]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/CodeGen/CGExpr.cpp
Merge clang 3.5.0 release from ^/vendor/clang/dist, resolve conflicts,
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / CodeGen / CGExpr.cpp
1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGCall.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenModule.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/Attr.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/ADT/Hashing.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/Support/ConvertUTF.h"
32
33 using namespace clang;
34 using namespace CodeGen;
35
36 //===--------------------------------------------------------------------===//
37 //                        Miscellaneous Helper Methods
38 //===--------------------------------------------------------------------===//
39
40 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
41   unsigned addressSpace =
42     cast<llvm::PointerType>(value->getType())->getAddressSpace();
43
44   llvm::PointerType *destType = Int8PtrTy;
45   if (addressSpace)
46     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
47
48   if (value->getType() == destType) return value;
49   return Builder.CreateBitCast(value, destType);
50 }
51
52 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
53 /// block.
54 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
55                                                     const Twine &Name) {
56   if (!Builder.isNamePreserving())
57     return new llvm::AllocaInst(Ty, nullptr, "", AllocaInsertPt);
58   return new llvm::AllocaInst(Ty, nullptr, Name, AllocaInsertPt);
59 }
60
61 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
62                                      llvm::Value *Init) {
63   auto *Store = new llvm::StoreInst(Init, Var);
64   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
65   Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
66 }
67
68 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
69                                                 const Twine &Name) {
70   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
71   // FIXME: Should we prefer the preferred type alignment here?
72   CharUnits Align = getContext().getTypeAlignInChars(Ty);
73   Alloc->setAlignment(Align.getQuantity());
74   return Alloc;
75 }
76
77 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
78                                                  const Twine &Name) {
79   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
80   // FIXME: Should we prefer the preferred type alignment here?
81   CharUnits Align = getContext().getTypeAlignInChars(Ty);
82   Alloc->setAlignment(Align.getQuantity());
83   return Alloc;
84 }
85
86 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
87 /// expression and compare the result against zero, returning an Int1Ty value.
88 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
89   PGO.setCurrentStmt(E);
90   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
91     llvm::Value *MemPtr = EmitScalarExpr(E);
92     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
93   }
94
95   QualType BoolTy = getContext().BoolTy;
96   if (!E->getType()->isAnyComplexType())
97     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
98
99   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
100 }
101
102 /// EmitIgnoredExpr - Emit code to compute the specified expression,
103 /// ignoring the result.
104 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
105   if (E->isRValue())
106     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
107
108   // Just emit it as an l-value and drop the result.
109   EmitLValue(E);
110 }
111
112 /// EmitAnyExpr - Emit code to compute the specified expression which
113 /// can have any type.  The result is returned as an RValue struct.
114 /// If this is an aggregate expression, AggSlot indicates where the
115 /// result should be returned.
116 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
117                                     AggValueSlot aggSlot,
118                                     bool ignoreResult) {
119   switch (getEvaluationKind(E->getType())) {
120   case TEK_Scalar:
121     return RValue::get(EmitScalarExpr(E, ignoreResult));
122   case TEK_Complex:
123     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
124   case TEK_Aggregate:
125     if (!ignoreResult && aggSlot.isIgnored())
126       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
127     EmitAggExpr(E, aggSlot);
128     return aggSlot.asRValue();
129   }
130   llvm_unreachable("bad evaluation kind");
131 }
132
133 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
134 /// always be accessible even if no aggregate location is provided.
135 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
136   AggValueSlot AggSlot = AggValueSlot::ignored();
137
138   if (hasAggregateEvaluationKind(E->getType()))
139     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
140   return EmitAnyExpr(E, AggSlot);
141 }
142
143 /// EmitAnyExprToMem - Evaluate an expression into a given memory
144 /// location.
145 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
146                                        llvm::Value *Location,
147                                        Qualifiers Quals,
148                                        bool IsInit) {
149   // FIXME: This function should take an LValue as an argument.
150   switch (getEvaluationKind(E->getType())) {
151   case TEK_Complex:
152     EmitComplexExprIntoLValue(E,
153                          MakeNaturalAlignAddrLValue(Location, E->getType()),
154                               /*isInit*/ false);
155     return;
156
157   case TEK_Aggregate: {
158     CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
159     EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
160                                          AggValueSlot::IsDestructed_t(IsInit),
161                                          AggValueSlot::DoesNotNeedGCBarriers,
162                                          AggValueSlot::IsAliased_t(!IsInit)));
163     return;
164   }
165
166   case TEK_Scalar: {
167     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
168     LValue LV = MakeAddrLValue(Location, E->getType());
169     EmitStoreThroughLValue(RV, LV);
170     return;
171   }
172   }
173   llvm_unreachable("bad evaluation kind");
174 }
175
176 static void
177 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
178                      const Expr *E, llvm::Value *ReferenceTemporary) {
179   // Objective-C++ ARC:
180   //   If we are binding a reference to a temporary that has ownership, we
181   //   need to perform retain/release operations on the temporary.
182   //
183   // FIXME: This should be looking at E, not M.
184   if (CGF.getLangOpts().ObjCAutoRefCount &&
185       M->getType()->isObjCLifetimeType()) {
186     QualType ObjCARCReferenceLifetimeType = M->getType();
187     switch (Qualifiers::ObjCLifetime Lifetime =
188                 ObjCARCReferenceLifetimeType.getObjCLifetime()) {
189     case Qualifiers::OCL_None:
190     case Qualifiers::OCL_ExplicitNone:
191       // Carry on to normal cleanup handling.
192       break;
193
194     case Qualifiers::OCL_Autoreleasing:
195       // Nothing to do; cleaned up by an autorelease pool.
196       return;
197
198     case Qualifiers::OCL_Strong:
199     case Qualifiers::OCL_Weak:
200       switch (StorageDuration Duration = M->getStorageDuration()) {
201       case SD_Static:
202         // Note: we intentionally do not register a cleanup to release
203         // the object on program termination.
204         return;
205
206       case SD_Thread:
207         // FIXME: We should probably register a cleanup in this case.
208         return;
209
210       case SD_Automatic:
211       case SD_FullExpression:
212         assert(!ObjCARCReferenceLifetimeType->isArrayType());
213         CodeGenFunction::Destroyer *Destroy;
214         CleanupKind CleanupKind;
215         if (Lifetime == Qualifiers::OCL_Strong) {
216           const ValueDecl *VD = M->getExtendingDecl();
217           bool Precise =
218               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
219           CleanupKind = CGF.getARCCleanupKind();
220           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
221                             : &CodeGenFunction::destroyARCStrongImprecise;
222         } else {
223           // __weak objects always get EH cleanups; otherwise, exceptions
224           // could cause really nasty crashes instead of mere leaks.
225           CleanupKind = NormalAndEHCleanup;
226           Destroy = &CodeGenFunction::destroyARCWeak;
227         }
228         if (Duration == SD_FullExpression)
229           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
230                           ObjCARCReferenceLifetimeType, *Destroy,
231                           CleanupKind & EHCleanup);
232         else
233           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
234                                           ObjCARCReferenceLifetimeType,
235                                           *Destroy, CleanupKind & EHCleanup);
236         return;
237
238       case SD_Dynamic:
239         llvm_unreachable("temporary cannot have dynamic storage duration");
240       }
241       llvm_unreachable("unknown storage duration");
242     }
243   }
244
245   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
246   if (const RecordType *RT =
247           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
248     // Get the destructor for the reference temporary.
249     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
250     if (!ClassDecl->hasTrivialDestructor())
251       ReferenceTemporaryDtor = ClassDecl->getDestructor();
252   }
253
254   if (!ReferenceTemporaryDtor)
255     return;
256
257   // Call the destructor for the temporary.
258   switch (M->getStorageDuration()) {
259   case SD_Static:
260   case SD_Thread: {
261     llvm::Constant *CleanupFn;
262     llvm::Constant *CleanupArg;
263     if (E->getType()->isArrayType()) {
264       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
265           cast<llvm::Constant>(ReferenceTemporary), E->getType(),
266           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
267           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
268       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
269     } else {
270       CleanupFn =
271         CGF.CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
272       CleanupArg = cast<llvm::Constant>(ReferenceTemporary);
273     }
274     CGF.CGM.getCXXABI().registerGlobalDtor(
275         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
276     break;
277   }
278
279   case SD_FullExpression:
280     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
281                     CodeGenFunction::destroyCXXObject,
282                     CGF.getLangOpts().Exceptions);
283     break;
284
285   case SD_Automatic:
286     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
287                                     ReferenceTemporary, E->getType(),
288                                     CodeGenFunction::destroyCXXObject,
289                                     CGF.getLangOpts().Exceptions);
290     break;
291
292   case SD_Dynamic:
293     llvm_unreachable("temporary cannot have dynamic storage duration");
294   }
295 }
296
297 static llvm::Value *
298 createReferenceTemporary(CodeGenFunction &CGF,
299                          const MaterializeTemporaryExpr *M, const Expr *Inner) {
300   switch (M->getStorageDuration()) {
301   case SD_FullExpression:
302   case SD_Automatic:
303     return CGF.CreateMemTemp(Inner->getType(), "ref.tmp");
304
305   case SD_Thread:
306   case SD_Static:
307     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
308
309   case SD_Dynamic:
310     llvm_unreachable("temporary can't have dynamic storage duration");
311   }
312   llvm_unreachable("unknown storage duration");
313 }
314
315 LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
316                                            const MaterializeTemporaryExpr *M) {
317   const Expr *E = M->GetTemporaryExpr();
318
319   if (getLangOpts().ObjCAutoRefCount &&
320       M->getType()->isObjCLifetimeType() &&
321       M->getType().getObjCLifetime() != Qualifiers::OCL_None &&
322       M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
323     // FIXME: Fold this into the general case below.
324     llvm::Value *Object = createReferenceTemporary(*this, M, E);
325     LValue RefTempDst = MakeAddrLValue(Object, M->getType());
326
327     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
328       // We should not have emitted the initializer for this temporary as a
329       // constant.
330       assert(!Var->hasInitializer());
331       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
332     }
333
334     EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
335
336     pushTemporaryCleanup(*this, M, E, Object);
337     return RefTempDst;
338   }
339
340   SmallVector<const Expr *, 2> CommaLHSs;
341   SmallVector<SubobjectAdjustment, 2> Adjustments;
342   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
343
344   for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
345     EmitIgnoredExpr(CommaLHSs[I]);
346
347   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
348     if (opaque->getType()->isRecordType()) {
349       assert(Adjustments.empty());
350       return EmitOpaqueValueLValue(opaque);
351     }
352   }
353
354   // Create and initialize the reference temporary.
355   llvm::Value *Object = createReferenceTemporary(*this, M, E);
356   if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
357     // If the temporary is a global and has a constant initializer, we may
358     // have already initialized it.
359     if (!Var->hasInitializer()) {
360       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
361       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
362     }
363   } else {
364     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
365   }
366   pushTemporaryCleanup(*this, M, E, Object);
367
368   // Perform derived-to-base casts and/or field accesses, to get from the
369   // temporary object we created (and, potentially, for which we extended
370   // the lifetime) to the subobject we're binding the reference to.
371   for (unsigned I = Adjustments.size(); I != 0; --I) {
372     SubobjectAdjustment &Adjustment = Adjustments[I-1];
373     switch (Adjustment.Kind) {
374     case SubobjectAdjustment::DerivedToBaseAdjustment:
375       Object =
376           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
377                                 Adjustment.DerivedToBase.BasePath->path_begin(),
378                                 Adjustment.DerivedToBase.BasePath->path_end(),
379                                 /*NullCheckValue=*/ false);
380       break;
381
382     case SubobjectAdjustment::FieldAdjustment: {
383       LValue LV = MakeAddrLValue(Object, E->getType());
384       LV = EmitLValueForField(LV, Adjustment.Field);
385       assert(LV.isSimple() &&
386              "materialized temporary field is not a simple lvalue");
387       Object = LV.getAddress();
388       break;
389     }
390
391     case SubobjectAdjustment::MemberPointerAdjustment: {
392       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
393       Object = CGM.getCXXABI().EmitMemberDataPointerAddress(
394           *this, E, Object, Ptr, Adjustment.Ptr.MPT);
395       break;
396     }
397     }
398   }
399
400   return MakeAddrLValue(Object, M->getType());
401 }
402
403 RValue
404 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
405   // Emit the expression as an lvalue.
406   LValue LV = EmitLValue(E);
407   assert(LV.isSimple());
408   llvm::Value *Value = LV.getAddress();
409
410   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
411     // C++11 [dcl.ref]p5 (as amended by core issue 453):
412     //   If a glvalue to which a reference is directly bound designates neither
413     //   an existing object or function of an appropriate type nor a region of
414     //   storage of suitable size and alignment to contain an object of the
415     //   reference's type, the behavior is undefined.
416     QualType Ty = E->getType();
417     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
418   }
419
420   return RValue::get(Value);
421 }
422
423
424 /// getAccessedFieldNo - Given an encoded value and a result number, return the
425 /// input field number being accessed.
426 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
427                                              const llvm::Constant *Elts) {
428   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
429       ->getZExtValue();
430 }
431
432 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
433 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
434                                     llvm::Value *High) {
435   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
436   llvm::Value *K47 = Builder.getInt64(47);
437   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
438   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
439   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
440   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
441   return Builder.CreateMul(B1, KMul);
442 }
443
444 bool CodeGenFunction::sanitizePerformTypeCheck() const {
445   return SanOpts->Null | SanOpts->Alignment | SanOpts->ObjectSize |
446          SanOpts->Vptr;
447 }
448
449 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
450                                     llvm::Value *Address,
451                                     QualType Ty, CharUnits Alignment) {
452   if (!sanitizePerformTypeCheck())
453     return;
454
455   // Don't check pointers outside the default address space. The null check
456   // isn't correct, the object-size check isn't supported by LLVM, and we can't
457   // communicate the addresses to the runtime handler for the vptr check.
458   if (Address->getType()->getPointerAddressSpace())
459     return;
460
461   SanitizerScope SanScope(this);
462
463   llvm::Value *Cond = nullptr;
464   llvm::BasicBlock *Done = nullptr;
465
466   if (SanOpts->Null || TCK == TCK_DowncastPointer) {
467     // The glvalue must not be an empty glvalue.
468     Cond = Builder.CreateICmpNE(
469         Address, llvm::Constant::getNullValue(Address->getType()));
470
471     if (TCK == TCK_DowncastPointer) {
472       // When performing a pointer downcast, it's OK if the value is null.
473       // Skip the remaining checks in that case.
