]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/CodeGen/CGDecl.cpp
Merge ^/head r275478 through r275622.
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / CodeGen / CGDecl.cpp
1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Decl nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGDebugInfo.h"
16 #include "CGOpenCLRuntime.h"
17 #include "CodeGenModule.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/Basic/SourceManager.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/CodeGen/CGFunctionInfo.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/Type.h"
30 using namespace clang;
31 using namespace CodeGen;
32
33
34 void CodeGenFunction::EmitDecl(const Decl &D) {
35   switch (D.getKind()) {
36   case Decl::TranslationUnit:
37   case Decl::Namespace:
38   case Decl::UnresolvedUsingTypename:
39   case Decl::ClassTemplateSpecialization:
40   case Decl::ClassTemplatePartialSpecialization:
41   case Decl::VarTemplateSpecialization:
42   case Decl::VarTemplatePartialSpecialization:
43   case Decl::TemplateTypeParm:
44   case Decl::UnresolvedUsingValue:
45   case Decl::NonTypeTemplateParm:
46   case Decl::CXXMethod:
47   case Decl::CXXConstructor:
48   case Decl::CXXDestructor:
49   case Decl::CXXConversion:
50   case Decl::Field:
51   case Decl::MSProperty:
52   case Decl::IndirectField:
53   case Decl::ObjCIvar:
54   case Decl::ObjCAtDefsField:
55   case Decl::ParmVar:
56   case Decl::ImplicitParam:
57   case Decl::ClassTemplate:
58   case Decl::VarTemplate:
59   case Decl::FunctionTemplate:
60   case Decl::TypeAliasTemplate:
61   case Decl::TemplateTemplateParm:
62   case Decl::ObjCMethod:
63   case Decl::ObjCCategory:
64   case Decl::ObjCProtocol:
65   case Decl::ObjCInterface:
66   case Decl::ObjCCategoryImpl:
67   case Decl::ObjCImplementation:
68   case Decl::ObjCProperty:
69   case Decl::ObjCCompatibleAlias:
70   case Decl::AccessSpec:
71   case Decl::LinkageSpec:
72   case Decl::ObjCPropertyImpl:
73   case Decl::FileScopeAsm:
74   case Decl::Friend:
75   case Decl::FriendTemplate:
76   case Decl::Block:
77   case Decl::Captured:
78   case Decl::ClassScopeFunctionSpecialization:
79   case Decl::UsingShadow:
80     llvm_unreachable("Declaration should not be in declstmts!");
81   case Decl::Function:  // void X();
82   case Decl::Record:    // struct/union/class X;
83   case Decl::Enum:      // enum X;
84   case Decl::EnumConstant: // enum ? { X = ? }
85   case Decl::CXXRecord: // struct/union/class X; [C++]
86   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
87   case Decl::Label:        // __label__ x;
88   case Decl::Import:
89   case Decl::OMPThreadPrivate:
90   case Decl::Empty:
91     // None of these decls require codegen support.
92     return;
93
94   case Decl::NamespaceAlias:
95     if (CGDebugInfo *DI = getDebugInfo())
96         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
97     return;
98   case Decl::Using:          // using X; [C++]
99     if (CGDebugInfo *DI = getDebugInfo())
100         DI->EmitUsingDecl(cast<UsingDecl>(D));
101     return;
102   case Decl::UsingDirective: // using namespace X; [C++]
103     if (CGDebugInfo *DI = getDebugInfo())
104       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
105     return;
106   case Decl::Var: {
107     const VarDecl &VD = cast<VarDecl>(D);
108     assert(VD.isLocalVarDecl() &&
109            "Should not see file-scope variables inside a function!");
110     return EmitVarDecl(VD);
111   }
112
113   case Decl::Typedef:      // typedef int X;
114   case Decl::TypeAlias: {  // using X = int; [C++0x]
115     const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
116     QualType Ty = TD.getUnderlyingType();
117
118     if (Ty->isVariablyModifiedType())
119       EmitVariablyModifiedType(Ty);
120   }
121   }
122 }
123
124 /// EmitVarDecl - This method handles emission of any variable declaration
125 /// inside a function, including static vars etc.
126 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
127   if (D.isStaticLocal()) {
128     llvm::GlobalValue::LinkageTypes Linkage =
129         CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false);
130
131     // FIXME: We need to force the emission/use of a guard variable for
132     // some variables even if we can constant-evaluate them because
133     // we can't guarantee every translation unit will constant-evaluate them.
134
135     return EmitStaticVarDecl(D, Linkage);
136   }
137
138   if (D.hasExternalStorage())
139     // Don't emit it now, allow it to be emitted lazily on its first use.
140     return;
141
142   if (D.getStorageClass() == SC_OpenCLWorkGroupLocal)
143     return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
144
145   assert(D.hasLocalStorage());
146   return EmitAutoVarDecl(D);
147 }
148
149 static std::string GetStaticDeclName(CodeGenFunction &CGF, const VarDecl &D,
150                                      const char *Separator) {
151   CodeGenModule &CGM = CGF.CGM;
152
153   if (CGF.getLangOpts().CPlusPlus)
154     return CGM.getMangledName(&D).str();
155
156   StringRef ContextName;
157   if (!CGF.CurFuncDecl) {
158     // Better be in a block declared in global scope.
159     const NamedDecl *ND = cast<NamedDecl>(&D);
160     const DeclContext *DC = ND->getDeclContext();
161     if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC))
162       ContextName = CGM.getBlockMangledName(GlobalDecl(), BD);
163     else
164       llvm_unreachable("Unknown context for block static var decl");
165   } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CGF.CurFuncDecl))
166     ContextName = CGM.getMangledName(FD);
167   else if (isa<ObjCMethodDecl>(CGF.CurFuncDecl))
168     ContextName = CGF.CurFn->getName();
169   else
170     llvm_unreachable("Unknown context for static var decl");
171
172   return ContextName.str() + Separator + D.getNameAsString();
173 }
174
175 llvm::Constant *
176 CodeGenFunction::CreateStaticVarDecl(const VarDecl &D,
177                                      const char *Separator,
178                                      llvm::GlobalValue::LinkageTypes Linkage) {
179   QualType Ty = D.getType();
180   assert(Ty->isConstantSizeType() && "VLAs can't be static");
181
182   // Use the label if the variable is renamed with the asm-label extension.
183   std::string Name;
184   if (D.hasAttr<AsmLabelAttr>())
185     Name = CGM.getMangledName(&D);
186   else
187     Name = GetStaticDeclName(*this, D, Separator);
188
189   llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(Ty);
190   unsigned AddrSpace =
191    CGM.GetGlobalVarAddressSpace(&D, CGM.getContext().getTargetAddressSpace(Ty));
192   llvm::GlobalVariable *GV =
193     new llvm::GlobalVariable(CGM.getModule(), LTy,
194                              Ty.isConstant(getContext()), Linkage,
195                              CGM.EmitNullConstant(D.getType()), Name, nullptr,
196                              llvm::GlobalVariable::NotThreadLocal,
197                              AddrSpace);
198   GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
199   CGM.setGlobalVisibility(GV, &D);
200
201   if (D.getTLSKind())
202     CGM.setTLSMode(GV, D);
203
204   if (D.isExternallyVisible()) {
205     if (D.hasAttr<DLLImportAttr>())
206       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
207     else if (D.hasAttr<DLLExportAttr>())
208       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
209   }
210
211   // Make sure the result is of the correct type.
212   unsigned ExpectedAddrSpace = CGM.getContext().getTargetAddressSpace(Ty);
213   if (AddrSpace != ExpectedAddrSpace) {
214     llvm::PointerType *PTy = llvm::PointerType::get(LTy, ExpectedAddrSpace);
215     return llvm::ConstantExpr::getAddrSpaceCast(GV, PTy);
216   }
217
218   return GV;
219 }
220
221 /// hasNontrivialDestruction - Determine whether a type's destruction is
222 /// non-trivial. If so, and the variable uses static initialization, we must
223 /// register its destructor to run on exit.
