]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/CodeGen/CGExpr.cpp
Since contrib/libcxxrt's ancestry was never correct, subversion 1.8 and
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / CodeGen / CGExpr.cpp
1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGCall.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenModule.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/Attr.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/Frontend/CodeGenOptions.h"
27 #include "llvm/ADT/Hashing.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/IR/MDBuilder.h"
33 #include "llvm/Support/ConvertUTF.h"
34 #include "llvm/Support/MathExtras.h"
35
36 using namespace clang;
37 using namespace CodeGen;
38
39 //===--------------------------------------------------------------------===//
40 //                        Miscellaneous Helper Methods
41 //===--------------------------------------------------------------------===//
42
43 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
44   unsigned addressSpace =
45     cast<llvm::PointerType>(value->getType())->getAddressSpace();
46
47   llvm::PointerType *destType = Int8PtrTy;
48   if (addressSpace)
49     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
50
51   if (value->getType() == destType) return value;
52   return Builder.CreateBitCast(value, destType);
53 }
54
55 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
56 /// block.
57 Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
58                                           const Twine &Name) {
59   auto Alloca = CreateTempAlloca(Ty, Name);
60   Alloca->setAlignment(Align.getQuantity());
61   return Address(Alloca, Align);
62 }
63
64 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
65 /// block.
66 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
67                                                     const Twine &Name) {
68   if (!Builder.isNamePreserving())
69     return new llvm::AllocaInst(Ty, nullptr, "", AllocaInsertPt);
70   return new llvm::AllocaInst(Ty, nullptr, Name, AllocaInsertPt);
71 }
72
73 /// CreateDefaultAlignTempAlloca - This creates an alloca with the
74 /// default alignment of the corresponding LLVM type, which is *not*
75 /// guaranteed to be related in any way to the expected alignment of
76 /// an AST type that might have been lowered to Ty.
77 Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
78                                                       const Twine &Name) {
79   CharUnits Align =
80     CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlignment(Ty));
81   return CreateTempAlloca(Ty, Align, Name);
82 }
83
84 void CodeGenFunction::InitTempAlloca(Address Var, llvm::Value *Init) {
85   assert(isa<llvm::AllocaInst>(Var.getPointer()));
86   auto *Store = new llvm::StoreInst(Init, Var.getPointer());
87   Store->setAlignment(Var.getAlignment().getQuantity());
88   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
89   Block->getInstList().insertAfter(AllocaInsertPt->getIterator(), Store);
90 }
91
92 Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
93   CharUnits Align = getContext().getTypeAlignInChars(Ty);
94   return CreateTempAlloca(ConvertType(Ty), Align, Name);
95 }
96
97 Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name) {
98   // FIXME: Should we prefer the preferred type alignment here?
99   return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name);
100 }
101
102 Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
103                                        const Twine &Name) {
104   return CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name);
105 }
106
107 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
108 /// expression and compare the result against zero, returning an Int1Ty value.
109 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
110   PGO.setCurrentStmt(E);
111   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
112     llvm::Value *MemPtr = EmitScalarExpr(E);
113     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
114   }
115
116   QualType BoolTy = getContext().BoolTy;
117   SourceLocation Loc = E->getExprLoc();
118   if (!E->getType()->isAnyComplexType())
119     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
120
121   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
122                                        Loc);
123 }
124
125 /// EmitIgnoredExpr - Emit code to compute the specified expression,
126 /// ignoring the result.
127 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
128   if (E->isRValue())
129     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
130
131   // Just emit it as an l-value and drop the result.
132   EmitLValue(E);
133 }
134
135 /// EmitAnyExpr - Emit code to compute the specified expression which
136 /// can have any type.  The result is returned as an RValue struct.
137 /// If this is an aggregate expression, AggSlot indicates where the
138 /// result should be returned.
139 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
140                                     AggValueSlot aggSlot,
141                                     bool ignoreResult) {
142   switch (getEvaluationKind(E->getType())) {
143   case TEK_Scalar:
144     return RValue::get(EmitScalarExpr(E, ignoreResult));
145   case TEK_Complex:
146     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
147   case TEK_Aggregate:
148     if (!ignoreResult && aggSlot.isIgnored())
149       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
150     EmitAggExpr(E, aggSlot);
151     return aggSlot.asRValue();
152   }
153   llvm_unreachable("bad evaluation kind");
154 }
155
156 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
157 /// always be accessible even if no aggregate location is provided.
158 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
159   AggValueSlot AggSlot = AggValueSlot::ignored();
160
161   if (hasAggregateEvaluationKind(E->getType()))
162     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
163   return EmitAnyExpr(E, AggSlot);
164 }
165
166 /// EmitAnyExprToMem - Evaluate an expression into a given memory
167 /// location.
168 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
169                                        Address Location,
170                                        Qualifiers Quals,
171                                        bool IsInit) {
172   // FIXME: This function should take an LValue as an argument.
173   switch (getEvaluationKind(E->getType())) {
174   case TEK_Complex:
175     EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
176                               /*isInit*/ false);
177     return;
178
179   case TEK_Aggregate: {
180     EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
181                                          AggValueSlot::IsDestructed_t(IsInit),
182                                          AggValueSlot::DoesNotNeedGCBarriers,
183                                          AggValueSlot::IsAliased_t(!IsInit)));
184     return;
185   }
186
187   case TEK_Scalar: {
188     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
189     LValue LV = MakeAddrLValue(Location, E->getType());
190     EmitStoreThroughLValue(RV, LV);
191     return;
192   }
193   }
194   llvm_unreachable("bad evaluation kind");
195 }
196
197 static void
198 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
199                      const Expr *E, Address ReferenceTemporary) {
200   // Objective-C++ ARC:
201   //   If we are binding a reference to a temporary that has ownership, we
202   //   need to perform retain/release operations on the temporary.
203   //
204   // FIXME: This should be looking at E, not M.
205   if (auto Lifetime = M->getType().getObjCLifetime()) {
206     switch (Lifetime) {
207     case Qualifiers::OCL_None:
208     case Qualifiers::OCL_ExplicitNone:
209       // Carry on to normal cleanup handling.
210       break;
211
212     case Qualifiers::OCL_Autoreleasing:
213       // Nothing to do; cleaned up by an autorelease pool.
214       return;
215
216     case Qualifiers::OCL_Strong:
217     case Qualifiers::OCL_Weak:
218       switch (StorageDuration Duration = M->getStorageDuration()) {
219       case SD_Static:
220         // Note: we intentionally do not register a cleanup to release
221         // the object on program termination.
222         return;
223
224       case SD_Thread:
225         // FIXME: We should probably register a cleanup in this case.
226         return;
227
228       case SD_Automatic:
229       case SD_FullExpression:
230         CodeGenFunction::Destroyer *Destroy;
231         CleanupKind CleanupKind;
232         if (Lifetime == Qualifiers::OCL_Strong) {
233           const ValueDecl *VD = M->getExtendingDecl();
234           bool Precise =
235               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
236           CleanupKind = CGF.getARCCleanupKind();
237           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
238                             : &CodeGenFunction::destroyARCStrongImprecise;
239         } else {
240           // __weak objects always get EH cleanups; otherwise, exceptions
241           // could cause really nasty crashes instead of mere leaks.
242           CleanupKind = NormalAndEHCleanup;
243           Destroy = &CodeGenFunction::destroyARCWeak;
244         }
245         if (Duration == SD_FullExpression)
246           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
247                           M->getType(), *Destroy,
248                           CleanupKind & EHCleanup);
249         else
250           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
251                                           M->getType(),
252                                           *Destroy, CleanupKind & EHCleanup);
253         return;
254
255       case SD_Dynamic:
256         llvm_unreachable("temporary cannot have dynamic storage duration");
257       }
258       llvm_unreachable("unknown storage duration");
259     }
260   }
261
262   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
263   if (const RecordType *RT =
264           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
265     // Get the destructor for the reference temporary.
266     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
267     if (!ClassDecl->hasTrivialDestructor())
268       ReferenceTemporaryDtor = ClassDecl->getDestructor();
269   }
270
271   if (!ReferenceTemporaryDtor)
272     return;
273
274   // Call the destructor for the temporary.
275   switch (M->getStorageDuration()) {
276   case SD_Static:
277   case SD_Thread: {
278     llvm::Constant *CleanupFn;
279     llvm::Constant *CleanupArg;
280     if (E->getType()->isArrayType()) {
281       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
282           ReferenceTemporary, E->getType(),
283           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
284           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
285       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
286     } else {
287       CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor,
288                                                StructorType::Complete);
289       CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
290     }
291     CGF.CGM.getCXXABI().registerGlobalDtor(
292         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
293     break;
294   }
295
296   case SD_FullExpression:
297     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
298                     CodeGenFunction::destroyCXXObject,
299                     CGF.getLangOpts().Exceptions);
300     break;
301
302   case SD_Automatic:
303     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
304                                     ReferenceTemporary, E->getType(),
305                                     CodeGenFunction::destroyCXXObject,
306                                     CGF.getLangOpts().Exceptions);
307     break;
308
309   case SD_Dynamic:
310     llvm_unreachable("temporary cannot have dynamic storage duration");
311   }
312 }
313
314 static Address
315 createReferenceTemporary(CodeGenFunction &CGF,
316                          const MaterializeTemporaryExpr *M, const Expr *Inner) {
317   switch (M->getStorageDuration()) {
318   case SD_FullExpression:
319   case SD_Automatic: {
320     // If we have a constant temporary array or record try to promote it into a
321     // constant global under the same rules a normal constant would've been
322     // promoted. This is easier on the optimizer and generally emits fewer
323     // instructions.
324     QualType Ty = Inner->getType();
325     if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
326         (Ty->isArrayType() || Ty->isRecordType()) &&
327         CGF.CGM.isTypeConstant(Ty, true))
328       if (llvm::Constant *Init = CGF.CGM.EmitConstantExpr(Inner, Ty, &CGF)) {
329         auto *GV = new llvm::GlobalVariable(
330             CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
331             llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp");
332         CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
333         GV->setAlignment(alignment.getQuantity());
334         // FIXME: Should we put the new global into a COMDAT?
335         return Address(GV, alignment);
336       }
337     return CGF.CreateMemTemp(Ty, "ref.tmp");
338   }
339   case SD_Thread:
340   case SD_Static:
341     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
342
343   case SD_Dynamic:
344     llvm_unreachable("temporary can't have dynamic storage duration");
345   }
346   llvm_unreachable("unknown storage duration");
347 }
348
349 LValue CodeGenFunction::
350 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
351   const Expr *E = M->GetTemporaryExpr();
352
353     // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
354     // as that will cause the lifetime adjustment to be lost for ARC
355   auto ownership = M->getType().getObjCLifetime();
356   if (ownership != Qualifiers::OCL_None &&
357       ownership != Qualifiers::OCL_ExplicitNone) {
358     Address Object = createReferenceTemporary(*this, M, E);
359     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
360       Object = Address(llvm::ConstantExpr::getBitCast(Var,
361                            ConvertTypeForMem(E->getType())
362                              ->getPointerTo(Object.getAddressSpace())),
363                        Object.getAlignment());
364       // We should not have emitted the initializer for this temporary as a
365       // constant.
366       assert(!Var->hasInitializer());
367       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
368     }
369     LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
370                                        AlignmentSource::Decl);
371
372     switch (getEvaluationKind(E->getType())) {
373     default: llvm_unreachable("expected scalar or aggregate expression");
374     case TEK_Scalar:
375       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
376       break;
377     case TEK_Aggregate: {
378       EmitAggExpr(E, AggValueSlot::forAddr(Object,
379                                            E->getType().getQualifiers(),
380                                            AggValueSlot::IsDestructed,
381                                            AggValueSlot::DoesNotNeedGCBarriers,
382                                            AggValueSlot::IsNotAliased));
383       break;
384     }
385     }
386
387     pushTemporaryCleanup(*this, M, E, Object);
388     return RefTempDst;
389   }
390
391   SmallVector<const Expr *, 2> CommaLHSs;
392   SmallVector<SubobjectAdjustment, 2> Adjustments;
393   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
394
395   for (const auto &Ignored : CommaLHSs)
396     EmitIgnoredExpr(Ignored);
397
398   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
399     if (opaque->getType()->isRecordType()) {
400       assert(Adjustments.empty());
401       return EmitOpaqueValueLValue(opaque);
402     }
403   }
404
405   // Create and initialize the reference temporary.
406   Address Object = createReferenceTemporary(*this, M, E);
407   if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
408     Object = Address(llvm::ConstantExpr::getBitCast(
409         Var, ConvertTypeForMem(E->getType())->getPointerTo()),
410                      Object.getAlignment());
411     // If the temporary is a global and has a constant initializer or is a
412     // constant temporary that we promoted to a global, we may have already
413     // initialized it.
414     if (!Var->hasInitializer()) {
415       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
416       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
417     }
418   } else {
419     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
420   }
421   pushTemporaryCleanup(*this, M, E, Object);
422
423   // Perform derived-to-base casts and/or field accesses, to get from the
424   // temporary object we created (and, potentially, for which we extended
425   // the lifetime) to the subobject we're binding the reference to.
426   for (unsigned I = Adjustments.size(); I != 0; --I) {
427     SubobjectAdjustment &Adjustment = Adjustments[I-1];
428     switch (Adjustment.Kind) {
429     case SubobjectAdjustment::DerivedToBaseAdjustment:
430       Object =
431           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
432                                 Adjustment.DerivedToBase.BasePath->path_begin(),
433                                 Adjustment.DerivedToBase.BasePath->path_end(),
434                                 /*NullCheckValue=*/ false, E->getExprLoc());
435       break;
436
437     case SubobjectAdjustment::FieldAdjustment: {
438       LValue LV = MakeAddrLValue(Object, E->getType(),
439                                  AlignmentSource::Decl);
440       LV = EmitLValueForField(LV, Adjustment.Field);
441       assert(LV.isSimple() &&
442              "materialized temporary field is not a simple lvalue");
443       Object = LV.getAddress();
444       break;
445     }
446
447     case SubobjectAdjustment::MemberPointerAdjustment: {
448       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
449       Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
450                                                Adjustment.Ptr.MPT);
451       break;
452     }
453     }
454   }
455
456   return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
457 }
458
459 RValue
460 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
461   // Emit the expression as an lvalue.
462   LValue LV = EmitLValue(E);
463   assert(LV.isSimple());
464   llvm::Value *Value = LV.getPointer();
465
466   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
467     // C++11 [dcl.ref]p5 (as amended by core issue 453):
468     //   If a glvalue to which a reference is directly bound designates neither
469     //   an existing object or function of an appropriate type nor a region of
470     //   storage of suitable size and alignment to contain an object of the
471     //   reference's type, the behavior is undefined.
472     QualType Ty = E->getType();
473     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
474   }
475
476   return RValue::get(Value);
477 }
478
479
480 /// getAccessedFieldNo - Given an encoded value and a result number, return the
481 /// input field number being accessed.
482 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
483                                              const llvm::Constant *Elts) {
484   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
485       ->getZExtValue();
486 }
487
488 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
489 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
490                                     llvm::Value *High) {
491   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
492   llvm::Value *K47 = Builder.getInt64(47);
493   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
494   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
495   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
496   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
497   return Builder.CreateMul(B1, KMul);
498 }
499
500 bool CodeGenFunction::sanitizePerformTypeCheck() const {
501   return SanOpts.has(SanitizerKind::Null) |
502          SanOpts.has(SanitizerKind::Alignment) |
503          SanOpts.has(SanitizerKind::ObjectSize) |
504          SanOpts.has(SanitizerKind::Vptr);
505 }
506
507 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
508                                     llvm::Value *Ptr, QualType Ty,
509                                     CharUnits Alignment, bool SkipNullCheck) {
510   if (!sanitizePerformTypeCheck())
511     return;
512
513   // Don't check pointers outside the default address space. The null check
514   // isn't correct, the object-size check isn't supported by LLVM, and we can't
515   // communicate the addresses to the runtime handler for the vptr check.
516   if (Ptr->getType()->getPointerAddressSpace())
517     return;
518
519   SanitizerScope SanScope(this);
520
521   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
522   llvm::BasicBlock *Done = nullptr;
523
524   bool AllowNullPointers = TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
525                            TCK == TCK_UpcastToVirtualBase;
526   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
527       !SkipNullCheck) {
528     // The glvalue must not be an empty glvalue.
529     llvm::Value *IsNonNull = Builder.CreateIsNotNull(Ptr);
530
531     if (AllowNullPointers) {
532       // When performing pointer casts, it's OK if the value is null.
533       // Skip the remaining checks in that case.
534       Done = createBasicBlock("null");
535       llvm::BasicBlock *Rest = createBasicBlock("not.null");
536       Builder.CreateCondBr(IsNonNull, Rest, Done);
537       EmitBlock(Rest);
538     } else {
539       Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
540     }
541   }
542
543   if (SanOpts.has(SanitizerKind::ObjectSize) && !Ty->isIncompleteType()) {
544     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
545
546     // The glvalue must refer to a large enough storage region.
547     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
548     //        to check this.
549     // FIXME: Get object address space
550     llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
551     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
552     llvm::Value *Min = Builder.getFalse();
553     llvm::Value *CastAddr = Builder.CreateBitCast(Ptr, Int8PtrTy);
554     llvm::Value *LargeEnough =
555         Builder.CreateICmpUGE(Builder.CreateCall(F, {CastAddr, Min}),
556                               llvm::ConstantInt::get(IntPtrTy, Size));
557     Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
558   }
559
560   uint64_t AlignVal = 0;
561
562   if (SanOpts.has(SanitizerKind::Alignment)) {
563     AlignVal = Alignment.getQuantity();
564     if (!Ty->isIncompleteType() && !AlignVal)
565       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
566
567     // The glvalue must be suitably aligned.