474       Done = createBasicBlock("null");
475       llvm::BasicBlock *Rest = createBasicBlock("not.null");
476       Builder.CreateCondBr(Cond, Rest, Done);
477       EmitBlock(Rest);
478       Cond = nullptr;
479     }
480   }
481
482   if (SanOpts->ObjectSize && !Ty->isIncompleteType()) {
483     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
484
485     // The glvalue must refer to a large enough storage region.
486     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
487     //        to check this.
488     // FIXME: Get object address space
489     llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
490     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
491     llvm::Value *Min = Builder.getFalse();
492     llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy);
493     llvm::Value *LargeEnough =
494         Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min),
495                               llvm::ConstantInt::get(IntPtrTy, Size));
496     Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough;
497   }
498
499   uint64_t AlignVal = 0;
500
501   if (SanOpts->Alignment) {
502     AlignVal = Alignment.getQuantity();
503     if (!Ty->isIncompleteType() && !AlignVal)
504       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
505
506     // The glvalue must be suitably aligned.
507     if (AlignVal) {
508       llvm::Value *Align =
509           Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy),
510                             llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
511       llvm::Value *Aligned =
512         Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
513       Cond = Cond ? Builder.CreateAnd(Cond, Aligned) : Aligned;
514     }
515   }
516
517   if (Cond) {
518     llvm::Constant *StaticData[] = {
519       EmitCheckSourceLocation(Loc),
520       EmitCheckTypeDescriptor(Ty),
521       llvm::ConstantInt::get(SizeTy, AlignVal),
522       llvm::ConstantInt::get(Int8Ty, TCK)
523     };
524     EmitCheck(Cond, "type_mismatch", StaticData, Address, CRK_Recoverable);
525   }
526
527   // If possible, check that the vptr indicates that there is a subobject of
528   // type Ty at offset zero within this object.
529   //
530   // C++11 [basic.life]p5,6:
531   //   [For storage which does not refer to an object within its lifetime]
532   //   The program has undefined behavior if:
533   //    -- the [pointer or glvalue] is used to access a non-static data member
534   //       or call a non-static member function
535   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
536   if (SanOpts->Vptr &&
537       (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
538        TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference) &&
539       RD && RD->hasDefinition() && RD->isDynamicClass()) {
540     // Compute a hash of the mangled name of the type.
541     //
542     // FIXME: This is not guaranteed to be deterministic! Move to a
543     //        fingerprinting mechanism once LLVM provides one. For the time
544     //        being the implementation happens to be deterministic.
545     SmallString<64> MangledName;
546     llvm::raw_svector_ostream Out(MangledName);
547     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
548                                                      Out);
549
550     // Blacklist based on the mangled type.
551     if (!CGM.getSanitizerBlacklist().isBlacklistedType(Out.str())) {
552       llvm::hash_code TypeHash = hash_value(Out.str());
553
554       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
555       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
556       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
557       llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy);
558       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
559       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
560
561       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
562       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
563
564       // Look the hash up in our cache.
565       const int CacheSize = 128;
566       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
567       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
568                                                      "__ubsan_vptr_type_cache");
569       llvm::Value *Slot = Builder.CreateAnd(Hash,
570                                             llvm::ConstantInt::get(IntPtrTy,
571                                                                    CacheSize-1));
572       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
573       llvm::Value *CacheVal =
574         Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices));
575
576       // If the hash isn't in the cache, call a runtime handler to perform the
577       // hard work of checking whether the vptr is for an object of the right
578       // type. This will either fill in the cache and return, or produce a
579       // diagnostic.
580       llvm::Constant *StaticData[] = {
581         EmitCheckSourceLocation(Loc),
582         EmitCheckTypeDescriptor(Ty),
583         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
584         llvm::ConstantInt::get(Int8Ty, TCK)
585       };
586       llvm::Value *DynamicData[] = { Address, Hash };
587       EmitCheck(Builder.CreateICmpEQ(CacheVal, Hash),
588                 "dynamic_type_cache_miss", StaticData, DynamicData,
589                 CRK_AlwaysRecoverable);
590     }
591   }
592
593   if (Done) {
594     Builder.CreateBr(Done);
595     EmitBlock(Done);
596   }
597 }
598
599 /// Determine whether this expression refers to a flexible array member in a
600 /// struct. We disable array bounds checks for such members.
601 static bool isFlexibleArrayMemberExpr(const Expr *E) {
602   // For compatibility with existing code, we treat arrays of length 0 or
603   // 1 as flexible array members.
604   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
605   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
606     if (CAT->getSize().ugt(1))
607       return false;
608   } else if (!isa<IncompleteArrayType>(AT))
609     return false;
610
611   E = E->IgnoreParens();
612
613   // A flexible array member must be the last member in the class.
614   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
615     // FIXME: If the base type of the member expr is not FD->getParent(),
616     // this should not be treated as a flexible array member access.
617     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
618       RecordDecl::field_iterator FI(
619           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
620       return ++FI == FD->getParent()->field_end();
621     }
622   }
623
624   return false;
625 }
626
627 /// If Base is known to point to the start of an array, return the length of
628 /// that array. Return 0 if the length cannot be determined.
629 static llvm::Value *getArrayIndexingBound(
630     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
631   // For the vector indexing extension, the bound is the number of elements.
632   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
633     IndexedType = Base->getType();
634     return CGF.Builder.getInt32(VT->getNumElements());
635   }
636
637   Base = Base->IgnoreParens();
638
639   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
640     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
641         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
642       IndexedType = CE->getSubExpr()->getType();
643       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
644       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
645         return CGF.Builder.getInt(CAT->getSize());
646       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
647         return CGF.getVLASize(VAT).first;
648     }
649   }
650
651   return nullptr;
652 }
653
654 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
655                                       llvm::Value *Index, QualType IndexType,
656                                       bool Accessed) {
657   assert(SanOpts->ArrayBounds &&
658          "should not be called unless adding bounds checks");
659   SanitizerScope SanScope(this);
660
661   QualType IndexedType;
662   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
663   if (!Bound)
664     return;
665
666   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
667   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
668   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
669
670   llvm::Constant *StaticData[] = {
671     EmitCheckSourceLocation(E->getExprLoc()),
672     EmitCheckTypeDescriptor(IndexedType),
673     EmitCheckTypeDescriptor(IndexType)
674   };
675   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
676                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
677   EmitCheck(Check, "out_of_bounds", StaticData, Index, CRK_Recoverable);
678 }
679
680
681 CodeGenFunction::ComplexPairTy CodeGenFunction::
682 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
683                          bool isInc, bool isPre) {
684   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
685
686   llvm::Value *NextVal;
687   if (isa<llvm::IntegerType>(InVal.first->getType())) {
688     uint64_t AmountVal = isInc ? 1 : -1;
689     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
690
691     // Add the inc/dec to the real part.
692     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
693   } else {
694     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
695     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
696     if (!isInc)
697       FVal.changeSign();
698     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
699
700     // Add the inc/dec to the real part.
701     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
702   }
703
704   ComplexPairTy IncVal(NextVal, InVal.second);
705
706   // Store the updated result through the lvalue.
707   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
708
709   // If this is a postinc, return the value read from memory, otherwise use the
710   // updated value.
711   return isPre ? IncVal : InVal;
712 }
713
714
715 //===----------------------------------------------------------------------===//
716 //                         LValue Expression Emission
717 //===----------------------------------------------------------------------===//
718
719 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
720   if (Ty->isVoidType())
721     return RValue::get(nullptr);
722
723   switch (getEvaluationKind(Ty)) {
724   case TEK_Complex: {
725     llvm::Type *EltTy =
726       ConvertType(Ty->castAs<ComplexType>()->getElementType());
727     llvm::Value *U = llvm::UndefValue::get(EltTy);
728     return RValue::getComplex(std::make_pair(U, U));
729   }
730
731   // If this is a use of an undefined aggregate type, the aggregate must have an
732   // identifiable address.  Just because the contents of the value are undefined
733   // doesn't mean that the address can't be taken and compared.
734   case TEK_Aggregate: {
735     llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
736     return RValue::getAggregate(DestPtr);
737   }
738
739   case TEK_Scalar:
740     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
741   }
742   llvm_unreachable("bad evaluation kind");
743 }
744
745 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
746                                               const char *Name) {
747   ErrorUnsupported(E, Name);
748   return GetUndefRValue(E->getType());
749 }
750
751 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
752                                               const char *Name) {
753   ErrorUnsupported(E, Name);
754   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
755   return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
756 }
757
758 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
759   LValue LV;
760   if (SanOpts->ArrayBounds && isa<ArraySubscriptExpr>(E))
761     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
762   else
763     LV = EmitLValue(E);
764   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
765     EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(),
766                   E->getType(), LV.getAlignment());
767   return LV;
768 }
769
770 /// EmitLValue - Emit code to compute a designator that specifies the location
771 /// of the expression.
772 ///
773 /// This can return one of two things: a simple address or a bitfield reference.
774 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
775 /// an LLVM pointer type.
776 ///
777 /// If this returns a bitfield reference, nothing about the pointee type of the
778 /// LLVM value is known: For example, it may not be a pointer to an integer.
779 ///
780 /// If this returns a normal address, and if the lvalue's C type is fixed size,
781 /// this method guarantees that the returned pointer type will point to an LLVM
782 /// type of the same size of the lvalue's type.  If the lvalue has a variable
783 /// length type, this is not possible.
784 ///
785 LValue CodeGenFunction::EmitLValue(const Expr *E) {
786   switch (E->getStmtClass()) {
787   default: return EmitUnsupportedLValue(E, "l-value expression");
788
789   case Expr::ObjCPropertyRefExprClass:
790     llvm_unreachable("cannot emit a property reference directly");
791
792   case Expr::ObjCSelectorExprClass:
793     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
794   case Expr::ObjCIsaExprClass:
795     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
796   case Expr::BinaryOperatorClass:
797     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
798   case Expr::CompoundAssignOperatorClass:
799     if (!E->getType()->isAnyComplexType())
800       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
801     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
802   case Expr::CallExprClass:
803   case Expr::CXXMemberCallExprClass:
804   case Expr::CXXOperatorCallExprClass:
805   case Expr::UserDefinedLiteralClass:
806     return EmitCallExprLValue(cast<CallExpr>(E));
807   case Expr::VAArgExprClass:
808     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
809   case Expr::DeclRefExprClass:
810     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
811   case Expr::ParenExprClass:
812     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
813   case Expr::GenericSelectionExprClass:
814     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
815   case Expr::PredefinedExprClass:
816     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
817   case Expr::StringLiteralClass:
818     return EmitStringLiteralLValue(cast<StringLiteral>(E));
819   case Expr::ObjCEncodeExprClass:
820     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
821   case Expr::PseudoObjectExprClass:
822     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
823   case Expr::InitListExprClass:
824     return EmitInitListLValue(cast<InitListExpr>(E));
825   case Expr::CXXTemporaryObjectExprClass:
826   case Expr::CXXConstructExprClass:
827     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
828   case Expr::CXXBindTemporaryExprClass:
829     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
830   case Expr::CXXUuidofExprClass:
831     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
832   case Expr::LambdaExprClass:
833     return EmitLambdaLValue(cast<LambdaExpr>(E));
834
835   case Expr::ExprWithCleanupsClass: {
836     const auto *cleanups = cast<ExprWithCleanups>(E);
837     enterFullExpression(cleanups);
838     RunCleanupsScope Scope(*this);
839     return EmitLValue(cleanups->getSubExpr());
840   }
841
842   case Expr::CXXDefaultArgExprClass:
843     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
844   case Expr::CXXDefaultInitExprClass: {
845     CXXDefaultInitExprScope Scope(*this);
846     return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
847   }
848   case Expr::CXXTypeidExprClass:
849     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
850
851   case Expr::ObjCMessageExprClass:
852     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
853   case Expr::ObjCIvarRefExprClass:
854     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
855   case Expr::StmtExprClass:
856     return EmitStmtExprLValue(cast<StmtExpr>(E));
857   case Expr::UnaryOperatorClass:
858     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
859   case Expr::ArraySubscriptExprClass:
860     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
861   case Expr::ExtVectorElementExprClass:
862     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
863   case Expr::MemberExprClass:
864     return EmitMemberExpr(cast<MemberExpr>(E));
865   case Expr::CompoundLiteralExprClass:
866     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
867   case Expr::ConditionalOperatorClass:
868     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
869   case Expr::BinaryConditionalOperatorClass:
870     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
871   case Expr::ChooseExprClass:
872     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
873   case Expr::OpaqueValueExprClass:
874     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
875   case Expr::SubstNonTypeTemplateParmExprClass:
876     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
877   case Expr::ImplicitCastExprClass:
878   case Expr::CStyleCastExprClass:
879   case Expr::CXXFunctionalCastExprClass:
880   case Expr::CXXStaticCastExprClass:
881   case Expr::CXXDynamicCastExprClass:
882   case Expr::CXXReinterpretCastExprClass:
883   case Expr::CXXConstCastExprClass:
884   case Expr::ObjCBridgedCastExprClass:
885     return EmitCastLValue(cast<CastExpr>(E));
886
887   case Expr::MaterializeTemporaryExprClass:
888     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
889   }
890 }
891
892 /// Given an object of the given canonical type, can we safely copy a
893 /// value out of it based on its initializer?
894 static bool isConstantEmittableObjectType(QualType type) {
895   assert(type.isCanonical());
896   assert(!type->isReferenceType());
897
898   // Must be const-qualified but non-volatile.
899   Qualifiers qs = type.getLocalQualifiers();
900   if (!qs.hasConst() || qs.hasVolatile()) return false;
901
902   // Otherwise, all object types satisfy this except C++ classes with
903   // mutable subobjects or non-trivial copy/destroy behavior.
904   if (const auto *RT = dyn_cast<RecordType>(type))
905     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
906       if (RD->hasMutableFields() || !RD->isTrivial())
907         return false;
908
909   return true;
910 }
911
912 /// Can we constant-emit a load of a reference to a variable of the
913 /// given type?  This is different from predicates like
914 /// Decl::isUsableInConstantExpressions because we do want it to apply
915 /// in situations that don't necessarily satisfy the language's rules
916 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
917 /// to do this with const float variables even if those variables
918 /// aren't marked 'constexpr'.
919 enum ConstantEmissionKind {
920   CEK_None,
921   CEK_AsReferenceOnly,
922   CEK_AsValueOrReference,
923   CEK_AsValueOnly
924 };
925 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
926   type = type.getCanonicalType();
927   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
928     if (isConstantEmittableObjectType(ref->getPointeeType()))
929       return CEK_AsValueOrReference;
930     return CEK_AsReferenceOnly;
931   }
932   if (isConstantEmittableObjectType(type))
933     return CEK_AsValueOnly;
934   return CEK_None;
935 }
936
937 /// Try to emit a reference to the given value without producing it as
938 /// an l-value.  This is actually more than an optimization: we can't
939 /// produce an l-value for variables that we never actually captured
940 /// in a block or lambda, which means const int variables or constexpr
941 /// literals or similar.