224 static bool hasNontrivialDestruction(QualType T) {
225   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
226   return RD && !RD->hasTrivialDestructor();
227 }
228
229 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
230 /// global variable that has already been created for it.  If the initializer
231 /// has a different type than GV does, this may free GV and return a different
232 /// one.  Otherwise it just returns GV.
233 llvm::GlobalVariable *
234 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
235                                                llvm::GlobalVariable *GV) {
236   llvm::Constant *Init = CGM.EmitConstantInit(D, this);
237
238   // If constant emission failed, then this should be a C++ static
239   // initializer.
240   if (!Init) {
241     if (!getLangOpts().CPlusPlus)
242       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
243     else if (Builder.GetInsertBlock()) {
244       // Since we have a static initializer, this global variable can't
245       // be constant.
246       GV->setConstant(false);
247
248       EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
249     }
250     return GV;
251   }
252
253   // The initializer may differ in type from the global. Rewrite
254   // the global to match the initializer.  (We have to do this
255   // because some types, like unions, can't be completely represented
256   // in the LLVM type system.)
257   if (GV->getType()->getElementType() != Init->getType()) {
258     llvm::GlobalVariable *OldGV = GV;
259
260     GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
261                                   OldGV->isConstant(),
262                                   OldGV->getLinkage(), Init, "",
263                                   /*InsertBefore*/ OldGV,
264                                   OldGV->getThreadLocalMode(),
265                            CGM.getContext().getTargetAddressSpace(D.getType()));
266     GV->setVisibility(OldGV->getVisibility());
267
268     // Steal the name of the old global
269     GV->takeName(OldGV);
270
271     // Replace all uses of the old global with the new global
272     llvm::Constant *NewPtrForOldDecl =
273     llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
274     OldGV->replaceAllUsesWith(NewPtrForOldDecl);
275
276     // Erase the old global, since it is no longer used.
277     OldGV->eraseFromParent();
278   }
279
280   GV->setConstant(CGM.isTypeConstant(D.getType(), true));
281   GV->setInitializer(Init);
282
283   if (hasNontrivialDestruction(D.getType())) {
284     // We have a constant initializer, but a nontrivial destructor. We still
285     // need to perform a guarded "initialization" in order to register the
286     // destructor.
287     EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
288   }
289
290   return GV;
291 }
292
293 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
294                                       llvm::GlobalValue::LinkageTypes Linkage) {
295   llvm::Value *&DMEntry = LocalDeclMap[&D];
296   assert(!DMEntry && "Decl already exists in localdeclmap!");
297
298   // Check to see if we already have a global variable for this
299   // declaration.  This can happen when double-emitting function
300   // bodies, e.g. with complete and base constructors.
301   llvm::Constant *addr =
302     CGM.getStaticLocalDeclAddress(&D);
303
304   if (!addr)
305     addr = CreateStaticVarDecl(D, ".", Linkage);
306
307   // Store into LocalDeclMap before generating initializer to handle
308   // circular references.
309   DMEntry = addr;
310   CGM.setStaticLocalDeclAddress(&D, addr);
311
312   // We can't have a VLA here, but we can have a pointer to a VLA,
313   // even though that doesn't really make any sense.
314   // Make sure to evaluate VLA bounds now so that we have them for later.
315   if (D.getType()->isVariablyModifiedType())
316     EmitVariablyModifiedType(D.getType());
317
318   // Save the type in case adding the initializer forces a type change.
319   llvm::Type *expectedType = addr->getType();
320
321   llvm::GlobalVariable *var =
322     cast<llvm::GlobalVariable>(addr->stripPointerCasts());
323   // If this value has an initializer, emit it.
324   if (D.getInit())
325     var = AddInitializerToStaticVarDecl(D, var);
326
327   var->setAlignment(getContext().getDeclAlign(&D).getQuantity());
328
329   if (D.hasAttr<AnnotateAttr>())
330     CGM.AddGlobalAnnotations(&D, var);
331
332   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
333     var->setSection(SA->getName());
334
335   if (D.hasAttr<UsedAttr>())
336     CGM.addUsedGlobal(var);
337
338   // We may have to cast the constant because of the initializer
339   // mismatch above.
340   //
341   // FIXME: It is really dangerous to store this in the map; if anyone
342   // RAUW's the GV uses of this constant will be invalid.
343   llvm::Constant *castedAddr =
344     llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
345   DMEntry = castedAddr;
346   CGM.setStaticLocalDeclAddress(&D, castedAddr);
347
348   CGM.reportGlobalToASan(var, D);
349
350   // Emit global variable debug descriptor for static vars.
351   CGDebugInfo *DI = getDebugInfo();
352   if (DI &&
353       CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
354     DI->setLocation(D.getLocation());
355     DI->EmitGlobalVariable(var, &D);
356   }
357 }
358
359 namespace {
360   struct DestroyObject : EHScopeStack::Cleanup {
361     DestroyObject(llvm::Value *addr, QualType type,
362                   CodeGenFunction::Destroyer *destroyer,
363                   bool useEHCleanupForArray)
364       : addr(addr), type(type), destroyer(destroyer),
365         useEHCleanupForArray(useEHCleanupForArray) {}
366
367     llvm::Value *addr;
368     QualType type;
369     CodeGenFunction::Destroyer *destroyer;
370     bool useEHCleanupForArray;
371
372     void Emit(CodeGenFunction &CGF, Flags flags) override {
373       // Don't use an EH cleanup recursively from an EH cleanup.
374       bool useEHCleanupForArray =
375         flags.isForNormalCleanup() && this->useEHCleanupForArray;
376
377       CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
378     }
379   };
380
381   struct DestroyNRVOVariable : EHScopeStack::Cleanup {
382     DestroyNRVOVariable(llvm::Value *addr,
383                         const CXXDestructorDecl *Dtor,
384                         llvm::Value *NRVOFlag)
385       : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {}
386
387     const CXXDestructorDecl *Dtor;
388     llvm::Value *NRVOFlag;
389     llvm::Value *Loc;
390
391     void Emit(CodeGenFunction &CGF, Flags flags) override {
392       // Along the exceptions path we always execute the dtor.
393       bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
394
395       llvm::BasicBlock *SkipDtorBB = nullptr;
396       if (NRVO) {
397         // If we exited via NRVO, we skip the destructor call.
398         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
399         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
400         llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val");
401         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
402         CGF.EmitBlock(RunDtorBB);
403       }
404
405       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
406                                 /*ForVirtualBase=*/false,
407                                 /*Delegating=*/false,
408                                 Loc);
409
410       if (NRVO) CGF.EmitBlock(SkipDtorBB);
411     }
412   };
413
414   struct CallStackRestore : EHScopeStack::Cleanup {
415     llvm::Value *Stack;
416     CallStackRestore(llvm::Value *Stack) : Stack(Stack) {}
417     void Emit(CodeGenFunction &CGF, Flags flags) override {
418       llvm::Value *V = CGF.Builder.CreateLoad(Stack);
419       llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
420       CGF.Builder.CreateCall(F, V);
421     }
422   };
423
424   struct ExtendGCLifetime : EHScopeStack::Cleanup {
425     const VarDecl &Var;
426     ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
427
428     void Emit(CodeGenFunction &CGF, Flags flags) override {
429       // Compute the address of the local variable, in case it's a
430       // byref or something.