568     if (AlignVal) {
569       llvm::Value *Align =
570           Builder.CreateAnd(Builder.CreatePtrToInt(Ptr, IntPtrTy),
571                             llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
572       llvm::Value *Aligned =
573         Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
574       Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
575     }
576   }
577
578   if (Checks.size() > 0) {
579     llvm::Constant *StaticData[] = {
580       EmitCheckSourceLocation(Loc),
581       EmitCheckTypeDescriptor(Ty),
582       llvm::ConstantInt::get(SizeTy, AlignVal),
583       llvm::ConstantInt::get(Int8Ty, TCK)
584     };
585     EmitCheck(Checks, "type_mismatch", StaticData, Ptr);
586   }
587
588   // If possible, check that the vptr indicates that there is a subobject of
589   // type Ty at offset zero within this object.
590   //
591   // C++11 [basic.life]p5,6:
592   //   [For storage which does not refer to an object within its lifetime]
593   //   The program has undefined behavior if:
594   //    -- the [pointer or glvalue] is used to access a non-static data member
595   //       or call a non-static member function
596   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
597   if (SanOpts.has(SanitizerKind::Vptr) &&
598       (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
599        TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
600        TCK == TCK_UpcastToVirtualBase) &&
601       RD && RD->hasDefinition() && RD->isDynamicClass()) {
602     // Compute a hash of the mangled name of the type.
603     //
604     // FIXME: This is not guaranteed to be deterministic! Move to a
605     //        fingerprinting mechanism once LLVM provides one. For the time
606     //        being the implementation happens to be deterministic.
607     SmallString<64> MangledName;
608     llvm::raw_svector_ostream Out(MangledName);
609     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
610                                                      Out);
611
612     // Blacklist based on the mangled type.
613     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
614             Out.str())) {
615       llvm::hash_code TypeHash = hash_value(Out.str());
616
617       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
618       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
619       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
620       Address VPtrAddr(Builder.CreateBitCast(Ptr, VPtrTy), getPointerAlign());
621       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
622       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
623
624       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
625       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
626
627       // Look the hash up in our cache.
628       const int CacheSize = 128;
629       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
630       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
631                                                      "__ubsan_vptr_type_cache");
632       llvm::Value *Slot = Builder.CreateAnd(Hash,
633                                             llvm::ConstantInt::get(IntPtrTy,
634                                                                    CacheSize-1));
635       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
636       llvm::Value *CacheVal =
637         Builder.CreateAlignedLoad(Builder.CreateInBoundsGEP(Cache, Indices),
638                                   getPointerAlign());
639
640       // If the hash isn't in the cache, call a runtime handler to perform the
641       // hard work of checking whether the vptr is for an object of the right
642       // type. This will either fill in the cache and return, or produce a
643       // diagnostic.
644       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
645       llvm::Constant *StaticData[] = {
646         EmitCheckSourceLocation(Loc),
647         EmitCheckTypeDescriptor(Ty),
648         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
649         llvm::ConstantInt::get(Int8Ty, TCK)
650       };
651       llvm::Value *DynamicData[] = { Ptr, Hash };
652       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
653                 "dynamic_type_cache_miss", StaticData, DynamicData);
654     }
655   }
656
657   if (Done) {
658     Builder.CreateBr(Done);
659     EmitBlock(Done);
660   }
661 }
662
663 /// Determine whether this expression refers to a flexible array member in a
664 /// struct. We disable array bounds checks for such members.
665 static bool isFlexibleArrayMemberExpr(const Expr *E) {
666   // For compatibility with existing code, we treat arrays of length 0 or
667   // 1 as flexible array members.
668   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
669   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
670     if (CAT->getSize().ugt(1))
671       return false;
672   } else if (!isa<IncompleteArrayType>(AT))
673     return false;
674
675   E = E->IgnoreParens();
676
677   // A flexible array member must be the last member in the class.
678   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
679     // FIXME: If the base type of the member expr is not FD->getParent(),
680     // this should not be treated as a flexible array member access.
681     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
682       RecordDecl::field_iterator FI(
683           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
684       return ++FI == FD->getParent()->field_end();
685     }
686   }
687
688   return false;
689 }
690
691 /// If Base is known to point to the start of an array, return the length of
692 /// that array. Return 0 if the length cannot be determined.
693 static llvm::Value *getArrayIndexingBound(
694     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
695   // For the vector indexing extension, the bound is the number of elements.
696   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
697     IndexedType = Base->getType();
698     return CGF.Builder.getInt32(VT->getNumElements());
699   }
700
701   Base = Base->IgnoreParens();
702
703   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
704     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
705         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
706       IndexedType = CE->getSubExpr()->getType();
707       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
708       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
709         return CGF.Builder.getInt(CAT->getSize());
710       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
711         return CGF.getVLASize(VAT).first;
712     }
713   }
714
715   return nullptr;
716 }
717
718 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
719                                       llvm::Value *Index, QualType IndexType,
720                                       bool Accessed) {
721   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
722          "should not be called unless adding bounds checks");
723   SanitizerScope SanScope(this);
724
725   QualType IndexedType;
726   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
727   if (!Bound)
728     return;
729
730   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
731   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
732   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
733
734   llvm::Constant *StaticData[] = {
735     EmitCheckSourceLocation(E->getExprLoc()),
736     EmitCheckTypeDescriptor(IndexedType),
737     EmitCheckTypeDescriptor(IndexType)
738   };
739   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
740                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
741   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), "out_of_bounds",
742             StaticData, Index);
743 }
744
745
746 CodeGenFunction::ComplexPairTy CodeGenFunction::
747 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
748                          bool isInc, bool isPre) {
749   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
750
751   llvm::Value *NextVal;
752   if (isa<llvm::IntegerType>(InVal.first->getType())) {
753     uint64_t AmountVal = isInc ? 1 : -1;
754     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
755
756     // Add the inc/dec to the real part.
757     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
758   } else {
759     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
760     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
761     if (!isInc)
762       FVal.changeSign();
763     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
764
765     // Add the inc/dec to the real part.
766     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
767   }
768
769   ComplexPairTy IncVal(NextVal, InVal.second);
770
771   // Store the updated result through the lvalue.
772   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
773
774   // If this is a postinc, return the value read from memory, otherwise use the
775   // updated value.
776   return isPre ? IncVal : InVal;
777 }
778
779 void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
780                                              CodeGenFunction *CGF) {
781   // Bind VLAs in the cast type.
782   if (CGF && E->getType()->isVariablyModifiedType())
783     CGF->EmitVariablyModifiedType(E->getType());
784
785   if (CGDebugInfo *DI = getModuleDebugInfo())
786     DI->EmitExplicitCastType(E->getType());
787 }
788
789 //===----------------------------------------------------------------------===//
790 //                         LValue Expression Emission
791 //===----------------------------------------------------------------------===//
792
793 /// EmitPointerWithAlignment - Given an expression of pointer type, try to
794 /// derive a more accurate bound on the alignment of the pointer.
795 Address CodeGenFunction::EmitPointerWithAlignment(const Expr *E,
796                                                   AlignmentSource  *Source) {
797   // We allow this with ObjC object pointers because of fragile ABIs.
798   assert(E->getType()->isPointerType() ||
799          E->getType()->isObjCObjectPointerType());
800   E = E->IgnoreParens();
801
802   // Casts:
803   if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
804     if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
805       CGM.EmitExplicitCastExprType(ECE, this);
806
807     switch (CE->getCastKind()) {
808     // Non-converting casts (but not C's implicit conversion from void*).
809     case CK_BitCast:
810     case CK_NoOp:
811       if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
812         if (PtrTy->getPointeeType()->isVoidType())
813           break;
814
815         AlignmentSource InnerSource;
816         Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), &InnerSource);
817         if (Source) *Source = InnerSource;
818
819         // If this is an explicit bitcast, and the source l-value is
820         // opaque, honor the alignment of the casted-to type.
821         if (isa<ExplicitCastExpr>(CE) &&
822             InnerSource != AlignmentSource::Decl) {
823           Addr = Address(Addr.getPointer(),
824                          getNaturalPointeeTypeAlignment(E->getType(), Source));
825         }
826
827         if (SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
828           if (auto PT = E->getType()->getAs<PointerType>())
829             EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr.getPointer(),
830                                       /*MayBeNull=*/true,
831                                       CodeGenFunction::CFITCK_UnrelatedCast,
832                                       CE->getLocStart());
833         }
834
835         return Builder.CreateBitCast(Addr, ConvertType(E->getType()));
836       }
837       break;
838
839     // Array-to-pointer decay.
840     case CK_ArrayToPointerDecay:
841       return EmitArrayToPointerDecay(CE->getSubExpr(), Source);
842
843     // Derived-to-base conversions.
844     case CK_UncheckedDerivedToBase:
845     case CK_DerivedToBase: {
846       Address Addr = EmitPointerWithAlignment(CE->getSubExpr(), Source);
847       auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
848       return GetAddressOfBaseClass(Addr, Derived,
849                                    CE->path_begin(), CE->path_end(),
850                                    ShouldNullCheckClassCastValue(CE),
851                                    CE->getExprLoc());
852     }
853
854     // TODO: Is there any reason to treat base-to-derived conversions
855     // specially?
856     default:
857       break;
858     }
859   }
860
861   // Unary &.
862   if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
863     if (UO->getOpcode() == UO_AddrOf) {
864       LValue LV = EmitLValue(UO->getSubExpr());
865       if (Source) *Source = LV.getAlignmentSource();
866       return LV.getAddress();
867     }
868   }
869
870   // TODO: conditional operators, comma.
871
872   // Otherwise, use the alignment of the type.
873   CharUnits Align = getNaturalPointeeTypeAlignment(E->getType(), Source);
874   return Address(EmitScalarExpr(E), Align);
875 }
876
877 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
878   if (Ty->isVoidType())
879     return RValue::get(nullptr);
880
881   switch (getEvaluationKind(Ty)) {
882   case TEK_Complex: {
883     llvm::Type *EltTy =
884       ConvertType(Ty->castAs<ComplexType>()->getElementType());
885     llvm::Value *U = llvm::UndefValue::get(EltTy);
886     return RValue::getComplex(std::make_pair(U, U));
887   }
888
889   // If this is a use of an undefined aggregate type, the aggregate must have an
890   // identifiable address.  Just because the contents of the value are undefined
891   // doesn't mean that the address can't be taken and compared.
892   case TEK_Aggregate: {
893     Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
894     return RValue::getAggregate(DestPtr);
895   }
896
897   case TEK_Scalar:
898     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
899   }
900   llvm_unreachable("bad evaluation kind");
901 }
902
903 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
904                                               const char *Name) {
905   ErrorUnsupported(E, Name);
906   return GetUndefRValue(E->getType());
907 }
908
909 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
910                                               const char *Name) {
911   ErrorUnsupported(E, Name);
912   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
913   return MakeAddrLValue(Address(llvm::UndefValue::get(Ty), CharUnits::One()),
914                         E->getType());
915 }
916
917 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
918   LValue LV;
919   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
920     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
921   else
922     LV = EmitLValue(E);
923   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
924     EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(),
925                   E->getType(), LV.getAlignment());
926   return LV;
927 }
928
929 /// EmitLValue - Emit code to compute a designator that specifies the location
930 /// of the expression.
931 ///
932 /// This can return one of two things: a simple address or a bitfield reference.
933 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
934 /// an LLVM pointer type.
935 ///
936 /// If this returns a bitfield reference, nothing about the pointee type of the
937 /// LLVM value is known: For example, it may not be a pointer to an integer.
938 ///
939 /// If this returns a normal address, and if the lvalue's C type is fixed size,
940 /// this method guarantees that the returned pointer type will point to an LLVM
941 /// type of the same size of the lvalue's type.  If the lvalue has a variable
942 /// length type, this is not possible.
943 ///
944 LValue CodeGenFunction::EmitLValue(const Expr *E) {
945   ApplyDebugLocation DL(*this, E);
946   switch (E->getStmtClass()) {
947   default: return EmitUnsupportedLValue(E, "l-value expression");
948
949   case Expr::ObjCPropertyRefExprClass:
950     llvm_unreachable("cannot emit a property reference directly");
951
952   case Expr::ObjCSelectorExprClass:
953     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
954   case Expr::ObjCIsaExprClass:
955     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
956   case Expr::BinaryOperatorClass:
957     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
958   case Expr::CompoundAssignOperatorClass: {
959     QualType Ty = E->getType();
960     if (const AtomicType *AT = Ty->getAs<AtomicType>())
961       Ty = AT->getValueType();
962     if (!Ty->isAnyComplexType())
963       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
964     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
965   }
966   case Expr::CallExprClass:
967   case Expr::CXXMemberCallExprClass:
968   case Expr::CXXOperatorCallExprClass:
969   case Expr::UserDefinedLiteralClass:
970     return EmitCallExprLValue(cast<CallExpr>(E));
971   case Expr::VAArgExprClass:
972     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
973   case Expr::DeclRefExprClass:
974     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
975   case Expr::ParenExprClass:
976     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
977   case Expr::GenericSelectionExprClass:
978     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
979   case Expr::PredefinedExprClass:
980     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
981   case Expr::StringLiteralClass:
982     return EmitStringLiteralLValue(cast<StringLiteral>(E));
983   case Expr::ObjCEncodeExprClass:
984     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
985   case Expr::PseudoObjectExprClass:
986     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
987   case Expr::InitListExprClass:
988     return EmitInitListLValue(cast<InitListExpr>(E));
989   case Expr::CXXTemporaryObjectExprClass:
990   case Expr::CXXConstructExprClass:
991     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
992   case Expr::CXXBindTemporaryExprClass:
993     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
994   case Expr::CXXUuidofExprClass:
995     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
996   case Expr::LambdaExprClass:
997     return EmitLambdaLValue(cast<LambdaExpr>(E));
998
999   case Expr::ExprWithCleanupsClass: {
1000     const auto *cleanups = cast<ExprWithCleanups>(E);
1001     enterFullExpression(cleanups);
1002     RunCleanupsScope Scope(*this);
1003     return EmitLValue(cleanups->getSubExpr());
1004   }
1005
1006   case Expr::CXXDefaultArgExprClass:
1007     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
1008   case Expr::CXXDefaultInitExprClass: {
1009     CXXDefaultInitExprScope Scope(*this);
1010     return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
1011   }
1012   case Expr::CXXTypeidExprClass:
1013     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1014
1015   case Expr::ObjCMessageExprClass:
1016     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1017   case Expr::ObjCIvarRefExprClass:
1018     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1019   case Expr::StmtExprClass:
1020     return EmitStmtExprLValue(cast<StmtExpr>(E));
1021   case Expr::UnaryOperatorClass:
1022     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1023   case Expr::ArraySubscriptExprClass:
1024     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1025   case Expr::OMPArraySectionExprClass:
1026     return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1027   case Expr::ExtVectorElementExprClass:
1028     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1029   case Expr::MemberExprClass:
1030     return EmitMemberExpr(cast<MemberExpr>(E));
1031   case Expr::CompoundLiteralExprClass:
1032     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1033   case Expr::ConditionalOperatorClass:
1034     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1035   case Expr::BinaryConditionalOperatorClass:
1036     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1037   case Expr::ChooseExprClass:
1038     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
1039   case Expr::OpaqueValueExprClass:
1040     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1041   case Expr::SubstNonTypeTemplateParmExprClass:
1042     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
1043   case Expr::ImplicitCastExprClass:
1044   case Expr::CStyleCastExprClass:
1045   case Expr::CXXFunctionalCastExprClass:
1046   case Expr::CXXStaticCastExprClass:
1047   case Expr::CXXDynamicCastExprClass:
1048   case Expr::CXXReinterpretCastExprClass:
1049   case Expr::CXXConstCastExprClass:
1050   case Expr::ObjCBridgedCastExprClass:
1051     return EmitCastLValue(cast<CastExpr>(E));
1052
1053   case Expr::MaterializeTemporaryExprClass:
1054     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1055   }
1056 }
1057
1058 /// Given an object of the given canonical type, can we safely copy a
1059 /// value out of it based on its initializer?
1060 static bool isConstantEmittableObjectType(QualType type) {
1061   assert(type.isCanonical());
1062   assert(!type->isReferenceType());
1063
1064   // Must be const-qualified but non-volatile.
1065   Qualifiers qs = type.getLocalQualifiers();
1066   if (!qs.hasConst() || qs.hasVolatile()) return false;
1067
1068   // Otherwise, all object types satisfy this except C++ classes with
1069   // mutable subobjects or non-trivial copy/destroy behavior.
1070   if (const auto *RT = dyn_cast<RecordType>(type))
1071     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1072       if (RD->hasMutableFields() || !RD->isTrivial())
1073         return false;
1074
1075   return true;
1076 }
1077
1078 /// Can we constant-emit a load of a reference to a variable of the
1079 /// given type?  This is different from predicates like
1080 /// Decl::isUsableInConstantExpressions because we do want it to apply
1081 /// in situations that don't necessarily satisfy the language's rules
1082 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1083 /// to do this with const float variables even if those variables
1084 /// aren't marked 'constexpr'.
