVar(ArrayIndexes[Index]);
616
617   // Initialize this index variable to zero.
618   llvm::Value* Zero
619     = llvm::Constant::getNullValue(IndexVar.getElementType());
620   CGF.Builder.CreateStore(Zero, IndexVar);
621
622   // Start the loop with a block that tests the condition.
623   llvm::BasicBlock *CondBlock = CGF.createBasicBlock("for.cond");
624   llvm::BasicBlock *AfterFor = CGF.createBasicBlock("for.end");
625
626   CGF.EmitBlock(CondBlock);
627
628   llvm::BasicBlock *ForBody = CGF.createBasicBlock("for.body");
629   // Generate: if (loop-index < number-of-elements) fall to the loop body,
630   // otherwise, go to the block after the for-loop.
631   uint64_t NumElements = Array->getSize().getZExtValue();
632   llvm::Value *Counter = CGF.Builder.CreateLoad(IndexVar);
633   llvm::Value *NumElementsPtr =
634     llvm::ConstantInt::get(Counter->getType(), NumElements);
635   llvm::Value *IsLess = CGF.Builder.CreateICmpULT(Counter, NumElementsPtr,
636                                                   "isless");
637
638   // If the condition is true, execute the body.
639   CGF.Builder.CreateCondBr(IsLess, ForBody, AfterFor);
640
641   CGF.EmitBlock(ForBody);
642   llvm::BasicBlock *ContinueBlock = CGF.createBasicBlock("for.inc");
643
644   // Inside the loop body recurse to emit the inner loop or, eventually, the
645   // constructor call.
646   EmitAggMemberInitializer(CGF, LHS, Init, ArrayIndexVar,
647                            Array->getElementType(), ArrayIndexes, Index + 1);
648
649   CGF.EmitBlock(ContinueBlock);
650
651   // Emit the increment of the loop counter.
652   llvm::Value *NextVal = llvm::ConstantInt::get(Counter->getType(), 1);
653   Counter = CGF.Builder.CreateLoad(IndexVar);
654   NextVal = CGF.Builder.CreateAdd(Counter, NextVal, "inc");
655   CGF.Builder.CreateStore(NextVal, IndexVar);
656
657   // Finally, branch back up to the condition for the next iteration.
658   CGF.EmitBranch(CondBlock);
659
660   // Emit the fall-through block.
661   CGF.EmitBlock(AfterFor, true);
662 }
663
664 static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) {
665   auto *CD = dyn_cast<CXXConstructorDecl>(D);
666   if (!(CD && CD->isCopyOrMoveConstructor()) &&
667       !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator())
668     return false;
669
670   // We can emit a memcpy for a trivial copy or move constructor/assignment.
671   if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding())
672     return true;
673
674   // We *must* emit a memcpy for a defaulted union copy or move op.
675   if (D->getParent()->isUnion() && D->isDefaulted())
676     return true;
677
678   return false;
679 }
680
681 static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF,
682                                                 CXXCtorInitializer *MemberInit,
683                                                 LValue &LHS) {
684   FieldDecl *Field = MemberInit->getAnyMember();
685   if (MemberInit->isIndirectMemberInitializer()) {
686     // If we are initializing an anonymous union field, drill down to the field.
687     IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember();
688     for (const auto *I : IndirectField->chain())
689       LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I));
690   } else {
691     LHS = CGF.EmitLValueForFieldInitialization(LHS, Field);
692   }
693 }
694
695 static void EmitMemberInitializer(CodeGenFunction &CGF,
696                                   const CXXRecordDecl *ClassDecl,
697                                   CXXCtorInitializer *MemberInit,
698                                   const CXXConstructorDecl *Constructor,
699                                   FunctionArgList &Args) {
700   ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation());
701   assert(MemberInit->isAnyMemberInitializer() &&
702          "Must have member initializer!");
703   assert(MemberInit->getInit() && "Must have initializer!");
704
705   // non-static data member initializers.
706   FieldDecl *Field = MemberInit->getAnyMember();
707   QualType FieldType = Field->getType();
708
709   llvm::Value *ThisPtr = CGF.LoadCXXThis();
710   QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
711   LValue LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
712
713   EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS);
714
715   // Special case: if we are in a copy or move constructor, and we are copying
716   // an array of PODs or classes with trivial copy constructors, ignore the
717   // AST and perform the copy we know is equivalent.
718   // FIXME: This is hacky at best... if we had a bit more explicit information
719   // in the AST, we could generalize it more easily.
720   const ConstantArrayType *Array
721     = CGF.getContext().getAsConstantArrayType(FieldType);
722   if (Array && Constructor->isDefaulted() &&
723       Constructor->isCopyOrMoveConstructor()) {
724     QualType BaseElementTy = CGF.getContext().getBaseElementType(Array);
725     CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
726     if (BaseElementTy.isPODType(CGF.getContext()) ||
727         (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) {
728       unsigned SrcArgIndex =
729           CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args);
730       llvm::Value *SrcPtr
731         = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex]));
732       LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
733       LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field);
734
735       // Copy the aggregate.
736       CGF.EmitAggregateCopy(LHS.getAddress(), Src.getAddress(), FieldType,
737                             LHS.isVolatileQualified());
738       // Ensure that we destroy the objects if an exception is thrown later in
739       // the constructor.
740       QualType::DestructionKind dtorKind = FieldType.isDestructedType();
741       if (CGF.needsEHCleanup(dtorKind))
742         CGF.pushEHDestroy(dtorKind, LHS.getAddress(), FieldType); 
743       return;
744     }
745   }
746
747   ArrayRef<VarDecl *> ArrayIndexes;
748   if (MemberInit->getNumArrayIndices())
749     ArrayIndexes = MemberInit->getArrayIndices();
750   CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit(), ArrayIndexes);
751 }
752
753 void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS,
754                                 Expr *Init, ArrayRef<VarDecl *> ArrayIndexes) {
755   QualType FieldType = Field->getType();
756   switch (getEvaluationKind(FieldType)) {
757   case TEK_Scalar:
758     if (LHS.isSimple()) {
759       EmitExprAsInit(Init, Field, LHS, false);
760     } else {
761       RValue RHS = RValue::get(EmitScalarExpr(Init));
762       EmitStoreThroughLValue(RHS, LHS);
763     }
764     break;
765   case TEK_Complex:
766     EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true);
767     break;
768   case TEK_Aggregate: {
769     Address ArrayIndexVar = Address::invalid();
770     if (ArrayIndexes.size()) {
771       // The LHS is a pointer to the first object we'll be constructing, as
772       // a flat array.
773       QualType BaseElementTy = getContext().getBaseElementType(FieldType);
774       llvm::Type *BasePtr = ConvertType(BaseElementTy);
775       BasePtr = llvm::PointerType::getUnqual(BasePtr);
776       Address BaseAddrPtr = Builder.CreateBitCast(LHS.getAddress(), BasePtr);
777       LHS = MakeAddrLValue(BaseAddrPtr, BaseElementTy);
778
779       // Create an array index that will be used to walk over all of the
780       // objects we're constructing.
781       ArrayIndexVar = CreateMemTemp(getContext().getSizeType(), "object.index");
782       llvm::Value *Zero =
783         llvm::Constant::getNullValue(ArrayIndexVar.getElementType());
784       Builder.CreateStore(Zero, ArrayIndexVar);
785
786       // Emit the block variables for the array indices, if any.
787       for (unsigned I = 0, N = ArrayIndexes.size(); I != N; ++I)
788         EmitAutoVarDecl(*ArrayIndexes[I]);
789     }
790
791     EmitAggMemberInitializer(*this, LHS, Init, ArrayIndexVar, FieldType,
792                              ArrayIndexes, 0);
793   }
794   }
795
796   // Ensure that we destroy this object if an exception is thrown
797   // later in the constructor.
798   QualType::DestructionKind dtorKind = FieldType.isDestructedType();
799   if (needsEHCleanup(dtorKind))
800     pushEHDestroy(dtorKind, LHS.getAddress(), FieldType);
801 }
802
803 /// Checks whether the given constructor is a valid subject for the
804 /// complete-to-base constructor delegation optimization, i.e.
805 /// emitting the complete constructor as a simple call to the base
806 /// constructor.
807 static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor) {
808
809   // Currently we disable the optimization for classes with virtual
810   // bases because (1) the addresses of parameter variables need to be
811   // consistent across all initializers but (2) the delegate function
812   // call necessarily creates a second copy of the parameter variable.
813   //
814   // The limiting example (purely theoretical AFAIK):
815   //   struct A { A(int &c) { c++; } };
816   //   struct B : virtual A {
817   //     B(int count) : A(count) { printf("%d\n", count); }
818   //   };
819   // ...although even this example could in principle be emitted as a
820   // delegation since the address of the parameter doesn't escape.
821   if (Ctor->getParent()->getNumVBases()) {
822     // TODO: white-list trivial vbase initializers.  This case wouldn't
823     // be subject to the restrictions below.
824
825     // TODO: white-list cases where:
826     //  - there are no non-reference parameters to the constructor
827     //  - the initializers don't access any non-reference parameters
828     //  - the initializers don't take the address of non-reference
829     //    parameters
830     //  - etc.
831     // If we ever add any of the above cases, remember that:
832     //  - function-try-blocks will always blacklist this optimization
833     //  - we need to perform the constructor prologue and cleanup in
834     //    EmitConstructorBody.
835
836     return false;
837   }
838
839   // We also disable the optimization for variadic functions because
840   // it's impossible to "re-pass" varargs.
841   if (Ctor->getType()->getAs<FunctionProtoType>()->isVariadic())
842     return false;
843
844   // FIXME: Decide if we can do a delegation of a delegating constructor.
845   if (Ctor->isDelegatingConstructor())
846     return false;
847
848   return true;
849 }
850
851 // Emit code in ctor (Prologue==true) or dtor (Prologue==false)
852 // to poison the extra field paddings inserted under
853 // -fsanitize-address-field-padding=1|2.
854 void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) {
855   ASTContext &Context = getContext();
856   const CXXRecordDecl *ClassDecl =
857       Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent()
858                : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent();
859   if (!ClassDecl->mayInsertExtraPadding()) return;
860
861   struct SizeAndOffset {
862     uint64_t Size;
863     uint64_t Offset;
864   };
865
866   unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits();
867   const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl);
868
869   // Populate sizes and offsets of fields.
870   SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount());
871   for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i)
872     SSV[i].Offset =
873         Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity();
874
875   size_t NumFields = 0;
876   for (const auto *Field : ClassDecl->fields()) {
877     const FieldDecl *D = Field;
878     std::pair<CharUnits, CharUnits> FieldInfo =
879         Context.getTypeInfoInChars(D->getType());
880     CharUnits FieldSize = FieldInfo.first;
881     assert(NumFields < SSV.size());
882     SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity();
883     NumFields++;
884   }
885   assert(NumFields == SSV.size());
886   if (SSV.size() <= 1) return;
887
888   // We will insert calls to __asan_* run-time functions.
889   // LLVM AddressSanitizer pass may decide to inline them later.
890   llvm::Type *Args[2] = {IntPtrTy, IntPtrTy};
891   llvm::FunctionType *FTy =
892       llvm::FunctionType::get(CGM.VoidTy, Args, false);
893   llvm::Constant *F = CGM.CreateRuntimeFunction(
894       FTy, Prologue ? "__asan_poison_intra_object_redzone"
895                     : "__asan_unpoison_intra_object_redzone");
896
897   llvm::Value *ThisPtr = LoadCXXThis();
898   ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy);
899   uint64_t TypeSize = Info.getNonVirtualSize().getQuantity();
900   // For each field check if it has sufficient padding,
901   // if so (un)poison it with a call.
