]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/CodeGen/CGDecl.cpp
Merge OpenSSL 1.0.2g.
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / CodeGen / CGDecl.cpp
1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Decl nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGCleanup.h"
16 #include "CGDebugInfo.h"
17 #include "CGOpenCLRuntime.h"
18 #include "CodeGenModule.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/CharUnits.h"
21 #include "clang/AST/Decl.h"
22 #include "clang/AST/DeclObjC.h"
23 #include "clang/Basic/SourceManager.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/CodeGen/CGFunctionInfo.h"
26 #include "clang/Frontend/CodeGenOptions.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/GlobalVariable.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/Type.h"
31 using namespace clang;
32 using namespace CodeGen;
33
34
35 void CodeGenFunction::EmitDecl(const Decl &D) {
36   switch (D.getKind()) {
37   case Decl::TranslationUnit:
38   case Decl::ExternCContext:
39   case Decl::Namespace:
40   case Decl::UnresolvedUsingTypename:
41   case Decl::ClassTemplateSpecialization:
42   case Decl::ClassTemplatePartialSpecialization:
43   case Decl::VarTemplateSpecialization:
44   case Decl::VarTemplatePartialSpecialization:
45   case Decl::TemplateTypeParm:
46   case Decl::UnresolvedUsingValue:
47   case Decl::NonTypeTemplateParm:
48   case Decl::CXXMethod:
49   case Decl::CXXConstructor:
50   case Decl::CXXDestructor:
51   case Decl::CXXConversion:
52   case Decl::Field:
53   case Decl::MSProperty:
54   case Decl::IndirectField:
55   case Decl::ObjCIvar:
56   case Decl::ObjCAtDefsField:
57   case Decl::ParmVar:
58   case Decl::ImplicitParam:
59   case Decl::ClassTemplate:
60   case Decl::VarTemplate:
61   case Decl::FunctionTemplate:
62   case Decl::TypeAliasTemplate:
63   case Decl::TemplateTemplateParm:
64   case Decl::ObjCMethod:
65   case Decl::ObjCCategory:
66   case Decl::ObjCProtocol:
67   case Decl::ObjCInterface:
68   case Decl::ObjCCategoryImpl:
69   case Decl::ObjCImplementation:
70   case Decl::ObjCProperty:
71   case Decl::ObjCCompatibleAlias:
72   case Decl::AccessSpec:
73   case Decl::LinkageSpec:
74   case Decl::ObjCPropertyImpl:
75   case Decl::FileScopeAsm:
76   case Decl::Friend:
77   case Decl::FriendTemplate:
78   case Decl::Block:
79   case Decl::Captured:
80   case Decl::ClassScopeFunctionSpecialization:
81   case Decl::UsingShadow:
82   case Decl::ObjCTypeParam:
83     llvm_unreachable("Declaration should not be in declstmts!");
84   case Decl::Function:  // void X();
85   case Decl::Record:    // struct/union/class X;
86   case Decl::Enum:      // enum X;
87   case Decl::EnumConstant: // enum ? { X = ? }
88   case Decl::CXXRecord: // struct/union/class X; [C++]
89   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
90   case Decl::Label:        // __label__ x;
91   case Decl::Import:
92   case Decl::OMPThreadPrivate:
93   case Decl::Empty:
94     // None of these decls require codegen support.
95     return;
96
97   case Decl::NamespaceAlias:
98     if (CGDebugInfo *DI = getDebugInfo())
99         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
100     return;
101   case Decl::Using:          // using X; [C++]
102     if (CGDebugInfo *DI = getDebugInfo())
103         DI->EmitUsingDecl(cast<UsingDecl>(D));
104     return;
105   case Decl::UsingDirective: // using namespace X; [C++]
106     if (CGDebugInfo *DI = getDebugInfo())
107       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
108     return;
109   case Decl::Var: {
110     const VarDecl &VD = cast<VarDecl>(D);
111     assert(VD.isLocalVarDecl() &&
112            "Should not see file-scope variables inside a function!");
113     return EmitVarDecl(VD);
114   }
115
116   case Decl::Typedef:      // typedef int X;
117   case Decl::TypeAlias: {  // using X = int; [C++0x]
118     const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
119     QualType Ty = TD.getUnderlyingType();
120
121     if (Ty->isVariablyModifiedType())
122       EmitVariablyModifiedType(Ty);
123   }
124   }
125 }
126
127 /// EmitVarDecl - This method handles emission of any variable declaration
128 /// inside a function, including static vars etc.
129 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
130   if (D.isStaticLocal()) {
131     llvm::GlobalValue::LinkageTypes Linkage =
132         CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false);
133
134     // FIXME: We need to force the emission/use of a guard variable for
135     // some variables even if we can constant-evaluate them because
136     // we can't guarantee every translation unit will constant-evaluate them.
137
138     return EmitStaticVarDecl(D, Linkage);
139   }
140
141   if (D.hasExternalStorage())
142     // Don't emit it now, allow it to be emitted lazily on its first use.
143     return;
144
145   if (D.getStorageClass() == SC_OpenCLWorkGroupLocal)
146     return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
147
148   assert(D.hasLocalStorage());
149   return EmitAutoVarDecl(D);
150 }
151
152 static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
153   if (CGM.getLangOpts().CPlusPlus)
154     return CGM.getMangledName(&D).str();
155
156   // If this isn't C++, we don't need a mangled name, just a pretty one.
157   assert(!D.isExternallyVisible() && "name shouldn't matter");
158   std::string ContextName;
159   const DeclContext *DC = D.getDeclContext();
160   if (auto *CD = dyn_cast<CapturedDecl>(DC))
161     DC = cast<DeclContext>(CD->getNonClosureContext());
162   if (const auto *FD = dyn_cast<FunctionDecl>(DC))
163     ContextName = CGM.getMangledName(FD);
164   else if (const auto *BD = dyn_cast<BlockDecl>(DC))
165     ContextName = CGM.getBlockMangledName(GlobalDecl(), BD);
166   else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
167     ContextName = OMD->getSelector().getAsString();
168   else
169     llvm_unreachable("Unknown context for static var decl");
170
171   ContextName += "." + D.getNameAsString();
172   return ContextName;
173 }
174
175 llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl(
176     const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
177   // In general, we don't always emit static var decls once before we reference
178   // them. It is possible to reference them before emitting the function that
179   // contains them, and it is possible to emit the containing function multiple
180   // times.
181   if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
182     return ExistingGV;
183
184   QualType Ty = D.getType();
185   assert(Ty->isConstantSizeType() && "VLAs can't be static");
186
187   // Use the label if the variable is renamed with the asm-label extension.
188   std::string Name;
189   if (D.hasAttr<AsmLabelAttr>())
190     Name = getMangledName(&D);
191   else
192     Name = getStaticDeclName(*this, D);
193
194   llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
195   unsigned AddrSpace =
196       GetGlobalVarAddressSpace(&D, getContext().getTargetAddressSpace(Ty));
197
198   // Local address space cannot have an initializer.
199   llvm::Constant *Init = nullptr;
200   if (Ty.getAddressSpace() != LangAS::opencl_local)
201     Init = EmitNullConstant(Ty);
202   else
203     Init = llvm::UndefValue::get(LTy);
204
205   llvm::GlobalVariable *GV =
206     new llvm::GlobalVariable(getModule(), LTy,
207                              Ty.isConstant(getContext()), Linkage,
208                              Init, Name, nullptr,
209                              llvm::GlobalVariable::NotThreadLocal,
210                              AddrSpace);
211   GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
212   setGlobalVisibility(GV, &D);
213
214   if (supportsCOMDAT() && GV->isWeakForLinker())
215     GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
216
217   if (D.getTLSKind())
218     setTLSMode(GV, D);
219
220   if (D.isExternallyVisible()) {
221     if (D.hasAttr<DLLImportAttr>())
222       GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
223     else if (D.hasAttr<DLLExportAttr>())
224       GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
225   }
226
227   // Make sure the result is of the correct type.