1085 enum ConstantEmissionKind {
1086   CEK_None,
1087   CEK_AsReferenceOnly,
1088   CEK_AsValueOrReference,
1089   CEK_AsValueOnly
1090 };
1091 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1092   type = type.getCanonicalType();
1093   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1094     if (isConstantEmittableObjectType(ref->getPointeeType()))
1095       return CEK_AsValueOrReference;
1096     return CEK_AsReferenceOnly;
1097   }
1098   if (isConstantEmittableObjectType(type))
1099     return CEK_AsValueOnly;
1100   return CEK_None;
1101 }
1102
1103 /// Try to emit a reference to the given value without producing it as
1104 /// an l-value.  This is actually more than an optimization: we can't
1105 /// produce an l-value for variables that we never actually captured
1106 /// in a block or lambda, which means const int variables or constexpr
1107 /// literals or similar.
1108 CodeGenFunction::ConstantEmission
1109 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1110   ValueDecl *value = refExpr->getDecl();
1111
1112   // The value needs to be an enum constant or a constant variable.
1113   ConstantEmissionKind CEK;
1114   if (isa<ParmVarDecl>(value)) {
1115     CEK = CEK_None;
1116   } else if (auto *var = dyn_cast<VarDecl>(value)) {
1117     CEK = checkVarTypeForConstantEmission(var->getType());
1118   } else if (isa<EnumConstantDecl>(value)) {
1119     CEK = CEK_AsValueOnly;
1120   } else {
1121     CEK = CEK_None;
1122   }
1123   if (CEK == CEK_None) return ConstantEmission();
1124
1125   Expr::EvalResult result;
1126   bool resultIsReference;
1127   QualType resultType;
1128
1129   // It's best to evaluate all the way as an r-value if that's permitted.
1130   if (CEK != CEK_AsReferenceOnly &&
1131       refExpr->EvaluateAsRValue(result, getContext())) {
1132     resultIsReference = false;
1133     resultType = refExpr->getType();
1134
1135   // Otherwise, try to evaluate as an l-value.
1136   } else if (CEK != CEK_AsValueOnly &&
1137              refExpr->EvaluateAsLValue(result, getContext())) {
1138     resultIsReference = true;
1139     resultType = value->getType();
1140
1141   // Failure.
1142   } else {
1143     return ConstantEmission();
1144   }
1145
1146   // In any case, if the initializer has side-effects, abandon ship.
1147   if (result.HasSideEffects)
1148     return ConstantEmission();
1149
1150   // Emit as a constant.
1151   llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
1152
1153   // Make sure we emit a debug reference to the global variable.
1154   // This should probably fire even for
1155   if (isa<VarDecl>(value)) {
1156     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1157       EmitDeclRefExprDbgValue(refExpr, C);
1158   } else {
1159     assert(isa<EnumConstantDecl>(value));
1160     EmitDeclRefExprDbgValue(refExpr, C);
1161   }
1162
1163   // If we emitted a reference constant, we need to dereference that.
1164   if (resultIsReference)
1165     return ConstantEmission::forReference(C);
1166
1167   return ConstantEmission::forValue(C);
1168 }
1169
1170 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1171                                                SourceLocation Loc) {
1172   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1173                           lvalue.getType(), Loc, lvalue.getAlignmentSource(),
1174                           lvalue.getTBAAInfo(),
1175                           lvalue.getTBAABaseType(), lvalue.getTBAAOffset(),
1176                           lvalue.isNontemporal());
1177 }
1178
1179 static bool hasBooleanRepresentation(QualType Ty) {
1180   if (Ty->isBooleanType())
1181     return true;
1182
1183   if (const EnumType *ET = Ty->getAs<EnumType>())
1184     return ET->getDecl()->getIntegerType()->isBooleanType();
1185
1186   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1187     return hasBooleanRepresentation(AT->getValueType());
1188
1189   return false;
1190 }
1191
1192 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1193                             llvm::APInt &Min, llvm::APInt &End,
1194                             bool StrictEnums) {
1195   const EnumType *ET = Ty->getAs<EnumType>();
1196   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1197                                 ET && !ET->getDecl()->isFixed();
1198   bool IsBool = hasBooleanRepresentation(Ty);
1199   if (!IsBool && !IsRegularCPlusPlusEnum)
1200     return false;
1201
1202   if (IsBool) {
1203     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1204     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1205   } else {
1206     const EnumDecl *ED = ET->getDecl();
1207     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1208     unsigned Bitwidth = LTy->getScalarSizeInBits();
1209     unsigned NumNegativeBits = ED->getNumNegativeBits();
1210     unsigned NumPositiveBits = ED->getNumPositiveBits();
1211
1212     if (NumNegativeBits) {
1213       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1214       assert(NumBits <= Bitwidth);
1215       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1216       Min = -End;
1217     } else {
1218       assert(NumPositiveBits <= Bitwidth);
1219       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1220       Min = llvm::APInt(Bitwidth, 0);
1221     }
1222   }
1223   return true;
1224 }
1225
1226 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1227   llvm::APInt Min, End;
1228   if (!getRangeForType(*this, Ty, Min, End,
1229                        CGM.getCodeGenOpts().StrictEnums))
1230     return nullptr;
1231
1232   llvm::MDBuilder MDHelper(getLLVMContext());
1233   return MDHelper.createRange(Min, End);
1234 }
1235
1236 llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1237                                                QualType Ty,
1238                                                SourceLocation Loc,
1239                                                AlignmentSource AlignSource,
1240                                                llvm::MDNode *TBAAInfo,
1241                                                QualType TBAABaseType,
1242                                                uint64_t TBAAOffset,
1243                                                bool isNontemporal) {
1244   // For better performance, handle vector loads differently.
1245   if (Ty->isVectorType()) {
1246     const llvm::Type *EltTy = Addr.getElementType();
1247
1248     const auto *VTy = cast<llvm::VectorType>(EltTy);
1249
1250     // Handle vectors of size 3 like size 4 for better performance.
1251     if (VTy->getNumElements() == 3) {
1252
1253       // Bitcast to vec4 type.
1254       llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
1255                                                          4);
1256       Address Cast = Builder.CreateElementBitCast(Addr, vec4Ty, "castToVec4");
1257       // Now load value.
1258       llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1259
1260       // Shuffle vector to get vec3.
1261       V = Builder.CreateShuffleVector(V, llvm::UndefValue::get(vec4Ty),
1262                                       {0, 1, 2}, "extractVec");
1263       return EmitFromMemory(V, Ty);
1264     }
1265   }
1266
1267   // Atomic operations have to be done on integral types.
1268   if (Ty->isAtomicType() || typeIsSuitableForInlineAtomic(Ty, Volatile)) {
1269     LValue lvalue =
1270       LValue::MakeAddr(Addr, Ty, getContext(), AlignSource, TBAAInfo);
1271     return EmitAtomicLoad(lvalue, Loc).getScalarVal();
1272   }
1273
1274   llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1275   if (isNontemporal) {
1276     llvm::MDNode *Node = llvm::MDNode::get(
1277         Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1278     Load->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1279   }
1280   if (TBAAInfo) {
1281     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1282                                                       TBAAOffset);
1283     if (TBAAPath)
1284       CGM.DecorateInstructionWithTBAA(Load, TBAAPath,
1285                                       false /*ConvertTypeToTag*/);
1286   }
1287
1288   bool NeedsBoolCheck =
1289       SanOpts.has(SanitizerKind::Bool) && hasBooleanRepresentation(Ty);
1290   bool NeedsEnumCheck =
1291       SanOpts.has(SanitizerKind::Enum) && Ty->getAs<EnumType>();
1292   if (NeedsBoolCheck || NeedsEnumCheck) {
1293     SanitizerScope SanScope(this);
1294     llvm::APInt Min, End;
1295     if (getRangeForType(*this, Ty, Min, End, true)) {
1296       --End;
1297       llvm::Value *Check;
1298       if (!Min)
1299         Check = Builder.CreateICmpULE(
1300           Load, llvm::ConstantInt::get(getLLVMContext(), End));
1301       else {
1302         llvm::Value *Upper = Builder.CreateICmpSLE(
1303           Load, llvm::ConstantInt::get(getLLVMContext(), End));
1304         llvm::Value *Lower = Builder.CreateICmpSGE(
1305           Load, llvm::ConstantInt::get(getLLVMContext(), Min));
1306         Check = Builder.CreateAnd(Upper, Lower);
1307       }
1308       llvm::Constant *StaticArgs[] = {
1309         EmitCheckSourceLocation(Loc),
1310         EmitCheckTypeDescriptor(Ty)
1311       };
1312       SanitizerMask Kind = NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1313       EmitCheck(std::make_pair(Check, Kind), "load_invalid_value", StaticArgs,
1314                 EmitCheckValue(Load));
1315     }
1316   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1317     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1318       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1319
1320   return EmitFromMemory(Load, Ty);
1321 }
1322
1323 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1324   // Bool has a different representation in memory than in registers.
1325   if (hasBooleanRepresentation(Ty)) {
1326     // This should really always be an i1, but sometimes it's already
1327     // an i8, and it's awkward to track those cases down.
1328     if (Value->getType()->isIntegerTy(1))
1329       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1330     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1331            "wrong value rep of bool");
1332   }
1333
1334   return Value;
1335 }
1336
1337 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1338   // Bool has a different representation in memory than in registers.
1339   if (hasBooleanRepresentation(Ty)) {
1340     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1341            "wrong value rep of bool");
1342     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1343   }
1344
1345   return Value;
1346 }
1347
1348 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
1349                                         bool Volatile, QualType Ty,
1350                                         AlignmentSource AlignSource,
1351                                         llvm::MDNode *TBAAInfo,
1352                                         bool isInit, QualType TBAABaseType,
1353                                         uint64_t TBAAOffset,
1354                                         bool isNontemporal) {
1355
1356   // Handle vectors differently to get better performance.
1357   if (Ty->isVectorType()) {
1358     llvm::Type *SrcTy = Value->getType();
1359     auto *VecTy = cast<llvm::VectorType>(SrcTy);
1360     // Handle vec3 special.
1361     if (VecTy->getNumElements() == 3) {
1362       // Our source is a vec3, do a shuffle vector to make it a vec4.
1363       llvm::Constant *Mask[] = {Builder.getInt32(0), Builder.getInt32(1),
1364                                 Builder.getInt32(2),
1365                                 llvm::UndefValue::get(Builder.getInt32Ty())};
1366       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1367       Value = Builder.CreateShuffleVector(Value,
1368                                           llvm::UndefValue::get(VecTy),
1369                                           MaskV, "extractVec");
1370       SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1371     }
1372     if (Addr.getElementType() != SrcTy) {
1373       Addr = Builder.CreateElementBitCast(Addr, SrcTy, "storetmp");
1374     }
1375   }
1376
1377   Value = EmitToMemory(Value, Ty);
1378
1379   if (Ty->isAtomicType() ||
1380       (!isInit && typeIsSuitableForInlineAtomic(Ty, Volatile))) {
1381     EmitAtomicStore(RValue::get(Value),
1382                     LValue::MakeAddr(Addr, Ty, getContext(),
1383                                      AlignSource, TBAAInfo),
1384                     isInit);
1385     return;
1386   }
1387
1388   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1389   if (isNontemporal) {
1390     llvm::MDNode *Node =
1391         llvm::MDNode::get(Store->getContext(),
1392                           llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1393     Store->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
1394   }
1395   if (TBAAInfo) {
1396     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1397                                                       TBAAOffset);
1398     if (TBAAPath)
1399       CGM.DecorateInstructionWithTBAA(Store, TBAAPath,
1400                                       false /*ConvertTypeToTag*/);
1401   }
1402 }
1403
1404 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1405                                         bool isInit) {
1406   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1407                     lvalue.getType(), lvalue.getAlignmentSource(),
1408                     lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
1409                     lvalue.getTBAAOffset(), lvalue.isNontemporal());
1410 }
1411
1412 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1413 /// method emits the address of the lvalue, then loads the result as an rvalue,
1414 /// returning the rvalue.
1415 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1416   if (LV.isObjCWeak()) {
1417     // load of a __weak object.
1418     Address AddrWeakObj = LV.getAddress();
1419     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1420                                                              AddrWeakObj));
1421   }
1422   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1423     // In MRC mode, we do a load+autorelease.
1424     if (!getLangOpts().ObjCAutoRefCount) {
1425       return RValue::get(EmitARCLoadWeak(LV.getAddress()));
1426     }
1427
1428     // In ARC mode, we load retained and then consume the value.
1429     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1430     Object = EmitObjCConsumeObject(LV.getType(), Object);
1431     return RValue::get(Object);
1432   }
1433
1434   if (LV.isSimple()) {
1435     assert(!LV.getType()->isFunctionType());
1436
1437     // Everything needs a load.
1438     return RValue::get(EmitLoadOfScalar(LV, Loc));
1439   }
1440
1441   if (LV.isVectorElt()) {
1442     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
1443                                               LV.isVolatileQualified());
1444     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1445                                                     "vecext"));
1446   }
1447
1448   // If this is a reference to a subset of the elements of a vector, either
1449   // shuffle the input or extract/insert them as appropriate.
1450   if (LV.isExtVectorElt())
1451     return EmitLoadOfExtVectorElementLValue(LV);
1452
1453   // Global Register variables always invoke intrinsics
1454   if (LV.isGlobalReg())
1455     return EmitLoadOfGlobalRegLValue(LV);
1456
1457   assert(LV.isBitField() && "Unknown LValue type!");
1458   return EmitLoadOfBitfieldLValue(LV);
1459 }
1460
1461 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
1462   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1463
1464   // Get the output type.
1465   llvm::Type *ResLTy = ConvertType(LV.getType());
1466
1467   Address Ptr = LV.getBitFieldAddress();
1468   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
1469
1470   if (Info.IsSigned) {
1471     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1472     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1473     if (HighBits)
1474       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1475     if (Info.Offset + HighBits)
1476       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1477   } else {
1478     if (Info.Offset)
1479       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1480     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1481       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1482                                                               Info.Size),
1483                               "bf.clear");
1484   }
1485   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1486
1487   return RValue::get(Val);
1488 }
1489
1490 // If this is a reference to a subset of the elements of a vector, create an
1491 // appropriate shufflevector.
1492 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1493   llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
1494                                         LV.isVolatileQualified());
1495
1496   const llvm::Constant *Elts = LV.getExtVectorElts();
1497
1498   // If the result of the expression is a non-vector type, we must be extracting
1499   // a single element.  Just codegen as an extractelement.
1500   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1501   if (!ExprVT) {
1502     unsigned InIdx = getAccessedFieldNo(0, Elts);
1503     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1504     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1505   }
1506
1507   // Always use shuffle vector to try to retain the original program structure
1508   unsigned NumResultElts = ExprVT->getNumElements();
1509
1510   SmallVector<llvm::Constant*, 4> Mask;
1511   for (unsigned i = 0; i != NumResultElts; ++i)
1512     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1513
1514   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1515   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1516                                     MaskV);
1517   return RValue::get(Vec);
1518 }
1519
1520 /// @brief Generates lvalue for partial ext_vector access.
1521 Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1522   Address VectorAddress = LV.getExtVectorAddress();
1523   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1524   QualType EQT = ExprVT->getElementType();
1525   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1526   
1527   Address CastToPointerElement =
1528     Builder.CreateElementBitCast(VectorAddress, VectorElementTy,
1529                                  "conv.ptr.element");
1530   
1531   const llvm::Constant *Elts = LV.getExtVectorElts();
1532   unsigned ix = getAccessedFieldNo(0, Elts);
1533   
1534   Address VectorBasePtrPlusIx =
1535     Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
1536                                    getContext().getTypeSizeInChars(EQT),
1537                                    "vector.elt");
1538
1539   return VectorBasePtrPlusIx;
1540 }
1541
1542 /// @brief Load of global gamed gegisters are always calls to intrinsics.
1543 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1544   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1545          "Bad type for register variable");
1546   llvm::MDNode *RegName = cast<llvm::MDNode>(
1547       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1548
1549   // We accept integer and pointer types only
1550   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1551   llvm::Type *Ty = OrigTy;
1552   if (OrigTy->isPointerTy())
1553     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1554   llvm::Type *Types[] = { Ty };
1555
1556   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1557   llvm::Value *Call = Builder.CreateCall(
1558       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1559   if (OrigTy->isPointerTy())
1560     Call = Builder.CreateIntToPtr(Call, OrigTy);
1561   return RValue::get(Call);
1562 }
1563
1564
1565 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1566 /// lvalue, where both are guaranteed to the have the same type, and that type
1567 /// is 'Ty'.
1568 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1569                                              bool isInit) {
1570   if (!Dst.isSimple()) {
1571     if (Dst.isVectorElt()) {
1572       // Read/modify/write the vector, inserting the new element.
1573       llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
1574                                             Dst.isVolatileQualified());
1575       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1576                                         Dst.getVectorIdx(), "vecins");
1577       Builder.CreateStore(Vec, Dst.getVectorAddress(),
1578                           Dst.isVolatileQualified());
1579       return;
1580     }
1581
1582     // If this is an update of extended vector elements, insert them as
1583     // appropriate.
1584     if (Dst.isExtVectorElt())
1585       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1586
1587     if (Dst.isGlobalReg())
1588       return EmitStoreThroughGlobalRegLValue(Src, Dst);
1589
1590     assert(Dst.isBitField() && "Unknown LValue type");
1591     return EmitStoreThroughBitfieldLValue(Src, Dst);
1592   }
1593
1594   // There's special magic for assigning into an ARC-qualified l-value.