431       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
432                       Var.getType(), VK_LValue, SourceLocation());
433       llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
434                                                 SourceLocation());
435       CGF.EmitExtendGCLifetime(value);
436     }
437   };
438
439   struct CallCleanupFunction : EHScopeStack::Cleanup {
440     llvm::Constant *CleanupFn;
441     const CGFunctionInfo &FnInfo;
442     const VarDecl &Var;
443
444     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
445                         const VarDecl *Var)
446       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
447
448     void Emit(CodeGenFunction &CGF, Flags flags) override {
449       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
450                       Var.getType(), VK_LValue, SourceLocation());
451       // Compute the address of the local variable, in case it's a byref
452       // or something.
453       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress();
454
455       // In some cases, the type of the function argument will be different from
456       // the type of the pointer. An example of this is
457       // void f(void* arg);
458       // __attribute__((cleanup(f))) void *g;
459       //
460       // To fix this we insert a bitcast here.
461       QualType ArgTy = FnInfo.arg_begin()->type;
462       llvm::Value *Arg =
463         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
464
465       CallArgList Args;
466       Args.add(RValue::get(Arg),
467                CGF.getContext().getPointerType(Var.getType()));
468       CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args);
469     }
470   };
471
472   /// A cleanup to call @llvm.lifetime.end.
473   class CallLifetimeEnd : public EHScopeStack::Cleanup {
474     llvm::Value *Addr;
475     llvm::Value *Size;
476   public:
477     CallLifetimeEnd(llvm::Value *addr, llvm::Value *size)
478       : Addr(addr), Size(size) {}
479
480     void Emit(CodeGenFunction &CGF, Flags flags) override {
481       llvm::Value *castAddr = CGF.Builder.CreateBitCast(Addr, CGF.Int8PtrTy);
482       CGF.Builder.CreateCall2(CGF.CGM.getLLVMLifetimeEndFn(),
483                               Size, castAddr)
484         ->setDoesNotThrow();
485     }
486   };
487 }
488
489 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
490 /// variable with lifetime.
491 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
492                                     llvm::Value *addr,
493                                     Qualifiers::ObjCLifetime lifetime) {
494   switch (lifetime) {
495   case Qualifiers::OCL_None:
496     llvm_unreachable("present but none");
497
498   case Qualifiers::OCL_ExplicitNone:
499     // nothing to do
500     break;
501
502   case Qualifiers::OCL_Strong: {
503     CodeGenFunction::Destroyer *destroyer =
504       (var.hasAttr<ObjCPreciseLifetimeAttr>()
505        ? CodeGenFunction::destroyARCStrongPrecise
506        : CodeGenFunction::destroyARCStrongImprecise);
507
508     CleanupKind cleanupKind = CGF.getARCCleanupKind();
509     CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
510                     cleanupKind & EHCleanup);
511     break;
512   }
513   case Qualifiers::OCL_Autoreleasing:
514     // nothing to do
515     break;
516
517   case Qualifiers::OCL_Weak:
518     // __weak objects always get EH cleanups; otherwise, exceptions
519     // could cause really nasty crashes instead of mere leaks.
520     CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
521                     CodeGenFunction::destroyARCWeak,
522                     /*useEHCleanup*/ true);
523     break;
524   }
525 }
526
527 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
528   if (const Expr *e = dyn_cast<Expr>(s)) {
529     // Skip the most common kinds of expressions that make
530     // hierarchy-walking expensive.
531     s = e = e->IgnoreParenCasts();
532
533     if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
534       return (ref->getDecl() == &var);
535     if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
536       const BlockDecl *block = be->getBlockDecl();
537       for (const auto &I : block->captures()) {
538         if (I.getVariable() == &var)
539           return true;
540       }
541     }
542   }
543
544   for (Stmt::const_child_range children = s->children(); children; ++children)
545     // children might be null; as in missing decl or conditional of an if-stmt.
546     if ((*children) && isAccessedBy(var, *children))
547       return true;
548
549   return false;
550 }
551
552 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
553   if (!decl) return false;
554   if (!isa<VarDecl>(decl)) return false;
555   const VarDecl *var = cast<VarDecl>(decl);
556   return isAccessedBy(*var, e);
557 }
558
559 static void drillIntoBlockVariable(CodeGenFunction &CGF,
560                                    LValue &lvalue,
561                                    const VarDecl *var) {
562   lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var));
563 }
564
565 void CodeGenFunction::EmitScalarInit(const Expr *init,
566                                      const ValueDecl *D,
567                                      LValue lvalue,
568                                      bool capturedByInit) {
569   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
570   if (!lifetime) {
571     llvm::Value *value = EmitScalarExpr(init);
572     if (capturedByInit)
573       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
574     EmitStoreThroughLValue(RValue::get(value), lvalue, true);
575     return;
576   }
577   
578   if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
579     init = DIE->getExpr();
580     
581   // If we're emitting a value with lifetime, we have to do the
582   // initialization *before* we leave the cleanup scopes.
583   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) {
584     enterFullExpression(ewc);
585     init = ewc->getSubExpr();
586   }
587   CodeGenFunction::RunCleanupsScope Scope(*this);
588
589   // We have to maintain the illusion that the variable is
590   // zero-initialized.  If the variable might be accessed in its
591   // initializer, zero-initialize before running the initializer, then
592   // actually perform the initialization with an assign.
593   bool accessedByInit = false;
594   if (lifetime != Qualifiers::OCL_ExplicitNone)
595     accessedByInit = (capturedByInit || isAccessedBy(D, init));
596   if (accessedByInit) {
597     LValue tempLV = lvalue;
598     // Drill down to the __block object if necessary.
599     if (capturedByInit) {
600       // We can use a simple GEP for this because it can't have been
601       // moved yet.
602       tempLV.setAddress(Builder.CreateStructGEP(tempLV.getAddress(),
603                                    getByRefValueLLVMField(cast<VarDecl>(D))));
604     }
605
606     llvm::PointerType *ty
607       = cast<llvm::PointerType>(tempLV.getAddress()->getType());
608     ty = cast<llvm::PointerType>(ty->getElementType());
609
610     llvm::Value *zero = llvm::ConstantPointerNull::get(ty);
611
612     // If __weak, we want to use a barrier under certain conditions.
613     if (lifetime == Qualifiers::OCL_Weak)
614       EmitARCInitWeak(tempLV.getAddress(), zero);
615
616     // Otherwise just do a simple store.
617     else
618       EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
619   }
620
621   // Emit the initializer.
622   llvm::Value *value = nullptr;
623
624   switch (lifetime) {
625   case Qualifiers::OCL_None:
626     llvm_unreachable("present but none");
627
628   case Qualifiers::OCL_ExplicitNone:
629     // nothing to do
630     value = EmitScalarExpr(init);
631     break;
632
633   case Qualifiers::OCL_Strong: {
634     value = EmitARCRetainScalarExpr(init);
635     break;
636   }
637
638   case Qualifiers::OCL_Weak: {
639     // No way to optimize a producing initializer into this.  It's not
640     // worth optimizing for, because the value will immediately
641     // disappear in the common case.
642     value = EmitScalarExpr(init);
643
644     if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
645     if (accessedByInit)
646       EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
647     else
648       EmitARCInitWeak(lvalue.getAddress(), value);
649     return;
650   }
651
652   case Qualifiers::OCL_Autoreleasing:
653     value = EmitARCRetainAutoreleaseScalarExpr(init);
654     break;
655   }
656
657   if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
658
659   // If the variable might have been accessed by its initializer, we
660   // might have to initialize with a barrier.  We have to do this for
661   // both __weak and __strong, but __weak got filtered out above.
662   if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
663     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
664     EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
665     EmitARCRelease(oldValue, ARCImpreciseLifetime);
666     return;
667   }
668
669   EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
670 }
671
672 /// EmitScalarInit - Initialize the given lvalue with the given object.