228   unsigned ExpectedAddrSpace = getContext().getTargetAddressSpace(Ty);
229   llvm::Constant *Addr = GV;
230   if (AddrSpace != ExpectedAddrSpace) {
231     llvm::PointerType *PTy = llvm::PointerType::get(LTy, ExpectedAddrSpace);
232     Addr = llvm::ConstantExpr::getAddrSpaceCast(GV, PTy);
233   }
234
235   setStaticLocalDeclAddress(&D, Addr);
236
237   // Ensure that the static local gets initialized by making sure the parent
238   // function gets emitted eventually.
239   const Decl *DC = cast<Decl>(D.getDeclContext());
240
241   // We can't name blocks or captured statements directly, so try to emit their
242   // parents.
243   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
244     DC = DC->getNonClosureContext();
245     // FIXME: Ensure that global blocks get emitted.
246     if (!DC)
247       return Addr;
248   }
249
250   GlobalDecl GD;
251   if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
252     GD = GlobalDecl(CD, Ctor_Base);
253   else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
254     GD = GlobalDecl(DD, Dtor_Base);
255   else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
256     GD = GlobalDecl(FD);
257   else {
258     // Don't do anything for Obj-C method decls or global closures. We should
259     // never defer them.
260     assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
261   }
262   if (GD.getDecl())
263     (void)GetAddrOfGlobal(GD);
264
265   return Addr;
266 }
267
268 /// hasNontrivialDestruction - Determine whether a type's destruction is
269 /// non-trivial. If so, and the variable uses static initialization, we must
270 /// register its destructor to run on exit.
271 static bool hasNontrivialDestruction(QualType T) {
272   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
273   return RD && !RD->hasTrivialDestructor();
274 }
275
276 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
277 /// global variable that has already been created for it.  If the initializer
278 /// has a different type than GV does, this may free GV and return a different
279 /// one.  Otherwise it just returns GV.
280 llvm::GlobalVariable *
281 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
282                                                llvm::GlobalVariable *GV) {
283   llvm::Constant *Init = CGM.EmitConstantInit(D, this);
284
285   // If constant emission failed, then this should be a C++ static
286   // initializer.
287   if (!Init) {
288     if (!getLangOpts().CPlusPlus)
289       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
290     else if (Builder.GetInsertBlock()) {
291       // Since we have a static initializer, this global variable can't
292       // be constant.
293       GV->setConstant(false);
294
295       EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
296     }
297     return GV;
298   }
299
300   // The initializer may differ in type from the global. Rewrite
301   // the global to match the initializer.  (We have to do this
302   // because some types, like unions, can't be completely represented
303   // in the LLVM type system.)
304   if (GV->getType()->getElementType() != Init->getType()) {
305     llvm::GlobalVariable *OldGV = GV;
306
307     GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
308                                   OldGV->isConstant(),
309                                   OldGV->getLinkage(), Init, "",
310                                   /*InsertBefore*/ OldGV,
311                                   OldGV->getThreadLocalMode(),
312                            CGM.getContext().getTargetAddressSpace(D.getType()));
313     GV->setVisibility(OldGV->getVisibility());
314
315     // Steal the name of the old global
316     GV->takeName(OldGV);
317
318     // Replace all uses of the old global with the new global
319     llvm::Constant *NewPtrForOldDecl =
320     llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
321     OldGV->replaceAllUsesWith(NewPtrForOldDecl);
322
323     // Erase the old global, since it is no longer used.
324     OldGV->eraseFromParent();
325   }
326
327   GV->setConstant(CGM.isTypeConstant(D.getType(), true));
328   GV->setInitializer(Init);
329
330   if (hasNontrivialDestruction(D.getType())) {
331     // We have a constant initializer, but a nontrivial destructor. We still
332     // need to perform a guarded "initialization" in order to register the
333     // destructor.
334     EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
335   }
336
337   return GV;
338 }
339
340 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
341                                       llvm::GlobalValue::LinkageTypes Linkage) {
342   llvm::Value *&DMEntry = LocalDeclMap[&D];
343   assert(!DMEntry && "Decl already exists in localdeclmap!");
344
345   // Check to see if we already have a global variable for this
346   // declaration.  This can happen when double-emitting function
347   // bodies, e.g. with complete and base constructors.
348   llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
349
350   // Store into LocalDeclMap before generating initializer to handle
351   // circular references.
352   DMEntry = addr;
353
354   // We can't have a VLA here, but we can have a pointer to a VLA,
355   // even though that doesn't really make any sense.
356   // Make sure to evaluate VLA bounds now so that we have them for later.
357   if (D.getType()->isVariablyModifiedType())
358     EmitVariablyModifiedType(D.getType());
359
360   // Save the type in case adding the initializer forces a type change.
361   llvm::Type *expectedType = addr->getType();
362
363   llvm::GlobalVariable *var =
364     cast<llvm::GlobalVariable>(addr->stripPointerCasts());
365   // If this value has an initializer, emit it.
366   if (D.getInit())
367     var = AddInitializerToStaticVarDecl(D, var);
368
369   var->setAlignment(getContext().getDeclAlign(&D).getQuantity());
370
371   if (D.hasAttr<AnnotateAttr>())
372     CGM.AddGlobalAnnotations(&D, var);
373
374   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
375     var->setSection(SA->getName());
376
377   if (D.hasAttr<UsedAttr>())
378     CGM.addUsedGlobal(var);
379
380   // We may have to cast the constant because of the initializer
381   // mismatch above.
382   //
383   // FIXME: It is really dangerous to store this in the map; if anyone
384   // RAUW's the GV uses of this constant will be invalid.
385   llvm::Constant *castedAddr =
386     llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
387   DMEntry = castedAddr;
388   CGM.setStaticLocalDeclAddress(&D, castedAddr);
389
390   CGM.getSanitizerMetadata()->reportGlobalToASan(var, D);
391
392   // Emit global variable debug descriptor for static vars.
393   CGDebugInfo *DI = getDebugInfo();
394   if (DI &&
395       CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
396     DI->setLocation(D.getLocation());
397     DI->EmitGlobalVariable(var, &D);
398   }
399 }
400
401 namespace {
402   struct DestroyObject : EHScopeStack::Cleanup {
403     DestroyObject(llvm::Value *addr, QualType type,
404                   CodeGenFunction::Destroyer *destroyer,
405                   bool useEHCleanupForArray)
406       : addr(addr), type(type), destroyer(destroyer),
407         useEHCleanupForArray(useEHCleanupForArray) {}
408
409     llvm::Value *addr;
410     QualType type;
411     CodeGenFunction::Destroyer *destroyer;
412     bool useEHCleanupForArray;
413
414     void Emit(CodeGenFunction &CGF, Flags flags) override {
415       // Don't use an EH cleanup recursively from an EH cleanup.
416       bool useEHCleanupForArray =
417         flags.isForNormalCleanup() && this->useEHCleanupForArray;
418
419       CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
420     }
421   };
422
423   struct DestroyNRVOVariable : EHScopeStack::Cleanup {
424     DestroyNRVOVariable(llvm::Value *addr,
425                         const CXXDestructorDecl *Dtor,
426                         llvm::Value *NRVOFlag)
427       : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {}
428
429     const CXXDestructorDecl *Dtor;
430     llvm::Value *NRVOFlag;
431     llvm::Value *Loc;
432
433     void Emit(CodeGenFunction &CGF, Flags flags) override {
434       // Along the exceptions path we always execute the dtor.
435       bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
436
437       llvm::BasicBlock *SkipDtorBB = nullptr;
438       if (NRVO) {
439         // If we exited via NRVO, we skip the destructor call.