942 CodeGenFunction::ConstantEmission
943 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
944   ValueDecl *value = refExpr->getDecl();
945
946   // The value needs to be an enum constant or a constant variable.
947   ConstantEmissionKind CEK;
948   if (isa<ParmVarDecl>(value)) {
949     CEK = CEK_None;
950   } else if (auto *var = dyn_cast<VarDecl>(value)) {
951     CEK = checkVarTypeForConstantEmission(var->getType());
952   } else if (isa<EnumConstantDecl>(value)) {
953     CEK = CEK_AsValueOnly;
954   } else {
955     CEK = CEK_None;
956   }
957   if (CEK == CEK_None) return ConstantEmission();
958
959   Expr::EvalResult result;
960   bool resultIsReference;
961   QualType resultType;
962
963   // It's best to evaluate all the way as an r-value if that's permitted.
964   if (CEK != CEK_AsReferenceOnly &&
965       refExpr->EvaluateAsRValue(result, getContext())) {
966     resultIsReference = false;
967     resultType = refExpr->getType();
968
969   // Otherwise, try to evaluate as an l-value.
970   } else if (CEK != CEK_AsValueOnly &&
971              refExpr->EvaluateAsLValue(result, getContext())) {
972     resultIsReference = true;
973     resultType = value->getType();
974
975   // Failure.
976   } else {
977     return ConstantEmission();
978   }
979
980   // In any case, if the initializer has side-effects, abandon ship.
981   if (result.HasSideEffects)
982     return ConstantEmission();
983
984   // Emit as a constant.
985   llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
986
987   // Make sure we emit a debug reference to the global variable.
988   // This should probably fire even for
989   if (isa<VarDecl>(value)) {
990     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
991       EmitDeclRefExprDbgValue(refExpr, C);
992   } else {
993     assert(isa<EnumConstantDecl>(value));
994     EmitDeclRefExprDbgValue(refExpr, C);
995   }
996
997   // If we emitted a reference constant, we need to dereference that.
998   if (resultIsReference)
999     return ConstantEmission::forReference(C);
1000
1001   return ConstantEmission::forValue(C);
1002 }
1003
1004 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1005                                                SourceLocation Loc) {
1006   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1007                           lvalue.getAlignment().getQuantity(),
1008                           lvalue.getType(), Loc, lvalue.getTBAAInfo(),
1009                           lvalue.getTBAABaseType(), lvalue.getTBAAOffset());
1010 }
1011
1012 static bool hasBooleanRepresentation(QualType Ty) {
1013   if (Ty->isBooleanType())
1014     return true;
1015
1016   if (const EnumType *ET = Ty->getAs<EnumType>())
1017     return ET->getDecl()->getIntegerType()->isBooleanType();
1018
1019   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1020     return hasBooleanRepresentation(AT->getValueType());
1021
1022   return false;
1023 }
1024
1025 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1026                             llvm::APInt &Min, llvm::APInt &End,
1027                             bool StrictEnums) {
1028   const EnumType *ET = Ty->getAs<EnumType>();
1029   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1030                                 ET && !ET->getDecl()->isFixed();
1031   bool IsBool = hasBooleanRepresentation(Ty);
1032   if (!IsBool && !IsRegularCPlusPlusEnum)
1033     return false;
1034
1035   if (IsBool) {
1036     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1037     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1038   } else {
1039     const EnumDecl *ED = ET->getDecl();
1040     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1041     unsigned Bitwidth = LTy->getScalarSizeInBits();
1042     unsigned NumNegativeBits = ED->getNumNegativeBits();
1043     unsigned NumPositiveBits = ED->getNumPositiveBits();
1044
1045     if (NumNegativeBits) {
1046       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1047       assert(NumBits <= Bitwidth);
1048       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1049       Min = -End;
1050     } else {
1051       assert(NumPositiveBits <= Bitwidth);
1052       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1053       Min = llvm::APInt(Bitwidth, 0);
1054     }
1055   }
1056   return true;
1057 }
1058
1059 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1060   llvm::APInt Min, End;
1061   if (!getRangeForType(*this, Ty, Min, End,
1062                        CGM.getCodeGenOpts().StrictEnums))
1063     return nullptr;
1064
1065   llvm::MDBuilder MDHelper(getLLVMContext());
1066   return MDHelper.createRange(Min, End);
1067 }
1068
1069 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1070                                                unsigned Alignment, QualType Ty,
1071                                                SourceLocation Loc,
1072                                                llvm::MDNode *TBAAInfo,
1073                                                QualType TBAABaseType,
1074                                                uint64_t TBAAOffset) {
1075   // For better performance, handle vector loads differently.
1076   if (Ty->isVectorType()) {
1077     llvm::Value *V;
1078     const llvm::Type *EltTy =
1079     cast<llvm::PointerType>(Addr->getType())->getElementType();
1080
1081     const auto *VTy = cast<llvm::VectorType>(EltTy);
1082
1083     // Handle vectors of size 3, like size 4 for better performance.
1084     if (VTy->getNumElements() == 3) {
1085
1086       // Bitcast to vec4 type.
1087       llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
1088                                                          4);
1089       llvm::PointerType *ptVec4Ty =
1090       llvm::PointerType::get(vec4Ty,
1091                              (cast<llvm::PointerType>(
1092                                       Addr->getType()))->getAddressSpace());
1093       llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty,
1094                                                 "castToVec4");
1095       // Now load value.
1096       llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1097
1098       // Shuffle vector to get vec3.
1099       llvm::Constant *Mask[] = {
1100         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0),
1101         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1),
1102         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2)
1103       };
1104
1105       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1106       V = Builder.CreateShuffleVector(LoadVal,
1107                                       llvm::UndefValue::get(vec4Ty),
1108                                       MaskV, "extractVec");
1109       return EmitFromMemory(V, Ty);
1110     }
1111   }
1112
1113   // Atomic operations have to be done on integral types.
1114   if (Ty->isAtomicType()) {
1115     LValue lvalue = LValue::MakeAddr(Addr, Ty,
1116                                      CharUnits::fromQuantity(Alignment),
1117                                      getContext(), TBAAInfo);
1118     return EmitAtomicLoad(lvalue, Loc).getScalarVal();
1119   }
1120
1121   llvm::LoadInst *Load = Builder.CreateLoad(Addr);
1122   if (Volatile)
1123     Load->setVolatile(true);
1124   if (Alignment)
1125     Load->setAlignment(Alignment);
1126   if (TBAAInfo) {
1127     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1128                                                       TBAAOffset);
1129     if (TBAAPath)
1130       CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/);
1131   }
1132
1133   if ((SanOpts->Bool && hasBooleanRepresentation(Ty)) ||
1134       (SanOpts->Enum && Ty->getAs<EnumType>())) {
1135     SanitizerScope SanScope(this);
1136     llvm::APInt Min, End;
1137     if (getRangeForType(*this, Ty, Min, End, true)) {
1138       --End;
1139       llvm::Value *Check;
1140       if (!Min)
1141         Check = Builder.CreateICmpULE(
1142           Load, llvm::ConstantInt::get(getLLVMContext(), End));
1143       else {
1144         llvm::Value *Upper = Builder.CreateICmpSLE(
1145           Load, llvm::ConstantInt::get(getLLVMContext(), End));
1146         llvm::Value *Lower = Builder.CreateICmpSGE(
1147           Load, llvm::ConstantInt::get(getLLVMContext(), Min));
1148         Check = Builder.CreateAnd(Upper, Lower);
1149       }
1150       llvm::Constant *StaticArgs[] = {
1151         EmitCheckSourceLocation(Loc),
1152         EmitCheckTypeDescriptor(Ty)
1153       };
1154       EmitCheck(Check, "load_invalid_value", StaticArgs, EmitCheckValue(Load),
1155                 CRK_Recoverable);
1156     }
1157   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1158     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1159       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1160
1161   return EmitFromMemory(Load, Ty);
1162 }
1163
1164 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1165   // Bool has a different representation in memory than in registers.
1166   if (hasBooleanRepresentation(Ty)) {
1167     // This should really always be an i1, but sometimes it's already
1168     // an i8, and it's awkward to track those cases down.
1169     if (Value->getType()->isIntegerTy(1))
1170       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1171     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1172            "wrong value rep of bool");
1173   }
1174
1175   return Value;
1176 }
1177
1178 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1179   // Bool has a different representation in memory than in registers.
1180   if (hasBooleanRepresentation(Ty)) {
1181     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1182            "wrong value rep of bool");
1183     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1184   }
1185
1186   return Value;
1187 }
1188
1189 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1190                                         bool Volatile, unsigned Alignment,
1191                                         QualType Ty, llvm::MDNode *TBAAInfo,
1192                                         bool isInit, QualType TBAABaseType,
1193                                         uint64_t TBAAOffset) {
1194
1195   // Handle vectors differently to get better performance.
1196   if (Ty->isVectorType()) {
1197     llvm::Type *SrcTy = Value->getType();
1198     auto *VecTy = cast<llvm::VectorType>(SrcTy);
1199     // Handle vec3 special.
1200     if (VecTy->getNumElements() == 3) {
1201       llvm::LLVMContext &VMContext = getLLVMContext();
1202
1203       // Our source is a vec3, do a shuffle vector to make it a vec4.
1204       SmallVector<llvm::Constant*, 4> Mask;
1205       Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1206                                             0));
1207       Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1208                                             1));
1209       Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1210                                             2));
1211       Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext)));
1212
1213       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1214       Value = Builder.CreateShuffleVector(Value,
1215                                           llvm::UndefValue::get(VecTy),
1216                                           MaskV, "extractVec");
1217       SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1218     }
1219     auto *DstPtr = cast<llvm::PointerType>(Addr->getType());
1220     if (DstPtr->getElementType() != SrcTy) {
1221       llvm::Type *MemTy =
1222       llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace());
1223       Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp");
1224     }
1225   }
1226
1227   Value = EmitToMemory(Value, Ty);
1228
1229   if (Ty->isAtomicType()) {
1230     EmitAtomicStore(RValue::get(Value),
1231                     LValue::MakeAddr(Addr, Ty,
1232                                      CharUnits::fromQuantity(Alignment),
1233                                      getContext(), TBAAInfo),
1234                     isInit);
1235     return;
1236   }
1237
1238   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1239   if (Alignment)
1240     Store->setAlignment(Alignment);
1241   if (TBAAInfo) {
1242     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1243                                                       TBAAOffset);
1244     if (TBAAPath)
1245       CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/);
1246   }
1247 }
1248
1249 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1250                                         bool isInit) {
1251   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1252                     lvalue.getAlignment().getQuantity(), lvalue.getType(),
1253                     lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
1254                     lvalue.getTBAAOffset());
1255 }
1256
1257 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1258 /// method emits the address of the lvalue, then loads the result as an rvalue,
1259 /// returning the rvalue.
1260 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1261   if (LV.isObjCWeak()) {
1262     // load of a __weak object.
1263     llvm::Value *AddrWeakObj = LV.getAddress();
1264     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1265                                                              AddrWeakObj));
1266   }
1267   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1268     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1269     Object = EmitObjCConsumeObject(LV.getType(), Object);
1270     return RValue::get(Object);
1271   }
1272
1273   if (LV.isSimple()) {
1274     assert(!LV.getType()->isFunctionType());
1275
1276     // Everything needs a load.
1277     return RValue::get(EmitLoadOfScalar(LV, Loc));
1278   }
1279
1280   if (LV.isVectorElt()) {
1281     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(),
1282                                               LV.isVolatileQualified());
1283     Load->setAlignment(LV.getAlignment().getQuantity());
1284     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1285                                                     "vecext"));
1286   }
1287
1288   // If this is a reference to a subset of the elements of a vector, either
1289   // shuffle the input or extract/insert them as appropriate.
1290   if (LV.isExtVectorElt())
1291     return EmitLoadOfExtVectorElementLValue(LV);
1292
1293   // Global Register variables always invoke intrinsics
1294   if (LV.isGlobalReg())
1295     return EmitLoadOfGlobalRegLValue(LV);
1296
1297   assert(LV.isBitField() && "Unknown LValue type!");
1298   return EmitLoadOfBitfieldLValue(LV);
1299 }
1300
1301 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
1302   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1303
1304   // Get the output type.
1305   llvm::Type *ResLTy = ConvertType(LV.getType());
1306
1307   llvm::Value *Ptr = LV.getBitFieldAddr();
1308   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(),
1309                                         "bf.load");
1310   cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1311
1312   if (Info.IsSigned) {
1313     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1314     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1315     if (HighBits)
1316       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1317     if (Info.Offset + HighBits)
1318       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1319   } else {
1320     if (Info.Offset)
1321       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1322     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1323       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1324                                                               Info.Size),
1325                               "bf.clear");
1326   }
1327   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1328
1329   return RValue::get(Val);
1330 }
1331
1332 // If this is a reference to a subset of the elements of a vector, create an
1333 // appropriate shufflevector.
1334 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1335   llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(),
1336                                             LV.isVolatileQualified());
1337   Load->setAlignment(LV.getAlignment().getQuantity());
1338   llvm::Value *Vec = Load;
1339
1340   const llvm::Constant *Elts = LV.getExtVectorElts();
1341
1342   // If the result of the expression is a non-vector type, we must be extracting
1343   // a single element.  Just codegen as an extractelement.
1344   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1345   if (!ExprVT) {
1346     unsigned InIdx = getAccessedFieldNo(0, Elts);
1347     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1348     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1349   }
1350
1351   // Always use shuffle vector to try to retain the original program structure
1352   unsigned NumResultElts = ExprVT->getNumElements();
1353
1354   SmallVector<llvm::Constant*, 4> Mask;
1355   for (unsigned i = 0; i != NumResultElts; ++i)
1356     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1357
1358   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1359   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1360                                     MaskV);
1361   return RValue::get(Vec);
1362 }
1363
1364 /// @brief Load of global gamed gegisters are always calls to intrinsics.