902   for (size_t i = 0; i < SSV.size(); i++) {
903     uint64_t AsanAlignment = 8;
904     uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset;
905     uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size;
906     uint64_t EndOffset = SSV[i].Offset + SSV[i].Size;
907     if (PoisonSize < AsanAlignment || !SSV[i].Size ||
908         (NextField % AsanAlignment) != 0)
909       continue;
910     Builder.CreateCall(
911         F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)),
912             Builder.getIntN(PtrSize, PoisonSize)});
913   }
914 }
915
916 /// EmitConstructorBody - Emits the body of the current constructor.
917 void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) {
918   EmitAsanPrologueOrEpilogue(true);
919   const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl());
920   CXXCtorType CtorType = CurGD.getCtorType();
921
922   assert((CGM.getTarget().getCXXABI().hasConstructorVariants() ||
923           CtorType == Ctor_Complete) &&
924          "can only generate complete ctor for this ABI");
925
926   // Before we go any further, try the complete->base constructor
927   // delegation optimization.
928   if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) &&
929       CGM.getTarget().getCXXABI().hasConstructorVariants()) {
930     EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getLocEnd());
931     return;
932   }
933
934   const FunctionDecl *Definition = nullptr;
935   Stmt *Body = Ctor->getBody(Definition);
936   assert(Definition == Ctor && "emitting wrong constructor body");
937
938   // Enter the function-try-block before the constructor prologue if
939   // applicable.
940   bool IsTryBody = (Body && isa<CXXTryStmt>(Body));
941   if (IsTryBody)
942     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
943
944   incrementProfileCounter(Body);
945
946   RunCleanupsScope RunCleanups(*this);
947
948   // TODO: in restricted cases, we can emit the vbase initializers of
949   // a complete ctor and then delegate to the base ctor.
950
951   // Emit the constructor prologue, i.e. the base and member
952   // initializers.
953   EmitCtorPrologue(Ctor, CtorType, Args);
954
955   // Emit the body of the statement.
956   if (IsTryBody)
957     EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
958   else if (Body)
959     EmitStmt(Body);
960
961   // Emit any cleanup blocks associated with the member or base
962   // initializers, which includes (along the exceptional path) the
963   // destructors for those members and bases that were fully
964   // constructed.
965   RunCleanups.ForceCleanup();
966
967   if (IsTryBody)
968     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
969 }
970
971 namespace {
972   /// RAII object to indicate that codegen is copying the value representation
973   /// instead of the object representation. Useful when copying a struct or
974   /// class which has uninitialized members and we're only performing
975   /// lvalue-to-rvalue conversion on the object but not its members.
976   class CopyingValueRepresentation {
977   public:
978     explicit CopyingValueRepresentation(CodeGenFunction &CGF)
979         : CGF(CGF), OldSanOpts(CGF.SanOpts) {
980       CGF.SanOpts.set(SanitizerKind::Bool, false);
981       CGF.SanOpts.set(SanitizerKind::Enum, false);
982     }
983     ~CopyingValueRepresentation() {
984       CGF.SanOpts = OldSanOpts;
985     }
986   private:
987     CodeGenFunction &CGF;
988     SanitizerSet OldSanOpts;
989   };
990 } // end anonymous namespace
991  
992 namespace {
993   class FieldMemcpyizer {
994   public:
995     FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl,
996                     const VarDecl *SrcRec)
997       : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec),
998         RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)),
999         FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0),
1000         LastFieldOffset(0), LastAddedFieldIndex(0) {}
1001
1002     bool isMemcpyableField(FieldDecl *F) const {
1003       // Never memcpy fields when we are adding poisoned paddings.
1004       if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding)
1005         return false;
1006       Qualifiers Qual = F->getType().getQualifiers();
1007       if (Qual.hasVolatile() || Qual.hasObjCLifetime())
1008         return false;
1009       return true;
1010     }
1011
1012     void addMemcpyableField(FieldDecl *F) {
1013       if (!FirstField)
1014         addInitialField(F);
1015       else
1016         addNextField(F);
1017     }
1018
1019     CharUnits getMemcpySize(uint64_t FirstByteOffset) const {
1020       unsigned LastFieldSize =
1021         LastField->isBitField() ?
1022           LastField->getBitWidthValue(CGF.getContext()) :
1023           CGF.getContext().getTypeSize(LastField->getType());
1024       uint64_t MemcpySizeBits =
1025         LastFieldOffset + LastFieldSize - FirstByteOffset +
1026         CGF.getContext().getCharWidth() - 1;
1027       CharUnits MemcpySize =
1028         CGF.getContext().toCharUnitsFromBits(MemcpySizeBits);
1029       return MemcpySize;
1030     }
1031
1032     void emitMemcpy() {
1033       // Give the subclass a chance to bail out if it feels the memcpy isn't
1034       // worth it (e.g. Hasn't aggregated enough data).
1035       if (!FirstField) {
1036         return;
1037       }
1038
1039       uint64_t FirstByteOffset;
1040       if (FirstField->isBitField()) {
1041         const CGRecordLayout &RL =
1042           CGF.getTypes().getCGRecordLayout(FirstField->getParent());
1043         const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField);
1044         // FirstFieldOffset is not appropriate for bitfields,
1045         // we need to use the storage offset instead.
1046         FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset);
1047       } else {
1048         FirstByteOffset = FirstFieldOffset;
1049       }
1050
1051       CharUnits MemcpySize = getMemcpySize(FirstByteOffset);
1052       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
1053       Address ThisPtr = CGF.LoadCXXThisAddress();
1054       LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy);
1055       LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField);
1056       llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec));
1057       LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
1058       LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField);
1059
1060       emitMemcpyIR(Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(),
1061                    Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(),
1062                    MemcpySize);
1063       reset();
1064     }
1065
1066     void reset() {
1067       FirstField = nullptr;
1068     }
1069
1070   protected:
1071     CodeGenFunction &CGF;
1072     const CXXRecordDecl *ClassDecl;
1073
1074   private:
1075     void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) {
1076       llvm::PointerType *DPT = DestPtr.getType();
1077       llvm::Type *DBP =
1078         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), DPT->getAddressSpace());
1079       DestPtr = CGF.Builder.CreateBitCast(DestPtr, DBP);
1080
1081       llvm::PointerType *SPT = SrcPtr.getType();
1082       llvm::Type *SBP =
1083         llvm::Type::getInt8PtrTy(CGF.getLLVMContext(), SPT->getAddressSpace());
1084       SrcPtr = CGF.Builder.CreateBitCast(SrcPtr, SBP);
1085
1086       CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity());
1087     }
1088
1089     void addInitialField(FieldDecl *F) {
1090       FirstField = F;
1091       LastField = F;
1092       FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex());
1093       LastFieldOffset = FirstFieldOffset;
1094       LastAddedFieldIndex = F->getFieldIndex();
1095     }
1096
1097     void addNextField(FieldDecl *F) {
1098       // For the most part, the following invariant will hold:
1099       //   F->getFieldIndex() == LastAddedFieldIndex + 1
1100       // The one exception is that Sema won't add a copy-initializer for an
1101       // unnamed bitfield, which will show up here as a gap in the sequence.
1102       assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 &&
1103              "Cannot aggregate fields out of order.");
1104       LastAddedFieldIndex = F->getFieldIndex();
1105
1106       // The 'first' and 'last' fields are chosen by offset, rather than field
1107       // index. This allows the code to support bitfields, as well as regular
1108       // fields.
1109       uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex());
1110       if (FOffset < FirstFieldOffset) {
1111         FirstField = F;
1112         FirstFieldOffset = FOffset;
1113       } else if (FOffset > LastFieldOffset) {
1114         LastField = F;
1115         LastFieldOffset = FOffset;
1116       }
1117     }
1118
1119     const VarDecl *SrcRec;
1120     const ASTRecordLayout &RecLayout;
1121     FieldDecl *FirstField;
1122     FieldDecl *LastField;
1123     uint64_t FirstFieldOffset, LastFieldOffset;
1124     unsigned LastAddedFieldIndex;
1125   };
1126
1127   class ConstructorMemcpyizer : public FieldMemcpyizer {
1128   private:
1129     /// Get source argument for copy constructor. Returns null if not a copy
1130     /// constructor.
1131     static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF,
1132                                                const CXXConstructorDecl *CD,
1133                                                FunctionArgList &Args) {
1134       if (CD->isCopyOrMoveConstructor() && CD->isDefaulted())
1135         return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)];
1136       return nullptr;
1137     }
1138
1139     // Returns true if a CXXCtorInitializer represents a member initialization
1140     // that can be rolled into a memcpy.
1141     bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const {
1142       if (!MemcpyableCtor)
1143         return false;
1144       FieldDecl *Field = MemberInit->getMember();
1145       assert(Field && "No field for member init.");
1146       QualType FieldType = Field->getType();
1147       CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
1148
1149       // Bail out on non-memcpyable, not-trivially-copyable members.
1150       if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) &&
1151           !(FieldType.isTriviallyCopyableType(CGF.getContext()) ||
1152             FieldType->isReferenceType()))
1153         return false;
1154
1155       // Bail out on volatile fields.
1156       if (!isMemcpyableField(Field))
1157         return false;
1158
1159       // Otherwise we're good.
1160       return true;
1161     }
1162
1163   public:
1164     ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD,
1165                           FunctionArgList &Args)
1166       : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)),
1167         ConstructorDecl(CD),
1168         MemcpyableCtor(CD->isDefaulted() &&
1169                        CD->isCopyOrMoveConstructor() &&
1170                        CGF.getLangOpts().getGC() == LangOptions::NonGC),
1171         Args(Args) { }
1172
1173     void addMemberInitializer(CXXCtorInitializer *MemberInit) {
1174       if (isMemberInitMemcpyable(MemberInit)) {
1175         AggregatedInits.push_back(MemberInit);
1176         addMemcpyableField(MemberInit->getMember());
1177       } else {
1178         emitAggregatedInits();
1179         EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit,
1180                               ConstructorDecl, Args);
1181       }
1182     }
1183
1184     void emitAggregatedInits() {
1185       if (AggregatedInits.size() <= 1) {
1186         // This memcpy is too small to be worthwhile. Fall back on default
1187         // codegen.
1188         if (!AggregatedInits.empty()) {
1189           CopyingValueRepresentation CVR(CGF);
1190           EmitMemberInitializer(CGF, ConstructorDecl->getParent(),
1191                                 AggregatedInits[0], ConstructorDecl, Args);
1192           AggregatedInits.clear();
1193         }
1194         reset();
1195         return;
1196       }
1197
1198       pushEHDestructors();
1199       emitMemcpy();
1200       AggregatedInits.clear();
1201     }
1202
1203     void pushEHDestructors() {
1204       Address ThisPtr = CGF.LoadCXXThisAddress();
1205       QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
1206       LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy);
1207
1208       for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
1209         CXXCtorInitializer *MemberInit = AggregatedInits[i];
1210         QualType FieldType = MemberInit->getAnyMember()->getType();
1211         QualType::DestructionKind dtorKind = FieldType.isDestructedType();
1212         if (!CGF.needsEHCleanup(dtorKind))
1213           continue;
1214         LValue FieldLHS = LHS;
1215         EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS);
1216         CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(), FieldType);
1217       }
1218     }
1219
1220     void finish() {
1221       emitAggregatedInits();
1222     }
1223
1224   private:
1225     const CXXConstructorDecl *ConstructorDecl;
1226     bool MemcpyableCtor;
1227     FunctionArgList &Args;
1228     SmallVector<CXXCtorInitializer*, 16> AggregatedInits;
1229   };
1230
1231   class AssignmentMemcpyizer : public FieldMemcpyizer {
1232   private:
1233     // Returns the memcpyable field copied by the given statement, if one
1234     // exists. Otherwise returns null.