440         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
441         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
442         llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val");
443         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
444         CGF.EmitBlock(RunDtorBB);
445       }
446
447       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
448                                 /*ForVirtualBase=*/false,
449                                 /*Delegating=*/false,
450                                 Loc);
451
452       if (NRVO) CGF.EmitBlock(SkipDtorBB);
453     }
454   };
455
456   struct CallStackRestore : EHScopeStack::Cleanup {
457     llvm::Value *Stack;
458     CallStackRestore(llvm::Value *Stack) : Stack(Stack) {}
459     void Emit(CodeGenFunction &CGF, Flags flags) override {
460       llvm::Value *V = CGF.Builder.CreateLoad(Stack);
461       llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
462       CGF.Builder.CreateCall(F, V);
463     }
464   };
465
466   struct ExtendGCLifetime : EHScopeStack::Cleanup {
467     const VarDecl &Var;
468     ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
469
470     void Emit(CodeGenFunction &CGF, Flags flags) override {
471       // Compute the address of the local variable, in case it's a
472       // byref or something.
473       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
474                       Var.getType(), VK_LValue, SourceLocation());
475       llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
476                                                 SourceLocation());
477       CGF.EmitExtendGCLifetime(value);
478     }
479   };
480
481   struct CallCleanupFunction : EHScopeStack::Cleanup {
482     llvm::Constant *CleanupFn;
483     const CGFunctionInfo &FnInfo;
484     const VarDecl &Var;
485
486     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
487                         const VarDecl *Var)
488       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
489
490     void Emit(CodeGenFunction &CGF, Flags flags) override {
491       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
492                       Var.getType(), VK_LValue, SourceLocation());
493       // Compute the address of the local variable, in case it's a byref
494       // or something.
495       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress();
496
497       // In some cases, the type of the function argument will be different from
498       // the type of the pointer. An example of this is
499       // void f(void* arg);
500       // __attribute__((cleanup(f))) void *g;
501       //
502       // To fix this we insert a bitcast here.
503       QualType ArgTy = FnInfo.arg_begin()->type;
504       llvm::Value *Arg =
505         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
506
507       CallArgList Args;
508       Args.add(RValue::get(Arg),
509                CGF.getContext().getPointerType(Var.getType()));
510       CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args);
511     }
512   };
513
514   /// A cleanup to call @llvm.lifetime.end.
515   class CallLifetimeEnd : public EHScopeStack::Cleanup {
516     llvm::Value *Addr;
517     llvm::Value *Size;
518   public:
519     CallLifetimeEnd(llvm::Value *addr, llvm::Value *size)
520       : Addr(addr), Size(size) {}
521
522     void Emit(CodeGenFunction &CGF, Flags flags) override {
523       CGF.EmitLifetimeEnd(Size, Addr);
524     }
525   };
526 }
527
528 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
529 /// variable with lifetime.
530 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
531                                     llvm::Value *addr,
532                                     Qualifiers::ObjCLifetime lifetime) {
533   switch (lifetime) {
534   case Qualifiers::OCL_None:
535     llvm_unreachable("present but none");
536
537   case Qualifiers::OCL_ExplicitNone:
538     // nothing to do
539     break;
540
541   case Qualifiers::OCL_Strong: {
542     CodeGenFunction::Destroyer *destroyer =
543       (var.hasAttr<ObjCPreciseLifetimeAttr>()
544        ? CodeGenFunction::destroyARCStrongPrecise
545        : CodeGenFunction::destroyARCStrongImprecise);
546
547     CleanupKind cleanupKind = CGF.getARCCleanupKind();
548     CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
549                     cleanupKind & EHCleanup);
550     break;
551   }
552   case Qualifiers::OCL_Autoreleasing:
553     // nothing to do
554     break;
555
556   case Qualifiers::OCL_Weak:
557     // __weak objects always get EH cleanups; otherwise, exceptions
558     // could cause really nasty crashes instead of mere leaks.
559     CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
560                     CodeGenFunction::destroyARCWeak,
561                     /*useEHCleanup*/ true);
562     break;
563   }
564 }
565
566 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
567   if (const Expr *e = dyn_cast<Expr>(s)) {
568     // Skip the most common kinds of expressions that make
569     // hierarchy-walking expensive.
570     s = e = e->IgnoreParenCasts();
571
572     if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
573       return (ref->getDecl() == &var);
574     if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
575       const BlockDecl *block = be->getBlockDecl();
576       for (const auto &I : block->captures()) {
577         if (I.getVariable() == &var)
578           return true;
579       }
580     }
581   }
582
583   for (const Stmt *SubStmt : s->children())
584     // SubStmt might be null; as in missing decl or conditional of an if-stmt.
585     if (SubStmt && isAccessedBy(var, SubStmt))
586       return true;
587
588   return false;
589 }
590
591 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
592   if (!decl) return false;
593   if (!isa<VarDecl>(decl)) return false;
594   const VarDecl *var = cast<VarDecl>(decl);
595   return isAccessedBy(*var, e);
596 }
597
598 static void drillIntoBlockVariable(CodeGenFunction &CGF,
599                                    LValue &lvalue,
600                                    const VarDecl *var) {
601   lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var));
602 }
603
604 void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D,
605                                      LValue lvalue, bool capturedByInit) {
606   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
607   if (!lifetime) {
608     llvm::Value *value = EmitScalarExpr(init);
609     if (capturedByInit)
610       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
611     EmitStoreThroughLValue(RValue::get(value), lvalue, true);
612     return;
613   }
614   
615   if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
616     init = DIE->getExpr();
617     
618   // If we're emitting a value with lifetime, we have to do the
619   // initialization *before* we leave the cleanup scopes.
620   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) {
621     enterFullExpression(ewc);
622     init = ewc->getSubExpr();
623   }
624   CodeGenFunction::RunCleanupsScope Scope(*this);
625
626   // We have to maintain the illusion that the variable is
627   // zero-initialized.  If the variable might be accessed in its
628   // initializer, zero-initialize before running the initializer, then
629   // actually perform the initialization with an assign.
630   bool accessedByInit = false;
631   if (lifetime != Qualifiers::OCL_ExplicitNone)
632     accessedByInit = (capturedByInit || isAccessedBy(D, init));
633   if (accessedByInit) {
634     LValue tempLV = lvalue;
635     // Drill down to the __block object if necessary.
636     if (capturedByInit) {
637       // We can use a simple GEP for this because it can't have been
638       // moved yet.
639       tempLV.setAddress(Builder.CreateStructGEP(
640           nullptr, tempLV.getAddress(),
641           getByRefValueLLVMField(cast<VarDecl>(D)).second));
642     }
643
644     llvm::PointerType *ty
645       = cast<llvm::PointerType>(tempLV.getAddress()->getType());
646     ty = cast<llvm::PointerType>(ty->getElementType());
647
648     llvm::Value *zero = llvm::ConstantPointerNull::get(ty);
649
650     // If __weak, we want to use a barrier under certain conditions.
651     if (lifetime == Qualifiers::OCL_Weak)
652       EmitARCInitWeak(tempLV.getAddress(), zero);
653
654     // Otherwise just do a simple store.
655     else
656       EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
657   }
658
659   // Emit the initializer.
660   llvm::Value *value = nullptr;
661
662   switch (lifetime) {
663   case Qualifiers::OCL_None:
664     llvm_unreachable("present but none");
665
666   case Qualifiers::OCL_ExplicitNone:
667     // nothing to do
668     value = EmitScalarExpr(init);
669     break;
670
671   case Qualifiers::OCL_Strong: {
672     value = EmitARCRetainScalarExpr(init);
673     break;
674   }
675
676   case Qualifiers::OCL_Weak: {
677     // No way to optimize a producing initializer into this.  It's not
678     // worth optimizing for, because the value will immediately
679     // disappear in the common case.
680     value = EmitScalarExpr(init);
681
682     if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
683     if (accessedByInit)
684       EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
685     else
686       EmitARCInitWeak(lvalue.getAddress(), value);
687     return;
688   }
689
690   case Qualifiers::OCL_Autoreleasing:
691     value = EmitARCRetainAutoreleaseScalarExpr(init);
692     break;
693   }
694
695   if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
696
697   // If the variable might have been accessed by its initializer, we
698   // might have to initialize with a barrier.  We have to do this for
699   // both __weak and __strong, but __weak got filtered out above.