1365 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1366   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1367          "Bad type for register variable");
1368   llvm::MDNode *RegName = dyn_cast<llvm::MDNode>(LV.getGlobalReg());
1369   assert(RegName && "Register LValue is not metadata");
1370
1371   // We accept integer and pointer types only
1372   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1373   llvm::Type *Ty = OrigTy;
1374   if (OrigTy->isPointerTy())
1375     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1376   llvm::Type *Types[] = { Ty };
1377
1378   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1379   llvm::Value *Call = Builder.CreateCall(F, RegName);
1380   if (OrigTy->isPointerTy())
1381     Call = Builder.CreateIntToPtr(Call, OrigTy);
1382   return RValue::get(Call);
1383 }
1384
1385
1386 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1387 /// lvalue, where both are guaranteed to the have the same type, and that type
1388 /// is 'Ty'.
1389 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1390                                              bool isInit) {
1391   if (!Dst.isSimple()) {
1392     if (Dst.isVectorElt()) {
1393       // Read/modify/write the vector, inserting the new element.
1394       llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(),
1395                                                 Dst.isVolatileQualified());
1396       Load->setAlignment(Dst.getAlignment().getQuantity());
1397       llvm::Value *Vec = Load;
1398       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1399                                         Dst.getVectorIdx(), "vecins");
1400       llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(),
1401                                                    Dst.isVolatileQualified());
1402       Store->setAlignment(Dst.getAlignment().getQuantity());
1403       return;
1404     }
1405
1406     // If this is an update of extended vector elements, insert them as
1407     // appropriate.
1408     if (Dst.isExtVectorElt())
1409       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1410
1411     if (Dst.isGlobalReg())
1412       return EmitStoreThroughGlobalRegLValue(Src, Dst);
1413
1414     assert(Dst.isBitField() && "Unknown LValue type");
1415     return EmitStoreThroughBitfieldLValue(Src, Dst);
1416   }
1417
1418   // There's special magic for assigning into an ARC-qualified l-value.
1419   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1420     switch (Lifetime) {
1421     case Qualifiers::OCL_None:
1422       llvm_unreachable("present but none");
1423
1424     case Qualifiers::OCL_ExplicitNone:
1425       // nothing special
1426       break;
1427
1428     case Qualifiers::OCL_Strong:
1429       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1430       return;
1431
1432     case Qualifiers::OCL_Weak:
1433       EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1434       return;
1435
1436     case Qualifiers::OCL_Autoreleasing:
1437       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1438                                                      Src.getScalarVal()));
1439       // fall into the normal path
1440       break;
1441     }
1442   }
1443
1444   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1445     // load of a __weak object.
1446     llvm::Value *LvalueDst = Dst.getAddress();
1447     llvm::Value *src = Src.getScalarVal();
1448      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1449     return;
1450   }
1451
1452   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1453     // load of a __strong object.
1454     llvm::Value *LvalueDst = Dst.getAddress();
1455     llvm::Value *src = Src.getScalarVal();
1456     if (Dst.isObjCIvar()) {
1457       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1458       llvm::Type *ResultType = ConvertType(getContext().LongTy);
1459       llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
1460       llvm::Value *dst = RHS;
1461       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1462       llvm::Value *LHS =
1463         Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
1464       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1465       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1466                                               BytesBetween);
1467     } else if (Dst.isGlobalObjCRef()) {
1468       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1469                                                 Dst.isThreadLocalRef());
1470     }
1471     else
1472       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1473     return;
1474   }
1475
1476   assert(Src.isScalar() && "Can't emit an agg store with this method");
1477   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1478 }
1479
1480 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1481                                                      llvm::Value **Result) {
1482   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1483   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1484   llvm::Value *Ptr = Dst.getBitFieldAddr();
1485
1486   // Get the source value, truncated to the width of the bit-field.
1487   llvm::Value *SrcVal = Src.getScalarVal();
1488
1489   // Cast the source to the storage type and shift it into place.
1490   SrcVal = Builder.CreateIntCast(SrcVal,
1491                                  Ptr->getType()->getPointerElementType(),
1492                                  /*IsSigned=*/false);
1493   llvm::Value *MaskedVal = SrcVal;
1494
1495   // See if there are other bits in the bitfield's storage we'll need to load
1496   // and mask together with source before storing.
1497   if (Info.StorageSize != Info.Size) {
1498     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1499     llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(),
1500                                           "bf.load");
1501     cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1502
1503     // Mask the source value as needed.
1504     if (!hasBooleanRepresentation(Dst.getType()))
1505       SrcVal = Builder.CreateAnd(SrcVal,
1506                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
1507                                                             Info.Size),
1508                                  "bf.value");
1509     MaskedVal = SrcVal;
1510     if (Info.Offset)
1511       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1512
1513     // Mask out the original value.
1514     Val = Builder.CreateAnd(Val,
1515                             ~llvm::APInt::getBitsSet(Info.StorageSize,
1516                                                      Info.Offset,
1517                                                      Info.Offset + Info.Size),
1518                             "bf.clear");
1519
1520     // Or together the unchanged values and the source value.
1521     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1522   } else {
1523     assert(Info.Offset == 0);
1524   }
1525
1526   // Write the new value back out.
1527   llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr,
1528                                                Dst.isVolatileQualified());
1529   Store->setAlignment(Info.StorageAlignment);
1530
1531   // Return the new value of the bit-field, if requested.
1532   if (Result) {
1533     llvm::Value *ResultVal = MaskedVal;
1534
1535     // Sign extend the value if needed.
1536     if (Info.IsSigned) {
1537       assert(Info.Size <= Info.StorageSize);
1538       unsigned HighBits = Info.StorageSize - Info.Size;
1539       if (HighBits) {
1540         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1541         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1542       }
1543     }
1544
1545     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
1546                                       "bf.result.cast");
1547     *Result = EmitFromMemory(ResultVal, Dst.getType());
1548   }
1549 }
1550
1551 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1552                                                                LValue Dst) {
1553   // This access turns into a read/modify/write of the vector.  Load the input
1554   // value now.
1555   llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(),
1556                                             Dst.isVolatileQualified());
1557   Load->setAlignment(Dst.getAlignment().getQuantity());
1558   llvm::Value *Vec = Load;
1559   const llvm::Constant *Elts = Dst.getExtVectorElts();
1560
1561   llvm::Value *SrcVal = Src.getScalarVal();
1562
1563   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1564     unsigned NumSrcElts = VTy->getNumElements();
1565     unsigned NumDstElts =
1566        cast<llvm::VectorType>(Vec->getType())->getNumElements();
1567     if (NumDstElts == NumSrcElts) {
1568       // Use shuffle vector is the src and destination are the same number of
1569       // elements and restore the vector mask since it is on the side it will be
1570       // stored.
1571       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1572       for (unsigned i = 0; i != NumSrcElts; ++i)
1573         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1574
1575       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1576       Vec = Builder.CreateShuffleVector(SrcVal,
1577                                         llvm::UndefValue::get(Vec->getType()),
1578                                         MaskV);
1579     } else if (NumDstElts > NumSrcElts) {
1580       // Extended the source vector to the same length and then shuffle it
1581       // into the destination.
1582       // FIXME: since we're shuffling with undef, can we just use the indices
1583       //        into that?  This could be simpler.
1584       SmallVector<llvm::Constant*, 4> ExtMask;
1585       for (unsigned i = 0; i != NumSrcElts; ++i)
1586         ExtMask.push_back(Builder.getInt32(i));
1587       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1588       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1589       llvm::Value *ExtSrcVal =
1590         Builder.CreateShuffleVector(SrcVal,
1591                                     llvm::UndefValue::get(SrcVal->getType()),
1592                                     ExtMaskV);
1593       // build identity
1594       SmallVector<llvm::Constant*, 4> Mask;
1595       for (unsigned i = 0; i != NumDstElts; ++i)
1596         Mask.push_back(Builder.getInt32(i));
1597
1598       // When the vector size is odd and .odd or .hi is used, the last element
1599       // of the Elts constant array will be one past the size of the vector.
1600       // Ignore the last element here, if it is greater than the mask size.
1601       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
1602         NumSrcElts--;
1603
1604       // modify when what gets shuffled in
1605       for (unsigned i = 0; i != NumSrcElts; ++i)
1606         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1607       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1608       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1609     } else {
1610       // We should never shorten the vector
1611       llvm_unreachable("unexpected shorten vector length");
1612     }
1613   } else {
1614     // If the Src is a scalar (not a vector) it must be updating one element.
1615     unsigned InIdx = getAccessedFieldNo(0, Elts);
1616     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1617     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1618   }
1619
1620   llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(),
1621                                                Dst.isVolatileQualified());
1622   Store->setAlignment(Dst.getAlignment().getQuantity());
1623 }
1624
1625 /// @brief Store of global named registers are always calls to intrinsics.
1626 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
1627   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
1628          "Bad type for register variable");
1629   llvm::MDNode *RegName = dyn_cast<llvm::MDNode>(Dst.getGlobalReg());
1630   assert(RegName && "Register LValue is not metadata");
1631
1632   // We accept integer and pointer types only
1633   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
1634   llvm::Type *Ty = OrigTy;
1635   if (OrigTy->isPointerTy())
1636     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1637   llvm::Type *Types[] = { Ty };
1638
1639   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
1640   llvm::Value *Value = Src.getScalarVal();
1641   if (OrigTy->isPointerTy())
1642     Value = Builder.CreatePtrToInt(Value, Ty);
1643   Builder.CreateCall2(F, RegName, Value);
1644 }
1645
1646 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
1647 // generating write-barries API. It is currently a global, ivar,
1648 // or neither.
1649 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1650                                  LValue &LV,
1651                                  bool IsMemberAccess=false) {
1652   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1653     return;
1654
1655   if (isa<ObjCIvarRefExpr>(E)) {
1656     QualType ExpTy = E->getType();
1657     if (IsMemberAccess && ExpTy->isPointerType()) {
1658       // If ivar is a structure pointer, assigning to field of
1659       // this struct follows gcc's behavior and makes it a non-ivar
1660       // writer-barrier conservatively.
1661       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1662       if (ExpTy->isRecordType()) {
1663         LV.setObjCIvar(false);
1664         return;
1665       }
1666     }
1667     LV.setObjCIvar(true);
1668     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
1669     LV.setBaseIvarExp(Exp->getBase());
1670     LV.setObjCArray(E->getType()->isArrayType());
1671     return;
1672   }
1673
1674   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
1675     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1676       if (VD->hasGlobalStorage()) {
1677         LV.setGlobalObjCRef(true);
1678         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
1679       }
1680     }
1681     LV.setObjCArray(E->getType()->isArrayType());
1682     return;
1683   }
1684
1685   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
1686     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1687     return;
1688   }
1689
1690   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
1691     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1692     if (LV.isObjCIvar()) {
1693       // If cast is to a structure pointer, follow gcc's behavior and make it
1694       // a non-ivar write-barrier.
1695       QualType ExpTy = E->getType();
1696       if (ExpTy->isPointerType())
1697         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1698       if (ExpTy->isRecordType())
1699         LV.setObjCIvar(false);
1700     }
1701     return;
1702   }
1703
1704   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1705     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1706     return;
1707   }
1708
1709   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1710     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1711     return;
1712   }
1713
1714   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
1715     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1716     return;
1717   }
1718
1719   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1720     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1721     return;
1722   }
1723
1724   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1725     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1726     if (LV.isObjCIvar() && !LV.isObjCArray())
1727       // Using array syntax to assigning to what an ivar points to is not
1728       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1729       LV.setObjCIvar(false);
1730     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1731       // Using array syntax to assigning to what global points to is not
1732       // same as assigning to the global itself. {id *G;} G[i] = 0;
1733       LV.setGlobalObjCRef(false);
1734     return;
1735   }
1736
1737   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
1738     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1739     // We don't know if member is an 'ivar', but this flag is looked at
1740     // only in the context of LV.isObjCIvar().
1741     LV.setObjCArray(E->getType()->isArrayType());
1742     return;
1743   }
1744 }
1745
1746 static llvm::Value *
1747 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1748                                 llvm::Value *V, llvm::Type *IRType,
1749                                 StringRef Name = StringRef()) {
1750   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1751   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1752 }
1753
1754 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1755                                       const Expr *E, const VarDecl *VD) {
1756   QualType T = E->getType();
1757
1758   // If it's thread_local, emit a call to its wrapper function instead.
1759   if (VD->getTLSKind() == VarDecl::TLS_Dynamic)
1760     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
1761
1762   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1763   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1764   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1765   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1766   LValue LV;
1767   if (VD->getType()->isReferenceType()) {
1768     llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
1769     LI->setAlignment(Alignment.getQuantity());
1770     V = LI;
1771     LV = CGF.MakeNaturalAlignAddrLValue(V, T);
1772   } else {
1773     LV = CGF.MakeAddrLValue(V, T, Alignment);
1774   }
1775   setObjCGCLValueClass(CGF.getContext(), E, LV);
1776   return LV;
1777 }
1778
1779 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1780                                      const Expr *E, const FunctionDecl *FD) {
1781   llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1782   if (!FD->hasPrototype()) {
1783     if (const FunctionProtoType *Proto =
1784             FD->getType()->getAs<FunctionProtoType>()) {
1785       // Ugly case: for a K&R-style definition, the type of the definition
1786       // isn't the same as the type of a use.  Correct for this with a
1787       // bitcast.
1788       QualType NoProtoType =
1789           CGF.getContext().getFunctionNoProtoType(Proto->getReturnType());
1790       NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1791       V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1792     }
1793   }
1794   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1795   return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1796 }
1797
1798 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
1799                                       llvm::Value *ThisValue) {
1800   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
1801   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
1802   return CGF.EmitLValueForField(LV, FD);
1803 }
1804
1805 /// Named Registers are named metadata pointing to the register name
1806 /// which will be read from/written to as an argument to the intrinsic
1807 /// @llvm.read/write_register.
1808 /// So far, only the name is being passed down, but other options such as
1809 /// register type, allocation type or even optimization options could be
1810 /// passed down via the metadata node.
1811 static LValue EmitGlobalNamedRegister(const VarDecl *VD,
1812                                       CodeGenModule &CGM,
1813                                       CharUnits Alignment) {
1814   SmallString<64> Name("llvm.named.register.");
1815   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
1816   assert(Asm->getLabel().size() < 64-Name.size() &&
1817       "Register name too big");
1818   Name.append(Asm->getLabel());
1819   llvm::NamedMDNode *M =
1820     CGM.getModule().getOrInsertNamedMetadata(Name);
1821   if (M->getNumOperands() == 0) {
1822     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
1823                                               Asm->getLabel());
1824     llvm::Value *Ops[] = { Str };
1825     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
1826   }
1827   return LValue::MakeGlobalReg(M->getOperand(0), VD->getType(), Alignment);
1828 }
1829
1830 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1831   const NamedDecl *ND = E->getDecl();
1832   CharUnits Alignment = getContext().getDeclAlign(ND);
1833   QualType T = E->getType();
1834
1835   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
1836     // Global Named registers access via intrinsics only
1837     if (VD->getStorageClass() == SC_Register &&
1838         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
1839       return EmitGlobalNamedRegister(VD, CGM, Alignment);
1840
1841     // A DeclRefExpr for a reference initialized by a constant expression can
1842     // appear without being odr-used. Directly emit the constant initializer.