1235     FieldDecl *getMemcpyableField(Stmt *S) {
1236       if (!AssignmentsMemcpyable)
1237         return nullptr;
1238       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) {
1239         // Recognise trivial assignments.
1240         if (BO->getOpcode() != BO_Assign)
1241           return nullptr;
1242         MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS());
1243         if (!ME)
1244           return nullptr;
1245         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1246         if (!Field || !isMemcpyableField(Field))
1247           return nullptr;
1248         Stmt *RHS = BO->getRHS();
1249         if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS))
1250           RHS = EC->getSubExpr();
1251         if (!RHS)
1252           return nullptr;
1253         MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS);
1254         if (dyn_cast<FieldDecl>(ME2->getMemberDecl()) != Field)
1255           return nullptr;
1256         return Field;
1257       } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) {
1258         CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl());
1259         if (!(MD && isMemcpyEquivalentSpecialMember(MD)))
1260           return nullptr;
1261         MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument());
1262         if (!IOA)
1263           return nullptr;
1264         FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl());
1265         if (!Field || !isMemcpyableField(Field))
1266           return nullptr;
1267         MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0));
1268         if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl()))
1269           return nullptr;
1270         return Field;
1271       } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
1272         FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1273         if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy)
1274           return nullptr;
1275         Expr *DstPtr = CE->getArg(0);
1276         if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr))
1277           DstPtr = DC->getSubExpr();
1278         UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr);
1279         if (!DUO || DUO->getOpcode() != UO_AddrOf)
1280           return nullptr;
1281         MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr());
1282         if (!ME)
1283           return nullptr;
1284         FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1285         if (!Field || !isMemcpyableField(Field))
1286           return nullptr;
1287         Expr *SrcPtr = CE->getArg(1);
1288         if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr))
1289           SrcPtr = SC->getSubExpr();
1290         UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr);
1291         if (!SUO || SUO->getOpcode() != UO_AddrOf)
1292           return nullptr;
1293         MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr());
1294         if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl()))
1295           return nullptr;
1296         return Field;
1297       }
1298
1299       return nullptr;
1300     }
1301
1302     bool AssignmentsMemcpyable;
1303     SmallVector<Stmt*, 16> AggregatedStmts;
1304
1305   public:
1306     AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD,
1307                          FunctionArgList &Args)
1308       : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]),
1309         AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) {
1310       assert(Args.size() == 2);
1311     }
1312
1313     void emitAssignment(Stmt *S) {
1314       FieldDecl *F = getMemcpyableField(S);
1315       if (F) {
1316         addMemcpyableField(F);
1317         AggregatedStmts.push_back(S);
1318       } else {
1319         emitAggregatedStmts();
1320         CGF.EmitStmt(S);
1321       }
1322     }
1323
1324     void emitAggregatedStmts() {
1325       if (AggregatedStmts.size() <= 1) {
1326         if (!AggregatedStmts.empty()) {
1327           CopyingValueRepresentation CVR(CGF);
1328           CGF.EmitStmt(AggregatedStmts[0]);
1329         }
1330         reset();
1331       }
1332
1333       emitMemcpy();
1334       AggregatedStmts.clear();
1335     }
1336
1337     void finish() {
1338       emitAggregatedStmts();
1339     }
1340   };
1341 } // end anonymous namespace
1342
1343 static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) {
1344   const Type *BaseType = BaseInit->getBaseClass();
1345   const auto *BaseClassDecl =
1346           cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl());
1347   return BaseClassDecl->isDynamicClass();
1348 }
1349
1350 /// EmitCtorPrologue - This routine generates necessary code to initialize
1351 /// base classes and non-static data members belonging to this constructor.
1352 void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD,
1353                                        CXXCtorType CtorType,
1354                                        FunctionArgList &Args) {
1355   if (CD->isDelegatingConstructor())
1356     return EmitDelegatingCXXConstructorCall(CD, Args);
1357
1358   const CXXRecordDecl *ClassDecl = CD->getParent();
1359
1360   CXXConstructorDecl::init_const_iterator B = CD->init_begin(),
1361                                           E = CD->init_end();
1362
1363   llvm::BasicBlock *BaseCtorContinueBB = nullptr;
1364   if (ClassDecl->getNumVBases() &&
1365       !CGM.getTarget().getCXXABI().hasConstructorVariants()) {
1366     // The ABIs that don't have constructor variants need to put a branch
1367     // before the virtual base initialization code.
1368     BaseCtorContinueBB =
1369       CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl);
1370     assert(BaseCtorContinueBB);
1371   }
1372
1373   llvm::Value *const OldThis = CXXThisValue;
1374   // Virtual base initializers first.
1375   for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) {
1376     if (CGM.getCodeGenOpts().StrictVTablePointers &&
1377         CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1378         isInitializerOfDynamicClass(*B))
1379       CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis());
1380     EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
1381   }
1382
1383   if (BaseCtorContinueBB) {
1384     // Complete object handler should continue to the remaining initializers.
1385     Builder.CreateBr(BaseCtorContinueBB);
1386     EmitBlock(BaseCtorContinueBB);
1387   }
1388
1389   // Then, non-virtual base initializers.
1390   for (; B != E && (*B)->isBaseInitializer(); B++) {
1391     assert(!(*B)->isBaseVirtual());
1392
1393     if (CGM.getCodeGenOpts().StrictVTablePointers &&
1394         CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1395         isInitializerOfDynamicClass(*B))
1396       CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis());
1397     EmitBaseInitializer(*this, ClassDecl, *B, CtorType);
1398   }
1399
1400   CXXThisValue = OldThis;
1401
1402   InitializeVTablePointers(ClassDecl);
1403
1404   // And finally, initialize class members.
1405   FieldConstructionScope FCS(*this, LoadCXXThisAddress());
1406   ConstructorMemcpyizer CM(*this, CD, Args);
1407   for (; B != E; B++) {
1408     CXXCtorInitializer *Member = (*B);
1409     assert(!Member->isBaseInitializer());
1410     assert(Member->isAnyMemberInitializer() &&
1411            "Delegating initializer on non-delegating constructor");
1412     CM.addMemberInitializer(Member);
1413   }
1414   CM.finish();
1415 }
1416
1417 static bool
1418 FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field);
1419
1420 static bool
1421 HasTrivialDestructorBody(ASTContext &Context,
1422                          const CXXRecordDecl *BaseClassDecl,
1423                          const CXXRecordDecl *MostDerivedClassDecl)
1424 {
1425   // If the destructor is trivial we don't have to check anything else.
1426   if (BaseClassDecl->hasTrivialDestructor())
1427     return true;
1428
1429   if (!BaseClassDecl->getDestructor()->hasTrivialBody())
1430     return false;
1431
1432   // Check fields.
1433   for (const auto *Field : BaseClassDecl->fields())
1434     if (!FieldHasTrivialDestructorBody(Context, Field))
1435       return false;
1436
1437   // Check non-virtual bases.
1438   for (const auto &I : BaseClassDecl->bases()) {
1439     if (I.isVirtual())
1440       continue;
1441
1442     const CXXRecordDecl *NonVirtualBase =
1443       cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1444     if (!HasTrivialDestructorBody(Context, NonVirtualBase,
1445                                   MostDerivedClassDecl))
1446       return false;
1447   }
1448
1449   if (BaseClassDecl == MostDerivedClassDecl) {
1450     // Check virtual bases.
1451     for (const auto &I : BaseClassDecl->vbases()) {
1452       const CXXRecordDecl *VirtualBase =
1453         cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1454       if (!HasTrivialDestructorBody(Context, VirtualBase,
1455                                     MostDerivedClassDecl))
1456         return false;
1457     }
1458   }
1459
1460   return true;
1461 }
1462
1463 static bool
1464 FieldHasTrivialDestructorBody(ASTContext &Context,
1465                                           const FieldDecl *Field)
1466 {
1467   QualType FieldBaseElementType = Context.getBaseElementType(Field->getType());
1468
1469   const RecordType *RT = FieldBaseElementType->getAs<RecordType>();
1470   if (!RT)
1471     return true;
1472
1473   CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1474
1475   // The destructor for an implicit anonymous union member is never invoked.
1476   if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
1477     return false;
1478
1479   return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl);
1480 }
1481
1482 /// CanSkipVTablePointerInitialization - Check whether we need to initialize
1483 /// any vtable pointers before calling this destructor.
1484 static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF,
1485                                                const CXXDestructorDecl *Dtor) {
1486   const CXXRecordDecl *ClassDecl = Dtor->getParent();
1487   if (!ClassDecl->isDynamicClass())
1488     return true;
1489
1490   if (!Dtor->hasTrivialBody())
1491     return false;
1492
1493   // Check the fields.
1494   for (const auto *Field : ClassDecl->fields())
1495     if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field))
1496       return false;
1497
1498   return true;
1499 }
1500
1501 /// EmitDestructorBody - Emits the body of the current destructor.
1502 void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) {
1503   const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl());
1504   CXXDtorType DtorType = CurGD.getDtorType();
1505
1506   Stmt *Body = Dtor->getBody();
1507   if (Body)
1508     incrementProfileCounter(Body);
1509
1510   // The call to operator delete in a deleting destructor happens
1511   // outside of the function-try-block, which means it's always
1512   // possible to delegate the destructor body to the complete
1513   // destructor.  Do so.
1514   if (DtorType == Dtor_Deleting) {
1515     EnterDtorCleanups(Dtor, Dtor_Deleting);
1516     EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
1517                           /*Delegating=*/false, LoadCXXThisAddress());
1518     PopCleanupBlock();
1519     return;
1520   }
1521
1522   // If the body is a function-try-block, enter the try before
1523   // anything else.
1524   bool isTryBody = (Body && isa<CXXTryStmt>(Body));
1525   if (isTryBody)
1526     EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1527   EmitAsanPrologueOrEpilogue(false);
1528
1529   // Enter the epilogue cleanups.
1530   RunCleanupsScope DtorEpilogue(*this);
1531
1532   // If this is the complete variant, just invoke the base variant;
1533   // the epilogue will destruct the virtual bases.  But we can't do
1534   // this optimization if the body is a function-try-block, because
1535   // we'd introduce *two* handler blocks.  In the Microsoft ABI, we
1536   // always delegate because we might not have a definition in this TU.
1537   switch (DtorType) {
1538   case Dtor_Comdat:
1539     llvm_unreachable("not expecting a COMDAT");
1540
1541   case Dtor_Deleting: llvm_unreachable("already handled deleting case");
1542
1543   case Dtor_Complete:
1544     assert((Body || getTarget().getCXXABI().isMicrosoft()) &&
1545            "can't emit a dtor without a body for non-Microsoft ABIs");
1546
1547     // Enter the cleanup scopes for virtual bases.