700   if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
701     llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
702     EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
703     EmitARCRelease(oldValue, ARCImpreciseLifetime);
704     return;
705   }
706
707   EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
708 }
709
710 /// EmitScalarInit - Initialize the given lvalue with the given object.
711 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) {
712   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
713   if (!lifetime)
714     return EmitStoreThroughLValue(RValue::get(init), lvalue, true);
715
716   switch (lifetime) {
717   case Qualifiers::OCL_None:
718     llvm_unreachable("present but none");
719
720   case Qualifiers::OCL_ExplicitNone:
721     // nothing to do
722     break;
723
724   case Qualifiers::OCL_Strong:
725     init = EmitARCRetain(lvalue.getType(), init);
726     break;
727
728   case Qualifiers::OCL_Weak:
729     // Initialize and then skip the primitive store.
730     EmitARCInitWeak(lvalue.getAddress(), init);
731     return;
732
733   case Qualifiers::OCL_Autoreleasing:
734     init = EmitARCRetainAutorelease(lvalue.getType(), init);
735     break;
736   }
737
738   EmitStoreOfScalar(init, lvalue, /* isInitialization */ true);
739 }
740
741 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the
742 /// non-zero parts of the specified initializer with equal or fewer than
743 /// NumStores scalar stores.
744 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init,
745                                                 unsigned &NumStores) {
746   // Zero and Undef never requires any extra stores.
747   if (isa<llvm::ConstantAggregateZero>(Init) ||
748       isa<llvm::ConstantPointerNull>(Init) ||
749       isa<llvm::UndefValue>(Init))
750     return true;
751   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
752       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
753       isa<llvm::ConstantExpr>(Init))
754     return Init->isNullValue() || NumStores--;
755
756   // See if we can emit each element.
757   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
758     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
759       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
760       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
761         return false;
762     }
763     return true;
764   }
765   
766   if (llvm::ConstantDataSequential *CDS =
767         dyn_cast<llvm::ConstantDataSequential>(Init)) {
768     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
769       llvm::Constant *Elt = CDS->getElementAsConstant(i);
770       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
771         return false;
772     }
773     return true;
774   }
775
776   // Anything else is hard and scary.
777   return false;
778 }
779
780 /// emitStoresForInitAfterMemset - For inits that
781 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar
782 /// stores that would be required.
783 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc,
784                                          bool isVolatile, CGBuilderTy &Builder) {
785   assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
786          "called emitStoresForInitAfterMemset for zero or undef value.");
787
788   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
789       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
790       isa<llvm::ConstantExpr>(Init)) {
791     Builder.CreateStore(Init, Loc, isVolatile);
792     return;
793   }
794   
795   if (llvm::ConstantDataSequential *CDS = 
796         dyn_cast<llvm::ConstantDataSequential>(Init)) {
797     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
798       llvm::Constant *Elt = CDS->getElementAsConstant(i);
799
800       // If necessary, get a pointer to the element and emit it.
801       if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
802         emitStoresForInitAfterMemset(
803             Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i),
804             isVolatile, Builder);
805     }
806     return;
807   }
808
809   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
810          "Unknown value type!");
811
812   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
813     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
814
815     // If necessary, get a pointer to the element and emit it.
816     if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
817       emitStoresForInitAfterMemset(
818           Elt, Builder.CreateConstGEP2_32(Init->getType(), Loc, 0, i),
819           isVolatile, Builder);
820   }
821 }
822
823
824 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset
825 /// plus some stores to initialize a local variable instead of using a memcpy
826 /// from a constant global.  It is beneficial to use memset if the global is all
827 /// zeros, or mostly zeros and large.
828 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init,
829                                                   uint64_t GlobalSize) {
830   // If a global is all zeros, always use a memset.
831   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
832
833   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
834   // do it if it will require 6 or fewer scalar stores.
835   // TODO: Should budget depends on the size?  Avoiding a large global warrants
836   // plopping in more stores.
837   unsigned StoreBudget = 6;
838   uint64_t SizeLimit = 32;
839
840   return GlobalSize > SizeLimit &&
841          canEmitInitWithFewStoresAfterMemset(Init, StoreBudget);
842 }
843
844 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
845 /// variable declaration with auto, register, or no storage class specifier.
846 /// These turn into simple stack objects, or GlobalValues depending on target.
847 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
848   AutoVarEmission emission = EmitAutoVarAlloca(D);
849   EmitAutoVarInit(emission);
850   EmitAutoVarCleanups(emission);
851 }
852
853 /// Emit a lifetime.begin marker if some criteria are satisfied.
854 /// \return a pointer to the temporary size Value if a marker was emitted, null
855 /// otherwise
856 llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size,
857                                                 llvm::Value *Addr) {
858   // For now, only in optimized builds.
859   if (CGM.getCodeGenOpts().OptimizationLevel == 0)
860     return nullptr;
861
862   // Disable lifetime markers in msan builds.
863   // FIXME: Remove this when msan works with lifetime markers.
864   if (getLangOpts().Sanitize.has(SanitizerKind::Memory))
865     return nullptr;
866
867   llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size);
868   Addr = Builder.CreateBitCast(Addr, Int8PtrTy);
869   llvm::CallInst *C =
870       Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr});
871   C->setDoesNotThrow();
872   return SizeV;
873 }
874
875 void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) {
876   Addr = Builder.CreateBitCast(Addr, Int8PtrTy);
877   llvm::CallInst *C =
878       Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr});
879   C->setDoesNotThrow();
880 }
881
882 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
883 /// local variable.  Does not emit initialization or destruction.
884 CodeGenFunction::AutoVarEmission
885 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
886   QualType Ty = D.getType();
887
888   AutoVarEmission emission(D);
889
890   bool isByRef = D.hasAttr<BlocksAttr>();
891   emission.IsByRef = isByRef;
892
893   CharUnits alignment = getContext().getDeclAlign(&D);
894   emission.Alignment = alignment;
895
896   // If the type is variably-modified, emit all the VLA sizes for it.
897   if (Ty->isVariablyModifiedType())
898     EmitVariablyModifiedType(Ty);
899
900   llvm::Value *DeclPtr;
901   if (Ty->isConstantSizeType()) {
902     bool NRVO = getLangOpts().ElideConstructors &&
903       D.isNRVOVariable();
904
905     // If this value is an array or struct with a statically determinable
906     // constant initializer, there are optimizations we can do.
907     //
908     // TODO: We should constant-evaluate the initializer of any variable,
909     // as long as it is initialized by a constant expression. Currently,
910     // isConstantInitializer produces wrong answers for structs with
911     // reference or bitfield members, and a few other cases, and checking
912     // for POD-ness protects us from some of these.
913     if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
914         (D.isConstexpr() ||
915          ((Ty.isPODType(getContext()) ||
916            getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
917           D.getInit()->isConstantInitializer(getContext(), false)))) {
918
919       // If the variable's a const type, and it's neither an NRVO
920       // candidate nor a __block variable and has no mutable members,
921       // emit it as a global instead.
922       if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef &&
923           CGM.isTypeConstant(Ty, true)) {
924         EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
925
926         emission.Address = nullptr; // signal this condition to later callbacks
927         assert(emission.wasEmittedAsGlobal());
928         return emission;
929       }
930
931       // Otherwise, tell the initialization code that we're in this case.
932       emission.IsConstantAggregate = true;
933     }
934
935     // A normal fixed sized variable becomes an alloca in the entry block,
936     // unless it's an NRVO variable.
937     llvm::Type *LTy = ConvertTypeForMem(Ty);
938
939     if (NRVO) {
940       // The named return value optimization: allocate this variable in the
941       // return slot, so that we can elide the copy when returning this
942       // variable (C++0x [class.copy]p34).
943       DeclPtr = ReturnValue;
944
945       if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
946         if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) {
947           // Create a flag that is used to indicate when the NRVO was applied
948           // to this variable. Set it to zero to indicate that NRVO was not
949           // applied.