1843     const Expr *Init = VD->getAnyInitializer(VD);
1844     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
1845         VD->isUsableInConstantExpressions(getContext()) &&
1846         VD->checkInitIsICE()) {
1847       llvm::Constant *Val =
1848         CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
1849       assert(Val && "failed to emit reference constant expression");
1850       // FIXME: Eventually we will want to emit vector element references.
1851       return MakeAddrLValue(Val, T, Alignment);
1852     }
1853   }
1854
1855   // FIXME: We should be able to assert this for FunctionDecls as well!
1856   // FIXME: We should be able to assert this for all DeclRefExprs, not just
1857   // those with a valid source location.
1858   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
1859           !E->getLocation().isValid()) &&
1860          "Should not use decl without marking it used!");
1861
1862   if (ND->hasAttr<WeakRefAttr>()) {
1863     const auto *VD = cast<ValueDecl>(ND);
1864     llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1865     return MakeAddrLValue(Aliasee, T, Alignment);
1866   }
1867
1868   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
1869     // Check if this is a global variable.
1870     if (VD->hasLinkage() || VD->isStaticDataMember())
1871       return EmitGlobalVarDeclLValue(*this, E, VD);
1872
1873     bool isBlockVariable = VD->hasAttr<BlocksAttr>();
1874
1875     llvm::Value *V = LocalDeclMap.lookup(VD);
1876     if (!V && VD->isStaticLocal())
1877       V = CGM.getStaticLocalDeclAddress(VD);
1878
1879     // Use special handling for lambdas.
1880     if (!V) {
1881       if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) {
1882         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
1883       } else if (CapturedStmtInfo) {
1884         if (const FieldDecl *FD = CapturedStmtInfo->lookup(VD))
1885           return EmitCapturedFieldLValue(*this, FD,
1886                                          CapturedStmtInfo->getContextValue());
1887       }
1888
1889       assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal());
1890       return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable),
1891                             T, Alignment);
1892     }
1893
1894     assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1895
1896     if (isBlockVariable)
1897       V = BuildBlockByrefAddress(V, VD);
1898
1899     LValue LV;
1900     if (VD->getType()->isReferenceType()) {
1901       llvm::LoadInst *LI = Builder.CreateLoad(V);
1902       LI->setAlignment(Alignment.getQuantity());
1903       V = LI;
1904       LV = MakeNaturalAlignAddrLValue(V, T);
1905     } else {
1906       LV = MakeAddrLValue(V, T, Alignment);
1907     }
1908
1909     bool isLocalStorage = VD->hasLocalStorage();
1910
1911     bool NonGCable = isLocalStorage &&
1912                      !VD->getType()->isReferenceType() &&
1913                      !isBlockVariable;
1914     if (NonGCable) {
1915       LV.getQuals().removeObjCGCAttr();
1916       LV.setNonGC(true);
1917     }
1918
1919     bool isImpreciseLifetime =
1920       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
1921     if (isImpreciseLifetime)
1922       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
1923     setObjCGCLValueClass(getContext(), E, LV);
1924     return LV;
1925   }
1926
1927   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1928     return EmitFunctionDeclLValue(*this, E, FD);
1929
1930   llvm_unreachable("Unhandled DeclRefExpr");
1931 }
1932
1933 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1934   // __extension__ doesn't affect lvalue-ness.
1935   if (E->getOpcode() == UO_Extension)
1936     return EmitLValue(E->getSubExpr());
1937
1938   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1939   switch (E->getOpcode()) {
1940   default: llvm_unreachable("Unknown unary operator lvalue!");
1941   case UO_Deref: {
1942     QualType T = E->getSubExpr()->getType()->getPointeeType();
1943     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1944
1945     LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
1946     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
1947
1948     // We should not generate __weak write barrier on indirect reference
1949     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1950     // But, we continue to generate __strong write barrier on indirect write
1951     // into a pointer to object.
1952     if (getLangOpts().ObjC1 &&
1953         getLangOpts().getGC() != LangOptions::NonGC &&
1954         LV.isObjCWeak())
1955       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1956     return LV;
1957   }
1958   case UO_Real:
1959   case UO_Imag: {
1960     LValue LV = EmitLValue(E->getSubExpr());
1961     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
1962     llvm::Value *Addr = LV.getAddress();
1963
1964     // __real is valid on scalars.  This is a faster way of testing that.
1965     // __imag can only produce an rvalue on scalars.
1966     if (E->getOpcode() == UO_Real &&
1967         !cast<llvm::PointerType>(Addr->getType())
1968            ->getElementType()->isStructTy()) {
1969       assert(E->getSubExpr()->getType()->isArithmeticType());
1970       return LV;
1971     }
1972
1973     assert(E->getSubExpr()->getType()->isAnyComplexType());
1974
1975     unsigned Idx = E->getOpcode() == UO_Imag;
1976     return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
1977                                                   Idx, "idx"),
1978                           ExprTy);
1979   }
1980   case UO_PreInc:
1981   case UO_PreDec: {
1982     LValue LV = EmitLValue(E->getSubExpr());
1983     bool isInc = E->getOpcode() == UO_PreInc;
1984
1985     if (E->getType()->isAnyComplexType())
1986       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
1987     else
1988       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
1989     return LV;
1990   }
1991   }
1992 }
1993
1994 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1995   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
1996                         E->getType());
1997 }
1998
1999 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2000   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2001                         E->getType());
2002 }
2003
2004 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
2005                                     SmallString<32>& Target) {
2006   Target.resize(CharByteWidth * (Source.size() + 1));
2007   char *ResultPtr = &Target[0];
2008   const UTF8 *ErrorPtr;
2009   bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
2010   (void)success;
2011   assert(success);
2012   Target.resize(ResultPtr - &Target[0]);
2013 }
2014
2015 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2016   switch (E->getIdentType()) {
2017   default:
2018     return EmitUnsupportedLValue(E, "predefined expression");
2019
2020   case PredefinedExpr::Func:
2021   case PredefinedExpr::Function:
2022   case PredefinedExpr::LFunction:
2023   case PredefinedExpr::FuncDName:
2024   case PredefinedExpr::FuncSig:
2025   case PredefinedExpr::PrettyFunction: {
2026     PredefinedExpr::IdentType IdentType = E->getIdentType();
2027     std::string GVName;
2028
2029     // FIXME: We should use the string literal mangling for the Microsoft C++
2030     // ABI so that strings get merged.
2031     switch (IdentType) {
2032     default: llvm_unreachable("Invalid type");
2033     case PredefinedExpr::Func:           GVName = "__func__."; break;
2034     case PredefinedExpr::Function:       GVName = "__FUNCTION__."; break;
2035     case PredefinedExpr::FuncDName:      GVName = "__FUNCDNAME__."; break;
2036     case PredefinedExpr::FuncSig:        GVName = "__FUNCSIG__."; break;
2037     case PredefinedExpr::LFunction:      GVName = "L__FUNCTION__."; break;
2038     case PredefinedExpr::PrettyFunction: GVName = "__PRETTY_FUNCTION__."; break;
2039     }
2040
2041     StringRef FnName = CurFn->getName();
2042     if (FnName.startswith("\01"))
2043       FnName = FnName.substr(1);
2044     GVName += FnName;
2045
2046     // If this is outside of a function use the top level decl.
2047     const Decl *CurDecl = CurCodeDecl;
2048     if (!CurDecl || isa<VarDecl>(CurDecl))
2049       CurDecl = getContext().getTranslationUnitDecl();
2050
2051     const Type *ElemType = E->getType()->getArrayElementTypeNoTypeQual();
2052     std::string FunctionName;
2053     if (isa<BlockDecl>(CurDecl)) {
2054       // Blocks use the mangled function name.
2055       // FIXME: ComputeName should handle blocks.
2056       FunctionName = FnName.str();
2057     } else if (isa<CapturedDecl>(CurDecl)) {
2058       // For a captured statement, the function name is its enclosing
2059       // function name not the one compiler generated.
2060       FunctionName = PredefinedExpr::ComputeName(IdentType, CurDecl);
2061     } else {
2062       FunctionName = PredefinedExpr::ComputeName(IdentType, CurDecl);
2063       assert(cast<ConstantArrayType>(E->getType())->getSize() - 1 ==
2064                  FunctionName.size() &&
2065              "Computed __func__ length differs from type!");
2066     }
2067
2068     llvm::Constant *C;
2069     if (ElemType->isWideCharType()) {
2070       SmallString<32> RawChars;
2071       ConvertUTF8ToWideString(
2072           getContext().getTypeSizeInChars(ElemType).getQuantity(), FunctionName,
2073           RawChars);
2074       StringLiteral *SL = StringLiteral::Create(
2075           getContext(), RawChars, StringLiteral::Wide,
2076           /*Pascal = */ false, E->getType(), E->getLocation());
2077       C = CGM.GetAddrOfConstantStringFromLiteral(SL);
2078     } else {
2079       C = CGM.GetAddrOfConstantCString(FunctionName, GVName.c_str(), 1);
2080     }
2081     return MakeAddrLValue(C, E->getType());
2082   }
2083   }
2084 }
2085
2086 /// Emit a type description suitable for use by a runtime sanitizer library. The
2087 /// format of a type descriptor is
2088 ///
2089 /// \code
2090 ///   { i16 TypeKind, i16 TypeInfo }
2091 /// \endcode
2092 ///
2093 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2094 /// integer, 1 for a floating point value, and -1 for anything else.
2095 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2096   // Only emit each type's descriptor once.
2097   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2098     return C;
2099
2100   uint16_t TypeKind = -1;
2101   uint16_t TypeInfo = 0;
2102
2103   if (T->isIntegerType()) {
2104     TypeKind = 0;
2105     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2106                (T->isSignedIntegerType() ? 1 : 0);
2107   } else if (T->isFloatingType()) {
2108     TypeKind = 1;
2109     TypeInfo = getContext().getTypeSize(T);
2110   }
2111
2112   // Format the type name as if for a diagnostic, including quotes and
2113   // optionally an 'aka'.
2114   SmallString<32> Buffer;
2115   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2116                                     (intptr_t)T.getAsOpaquePtr(),
2117                                     StringRef(), StringRef(), None, Buffer,
2118                                     ArrayRef<intptr_t>());
2119
2120   llvm::Constant *Components[] = {
2121     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2122     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2123   };
2124   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2125
2126   auto *GV = new llvm::GlobalVariable(
2127       CGM.getModule(), Descriptor->getType(),
2128       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2129   GV->setUnnamedAddr(true);
2130   CGM.disableSanitizerForGlobal(GV);
2131
2132   // Remember the descriptor for this type.
2133   CGM.setTypeDescriptorInMap(T, GV);
2134
2135   return GV;
2136 }
2137
2138 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2139   llvm::Type *TargetTy = IntPtrTy;
2140
2141   // Floating-point types which fit into intptr_t are bitcast to integers
2142   // and then passed directly (after zero-extension, if necessary).
2143   if (V->getType()->isFloatingPointTy()) {
2144     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2145     if (Bits <= TargetTy->getIntegerBitWidth())
2146       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2147                                                          Bits));
2148   }
2149
2150   // Integers which fit in intptr_t are zero-extended and passed directly.
2151   if (V->getType()->isIntegerTy() &&
2152       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2153     return Builder.CreateZExt(V, TargetTy);
2154
2155   // Pointers are passed directly, everything else is passed by address.
2156   if (!V->getType()->isPointerTy()) {
2157     llvm::Value *Ptr = CreateTempAlloca(V->getType());
2158     Builder.CreateStore(V, Ptr);
2159     V = Ptr;
2160   }
2161   return Builder.CreatePtrToInt(V, TargetTy);
2162 }
2163
2164 /// \brief Emit a representation of a SourceLocation for passing to a handler
2165 /// in a sanitizer runtime library. The format for this data is:
2166 /// \code
2167 ///   struct SourceLocation {
2168 ///     const char *Filename;
2169 ///     int32_t Line, Column;
2170 ///   };
2171 /// \endcode
2172 /// For an invalid SourceLocation, the Filename pointer is null.
2173 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2174   llvm::Constant *Filename;
2175   int Line, Column;
2176
2177   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2178   if (PLoc.isValid()) {
2179     auto FilenameGV = CGM.GetAddrOfConstantCString(PLoc.getFilename(), ".src");
2180     CGM.disableSanitizerForGlobal(FilenameGV);
2181     Filename = FilenameGV;
2182     Line = PLoc.getLine();
2183     Column = PLoc.getColumn();
2184   } else {
2185     Filename = llvm::Constant::getNullValue(Int8PtrTy);
2186     Line = Column = 0;
2187   }
2188
2189   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2190                             Builder.getInt32(Column)};
2191
2192   return llvm::ConstantStruct::getAnon(Data);
2193 }
2194
2195 void CodeGenFunction::EmitCheck(llvm::Value *Checked, StringRef CheckName,
2196                                 ArrayRef<llvm::Constant *> StaticArgs,
2197                                 ArrayRef<llvm::Value *> DynamicArgs,
2198                                 CheckRecoverableKind RecoverKind) {
2199   assert(SanOpts != &SanitizerOptions::Disabled);
2200   assert(IsSanitizerScope);
2201
2202   if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) {
2203     assert (RecoverKind != CRK_AlwaysRecoverable &&
2204             "Runtime call required for AlwaysRecoverable kind!");
2205     return EmitTrapCheck(Checked);
2206   }
2207
2208   llvm::BasicBlock *Cont = createBasicBlock("cont");
2209
2210   llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName);
2211
2212   llvm::Instruction *Branch = Builder.CreateCondBr(Checked, Cont, Handler);
2213
2214   // Give hint that we very much don't expect to execute the handler
2215   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2216   llvm::MDBuilder MDHelper(getLLVMContext());
2217   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2218   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2219
2220   EmitBlock(Handler);
2221
2222   llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2223   auto *InfoPtr =
2224       new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2225                                llvm::GlobalVariable::PrivateLinkage, Info);
2226   InfoPtr->setUnnamedAddr(true);
2227   CGM.disableSanitizerForGlobal(InfoPtr);
2228
2229   SmallVector<llvm::Value *, 4> Args;
2230   SmallVector<llvm::Type *, 4> ArgTypes;
2231   Args.reserve(DynamicArgs.size() + 1);
2232   ArgTypes.reserve(DynamicArgs.size() + 1);
2233
2234   // Handler functions take an i8* pointing to the (handler-specific) static
2235   // information block, followed by a sequence of intptr_t arguments
2236   // representing operand values.