673 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) {
674   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
675   if (!lifetime)
676     return EmitStoreThroughLValue(RValue::get(init), lvalue, true);
677
678   switch (lifetime) {
679   case Qualifiers::OCL_None:
680     llvm_unreachable("present but none");
681
682   case Qualifiers::OCL_ExplicitNone:
683     // nothing to do
684     break;
685
686   case Qualifiers::OCL_Strong:
687     init = EmitARCRetain(lvalue.getType(), init);
688     break;
689
690   case Qualifiers::OCL_Weak:
691     // Initialize and then skip the primitive store.
692     EmitARCInitWeak(lvalue.getAddress(), init);
693     return;
694
695   case Qualifiers::OCL_Autoreleasing:
696     init = EmitARCRetainAutorelease(lvalue.getType(), init);
697     break;
698   }
699
700   EmitStoreOfScalar(init, lvalue, /* isInitialization */ true);
701 }
702
703 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the
704 /// non-zero parts of the specified initializer with equal or fewer than
705 /// NumStores scalar stores.
706 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init,
707                                                 unsigned &NumStores) {
708   // Zero and Undef never requires any extra stores.
709   if (isa<llvm::ConstantAggregateZero>(Init) ||
710       isa<llvm::ConstantPointerNull>(Init) ||
711       isa<llvm::UndefValue>(Init))
712     return true;
713   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
714       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
715       isa<llvm::ConstantExpr>(Init))
716     return Init->isNullValue() || NumStores--;
717
718   // See if we can emit each element.
719   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
720     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
721       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
722       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
723         return false;
724     }
725     return true;
726   }
727   
728   if (llvm::ConstantDataSequential *CDS =
729         dyn_cast<llvm::ConstantDataSequential>(Init)) {
730     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
731       llvm::Constant *Elt = CDS->getElementAsConstant(i);
732       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
733         return false;
734     }
735     return true;
736   }
737
738   // Anything else is hard and scary.
739   return false;
740 }
741
742 /// emitStoresForInitAfterMemset - For inits that
743 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar
744 /// stores that would be required.
745 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc,
746                                          bool isVolatile, CGBuilderTy &Builder) {
747   assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
748          "called emitStoresForInitAfterMemset for zero or undef value.");
749
750   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
751       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
752       isa<llvm::ConstantExpr>(Init)) {
753     Builder.CreateStore(Init, Loc, isVolatile);
754     return;
755   }
756   
757   if (llvm::ConstantDataSequential *CDS = 
758         dyn_cast<llvm::ConstantDataSequential>(Init)) {
759     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
760       llvm::Constant *Elt = CDS->getElementAsConstant(i);
761
762       // If necessary, get a pointer to the element and emit it.
763       if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
764         emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
765                                      isVolatile, Builder);
766     }
767     return;
768   }
769
770   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
771          "Unknown value type!");
772
773   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
774     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
775
776     // If necessary, get a pointer to the element and emit it.
777     if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
778       emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
779                                    isVolatile, Builder);
780   }
781 }
782
783
784 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset
785 /// plus some stores to initialize a local variable instead of using a memcpy
786 /// from a constant global.  It is beneficial to use memset if the global is all
787 /// zeros, or mostly zeros and large.
788 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init,
789                                                   uint64_t GlobalSize) {
790   // If a global is all zeros, always use a memset.
791   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
792
793   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
794   // do it if it will require 6 or fewer scalar stores.
795   // TODO: Should budget depends on the size?  Avoiding a large global warrants
796   // plopping in more stores.
797   unsigned StoreBudget = 6;
798   uint64_t SizeLimit = 32;
799
800   return GlobalSize > SizeLimit &&
801          canEmitInitWithFewStoresAfterMemset(Init, StoreBudget);
802 }
803
804 /// Should we use the LLVM lifetime intrinsics for the given local variable?
805 static bool shouldUseLifetimeMarkers(CodeGenFunction &CGF, const VarDecl &D,
806                                      unsigned Size) {
807   // For now, only in optimized builds.
808   if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0)
809     return false;
810
811   // Limit the size of marked objects to 32 bytes. We don't want to increase
812   // compile time by marking tiny objects.
813   unsigned SizeThreshold = 32;
814
815   return Size > SizeThreshold;
816 }
817
818
819 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
820 /// variable declaration with auto, register, or no storage class specifier.
821 /// These turn into simple stack objects, or GlobalValues depending on target.
822 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
823   AutoVarEmission emission = EmitAutoVarAlloca(D);
824   EmitAutoVarInit(emission);
825   EmitAutoVarCleanups(emission);
826 }
827
828 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
829 /// local variable.  Does not emit initialization or destruction.
830 CodeGenFunction::AutoVarEmission
831 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
832   QualType Ty = D.getType();
833
834   AutoVarEmission emission(D);
835
836   bool isByRef = D.hasAttr<BlocksAttr>();
837   emission.IsByRef = isByRef;
838
839   CharUnits alignment = getContext().getDeclAlign(&D);
840   emission.Alignment = alignment;
841
842   // If the type is variably-modified, emit all the VLA sizes for it.
843   if (Ty->isVariablyModifiedType())
844     EmitVariablyModifiedType(Ty);
845
846   llvm::Value *DeclPtr;
847   if (Ty->isConstantSizeType()) {
848     bool NRVO = getLangOpts().ElideConstructors &&
849       D.isNRVOVariable();
850
851     // If this value is an array or struct with a statically determinable
852     // constant initializer, there are optimizations we can do.
853     //
854     // TODO: We should constant-evaluate the initializer of any variable,
855     // as long as it is initialized by a constant expression. Currently,
856     // isConstantInitializer produces wrong answers for structs with
857     // reference or bitfield members, and a few other cases, and checking
858     // for POD-ness protects us from some of these.
859     if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
860         (D.isConstexpr() ||
861          ((Ty.isPODType(getContext()) ||
862            getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
863           D.getInit()->isConstantInitializer(getContext(), false)))) {
864
865       // If the variable's a const type, and it's neither an NRVO
866       // candidate nor a __block variable and has no mutable members,
867       // emit it as a global instead.
868       if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef &&
869           CGM.isTypeConstant(Ty, true)) {
870         EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
871
872         emission.Address = nullptr; // signal this condition to later callbacks
873         assert(emission.wasEmittedAsGlobal());
874         return emission;
875       }
876
877       // Otherwise, tell the initialization code that we're in this case.
878       emission.IsConstantAggregate = true;
879     }
880
881     // A normal fixed sized variable becomes an alloca in the entry block,
882     // unless it's an NRVO variable.
883     llvm::Type *LTy = ConvertTypeForMem(Ty);
884
885     if (NRVO) {
886       // The named return value optimization: allocate this variable in the
887       // return slot, so that we can elide the copy when returning this
888       // variable (C++0x [class.copy]p34).
889       DeclPtr = ReturnValue;
890
891       if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
892         if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) {
893           // Create a flag that is used to indicate when the NRVO was applied
894           // to this variable. Set it to zero to indicate that NRVO was not
895           // applied.
896           llvm::Value *Zero = Builder.getFalse();
897           llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo");
898           EnsureInsertPoint();
899           Builder.CreateStore(Zero, NRVOFlag);
900
901           // Record the NRVO flag for this variable.
902           NRVOFlags[&D] = NRVOFlag;
903           emission.NRVOFlag = NRVOFlag;
904         }
905       }
906     } else {
907       if (isByRef)
908         LTy = BuildByRefType(&D);
909
910       llvm::AllocaInst *Alloc = CreateTempAlloca(LTy);
911       Alloc->setName(D.getName());
912
913       CharUnits allocaAlignment = alignment;
914       if (isByRef)
915         allocaAlignment = std::max(allocaAlignment,
916             getContext().toCharUnitsFromBits(getTarget().getPointerAlign(0)));
917       Alloc->setAlignment(allocaAlignment.getQuantity());
918       DeclPtr = Alloc;
919
920       // Emit a lifetime intrinsic if meaningful.  There's no point
921       // in doing this if we don't have a valid insertion point (?).