1595   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1596     switch (Lifetime) {
1597     case Qualifiers::OCL_None:
1598       llvm_unreachable("present but none");
1599
1600     case Qualifiers::OCL_ExplicitNone:
1601       // nothing special
1602       break;
1603
1604     case Qualifiers::OCL_Strong:
1605       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1606       return;
1607
1608     case Qualifiers::OCL_Weak:
1609       EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1610       return;
1611
1612     case Qualifiers::OCL_Autoreleasing:
1613       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1614                                                      Src.getScalarVal()));
1615       // fall into the normal path
1616       break;
1617     }
1618   }
1619
1620   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1621     // load of a __weak object.
1622     Address LvalueDst = Dst.getAddress();
1623     llvm::Value *src = Src.getScalarVal();
1624      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1625     return;
1626   }
1627
1628   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1629     // load of a __strong object.
1630     Address LvalueDst = Dst.getAddress();
1631     llvm::Value *src = Src.getScalarVal();
1632     if (Dst.isObjCIvar()) {
1633       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1634       llvm::Type *ResultType = IntPtrTy;
1635       Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
1636       llvm::Value *RHS = dst.getPointer();
1637       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1638       llvm::Value *LHS =
1639         Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
1640                                "sub.ptr.lhs.cast");
1641       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1642       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1643                                               BytesBetween);
1644     } else if (Dst.isGlobalObjCRef()) {
1645       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1646                                                 Dst.isThreadLocalRef());
1647     }
1648     else
1649       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1650     return;
1651   }
1652
1653   assert(Src.isScalar() && "Can't emit an agg store with this method");
1654   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1655 }
1656
1657 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1658                                                      llvm::Value **Result) {
1659   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1660   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1661   Address Ptr = Dst.getBitFieldAddress();
1662
1663   // Get the source value, truncated to the width of the bit-field.
1664   llvm::Value *SrcVal = Src.getScalarVal();
1665
1666   // Cast the source to the storage type and shift it into place.
1667   SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
1668                                  /*IsSigned=*/false);
1669   llvm::Value *MaskedVal = SrcVal;
1670
1671   // See if there are other bits in the bitfield's storage we'll need to load
1672   // and mask together with source before storing.
1673   if (Info.StorageSize != Info.Size) {
1674     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1675     llvm::Value *Val =
1676       Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
1677
1678     // Mask the source value as needed.
1679     if (!hasBooleanRepresentation(Dst.getType()))
1680       SrcVal = Builder.CreateAnd(SrcVal,
1681                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
1682                                                             Info.Size),
1683                                  "bf.value");
1684     MaskedVal = SrcVal;
1685     if (Info.Offset)
1686       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1687
1688     // Mask out the original value.
1689     Val = Builder.CreateAnd(Val,
1690                             ~llvm::APInt::getBitsSet(Info.StorageSize,
1691                                                      Info.Offset,
1692                                                      Info.Offset + Info.Size),
1693                             "bf.clear");
1694
1695     // Or together the unchanged values and the source value.
1696     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1697   } else {
1698     assert(Info.Offset == 0);
1699   }
1700
1701   // Write the new value back out.
1702   Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
1703
1704   // Return the new value of the bit-field, if requested.
1705   if (Result) {
1706     llvm::Value *ResultVal = MaskedVal;
1707
1708     // Sign extend the value if needed.
1709     if (Info.IsSigned) {
1710       assert(Info.Size <= Info.StorageSize);
1711       unsigned HighBits = Info.StorageSize - Info.Size;
1712       if (HighBits) {
1713         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1714         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1715       }
1716     }
1717
1718     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
1719                                       "bf.result.cast");
1720     *Result = EmitFromMemory(ResultVal, Dst.getType());
1721   }
1722 }
1723
1724 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1725                                                                LValue Dst) {
1726   // This access turns into a read/modify/write of the vector.  Load the input
1727   // value now.
1728   llvm::Value *Vec = Builder.CreateLoad(Dst.getExtVectorAddress(),
1729                                         Dst.isVolatileQualified());
1730   const llvm::Constant *Elts = Dst.getExtVectorElts();
1731
1732   llvm::Value *SrcVal = Src.getScalarVal();
1733
1734   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1735     unsigned NumSrcElts = VTy->getNumElements();
1736     unsigned NumDstElts =
1737        cast<llvm::VectorType>(Vec->getType())->getNumElements();
1738     if (NumDstElts == NumSrcElts) {
1739       // Use shuffle vector is the src and destination are the same number of
1740       // elements and restore the vector mask since it is on the side it will be
1741       // stored.
1742       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1743       for (unsigned i = 0; i != NumSrcElts; ++i)
1744         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1745
1746       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1747       Vec = Builder.CreateShuffleVector(SrcVal,
1748                                         llvm::UndefValue::get(Vec->getType()),
1749                                         MaskV);
1750     } else if (NumDstElts > NumSrcElts) {
1751       // Extended the source vector to the same length and then shuffle it
1752       // into the destination.
1753       // FIXME: since we're shuffling with undef, can we just use the indices
1754       //        into that?  This could be simpler.
1755       SmallVector<llvm::Constant*, 4> ExtMask;
1756       for (unsigned i = 0; i != NumSrcElts; ++i)
1757         ExtMask.push_back(Builder.getInt32(i));
1758       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1759       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1760       llvm::Value *ExtSrcVal =
1761         Builder.CreateShuffleVector(SrcVal,
1762                                     llvm::UndefValue::get(SrcVal->getType()),
1763                                     ExtMaskV);
1764       // build identity
1765       SmallVector<llvm::Constant*, 4> Mask;
1766       for (unsigned i = 0; i != NumDstElts; ++i)
1767         Mask.push_back(Builder.getInt32(i));
1768
1769       // When the vector size is odd and .odd or .hi is used, the last element
1770       // of the Elts constant array will be one past the size of the vector.
1771       // Ignore the last element here, if it is greater than the mask size.
1772       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
1773         NumSrcElts--;
1774
1775       // modify when what gets shuffled in
1776       for (unsigned i = 0; i != NumSrcElts; ++i)
1777         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1778       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1779       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1780     } else {
1781       // We should never shorten the vector
1782       llvm_unreachable("unexpected shorten vector length");
1783     }
1784   } else {
1785     // If the Src is a scalar (not a vector) it must be updating one element.
1786     unsigned InIdx = getAccessedFieldNo(0, Elts);
1787     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1788     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1789   }
1790
1791   Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
1792                       Dst.isVolatileQualified());
1793 }
1794
1795 /// @brief Store of global named registers are always calls to intrinsics.
1796 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
1797   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
1798          "Bad type for register variable");
1799   llvm::MDNode *RegName = cast<llvm::MDNode>(
1800       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
1801   assert(RegName && "Register LValue is not metadata");
1802
1803   // We accept integer and pointer types only
1804   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
1805   llvm::Type *Ty = OrigTy;
1806   if (OrigTy->isPointerTy())
1807     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1808   llvm::Type *Types[] = { Ty };
1809
1810   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
1811   llvm::Value *Value = Src.getScalarVal();
1812   if (OrigTy->isPointerTy())
1813     Value = Builder.CreatePtrToInt(Value, Ty);
1814   Builder.CreateCall(
1815       F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
1816 }
1817
1818 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
1819 // generating write-barries API. It is currently a global, ivar,
1820 // or neither.
1821 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1822                                  LValue &LV,
1823                                  bool IsMemberAccess=false) {
1824   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1825     return;
1826
1827   if (isa<ObjCIvarRefExpr>(E)) {
1828     QualType ExpTy = E->getType();
1829     if (IsMemberAccess && ExpTy->isPointerType()) {
1830       // If ivar is a structure pointer, assigning to field of
1831       // this struct follows gcc's behavior and makes it a non-ivar
1832       // writer-barrier conservatively.
1833       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1834       if (ExpTy->isRecordType()) {
1835         LV.setObjCIvar(false);
1836         return;
1837       }
1838     }
1839     LV.setObjCIvar(true);
1840     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
1841     LV.setBaseIvarExp(Exp->getBase());
1842     LV.setObjCArray(E->getType()->isArrayType());
1843     return;
1844   }
1845
1846   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
1847     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1848       if (VD->hasGlobalStorage()) {
1849         LV.setGlobalObjCRef(true);
1850         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
1851       }
1852     }
1853     LV.setObjCArray(E->getType()->isArrayType());
1854     return;
1855   }
1856
1857   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
1858     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1859     return;
1860   }
1861
1862   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
1863     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1864     if (LV.isObjCIvar()) {
1865       // If cast is to a structure pointer, follow gcc's behavior and make it
1866       // a non-ivar write-barrier.
1867       QualType ExpTy = E->getType();
1868       if (ExpTy->isPointerType())
1869         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1870       if (ExpTy->isRecordType())
1871         LV.setObjCIvar(false);
1872     }
1873     return;
1874   }
1875
1876   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1877     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1878     return;
1879   }
1880
1881   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1882     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1883     return;
1884   }
1885
1886   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
1887     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1888     return;
1889   }
1890
1891   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1892     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1893     return;
1894   }
1895
1896   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1897     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1898     if (LV.isObjCIvar() && !LV.isObjCArray())
1899       // Using array syntax to assigning to what an ivar points to is not
1900       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1901       LV.setObjCIvar(false);
1902     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1903       // Using array syntax to assigning to what global points to is not
1904       // same as assigning to the global itself. {id *G;} G[i] = 0;
1905       LV.setGlobalObjCRef(false);
1906     return;
1907   }
1908
1909   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
1910     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1911     // We don't know if member is an 'ivar', but this flag is looked at
1912     // only in the context of LV.isObjCIvar().
1913     LV.setObjCArray(E->getType()->isArrayType());
1914     return;
1915   }
1916 }
1917
1918 static llvm::Value *
1919 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1920                                 llvm::Value *V, llvm::Type *IRType,
1921                                 StringRef Name = StringRef()) {
1922   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1923   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1924 }
1925
1926 static LValue EmitThreadPrivateVarDeclLValue(
1927     CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
1928     llvm::Type *RealVarTy, SourceLocation Loc) {
1929   Addr = CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
1930   Addr = CGF.Builder.CreateElementBitCast(Addr, RealVarTy);
1931   return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
1932 }
1933
1934 Address CodeGenFunction::EmitLoadOfReference(Address Addr,
1935                                              const ReferenceType *RefTy,
1936                                              AlignmentSource *Source) {
1937   llvm::Value *Ptr = Builder.CreateLoad(Addr);
1938   return Address(Ptr, getNaturalTypeAlignment(RefTy->getPointeeType(),
1939                                               Source, /*forPointee*/ true));
1940   
1941 }
1942
1943 LValue CodeGenFunction::EmitLoadOfReferenceLValue(Address RefAddr,
1944                                                   const ReferenceType *RefTy) {
1945   AlignmentSource Source;
1946   Address Addr = EmitLoadOfReference(RefAddr, RefTy, &Source);
1947   return MakeAddrLValue(Addr, RefTy->getPointeeType(), Source);
1948 }
1949
1950 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1951                                       const Expr *E, const VarDecl *VD) {
1952   QualType T = E->getType();
1953
1954   // If it's thread_local, emit a call to its wrapper function instead.
1955   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
1956       CGF.CGM.getCXXABI().usesThreadWrapperFunction())
1957     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
1958
1959   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1960   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1961   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1962   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1963   Address Addr(V, Alignment);
1964   LValue LV;
1965   // Emit reference to the private copy of the variable if it is an OpenMP
1966   // threadprivate variable.
1967   if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>())
1968     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
1969                                           E->getExprLoc());
1970   if (auto RefTy = VD->getType()->getAs<ReferenceType>()) {
1971     LV = CGF.EmitLoadOfReferenceLValue(Addr, RefTy);
1972   } else {
1973     LV = CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
1974   }
1975   setObjCGCLValueClass(CGF.getContext(), E, LV);
1976   return LV;
1977 }
1978
1979 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1980                                      const Expr *E, const FunctionDecl *FD) {
1981   llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1982   if (!FD->hasPrototype()) {
1983     if (const FunctionProtoType *Proto =
1984             FD->getType()->getAs<FunctionProtoType>()) {
1985       // Ugly case: for a K&R-style definition, the type of the definition
1986       // isn't the same as the type of a use.  Correct for this with a
1987       // bitcast.
1988       QualType NoProtoType =
1989           CGF.getContext().getFunctionNoProtoType(Proto->getReturnType());
1990       NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1991       V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1992     }
1993   }
1994   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1995   return CGF.MakeAddrLValue(V, E->getType(), Alignment, AlignmentSource::Decl);
1996 }
1997
1998 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
1999                                       llvm::Value *ThisValue) {
2000   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
2001   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
2002   return CGF.EmitLValueForField(LV, FD);
2003 }
2004
2005 /// Named Registers are named metadata pointing to the register name
2006 /// which will be read from/written to as an argument to the intrinsic
2007 /// @llvm.read/write_register.
2008 /// So far, only the name is being passed down, but other options such as
2009 /// register type, allocation type or even optimization options could be
2010 /// passed down via the metadata node.
2011 static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2012   SmallString<64> Name("llvm.named.register.");
2013   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2014   assert(Asm->getLabel().size() < 64-Name.size() &&
2015       "Register name too big");
2016   Name.append(Asm->getLabel());
2017   llvm::NamedMDNode *M =
2018     CGM.getModule().getOrInsertNamedMetadata(Name);
2019   if (M->getNumOperands() == 0) {
2020     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2021                                               Asm->getLabel());
2022     llvm::Metadata *Ops[] = {Str};
2023     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2024   }
2025
2026   CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2027
2028   llvm::Value *Ptr =
2029     llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2030   return LValue::MakeGlobalReg(Address(Ptr, Alignment), VD->getType());
2031 }
2032
2033 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2034   const NamedDecl *ND = E->getDecl();
2035   QualType T = E->getType();
2036
2037   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2038     // Global Named registers access via intrinsics only
2039     if (VD->getStorageClass() == SC_Register &&
2040         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2041       return EmitGlobalNamedRegister(VD, CGM);
2042
2043     // A DeclRefExpr for a reference initialized by a constant expression can
2044     // appear without being odr-used. Directly emit the constant initializer.
2045     const Expr *Init = VD->getAnyInitializer(VD);
2046     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
2047         VD->isUsableInConstantExpressions(getContext()) &&
2048         VD->checkInitIsICE() &&
2049         // Do not emit if it is private OpenMP variable.
2050         !(E->refersToEnclosingVariableOrCapture() && CapturedStmtInfo &&
2051           LocalDeclMap.count(VD))) {
2052       llvm::Constant *Val =
2053         CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
2054       assert(Val && "failed to emit reference constant expression");
2055       // FIXME: Eventually we will want to emit vector element references.
2056
2057       // Should we be using the alignment of the constant pointer we emitted?
2058       CharUnits Alignment = getNaturalTypeAlignment(E->getType(), nullptr,
2059                                                     /*pointee*/ true);
2060
2061       return MakeAddrLValue(Address(Val, Alignment), T, AlignmentSource::Decl);
2062     }
2063
2064     // Check for captured variables.
2065     if (E->refersToEnclosingVariableOrCapture()) {
2066       if (auto *FD = LambdaCaptureFields.lookup(VD))
2067         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
2068       else if (CapturedStmtInfo) {
2069         auto it = LocalDeclMap.find(VD);
2070         if (it != LocalDeclMap.end()) {
2071           if (auto RefTy = VD->getType()->getAs<ReferenceType>()) {
2072             return EmitLoadOfReferenceLValue(it->second, RefTy);
2073           }
2074           return MakeAddrLValue(it->second, T);
2075         }
2076         LValue CapLVal =
2077             EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
2078                                     CapturedStmtInfo->getContextValue());
2079         return MakeAddrLValue(
2080             Address(CapLVal.getPointer(), getContext().getDeclAlign(VD)),
2081             CapLVal.getType(), AlignmentSource::Decl);
2082       }
2083
2084       assert(isa<BlockDecl>(CurCodeDecl));
2085       Address addr = GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>());
2086       return MakeAddrLValue(addr, T, AlignmentSource::Decl);
2087     }
2088   }
2089
2090   // FIXME: We should be able to assert this for FunctionDecls as well!
2091   // FIXME: We should be able to assert this for all DeclRefExprs, not just
2092   // those with a valid source location.
2093   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
2094           !E->getLocation().isValid()) &&
2095          "Should not use decl without marking it used!");
2096
2097   if (ND->hasAttr<WeakRefAttr>()) {
2098     const auto *VD = cast<ValueDecl>(ND);
2099     ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
2100     return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
2101   }
2102
2103   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2104     // Check if this is a global variable.
2105     if (VD->hasLinkage() || VD->isStaticDataMember())
2106       return EmitGlobalVarDeclLValue(*this, E, VD);
2107
2108     Address addr = Address::invalid();
2109
2110     // The variable should generally be present in the local decl map.
2111     auto iter = LocalDeclMap.find(VD);
2112     if (iter != LocalDeclMap.end()) {
2113       addr = iter->second;
2114
2115     // Otherwise, it might be static local we haven't emitted yet for
2116     // some reason; most likely, because it's in an outer function.
2117     } else if (VD->isStaticLocal()) {
2118       addr = Address(CGM.getOrCreateStaticVarDecl(
2119           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)),
2120                      getContext().getDeclAlign(VD));
2121
2122     // No other cases for now.