950           llvm::Value *Zero = Builder.getFalse();
951           llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo");
952           EnsureInsertPoint();
953           Builder.CreateStore(Zero, NRVOFlag);
954
955           // Record the NRVO flag for this variable.
956           NRVOFlags[&D] = NRVOFlag;
957           emission.NRVOFlag = NRVOFlag;
958         }
959       }
960     } else {
961       if (isByRef)
962         LTy = BuildByRefType(&D);
963
964       llvm::AllocaInst *Alloc = CreateTempAlloca(LTy);
965       Alloc->setName(D.getName());
966
967       CharUnits allocaAlignment = alignment;
968       if (isByRef)
969         allocaAlignment = std::max(allocaAlignment,
970             getContext().toCharUnitsFromBits(getTarget().getPointerAlign(0)));
971       Alloc->setAlignment(allocaAlignment.getQuantity());
972       DeclPtr = Alloc;
973
974       // Emit a lifetime intrinsic if meaningful.  There's no point
975       // in doing this if we don't have a valid insertion point (?).
976       uint64_t size = CGM.getDataLayout().getTypeAllocSize(LTy);
977       if (HaveInsertPoint()) {
978         emission.SizeForLifetimeMarkers = EmitLifetimeStart(size, Alloc);
979       } else {
980         assert(!emission.useLifetimeMarkers());
981       }
982     }
983   } else {
984     EnsureInsertPoint();
985
986     if (!DidCallStackSave) {
987       // Save the stack.
988       llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack");
989
990       llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
991       llvm::Value *V = Builder.CreateCall(F);
992
993       Builder.CreateStore(V, Stack);
994
995       DidCallStackSave = true;
996
997       // Push a cleanup block and restore the stack there.
998       // FIXME: in general circumstances, this should be an EH cleanup.
999       pushStackRestore(NormalCleanup, Stack);
1000     }
1001
1002     llvm::Value *elementCount;
1003     QualType elementType;
1004     std::tie(elementCount, elementType) = getVLASize(Ty);
1005
1006     llvm::Type *llvmTy = ConvertTypeForMem(elementType);
1007
1008     // Allocate memory for the array.
1009     llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla");
1010     vla->setAlignment(alignment.getQuantity());
1011
1012     DeclPtr = vla;
1013   }
1014
1015   llvm::Value *&DMEntry = LocalDeclMap[&D];
1016   assert(!DMEntry && "Decl already exists in localdeclmap!");
1017   DMEntry = DeclPtr;
1018   emission.Address = DeclPtr;
1019
1020   // Emit debug info for local var declaration.
1021   if (HaveInsertPoint())
1022     if (CGDebugInfo *DI = getDebugInfo()) {
1023       if (CGM.getCodeGenOpts().getDebugInfo()
1024             >= CodeGenOptions::LimitedDebugInfo) {
1025         DI->setLocation(D.getLocation());
1026         DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder);
1027       }
1028     }
1029
1030   if (D.hasAttr<AnnotateAttr>())
1031       EmitVarAnnotations(&D, emission.Address);
1032
1033   return emission;
1034 }
1035
1036 /// Determines whether the given __block variable is potentially
1037 /// captured by the given expression.
1038 static bool isCapturedBy(const VarDecl &var, const Expr *e) {
1039   // Skip the most common kinds of expressions that make
1040   // hierarchy-walking expensive.
1041   e = e->IgnoreParenCasts();
1042
1043   if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
1044     const BlockDecl *block = be->getBlockDecl();
1045     for (const auto &I : block->captures()) {
1046       if (I.getVariable() == &var)
1047         return true;
1048     }
1049
1050     // No need to walk into the subexpressions.
1051     return false;
1052   }
1053
1054   if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) {
1055     const CompoundStmt *CS = SE->getSubStmt();
1056     for (const auto *BI : CS->body())
1057       if (const auto *E = dyn_cast<Expr>(BI)) {
1058         if (isCapturedBy(var, E))
1059             return true;
1060       }
1061       else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
1062           // special case declarations
1063           for (const auto *I : DS->decls()) {
1064               if (const auto *VD = dyn_cast<VarDecl>((I))) {
1065                 const Expr *Init = VD->getInit();
1066                 if (Init && isCapturedBy(var, Init))
1067                   return true;
1068               }
1069           }
1070       }
1071       else
1072         // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1073         // Later, provide code to poke into statements for capture analysis.
1074         return true;
1075     return false;
1076   }
1077
1078   for (const Stmt *SubStmt : e->children())
1079     if (isCapturedBy(var, cast<Expr>(SubStmt)))
1080       return true;
1081
1082   return false;
1083 }
1084
1085 /// \brief Determine whether the given initializer is trivial in the sense
1086 /// that it requires no code to be generated.
1087 bool CodeGenFunction::isTrivialInitializer(const Expr *Init) {
1088   if (!Init)
1089     return true;
1090
1091   if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1092     if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1093       if (Constructor->isTrivial() &&
1094           Constructor->isDefaultConstructor() &&
1095           !Construct->requiresZeroInitialization())
1096         return true;
1097
1098   return false;
1099 }
1100 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1101   assert(emission.Variable && "emission was not valid!");
1102
1103   // If this was emitted as a global constant, we're done.
1104   if (emission.wasEmittedAsGlobal()) return;
1105
1106   const VarDecl &D = *emission.Variable;
1107   auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation());
1108   QualType type = D.getType();
1109
1110   // If this local has an initializer, emit it now.
1111   const Expr *Init = D.getInit();
1112
1113   // If we are at an unreachable point, we don't need to emit the initializer
1114   // unless it contains a label.
1115   if (!HaveInsertPoint()) {
1116     if (!Init || !ContainsLabel(Init)) return;
1117     EnsureInsertPoint();
1118   }
1119
1120   // Initialize the structure of a __block variable.
1121   if (emission.IsByRef)
1122     emitByrefStructureInit(emission);
1123
1124   if (isTrivialInitializer(Init))
1125     return;
1126
1127   CharUnits alignment = emission.Alignment;
1128
1129   // Check whether this is a byref variable that's potentially
1130   // captured and moved by its own initializer.  If so, we'll need to
1131   // emit the initializer first, then copy into the variable.
1132   bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init);
1133
1134   llvm::Value *Loc =
1135     capturedByInit ? emission.Address : emission.getObjectAddress(*this);
1136
1137   llvm::Constant *constant = nullptr;
1138   if (emission.IsConstantAggregate || D.isConstexpr()) {
1139     assert(!capturedByInit && "constant init contains a capturing block?");
1140     constant = CGM.EmitConstantInit(D, this);
1141   }
1142
1143   if (!constant) {
1144     LValue lv = MakeAddrLValue(Loc, type, alignment);
1145     lv.setNonGC(true);
1146     return EmitExprAsInit(Init, &D, lv, capturedByInit);
1147   }
1148
1149   if (!emission.IsConstantAggregate) {
1150     // For simple scalar/complex initialization, store the value directly.
1151     LValue lv = MakeAddrLValue(Loc, type, alignment);
1152     lv.setNonGC(true);
1153     return EmitStoreThroughLValue(RValue::get(constant), lv, true);
1154   }
1155
1156   // If this is a simple aggregate initialization, we can optimize it
1157   // in various ways.
1158   bool isVolatile = type.isVolatileQualified();
1159
1160   llvm::Value *SizeVal =
1161     llvm::ConstantInt::get(IntPtrTy,
1162                            getContext().getTypeSizeInChars(type).getQuantity());
1163
1164   llvm::Type *BP = Int8PtrTy;
1165   if (Loc->getType() != BP)
1166     Loc = Builder.CreateBitCast(Loc, BP);
1167
1168   // If the initializer is all or mostly zeros, codegen with memset then do
1169   // a few stores afterward.
1170   if (shouldUseMemSetPlusStoresToInitialize(constant,
1171                 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) {
1172     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
1173                          alignment.getQuantity(), isVolatile);
1174     // Zero and undef don't require a stores.