922       uint64_t size = CGM.getDataLayout().getTypeAllocSize(LTy);
923       if (HaveInsertPoint() && shouldUseLifetimeMarkers(*this, D, size)) {
924         llvm::Value *sizeV = llvm::ConstantInt::get(Int64Ty, size);
925
926         emission.SizeForLifetimeMarkers = sizeV;
927         llvm::Value *castAddr = Builder.CreateBitCast(Alloc, Int8PtrTy);
928         Builder.CreateCall2(CGM.getLLVMLifetimeStartFn(), sizeV, castAddr)
929           ->setDoesNotThrow();
930       } else {
931         assert(!emission.useLifetimeMarkers());
932       }
933     }
934   } else {
935     EnsureInsertPoint();
936
937     if (!DidCallStackSave) {
938       // Save the stack.
939       llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack");
940
941       llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
942       llvm::Value *V = Builder.CreateCall(F);
943
944       Builder.CreateStore(V, Stack);
945
946       DidCallStackSave = true;
947
948       // Push a cleanup block and restore the stack there.
949       // FIXME: in general circumstances, this should be an EH cleanup.
950       pushStackRestore(NormalCleanup, Stack);
951     }
952
953     llvm::Value *elementCount;
954     QualType elementType;
955     std::tie(elementCount, elementType) = getVLASize(Ty);
956
957     llvm::Type *llvmTy = ConvertTypeForMem(elementType);
958
959     // Allocate memory for the array.
960     llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla");
961     vla->setAlignment(alignment.getQuantity());
962
963     DeclPtr = vla;
964   }
965
966   llvm::Value *&DMEntry = LocalDeclMap[&D];
967   assert(!DMEntry && "Decl already exists in localdeclmap!");
968   DMEntry = DeclPtr;
969   emission.Address = DeclPtr;
970
971   // Emit debug info for local var declaration.
972   if (HaveInsertPoint())
973     if (CGDebugInfo *DI = getDebugInfo()) {
974       if (CGM.getCodeGenOpts().getDebugInfo()
975             >= CodeGenOptions::LimitedDebugInfo) {
976         DI->setLocation(D.getLocation());
977         DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder);
978       }
979     }
980
981   if (D.hasAttr<AnnotateAttr>())
982       EmitVarAnnotations(&D, emission.Address);
983
984   return emission;
985 }
986
987 /// Determines whether the given __block variable is potentially
988 /// captured by the given expression.
989 static bool isCapturedBy(const VarDecl &var, const Expr *e) {
990   // Skip the most common kinds of expressions that make
991   // hierarchy-walking expensive.
992   e = e->IgnoreParenCasts();
993
994   if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
995     const BlockDecl *block = be->getBlockDecl();
996     for (const auto &I : block->captures()) {
997       if (I.getVariable() == &var)
998         return true;
999     }
1000
1001     // No need to walk into the subexpressions.
1002     return false;
1003   }
1004
1005   if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) {
1006     const CompoundStmt *CS = SE->getSubStmt();
1007     for (const auto *BI : CS->body())
1008       if (const auto *E = dyn_cast<Expr>(BI)) {
1009         if (isCapturedBy(var, E))
1010             return true;
1011       }
1012       else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
1013           // special case declarations
1014           for (const auto *I : DS->decls()) {
1015               if (const auto *VD = dyn_cast<VarDecl>((I))) {
1016                 const Expr *Init = VD->getInit();
1017                 if (Init && isCapturedBy(var, Init))
1018                   return true;
1019               }
1020           }
1021       }
1022       else
1023         // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1024         // Later, provide code to poke into statements for capture analysis.
1025         return true;
1026     return false;
1027   }
1028
1029   for (Stmt::const_child_range children = e->children(); children; ++children)
1030     if (isCapturedBy(var, cast<Expr>(*children)))
1031       return true;
1032
1033   return false;
1034 }
1035
1036 /// \brief Determine whether the given initializer is trivial in the sense
1037 /// that it requires no code to be generated.
1038 static bool isTrivialInitializer(const Expr *Init) {
1039   if (!Init)
1040     return true;
1041
1042   if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1043     if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1044       if (Constructor->isTrivial() &&
1045           Constructor->isDefaultConstructor() &&
1046           !Construct->requiresZeroInitialization())
1047         return true;
1048
1049   return false;
1050 }
1051 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1052   assert(emission.Variable && "emission was not valid!");
1053
1054   // If this was emitted as a global constant, we're done.
1055   if (emission.wasEmittedAsGlobal()) return;
1056
1057   const VarDecl &D = *emission.Variable;
1058   QualType type = D.getType();
1059
1060   // If this local has an initializer, emit it now.
1061   const Expr *Init = D.getInit();
1062
1063   // If we are at an unreachable point, we don't need to emit the initializer
1064   // unless it contains a label.
1065   if (!HaveInsertPoint()) {
1066     if (!Init || !ContainsLabel(Init)) return;
1067     EnsureInsertPoint();
1068   }
1069
1070   // Initialize the structure of a __block variable.
1071   if (emission.IsByRef)
1072     emitByrefStructureInit(emission);
1073
1074   if (isTrivialInitializer(Init))
1075     return;
1076
1077   CharUnits alignment = emission.Alignment;
1078
1079   // Check whether this is a byref variable that's potentially
1080   // captured and moved by its own initializer.  If so, we'll need to
1081   // emit the initializer first, then copy into the variable.
1082   bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init);
1083
1084   llvm::Value *Loc =
1085     capturedByInit ? emission.Address : emission.getObjectAddress(*this);
1086
1087   llvm::Constant *constant = nullptr;
1088   if (emission.IsConstantAggregate || D.isConstexpr()) {
1089     assert(!capturedByInit && "constant init contains a capturing block?");
1090     constant = CGM.EmitConstantInit(D, this);
1091   }
1092
1093   if (!constant) {
1094     LValue lv = MakeAddrLValue(Loc, type, alignment);
1095     lv.setNonGC(true);
1096     return EmitExprAsInit(Init, &D, lv, capturedByInit);
1097   }
1098
1099   if (!emission.IsConstantAggregate) {
1100     // For simple scalar/complex initialization, store the value directly.
1101     LValue lv = MakeAddrLValue(Loc, type, alignment);
1102     lv.setNonGC(true);
1103     return EmitStoreThroughLValue(RValue::get(constant), lv, true);
1104   }
1105
1106   // If this is a simple aggregate initialization, we can optimize it
1107   // in various ways.
1108   bool isVolatile = type.isVolatileQualified();
1109
1110   llvm::Value *SizeVal =
1111     llvm::ConstantInt::get(IntPtrTy,
1112                            getContext().getTypeSizeInChars(type).getQuantity());
1113
1114   llvm::Type *BP = Int8PtrTy;
1115   if (Loc->getType() != BP)
1116     Loc = Builder.CreateBitCast(Loc, BP);
1117
1118   // If the initializer is all or mostly zeros, codegen with memset then do
1119   // a few stores afterward.
1120   if (shouldUseMemSetPlusStoresToInitialize(constant,
1121                 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) {
1122     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
1123                          alignment.getQuantity(), isVolatile);
1124     // Zero and undef don't require a stores.
1125     if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) {
1126       Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo());
1127       emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder);
1128     }
1129   } else {
1130     // Otherwise, create a temporary global with the initializer then
1131     // memcpy from the global to the alloca.