2123     } else {
2124       llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
2125     }
2126
2127
2128     // Check for OpenMP threadprivate variables.
2129     if (getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2130       return EmitThreadPrivateVarDeclLValue(
2131           *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
2132           E->getExprLoc());
2133     }
2134
2135     // Drill into block byref variables.
2136     bool isBlockByref = VD->hasAttr<BlocksAttr>();
2137     if (isBlockByref) {
2138       addr = emitBlockByrefAddress(addr, VD);
2139     }
2140
2141     // Drill into reference types.
2142     LValue LV;
2143     if (auto RefTy = VD->getType()->getAs<ReferenceType>()) {
2144       LV = EmitLoadOfReferenceLValue(addr, RefTy);
2145     } else {
2146       LV = MakeAddrLValue(addr, T, AlignmentSource::Decl);
2147     }
2148
2149     bool isLocalStorage = VD->hasLocalStorage();
2150
2151     bool NonGCable = isLocalStorage &&
2152                      !VD->getType()->isReferenceType() &&
2153                      !isBlockByref;
2154     if (NonGCable) {
2155       LV.getQuals().removeObjCGCAttr();
2156       LV.setNonGC(true);
2157     }
2158
2159     bool isImpreciseLifetime =
2160       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
2161     if (isImpreciseLifetime)
2162       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2163     setObjCGCLValueClass(getContext(), E, LV);
2164     return LV;
2165   }
2166
2167   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2168     return EmitFunctionDeclLValue(*this, E, FD);
2169
2170   llvm_unreachable("Unhandled DeclRefExpr");
2171 }
2172
2173 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2174   // __extension__ doesn't affect lvalue-ness.
2175   if (E->getOpcode() == UO_Extension)
2176     return EmitLValue(E->getSubExpr());
2177
2178   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2179   switch (E->getOpcode()) {
2180   default: llvm_unreachable("Unknown unary operator lvalue!");
2181   case UO_Deref: {
2182     QualType T = E->getSubExpr()->getType()->getPointeeType();
2183     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2184
2185     AlignmentSource AlignSource;
2186     Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &AlignSource);
2187     LValue LV = MakeAddrLValue(Addr, T, AlignSource);
2188     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2189
2190     // We should not generate __weak write barrier on indirect reference
2191     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2192     // But, we continue to generate __strong write barrier on indirect write
2193     // into a pointer to object.
2194     if (getLangOpts().ObjC1 &&
2195         getLangOpts().getGC() != LangOptions::NonGC &&
2196         LV.isObjCWeak())
2197       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2198     return LV;
2199   }
2200   case UO_Real:
2201   case UO_Imag: {
2202     LValue LV = EmitLValue(E->getSubExpr());
2203     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2204
2205     // __real is valid on scalars.  This is a faster way of testing that.
2206     // __imag can only produce an rvalue on scalars.
2207     if (E->getOpcode() == UO_Real &&
2208         !LV.getAddress().getElementType()->isStructTy()) {
2209       assert(E->getSubExpr()->getType()->isArithmeticType());
2210       return LV;
2211     }
2212
2213     assert(E->getSubExpr()->getType()->isAnyComplexType());
2214
2215     Address Component =
2216       (E->getOpcode() == UO_Real
2217          ? emitAddrOfRealComponent(LV.getAddress(), LV.getType())
2218          : emitAddrOfImagComponent(LV.getAddress(), LV.getType()));
2219     return MakeAddrLValue(Component, ExprTy, LV.getAlignmentSource());
2220   }
2221   case UO_PreInc:
2222   case UO_PreDec: {
2223     LValue LV = EmitLValue(E->getSubExpr());
2224     bool isInc = E->getOpcode() == UO_PreInc;
2225
2226     if (E->getType()->isAnyComplexType())
2227       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2228     else
2229       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2230     return LV;
2231   }
2232   }
2233 }
2234
2235 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2236   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2237                         E->getType(), AlignmentSource::Decl);
2238 }
2239
2240 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2241   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2242                         E->getType(), AlignmentSource::Decl);
2243 }
2244
2245 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2246   auto SL = E->getFunctionName();
2247   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2248   StringRef FnName = CurFn->getName();
2249   if (FnName.startswith("\01"))
2250     FnName = FnName.substr(1);
2251   StringRef NameItems[] = {
2252       PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName};
2253   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2254   if (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)) {
2255     auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str());
2256     return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2257   }
2258   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2259   return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
2260 }
2261
2262 /// Emit a type description suitable for use by a runtime sanitizer library. The
2263 /// format of a type descriptor is
2264 ///
2265 /// \code
2266 ///   { i16 TypeKind, i16 TypeInfo }
2267 /// \endcode
2268 ///
2269 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2270 /// integer, 1 for a floating point value, and -1 for anything else.
2271 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2272   // Only emit each type's descriptor once.
2273   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2274     return C;
2275
2276   uint16_t TypeKind = -1;
2277   uint16_t TypeInfo = 0;
2278
2279   if (T->isIntegerType()) {
2280     TypeKind = 0;
2281     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2282                (T->isSignedIntegerType() ? 1 : 0);
2283   } else if (T->isFloatingType()) {
2284     TypeKind = 1;
2285     TypeInfo = getContext().getTypeSize(T);
2286   }
2287
2288   // Format the type name as if for a diagnostic, including quotes and
2289   // optionally an 'aka'.
2290   SmallString<32> Buffer;
2291   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2292                                     (intptr_t)T.getAsOpaquePtr(),
2293                                     StringRef(), StringRef(), None, Buffer,
2294                                     None);
2295
2296   llvm::Constant *Components[] = {
2297     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2298     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2299   };
2300   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2301
2302   auto *GV = new llvm::GlobalVariable(
2303       CGM.getModule(), Descriptor->getType(),
2304       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2305   GV->setUnnamedAddr(true);
2306   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2307
2308   // Remember the descriptor for this type.
2309   CGM.setTypeDescriptorInMap(T, GV);
2310
2311   return GV;
2312 }
2313
2314 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2315   llvm::Type *TargetTy = IntPtrTy;
2316
2317   // Floating-point types which fit into intptr_t are bitcast to integers
2318   // and then passed directly (after zero-extension, if necessary).
2319   if (V->getType()->isFloatingPointTy()) {
2320     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2321     if (Bits <= TargetTy->getIntegerBitWidth())
2322       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2323                                                          Bits));
2324   }
2325
2326   // Integers which fit in intptr_t are zero-extended and passed directly.
2327   if (V->getType()->isIntegerTy() &&
2328       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2329     return Builder.CreateZExt(V, TargetTy);
2330
2331   // Pointers are passed directly, everything else is passed by address.
2332   if (!V->getType()->isPointerTy()) {
2333     Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
2334     Builder.CreateStore(V, Ptr);
2335     V = Ptr.getPointer();
2336   }
2337   return Builder.CreatePtrToInt(V, TargetTy);
2338 }
2339
2340 /// \brief Emit a representation of a SourceLocation for passing to a handler
2341 /// in a sanitizer runtime library. The format for this data is:
2342 /// \code
2343 ///   struct SourceLocation {
2344 ///     const char *Filename;
2345 ///     int32_t Line, Column;
2346 ///   };
2347 /// \endcode
2348 /// For an invalid SourceLocation, the Filename pointer is null.
2349 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2350   llvm::Constant *Filename;
2351   int Line, Column;
2352
2353   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2354   if (PLoc.isValid()) {
2355     auto FilenameGV = CGM.GetAddrOfConstantCString(PLoc.getFilename(), ".src");
2356     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
2357                           cast<llvm::GlobalVariable>(FilenameGV.getPointer()));
2358     Filename = FilenameGV.getPointer();
2359     Line = PLoc.getLine();
2360     Column = PLoc.getColumn();
2361   } else {
2362     Filename = llvm::Constant::getNullValue(Int8PtrTy);
2363     Line = Column = 0;
2364   }
2365
2366   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2367                             Builder.getInt32(Column)};
2368
2369   return llvm::ConstantStruct::getAnon(Data);
2370 }
2371
2372 namespace {
2373 /// \brief Specify under what conditions this check can be recovered
2374 enum class CheckRecoverableKind {
2375   /// Always terminate program execution if this check fails.
2376   Unrecoverable,
2377   /// Check supports recovering, runtime has both fatal (noreturn) and
2378   /// non-fatal handlers for this check.
2379   Recoverable,
2380   /// Runtime conditionally aborts, always need to support recovery.
2381   AlwaysRecoverable
2382 };
2383 }
2384
2385 static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
2386   assert(llvm::countPopulation(Kind) == 1);
2387   switch (Kind) {
2388   case SanitizerKind::Vptr:
2389     return CheckRecoverableKind::AlwaysRecoverable;
2390   case SanitizerKind::Return:
2391   case SanitizerKind::Unreachable:
2392     return CheckRecoverableKind::Unrecoverable;
2393   default:
2394     return CheckRecoverableKind::Recoverable;
2395   }
2396 }
2397
2398 static void emitCheckHandlerCall(CodeGenFunction &CGF,
2399                                  llvm::FunctionType *FnType,
2400                                  ArrayRef<llvm::Value *> FnArgs,
2401                                  StringRef CheckName,
2402                                  CheckRecoverableKind RecoverKind, bool IsFatal,
2403                                  llvm::BasicBlock *ContBB) {
2404   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
2405   bool NeedsAbortSuffix =
2406       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
2407   std::string FnName = ("__ubsan_handle_" + CheckName +
2408                         (NeedsAbortSuffix ? "_abort" : "")).str();
2409   bool MayReturn =
2410       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
2411
2412   llvm::AttrBuilder B;
2413   if (!MayReturn) {
2414     B.addAttribute(llvm::Attribute::NoReturn)
2415         .addAttribute(llvm::Attribute::NoUnwind);
2416   }
2417   B.addAttribute(llvm::Attribute::UWTable);
2418
2419   llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(
2420       FnType, FnName,
2421       llvm::AttributeSet::get(CGF.getLLVMContext(),
2422                               llvm::AttributeSet::FunctionIndex, B));
2423   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
2424   if (!MayReturn) {
2425     HandlerCall->setDoesNotReturn();
2426     CGF.Builder.CreateUnreachable();
2427   } else {
2428     CGF.Builder.CreateBr(ContBB);
2429   }
2430 }
2431
2432 void CodeGenFunction::EmitCheck(
2433     ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
2434     StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs,
2435     ArrayRef<llvm::Value *> DynamicArgs) {
2436   assert(IsSanitizerScope);
2437   assert(Checked.size() > 0);
2438
2439   llvm::Value *FatalCond = nullptr;
2440   llvm::Value *RecoverableCond = nullptr;
2441   llvm::Value *TrapCond = nullptr;
2442   for (int i = 0, n = Checked.size(); i < n; ++i) {
2443     llvm::Value *Check = Checked[i].first;
2444     // -fsanitize-trap= overrides -fsanitize-recover=.
2445     llvm::Value *&Cond =
2446         CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
2447             ? TrapCond
2448             : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
2449                   ? RecoverableCond
2450                   : FatalCond;
2451     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
2452   }
2453
2454   if (TrapCond)
2455     EmitTrapCheck(TrapCond);
2456   if (!FatalCond && !RecoverableCond)
2457     return;
2458
2459   llvm::Value *JointCond;
2460   if (FatalCond && RecoverableCond)
2461     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
2462   else
2463     JointCond = FatalCond ? FatalCond : RecoverableCond;
2464   assert(JointCond);
2465
2466   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
2467   assert(SanOpts.has(Checked[0].second));
2468 #ifndef NDEBUG
2469   for (int i = 1, n = Checked.size(); i < n; ++i) {
2470     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
2471            "All recoverable kinds in a single check must be same!");
2472     assert(SanOpts.has(Checked[i].second));
2473   }
2474 #endif
2475
2476   llvm::BasicBlock *Cont = createBasicBlock("cont");
2477   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
2478   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
2479   // Give hint that we very much don't expect to execute the handler
2480   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2481   llvm::MDBuilder MDHelper(getLLVMContext());
2482   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2483   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2484   EmitBlock(Handlers);
2485
2486   // Emit handler arguments and create handler function type.
2487   llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2488   auto *InfoPtr =
2489       new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2490                                llvm::GlobalVariable::PrivateLinkage, Info);
2491   InfoPtr->setUnnamedAddr(true);
2492   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
2493
2494   SmallVector<llvm::Value *, 4> Args;
2495   SmallVector<llvm::Type *, 4> ArgTypes;
2496   Args.reserve(DynamicArgs.size() + 1);
2497   ArgTypes.reserve(DynamicArgs.size() + 1);
2498
2499   // Handler functions take an i8* pointing to the (handler-specific) static
2500   // information block, followed by a sequence of intptr_t arguments
2501   // representing operand values.
2502   Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2503   ArgTypes.push_back(Int8PtrTy);
2504   for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2505     Args.push_back(EmitCheckValue(DynamicArgs[i]));
2506     ArgTypes.push_back(IntPtrTy);
2507   }
2508
2509   llvm::FunctionType *FnType =
2510     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2511
2512   if (!FatalCond || !RecoverableCond) {
2513     // Simple case: we need to generate a single handler call, either
2514     // fatal, or non-fatal.
2515     emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind,
2516                          (FatalCond != nullptr), Cont);
2517   } else {
2518     // Emit two handler calls: first one for set of unrecoverable checks,
2519     // another one for recoverable.
2520     llvm::BasicBlock *NonFatalHandlerBB =
2521         createBasicBlock("non_fatal." + CheckName);
2522     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
2523     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
2524     EmitBlock(FatalHandlerBB);
2525     emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, true,
2526                          NonFatalHandlerBB);
2527     EmitBlock(NonFatalHandlerBB);
2528     emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, false,
2529                          Cont);
2530   }
2531
2532   EmitBlock(Cont);
2533 }
2534
2535 void CodeGenFunction::EmitCfiSlowPathCheck(llvm::Value *Cond,
2536                                            llvm::ConstantInt *TypeId,
2537                                            llvm::Value *Ptr) {
2538   auto &Ctx = getLLVMContext();
2539   llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
2540
2541   llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
2542   llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
2543
2544   llvm::MDBuilder MDHelper(getLLVMContext());
2545   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2546   BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
2547
2548   EmitBlock(CheckBB);
2549
2550   llvm::Constant *SlowPathFn = CGM.getModule().getOrInsertFunction(
2551       "__cfi_slowpath",
2552       llvm::FunctionType::get(
2553           llvm::Type::getVoidTy(Ctx),
2554           {llvm::Type::getInt64Ty(Ctx),
2555            llvm::PointerType::getUnqual(llvm::Type::getInt8Ty(Ctx))},
2556           false));
2557   llvm::CallInst *CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
2558   CheckCall->setDoesNotThrow();
2559
2560   EmitBlock(Cont);
2561 }
2562
2563 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
2564   llvm::BasicBlock *Cont = createBasicBlock("cont");
2565
2566   // If we're optimizing, collapse all calls to trap down to just one per
2567   // function to save on code size.
2568   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
2569     TrapBB = createBasicBlock("trap");
2570     Builder.CreateCondBr(Checked, Cont, TrapBB);
2571     EmitBlock(TrapBB);
2572     llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
2573     TrapCall->setDoesNotReturn();
2574     TrapCall->setDoesNotThrow();
2575     Builder.CreateUnreachable();
2576   } else {
2577     Builder.CreateCondBr(Checked, Cont, TrapBB);
2578   }
2579
2580   EmitBlock(Cont);
2581 }
2582
2583 llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
2584   llvm::CallInst *TrapCall = Builder.CreateCall(CGM.getIntrinsic(IntrID));
2585
2586   if (!CGM.getCodeGenOpts().TrapFuncName.empty())
2587     TrapCall->addAttribute(llvm::AttributeSet::FunctionIndex,
2588                            "trap-func-name",
2589                            CGM.getCodeGenOpts().TrapFuncName);
2590
2591   return TrapCall;
2592 }
2593
2594 Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
2595                                                  AlignmentSource *AlignSource) {
2596   assert(E->getType()->isArrayType() &&
2597          "Array to pointer decay must have array source type!");
2598
2599   // Expressions of array type can't be bitfields or vector elements.
2600   LValue LV = EmitLValue(E);
2601   Address Addr = LV.getAddress();
2602   if (AlignSource) *AlignSource = LV.getAlignmentSource();
2603
2604   // If the array type was an incomplete type, we need to make sure
2605   // the decay ends up being the right type.
2606   llvm::Type *NewTy = ConvertType(E->getType());
2607   Addr = Builder.CreateElementBitCast(Addr, NewTy);
2608
2609   // Note that VLA pointers are always decayed, so we don't need to do
2610   // anything here.
2611   if (!E->getType()->isVariableArrayType()) {
2612     assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
2613            "Expected pointer to array");
2614     Addr = Builder.CreateStructGEP(Addr, 0, CharUnits::Zero(), "arraydecay");
2615   }
2616
2617   QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
2618   return Builder.CreateElementBitCast(Addr, ConvertTypeForMem(EltType));
2619 }
2620
2621 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
2622 /// array to pointer, return the array subexpression.
2623 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
2624   // If this isn't just an array->pointer decay, bail out.
2625   const auto *CE = dyn_cast<CastExpr>(E);
2626   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
2627     return nullptr;
2628
2629   // If this is a decay from variable width array, bail out.