1175     if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) {
1176       Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo());
1177       emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder);
1178     }
1179   } else {
1180     // Otherwise, create a temporary global with the initializer then
1181     // memcpy from the global to the alloca.
1182     std::string Name = getStaticDeclName(CGM, D);
1183     llvm::GlobalVariable *GV =
1184       new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true,
1185                                llvm::GlobalValue::PrivateLinkage,
1186                                constant, Name);
1187     GV->setAlignment(alignment.getQuantity());
1188     GV->setUnnamedAddr(true);
1189
1190     llvm::Value *SrcPtr = GV;
1191     if (SrcPtr->getType() != BP)
1192       SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1193
1194     Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(),
1195                          isVolatile);
1196   }
1197 }
1198
1199 /// Emit an expression as an initializer for a variable at the given
1200 /// location.  The expression is not necessarily the normal
1201 /// initializer for the variable, and the address is not necessarily
1202 /// its normal location.
1203 ///
1204 /// \param init the initializing expression
1205 /// \param var the variable to act as if we're initializing
1206 /// \param loc the address to initialize; its type is a pointer
1207 ///   to the LLVM mapping of the variable's type
1208 /// \param alignment the alignment of the address
1209 /// \param capturedByInit true if the variable is a __block variable
1210 ///   whose address is potentially changed by the initializer
1211 void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D,
1212                                      LValue lvalue, bool capturedByInit) {
1213   QualType type = D->getType();
1214
1215   if (type->isReferenceType()) {
1216     RValue rvalue = EmitReferenceBindingToExpr(init);
1217     if (capturedByInit)
1218       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1219     EmitStoreThroughLValue(rvalue, lvalue, true);
1220     return;
1221   }
1222   switch (getEvaluationKind(type)) {
1223   case TEK_Scalar:
1224     EmitScalarInit(init, D, lvalue, capturedByInit);
1225     return;
1226   case TEK_Complex: {
1227     ComplexPairTy complex = EmitComplexExpr(init);
1228     if (capturedByInit)
1229       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1230     EmitStoreOfComplex(complex, lvalue, /*init*/ true);
1231     return;
1232   }
1233   case TEK_Aggregate:
1234     if (type->isAtomicType()) {
1235       EmitAtomicInit(const_cast<Expr*>(init), lvalue);
1236     } else {
1237       // TODO: how can we delay here if D is captured by its initializer?
1238       EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
1239                                               AggValueSlot::IsDestructed,
1240                                          AggValueSlot::DoesNotNeedGCBarriers,
1241                                               AggValueSlot::IsNotAliased));
1242     }
1243     return;
1244   }
1245   llvm_unreachable("bad evaluation kind");
1246 }
1247
1248 /// Enter a destroy cleanup for the given local variable.
1249 void CodeGenFunction::emitAutoVarTypeCleanup(
1250                             const CodeGenFunction::AutoVarEmission &emission,
1251                             QualType::DestructionKind dtorKind) {
1252   assert(dtorKind != QualType::DK_none);
1253
1254   // Note that for __block variables, we want to destroy the
1255   // original stack object, not the possibly forwarded object.
1256   llvm::Value *addr = emission.getObjectAddress(*this);
1257
1258   const VarDecl *var = emission.Variable;
1259   QualType type = var->getType();
1260
1261   CleanupKind cleanupKind = NormalAndEHCleanup;
1262   CodeGenFunction::Destroyer *destroyer = nullptr;
1263
1264   switch (dtorKind) {
1265   case QualType::DK_none:
1266     llvm_unreachable("no cleanup for trivially-destructible variable");
1267
1268   case QualType::DK_cxx_destructor:
1269     // If there's an NRVO flag on the emission, we need a different
1270     // cleanup.
1271     if (emission.NRVOFlag) {
1272       assert(!type->isArrayType());
1273       CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1274       EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor,
1275                                                emission.NRVOFlag);
1276       return;
1277     }
1278     break;
1279
1280   case QualType::DK_objc_strong_lifetime:
1281     // Suppress cleanups for pseudo-strong variables.
1282     if (var->isARCPseudoStrong()) return;
1283
1284     // Otherwise, consider whether to use an EH cleanup or not.
1285     cleanupKind = getARCCleanupKind();
1286
1287     // Use the imprecise destroyer by default.
1288     if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1289       destroyer = CodeGenFunction::destroyARCStrongImprecise;
1290     break;
1291
1292   case QualType::DK_objc_weak_lifetime:
1293     break;
1294   }
1295
1296   // If we haven't chosen a more specific destroyer, use the default.
1297   if (!destroyer) destroyer = getDestroyer(dtorKind);
1298
1299   // Use an EH cleanup in array destructors iff the destructor itself
1300   // is being pushed as an EH cleanup.
1301   bool useEHCleanup = (cleanupKind & EHCleanup);
1302   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
1303                                      useEHCleanup);
1304 }
1305
1306 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
1307   assert(emission.Variable && "emission was not valid!");
1308
1309   // If this was emitted as a global constant, we're done.
1310   if (emission.wasEmittedAsGlobal()) return;
1311
1312   // If we don't have an insertion point, we're done.  Sema prevents
1313   // us from jumping into any of these scopes anyway.
1314   if (!HaveInsertPoint()) return;
1315
1316   const VarDecl &D = *emission.Variable;
1317
1318   // Make sure we call @llvm.lifetime.end.  This needs to happen
1319   // *last*, so the cleanup needs to be pushed *first*.
1320   if (emission.useLifetimeMarkers()) {
1321     EHStack.pushCleanup<CallLifetimeEnd>(NormalCleanup,
1322                                          emission.getAllocatedAddress(),
1323                                          emission.getSizeForLifetimeMarkers());
1324     EHCleanupScope &cleanup = cast<EHCleanupScope>(*EHStack.begin());
1325     cleanup.setLifetimeMarker();
1326   }
1327
1328   // Check the type for a cleanup.
1329   if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
1330     emitAutoVarTypeCleanup(emission, dtorKind);
1331
1332   // In GC mode, honor objc_precise_lifetime.
1333   if (getLangOpts().getGC() != LangOptions::NonGC &&
1334       D.hasAttr<ObjCPreciseLifetimeAttr>()) {
1335     EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
1336   }
1337
1338   // Handle the cleanup attribute.
1339   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
1340     const FunctionDecl *FD = CA->getFunctionDecl();
1341
1342     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
1343     assert(F && "Could not find function!");
1344
1345     const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
1346     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
1347   }
1348
1349   // If this is a block variable, call _Block_object_destroy
1350   // (on the unforwarded address).
1351   if (emission.IsByRef)
1352     enterByrefCleanup(emission);
1353 }
1354
1355 CodeGenFunction::Destroyer *
1356 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
1357   switch (kind) {
1358   case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
1359   case QualType::DK_cxx_destructor:
1360     return destroyCXXObject;
1361   case QualType::DK_objc_strong_lifetime:
1362     return destroyARCStrongPrecise;
1363   case QualType::DK_objc_weak_lifetime:
1364     return destroyARCWeak;
1365   }
1366   llvm_unreachable("Unknown DestructionKind");
1367 }
1368
1369 /// pushEHDestroy - Push the standard destructor for the given type as
1370 /// an EH-only cleanup.
1371 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
1372                                   llvm::Value *addr, QualType type) {
1373   assert(dtorKind && "cannot push destructor for trivial type");
1374   assert(needsEHCleanup(dtorKind));
1375
1376   pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
1377 }
1378
1379 /// pushDestroy - Push the standard destructor for the given type as
1380 /// at least a normal cleanup.