1548     EnterDtorCleanups(Dtor, Dtor_Complete);
1549
1550     if (!isTryBody) {
1551       EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false,
1552                             /*Delegating=*/false, LoadCXXThisAddress());
1553       break;
1554     }
1555     // Fallthrough: act like we're in the base variant.
1556
1557   case Dtor_Base:
1558     assert(Body);
1559
1560     // Enter the cleanup scopes for fields and non-virtual bases.
1561     EnterDtorCleanups(Dtor, Dtor_Base);
1562
1563     // Initialize the vtable pointers before entering the body.
1564     if (!CanSkipVTablePointerInitialization(*this, Dtor)) {
1565       // Insert the llvm.invariant.group.barrier intrinsic before initializing
1566       // the vptrs to cancel any previous assumptions we might have made.
1567       if (CGM.getCodeGenOpts().StrictVTablePointers &&
1568           CGM.getCodeGenOpts().OptimizationLevel > 0)
1569         CXXThisValue = Builder.CreateInvariantGroupBarrier(LoadCXXThis());
1570       InitializeVTablePointers(Dtor->getParent());
1571     }
1572
1573     if (isTryBody)
1574       EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
1575     else if (Body)
1576       EmitStmt(Body);
1577     else {
1578       assert(Dtor->isImplicit() && "bodyless dtor not implicit");
1579       // nothing to do besides what's in the epilogue
1580     }
1581     // -fapple-kext must inline any call to this dtor into
1582     // the caller's body.
1583     if (getLangOpts().AppleKext)
1584       CurFn->addFnAttr(llvm::Attribute::AlwaysInline);
1585
1586     break;
1587   }
1588
1589   // Jump out through the epilogue cleanups.
1590   DtorEpilogue.ForceCleanup();
1591
1592   // Exit the try if applicable.
1593   if (isTryBody)
1594     ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1595 }
1596
1597 void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) {
1598   const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl());
1599   const Stmt *RootS = AssignOp->getBody();
1600   assert(isa<CompoundStmt>(RootS) &&
1601          "Body of an implicit assignment operator should be compound stmt.");
1602   const CompoundStmt *RootCS = cast<CompoundStmt>(RootS);
1603
1604   LexicalScope Scope(*this, RootCS->getSourceRange());
1605
1606   incrementProfileCounter(RootCS);
1607   AssignmentMemcpyizer AM(*this, AssignOp, Args);
1608   for (auto *I : RootCS->body())
1609     AM.emitAssignment(I);
1610   AM.finish();
1611 }
1612
1613 namespace {
1614   /// Call the operator delete associated with the current destructor.
1615   struct CallDtorDelete final : EHScopeStack::Cleanup {
1616     CallDtorDelete() {}
1617
1618     void Emit(CodeGenFunction &CGF, Flags flags) override {
1619       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1620       const CXXRecordDecl *ClassDecl = Dtor->getParent();
1621       CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
1622                          CGF.getContext().getTagDeclType(ClassDecl));
1623     }
1624   };
1625
1626   struct CallDtorDeleteConditional final : EHScopeStack::Cleanup {
1627     llvm::Value *ShouldDeleteCondition;
1628
1629   public:
1630     CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition)
1631         : ShouldDeleteCondition(ShouldDeleteCondition) {
1632       assert(ShouldDeleteCondition != nullptr);
1633     }
1634
1635     void Emit(CodeGenFunction &CGF, Flags flags) override {
1636       llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete");
1637       llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue");
1638       llvm::Value *ShouldCallDelete
1639         = CGF.Builder.CreateIsNull(ShouldDeleteCondition);
1640       CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB);
1641
1642       CGF.EmitBlock(callDeleteBB);
1643       const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1644       const CXXRecordDecl *ClassDecl = Dtor->getParent();
1645       CGF.EmitDeleteCall(Dtor->getOperatorDelete(), CGF.LoadCXXThis(),
1646                          CGF.getContext().getTagDeclType(ClassDecl));
1647       CGF.Builder.CreateBr(continueBB);
1648
1649       CGF.EmitBlock(continueBB);
1650     }
1651   };
1652
1653   class DestroyField  final : public EHScopeStack::Cleanup {
1654     const FieldDecl *field;
1655     CodeGenFunction::Destroyer *destroyer;
1656     bool useEHCleanupForArray;
1657
1658   public:
1659     DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer,
1660                  bool useEHCleanupForArray)
1661         : field(field), destroyer(destroyer),
1662           useEHCleanupForArray(useEHCleanupForArray) {}
1663
1664     void Emit(CodeGenFunction &CGF, Flags flags) override {
1665       // Find the address of the field.
1666       Address thisValue = CGF.LoadCXXThisAddress();
1667       QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent());
1668       LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy);
1669       LValue LV = CGF.EmitLValueForField(ThisLV, field);
1670       assert(LV.isSimple());
1671
1672       CGF.emitDestroy(LV.getAddress(), field->getType(), destroyer,
1673                       flags.isForNormalCleanup() && useEHCleanupForArray);
1674     }
1675   };
1676
1677  static void EmitSanitizerDtorCallback(CodeGenFunction &CGF, llvm::Value *Ptr,
1678              CharUnits::QuantityType PoisonSize) {
1679    // Pass in void pointer and size of region as arguments to runtime
1680    // function
1681    llvm::Value *Args[] = {CGF.Builder.CreateBitCast(Ptr, CGF.VoidPtrTy),
1682                           llvm::ConstantInt::get(CGF.SizeTy, PoisonSize)};
1683
1684    llvm::Type *ArgTypes[] = {CGF.VoidPtrTy, CGF.SizeTy};
1685
1686    llvm::FunctionType *FnType =
1687        llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false);
1688    llvm::Value *Fn =
1689        CGF.CGM.CreateRuntimeFunction(FnType, "__sanitizer_dtor_callback");
1690    CGF.EmitNounwindRuntimeCall(Fn, Args);
1691  }
1692
1693   class SanitizeDtorMembers final : public EHScopeStack::Cleanup {
1694     const CXXDestructorDecl *Dtor;
1695
1696   public:
1697     SanitizeDtorMembers(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {}
1698
1699     // Generate function call for handling object poisoning.
1700     // Disables tail call elimination, to prevent the current stack frame
1701     // from disappearing from the stack trace.
1702     void Emit(CodeGenFunction &CGF, Flags flags) override {
1703       const ASTRecordLayout &Layout =
1704           CGF.getContext().getASTRecordLayout(Dtor->getParent());
1705
1706       // Nothing to poison.
1707       if (Layout.getFieldCount() == 0)
1708         return;
1709
1710       // Prevent the current stack frame from disappearing from the stack trace.
1711       CGF.CurFn->addFnAttr("disable-tail-calls", "true");
1712
1713       // Construct pointer to region to begin poisoning, and calculate poison
1714       // size, so that only members declared in this class are poisoned.
1715       ASTContext &Context = CGF.getContext();
1716       unsigned fieldIndex = 0;
1717       int startIndex = -1;
1718       // RecordDecl::field_iterator Field;
1719       for (const FieldDecl *Field : Dtor->getParent()->fields()) {
1720         // Poison field if it is trivial
1721         if (FieldHasTrivialDestructorBody(Context, Field)) {
1722           // Start sanitizing at this field
1723           if (startIndex < 0)
1724             startIndex = fieldIndex;
1725
1726           // Currently on the last field, and it must be poisoned with the
1727           // current block.
1728           if (fieldIndex == Layout.getFieldCount() - 1) {
1729             PoisonMembers(CGF, startIndex, Layout.getFieldCount());
1730           }
1731         } else if (startIndex >= 0) {
1732           // No longer within a block of memory to poison, so poison the block
1733           PoisonMembers(CGF, startIndex, fieldIndex);
1734           // Re-set the start index
1735           startIndex = -1;
1736         }
1737         fieldIndex += 1;
1738       }
1739     }
1740
1741   private:
1742     /// \param layoutStartOffset index of the ASTRecordLayout field to
1743     ///     start poisoning (inclusive)
1744     /// \param layoutEndOffset index of the ASTRecordLayout field to
1745     ///     end poisoning (exclusive)
1746     void PoisonMembers(CodeGenFunction &CGF, unsigned layoutStartOffset,
1747                      unsigned layoutEndOffset) {
1748       ASTContext &Context = CGF.getContext();
1749       const ASTRecordLayout &Layout =
1750           Context.getASTRecordLayout(Dtor->getParent());
1751
1752       llvm::ConstantInt *OffsetSizePtr = llvm::ConstantInt::get(
1753           CGF.SizeTy,
1754           Context.toCharUnitsFromBits(Layout.getFieldOffset(layoutStartOffset))
1755               .getQuantity());
1756
1757       llvm::Value *OffsetPtr = CGF.Builder.CreateGEP(
1758           CGF.Builder.CreateBitCast(CGF.LoadCXXThis(), CGF.Int8PtrTy),
1759           OffsetSizePtr);
1760
1761       CharUnits::QuantityType PoisonSize;
1762       if (layoutEndOffset >= Layout.getFieldCount()) {
1763         PoisonSize = Layout.getNonVirtualSize().getQuantity() -
1764                      Context.toCharUnitsFromBits(
1765                                 Layout.getFieldOffset(layoutStartOffset))
1766                          .getQuantity();
1767       } else {
1768         PoisonSize = Context.toCharUnitsFromBits(
1769                                 Layout.getFieldOffset(layoutEndOffset) -
1770                                 Layout.getFieldOffset(layoutStartOffset))
1771                          .getQuantity();
1772       }
1773
1774       if (PoisonSize == 0)
1775         return;
1776
1777       EmitSanitizerDtorCallback(CGF, OffsetPtr, PoisonSize);
1778     }
1779   };
1780
1781  class SanitizeDtorVTable final : public EHScopeStack::Cleanup {
1782     const CXXDestructorDecl *Dtor;
1783
1784   public:
1785     SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {}
1786
1787     // Generate function call for handling vtable pointer poisoning.
1788     void Emit(CodeGenFunction &CGF, Flags flags) override {
1789       assert(Dtor->getParent()->isDynamicClass());
1790       (void)Dtor;
1791       ASTContext &Context = CGF.getContext();
1792       // Poison vtable and vtable ptr if they exist for this class.
1793       llvm::Value *VTablePtr = CGF.LoadCXXThis();
1794
1795       CharUnits::QuantityType PoisonSize =
1796           Context.toCharUnitsFromBits(CGF.PointerWidthInBits).getQuantity();
1797       // Pass in void pointer and size of region as arguments to runtime
1798       // function
1799       EmitSanitizerDtorCallback(CGF, VTablePtr, PoisonSize);
1800     }
1801  };
1802 } // end anonymous namespace
1803
1804 /// \brief Emit all code that comes at the end of class's
1805 /// destructor. This is to call destructors on members and base classes
1806 /// in reverse order of their construction.
1807 void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD,
1808                                         CXXDtorType DtorType) {
1809   assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) &&
1810          "Should not emit dtor epilogue for non-exported trivial dtor!");
1811
1812   // The deleting-destructor phase just needs to call the appropriate
1813   // operator delete that Sema picked up.
1814   if (DtorType == Dtor_Deleting) {
1815     assert(DD->getOperatorDelete() &&
1816            "operator delete missing - EnterDtorCleanups");
1817     if (CXXStructorImplicitParamValue) {
1818       // If there is an implicit param to the deleting dtor, it's a boolean
1819       // telling whether we should call delete at the end of the dtor.