1132     std::string Name = GetStaticDeclName(*this, D, ".");
1133     llvm::GlobalVariable *GV =
1134       new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true,
1135                                llvm::GlobalValue::PrivateLinkage,
1136                                constant, Name);
1137     GV->setAlignment(alignment.getQuantity());
1138     GV->setUnnamedAddr(true);
1139
1140     llvm::Value *SrcPtr = GV;
1141     if (SrcPtr->getType() != BP)
1142       SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1143
1144     Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(),
1145                          isVolatile);
1146   }
1147 }
1148
1149 /// Emit an expression as an initializer for a variable at the given
1150 /// location.  The expression is not necessarily the normal
1151 /// initializer for the variable, and the address is not necessarily
1152 /// its normal location.
1153 ///
1154 /// \param init the initializing expression
1155 /// \param var the variable to act as if we're initializing
1156 /// \param loc the address to initialize; its type is a pointer
1157 ///   to the LLVM mapping of the variable's type
1158 /// \param alignment the alignment of the address
1159 /// \param capturedByInit true if the variable is a __block variable
1160 ///   whose address is potentially changed by the initializer
1161 void CodeGenFunction::EmitExprAsInit(const Expr *init,
1162                                      const ValueDecl *D,
1163                                      LValue lvalue,
1164                                      bool capturedByInit) {
1165   QualType type = D->getType();
1166
1167   if (type->isReferenceType()) {
1168     RValue rvalue = EmitReferenceBindingToExpr(init);
1169     if (capturedByInit)
1170       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1171     EmitStoreThroughLValue(rvalue, lvalue, true);
1172     return;
1173   }
1174   switch (getEvaluationKind(type)) {
1175   case TEK_Scalar:
1176     EmitScalarInit(init, D, lvalue, capturedByInit);
1177     return;
1178   case TEK_Complex: {
1179     ComplexPairTy complex = EmitComplexExpr(init);
1180     if (capturedByInit)
1181       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1182     EmitStoreOfComplex(complex, lvalue, /*init*/ true);
1183     return;
1184   }
1185   case TEK_Aggregate:
1186     if (type->isAtomicType()) {
1187       EmitAtomicInit(const_cast<Expr*>(init), lvalue);
1188     } else {
1189       // TODO: how can we delay here if D is captured by its initializer?
1190       EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
1191                                               AggValueSlot::IsDestructed,
1192                                          AggValueSlot::DoesNotNeedGCBarriers,
1193                                               AggValueSlot::IsNotAliased));
1194     }
1195     return;
1196   }
1197   llvm_unreachable("bad evaluation kind");
1198 }
1199
1200 /// Enter a destroy cleanup for the given local variable.
1201 void CodeGenFunction::emitAutoVarTypeCleanup(
1202                             const CodeGenFunction::AutoVarEmission &emission,
1203                             QualType::DestructionKind dtorKind) {
1204   assert(dtorKind != QualType::DK_none);
1205
1206   // Note that for __block variables, we want to destroy the
1207   // original stack object, not the possibly forwarded object.
1208   llvm::Value *addr = emission.getObjectAddress(*this);
1209
1210   const VarDecl *var = emission.Variable;
1211   QualType type = var->getType();
1212
1213   CleanupKind cleanupKind = NormalAndEHCleanup;
1214   CodeGenFunction::Destroyer *destroyer = nullptr;
1215
1216   switch (dtorKind) {
1217   case QualType::DK_none:
1218     llvm_unreachable("no cleanup for trivially-destructible variable");
1219
1220   case QualType::DK_cxx_destructor:
1221     // If there's an NRVO flag on the emission, we need a different
1222     // cleanup.
1223     if (emission.NRVOFlag) {
1224       assert(!type->isArrayType());
1225       CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1226       EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor,
1227                                                emission.NRVOFlag);
1228       return;
1229     }
1230     break;
1231
1232   case QualType::DK_objc_strong_lifetime:
1233     // Suppress cleanups for pseudo-strong variables.
1234     if (var->isARCPseudoStrong()) return;
1235
1236     // Otherwise, consider whether to use an EH cleanup or not.
1237     cleanupKind = getARCCleanupKind();
1238
1239     // Use the imprecise destroyer by default.
1240     if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1241       destroyer = CodeGenFunction::destroyARCStrongImprecise;
1242     break;
1243
1244   case QualType::DK_objc_weak_lifetime:
1245     break;
1246   }
1247
1248   // If we haven't chosen a more specific destroyer, use the default.
1249   if (!destroyer) destroyer = getDestroyer(dtorKind);
1250
1251   // Use an EH cleanup in array destructors iff the destructor itself
1252   // is being pushed as an EH cleanup.
1253   bool useEHCleanup = (cleanupKind & EHCleanup);
1254   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
1255                                      useEHCleanup);
1256 }
1257
1258 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
1259   assert(emission.Variable && "emission was not valid!");
1260
1261   // If this was emitted as a global constant, we're done.
1262   if (emission.wasEmittedAsGlobal()) return;
1263
1264   // If we don't have an insertion point, we're done.  Sema prevents
1265   // us from jumping into any of these scopes anyway.
1266   if (!HaveInsertPoint()) return;
1267
1268   const VarDecl &D = *emission.Variable;
1269
1270   // Make sure we call @llvm.lifetime.end.  This needs to happen
1271   // *last*, so the cleanup needs to be pushed *first*.
1272   if (emission.useLifetimeMarkers()) {
1273     EHStack.pushCleanup<CallLifetimeEnd>(NormalCleanup,
1274                                          emission.getAllocatedAddress(),
1275                                          emission.getSizeForLifetimeMarkers());
1276   }
1277
1278   // Check the type for a cleanup.
1279   if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
1280     emitAutoVarTypeCleanup(emission, dtorKind);
1281
1282   // In GC mode, honor objc_precise_lifetime.
1283   if (getLangOpts().getGC() != LangOptions::NonGC &&
1284       D.hasAttr<ObjCPreciseLifetimeAttr>()) {
1285     EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
1286   }
1287
1288   // Handle the cleanup attribute.
1289   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
1290     const FunctionDecl *FD = CA->getFunctionDecl();
1291
1292     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
1293     assert(F && "Could not find function!");
1294
1295     const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
1296     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
1297   }
1298
1299   // If this is a block variable, call _Block_object_destroy
1300   // (on the unforwarded address).
1301   if (emission.IsByRef)
1302     enterByrefCleanup(emission);
1303 }
1304
1305 CodeGenFunction::Destroyer *
1306 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
1307   switch (kind) {
1308   case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
1309   case QualType::DK_cxx_destructor:
1310     return destroyCXXObject;
1311   case QualType::DK_objc_strong_lifetime:
1312     return destroyARCStrongPrecise;
1313   case QualType::DK_objc_weak_lifetime:
1314     return destroyARCWeak;
1315   }
1316   llvm_unreachable("Unknown DestructionKind");
1317 }
1318
1319 /// pushEHDestroy - Push the standard destructor for the given type as
1320 /// an EH-only cleanup.
1321 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
1322                                   llvm::Value *addr, QualType type) {
1323   assert(dtorKind && "cannot push destructor for trivial type");
1324   assert(needsEHCleanup(dtorKind));
1325
1326   pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
1327 }
1328
1329 /// pushDestroy - Push the standard destructor for the given type as
1330 /// at least a normal cleanup.
1331 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
1332                                   llvm::Value *addr, QualType type) {
1333   assert(dtorKind && "cannot push destructor for trivial type");
1334
1335   CleanupKind cleanupKind = getCleanupKind(dtorKind);
1336   pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
1337               cleanupKind & EHCleanup);
1338 }
1339
1340 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr,
1341                                   QualType type, Destroyer *destroyer,
1342                                   bool useEHCleanupForArray) {
1343   pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
1344                                      destroyer, useEHCleanupForArray);
1345 }
1346
1347 void CodeGenFunction::pushStackRestore(CleanupKind Kind, llvm::Value *SPMem) {
1348   EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
1349 }
1350
1351 void CodeGenFunction::pushLifetimeExtendedDestroy(
1352     CleanupKind cleanupKind, llvm::Value *addr, QualType type,
1353     Destroyer *destroyer, bool useEHCleanupForArray) {
1354   assert(!isInConditionalBranch() &&
1355          "performing lifetime extension from within conditional");
1356
1357   // Push an EH-only cleanup for the object now.