2630   const Expr *SubExpr = CE->getSubExpr();
2631   if (SubExpr->getType()->isVariableArrayType())
2632     return nullptr;
2633
2634   return SubExpr;
2635 }
2636
2637 static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
2638                                           llvm::Value *ptr,
2639                                           ArrayRef<llvm::Value*> indices,
2640                                           bool inbounds,
2641                                     const llvm::Twine &name = "arrayidx") {
2642   if (inbounds) {
2643     return CGF.Builder.CreateInBoundsGEP(ptr, indices, name);
2644   } else {
2645     return CGF.Builder.CreateGEP(ptr, indices, name);
2646   }
2647 }
2648
2649 static CharUnits getArrayElementAlign(CharUnits arrayAlign,
2650                                       llvm::Value *idx,
2651                                       CharUnits eltSize) {
2652   // If we have a constant index, we can use the exact offset of the
2653   // element we're accessing.
2654   if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
2655     CharUnits offset = constantIdx->getZExtValue() * eltSize;
2656     return arrayAlign.alignmentAtOffset(offset);
2657
2658   // Otherwise, use the worst-case alignment for any element.
2659   } else {
2660     return arrayAlign.alignmentOfArrayElement(eltSize);
2661   }
2662 }
2663
2664 static QualType getFixedSizeElementType(const ASTContext &ctx,
2665                                         const VariableArrayType *vla) {
2666   QualType eltType;
2667   do {
2668     eltType = vla->getElementType();
2669   } while ((vla = ctx.getAsVariableArrayType(eltType)));
2670   return eltType;
2671 }
2672
2673 static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
2674                                      ArrayRef<llvm::Value*> indices,
2675                                      QualType eltType, bool inbounds,
2676                                      const llvm::Twine &name = "arrayidx") {
2677   // All the indices except that last must be zero.
2678 #ifndef NDEBUG
2679   for (auto idx : indices.drop_back())
2680     assert(isa<llvm::ConstantInt>(idx) &&
2681            cast<llvm::ConstantInt>(idx)->isZero());
2682 #endif  
2683
2684   // Determine the element size of the statically-sized base.  This is
2685   // the thing that the indices are expressed in terms of.
2686   if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
2687     eltType = getFixedSizeElementType(CGF.getContext(), vla);
2688   }
2689
2690   // We can use that to compute the best alignment of the element.
2691   CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
2692   CharUnits eltAlign =
2693     getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
2694
2695   llvm::Value *eltPtr =
2696     emitArraySubscriptGEP(CGF, addr.getPointer(), indices, inbounds, name);
2697   return Address(eltPtr, eltAlign);
2698 }
2699
2700 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2701                                                bool Accessed) {
2702   // The index must always be an integer, which is not an aggregate.  Emit it.
2703   llvm::Value *Idx = EmitScalarExpr(E->getIdx());
2704   QualType IdxTy  = E->getIdx()->getType();
2705   bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
2706
2707   if (SanOpts.has(SanitizerKind::ArrayBounds))
2708     EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
2709
2710   // If the base is a vector type, then we are forming a vector element lvalue
2711   // with this subscript.
2712   if (E->getBase()->getType()->isVectorType() &&
2713       !isa<ExtVectorElementExpr>(E->getBase())) {
2714     // Emit the vector as an lvalue to get its address.
2715     LValue LHS = EmitLValue(E->getBase());
2716     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
2717     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
2718                                  E->getBase()->getType(),
2719                                  LHS.getAlignmentSource());
2720   }
2721
2722   // All the other cases basically behave like simple offsetting.
2723
2724   // Extend or truncate the index type to 32 or 64-bits.
2725   if (Idx->getType() != IntPtrTy)
2726     Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
2727
2728   // Handle the extvector case we ignored above.
2729   if (isa<ExtVectorElementExpr>(E->getBase())) {
2730     LValue LV = EmitLValue(E->getBase());
2731     Address Addr = EmitExtVectorElementLValue(LV);
2732
2733     QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
2734     Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true);
2735     return MakeAddrLValue(Addr, EltType, LV.getAlignmentSource());
2736   }
2737
2738   AlignmentSource AlignSource;
2739   Address Addr = Address::invalid();
2740   if (const VariableArrayType *vla =
2741            getContext().getAsVariableArrayType(E->getType())) {
2742     // The base must be a pointer, which is not an aggregate.  Emit
2743     // it.  It needs to be emitted first in case it's what captures
2744     // the VLA bounds.
2745     Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource);
2746
2747     // The element count here is the total number of non-VLA elements.
2748     llvm::Value *numElements = getVLASize(vla).first;
2749
2750     // Effectively, the multiply by the VLA size is part of the GEP.
2751     // GEP indexes are signed, and scaling an index isn't permitted to
2752     // signed-overflow, so we use the same semantics for our explicit
2753     // multiply.  We suppress this if overflow is not undefined behavior.
2754     if (getLangOpts().isSignedOverflowDefined()) {
2755       Idx = Builder.CreateMul(Idx, numElements);
2756     } else {
2757       Idx = Builder.CreateNSWMul(Idx, numElements);
2758     }
2759
2760     Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
2761                                  !getLangOpts().isSignedOverflowDefined());
2762
2763   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
2764     // Indexing over an interface, as in "NSString *P; P[4];"
2765     CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
2766     llvm::Value *InterfaceSizeVal = 
2767       llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());;
2768
2769     llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
2770
2771     // Emit the base pointer.
2772     Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource);
2773
2774     // We don't necessarily build correct LLVM struct types for ObjC
2775     // interfaces, so we can't rely on GEP to do this scaling
2776     // correctly, so we need to cast to i8*.  FIXME: is this actually
2777     // true?  A lot of other things in the fragile ABI would break...
2778     llvm::Type *OrigBaseTy = Addr.getType();
2779     Addr = Builder.CreateElementBitCast(Addr, Int8Ty);
2780
2781     // Do the GEP.
2782     CharUnits EltAlign =
2783       getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
2784     llvm::Value *EltPtr =
2785       emitArraySubscriptGEP(*this, Addr.getPointer(), ScaledIdx, false);
2786     Addr = Address(EltPtr, EltAlign);
2787
2788     // Cast back.
2789     Addr = Builder.CreateBitCast(Addr, OrigBaseTy);
2790   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
2791     // If this is A[i] where A is an array, the frontend will have decayed the
2792     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
2793     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
2794     // "gep x, i" here.  Emit one "gep A, 0, i".
2795     assert(Array->getType()->isArrayType() &&
2796            "Array to pointer decay must have array source type!");
2797     LValue ArrayLV;
2798     // For simple multidimensional array indexing, set the 'accessed' flag for
2799     // better bounds-checking of the base expression.
2800     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
2801       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
2802     else
2803       ArrayLV = EmitLValue(Array);
2804
2805     // Propagate the alignment from the array itself to the result.
2806     Addr = emitArraySubscriptGEP(*this, ArrayLV.getAddress(),
2807                                  {CGM.getSize(CharUnits::Zero()), Idx},
2808                                  E->getType(),
2809                                  !getLangOpts().isSignedOverflowDefined());
2810     AlignSource = ArrayLV.getAlignmentSource();
2811   } else {
2812     // The base must be a pointer; emit it with an estimate of its alignment.
2813     Addr = EmitPointerWithAlignment(E->getBase(), &AlignSource);
2814     Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
2815                                  !getLangOpts().isSignedOverflowDefined());
2816   }
2817
2818   LValue LV = MakeAddrLValue(Addr, E->getType(), AlignSource);
2819
2820   // TODO: Preserve/extend path TBAA metadata?
2821
2822   if (getLangOpts().ObjC1 &&
2823       getLangOpts().getGC() != LangOptions::NonGC) {
2824     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2825     setObjCGCLValueClass(getContext(), E, LV);
2826   }
2827   return LV;
2828 }
2829
2830 LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
2831                                                 bool IsLowerBound) {
2832   LValue Base;
2833   if (auto *ASE =
2834           dyn_cast<OMPArraySectionExpr>(E->getBase()->IgnoreParenImpCasts()))
2835     Base = EmitOMPArraySectionExpr(ASE, IsLowerBound);
2836   else
2837     Base = EmitLValue(E->getBase());
2838   QualType BaseTy = Base.getType();
2839   llvm::Value *Idx = nullptr;
2840   QualType ResultExprTy;
2841   if (auto *AT = getContext().getAsArrayType(BaseTy))
2842     ResultExprTy = AT->getElementType();
2843   else
2844     ResultExprTy = BaseTy->getPointeeType();
2845   if (IsLowerBound || (!IsLowerBound && E->getColonLoc().isInvalid())) {
2846     // Requesting lower bound or upper bound, but without provided length and
2847     // without ':' symbol for the default length -> length = 1.
2848     // Idx = LowerBound ?: 0;
2849     if (auto *LowerBound = E->getLowerBound()) {
2850       Idx = Builder.CreateIntCast(
2851           EmitScalarExpr(LowerBound), IntPtrTy,
2852           LowerBound->getType()->hasSignedIntegerRepresentation());
2853     } else
2854       Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
2855   } else {
2856     // Try to emit length or lower bound as constant. If this is possible, 1 is
2857     // subtracted from constant length or lower bound. Otherwise, emit LLVM IR
2858     // (LB + Len) - 1.
2859     auto &C = CGM.getContext();
2860     auto *Length = E->getLength();
2861     llvm::APSInt ConstLength;
2862     if (Length) {
2863       // Idx = LowerBound + Length - 1;
2864       if (Length->isIntegerConstantExpr(ConstLength, C)) {
2865         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
2866         Length = nullptr;
2867       }
2868       auto *LowerBound = E->getLowerBound();
2869       llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
2870       if (LowerBound && LowerBound->isIntegerConstantExpr(ConstLowerBound, C)) {
2871         ConstLowerBound = ConstLowerBound.zextOrTrunc(PointerWidthInBits);
2872         LowerBound = nullptr;
2873       }
2874       if (!Length)
2875         --ConstLength;
2876       else if (!LowerBound)
2877         --ConstLowerBound;
2878
2879       if (Length || LowerBound) {
2880         auto *LowerBoundVal =
2881             LowerBound
2882                 ? Builder.CreateIntCast(
2883                       EmitScalarExpr(LowerBound), IntPtrTy,
2884                       LowerBound->getType()->hasSignedIntegerRepresentation())
2885                 : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
2886         auto *LengthVal =
2887             Length
2888                 ? Builder.CreateIntCast(
2889                       EmitScalarExpr(Length), IntPtrTy,
2890                       Length->getType()->hasSignedIntegerRepresentation())
2891                 : llvm::ConstantInt::get(IntPtrTy, ConstLength);
2892         Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
2893                                 /*HasNUW=*/false,
2894                                 !getLangOpts().isSignedOverflowDefined());
2895         if (Length && LowerBound) {
2896           Idx = Builder.CreateSub(
2897               Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
2898               /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
2899         }
2900       } else
2901         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
2902     } else {
2903       // Idx = ArraySize - 1;
2904       if (auto *VAT = C.getAsVariableArrayType(BaseTy)) {
2905         Length = VAT->getSizeExpr();
2906         if (Length->isIntegerConstantExpr(ConstLength, C))
2907           Length = nullptr;
2908       } else {
2909         auto *CAT = C.getAsConstantArrayType(BaseTy);
2910         ConstLength = CAT->getSize();
2911       }
2912       if (Length) {
2913         auto *LengthVal = Builder.CreateIntCast(
2914             EmitScalarExpr(Length), IntPtrTy,
2915             Length->getType()->hasSignedIntegerRepresentation());
2916         Idx = Builder.CreateSub(
2917             LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
2918             /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
2919       } else {
2920         ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
2921         --ConstLength;
2922         Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
2923       }
2924     }
2925   }
2926   assert(Idx);
2927
2928   llvm::Value *EltPtr;
2929   QualType FixedSizeEltType = ResultExprTy;
2930   if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
2931     // The element count here is the total number of non-VLA elements.
2932     llvm::Value *numElements = getVLASize(VLA).first;
2933     FixedSizeEltType = getFixedSizeElementType(getContext(), VLA);
2934
2935     // Effectively, the multiply by the VLA size is part of the GEP.
2936     // GEP indexes are signed, and scaling an index isn't permitted to
2937     // signed-overflow, so we use the same semantics for our explicit
2938     // multiply.  We suppress this if overflow is not undefined behavior.
2939     if (getLangOpts().isSignedOverflowDefined()) {
2940       Idx = Builder.CreateMul(Idx, numElements);
2941       EltPtr = Builder.CreateGEP(Base.getPointer(), Idx, "arrayidx");
2942     } else {
2943       Idx = Builder.CreateNSWMul(Idx, numElements);
2944       EltPtr = Builder.CreateInBoundsGEP(Base.getPointer(), Idx, "arrayidx");
2945     }
2946   } else if (BaseTy->isConstantArrayType()) {
2947     llvm::Value *ArrayPtr = Base.getPointer();
2948     llvm::Value *Zero = llvm::ConstantInt::getNullValue(IntPtrTy);
2949     llvm::Value *Args[] = {Zero, Idx};
2950
2951     if (getLangOpts().isSignedOverflowDefined())
2952       EltPtr = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
2953     else
2954       EltPtr = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
2955   } else {
2956     // The base must be a pointer, which is not an aggregate.  Emit it.
2957     if (getLangOpts().isSignedOverflowDefined())
2958       EltPtr = Builder.CreateGEP(Base.getPointer(), Idx, "arrayidx");
2959     else
2960       EltPtr = Builder.CreateInBoundsGEP(Base.getPointer(), Idx, "arrayidx");
2961   }
2962
2963   CharUnits EltAlign =
2964     Base.getAlignment().alignmentOfArrayElement(
2965                           getContext().getTypeSizeInChars(FixedSizeEltType));
2966
2967   // Limit the alignment to that of the result type.
2968   LValue LV = MakeAddrLValue(Address(EltPtr, EltAlign), ResultExprTy,
2969                              Base.getAlignmentSource());
2970
2971   LV.getQuals().setAddressSpace(BaseTy.getAddressSpace());
2972
2973   return LV;
2974 }
2975
2976 LValue CodeGenFunction::
2977 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
2978   // Emit the base vector as an l-value.
2979   LValue Base;
2980
2981   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
2982   if (E->isArrow()) {
2983     // If it is a pointer to a vector, emit the address and form an lvalue with
2984     // it.
2985     AlignmentSource AlignSource;
2986     Address Ptr = EmitPointerWithAlignment(E->getBase(), &AlignSource);
2987     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
2988     Base = MakeAddrLValue(Ptr, PT->getPointeeType(), AlignSource);
2989     Base.getQuals().removeObjCGCAttr();
2990   } else if (E->getBase()->isGLValue()) {
2991     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
2992     // emit the base as an lvalue.
2993     assert(E->getBase()->getType()->isVectorType());
2994     Base = EmitLValue(E->getBase());
2995   } else {
2996     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
2997     assert(E->getBase()->getType()->isVectorType() &&
2998            "Result must be a vector");
2999     llvm::Value *Vec = EmitScalarExpr(E->getBase());
3000
3001     // Store the vector to memory (because LValue wants an address).
3002     Address VecMem = CreateMemTemp(E->getBase()->getType());
3003     Builder.CreateStore(Vec, VecMem);
3004     Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
3005                           AlignmentSource::Decl);
3006   }
3007
3008   QualType type =
3009     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
3010
3011   // Encode the element access list into a vector of unsigned indices.
3012   SmallVector<uint32_t, 4> Indices;
3013   E->getEncodedElementAccess(Indices);
3014
3015   if (Base.isSimple()) {
3016     llvm::Constant *CV =
3017         llvm::ConstantDataVector::get(getLLVMContext(), Indices);
3018     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
3019                                     Base.getAlignmentSource());
3020   }
3021   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
3022
3023   llvm::Constant *BaseElts = Base.getExtVectorElts();
3024   SmallVector<llvm::Constant *, 4> CElts;
3025
3026   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
3027     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
3028   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
3029   return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
3030                                   Base.getAlignmentSource());
3031 }
3032
3033 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
3034   Expr *BaseExpr = E->getBase();
3035
3036   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
3037   LValue BaseLV;
3038   if (E->isArrow()) {
3039     AlignmentSource AlignSource;
3040     Address Addr = EmitPointerWithAlignment(BaseExpr, &AlignSource);
3041     QualType PtrTy = BaseExpr->getType()->getPointeeType();
3042     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy);
3043     BaseLV = MakeAddrLValue(Addr, PtrTy, AlignSource);
3044   } else
3045     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
3046
3047   NamedDecl *ND = E->getMemberDecl();
3048   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
3049     LValue LV = EmitLValueForField(BaseLV, Field);
3050     setObjCGCLValueClass(getContext(), E, LV);
3051     return LV;
3052   }
3053
3054   if (auto *VD = dyn_cast<VarDecl>(ND))
3055     return EmitGlobalVarDeclLValue(*this, E, VD);
3056
3057   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
3058     return EmitFunctionDeclLValue(*this, E, FD);
3059
3060   llvm_unreachable("Unhandled member declaration!");
3061 }
3062
3063 /// Given that we are currently emitting a lambda, emit an l-value for
3064 /// one of its members.
3065 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
3066   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
3067   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
3068   QualType LambdaTagType =
3069     getContext().getTagDeclType(Field->getParent());
3070   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
3071   return EmitLValueForField(LambdaLV, Field);
3072 }
3073
3074 /// Drill down to the storage of a field without walking into
3075 /// reference types.