1820       EHStack.pushCleanup<CallDtorDeleteConditional>(
1821           NormalAndEHCleanup, CXXStructorImplicitParamValue);
1822     } else {
1823       EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup);
1824     }
1825     return;
1826   }
1827
1828   const CXXRecordDecl *ClassDecl = DD->getParent();
1829
1830   // Unions have no bases and do not call field destructors.
1831   if (ClassDecl->isUnion())
1832     return;
1833
1834   // The complete-destructor phase just destructs all the virtual bases.
1835   if (DtorType == Dtor_Complete) {
1836     // Poison the vtable pointer such that access after the base
1837     // and member destructors are invoked is invalid.
1838     if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1839         SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() &&
1840         ClassDecl->isPolymorphic())
1841       EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
1842
1843     // We push them in the forward order so that they'll be popped in
1844     // the reverse order.
1845     for (const auto &Base : ClassDecl->vbases()) {
1846       CXXRecordDecl *BaseClassDecl
1847         = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
1848
1849       // Ignore trivial destructors.
1850       if (BaseClassDecl->hasTrivialDestructor())
1851         continue;
1852
1853       EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1854                                         BaseClassDecl,
1855                                         /*BaseIsVirtual*/ true);
1856     }
1857
1858     return;
1859   }
1860
1861   assert(DtorType == Dtor_Base);
1862   // Poison the vtable pointer if it has no virtual bases, but inherits
1863   // virtual functions.
1864   if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1865       SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() &&
1866       ClassDecl->isPolymorphic())
1867     EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
1868
1869   // Destroy non-virtual bases.
1870   for (const auto &Base : ClassDecl->bases()) {
1871     // Ignore virtual bases.
1872     if (Base.isVirtual())
1873       continue;
1874
1875     CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl();
1876
1877     // Ignore trivial destructors.
1878     if (BaseClassDecl->hasTrivialDestructor())
1879       continue;
1880
1881     EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup,
1882                                       BaseClassDecl,
1883                                       /*BaseIsVirtual*/ false);
1884   }
1885
1886   // Poison fields such that access after their destructors are
1887   // invoked, and before the base class destructor runs, is invalid.
1888   if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1889       SanOpts.has(SanitizerKind::Memory))
1890     EHStack.pushCleanup<SanitizeDtorMembers>(NormalAndEHCleanup, DD);
1891
1892   // Destroy direct fields.
1893   for (const auto *Field : ClassDecl->fields()) {
1894     QualType type = Field->getType();
1895     QualType::DestructionKind dtorKind = type.isDestructedType();
1896     if (!dtorKind) continue;
1897
1898     // Anonymous union members do not have their destructors called.
1899     const RecordType *RT = type->getAsUnionType();
1900     if (RT && RT->getDecl()->isAnonymousStructOrUnion()) continue;
1901
1902     CleanupKind cleanupKind = getCleanupKind(dtorKind);
1903     EHStack.pushCleanup<DestroyField>(cleanupKind, Field,
1904                                       getDestroyer(dtorKind),
1905                                       cleanupKind & EHCleanup);
1906   }
1907 }
1908
1909 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1910 /// constructor for each of several members of an array.
1911 ///
1912 /// \param ctor the constructor to call for each element
1913 /// \param arrayType the type of the array to initialize
1914 /// \param arrayBegin an arrayType*
1915 /// \param zeroInitialize true if each element should be
1916 ///   zero-initialized before it is constructed
1917 void CodeGenFunction::EmitCXXAggrConstructorCall(
1918     const CXXConstructorDecl *ctor, const ArrayType *arrayType,
1919     Address arrayBegin, const CXXConstructExpr *E, bool zeroInitialize) {
1920   QualType elementType;
1921   llvm::Value *numElements =
1922     emitArrayLength(arrayType, elementType, arrayBegin);
1923
1924   EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E, zeroInitialize);
1925 }
1926
1927 /// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1928 /// constructor for each of several members of an array.
1929 ///
1930 /// \param ctor the constructor to call for each element
1931 /// \param numElements the number of elements in the array;
1932 ///   may be zero
1933 /// \param arrayBase a T*, where T is the type constructed by ctor
1934 /// \param zeroInitialize true if each element should be
1935 ///   zero-initialized before it is constructed
1936 void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
1937                                                  llvm::Value *numElements,
1938                                                  Address arrayBase,
1939                                                  const CXXConstructExpr *E,
1940                                                  bool zeroInitialize) {
1941   // It's legal for numElements to be zero.  This can happen both
1942   // dynamically, because x can be zero in 'new A[x]', and statically,
1943   // because of GCC extensions that permit zero-length arrays.  There
1944   // are probably legitimate places where we could assume that this
1945   // doesn't happen, but it's not clear that it's worth it.
1946   llvm::BranchInst *zeroCheckBranch = nullptr;
1947
1948   // Optimize for a constant count.
1949   llvm::ConstantInt *constantCount
1950     = dyn_cast<llvm::ConstantInt>(numElements);
1951   if (constantCount) {
1952     // Just skip out if the constant count is zero.
1953     if (constantCount->isZero()) return;
1954
1955   // Otherwise, emit the check.
1956   } else {
1957     llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop");
1958     llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty");
1959     zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB);
1960     EmitBlock(loopBB);
1961   }
1962
1963   // Find the end of the array.
1964   llvm::Value *arrayBegin = arrayBase.getPointer();
1965   llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(arrayBegin, numElements,
1966                                                     "arrayctor.end");
1967
1968   // Enter the loop, setting up a phi for the current location to initialize.
1969   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1970   llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop");
1971   EmitBlock(loopBB);
1972   llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2,
1973                                          "arrayctor.cur");
1974   cur->addIncoming(arrayBegin, entryBB);
1975
1976   // Inside the loop body, emit the constructor call on the array element.
1977
1978   // The alignment of the base, adjusted by the size of a single element,
1979   // provides a conservative estimate of the alignment of every element.
1980   // (This assumes we never start tracking offsetted alignments.)
1981   // 
1982   // Note that these are complete objects and so we don't need to
1983   // use the non-virtual size or alignment.
1984   QualType type = getContext().getTypeDeclType(ctor->getParent());
1985   CharUnits eltAlignment =
1986     arrayBase.getAlignment()
1987              .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
1988   Address curAddr = Address(cur, eltAlignment);
1989
1990   // Zero initialize the storage, if requested.
1991   if (zeroInitialize)
1992     EmitNullInitialization(curAddr, type);
1993
1994   // C++ [class.temporary]p4:
1995   // There are two contexts in which temporaries are destroyed at a different
1996   // point than the end of the full-expression. The first context is when a
1997   // default constructor is called to initialize an element of an array.
1998   // If the constructor has one or more default arguments, the destruction of
1999   // every temporary created in a default argument expression is sequenced
2000   // before the construction of the next array element, if any.
2001
2002   {
2003     RunCleanupsScope Scope(*this);
2004
2005     // Evaluate the constructor and its arguments in a regular
2006     // partial-destroy cleanup.
2007     if (getLangOpts().Exceptions &&
2008         !ctor->getParent()->hasTrivialDestructor()) {
2009       Destroyer *destroyer = destroyCXXObject;
2010       pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment,
2011                                      *destroyer);
2012     }
2013
2014     EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false,
2015                            /*Delegating=*/false, curAddr, E);
2016   }
2017
2018   // Go to the next element.
2019   llvm::Value *next =
2020     Builder.CreateInBoundsGEP(cur, llvm::ConstantInt::get(SizeTy, 1),
2021                               "arrayctor.next");
2022   cur->addIncoming(next, Builder.GetInsertBlock());
2023
2024   // Check whether that's the end of the loop.
2025   llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done");
2026   llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont");
2027   Builder.CreateCondBr(done, contBB, loopBB);
2028
2029   // Patch the earlier check to skip over the loop.
2030   if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB);
2031
2032   EmitBlock(contBB);
2033 }
2034
2035 void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF,
2036                                        Address addr,
2037                                        QualType type) {
2038   const RecordType *rtype = type->castAs<RecordType>();
2039   const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl());
2040   const CXXDestructorDecl *dtor = record->getDestructor();
2041   assert(!dtor->isTrivial());
2042   CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false,
2043                             /*Delegating=*/false, addr);
2044 }
2045
2046 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
2047                                              CXXCtorType Type,
2048                                              bool ForVirtualBase,
2049                                              bool Delegating, Address This,
2050                                              const CXXConstructExpr *E) {
2051   CallArgList Args;
2052
2053   // Push the this ptr.
2054   Args.add(RValue::get(This.getPointer()), D->getThisType(getContext()));
2055
2056   // If this is a trivial constructor, emit a memcpy now before we lose
2057   // the alignment information on the argument.
2058   // FIXME: It would be better to preserve alignment information into CallArg.
2059   if (isMemcpyEquivalentSpecialMember(D)) {
2060     assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
2061
2062     const Expr *Arg = E->getArg(0);
2063     QualType SrcTy = Arg->getType();
2064     Address Src = EmitLValue(Arg).getAddress();
2065     QualType DestTy = getContext().getTypeDeclType(D->getParent());
2066     EmitAggregateCopyCtor(This, Src, DestTy, SrcTy);
2067     return;
2068   }
2069
2070   // Add the rest of the user-supplied arguments.
2071   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
2072   EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor());
2073
2074   EmitCXXConstructorCall(D, Type, ForVirtualBase, Delegating, This, Args);
2075 }
2076
2077 static bool canEmitDelegateCallArgs(CodeGenFunction &CGF,
2078                                     const CXXConstructorDecl *Ctor,
2079                                     CXXCtorType Type, CallArgList &Args) {
2080   // We can't forward a variadic call.
2081   if (Ctor->isVariadic())
2082     return false;
2083
2084   if (CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2085     // If the parameters are callee-cleanup, it's not safe to forward.
2086     for (auto *P : Ctor->parameters())
2087       if (P->getType().isDestructedType())
2088         return false;
2089
2090     // Likewise if they're inalloca.
2091     const CGFunctionInfo &Info =
2092         CGF.CGM.getTypes().arrangeCXXConstructorCall(Args, Ctor, Type, 0);
2093     if (Info.usesInAlloca())
2094       return false;
2095   }
2096
2097   // Anything else should be OK.
2098   return true;
2099 }
2100
2101 void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
2102                                              CXXCtorType Type,
2103                                              bool ForVirtualBase,
2104                                              bool Delegating,
2105                                              Address This,
2106                                              CallArgList &Args) {
2107   const CXXRecordDecl *ClassDecl = D->getParent();
2108
2109   // C++11 [class.mfct.non-static]p2:
2110   //   If a non-static member function of a class X is called for an object that
2111   //   is not of type X, or of a type derived from X, the behavior is undefined.
2112   // FIXME: Provide a source location here.
2113   EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, SourceLocation(),
2114                 This.getPointer(), getContext().getRecordType(ClassDecl));
2115
2116   if (D->isTrivial() && D->isDefaultConstructor()) {
2117     assert(Args.size() == 1 && "trivial default ctor with args");
2118     return;
2119   }
2120
2121   // If this is a trivial constructor, just emit what's needed. If this is a
2122   // union copy constructor, we must emit a memcpy, because the AST does not
2123   // model that copy.