1358   // FIXME: When popping normal cleanups, we need to keep this EH cleanup
1359   // around in case a temporary's destructor throws an exception.
1360   if (cleanupKind & EHCleanup)
1361     EHStack.pushCleanup<DestroyObject>(
1362         static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
1363         destroyer, useEHCleanupForArray);
1364
1365   // Remember that we need to push a full cleanup for the object at the
1366   // end of the full-expression.
1367   pushCleanupAfterFullExpr<DestroyObject>(
1368       cleanupKind, addr, type, destroyer, useEHCleanupForArray);
1369 }
1370
1371 /// emitDestroy - Immediately perform the destruction of the given
1372 /// object.
1373 ///
1374 /// \param addr - the address of the object; a type*
1375 /// \param type - the type of the object; if an array type, all
1376 ///   objects are destroyed in reverse order
1377 /// \param destroyer - the function to call to destroy individual
1378 ///   elements
1379 /// \param useEHCleanupForArray - whether an EH cleanup should be
1380 ///   used when destroying array elements, in case one of the
1381 ///   destructions throws an exception
1382 void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type,
1383                                   Destroyer *destroyer,
1384                                   bool useEHCleanupForArray) {
1385   const ArrayType *arrayType = getContext().getAsArrayType(type);
1386   if (!arrayType)
1387     return destroyer(*this, addr, type);
1388
1389   llvm::Value *begin = addr;
1390   llvm::Value *length = emitArrayLength(arrayType, type, begin);
1391
1392   // Normally we have to check whether the array is zero-length.
1393   bool checkZeroLength = true;
1394
1395   // But if the array length is constant, we can suppress that.
1396   if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
1397     // ...and if it's constant zero, we can just skip the entire thing.
1398     if (constLength->isZero()) return;
1399     checkZeroLength = false;
1400   }
1401
1402   llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
1403   emitArrayDestroy(begin, end, type, destroyer,
1404                    checkZeroLength, useEHCleanupForArray);
1405 }
1406
1407 /// emitArrayDestroy - Destroys all the elements of the given array,
1408 /// beginning from last to first.  The array cannot be zero-length.
1409 ///
1410 /// \param begin - a type* denoting the first element of the array
1411 /// \param end - a type* denoting one past the end of the array
1412 /// \param type - the element type of the array
1413 /// \param destroyer - the function to call to destroy elements
1414 /// \param useEHCleanup - whether to push an EH cleanup to destroy
1415 ///   the remaining elements in case the destruction of a single
1416 ///   element throws
1417 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
1418                                        llvm::Value *end,
1419                                        QualType type,
1420                                        Destroyer *destroyer,
1421                                        bool checkZeroLength,
1422                                        bool useEHCleanup) {
1423   assert(!type->isArrayType());
1424
1425   // The basic structure here is a do-while loop, because we don't
1426   // need to check for the zero-element case.
1427   llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
1428   llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
1429
1430   if (checkZeroLength) {
1431     llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
1432                                                 "arraydestroy.isempty");
1433     Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
1434   }
1435
1436   // Enter the loop body, making that address the current address.
1437   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1438   EmitBlock(bodyBB);
1439   llvm::PHINode *elementPast =
1440     Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
1441   elementPast->addIncoming(end, entryBB);
1442
1443   // Shift the address back by one element.
1444   llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
1445   llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
1446                                                    "arraydestroy.element");
1447
1448   if (useEHCleanup)
1449     pushRegularPartialArrayCleanup(begin, element, type, destroyer);
1450
1451   // Perform the actual destruction there.
1452   destroyer(*this, element, type);
1453
1454   if (useEHCleanup)
1455     PopCleanupBlock();
1456
1457   // Check whether we've reached the end.
1458   llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
1459   Builder.CreateCondBr(done, doneBB, bodyBB);
1460   elementPast->addIncoming(element, Builder.GetInsertBlock());
1461
1462   // Done.
1463   EmitBlock(doneBB);
1464 }
1465
1466 /// Perform partial array destruction as if in an EH cleanup.  Unlike
1467 /// emitArrayDestroy, the element type here may still be an array type.
1468 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
1469                                     llvm::Value *begin, llvm::Value *end,
1470                                     QualType type,
1471                                     CodeGenFunction::Destroyer *destroyer) {
1472   // If the element type is itself an array, drill down.
1473   unsigned arrayDepth = 0;
1474   while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
1475     // VLAs don't require a GEP index to walk into.
1476     if (!isa<VariableArrayType>(arrayType))
1477       arrayDepth++;
1478     type = arrayType->getElementType();
1479   }
1480
1481   if (arrayDepth) {
1482     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, arrayDepth+1);
1483
1484     SmallVector<llvm::Value*,4> gepIndices(arrayDepth, zero);
1485     begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
1486     end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
1487   }
1488
1489   // Destroy the array.  We don't ever need an EH cleanup because we
1490   // assume that we're in an EH cleanup ourselves, so a throwing
1491   // destructor causes an immediate terminate.
1492   CGF.emitArrayDestroy(begin, end, type, destroyer,
1493                        /*checkZeroLength*/ true, /*useEHCleanup*/ false);
1494 }
1495
1496 namespace {
1497   /// RegularPartialArrayDestroy - a cleanup which performs a partial
1498   /// array destroy where the end pointer is regularly determined and
1499   /// does not need to be loaded from a local.
1500   class RegularPartialArrayDestroy : public EHScopeStack::Cleanup {
1501     llvm::Value *ArrayBegin;
1502     llvm::Value *ArrayEnd;
1503     QualType ElementType;
1504     CodeGenFunction::Destroyer *Destroyer;
1505   public:
1506     RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
1507                                QualType elementType,
1508                                CodeGenFunction::Destroyer *destroyer)
1509       : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
1510         ElementType(elementType), Destroyer(destroyer) {}
1511
1512     void Emit(CodeGenFunction &CGF, Flags flags) override {
1513       emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
1514                               ElementType, Destroyer);
1515     }
1516   };
1517
1518   /// IrregularPartialArrayDestroy - a cleanup which performs a
1519   /// partial array destroy where the end pointer is irregularly
1520   /// determined and must be loaded from a local.
1521   class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup {
1522     llvm::Value *ArrayBegin;
1523     llvm::Value *ArrayEndPointer;
1524     QualType ElementType;
1525     CodeGenFunction::Destroyer *Destroyer;
1526   public:
1527     IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
1528                                  llvm::Value *arrayEndPointer,
1529                                  QualType elementType,
1530                                  CodeGenFunction::Destroyer *destroyer)
1531       : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
1532         ElementType(elementType), Destroyer(destroyer) {}
1533
1534     void Emit(CodeGenFunction &CGF, Flags flags) override {
1535       llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
1536       emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
1537                               ElementType, Destroyer);
1538     }
1539   };
1540 }
1541
1542 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
1543 /// already-constructed elements of the given array.  The cleanup
1544 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1545 ///
1546 /// \param elementType - the immediate element type of the array;
1547 ///   possibly still an array type
1548 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1549                                                  llvm::Value *arrayEndPointer,
1550                                                        QualType elementType,
1551                                                        Destroyer *destroyer) {
1552   pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
1553                                                     arrayBegin, arrayEndPointer,
1554                                                     elementType, destroyer);
1555 }
1556
1557 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
1558 /// already-constructed elements of the given array.  The cleanup
1559 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1560 ///
1561 /// \param elementType - the immediate element type of the array;
1562 ///   possibly still an array type
1563 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1564                                                      llvm::Value *arrayEnd,
1565                                                      QualType elementType,
1566                                                      Destroyer *destroyer) {
1567   pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
1568                                                   arrayBegin, arrayEnd,
1569                                                   elementType, destroyer);
1570 }
1571
1572 /// Lazily declare the @llvm.lifetime.start intrinsic.