2237   Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2238   ArgTypes.push_back(Int8PtrTy);
2239   for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2240     Args.push_back(EmitCheckValue(DynamicArgs[i]));
2241     ArgTypes.push_back(IntPtrTy);
2242   }
2243
2244   bool Recover = RecoverKind == CRK_AlwaysRecoverable ||
2245                  (RecoverKind == CRK_Recoverable &&
2246                   CGM.getCodeGenOpts().SanitizeRecover);
2247
2248   llvm::FunctionType *FnType =
2249     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2250   llvm::AttrBuilder B;
2251   if (!Recover) {
2252     B.addAttribute(llvm::Attribute::NoReturn)
2253      .addAttribute(llvm::Attribute::NoUnwind);
2254   }
2255   B.addAttribute(llvm::Attribute::UWTable);
2256
2257   // Checks that have two variants use a suffix to differentiate them
2258   bool NeedsAbortSuffix = RecoverKind != CRK_Unrecoverable &&
2259                           !CGM.getCodeGenOpts().SanitizeRecover;
2260   std::string FunctionName = ("__ubsan_handle_" + CheckName +
2261                               (NeedsAbortSuffix? "_abort" : "")).str();
2262   llvm::Value *Fn = CGM.CreateRuntimeFunction(
2263       FnType, FunctionName,
2264       llvm::AttributeSet::get(getLLVMContext(),
2265                               llvm::AttributeSet::FunctionIndex, B));
2266   llvm::CallInst *HandlerCall = EmitNounwindRuntimeCall(Fn, Args);
2267   if (Recover) {
2268     Builder.CreateBr(Cont);
2269   } else {
2270     HandlerCall->setDoesNotReturn();
2271     Builder.CreateUnreachable();
2272   }
2273
2274   EmitBlock(Cont);
2275 }
2276
2277 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
2278   llvm::BasicBlock *Cont = createBasicBlock("cont");
2279
2280   // If we're optimizing, collapse all calls to trap down to just one per
2281   // function to save on code size.
2282   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
2283     TrapBB = createBasicBlock("trap");
2284     Builder.CreateCondBr(Checked, Cont, TrapBB);
2285     EmitBlock(TrapBB);
2286     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
2287     llvm::CallInst *TrapCall = Builder.CreateCall(F);
2288     TrapCall->setDoesNotReturn();
2289     TrapCall->setDoesNotThrow();
2290     Builder.CreateUnreachable();
2291   } else {
2292     Builder.CreateCondBr(Checked, Cont, TrapBB);
2293   }
2294
2295   EmitBlock(Cont);
2296 }
2297
2298 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
2299 /// array to pointer, return the array subexpression.
2300 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
2301   // If this isn't just an array->pointer decay, bail out.
2302   const auto *CE = dyn_cast<CastExpr>(E);
2303   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
2304     return nullptr;
2305
2306   // If this is a decay from variable width array, bail out.
2307   const Expr *SubExpr = CE->getSubExpr();
2308   if (SubExpr->getType()->isVariableArrayType())
2309     return nullptr;
2310
2311   return SubExpr;
2312 }
2313
2314 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2315                                                bool Accessed) {
2316   // The index must always be an integer, which is not an aggregate.  Emit it.
2317   llvm::Value *Idx = EmitScalarExpr(E->getIdx());
2318   QualType IdxTy  = E->getIdx()->getType();
2319   bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
2320
2321   if (SanOpts->ArrayBounds)
2322     EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
2323
2324   // If the base is a vector type, then we are forming a vector element lvalue
2325   // with this subscript.
2326   if (E->getBase()->getType()->isVectorType()) {
2327     // Emit the vector as an lvalue to get its address.
2328     LValue LHS = EmitLValue(E->getBase());
2329     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
2330     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
2331                                  E->getBase()->getType(), LHS.getAlignment());
2332   }
2333
2334   // Extend or truncate the index type to 32 or 64-bits.
2335   if (Idx->getType() != IntPtrTy)
2336     Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
2337
2338   // We know that the pointer points to a type of the correct size, unless the
2339   // size is a VLA or Objective-C interface.
2340   llvm::Value *Address = nullptr;
2341   CharUnits ArrayAlignment;
2342   if (const VariableArrayType *vla =
2343         getContext().getAsVariableArrayType(E->getType())) {
2344     // The base must be a pointer, which is not an aggregate.  Emit
2345     // it.  It needs to be emitted first in case it's what captures
2346     // the VLA bounds.
2347     Address = EmitScalarExpr(E->getBase());
2348
2349     // The element count here is the total number of non-VLA elements.
2350     llvm::Value *numElements = getVLASize(vla).first;
2351
2352     // Effectively, the multiply by the VLA size is part of the GEP.
2353     // GEP indexes are signed, and scaling an index isn't permitted to
2354     // signed-overflow, so we use the same semantics for our explicit
2355     // multiply.  We suppress this if overflow is not undefined behavior.
2356     if (getLangOpts().isSignedOverflowDefined()) {
2357       Idx = Builder.CreateMul(Idx, numElements);
2358       Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2359     } else {
2360       Idx = Builder.CreateNSWMul(Idx, numElements);
2361       Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
2362     }
2363   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
2364     // Indexing over an interface, as in "NSString *P; P[4];"
2365     llvm::Value *InterfaceSize =
2366       llvm::ConstantInt::get(Idx->getType(),
2367           getContext().getTypeSizeInChars(OIT).getQuantity());
2368
2369     Idx = Builder.CreateMul(Idx, InterfaceSize);
2370
2371     // The base must be a pointer, which is not an aggregate.  Emit it.
2372     llvm::Value *Base = EmitScalarExpr(E->getBase());
2373     Address = EmitCastToVoidPtr(Base);
2374     Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2375     Address = Builder.CreateBitCast(Address, Base->getType());
2376   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
2377     // If this is A[i] where A is an array, the frontend will have decayed the
2378     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
2379     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
2380     // "gep x, i" here.  Emit one "gep A, 0, i".
2381     assert(Array->getType()->isArrayType() &&
2382            "Array to pointer decay must have array source type!");
2383     LValue ArrayLV;
2384     // For simple multidimensional array indexing, set the 'accessed' flag for
2385     // better bounds-checking of the base expression.
2386     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
2387       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
2388     else
2389       ArrayLV = EmitLValue(Array);
2390     llvm::Value *ArrayPtr = ArrayLV.getAddress();
2391     llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
2392     llvm::Value *Args[] = { Zero, Idx };
2393
2394     // Propagate the alignment from the array itself to the result.
2395     ArrayAlignment = ArrayLV.getAlignment();
2396
2397     if (getLangOpts().isSignedOverflowDefined())
2398       Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
2399     else
2400       Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
2401   } else {
2402     // The base must be a pointer, which is not an aggregate.  Emit it.
2403     llvm::Value *Base = EmitScalarExpr(E->getBase());
2404     if (getLangOpts().isSignedOverflowDefined())
2405       Address = Builder.CreateGEP(Base, Idx, "arrayidx");
2406     else
2407       Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
2408   }
2409
2410   QualType T = E->getBase()->getType()->getPointeeType();
2411   assert(!T.isNull() &&
2412          "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
2413
2414
2415   // Limit the alignment to that of the result type.
2416   LValue LV;
2417   if (!ArrayAlignment.isZero()) {
2418     CharUnits Align = getContext().getTypeAlignInChars(T);
2419     ArrayAlignment = std::min(Align, ArrayAlignment);
2420     LV = MakeAddrLValue(Address, T, ArrayAlignment);
2421   } else {
2422     LV = MakeNaturalAlignAddrLValue(Address, T);
2423   }
2424
2425   LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
2426
2427   if (getLangOpts().ObjC1 &&
2428       getLangOpts().getGC() != LangOptions::NonGC) {
2429     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2430     setObjCGCLValueClass(getContext(), E, LV);
2431   }
2432   return LV;
2433 }
2434
2435 static
2436 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
2437                                        SmallVectorImpl<unsigned> &Elts) {
2438   SmallVector<llvm::Constant*, 4> CElts;
2439   for (unsigned i = 0, e = Elts.size(); i != e; ++i)
2440     CElts.push_back(Builder.getInt32(Elts[i]));
2441
2442   return llvm::ConstantVector::get(CElts);
2443 }
2444
2445 LValue CodeGenFunction::
2446 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
2447   // Emit the base vector as an l-value.
2448   LValue Base;
2449
2450   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
2451   if (E->isArrow()) {
2452     // If it is a pointer to a vector, emit the address and form an lvalue with
2453     // it.
2454     llvm::Value *Ptr = EmitScalarExpr(E->getBase());
2455     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
2456     Base = MakeAddrLValue(Ptr, PT->getPointeeType());
2457     Base.getQuals().removeObjCGCAttr();
2458   } else if (E->getBase()->isGLValue()) {
2459     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
2460     // emit the base as an lvalue.
2461     assert(E->getBase()->getType()->isVectorType());
2462     Base = EmitLValue(E->getBase());
2463   } else {
2464     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
2465     assert(E->getBase()->getType()->isVectorType() &&
2466            "Result must be a vector");
2467     llvm::Value *Vec = EmitScalarExpr(E->getBase());
2468
2469     // Store the vector to memory (because LValue wants an address).
2470     llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
2471     Builder.CreateStore(Vec, VecMem);
2472     Base = MakeAddrLValue(VecMem, E->getBase()->getType());
2473   }
2474
2475   QualType type =
2476     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
2477
2478   // Encode the element access list into a vector of unsigned indices.
2479   SmallVector<unsigned, 4> Indices;
2480   E->getEncodedElementAccess(Indices);
2481
2482   if (Base.isSimple()) {
2483     llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
2484     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
2485                                     Base.getAlignment());
2486   }
2487   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
2488
2489   llvm::Constant *BaseElts = Base.getExtVectorElts();
2490   SmallVector<llvm::Constant *, 4> CElts;
2491
2492   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
2493     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
2494   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
2495   return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type,
2496                                   Base.getAlignment());
2497 }
2498
2499 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
2500   Expr *BaseExpr = E->getBase();
2501
2502   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
2503   LValue BaseLV;
2504   if (E->isArrow()) {
2505     llvm::Value *Ptr = EmitScalarExpr(BaseExpr);
2506     QualType PtrTy = BaseExpr->getType()->getPointeeType();
2507     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy);
2508     BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy);
2509   } else
2510     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
2511
2512   NamedDecl *ND = E->getMemberDecl();
2513   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
2514     LValue LV = EmitLValueForField(BaseLV, Field);
2515     setObjCGCLValueClass(getContext(), E, LV);
2516     return LV;
2517   }
2518
2519   if (auto *VD = dyn_cast<VarDecl>(ND))
2520     return EmitGlobalVarDeclLValue(*this, E, VD);
2521
2522   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2523     return EmitFunctionDeclLValue(*this, E, FD);
2524
2525   llvm_unreachable("Unhandled member declaration!");
2526 }
2527
2528 /// Given that we are currently emitting a lambda, emit an l-value for
2529 /// one of its members.
2530 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
2531   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
2532   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
2533   QualType LambdaTagType =
2534     getContext().getTagDeclType(Field->getParent());
2535   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
2536   return EmitLValueForField(LambdaLV, Field);
2537 }
2538
2539 LValue CodeGenFunction::EmitLValueForField(LValue base,
2540                                            const FieldDecl *field) {
2541   if (field->isBitField()) {
2542     const CGRecordLayout &RL =
2543       CGM.getTypes().getCGRecordLayout(field->getParent());
2544     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
2545     llvm::Value *Addr = base.getAddress();
2546     unsigned Idx = RL.getLLVMFieldNo(field);
2547     if (Idx != 0)
2548       // For structs, we GEP to the field that the record layout suggests.
2549       Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
2550     // Get the access type.
2551     llvm::Type *PtrTy = llvm::Type::getIntNPtrTy(
2552       getLLVMContext(), Info.StorageSize,
2553       CGM.getContext().getTargetAddressSpace(base.getType()));
2554     if (Addr->getType() != PtrTy)
2555       Addr = Builder.CreateBitCast(Addr, PtrTy);
2556
2557     QualType fieldType =
2558       field->getType().withCVRQualifiers(base.getVRQualifiers());
2559     return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment());
2560   }
2561
2562   const RecordDecl *rec = field->getParent();
2563   QualType type = field->getType();
2564   CharUnits alignment = getContext().getDeclAlign(field);
2565
2566   // FIXME: It should be impossible to have an LValue without alignment for a
2567   // complete type.
2568   if (!base.getAlignment().isZero())
2569     alignment = std::min(alignment, base.getAlignment());
2570
2571   bool mayAlias = rec->hasAttr<MayAliasAttr>();
2572
2573   llvm::Value *addr = base.getAddress();
2574   unsigned cvr = base.getVRQualifiers();
2575   bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
2576   if (rec->isUnion()) {
2577     // For unions, there is no pointer adjustment.
2578     assert(!type->isReferenceType() && "union has reference member");
2579     // TODO: handle path-aware TBAA for union.
2580     TBAAPath = false;
2581   } else {
2582     // For structs, we GEP to the field that the record layout suggests.
2583     unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
2584     addr = Builder.CreateStructGEP(addr, idx, field->getName());
2585
2586     // If this is a reference field, load the reference right now.
2587     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
2588       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
2589       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
2590       load->setAlignment(alignment.getQuantity());
2591
2592       // Loading the reference will disable path-aware TBAA.
2593       TBAAPath = false;
2594       if (CGM.shouldUseTBAA()) {
2595         llvm::MDNode *tbaa;
2596         if (mayAlias)
2597           tbaa = CGM.getTBAAInfo(getContext().CharTy);
2598         else
2599           tbaa = CGM.getTBAAInfo(type);
2600         if (tbaa)
2601           CGM.DecorateInstruction(load, tbaa);
2602       }
2603
2604       addr = load;
2605       mayAlias = false;
2606       type = refType->getPointeeType();
2607       if (type->isIncompleteType())
2608         alignment = CharUnits();
2609       else
2610         alignment = getContext().getTypeAlignInChars(type);
2611       cvr = 0; // qualifiers don't recursively apply to referencee
2612     }
2613   }
2614
2615   // Make sure that the address is pointing to the right type.  This is critical
2616   // for both unions and structs.  A union needs a bitcast, a struct element
2617   // will need a bitcast if the LLVM type laid out doesn't match the desired
2618   // type.