2124   if (isMemcpyEquivalentSpecialMember(D)) {
2125     assert(Args.size() == 2 && "unexpected argcount for trivial ctor");
2126
2127     QualType SrcTy = D->getParamDecl(0)->getType().getNonReferenceType();
2128     Address Src(Args[1].RV.getScalarVal(), getNaturalTypeAlignment(SrcTy));
2129     QualType DestTy = getContext().getTypeDeclType(ClassDecl);
2130     EmitAggregateCopyCtor(This, Src, DestTy, SrcTy);
2131     return;
2132   }
2133
2134   // Check whether we can actually emit the constructor before trying to do so.
2135   if (auto Inherited = D->getInheritedConstructor()) {
2136     if (getTypes().inheritingCtorHasParams(Inherited, Type) &&
2137         !canEmitDelegateCallArgs(*this, D, Type, Args)) {
2138       EmitInlinedInheritingCXXConstructorCall(D, Type, ForVirtualBase,
2139                                               Delegating, Args);
2140       return;
2141     }
2142   }
2143
2144   // Insert any ABI-specific implicit constructor arguments.
2145   unsigned ExtraArgs = CGM.getCXXABI().addImplicitConstructorArgs(
2146       *this, D, Type, ForVirtualBase, Delegating, Args);
2147
2148   // Emit the call.
2149   llvm::Value *Callee = CGM.getAddrOfCXXStructor(D, getFromCtorType(Type));
2150   const CGFunctionInfo &Info =
2151       CGM.getTypes().arrangeCXXConstructorCall(Args, D, Type, ExtraArgs);
2152   EmitCall(Info, Callee, ReturnValueSlot(), Args, D);
2153
2154   // Generate vtable assumptions if we're constructing a complete object
2155   // with a vtable.  We don't do this for base subobjects for two reasons:
2156   // first, it's incorrect for classes with virtual bases, and second, we're
2157   // about to overwrite the vptrs anyway.
2158   // We also have to make sure if we can refer to vtable:
2159   // - Otherwise we can refer to vtable if it's safe to speculatively emit.
2160   // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are
2161   // sure that definition of vtable is not hidden,
2162   // then we are always safe to refer to it.
2163   // FIXME: It looks like InstCombine is very inefficient on dealing with
2164   // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily.
2165   if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2166       ClassDecl->isDynamicClass() && Type != Ctor_Base &&
2167       CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) &&
2168       CGM.getCodeGenOpts().StrictVTablePointers)
2169     EmitVTableAssumptionLoads(ClassDecl, This);
2170 }
2171
2172 void CodeGenFunction::EmitInheritedCXXConstructorCall(
2173     const CXXConstructorDecl *D, bool ForVirtualBase, Address This,
2174     bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E) {
2175   CallArgList Args;
2176   CallArg ThisArg(RValue::get(This.getPointer()), D->getThisType(getContext()),
2177                   /*NeedsCopy=*/false);
2178
2179   // Forward the parameters.
2180   if (InheritedFromVBase &&
2181       CGM.getTarget().getCXXABI().hasConstructorVariants()) {
2182     // Nothing to do; this construction is not responsible for constructing
2183     // the base class containing the inherited constructor.
2184     // FIXME: Can we just pass undef's for the remaining arguments if we don't
2185     // have constructor variants?
2186     Args.push_back(ThisArg);
2187   } else if (!CXXInheritedCtorInitExprArgs.empty()) {
2188     // The inheriting constructor was inlined; just inject its arguments.
2189     assert(CXXInheritedCtorInitExprArgs.size() >= D->getNumParams() &&
2190            "wrong number of parameters for inherited constructor call");
2191     Args = CXXInheritedCtorInitExprArgs;
2192     Args[0] = ThisArg;
2193   } else {
2194     // The inheriting constructor was not inlined. Emit delegating arguments.
2195     Args.push_back(ThisArg);
2196     const auto *OuterCtor = cast<CXXConstructorDecl>(CurCodeDecl);
2197     assert(OuterCtor->getNumParams() == D->getNumParams());
2198     assert(!OuterCtor->isVariadic() && "should have been inlined");
2199
2200     for (const auto *Param : OuterCtor->parameters()) {
2201       assert(getContext().hasSameUnqualifiedType(
2202           OuterCtor->getParamDecl(Param->getFunctionScopeIndex())->getType(),
2203           Param->getType()));
2204       EmitDelegateCallArg(Args, Param, E->getLocation());
2205
2206       // Forward __attribute__(pass_object_size).
2207       if (Param->hasAttr<PassObjectSizeAttr>()) {
2208         auto *POSParam = SizeArguments[Param];
2209         assert(POSParam && "missing pass_object_size value for forwarding");
2210         EmitDelegateCallArg(Args, POSParam, E->getLocation());
2211       }
2212     }
2213   }
2214
2215   EmitCXXConstructorCall(D, Ctor_Base, ForVirtualBase, /*Delegating*/false,
2216                          This, Args);
2217 }
2218
2219 void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall(
2220     const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase,
2221     bool Delegating, CallArgList &Args) {
2222   InlinedInheritingConstructorScope Scope(*this, GlobalDecl(Ctor, CtorType));
2223
2224   // Save the arguments to be passed to the inherited constructor.
2225   CXXInheritedCtorInitExprArgs = Args;
2226
2227   FunctionArgList Params;
2228   QualType RetType = BuildFunctionArgList(CurGD, Params);
2229   FnRetTy = RetType;
2230
2231   // Insert any ABI-specific implicit constructor arguments.
2232   CGM.getCXXABI().addImplicitConstructorArgs(*this, Ctor, CtorType,
2233                                              ForVirtualBase, Delegating, Args);
2234
2235   // Emit a simplified prolog. We only need to emit the implicit params.
2236   assert(Args.size() >= Params.size() && "too few arguments for call");
2237   for (unsigned I = 0, N = Args.size(); I != N; ++I) {
2238     if (I < Params.size() && isa<ImplicitParamDecl>(Params[I])) {
2239       const RValue &RV = Args[I].RV;
2240       assert(!RV.isComplex() && "complex indirect params not supported");
2241       ParamValue Val = RV.isScalar()
2242                            ? ParamValue::forDirect(RV.getScalarVal())
2243                            : ParamValue::forIndirect(RV.getAggregateAddress());
2244       EmitParmDecl(*Params[I], Val, I + 1);
2245     }
2246   }
2247
2248   // Create a return value slot if the ABI implementation wants one.
2249   // FIXME: This is dumb, we should ask the ABI not to try to set the return
2250   // value instead.
2251   if (!RetType->isVoidType())
2252     ReturnValue = CreateIRTemp(RetType, "retval.inhctor");
2253
2254   CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
2255   CXXThisValue = CXXABIThisValue;
2256
2257   // Directly emit the constructor initializers.
2258   EmitCtorPrologue(Ctor, CtorType, Params);
2259 }
2260
2261 void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) {
2262   llvm::Value *VTableGlobal =
2263       CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass);
2264   if (!VTableGlobal)
2265     return;
2266
2267   // We can just use the base offset in the complete class.
2268   CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset();
2269
2270   if (!NonVirtualOffset.isZero())
2271     This =
2272         ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr,
2273                                         Vptr.VTableClass, Vptr.NearestVBase);
2274
2275   llvm::Value *VPtrValue =
2276       GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass);
2277   llvm::Value *Cmp =
2278       Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables");
2279   Builder.CreateAssumption(Cmp);
2280 }
2281
2282 void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl,
2283                                                 Address This) {
2284   if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl))
2285     for (const VPtr &Vptr : getVTablePointers(ClassDecl))
2286       EmitVTableAssumptionLoad(Vptr, This);
2287 }
2288
2289 void
2290 CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2291                                                 Address This, Address Src,
2292                                                 const CXXConstructExpr *E) {
2293   const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
2294
2295   CallArgList Args;
2296
2297   // Push the this ptr.
2298   Args.add(RValue::get(This.getPointer()), D->getThisType(getContext()));
2299
2300   // Push the src ptr.
2301   QualType QT = *(FPT->param_type_begin());
2302   llvm::Type *t = CGM.getTypes().ConvertType(QT);
2303   Src = Builder.CreateBitCast(Src, t);
2304   Args.add(RValue::get(Src.getPointer()), QT);
2305
2306   // Skip over first argument (Src).
2307   EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(),
2308                /*ParamsToSkip*/ 1);
2309
2310   EmitCXXConstructorCall(D, Ctor_Complete, false, false, This, Args);
2311 }
2312
2313 void
2314 CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2315                                                 CXXCtorType CtorType,
2316                                                 const FunctionArgList &Args,
2317                                                 SourceLocation Loc) {
2318   CallArgList DelegateArgs;
2319
2320   FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
2321   assert(I != E && "no parameters to constructor");
2322
2323   // this
2324   Address This = LoadCXXThisAddress();
2325   DelegateArgs.add(RValue::get(This.getPointer()), (*I)->getType());
2326   ++I;
2327
2328   // FIXME: The location of the VTT parameter in the parameter list is
2329   // specific to the Itanium ABI and shouldn't be hardcoded here.
2330   if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
2331     assert(I != E && "cannot skip vtt parameter, already done with args");
2332     assert((*I)->getType()->isPointerType() &&
2333            "skipping parameter not of vtt type");
2334     ++I;
2335   }
2336
2337   // Explicit arguments.
2338   for (; I != E; ++I) {
2339     const VarDecl *param = *I;
2340     // FIXME: per-argument source location
2341     EmitDelegateCallArg(DelegateArgs, param, Loc);
2342   }
2343
2344   EmitCXXConstructorCall(Ctor, CtorType, /*ForVirtualBase=*/false,
2345                          /*Delegating=*/true, This, DelegateArgs);
2346 }
2347
2348 namespace {
2349   struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup {
2350     const CXXDestructorDecl *Dtor;
2351     Address Addr;
2352     CXXDtorType Type;
2353
2354     CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr,
2355                            CXXDtorType Type)
2356       : Dtor(D), Addr(Addr), Type(Type) {}
2357
2358     void Emit(CodeGenFunction &CGF, Flags flags) override {
2359       CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false,
2360                                 /*Delegating=*/true, Addr);
2361     }
2362   };
2363 } // end anonymous namespace
2364
2365 void
2366 CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2367                                                   const FunctionArgList &Args) {
2368   assert(Ctor->isDelegatingConstructor());
2369
2370   Address ThisPtr = LoadCXXThisAddress();
2371
2372   AggValueSlot AggSlot =
2373     AggValueSlot::forAddr(ThisPtr, Qualifiers(),
2374                           AggValueSlot::IsDestructed,
2375                           AggValueSlot::DoesNotNeedGCBarriers,
2376                           AggValueSlot::IsNotAliased);
2377
2378   EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot);
2379
2380   const CXXRecordDecl *ClassDecl = Ctor->getParent();
2381   if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) {
2382     CXXDtorType Type =
2383       CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base;
2384
2385     EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup,
2386                                                 ClassDecl->getDestructor(),
2387                                                 ThisPtr, Type);
2388   }
2389 }
2390
2391 void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD,
2392                                             CXXDtorType Type,
2393                                             bool ForVirtualBase,
2394                                             bool Delegating,
2395                                             Address This) {
2396   CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase,
2397                                      Delegating, This);
2398 }
2399
2400 namespace {
2401   struct CallLocalDtor final : EHScopeStack::Cleanup {
2402     const CXXDestructorDecl *Dtor;
2403     Address Addr;
2404
2405     CallLocalDtor(const CXXDestructorDecl *D, Address Addr)
2406       : Dtor(D), Addr(Addr) {}
2407
2408     void Emit(CodeGenFunction &CGF, Flags flags) override {
2409       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
2410                                 /*ForVirtualBase=*/false,
2411                                 /*Delegating=*/false, Addr);
2412     }
2413   };
2414 } // end anonymous namespace
2415
2416 void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D,
2417                                             Address Addr) {
2418   EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr);
2419 }
2420
2421 void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) {
2422   CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl();
2423   if (!ClassDecl) return;
2424   if (ClassDecl->hasTrivialDestructor()) return;
2425
2426   const CXXDestructorDecl *D = ClassDecl->getDestructor();
2427   assert(D && D->isUsed() && "destructor not marked as used!");
2428   PushDestructorCleanup(D, Addr);
2429 }
2430
2431 void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) {
2432   // Compute the address point.