1381 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
1382                                   llvm::Value *addr, QualType type) {
1383   assert(dtorKind && "cannot push destructor for trivial type");
1384
1385   CleanupKind cleanupKind = getCleanupKind(dtorKind);
1386   pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
1387               cleanupKind & EHCleanup);
1388 }
1389
1390 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr,
1391                                   QualType type, Destroyer *destroyer,
1392                                   bool useEHCleanupForArray) {
1393   pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
1394                                      destroyer, useEHCleanupForArray);
1395 }
1396
1397 void CodeGenFunction::pushStackRestore(CleanupKind Kind, llvm::Value *SPMem) {
1398   EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
1399 }
1400
1401 void CodeGenFunction::pushLifetimeExtendedDestroy(
1402     CleanupKind cleanupKind, llvm::Value *addr, QualType type,
1403     Destroyer *destroyer, bool useEHCleanupForArray) {
1404   assert(!isInConditionalBranch() &&
1405          "performing lifetime extension from within conditional");
1406
1407   // Push an EH-only cleanup for the object now.
1408   // FIXME: When popping normal cleanups, we need to keep this EH cleanup
1409   // around in case a temporary's destructor throws an exception.
1410   if (cleanupKind & EHCleanup)
1411     EHStack.pushCleanup<DestroyObject>(
1412         static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
1413         destroyer, useEHCleanupForArray);
1414
1415   // Remember that we need to push a full cleanup for the object at the
1416   // end of the full-expression.
1417   pushCleanupAfterFullExpr<DestroyObject>(
1418       cleanupKind, addr, type, destroyer, useEHCleanupForArray);
1419 }
1420
1421 /// emitDestroy - Immediately perform the destruction of the given
1422 /// object.
1423 ///
1424 /// \param addr - the address of the object; a type*
1425 /// \param type - the type of the object; if an array type, all
1426 ///   objects are destroyed in reverse order
1427 /// \param destroyer - the function to call to destroy individual
1428 ///   elements
1429 /// \param useEHCleanupForArray - whether an EH cleanup should be
1430 ///   used when destroying array elements, in case one of the
1431 ///   destructions throws an exception
1432 void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type,
1433                                   Destroyer *destroyer,
1434                                   bool useEHCleanupForArray) {
1435   const ArrayType *arrayType = getContext().getAsArrayType(type);
1436   if (!arrayType)
1437     return destroyer(*this, addr, type);
1438
1439   llvm::Value *begin = addr;
1440   llvm::Value *length = emitArrayLength(arrayType, type, begin);
1441
1442   // Normally we have to check whether the array is zero-length.
1443   bool checkZeroLength = true;
1444
1445   // But if the array length is constant, we can suppress that.
1446   if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
1447     // ...and if it's constant zero, we can just skip the entire thing.
1448     if (constLength->isZero()) return;
1449     checkZeroLength = false;
1450   }
1451
1452   llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
1453   emitArrayDestroy(begin, end, type, destroyer,
1454                    checkZeroLength, useEHCleanupForArray);
1455 }
1456
1457 /// emitArrayDestroy - Destroys all the elements of the given array,
1458 /// beginning from last to first.  The array cannot be zero-length.
1459 ///
1460 /// \param begin - a type* denoting the first element of the array
1461 /// \param end - a type* denoting one past the end of the array
1462 /// \param type - the element type of the array
1463 /// \param destroyer - the function to call to destroy elements
1464 /// \param useEHCleanup - whether to push an EH cleanup to destroy
1465 ///   the remaining elements in case the destruction of a single
1466 ///   element throws
1467 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
1468                                        llvm::Value *end,
1469                                        QualType type,
1470                                        Destroyer *destroyer,
1471                                        bool checkZeroLength,
1472                                        bool useEHCleanup) {
1473   assert(!type->isArrayType());
1474
1475   // The basic structure here is a do-while loop, because we don't
1476   // need to check for the zero-element case.
1477   llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
1478   llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
1479
1480   if (checkZeroLength) {
1481     llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
1482                                                 "arraydestroy.isempty");
1483     Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
1484   }
1485
1486   // Enter the loop body, making that address the current address.
1487   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1488   EmitBlock(bodyBB);
1489   llvm::PHINode *elementPast =
1490     Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
1491   elementPast->addIncoming(end, entryBB);
1492
1493   // Shift the address back by one element.
1494   llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
1495   llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
1496                                                    "arraydestroy.element");
1497
1498   if (useEHCleanup)
1499     pushRegularPartialArrayCleanup(begin, element, type, destroyer);
1500
1501   // Perform the actual destruction there.
1502   destroyer(*this, element, type);
1503
1504   if (useEHCleanup)
1505     PopCleanupBlock();
1506
1507   // Check whether we've reached the end.
1508   llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
1509   Builder.CreateCondBr(done, doneBB, bodyBB);
1510   elementPast->addIncoming(element, Builder.GetInsertBlock());
1511
1512   // Done.
1513   EmitBlock(doneBB);
1514 }
1515
1516 /// Perform partial array destruction as if in an EH cleanup.  Unlike
1517 /// emitArrayDestroy, the element type here may still be an array type.
1518 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
1519                                     llvm::Value *begin, llvm::Value *end,
1520                                     QualType type,
1521                                     CodeGenFunction::Destroyer *destroyer) {
1522   // If the element type is itself an array, drill down.
1523   unsigned arrayDepth = 0;
1524   while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
1525     // VLAs don't require a GEP index to walk into.
1526     if (!isa<VariableArrayType>(arrayType))
1527       arrayDepth++;
1528     type = arrayType->getElementType();
1529   }
1530
1531   if (arrayDepth) {
1532     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, arrayDepth+1);
1533
1534     SmallVector<llvm::Value*,4> gepIndices(arrayDepth, zero);
1535     begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
1536     end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
1537   }
1538
1539   // Destroy the array.  We don't ever need an EH cleanup because we
1540   // assume that we're in an EH cleanup ourselves, so a throwing
1541   // destructor causes an immediate terminate.
1542   CGF.emitArrayDestroy(begin, end, type, destroyer,
1543                        /*checkZeroLength*/ true, /*useEHCleanup*/ false);
1544 }
1545
1546 namespace {
1547   /// RegularPartialArrayDestroy - a cleanup which performs a partial
1548   /// array destroy where the end pointer is regularly determined and
1549   /// does not need to be loaded from a local.
1550   class RegularPartialArrayDestroy : public EHScopeStack::Cleanup {
1551     llvm::Value *ArrayBegin;
1552     llvm::Value *ArrayEnd;
1553     QualType ElementType;
1554     CodeGenFunction::Destroyer *Destroyer;
1555   public:
1556     RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
1557                                QualType elementType,
1558                                CodeGenFunction::Destroyer *destroyer)
1559       : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
1560         ElementType(elementType), Destroyer(destroyer) {}
1561
1562     void Emit(CodeGenFunction &CGF, Flags flags) override {
1563       emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
1564                               ElementType, Destroyer);
1565     }
1566   };
1567
1568   /// IrregularPartialArrayDestroy - a cleanup which performs a
1569   /// partial array destroy where the end pointer is irregularly
1570   /// determined and must be loaded from a local.
1571   class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup {
1572     llvm::Value *ArrayBegin;
1573     llvm::Value *ArrayEndPointer;
1574     QualType ElementType;
1575     CodeGenFunction::Destroyer *Destroyer;
1576   public:
1577     IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
1578                                  llvm::Value *arrayEndPointer,
1579                                  QualType elementType,
1580                                  CodeGenFunction::Destroyer *destroyer)
1581       : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
1582         ElementType(elementType), Destroyer(destroyer) {}
1583
1584     void Emit(CodeGenFunction &CGF, Flags flags) override {
1585       llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
1586       emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
1587                               ElementType, Destroyer);
1588     }
1589   };
1590 }
1591
1592 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
1593 /// already-constructed elements of the given array.  The cleanup
1594 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1595 ///
1596 /// \param elementType - the immediate element type of the array;
1597 ///   possibly still an array type
1598 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1599                                                  llvm::Value *arrayEndPointer,
1600                                                        QualType elementType,
1601                                                        Destroyer *destroyer) {
1602   pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
1603                                                     arrayBegin, arrayEndPointer,
1604                                                     elementType, destroyer);
1605 }
1606
1607 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
1608 /// already-constructed elements of the given array.  The cleanup
1609 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1610 ///
1611 /// \param elementType - the immediate element type of the array;
1612 ///   possibly still an array type
1613 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1614                                                      llvm::Value *arrayEnd,
1615                                                      QualType elementType,
1616                                                      Destroyer *destroyer) {
1617   pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
1618                                                   arrayBegin, arrayEnd,
1619                                                   elementType, destroyer);
1620 }
1621
1622 /// Lazily declare the @llvm.lifetime.start intrinsic.