3076 ///
3077 /// The resulting address doesn't necessarily have the right type.
3078 static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
3079                                       const FieldDecl *field) {
3080   const RecordDecl *rec = field->getParent();
3081   
3082   unsigned idx =
3083     CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
3084
3085   CharUnits offset;
3086   // Adjust the alignment down to the given offset.
3087   // As a special case, if the LLVM field index is 0, we know that this
3088   // is zero.
3089   assert((idx != 0 || CGF.getContext().getASTRecordLayout(rec)
3090                          .getFieldOffset(field->getFieldIndex()) == 0) &&
3091          "LLVM field at index zero had non-zero offset?");
3092   if (idx != 0) {
3093     auto &recLayout = CGF.getContext().getASTRecordLayout(rec);
3094     auto offsetInBits = recLayout.getFieldOffset(field->getFieldIndex());
3095     offset = CGF.getContext().toCharUnitsFromBits(offsetInBits);
3096   }
3097
3098   return CGF.Builder.CreateStructGEP(base, idx, offset, field->getName());
3099 }
3100
3101 LValue CodeGenFunction::EmitLValueForField(LValue base,
3102                                            const FieldDecl *field) {
3103   AlignmentSource fieldAlignSource =
3104     getFieldAlignmentSource(base.getAlignmentSource());
3105
3106   if (field->isBitField()) {
3107     const CGRecordLayout &RL =
3108       CGM.getTypes().getCGRecordLayout(field->getParent());
3109     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
3110     Address Addr = base.getAddress();
3111     unsigned Idx = RL.getLLVMFieldNo(field);
3112     if (Idx != 0)
3113       // For structs, we GEP to the field that the record layout suggests.
3114       Addr = Builder.CreateStructGEP(Addr, Idx, Info.StorageOffset,
3115                                      field->getName());
3116     // Get the access type.
3117     llvm::Type *FieldIntTy =
3118       llvm::Type::getIntNTy(getLLVMContext(), Info.StorageSize);
3119     if (Addr.getElementType() != FieldIntTy)
3120       Addr = Builder.CreateElementBitCast(Addr, FieldIntTy);
3121
3122     QualType fieldType =
3123       field->getType().withCVRQualifiers(base.getVRQualifiers());
3124     return LValue::MakeBitfield(Addr, Info, fieldType, fieldAlignSource);
3125   }
3126
3127   const RecordDecl *rec = field->getParent();
3128   QualType type = field->getType();
3129
3130   bool mayAlias = rec->hasAttr<MayAliasAttr>();
3131
3132   Address addr = base.getAddress();
3133   unsigned cvr = base.getVRQualifiers();
3134   bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
3135   if (rec->isUnion()) {
3136     // For unions, there is no pointer adjustment.
3137     assert(!type->isReferenceType() && "union has reference member");
3138     // TODO: handle path-aware TBAA for union.
3139     TBAAPath = false;
3140   } else {
3141     // For structs, we GEP to the field that the record layout suggests.
3142     addr = emitAddrOfFieldStorage(*this, addr, field);
3143
3144     // If this is a reference field, load the reference right now.
3145     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
3146       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
3147       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
3148
3149       // Loading the reference will disable path-aware TBAA.
3150       TBAAPath = false;
3151       if (CGM.shouldUseTBAA()) {
3152         llvm::MDNode *tbaa;
3153         if (mayAlias)
3154           tbaa = CGM.getTBAAInfo(getContext().CharTy);
3155         else
3156           tbaa = CGM.getTBAAInfo(type);
3157         if (tbaa)
3158           CGM.DecorateInstructionWithTBAA(load, tbaa);
3159       }
3160
3161       mayAlias = false;
3162       type = refType->getPointeeType();
3163
3164       CharUnits alignment =
3165         getNaturalTypeAlignment(type, &fieldAlignSource, /*pointee*/ true);
3166       addr = Address(load, alignment);
3167
3168       // Qualifiers on the struct don't apply to the referencee, and
3169       // we'll pick up CVR from the actual type later, so reset these
3170       // additional qualifiers now.
3171       cvr = 0;
3172     }
3173   }
3174
3175   // Make sure that the address is pointing to the right type.  This is critical
3176   // for both unions and structs.  A union needs a bitcast, a struct element
3177   // will need a bitcast if the LLVM type laid out doesn't match the desired
3178   // type.
3179   addr = Builder.CreateElementBitCast(addr,
3180                                       CGM.getTypes().ConvertTypeForMem(type),
3181                                       field->getName());
3182
3183   if (field->hasAttr<AnnotateAttr>())
3184     addr = EmitFieldAnnotations(field, addr);
3185
3186   LValue LV = MakeAddrLValue(addr, type, fieldAlignSource);
3187   LV.getQuals().addCVRQualifiers(cvr);
3188   if (TBAAPath) {
3189     const ASTRecordLayout &Layout =
3190         getContext().getASTRecordLayout(field->getParent());
3191     // Set the base type to be the base type of the base LValue and
3192     // update offset to be relative to the base type.
3193     LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType());
3194     LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() +
3195                      Layout.getFieldOffset(field->getFieldIndex()) /
3196                                            getContext().getCharWidth());
3197   }
3198
3199   // __weak attribute on a field is ignored.
3200   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
3201     LV.getQuals().removeObjCGCAttr();
3202
3203   // Fields of may_alias structs act like 'char' for TBAA purposes.
3204   // FIXME: this should get propagated down through anonymous structs
3205   // and unions.
3206   if (mayAlias && LV.getTBAAInfo())
3207     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
3208
3209   return LV;
3210 }
3211
3212 LValue
3213 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
3214                                                   const FieldDecl *Field) {
3215   QualType FieldType = Field->getType();
3216
3217   if (!FieldType->isReferenceType())
3218     return EmitLValueForField(Base, Field);
3219
3220   Address V = emitAddrOfFieldStorage(*this, Base.getAddress(), Field);
3221
3222   // Make sure that the address is pointing to the right type.
3223   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
3224   V = Builder.CreateElementBitCast(V, llvmType, Field->getName());
3225
3226   // TODO: access-path TBAA?
3227   auto FieldAlignSource = getFieldAlignmentSource(Base.getAlignmentSource());
3228   return MakeAddrLValue(V, FieldType, FieldAlignSource);
3229 }
3230
3231 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
3232   if (E->isFileScope()) {
3233     ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
3234     return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
3235   }
3236   if (E->getType()->isVariablyModifiedType())
3237     // make sure to emit the VLA size.
3238     EmitVariablyModifiedType(E->getType());
3239
3240   Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
3241   const Expr *InitExpr = E->getInitializer();
3242   LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
3243
3244   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
3245                    /*Init*/ true);
3246
3247   return Result;
3248 }
3249
3250 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
3251   if (!E->isGLValue())
3252     // Initializing an aggregate temporary in C++11: T{...}.
3253     return EmitAggExprToLValue(E);
3254
3255   // An lvalue initializer list must be initializing a reference.
3256   assert(E->getNumInits() == 1 && "reference init with multiple values");
3257   return EmitLValue(E->getInit(0));
3258 }
3259
3260 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
3261 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
3262 /// LValue is returned and the current block has been terminated.
3263 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
3264                                                     const Expr *Operand) {
3265   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
3266     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
3267     return None;
3268   }
3269
3270   return CGF.EmitLValue(Operand);
3271 }
3272
3273 LValue CodeGenFunction::
3274 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
3275   if (!expr->isGLValue()) {
3276     // ?: here should be an aggregate.
3277     assert(hasAggregateEvaluationKind(expr->getType()) &&
3278            "Unexpected conditional operator!");
3279     return EmitAggExprToLValue(expr);
3280   }
3281
3282   OpaqueValueMapping binding(*this, expr);
3283
3284   const Expr *condExpr = expr->getCond();
3285   bool CondExprBool;
3286   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3287     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
3288     if (!CondExprBool) std::swap(live, dead);
3289
3290     if (!ContainsLabel(dead)) {
3291       // If the true case is live, we need to track its region.
3292       if (CondExprBool)
3293         incrementProfileCounter(expr);
3294       return EmitLValue(live);
3295     }
3296   }
3297
3298   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
3299   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
3300   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
3301
3302   ConditionalEvaluation eval(*this);
3303   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, getProfileCount(expr));
3304
3305   // Any temporaries created here are conditional.
3306   EmitBlock(lhsBlock);
3307   incrementProfileCounter(expr);
3308   eval.begin(*this);
3309   Optional<LValue> lhs =
3310       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
3311   eval.end(*this);
3312
3313   if (lhs && !lhs->isSimple())
3314     return EmitUnsupportedLValue(expr, "conditional operator");
3315
3316   lhsBlock = Builder.GetInsertBlock();
3317   if (lhs)
3318     Builder.CreateBr(contBlock);
3319
3320   // Any temporaries created here are conditional.
3321   EmitBlock(rhsBlock);
3322   eval.begin(*this);
3323   Optional<LValue> rhs =
3324       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
3325   eval.end(*this);
3326   if (rhs && !rhs->isSimple())
3327     return EmitUnsupportedLValue(expr, "conditional operator");
3328   rhsBlock = Builder.GetInsertBlock();
3329
3330   EmitBlock(contBlock);
3331
3332   if (lhs && rhs) {
3333     llvm::PHINode *phi = Builder.CreatePHI(lhs->getPointer()->getType(),
3334                                            2, "cond-lvalue");
3335     phi->addIncoming(lhs->getPointer(), lhsBlock);
3336     phi->addIncoming(rhs->getPointer(), rhsBlock);
3337     Address result(phi, std::min(lhs->getAlignment(), rhs->getAlignment()));
3338     AlignmentSource alignSource =
3339       std::max(lhs->getAlignmentSource(), rhs->getAlignmentSource());
3340     return MakeAddrLValue(result, expr->getType(), alignSource);
3341   } else {
3342     assert((lhs || rhs) &&
3343            "both operands of glvalue conditional are throw-expressions?");
3344     return lhs ? *lhs : *rhs;
3345   }
3346 }
3347
3348 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
3349 /// type. If the cast is to a reference, we can have the usual lvalue result,
3350 /// otherwise if a cast is needed by the code generator in an lvalue context,
3351 /// then it must mean that we need the address of an aggregate in order to
3352 /// access one of its members.  This can happen for all the reasons that casts
3353 /// are permitted with aggregate result, including noop aggregate casts, and
3354 /// cast from scalar to union.
3355 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
3356   switch (E->getCastKind()) {
3357   case CK_ToVoid:
3358   case CK_BitCast:
3359   case CK_ArrayToPointerDecay:
3360   case CK_FunctionToPointerDecay:
3361   case CK_NullToMemberPointer:
3362   case CK_NullToPointer:
3363   case CK_IntegralToPointer:
3364   case CK_PointerToIntegral:
3365   case CK_PointerToBoolean:
3366   case CK_VectorSplat:
3367   case CK_IntegralCast:
3368   case CK_BooleanToSignedIntegral:
3369   case CK_IntegralToBoolean:
3370   case CK_IntegralToFloating:
3371   case CK_FloatingToIntegral:
3372   case CK_FloatingToBoolean:
3373   case CK_FloatingCast:
3374   case CK_FloatingRealToComplex:
3375   case CK_FloatingComplexToReal:
3376   case CK_FloatingComplexToBoolean:
3377   case CK_FloatingComplexCast:
3378   case CK_FloatingComplexToIntegralComplex:
3379   case CK_IntegralRealToComplex:
3380   case CK_IntegralComplexToReal:
3381   case CK_IntegralComplexToBoolean:
3382   case CK_IntegralComplexCast:
3383   case CK_IntegralComplexToFloatingComplex:
3384   case CK_DerivedToBaseMemberPointer:
3385   case CK_BaseToDerivedMemberPointer:
3386   case CK_MemberPointerToBoolean:
3387   case CK_ReinterpretMemberPointer:
3388   case CK_AnyPointerToBlockPointerCast:
3389   case CK_ARCProduceObject:
3390   case CK_ARCConsumeObject:
3391   case CK_ARCReclaimReturnedObject:
3392   case CK_ARCExtendBlockObject:
3393   case CK_CopyAndAutoreleaseBlockObject:
3394   case CK_AddressSpaceConversion:
3395     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
3396
3397   case CK_Dependent:
3398     llvm_unreachable("dependent cast kind in IR gen!");
3399
3400   case CK_BuiltinFnToFnPtr:
3401     llvm_unreachable("builtin functions are handled elsewhere");
3402
3403   // These are never l-values; just use the aggregate emission code.
3404   case CK_NonAtomicToAtomic:
3405   case CK_AtomicToNonAtomic:
3406     return EmitAggExprToLValue(E);
3407
3408   case CK_Dynamic: {
3409     LValue LV = EmitLValue(E->getSubExpr());
3410     Address V = LV.getAddress();
3411     const auto *DCE = cast<CXXDynamicCastExpr>(E);
3412     return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
3413   }
3414
3415   case CK_ConstructorConversion:
3416   case CK_UserDefinedConversion:
3417   case CK_CPointerToObjCPointerCast:
3418   case CK_BlockPointerToObjCPointerCast:
3419   case CK_NoOp:
3420   case CK_LValueToRValue:
3421     return EmitLValue(E->getSubExpr());
3422
3423   case CK_UncheckedDerivedToBase:
3424   case CK_DerivedToBase: {
3425     const RecordType *DerivedClassTy =
3426       E->getSubExpr()->getType()->getAs<RecordType>();
3427     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
3428
3429     LValue LV = EmitLValue(E->getSubExpr());
3430     Address This = LV.getAddress();
3431
3432     // Perform the derived-to-base conversion
3433     Address Base = GetAddressOfBaseClass(
3434         This, DerivedClassDecl, E->path_begin(), E->path_end(),
3435         /*NullCheckValue=*/false, E->getExprLoc());
3436
3437     return MakeAddrLValue(Base, E->getType(), LV.getAlignmentSource());
3438   }
3439   case CK_ToUnion:
3440     return EmitAggExprToLValue(E);
3441   case CK_BaseToDerived: {
3442     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
3443     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
3444
3445     LValue LV = EmitLValue(E->getSubExpr());
3446
3447     // Perform the base-to-derived conversion
3448     Address Derived =
3449       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
3450                                E->path_begin(), E->path_end(),
3451                                /*NullCheckValue=*/false);
3452
3453     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
3454     // performed and the object is not of the derived type.
3455     if (sanitizePerformTypeCheck())
3456       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
3457                     Derived.getPointer(), E->getType());
3458
3459     if (SanOpts.has(SanitizerKind::CFIDerivedCast))
3460       EmitVTablePtrCheckForCast(E->getType(), Derived.getPointer(),
3461                                 /*MayBeNull=*/false,
3462                                 CFITCK_DerivedCast, E->getLocStart());
3463
3464     return MakeAddrLValue(Derived, E->getType(), LV.getAlignmentSource());
3465   }
3466   case CK_LValueBitCast: {
3467     // This must be a reinterpret_cast (or c-style equivalent).
3468     const auto *CE = cast<ExplicitCastExpr>(E);
3469
3470     CGM.EmitExplicitCastExprType(CE, this);
3471     LValue LV = EmitLValue(E->getSubExpr());
3472     Address V = Builder.CreateBitCast(LV.getAddress(),
3473                                       ConvertType(CE->getTypeAsWritten()));
3474
3475     if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
3476       EmitVTablePtrCheckForCast(E->getType(), V.getPointer(),
3477                                 /*MayBeNull=*/false,
3478                                 CFITCK_UnrelatedCast, E->getLocStart());
3479
3480     return MakeAddrLValue(V, E->getType(), LV.getAlignmentSource());
3481   }
3482   case CK_ObjCObjectLValueCast: {
3483     LValue LV = EmitLValue(E->getSubExpr());
3484     Address V = Builder.CreateElementBitCast(LV.getAddress(),
3485                                              ConvertType(E->getType()));
3486     return MakeAddrLValue(V, E->getType(), LV.getAlignmentSource());
3487   }
3488   case CK_ZeroToOCLEvent:
3489     llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
3490   }
3491
3492   llvm_unreachable("Unhandled lvalue cast kind?");
3493 }
3494
3495 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
3496   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
3497   return getOpaqueLValueMapping(e);
3498 }
3499
3500 RValue CodeGenFunction::EmitRValueForField(LValue LV,
3501                                            const FieldDecl *FD,
3502                                            SourceLocation Loc) {
3503   QualType FT = FD->getType();
3504   LValue FieldLV = EmitLValueForField(LV, FD);
3505   switch (getEvaluationKind(FT)) {
3506   case TEK_Complex:
3507     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
3508   case TEK_Aggregate:
3509     return FieldLV.asAggregateRValue();
3510   case TEK_Scalar:
3511     return EmitLoadOfLValue(FieldLV, Loc);
3512   }
3513   llvm_unreachable("bad evaluation kind");
3514 }
3515
3516 //===--------------------------------------------------------------------===//
3517 //                             Expression Emission
3518 //===--------------------------------------------------------------------===//
3519
3520 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
3521                                      ReturnValueSlot ReturnValue) {
3522   // Builtins never have block type.