2433   llvm::Value *VTableAddressPoint =
2434       CGM.getCXXABI().getVTableAddressPointInStructor(
2435           *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase);
2436
2437   if (!VTableAddressPoint)
2438     return;
2439
2440   // Compute where to store the address point.
2441   llvm::Value *VirtualOffset = nullptr;
2442   CharUnits NonVirtualOffset = CharUnits::Zero();
2443
2444   if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) {
2445     // We need to use the virtual base offset offset because the virtual base
2446     // might have a different offset in the most derived class.
2447
2448     VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(
2449         *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase);
2450     NonVirtualOffset = Vptr.OffsetFromNearestVBase;
2451   } else {
2452     // We can just use the base offset in the complete class.
2453     NonVirtualOffset = Vptr.Base.getBaseOffset();
2454   }
2455
2456   // Apply the offsets.
2457   Address VTableField = LoadCXXThisAddress();
2458
2459   if (!NonVirtualOffset.isZero() || VirtualOffset)
2460     VTableField = ApplyNonVirtualAndVirtualOffset(
2461         *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass,
2462         Vptr.NearestVBase);
2463
2464   // Finally, store the address point. Use the same LLVM types as the field to
2465   // support optimization.
2466   llvm::Type *VTablePtrTy =
2467       llvm::FunctionType::get(CGM.Int32Ty, /*isVarArg=*/true)
2468           ->getPointerTo()
2469           ->getPointerTo();
2470   VTableField = Builder.CreateBitCast(VTableField, VTablePtrTy->getPointerTo());
2471   VTableAddressPoint = Builder.CreateBitCast(VTableAddressPoint, VTablePtrTy);
2472
2473   llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField);
2474   CGM.DecorateInstructionWithTBAA(Store, CGM.getTBAAInfoForVTablePtr());
2475   if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2476       CGM.getCodeGenOpts().StrictVTablePointers)
2477     CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass);
2478 }
2479
2480 CodeGenFunction::VPtrsVector
2481 CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) {
2482   CodeGenFunction::VPtrsVector VPtrsResult;
2483   VisitedVirtualBasesSetTy VBases;
2484   getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()),
2485                     /*NearestVBase=*/nullptr,
2486                     /*OffsetFromNearestVBase=*/CharUnits::Zero(),
2487                     /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases,
2488                     VPtrsResult);
2489   return VPtrsResult;
2490 }
2491
2492 void CodeGenFunction::getVTablePointers(BaseSubobject Base,
2493                                         const CXXRecordDecl *NearestVBase,
2494                                         CharUnits OffsetFromNearestVBase,
2495                                         bool BaseIsNonVirtualPrimaryBase,
2496                                         const CXXRecordDecl *VTableClass,
2497                                         VisitedVirtualBasesSetTy &VBases,
2498                                         VPtrsVector &Vptrs) {
2499   // If this base is a non-virtual primary base the address point has already
2500   // been set.
2501   if (!BaseIsNonVirtualPrimaryBase) {
2502     // Initialize the vtable pointer for this base.
2503     VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass};
2504     Vptrs.push_back(Vptr);
2505   }
2506
2507   const CXXRecordDecl *RD = Base.getBase();
2508
2509   // Traverse bases.
2510   for (const auto &I : RD->bases()) {
2511     CXXRecordDecl *BaseDecl
2512       = cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
2513
2514     // Ignore classes without a vtable.
2515     if (!BaseDecl->isDynamicClass())
2516       continue;
2517
2518     CharUnits BaseOffset;
2519     CharUnits BaseOffsetFromNearestVBase;
2520     bool BaseDeclIsNonVirtualPrimaryBase;
2521
2522     if (I.isVirtual()) {
2523       // Check if we've visited this virtual base before.
2524       if (!VBases.insert(BaseDecl).second)
2525         continue;
2526
2527       const ASTRecordLayout &Layout =
2528         getContext().getASTRecordLayout(VTableClass);
2529
2530       BaseOffset = Layout.getVBaseClassOffset(BaseDecl);
2531       BaseOffsetFromNearestVBase = CharUnits::Zero();
2532       BaseDeclIsNonVirtualPrimaryBase = false;
2533     } else {
2534       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2535
2536       BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl);
2537       BaseOffsetFromNearestVBase =
2538         OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl);
2539       BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl;
2540     }
2541
2542     getVTablePointers(
2543         BaseSubobject(BaseDecl, BaseOffset),
2544         I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase,
2545         BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs);
2546   }
2547 }
2548
2549 void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) {
2550   // Ignore classes without a vtable.
2551   if (!RD->isDynamicClass())
2552     return;
2553
2554   // Initialize the vtable pointers for this class and all of its bases.
2555   if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD))
2556     for (const VPtr &Vptr : getVTablePointers(RD))
2557       InitializeVTablePointer(Vptr);
2558
2559   if (RD->getNumVBases())
2560     CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD);
2561 }
2562
2563 llvm::Value *CodeGenFunction::GetVTablePtr(Address This,
2564                                            llvm::Type *VTableTy,
2565                                            const CXXRecordDecl *RD) {
2566   Address VTablePtrSrc = Builder.CreateElementBitCast(This, VTableTy);
2567   llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable");
2568   CGM.DecorateInstructionWithTBAA(VTable, CGM.getTBAAInfoForVTablePtr());
2569
2570   if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2571       CGM.getCodeGenOpts().StrictVTablePointers)
2572     CGM.DecorateInstructionWithInvariantGroup(VTable, RD);
2573
2574   return VTable;
2575 }
2576
2577 // If a class has a single non-virtual base and does not introduce or override
2578 // virtual member functions or fields, it will have the same layout as its base.
2579 // This function returns the least derived such class.
2580 //
2581 // Casting an instance of a base class to such a derived class is technically
2582 // undefined behavior, but it is a relatively common hack for introducing member
2583 // functions on class instances with specific properties (e.g. llvm::Operator)
2584 // that works under most compilers and should not have security implications, so
2585 // we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict.
2586 static const CXXRecordDecl *
2587 LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) {
2588   if (!RD->field_empty())
2589     return RD;
2590
2591   if (RD->getNumVBases() != 0)
2592     return RD;
2593
2594   if (RD->getNumBases() != 1)
2595     return RD;
2596
2597   for (const CXXMethodDecl *MD : RD->methods()) {
2598     if (MD->isVirtual()) {
2599       // Virtual member functions are only ok if they are implicit destructors
2600       // because the implicit destructor will have the same semantics as the
2601       // base class's destructor if no fields are added.
2602       if (isa<CXXDestructorDecl>(MD) && MD->isImplicit())
2603         continue;
2604       return RD;
2605     }
2606   }
2607
2608   return LeastDerivedClassWithSameLayout(
2609       RD->bases_begin()->getType()->getAsCXXRecordDecl());
2610 }
2611
2612 void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
2613                                                    llvm::Value *VTable,
2614                                                    SourceLocation Loc) {
2615   if (CGM.getCodeGenOpts().WholeProgramVTables &&
2616       CGM.HasHiddenLTOVisibility(RD)) {
2617     llvm::Metadata *MD =
2618         CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2619     llvm::Value *TypeId =
2620         llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD);
2621
2622     llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy);
2623     llvm::Value *TypeTest =
2624         Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
2625                            {CastedVTable, TypeId});
2626     Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::assume), TypeTest);
2627   }
2628
2629   if (SanOpts.has(SanitizerKind::CFIVCall))
2630     EmitVTablePtrCheckForCall(RD, VTable, CodeGenFunction::CFITCK_VCall, Loc);
2631 }
2632
2633 void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl *RD,
2634                                                 llvm::Value *VTable,
2635                                                 CFITypeCheckKind TCK,
2636                                                 SourceLocation Loc) {
2637   if (!SanOpts.has(SanitizerKind::CFICastStrict))
2638     RD = LeastDerivedClassWithSameLayout(RD);
2639
2640   EmitVTablePtrCheck(RD, VTable, TCK, Loc);
2641 }
2642
2643 void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T,
2644                                                 llvm::Value *Derived,
2645                                                 bool MayBeNull,
2646                                                 CFITypeCheckKind TCK,
2647                                                 SourceLocation Loc) {
2648   if (!getLangOpts().CPlusPlus)
2649     return;
2650
2651   auto *ClassTy = T->getAs<RecordType>();
2652   if (!ClassTy)
2653     return;
2654
2655   const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl());
2656
2657   if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass())
2658     return;
2659
2660   if (!SanOpts.has(SanitizerKind::CFICastStrict))
2661     ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl);
2662
2663   llvm::BasicBlock *ContBlock = nullptr;
2664
2665   if (MayBeNull) {
2666     llvm::Value *DerivedNotNull =
2667         Builder.CreateIsNotNull(Derived, "cast.nonnull");
2668
2669     llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check");
2670     ContBlock = createBasicBlock("cast.cont");
2671
2672     Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock);
2673
2674     EmitBlock(CheckBlock);
2675   }
2676
2677   llvm::Value *VTable =
2678     GetVTablePtr(Address(Derived, getPointerAlign()), Int8PtrTy, ClassDecl);
2679
2680   EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc);
2681
2682   if (MayBeNull) {
2683     Builder.CreateBr(ContBlock);
2684     EmitBlock(ContBlock);
2685   }
2686 }
2687
2688 void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD,
2689                                          llvm::Value *VTable,
2690                                          CFITypeCheckKind TCK,
2691                                          SourceLocation Loc) {
2692   if (!CGM.getCodeGenOpts().SanitizeCfiCrossDso &&
2693       !CGM.HasHiddenLTOVisibility(RD))
2694     return;
2695
2696   std::string TypeName = RD->getQualifiedNameAsString();
2697   if (getContext().getSanitizerBlacklist().isBlacklistedType(TypeName))
2698     return;
2699
2700   SanitizerScope SanScope(this);
2701   llvm::SanitizerStatKind SSK;
2702   switch (TCK) {
2703   case CFITCK_VCall:
2704     SSK = llvm::SanStat_CFI_VCall;
2705     break;
2706   case CFITCK_NVCall:
2707     SSK = llvm::SanStat_CFI_NVCall;
2708     break;
2709   case CFITCK_DerivedCast:
2710     SSK = llvm::SanStat_CFI_DerivedCast;
2711     break;
2712   case CFITCK_UnrelatedCast:
2713     SSK = llvm::SanStat_CFI_UnrelatedCast;
2714     break;
2715   case CFITCK_ICall:
2716     llvm_unreachable("not expecting CFITCK_ICall");