1623 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() {
1624   if (LifetimeStartFn) return LifetimeStartFn;
1625   LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
1626                                             llvm::Intrinsic::lifetime_start);
1627   return LifetimeStartFn;
1628 }
1629
1630 /// Lazily declare the @llvm.lifetime.end intrinsic.
1631 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() {
1632   if (LifetimeEndFn) return LifetimeEndFn;
1633   LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
1634                                               llvm::Intrinsic::lifetime_end);
1635   return LifetimeEndFn;
1636 }
1637
1638 namespace {
1639   /// A cleanup to perform a release of an object at the end of a
1640   /// function.  This is used to balance out the incoming +1 of a
1641   /// ns_consumed argument when we can't reasonably do that just by
1642   /// not doing the initial retain for a __block argument.
1643   struct ConsumeARCParameter : EHScopeStack::Cleanup {
1644     ConsumeARCParameter(llvm::Value *param,
1645                         ARCPreciseLifetime_t precise)
1646       : Param(param), Precise(precise) {}
1647
1648     llvm::Value *Param;
1649     ARCPreciseLifetime_t Precise;
1650
1651     void Emit(CodeGenFunction &CGF, Flags flags) override {
1652       CGF.EmitARCRelease(Param, Precise);
1653     }
1654   };
1655 }
1656
1657 /// Emit an alloca (or GlobalValue depending on target)
1658 /// for the specified parameter and set up LocalDeclMap.
1659 void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg,
1660                                    bool ArgIsPointer, unsigned ArgNo) {
1661   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
1662   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
1663          "Invalid argument to EmitParmDecl");
1664
1665   Arg->setName(D.getName());
1666
1667   QualType Ty = D.getType();
1668
1669   // Use better IR generation for certain implicit parameters.
1670   if (isa<ImplicitParamDecl>(D)) {
1671     // The only implicit argument a block has is its literal.
1672     if (BlockInfo) {
1673       LocalDeclMap[&D] = Arg;
1674       llvm::Value *LocalAddr = nullptr;
1675       if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1676         // Allocate a stack slot to let the debug info survive the RA.
1677         llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty),
1678                                                    D.getName() + ".addr");
1679         Alloc->setAlignment(getContext().getDeclAlign(&D).getQuantity());
1680         LValue lv = MakeAddrLValue(Alloc, Ty, getContext().getDeclAlign(&D));
1681         EmitStoreOfScalar(Arg, lv, /* isInitialization */ true);
1682         LocalAddr = Builder.CreateLoad(Alloc);
1683       }
1684
1685       if (CGDebugInfo *DI = getDebugInfo()) {
1686         if (CGM.getCodeGenOpts().getDebugInfo()
1687               >= CodeGenOptions::LimitedDebugInfo) {
1688           DI->setLocation(D.getLocation());
1689           DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, ArgNo,
1690                                                    LocalAddr, Builder);
1691         }
1692       }
1693
1694       return;
1695     }
1696   }
1697
1698   llvm::Value *DeclPtr;
1699   bool DoStore = false;
1700   bool IsScalar = hasScalarEvaluationKind(Ty);
1701   CharUnits Align = getContext().getDeclAlign(&D);
1702   // If we already have a pointer to the argument, reuse the input pointer.
1703   if (ArgIsPointer) {
1704     // If we have a prettier pointer type at this point, bitcast to that.
1705     unsigned AS = cast<llvm::PointerType>(Arg->getType())->getAddressSpace();
1706     llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS);
1707     DeclPtr = Arg->getType() == IRTy ? Arg : Builder.CreateBitCast(Arg, IRTy,
1708                                                                    D.getName());
1709     // Push a destructor cleanup for this parameter if the ABI requires it.
1710     // Don't push a cleanup in a thunk for a method that will also emit a
1711     // cleanup.
1712     if (!IsScalar && !CurFuncIsThunk &&
1713         getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
1714       const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
1715       if (RD && RD->hasNonTrivialDestructor())
1716         pushDestroy(QualType::DK_cxx_destructor, DeclPtr, Ty);
1717     }
1718   } else {
1719     // Otherwise, create a temporary to hold the value.
1720     llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty),
1721                                                D.getName() + ".addr");
1722     Alloc->setAlignment(Align.getQuantity());
1723     DeclPtr = Alloc;
1724     DoStore = true;
1725   }
1726
1727   LValue lv = MakeAddrLValue(DeclPtr, Ty, Align);
1728   if (IsScalar) {
1729     Qualifiers qs = Ty.getQualifiers();
1730     if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
1731       // We honor __attribute__((ns_consumed)) for types with lifetime.
1732       // For __strong, it's handled by just skipping the initial retain;
1733       // otherwise we have to balance out the initial +1 with an extra
1734       // cleanup to do the release at the end of the function.
1735       bool isConsumed = D.hasAttr<NSConsumedAttr>();
1736
1737       // 'self' is always formally __strong, but if this is not an
1738       // init method then we don't want to retain it.
1739       if (D.isARCPseudoStrong()) {
1740         const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl);
1741         assert(&D == method->getSelfDecl());
1742         assert(lt == Qualifiers::OCL_Strong);
1743         assert(qs.hasConst());
1744         assert(method->getMethodFamily() != OMF_init);
1745         (void) method;
1746         lt = Qualifiers::OCL_ExplicitNone;
1747       }
1748
1749       if (lt == Qualifiers::OCL_Strong) {
1750         if (!isConsumed) {
1751           if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1752             // use objc_storeStrong(&dest, value) for retaining the
1753             // object. But first, store a null into 'dest' because
1754             // objc_storeStrong attempts to release its old value.
1755             llvm::Value *Null = CGM.EmitNullConstant(D.getType());
1756             EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
1757             EmitARCStoreStrongCall(lv.getAddress(), Arg, true);
1758             DoStore = false;
1759           }
1760           else
1761           // Don't use objc_retainBlock for block pointers, because we
1762           // don't want to Block_copy something just because we got it
1763           // as a parameter.
1764             Arg = EmitARCRetainNonBlock(Arg);
1765         }
1766       } else {
1767         // Push the cleanup for a consumed parameter.
1768         if (isConsumed) {
1769           ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
1770                                 ? ARCPreciseLifetime : ARCImpreciseLifetime);
1771           EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg,
1772                                                    precise);
1773         }
1774
1775         if (lt == Qualifiers::OCL_Weak) {
1776           EmitARCInitWeak(DeclPtr, Arg);
1777           DoStore = false; // The weak init is a store, no need to do two.
1778         }
1779       }
1780
1781       // Enter the cleanup scope.
1782       EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
1783     }
1784   }
1785
1786   // Store the initial value into the alloca.
1787   if (DoStore)
1788     EmitStoreOfScalar(Arg, lv, /* isInitialization */ true);
1789
1790   llvm::Value *&DMEntry = LocalDeclMap[&D];
1791   assert(!DMEntry && "Decl already exists in localdeclmap!");
1792   DMEntry = DeclPtr;
1793
1794   // Emit debug info for param declaration.
1795   if (CGDebugInfo *DI = getDebugInfo()) {
1796     if (CGM.getCodeGenOpts().getDebugInfo()
1797           >= CodeGenOptions::LimitedDebugInfo) {
1798       DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder);
1799     }
1800   }
1801
1802   if (D.hasAttr<AnnotateAttr>())
1803       EmitVarAnnotations(&D, DeclPtr);
1804 }