2619   addr = EmitBitCastOfLValueToProperType(*this, addr,
2620                                          CGM.getTypes().ConvertTypeForMem(type),
2621                                          field->getName());
2622
2623   if (field->hasAttr<AnnotateAttr>())
2624     addr = EmitFieldAnnotations(field, addr);
2625
2626   LValue LV = MakeAddrLValue(addr, type, alignment);
2627   LV.getQuals().addCVRQualifiers(cvr);
2628   if (TBAAPath) {
2629     const ASTRecordLayout &Layout =
2630         getContext().getASTRecordLayout(field->getParent());
2631     // Set the base type to be the base type of the base LValue and
2632     // update offset to be relative to the base type.
2633     LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType());
2634     LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() +
2635                      Layout.getFieldOffset(field->getFieldIndex()) /
2636                                            getContext().getCharWidth());
2637   }
2638
2639   // __weak attribute on a field is ignored.
2640   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
2641     LV.getQuals().removeObjCGCAttr();
2642
2643   // Fields of may_alias structs act like 'char' for TBAA purposes.
2644   // FIXME: this should get propagated down through anonymous structs
2645   // and unions.
2646   if (mayAlias && LV.getTBAAInfo())
2647     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
2648
2649   return LV;
2650 }
2651
2652 LValue
2653 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
2654                                                   const FieldDecl *Field) {
2655   QualType FieldType = Field->getType();
2656
2657   if (!FieldType->isReferenceType())
2658     return EmitLValueForField(Base, Field);
2659
2660   const CGRecordLayout &RL =
2661     CGM.getTypes().getCGRecordLayout(Field->getParent());
2662   unsigned idx = RL.getLLVMFieldNo(Field);
2663   llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx);
2664   assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
2665
2666   // Make sure that the address is pointing to the right type.  This is critical
2667   // for both unions and structs.  A union needs a bitcast, a struct element
2668   // will need a bitcast if the LLVM type laid out doesn't match the desired
2669   // type.
2670   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
2671   V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName());
2672
2673   CharUnits Alignment = getContext().getDeclAlign(Field);
2674
2675   // FIXME: It should be impossible to have an LValue without alignment for a
2676   // complete type.
2677   if (!Base.getAlignment().isZero())
2678     Alignment = std::min(Alignment, Base.getAlignment());
2679
2680   return MakeAddrLValue(V, FieldType, Alignment);
2681 }
2682
2683 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
2684   if (E->isFileScope()) {
2685     llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
2686     return MakeAddrLValue(GlobalPtr, E->getType());
2687   }
2688   if (E->getType()->isVariablyModifiedType())
2689     // make sure to emit the VLA size.
2690     EmitVariablyModifiedType(E->getType());
2691
2692   llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
2693   const Expr *InitExpr = E->getInitializer();
2694   LValue Result = MakeAddrLValue(DeclPtr, E->getType());
2695
2696   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
2697                    /*Init*/ true);
2698
2699   return Result;
2700 }
2701
2702 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
2703   if (!E->isGLValue())
2704     // Initializing an aggregate temporary in C++11: T{...}.
2705     return EmitAggExprToLValue(E);
2706
2707   // An lvalue initializer list must be initializing a reference.
2708   assert(E->getNumInits() == 1 && "reference init with multiple values");
2709   return EmitLValue(E->getInit(0));
2710 }
2711
2712 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
2713 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
2714 /// LValue is returned and the current block has been terminated.
2715 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
2716                                                     const Expr *Operand) {
2717   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
2718     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
2719     return None;
2720   }
2721
2722   return CGF.EmitLValue(Operand);
2723 }
2724
2725 LValue CodeGenFunction::
2726 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
2727   if (!expr->isGLValue()) {
2728     // ?: here should be an aggregate.
2729     assert(hasAggregateEvaluationKind(expr->getType()) &&
2730            "Unexpected conditional operator!");
2731     return EmitAggExprToLValue(expr);
2732   }
2733
2734   OpaqueValueMapping binding(*this, expr);
2735   RegionCounter Cnt = getPGORegionCounter(expr);
2736
2737   const Expr *condExpr = expr->getCond();
2738   bool CondExprBool;
2739   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2740     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
2741     if (!CondExprBool) std::swap(live, dead);
2742
2743     if (!ContainsLabel(dead)) {
2744       // If the true case is live, we need to track its region.
2745       if (CondExprBool)
2746         Cnt.beginRegion(Builder);
2747       return EmitLValue(live);
2748     }
2749   }
2750
2751   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
2752   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
2753   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
2754
2755   ConditionalEvaluation eval(*this);
2756   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, Cnt.getCount());
2757
2758   // Any temporaries created here are conditional.
2759   EmitBlock(lhsBlock);
2760   Cnt.beginRegion(Builder);
2761   eval.begin(*this);
2762   Optional<LValue> lhs =
2763       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
2764   eval.end(*this);
2765
2766   if (lhs && !lhs->isSimple())
2767     return EmitUnsupportedLValue(expr, "conditional operator");
2768
2769   lhsBlock = Builder.GetInsertBlock();
2770   if (lhs)
2771     Builder.CreateBr(contBlock);
2772
2773   // Any temporaries created here are conditional.
2774   EmitBlock(rhsBlock);
2775   eval.begin(*this);
2776   Optional<LValue> rhs =
2777       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
2778   eval.end(*this);
2779   if (rhs && !rhs->isSimple())
2780     return EmitUnsupportedLValue(expr, "conditional operator");
2781   rhsBlock = Builder.GetInsertBlock();
2782
2783   EmitBlock(contBlock);
2784
2785   if (lhs && rhs) {
2786     llvm::PHINode *phi = Builder.CreatePHI(lhs->getAddress()->getType(),
2787                                            2, "cond-lvalue");
2788     phi->addIncoming(lhs->getAddress(), lhsBlock);
2789     phi->addIncoming(rhs->getAddress(), rhsBlock);
2790     return MakeAddrLValue(phi, expr->getType());
2791   } else {
2792     assert((lhs || rhs) &&
2793            "both operands of glvalue conditional are throw-expressions?");
2794     return lhs ? *lhs : *rhs;
2795   }
2796 }
2797
2798 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
2799 /// type. If the cast is to a reference, we can have the usual lvalue result,
2800 /// otherwise if a cast is needed by the code generator in an lvalue context,
2801 /// then it must mean that we need the address of an aggregate in order to
2802 /// access one of its members.  This can happen for all the reasons that casts
2803 /// are permitted with aggregate result, including noop aggregate casts, and
2804 /// cast from scalar to union.
2805 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
2806   switch (E->getCastKind()) {
2807   case CK_ToVoid:
2808   case CK_BitCast:
2809   case CK_ArrayToPointerDecay:
2810   case CK_FunctionToPointerDecay:
2811   case CK_NullToMemberPointer:
2812   case CK_NullToPointer:
2813   case CK_IntegralToPointer:
2814   case CK_PointerToIntegral:
2815   case CK_PointerToBoolean:
2816   case CK_VectorSplat:
2817   case CK_IntegralCast:
2818   case CK_IntegralToBoolean:
2819   case CK_IntegralToFloating:
2820   case CK_FloatingToIntegral:
2821   case CK_FloatingToBoolean:
2822   case CK_FloatingCast:
2823   case CK_FloatingRealToComplex:
2824   case CK_FloatingComplexToReal:
2825   case CK_FloatingComplexToBoolean:
2826   case CK_FloatingComplexCast:
2827   case CK_FloatingComplexToIntegralComplex:
2828   case CK_IntegralRealToComplex:
2829   case CK_IntegralComplexToReal:
2830   case CK_IntegralComplexToBoolean:
2831   case CK_IntegralComplexCast:
2832   case CK_IntegralComplexToFloatingComplex:
2833   case CK_DerivedToBaseMemberPointer:
2834   case CK_BaseToDerivedMemberPointer:
2835   case CK_MemberPointerToBoolean:
2836   case CK_ReinterpretMemberPointer:
2837   case CK_AnyPointerToBlockPointerCast:
2838   case CK_ARCProduceObject:
2839   case CK_ARCConsumeObject:
2840   case CK_ARCReclaimReturnedObject:
2841   case CK_ARCExtendBlockObject:
2842   case CK_CopyAndAutoreleaseBlockObject:
2843   case CK_AddressSpaceConversion:
2844     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
2845
2846   case CK_Dependent:
2847     llvm_unreachable("dependent cast kind in IR gen!");
2848
2849   case CK_BuiltinFnToFnPtr:
2850     llvm_unreachable("builtin functions are handled elsewhere");
2851
2852   // These are never l-values; just use the aggregate emission code.
2853   case CK_NonAtomicToAtomic:
2854   case CK_AtomicToNonAtomic:
2855     return EmitAggExprToLValue(E);
2856
2857   case CK_Dynamic: {
2858     LValue LV = EmitLValue(E->getSubExpr());
2859     llvm::Value *V = LV.getAddress();
2860     const auto *DCE = cast<CXXDynamicCastExpr>(E);
2861     return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
2862   }
2863
2864   case CK_ConstructorConversion:
2865   case CK_UserDefinedConversion:
2866   case CK_CPointerToObjCPointerCast:
2867   case CK_BlockPointerToObjCPointerCast:
2868   case CK_NoOp:
2869   case CK_LValueToRValue:
2870     return EmitLValue(E->getSubExpr());
2871
2872   case CK_UncheckedDerivedToBase:
2873   case CK_DerivedToBase: {
2874     const RecordType *DerivedClassTy =
2875       E->getSubExpr()->getType()->getAs<RecordType>();
2876     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2877
2878     LValue LV = EmitLValue(E->getSubExpr());
2879     llvm::Value *This = LV.getAddress();
2880
2881     // Perform the derived-to-base conversion
2882     llvm::Value *Base =
2883       GetAddressOfBaseClass(This, DerivedClassDecl,
2884                             E->path_begin(), E->path_end(),
2885                             /*NullCheckValue=*/false);
2886
2887     return MakeAddrLValue(Base, E->getType());
2888   }
2889   case CK_ToUnion:
2890     return EmitAggExprToLValue(E);
2891   case CK_BaseToDerived: {
2892     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
2893     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2894
2895     LValue LV = EmitLValue(E->getSubExpr());
2896
2897     // Perform the base-to-derived conversion
2898     llvm::Value *Derived =
2899       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
2900                                E->path_begin(), E->path_end(),
2901                                /*NullCheckValue=*/false);
2902
2903     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
2904     // performed and the object is not of the derived type.
2905     if (sanitizePerformTypeCheck())
2906       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
2907                     Derived, E->getType());
2908
2909     return MakeAddrLValue(Derived, E->getType());
2910   }
2911   case CK_LValueBitCast: {
2912     // This must be a reinterpret_cast (or c-style equivalent).
2913     const auto *CE = cast<ExplicitCastExpr>(E);
2914
2915     LValue LV = EmitLValue(E->getSubExpr());
2916     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2917                                            ConvertType(CE->getTypeAsWritten()));
2918     return MakeAddrLValue(V, E->getType());
2919   }
2920   case CK_ObjCObjectLValueCast: {
2921     LValue LV = EmitLValue(E->getSubExpr());
2922     QualType ToType = getContext().getLValueReferenceType(E->getType());
2923     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2924                                            ConvertType(ToType));
2925     return MakeAddrLValue(V, E->getType());
2926   }
2927   case CK_ZeroToOCLEvent:
2928     llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
2929   }
2930
2931   llvm_unreachable("Unhandled lvalue cast kind?");
2932 }
2933
2934 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
2935   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
2936   return getOpaqueLValueMapping(e);
2937 }
2938
2939 RValue CodeGenFunction::EmitRValueForField(LValue LV,
2940                                            const FieldDecl *FD,
2941                                            SourceLocation Loc) {
2942   QualType FT = FD->getType();
2943   LValue FieldLV = EmitLValueForField(LV, FD);
2944   switch (getEvaluationKind(FT)) {
2945   case TEK_Complex:
2946     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
2947   case TEK_Aggregate:
2948     return FieldLV.asAggregateRValue();
2949   case TEK_Scalar:
2950     return EmitLoadOfLValue(FieldLV, Loc);
2951   }
2952   llvm_unreachable("bad evaluation kind");
2953 }
2954
2955 //===--------------------------------------------------------------------===//
2956 //                             Expression Emission
2957 //===--------------------------------------------------------------------===//
2958
2959 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
2960                                      ReturnValueSlot ReturnValue) {
2961   if (CGDebugInfo *DI = getDebugInfo()) {
2962     SourceLocation Loc = E->getLocStart();
2963     // Force column info to be generated so we can differentiate
2964     // multiple call sites on the same line in the debug info.
2965     // FIXME: This is insufficient. Two calls coming from the same macro
2966     // expansion will still get the same line/column and break debug info. It's
2967     // possible that LLVM can be fixed to not rely on this uniqueness, at which
2968     // point this workaround can be removed.
2969     const FunctionDecl* Callee = E->getDirectCallee();
2970     bool ForceColumnInfo = Callee && Callee->isInlineSpecified();
2971     DI->EmitLocation(Builder, Loc, ForceColumnInfo);
2972   }
2973
2974   // Builtins never have block type.
2975   if (E->getCallee()->getType()->isBlockPointerType())
2976     return EmitBlockCallExpr(E, ReturnValue);
2977
2978   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
2979     return EmitCXXMemberCallExpr(CE, ReturnValue);
2980
2981   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
2982     return EmitCUDAKernelCallExpr(CE, ReturnValue);
2983
2984   const Decl *TargetDecl = E->getCalleeDecl();
2985   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
2986     if (unsigned builtinID = FD->getBuiltinID())
2987       return EmitBuiltinExpr(FD, builtinID, E);
2988   }
2989
2990   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
2991     if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
2992       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
2993
2994   if (const auto *PseudoDtor =
2995           dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
2996     QualType DestroyedType = PseudoDtor->getDestroyedType();
2997     if (getLangOpts().ObjCAutoRefCount &&
2998         DestroyedType->isObjCLifetimeType() &&
2999         (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
3000          DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
3001       // Automatic Reference Counting:
3002       //   If the pseudo-expression names a retainable object with weak or
3003       //   strong lifetime, the object shall be released.