2717   }
2718   EmitSanitizerStatReport(SSK);
2719
2720   llvm::Metadata *MD =
2721       CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2722   llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
2723
2724   llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy);
2725   llvm::Value *TypeTest = Builder.CreateCall(
2726       CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, TypeId});
2727
2728   SanitizerMask M;
2729   switch (TCK) {
2730   case CFITCK_VCall:
2731     M = SanitizerKind::CFIVCall;
2732     break;
2733   case CFITCK_NVCall:
2734     M = SanitizerKind::CFINVCall;
2735     break;
2736   case CFITCK_DerivedCast:
2737     M = SanitizerKind::CFIDerivedCast;
2738     break;
2739   case CFITCK_UnrelatedCast:
2740     M = SanitizerKind::CFIUnrelatedCast;
2741     break;
2742   case CFITCK_ICall:
2743     llvm_unreachable("not expecting CFITCK_ICall");
2744   }
2745
2746   llvm::Constant *StaticData[] = {
2747       llvm::ConstantInt::get(Int8Ty, TCK),
2748       EmitCheckSourceLocation(Loc),
2749       EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)),
2750   };
2751
2752   auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
2753   if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
2754     EmitCfiSlowPathCheck(M, TypeTest, CrossDsoTypeId, CastedVTable, StaticData);
2755     return;
2756   }
2757
2758   if (CGM.getCodeGenOpts().SanitizeTrap.has(M)) {
2759     EmitTrapCheck(TypeTest);
2760     return;
2761   }
2762
2763   llvm::Value *AllVtables = llvm::MetadataAsValue::get(
2764       CGM.getLLVMContext(),
2765       llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
2766   llvm::Value *ValidVtable = Builder.CreateCall(
2767       CGM.getIntrinsic(llvm::Intrinsic::type_test), {CastedVTable, AllVtables});
2768   EmitCheck(std::make_pair(TypeTest, M), "cfi_check_fail", StaticData,
2769             {CastedVTable, ValidVtable});
2770 }
2771
2772 bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD) {
2773   if (!CGM.getCodeGenOpts().WholeProgramVTables ||
2774       !SanOpts.has(SanitizerKind::CFIVCall) ||
2775       !CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIVCall) ||
2776       !CGM.HasHiddenLTOVisibility(RD))
2777     return false;
2778
2779   std::string TypeName = RD->getQualifiedNameAsString();
2780   return !getContext().getSanitizerBlacklist().isBlacklistedType(TypeName);
2781 }
2782
2783 llvm::Value *CodeGenFunction::EmitVTableTypeCheckedLoad(
2784     const CXXRecordDecl *RD, llvm::Value *VTable, uint64_t VTableByteOffset) {
2785   SanitizerScope SanScope(this);
2786
2787   EmitSanitizerStatReport(llvm::SanStat_CFI_VCall);
2788
2789   llvm::Metadata *MD =
2790       CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2791   llvm::Value *TypeId = llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD);
2792
2793   llvm::Value *CastedVTable = Builder.CreateBitCast(VTable, Int8PtrTy);
2794   llvm::Value *CheckedLoad = Builder.CreateCall(
2795       CGM.getIntrinsic(llvm::Intrinsic::type_checked_load),
2796       {CastedVTable, llvm::ConstantInt::get(Int32Ty, VTableByteOffset),
2797        TypeId});
2798   llvm::Value *CheckResult = Builder.CreateExtractValue(CheckedLoad, 1);
2799
2800   EmitCheck(std::make_pair(CheckResult, SanitizerKind::CFIVCall),
2801             "cfi_check_fail", nullptr, nullptr);
2802
2803   return Builder.CreateBitCast(
2804       Builder.CreateExtractValue(CheckedLoad, 0),
2805       cast<llvm::PointerType>(VTable->getType())->getElementType());
2806 }
2807
2808 // FIXME: Ideally Expr::IgnoreParenNoopCasts should do this, but it doesn't do
2809 // quite what we want.
2810 static const Expr *skipNoOpCastsAndParens(const Expr *E) {
2811   while (true) {
2812     if (const ParenExpr *PE = dyn_cast<ParenExpr>(E)) {
2813       E = PE->getSubExpr();
2814       continue;
2815     }
2816
2817     if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
2818       if (CE->getCastKind() == CK_NoOp) {
2819         E = CE->getSubExpr();
2820         continue;
2821       }
2822     }
2823     if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
2824       if (UO->getOpcode() == UO_Extension) {
2825         E = UO->getSubExpr();
2826         continue;
2827       }
2828     }
2829     return E;
2830   }
2831 }
2832
2833 bool
2834 CodeGenFunction::CanDevirtualizeMemberFunctionCall(const Expr *Base,
2835                                                    const CXXMethodDecl *MD) {
2836   // When building with -fapple-kext, all calls must go through the vtable since
2837   // the kernel linker can do runtime patching of vtables.
2838   if (getLangOpts().AppleKext)
2839     return false;
2840
2841   // If the most derived class is marked final, we know that no subclass can
2842   // override this member function and so we can devirtualize it. For example:
2843   //
2844   // struct A { virtual void f(); }
2845   // struct B final : A { };
2846   //
2847   // void f(B *b) {
2848   //   b->f();
2849   // }
2850   //
2851   const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
2852   if (MostDerivedClassDecl->hasAttr<FinalAttr>())
2853     return true;
2854
2855   // If the member function is marked 'final', we know that it can't be
2856   // overridden and can therefore devirtualize it.
2857   if (MD->hasAttr<FinalAttr>())
2858     return true;
2859
2860   // Similarly, if the class itself is marked 'final' it can't be overridden
2861   // and we can therefore devirtualize the member function call.
2862   if (MD->getParent()->hasAttr<FinalAttr>())
2863     return true;
2864
2865   Base = skipNoOpCastsAndParens(Base);
2866   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
2867     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
2868       // This is a record decl. We know the type and can devirtualize it.
2869       return VD->getType()->isRecordType();
2870     }
2871
2872     return false;
2873   }
2874
2875   // We can devirtualize calls on an object accessed by a class member access
2876   // expression, since by C++11 [basic.life]p6 we know that it can't refer to
2877   // a derived class object constructed in the same location.
2878   if (const MemberExpr *ME = dyn_cast<MemberExpr>(Base))
2879     if (const ValueDecl *VD = dyn_cast<ValueDecl>(ME->getMemberDecl()))
2880       return VD->getType()->isRecordType();
2881
2882   // We can always devirtualize calls on temporary object expressions.
2883   if (isa<CXXConstructExpr>(Base))
2884     return true;
2885
2886   // And calls on bound temporaries.
2887   if (isa<CXXBindTemporaryExpr>(Base))
2888     return true;
2889
2890   // Check if this is a call expr that returns a record type.
2891   if (const CallExpr *CE = dyn_cast<CallExpr>(Base))
2892     return CE->getCallReturnType(getContext())->isRecordType();
2893
2894   // We can't devirtualize the call.
2895   return false;
2896 }
2897
2898 void CodeGenFunction::EmitForwardingCallToLambda(
2899                                       const CXXMethodDecl *callOperator,
2900                                       CallArgList &callArgs) {
2901   // Get the address of the call operator.
2902   const CGFunctionInfo &calleeFnInfo =
2903     CGM.getTypes().arrangeCXXMethodDeclaration(callOperator);
2904   llvm::Value *callee =
2905     CGM.GetAddrOfFunction(GlobalDecl(callOperator),
2906                           CGM.getTypes().GetFunctionType(calleeFnInfo));
2907
2908   // Prepare the return slot.
2909   const FunctionProtoType *FPT =
2910     callOperator->getType()->castAs<FunctionProtoType>();
2911   QualType resultType = FPT->getReturnType();
2912   ReturnValueSlot returnSlot;
2913   if (!resultType->isVoidType() &&
2914       calleeFnInfo.getReturnInfo().getKind() == ABIArgInfo::Indirect &&
2915       !hasScalarEvaluationKind(calleeFnInfo.getReturnType()))
2916     returnSlot = ReturnValueSlot(ReturnValue, resultType.isVolatileQualified());
2917
2918   // We don't need to separately arrange the call arguments because
2919   // the call can't be variadic anyway --- it's impossible to forward
2920   // variadic arguments.
2921
2922   // Now emit our call.
2923   RValue RV = EmitCall(calleeFnInfo, callee, returnSlot,
2924                        callArgs, callOperator);
2925
2926   // If necessary, copy the returned value into the slot.
2927   if (!resultType->isVoidType() && returnSlot.isNull())
2928     EmitReturnOfRValue(RV, resultType);
2929   else
2930     EmitBranchThroughCleanup(ReturnBlock);
2931 }
2932
2933 void CodeGenFunction::EmitLambdaBlockInvokeBody() {
2934   const BlockDecl *BD = BlockInfo->getBlockDecl();
2935   const VarDecl *variable = BD->capture_begin()->getVariable();
2936   const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl();
2937
2938   // Start building arguments for forwarding call
2939   CallArgList CallArgs;
2940
2941   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2942   Address ThisPtr = GetAddrOfBlockDecl(variable, false);
2943   CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType);
2944
2945   // Add the rest of the parameters.
2946   for (auto param : BD->parameters())
2947     EmitDelegateCallArg(CallArgs, param, param->getLocStart());
2948
2949   assert(!Lambda->isGenericLambda() &&
2950             "generic lambda interconversion to block not implemented");
2951   EmitForwardingCallToLambda(Lambda->getLambdaCallOperator(), CallArgs);
2952 }
2953
2954 void CodeGenFunction::EmitLambdaToBlockPointerBody(FunctionArgList &Args) {
2955   if (cast<CXXMethodDecl>(CurCodeDecl)->isVariadic()) {
2956     // FIXME: Making this work correctly is nasty because it requires either
2957     // cloning the body of the call operator or making the call operator forward.
2958     CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function");
2959     return;
2960   }
2961
2962   EmitFunctionBody(Args, cast<FunctionDecl>(CurGD.getDecl())->getBody());
2963 }
2964
2965 void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD) {
2966   const CXXRecordDecl *Lambda = MD->getParent();
2967
2968   // Start building arguments for forwarding call
2969   CallArgList CallArgs;
2970
2971   QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2972   llvm::Value *ThisPtr = llvm::UndefValue::get(getTypes().ConvertType(ThisType));
2973   CallArgs.add(RValue::get(ThisPtr), ThisType);
2974
2975   // Add the rest of the parameters.
2976   for (auto Param : MD->parameters())
2977     EmitDelegateCallArg(CallArgs, Param, Param->getLocStart());
2978
2979   const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
2980   // For a generic lambda, find the corresponding call operator specialization
2981   // to which the call to the static-invoker shall be forwarded.
2982   if (Lambda->isGenericLambda()) {
2983     assert(MD->isFunctionTemplateSpecialization());
2984     const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
2985     FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate();
2986     void *InsertPos = nullptr;
2987     FunctionDecl *CorrespondingCallOpSpecialization =
2988         CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
2989     assert(CorrespondingCallOpSpecialization);
2990     CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
2991   }
2992   EmitForwardingCallToLambda(CallOp, CallArgs);
2993 }
2994
2995 void CodeGenFunction::EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD) {
2996   if (MD->isVariadic()) {
2997     // FIXME: Making this work correctly is nasty because it requires either
2998     // cloning the body of the call operator or making the call operator forward.
2999     CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
3000     return;
3001   }
3002
3003   EmitLambdaDelegatingInvokeBody(MD);
3004 }