3523   if (E->getCallee()->getType()->isBlockPointerType())
3524     return EmitBlockCallExpr(E, ReturnValue);
3525
3526   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
3527     return EmitCXXMemberCallExpr(CE, ReturnValue);
3528
3529   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
3530     return EmitCUDAKernelCallExpr(CE, ReturnValue);
3531
3532   const Decl *TargetDecl = E->getCalleeDecl();
3533   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
3534     if (unsigned builtinID = FD->getBuiltinID())
3535       return EmitBuiltinExpr(FD, builtinID, E, ReturnValue);
3536   }
3537
3538   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
3539     if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
3540       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
3541
3542   if (const auto *PseudoDtor =
3543           dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
3544     QualType DestroyedType = PseudoDtor->getDestroyedType();
3545     if (DestroyedType.hasStrongOrWeakObjCLifetime()) {
3546       // Automatic Reference Counting:
3547       //   If the pseudo-expression names a retainable object with weak or
3548       //   strong lifetime, the object shall be released.
3549       Expr *BaseExpr = PseudoDtor->getBase();
3550       Address BaseValue = Address::invalid();
3551       Qualifiers BaseQuals;
3552
3553       // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
3554       if (PseudoDtor->isArrow()) {
3555         BaseValue = EmitPointerWithAlignment(BaseExpr);
3556         const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
3557         BaseQuals = PTy->getPointeeType().getQualifiers();
3558       } else {
3559         LValue BaseLV = EmitLValue(BaseExpr);
3560         BaseValue = BaseLV.getAddress();
3561         QualType BaseTy = BaseExpr->getType();
3562         BaseQuals = BaseTy.getQualifiers();
3563       }
3564
3565       switch (DestroyedType.getObjCLifetime()) {
3566       case Qualifiers::OCL_None:
3567       case Qualifiers::OCL_ExplicitNone:
3568       case Qualifiers::OCL_Autoreleasing:
3569         break;
3570
3571       case Qualifiers::OCL_Strong:
3572         EmitARCRelease(Builder.CreateLoad(BaseValue,
3573                           PseudoDtor->getDestroyedType().isVolatileQualified()),
3574                        ARCPreciseLifetime);
3575         break;
3576
3577       case Qualifiers::OCL_Weak:
3578         EmitARCDestroyWeak(BaseValue);
3579         break;
3580       }
3581     } else {
3582       // C++ [expr.pseudo]p1:
3583       //   The result shall only be used as the operand for the function call
3584       //   operator (), and the result of such a call has type void. The only
3585       //   effect is the evaluation of the postfix-expression before the dot or
3586       //   arrow.
3587       EmitScalarExpr(E->getCallee());
3588     }
3589
3590     return RValue::get(nullptr);
3591   }
3592
3593   llvm::Value *Callee = EmitScalarExpr(E->getCallee());
3594   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue,
3595                   TargetDecl);
3596 }
3597
3598 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
3599   // Comma expressions just emit their LHS then their RHS as an l-value.
3600   if (E->getOpcode() == BO_Comma) {
3601     EmitIgnoredExpr(E->getLHS());
3602     EnsureInsertPoint();
3603     return EmitLValue(E->getRHS());
3604   }
3605
3606   if (E->getOpcode() == BO_PtrMemD ||
3607       E->getOpcode() == BO_PtrMemI)
3608     return EmitPointerToDataMemberBinaryExpr(E);
3609
3610   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
3611
3612   // Note that in all of these cases, __block variables need the RHS
3613   // evaluated first just in case the variable gets moved by the RHS.
3614
3615   switch (getEvaluationKind(E->getType())) {
3616   case TEK_Scalar: {
3617     switch (E->getLHS()->getType().getObjCLifetime()) {
3618     case Qualifiers::OCL_Strong:
3619       return EmitARCStoreStrong(E, /*ignored*/ false).first;
3620
3621     case Qualifiers::OCL_Autoreleasing:
3622       return EmitARCStoreAutoreleasing(E).first;
3623
3624     // No reason to do any of these differently.
3625     case Qualifiers::OCL_None:
3626     case Qualifiers::OCL_ExplicitNone:
3627     case Qualifiers::OCL_Weak:
3628       break;
3629     }
3630
3631     RValue RV = EmitAnyExpr(E->getRHS());
3632     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
3633     EmitStoreThroughLValue(RV, LV);
3634     return LV;
3635   }
3636
3637   case TEK_Complex:
3638     return EmitComplexAssignmentLValue(E);
3639
3640   case TEK_Aggregate:
3641     return EmitAggExprToLValue(E);
3642   }
3643   llvm_unreachable("bad evaluation kind");
3644 }
3645
3646 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
3647   RValue RV = EmitCallExpr(E);
3648
3649   if (!RV.isScalar())
3650     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
3651                           AlignmentSource::Decl);
3652
3653   assert(E->getCallReturnType(getContext())->isReferenceType() &&
3654          "Can't have a scalar return unless the return type is a "
3655          "reference type!");
3656
3657   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
3658 }
3659
3660 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
3661   // FIXME: This shouldn't require another copy.
3662   return EmitAggExprToLValue(E);
3663 }
3664
3665 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
3666   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
3667          && "binding l-value to type which needs a temporary");
3668   AggValueSlot Slot = CreateAggTemp(E->getType());
3669   EmitCXXConstructExpr(E, Slot);
3670   return MakeAddrLValue(Slot.getAddress(), E->getType(),
3671                         AlignmentSource::Decl);
3672 }
3673
3674 LValue
3675 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
3676   return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
3677 }
3678
3679 Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
3680   return Builder.CreateElementBitCast(CGM.GetAddrOfUuidDescriptor(E),
3681                                       ConvertType(E->getType()));
3682 }
3683
3684 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
3685   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
3686                         AlignmentSource::Decl);
3687 }
3688
3689 LValue
3690 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
3691   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3692   Slot.setExternallyDestructed();
3693   EmitAggExpr(E->getSubExpr(), Slot);
3694   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
3695   return MakeAddrLValue(Slot.getAddress(), E->getType(),
3696                         AlignmentSource::Decl);
3697 }
3698
3699 LValue
3700 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
3701   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3702   EmitLambdaExpr(E, Slot);
3703   return MakeAddrLValue(Slot.getAddress(), E->getType(),
3704                         AlignmentSource::Decl);
3705 }
3706
3707 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
3708   RValue RV = EmitObjCMessageExpr(E);
3709
3710   if (!RV.isScalar())
3711     return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
3712                           AlignmentSource::Decl);
3713
3714   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
3715          "Can't have a scalar return unless the return type is a "
3716          "reference type!");
3717
3718   return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
3719 }
3720
3721 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
3722   Address V =
3723     CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
3724   return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
3725 }
3726
3727 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3728                                              const ObjCIvarDecl *Ivar) {
3729   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
3730 }
3731
3732 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
3733                                           llvm::Value *BaseValue,
3734                                           const ObjCIvarDecl *Ivar,
3735                                           unsigned CVRQualifiers) {
3736   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
3737                                                    Ivar, CVRQualifiers);
3738 }
3739
3740 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
3741   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
3742   llvm::Value *BaseValue = nullptr;
3743   const Expr *BaseExpr = E->getBase();
3744   Qualifiers BaseQuals;
3745   QualType ObjectTy;
3746   if (E->isArrow()) {
3747     BaseValue = EmitScalarExpr(BaseExpr);
3748     ObjectTy = BaseExpr->getType()->getPointeeType();
3749     BaseQuals = ObjectTy.getQualifiers();
3750   } else {
3751     LValue BaseLV = EmitLValue(BaseExpr);
3752     BaseValue = BaseLV.getPointer();
3753     ObjectTy = BaseExpr->getType();
3754     BaseQuals = ObjectTy.getQualifiers();
3755   }
3756
3757   LValue LV =
3758     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
3759                       BaseQuals.getCVRQualifiers());
3760   setObjCGCLValueClass(getContext(), E, LV);
3761   return LV;
3762 }
3763
3764 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
3765   // Can only get l-value for message expression returning aggregate type
3766   RValue RV = EmitAnyExprToTemp(E);
3767   return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
3768                         AlignmentSource::Decl);
3769 }
3770
3771 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
3772                                  const CallExpr *E, ReturnValueSlot ReturnValue,
3773                                  CGCalleeInfo CalleeInfo, llvm::Value *Chain) {
3774   // Get the actual function type. The callee type will always be a pointer to
3775   // function type or a block pointer type.
3776   assert(CalleeType->isFunctionPointerType() &&
3777          "Call must have function pointer type!");
3778
3779   // Preserve the non-canonical function type because things like exception
3780   // specifications disappear in the canonical type. That information is useful
3781   // to drive the generation of more accurate code for this call later on.
3782   const FunctionProtoType *NonCanonicalFTP = CalleeType->getAs<PointerType>()
3783                                                  ->getPointeeType()
3784                                                  ->getAs<FunctionProtoType>();
3785
3786   const Decl *TargetDecl = CalleeInfo.getCalleeDecl();
3787
3788   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
3789     // We can only guarantee that a function is called from the correct
3790     // context/function based on the appropriate target attributes,
3791     // so only check in the case where we have both always_inline and target
3792     // since otherwise we could be making a conditional call after a check for
3793     // the proper cpu features (and it won't cause code generation issues due to
3794     // function based code generation).
3795     if (TargetDecl->hasAttr<AlwaysInlineAttr>() &&
3796         TargetDecl->hasAttr<TargetAttr>())
3797       checkTargetFeatures(E, FD);
3798
3799   CalleeType = getContext().getCanonicalType(CalleeType);
3800
3801   const auto *FnType =
3802       cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
3803
3804   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
3805       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
3806     if (llvm::Constant *PrefixSig =
3807             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
3808       SanitizerScope SanScope(this);
3809       llvm::Constant *FTRTTIConst =
3810           CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true);
3811       llvm::Type *PrefixStructTyElems[] = {
3812         PrefixSig->getType(),
3813         FTRTTIConst->getType()
3814       };
3815       llvm::StructType *PrefixStructTy = llvm::StructType::get(
3816           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
3817
3818       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
3819           Callee, llvm::PointerType::getUnqual(PrefixStructTy));
3820       llvm::Value *CalleeSigPtr =
3821           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 0);
3822       llvm::Value *CalleeSig =
3823           Builder.CreateAlignedLoad(CalleeSigPtr, getIntAlign());
3824       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
3825
3826       llvm::BasicBlock *Cont = createBasicBlock("cont");
3827       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
3828       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
3829
3830       EmitBlock(TypeCheck);
3831       llvm::Value *CalleeRTTIPtr =
3832           Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, 0, 1);
3833       llvm::Value *CalleeRTTI =
3834           Builder.CreateAlignedLoad(CalleeRTTIPtr, getPointerAlign());
3835       llvm::Value *CalleeRTTIMatch =
3836           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
3837       llvm::Constant *StaticData[] = {
3838         EmitCheckSourceLocation(E->getLocStart()),
3839         EmitCheckTypeDescriptor(CalleeType)
3840       };
3841       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
3842                 "function_type_mismatch", StaticData, Callee);
3843
3844       Builder.CreateBr(Cont);
3845       EmitBlock(Cont);
3846     }
3847   }
3848
3849   // If we are checking indirect calls and this call is indirect, check that the
3850   // function pointer is a member of the bit set for the function type.
3851   if (SanOpts.has(SanitizerKind::CFIICall) &&
3852       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
3853     SanitizerScope SanScope(this);
3854
3855     llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
3856     llvm::Value *BitSetName = llvm::MetadataAsValue::get(getLLVMContext(), MD);
3857
3858     llvm::Value *CastedCallee = Builder.CreateBitCast(Callee, Int8PtrTy);
3859     llvm::Value *BitSetTest =
3860         Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::bitset_test),
3861                            {CastedCallee, BitSetName});
3862
3863     auto TypeId = CGM.CreateCfiIdForTypeMetadata(MD);
3864     if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && TypeId) {
3865       EmitCfiSlowPathCheck(BitSetTest, TypeId, CastedCallee);
3866     } else {
3867       llvm::Constant *StaticData[] = {
3868           EmitCheckSourceLocation(E->getLocStart()),
3869           EmitCheckTypeDescriptor(QualType(FnType, 0)),
3870       };
3871       EmitCheck(std::make_pair(BitSetTest, SanitizerKind::CFIICall),
3872                 "cfi_bad_icall", StaticData, CastedCallee);
3873     }
3874   }
3875
3876   CallArgList Args;
3877   if (Chain)
3878     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
3879              CGM.getContext().VoidPtrTy);
3880   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
3881                E->getDirectCallee(), /*ParamsToSkip*/ 0);
3882
3883   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
3884       Args, FnType, /*isChainCall=*/Chain);
3885
3886   // C99 6.5.2.2p6:
3887   //   If the expression that denotes the called function has a type
3888   //   that does not include a prototype, [the default argument
3889   //   promotions are performed]. If the number of arguments does not
3890   //   equal the number of parameters, the behavior is undefined. If
3891   //   the function is defined with a type that includes a prototype,
3892   //   and either the prototype ends with an ellipsis (, ...) or the
3893   //   types of the arguments after promotion are not compatible with
3894   //   the types of the parameters, the behavior is undefined. If the
3895   //   function is defined with a type that does not include a
3896   //   prototype, and the types of the arguments after promotion are
3897   //   not compatible with those of the parameters after promotion,
3898   //   the behavior is undefined [except in some trivial cases].
3899   // That is, in the general case, we should assume that a call
3900   // through an unprototyped function type works like a *non-variadic*
3901   // call.  The way we make this work is to cast to the exact type
3902   // of the promoted arguments.
3903   //
3904   // Chain calls use this same code path to add the invisible chain parameter
3905   // to the function type.
3906   if (isa<FunctionNoProtoType>(FnType) || Chain) {
3907     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
3908     CalleeTy = CalleeTy->getPointerTo();
3909     Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
3910   }
3911
3912   return EmitCall(FnInfo, Callee, ReturnValue, Args,
3913                   CGCalleeInfo(NonCanonicalFTP, TargetDecl));
3914 }
3915
3916 LValue CodeGenFunction::
3917 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
3918   Address BaseAddr = Address::invalid();
3919   if (E->getOpcode() == BO_PtrMemI) {
3920     BaseAddr = EmitPointerWithAlignment(E->getLHS());
3921   } else {
3922     BaseAddr = EmitLValue(E->getLHS()).getAddress();
3923   }
3924
3925   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
3926
3927   const MemberPointerType *MPT
3928     = E->getRHS()->getType()->getAs<MemberPointerType>();
3929
3930   AlignmentSource AlignSource;
3931   Address MemberAddr =
3932     EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT,
3933                                     &AlignSource);
3934
3935   return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), AlignSource);
3936 }
3937
3938 /// Given the address of a temporary variable, produce an r-value of
3939 /// its type.
3940 RValue CodeGenFunction::convertTempToRValue(Address addr,
3941                                             QualType type,
3942                                             SourceLocation loc) {
3943   LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
3944   switch (getEvaluationKind(type)) {
3945   case TEK_Complex:
3946     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
3947   case TEK_Aggregate:
3948     return lvalue.asAggregateRValue();
3949   case TEK_Scalar:
3950     return RValue::get(EmitLoadOfScalar(lvalue, loc));
3951   }
3952   llvm_unreachable("bad evaluation kind");
3953 }
3954
3955 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
3956   assert(Val->getType()->isFPOrFPVectorTy());
3957   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
3958     return;
3959
3960   llvm::MDBuilder MDHelper(getLLVMContext());
3961   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
3962
3963   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
3964 }
3965
3966 namespace {
3967   struct LValueOrRValue {
3968     LValue LV;
3969     RValue RV;
3970   };
3971 }
3972
3973 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
3974                                            const PseudoObjectExpr *E,
3975                                            bool forLValue,
3976                                            AggValueSlot slot) {
3977   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3978
3979   // Find the result expression, if any.
3980   const Expr *resultExpr = E->getResultExpr();
3981   LValueOrRValue result;
3982
3983   for (PseudoObjectExpr::const_semantics_iterator
3984          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3985     const Expr *semantic = *i;
3986
3987     // If this semantic expression is an opaque value, bind it
3988     // to the result of its source expression.
3989     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3990
3991       // If this is the result expression, we may need to evaluate
3992       // directly into the slot.
3993       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3994       OVMA opaqueData;
3995       if (ov == resultExpr && ov->isRValue() && !forLValue &&
3996           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
3997         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
3998
3999         LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
4000                                        AlignmentSource::Decl);
4001         opaqueData = OVMA::bind(CGF, ov, LV);
4002         result.RV = slot.asRValue();
4003
4004       // Otherwise, emit as normal.
4005       } else {
4006         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
4007
4008         // If this is the result, also evaluate the result now.
4009         if (ov == resultExpr) {
4010           if (forLValue)
4011             result.LV = CGF.EmitLValue(ov);
4012           else
4013             result.RV = CGF.EmitAnyExpr(ov, slot);
4014         }
4015       }
4016
4017       opaques.push_back(opaqueData);
4018
4019     // Otherwise, if the expression is the result, evaluate it
4020     // and remember the result.
4021     } else if (semantic == resultExpr) {
4022       if (forLValue)
4023         result.LV = CGF.EmitLValue(semantic);
4024       else
4025         result.RV = CGF.EmitAnyExpr(semantic, slot);
4026
4027     // Otherwise, evaluate the expression in an ignored context.
4028     } else {
4029       CGF.EmitIgnoredExpr(semantic);
4030     }
4031   }
4032
4033   // Unbind all the opaques now.
4034   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
4035     opaques[i].unbind(CGF);
4036
4037   return result;
4038 }
4039
4040 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
4041                                                AggValueSlot slot) {
4042   return emitPseudoObjectExpr(*this, E, false, slot).RV;
4043 }
4044
4045 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
4046   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
4047 }