1573 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() {
1574   if (LifetimeStartFn) return LifetimeStartFn;
1575   LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
1576                                             llvm::Intrinsic::lifetime_start);
1577   return LifetimeStartFn;
1578 }
1579
1580 /// Lazily declare the @llvm.lifetime.end intrinsic.
1581 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() {
1582   if (LifetimeEndFn) return LifetimeEndFn;
1583   LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
1584                                               llvm::Intrinsic::lifetime_end);
1585   return LifetimeEndFn;
1586 }
1587
1588 namespace {
1589   /// A cleanup to perform a release of an object at the end of a
1590   /// function.  This is used to balance out the incoming +1 of a
1591   /// ns_consumed argument when we can't reasonably do that just by
1592   /// not doing the initial retain for a __block argument.
1593   struct ConsumeARCParameter : EHScopeStack::Cleanup {
1594     ConsumeARCParameter(llvm::Value *param,
1595                         ARCPreciseLifetime_t precise)
1596       : Param(param), Precise(precise) {}
1597
1598     llvm::Value *Param;
1599     ARCPreciseLifetime_t Precise;
1600
1601     void Emit(CodeGenFunction &CGF, Flags flags) override {
1602       CGF.EmitARCRelease(Param, Precise);
1603     }
1604   };
1605 }
1606
1607 /// Emit an alloca (or GlobalValue depending on target)
1608 /// for the specified parameter and set up LocalDeclMap.
1609 void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg,
1610                                    bool ArgIsPointer, unsigned ArgNo) {
1611   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
1612   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
1613          "Invalid argument to EmitParmDecl");
1614
1615   Arg->setName(D.getName());
1616
1617   QualType Ty = D.getType();
1618
1619   // Use better IR generation for certain implicit parameters.
1620   if (isa<ImplicitParamDecl>(D)) {
1621     // The only implicit argument a block has is its literal.
1622     if (BlockInfo) {
1623       LocalDeclMap[&D] = Arg;
1624       llvm::Value *LocalAddr = nullptr;
1625       if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1626         // Allocate a stack slot to let the debug info survive the RA.
1627         llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty),
1628                                                    D.getName() + ".addr");
1629         Alloc->setAlignment(getContext().getDeclAlign(&D).getQuantity());
1630         LValue lv = MakeAddrLValue(Alloc, Ty, getContext().getDeclAlign(&D));
1631         EmitStoreOfScalar(Arg, lv, /* isInitialization */ true);
1632         LocalAddr = Builder.CreateLoad(Alloc);
1633       }
1634
1635       if (CGDebugInfo *DI = getDebugInfo()) {
1636         if (CGM.getCodeGenOpts().getDebugInfo()
1637               >= CodeGenOptions::LimitedDebugInfo) {
1638           DI->setLocation(D.getLocation());
1639           DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, LocalAddr, Builder);
1640         }
1641       }
1642
1643       return;
1644     }
1645   }
1646
1647   llvm::Value *DeclPtr;
1648   bool DoStore = false;
1649   bool IsScalar = hasScalarEvaluationKind(Ty);
1650   CharUnits Align = getContext().getDeclAlign(&D);
1651   // If we already have a pointer to the argument, reuse the input pointer.
1652   if (ArgIsPointer) {
1653     // If we have a prettier pointer type at this point, bitcast to that.
1654     unsigned AS = cast<llvm::PointerType>(Arg->getType())->getAddressSpace();
1655     llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS);
1656     DeclPtr = Arg->getType() == IRTy ? Arg : Builder.CreateBitCast(Arg, IRTy,
1657                                                                    D.getName());
1658     // Push a destructor cleanup for this parameter if the ABI requires it.
1659     if (!IsScalar &&
1660         getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
1661       const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
1662       if (RD && RD->hasNonTrivialDestructor())
1663         pushDestroy(QualType::DK_cxx_destructor, DeclPtr, Ty);
1664     }
1665   } else {
1666     // Otherwise, create a temporary to hold the value.
1667     llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty),
1668                                                D.getName() + ".addr");
1669     Alloc->setAlignment(Align.getQuantity());
1670     DeclPtr = Alloc;
1671     DoStore = true;
1672   }
1673
1674   LValue lv = MakeAddrLValue(DeclPtr, Ty, Align);
1675   if (IsScalar) {
1676     Qualifiers qs = Ty.getQualifiers();
1677     if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
1678       // We honor __attribute__((ns_consumed)) for types with lifetime.
1679       // For __strong, it's handled by just skipping the initial retain;
1680       // otherwise we have to balance out the initial +1 with an extra
1681       // cleanup to do the release at the end of the function.
1682       bool isConsumed = D.hasAttr<NSConsumedAttr>();
1683
1684       // 'self' is always formally __strong, but if this is not an
1685       // init method then we don't want to retain it.
1686       if (D.isARCPseudoStrong()) {
1687         const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl);
1688         assert(&D == method->getSelfDecl());
1689         assert(lt == Qualifiers::OCL_Strong);
1690         assert(qs.hasConst());
1691         assert(method->getMethodFamily() != OMF_init);
1692         (void) method;
1693         lt = Qualifiers::OCL_ExplicitNone;
1694       }
1695
1696       if (lt == Qualifiers::OCL_Strong) {
1697         if (!isConsumed) {
1698           if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1699             // use objc_storeStrong(&dest, value) for retaining the
1700             // object. But first, store a null into 'dest' because
1701             // objc_storeStrong attempts to release its old value.
1702             llvm::Value *Null = CGM.EmitNullConstant(D.getType());
1703             EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
1704             EmitARCStoreStrongCall(lv.getAddress(), Arg, true);
1705             DoStore = false;
1706           }
1707           else
1708           // Don't use objc_retainBlock for block pointers, because we
1709           // don't want to Block_copy something just because we got it
1710           // as a parameter.
1711             Arg = EmitARCRetainNonBlock(Arg);
1712         }
1713       } else {
1714         // Push the cleanup for a consumed parameter.
1715         if (isConsumed) {
1716           ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
1717                                 ? ARCPreciseLifetime : ARCImpreciseLifetime);
1718           EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg,
1719                                                    precise);
1720         }
1721
1722         if (lt == Qualifiers::OCL_Weak) {
1723           EmitARCInitWeak(DeclPtr, Arg);
1724           DoStore = false; // The weak init is a store, no need to do two.
1725         }
1726       }
1727
1728       // Enter the cleanup scope.
1729       EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
1730     }
1731   }
1732
1733   // Store the initial value into the alloca.
1734   if (DoStore)
1735     EmitStoreOfScalar(Arg, lv, /* isInitialization */ true);
1736
1737   llvm::Value *&DMEntry = LocalDeclMap[&D];
1738   assert(!DMEntry && "Decl already exists in localdeclmap!");
1739   DMEntry = DeclPtr;
1740
1741   // Emit debug info for param declaration.
1742   if (CGDebugInfo *DI = getDebugInfo()) {
1743     if (CGM.getCodeGenOpts().getDebugInfo()
1744           >= CodeGenOptions::LimitedDebugInfo) {
1745       DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder);
1746     }
1747   }
1748
1749   if (D.hasAttr<AnnotateAttr>())
1750       EmitVarAnnotations(&D, DeclPtr);
1751 }