3004       Expr *BaseExpr = PseudoDtor->getBase();
3005       llvm::Value *BaseValue = nullptr;
3006       Qualifiers BaseQuals;
3007
3008       // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
3009       if (PseudoDtor->isArrow()) {
3010         BaseValue = EmitScalarExpr(BaseExpr);
3011         const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
3012         BaseQuals = PTy->getPointeeType().getQualifiers();
3013       } else {
3014         LValue BaseLV = EmitLValue(BaseExpr);
3015         BaseValue = BaseLV.getAddress();
3016         QualType BaseTy = BaseExpr->getType();
3017         BaseQuals = BaseTy.getQualifiers();
3018       }
3019
3020       switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
3021       case Qualifiers::OCL_None:
3022       case Qualifiers::OCL_ExplicitNone:
3023       case Qualifiers::OCL_Autoreleasing:
3024         break;
3025
3026       case Qualifiers::OCL_Strong:
3027         EmitARCRelease(Builder.CreateLoad(BaseValue,
3028                           PseudoDtor->getDestroyedType().isVolatileQualified()),
3029                        ARCPreciseLifetime);
3030         break;
3031
3032       case Qualifiers::OCL_Weak:
3033         EmitARCDestroyWeak(BaseValue);
3034         break;
3035       }
3036     } else {
3037       // C++ [expr.pseudo]p1:
3038       //   The result shall only be used as the operand for the function call
3039       //   operator (), and the result of such a call has type void. The only
3040       //   effect is the evaluation of the postfix-expression before the dot or
3041       //   arrow.
3042       EmitScalarExpr(E->getCallee());
3043     }
3044
3045     return RValue::get(nullptr);
3046   }
3047
3048   llvm::Value *Callee = EmitScalarExpr(E->getCallee());
3049   return EmitCall(E->getCallee()->getType(), Callee, E->getLocStart(),
3050                   ReturnValue, E->arg_begin(), E->arg_end(), TargetDecl);
3051 }
3052
3053 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
3054   // Comma expressions just emit their LHS then their RHS as an l-value.
3055   if (E->getOpcode() == BO_Comma) {
3056     EmitIgnoredExpr(E->getLHS());
3057     EnsureInsertPoint();
3058     return EmitLValue(E->getRHS());
3059   }
3060
3061   if (E->getOpcode() == BO_PtrMemD ||
3062       E->getOpcode() == BO_PtrMemI)
3063     return EmitPointerToDataMemberBinaryExpr(E);
3064
3065   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
3066
3067   // Note that in all of these cases, __block variables need the RHS
3068   // evaluated first just in case the variable gets moved by the RHS.
3069
3070   switch (getEvaluationKind(E->getType())) {
3071   case TEK_Scalar: {
3072     switch (E->getLHS()->getType().getObjCLifetime()) {
3073     case Qualifiers::OCL_Strong:
3074       return EmitARCStoreStrong(E, /*ignored*/ false).first;
3075
3076     case Qualifiers::OCL_Autoreleasing:
3077       return EmitARCStoreAutoreleasing(E).first;
3078
3079     // No reason to do any of these differently.
3080     case Qualifiers::OCL_None:
3081     case Qualifiers::OCL_ExplicitNone:
3082     case Qualifiers::OCL_Weak:
3083       break;
3084     }
3085
3086     RValue RV = EmitAnyExpr(E->getRHS());
3087     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
3088     EmitStoreThroughLValue(RV, LV);
3089     return LV;
3090   }
3091
3092   case TEK_Complex:
3093     return EmitComplexAssignmentLValue(E);
3094
3095   case TEK_Aggregate:
3096     return EmitAggExprToLValue(E);
3097   }
3098   llvm_unreachable("bad evaluation kind");
3099 }
3100
3101 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
3102   RValue RV = EmitCallExpr(E);
3103
3104   if (!RV.isScalar())
3105     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3106
3107   assert(E->getCallReturnType()->isReferenceType() &&
3108          "Can't have a scalar return unless the return type is a "
3109          "reference type!");
3110
3111   return MakeAddrLValue(RV.getScalarVal(), E->getType());
3112 }
3113
3114 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
3115   // FIXME: This shouldn't require another copy.
3116   return EmitAggExprToLValue(E);
3117 }
3118
3119 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
3120   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
3121          && "binding l-value to type which needs a temporary");
3122   AggValueSlot Slot = CreateAggTemp(E->getType());
3123   EmitCXXConstructExpr(E, Slot);
3124   return MakeAddrLValue(Slot.getAddr(), E->getType());
3125 }
3126
3127 LValue
3128 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
3129   return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
3130 }
3131
3132 llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
3133   return Builder.CreateBitCast(CGM.GetAddrOfUuidDescriptor(E),
3134                                ConvertType(E->getType())->getPointerTo());
3135 }
3136
3137 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
3138   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType());
3139 }
3140
3141 LValue
3142 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
3143   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3144   Slot.setExternallyDestructed();
3145   EmitAggExpr(E->getSubExpr(), Slot);
3146   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
3147   return MakeAddrLValue(Slot.getAddr(), E->getType());
3148 }
3149
3150 LValue
3151 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
3152   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3153   EmitLambdaExpr(E, Slot);
3154   return MakeAddrLValue(Slot.getAddr(), E->getType());
3155 }
3156
3157 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
3158   RValue RV = EmitObjCMessageExpr(E);
3159
3160   if (!RV.isScalar())
3161     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3162
3163   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
3164          "Can't have a scalar return unless the return type is a "
3165          "reference type!");
3166
3167   return MakeAddrLValue(RV.getScalarVal(), E->getType());
3168 }
3169
3170 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
3171   llvm::Value *V =
3172     CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true);
3173   return MakeAddrLValue(V, E->getType());
3174 }
3175
3176 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3177                                              const ObjCIvarDecl *Ivar) {
3178   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
3179 }
3180
3181 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
3182                                           llvm::Value *BaseValue,
3183                                           const ObjCIvarDecl *Ivar,
3184                                           unsigned CVRQualifiers) {
3185   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
3186                                                    Ivar, CVRQualifiers);
3187 }
3188
3189 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
3190   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
3191   llvm::Value *BaseValue = nullptr;
3192   const Expr *BaseExpr = E->getBase();
3193   Qualifiers BaseQuals;
3194   QualType ObjectTy;
3195   if (E->isArrow()) {
3196     BaseValue = EmitScalarExpr(BaseExpr);
3197     ObjectTy = BaseExpr->getType()->getPointeeType();
3198     BaseQuals = ObjectTy.getQualifiers();
3199   } else {
3200     LValue BaseLV = EmitLValue(BaseExpr);
3201     // FIXME: this isn't right for bitfields.
3202     BaseValue = BaseLV.getAddress();
3203     ObjectTy = BaseExpr->getType();
3204     BaseQuals = ObjectTy.getQualifiers();
3205   }
3206
3207   LValue LV =
3208     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
3209                       BaseQuals.getCVRQualifiers());
3210   setObjCGCLValueClass(getContext(), E, LV);
3211   return LV;
3212 }
3213
3214 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
3215   // Can only get l-value for message expression returning aggregate type
3216   RValue RV = EmitAnyExprToTemp(E);
3217   return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3218 }
3219
3220 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
3221                                  SourceLocation CallLoc,
3222                                  ReturnValueSlot ReturnValue,
3223                                  CallExpr::const_arg_iterator ArgBeg,
3224                                  CallExpr::const_arg_iterator ArgEnd,
3225                                  const Decl *TargetDecl) {
3226   // Get the actual function type. The callee type will always be a pointer to
3227   // function type or a block pointer type.
3228   assert(CalleeType->isFunctionPointerType() &&
3229          "Call must have function pointer type!");
3230
3231   CalleeType = getContext().getCanonicalType(CalleeType);
3232
3233   const auto *FnType =
3234       cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
3235
3236   // Force column info to differentiate multiple inlined call sites on
3237   // the same line, analoguous to EmitCallExpr.
3238   // FIXME: This is insufficient. Two calls coming from the same macro expansion
3239   // will still get the same line/column and break debug info. It's possible
3240   // that LLVM can be fixed to not rely on this uniqueness, at which point this
3241   // workaround can be removed.
3242   bool ForceColumnInfo = false;
3243   if (const FunctionDecl* FD = dyn_cast_or_null<const FunctionDecl>(TargetDecl))
3244     ForceColumnInfo = FD->isInlineSpecified();
3245
3246   if (getLangOpts().CPlusPlus && SanOpts->Function &&
3247       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
3248     if (llvm::Constant *PrefixSig =
3249             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
3250       SanitizerScope SanScope(this);
3251       llvm::Constant *FTRTTIConst =
3252           CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true);
3253       llvm::Type *PrefixStructTyElems[] = {
3254         PrefixSig->getType(),
3255         FTRTTIConst->getType()
3256       };
3257       llvm::StructType *PrefixStructTy = llvm::StructType::get(
3258           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
3259
3260       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
3261           Callee, llvm::PointerType::getUnqual(PrefixStructTy));
3262       llvm::Value *CalleeSigPtr =
3263           Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 0);
3264       llvm::Value *CalleeSig = Builder.CreateLoad(CalleeSigPtr);
3265       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
3266
3267       llvm::BasicBlock *Cont = createBasicBlock("cont");
3268       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
3269       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
3270
3271       EmitBlock(TypeCheck);
3272       llvm::Value *CalleeRTTIPtr =
3273           Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 1);
3274       llvm::Value *CalleeRTTI = Builder.CreateLoad(CalleeRTTIPtr);
3275       llvm::Value *CalleeRTTIMatch =
3276           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
3277       llvm::Constant *StaticData[] = {
3278         EmitCheckSourceLocation(CallLoc),
3279         EmitCheckTypeDescriptor(CalleeType)
3280       };
3281       EmitCheck(CalleeRTTIMatch,
3282                 "function_type_mismatch",
3283                 StaticData,
3284                 Callee,
3285                 CRK_Recoverable);
3286
3287       Builder.CreateBr(Cont);
3288       EmitBlock(Cont);
3289     }
3290   }
3291
3292   CallArgList Args;
3293   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd,
3294                ForceColumnInfo);
3295
3296   const CGFunctionInfo &FnInfo =
3297     CGM.getTypes().arrangeFreeFunctionCall(Args, FnType);
3298
3299   // C99 6.5.2.2p6:
3300   //   If the expression that denotes the called function has a type
3301   //   that does not include a prototype, [the default argument
3302   //   promotions are performed]. If the number of arguments does not
3303   //   equal the number of parameters, the behavior is undefined. If
3304   //   the function is defined with a type that includes a prototype,
3305   //   and either the prototype ends with an ellipsis (, ...) or the
3306   //   types of the arguments after promotion are not compatible with
3307   //   the types of the parameters, the behavior is undefined. If the
3308   //   function is defined with a type that does not include a
3309   //   prototype, and the types of the arguments after promotion are
3310   //   not compatible with those of the parameters after promotion,
3311   //   the behavior is undefined [except in some trivial cases].
3312   // That is, in the general case, we should assume that a call
3313   // through an unprototyped function type works like a *non-variadic*
3314   // call.  The way we make this work is to cast to the exact type
3315   // of the promoted arguments.
3316   if (isa<FunctionNoProtoType>(FnType)) {
3317     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
3318     CalleeTy = CalleeTy->getPointerTo();
3319     Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
3320   }
3321
3322   return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
3323 }
3324
3325 LValue CodeGenFunction::
3326 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
3327   llvm::Value *BaseV;
3328   if (E->getOpcode() == BO_PtrMemI)
3329     BaseV = EmitScalarExpr(E->getLHS());
3330   else
3331     BaseV = EmitLValue(E->getLHS()).getAddress();
3332
3333   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
3334
3335   const MemberPointerType *MPT
3336     = E->getRHS()->getType()->getAs<MemberPointerType>();
3337
3338   llvm::Value *AddV = CGM.getCXXABI().EmitMemberDataPointerAddress(
3339       *this, E, BaseV, OffsetV, MPT);
3340
3341   return MakeAddrLValue(AddV, MPT->getPointeeType());
3342 }
3343
3344 /// Given the address of a temporary variable, produce an r-value of
3345 /// its type.
3346 RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr,
3347                                             QualType type,
3348                                             SourceLocation loc) {
3349   LValue lvalue = MakeNaturalAlignAddrLValue(addr, type);
3350   switch (getEvaluationKind(type)) {
3351   case TEK_Complex:
3352     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
3353   case TEK_Aggregate:
3354     return lvalue.asAggregateRValue();
3355   case TEK_Scalar:
3356     return RValue::get(EmitLoadOfScalar(lvalue, loc));
3357   }
3358   llvm_unreachable("bad evaluation kind");
3359 }
3360
3361 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
3362   assert(Val->getType()->isFPOrFPVectorTy());
3363   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
3364     return;
3365
3366   llvm::MDBuilder MDHelper(getLLVMContext());
3367   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
3368
3369   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
3370 }
3371
3372 namespace {
3373   struct LValueOrRValue {
3374     LValue LV;
3375     RValue RV;
3376   };
3377 }
3378
3379 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
3380                                            const PseudoObjectExpr *E,
3381                                            bool forLValue,
3382                                            AggValueSlot slot) {
3383   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3384
3385   // Find the result expression, if any.
3386   const Expr *resultExpr = E->getResultExpr();
3387   LValueOrRValue result;
3388
3389   for (PseudoObjectExpr::const_semantics_iterator
3390          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3391     const Expr *semantic = *i;
3392
3393     // If this semantic expression is an opaque value, bind it
3394     // to the result of its source expression.
3395     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3396
3397       // If this is the result expression, we may need to evaluate
3398       // directly into the slot.
3399       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3400       OVMA opaqueData;
3401       if (ov == resultExpr && ov->isRValue() && !forLValue &&
3402           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
3403         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
3404
3405         LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
3406         opaqueData = OVMA::bind(CGF, ov, LV);
3407         result.RV = slot.asRValue();
3408
3409       // Otherwise, emit as normal.
3410       } else {
3411         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3412
3413         // If this is the result, also evaluate the result now.
3414         if (ov == resultExpr) {
3415           if (forLValue)
3416             result.LV = CGF.EmitLValue(ov);
3417           else
3418             result.RV = CGF.EmitAnyExpr(ov, slot);
3419         }
3420       }
3421
3422       opaques.push_back(opaqueData);
3423
3424     // Otherwise, if the expression is the result, evaluate it
3425     // and remember the result.
3426     } else if (semantic == resultExpr) {
3427       if (forLValue)
3428         result.LV = CGF.EmitLValue(semantic);
3429       else
3430         result.RV = CGF.EmitAnyExpr(semantic, slot);
3431
3432     // Otherwise, evaluate the expression in an ignored context.
3433     } else {
3434       CGF.EmitIgnoredExpr(semantic);
3435     }
3436   }
3437
3438   // Unbind all the opaques now.
3439   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3440     opaques[i].unbind(CGF);
3441
3442   return result;
3443 }
3444
3445 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
3446                                                AggValueSlot slot) {
3447   return emitPseudoObjectExpr(*this, E, false, slot).RV;
3448 }
3449
3450 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
3451   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
3452 }