]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/CodeGen/CGExpr.cpp
Merge ^/head r279759 through r279892.
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / CodeGen / CGExpr.cpp
1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGCall.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGOpenMPRuntime.h"
20 #include "CGRecordLayout.h"
21 #include "CodeGenModule.h"
22 #include "TargetInfo.h"
23 #include "clang/AST/ASTContext.h"
24 #include "clang/AST/Attr.h"
25 #include "clang/AST/DeclObjC.h"
26 #include "clang/Frontend/CodeGenOptions.h"
27 #include "llvm/ADT/Hashing.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/IR/MDBuilder.h"
33 #include "llvm/Support/ConvertUTF.h"
34
35 using namespace clang;
36 using namespace CodeGen;
37
38 //===--------------------------------------------------------------------===//
39 //                        Miscellaneous Helper Methods
40 //===--------------------------------------------------------------------===//
41
42 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
43   unsigned addressSpace =
44     cast<llvm::PointerType>(value->getType())->getAddressSpace();
45
46   llvm::PointerType *destType = Int8PtrTy;
47   if (addressSpace)
48     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
49
50   if (value->getType() == destType) return value;
51   return Builder.CreateBitCast(value, destType);
52 }
53
54 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
55 /// block.
56 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
57                                                     const Twine &Name) {
58   if (!Builder.isNamePreserving())
59     return new llvm::AllocaInst(Ty, nullptr, "", AllocaInsertPt);
60   return new llvm::AllocaInst(Ty, nullptr, Name, AllocaInsertPt);
61 }
62
63 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
64                                      llvm::Value *Init) {
65   auto *Store = new llvm::StoreInst(Init, Var);
66   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
67   Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
68 }
69
70 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
71                                                 const Twine &Name) {
72   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
73   // FIXME: Should we prefer the preferred type alignment here?
74   CharUnits Align = getContext().getTypeAlignInChars(Ty);
75   Alloc->setAlignment(Align.getQuantity());
76   return Alloc;
77 }
78
79 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
80                                                  const Twine &Name) {
81   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
82   // FIXME: Should we prefer the preferred type alignment here?
83   CharUnits Align = getContext().getTypeAlignInChars(Ty);
84   Alloc->setAlignment(Align.getQuantity());
85   return Alloc;
86 }
87
88 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
89 /// expression and compare the result against zero, returning an Int1Ty value.
90 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
91   PGO.setCurrentStmt(E);
92   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
93     llvm::Value *MemPtr = EmitScalarExpr(E);
94     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
95   }
96
97   QualType BoolTy = getContext().BoolTy;
98   if (!E->getType()->isAnyComplexType())
99     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
100
101   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
102 }
103
104 /// EmitIgnoredExpr - Emit code to compute the specified expression,
105 /// ignoring the result.
106 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
107   if (E->isRValue())
108     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
109
110   // Just emit it as an l-value and drop the result.
111   EmitLValue(E);
112 }
113
114 /// EmitAnyExpr - Emit code to compute the specified expression which
115 /// can have any type.  The result is returned as an RValue struct.
116 /// If this is an aggregate expression, AggSlot indicates where the
117 /// result should be returned.
118 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
119                                     AggValueSlot aggSlot,
120                                     bool ignoreResult) {
121   switch (getEvaluationKind(E->getType())) {
122   case TEK_Scalar:
123     return RValue::get(EmitScalarExpr(E, ignoreResult));
124   case TEK_Complex:
125     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
126   case TEK_Aggregate:
127     if (!ignoreResult && aggSlot.isIgnored())
128       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
129     EmitAggExpr(E, aggSlot);
130     return aggSlot.asRValue();
131   }
132   llvm_unreachable("bad evaluation kind");
133 }
134
135 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
136 /// always be accessible even if no aggregate location is provided.
137 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
138   AggValueSlot AggSlot = AggValueSlot::ignored();
139
140   if (hasAggregateEvaluationKind(E->getType()))
141     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
142   return EmitAnyExpr(E, AggSlot);
143 }
144
145 /// EmitAnyExprToMem - Evaluate an expression into a given memory
146 /// location.
147 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
148                                        llvm::Value *Location,
149                                        Qualifiers Quals,
150                                        bool IsInit) {
151   // FIXME: This function should take an LValue as an argument.
152   switch (getEvaluationKind(E->getType())) {
153   case TEK_Complex:
154     EmitComplexExprIntoLValue(E,
155                          MakeNaturalAlignAddrLValue(Location, E->getType()),
156                               /*isInit*/ false);
157     return;
158
159   case TEK_Aggregate: {
160     CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
161     EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
162                                          AggValueSlot::IsDestructed_t(IsInit),
163                                          AggValueSlot::DoesNotNeedGCBarriers,
164                                          AggValueSlot::IsAliased_t(!IsInit)));
165     return;
166   }
167
168   case TEK_Scalar: {
169     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
170     LValue LV = MakeAddrLValue(Location, E->getType());
171     EmitStoreThroughLValue(RV, LV);
172     return;
173   }
174   }
175   llvm_unreachable("bad evaluation kind");
176 }
177
178 static void
179 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
180                      const Expr *E, llvm::Value *ReferenceTemporary) {
181   // Objective-C++ ARC:
182   //   If we are binding a reference to a temporary that has ownership, we
183   //   need to perform retain/release operations on the temporary.
184   //
185   // FIXME: This should be looking at E, not M.
186   if (CGF.getLangOpts().ObjCAutoRefCount &&
187       M->getType()->isObjCLifetimeType()) {
188     QualType ObjCARCReferenceLifetimeType = M->getType();
189     switch (Qualifiers::ObjCLifetime Lifetime =
190                 ObjCARCReferenceLifetimeType.getObjCLifetime()) {
191     case Qualifiers::OCL_None:
192     case Qualifiers::OCL_ExplicitNone:
193       // Carry on to normal cleanup handling.
194       break;
195
196     case Qualifiers::OCL_Autoreleasing:
197       // Nothing to do; cleaned up by an autorelease pool.
198       return;
199
200     case Qualifiers::OCL_Strong:
201     case Qualifiers::OCL_Weak:
202       switch (StorageDuration Duration = M->getStorageDuration()) {
203       case SD_Static:
204         // Note: we intentionally do not register a cleanup to release
205         // the object on program termination.
206         return;
207
208       case SD_Thread:
209         // FIXME: We should probably register a cleanup in this case.
210         return;
211
212       case SD_Automatic:
213       case SD_FullExpression:
214         CodeGenFunction::Destroyer *Destroy;
215         CleanupKind CleanupKind;
216         if (Lifetime == Qualifiers::OCL_Strong) {
217           const ValueDecl *VD = M->getExtendingDecl();
218           bool Precise =
219               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
220           CleanupKind = CGF.getARCCleanupKind();
221           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
222                             : &CodeGenFunction::destroyARCStrongImprecise;
223         } else {
224           // __weak objects always get EH cleanups; otherwise, exceptions
225           // could cause really nasty crashes instead of mere leaks.
226           CleanupKind = NormalAndEHCleanup;
227           Destroy = &CodeGenFunction::destroyARCWeak;
228         }
229         if (Duration == SD_FullExpression)
230           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
231                           ObjCARCReferenceLifetimeType, *Destroy,
232                           CleanupKind & EHCleanup);
233         else
234           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
235                                           ObjCARCReferenceLifetimeType,
236                                           *Destroy, CleanupKind & EHCleanup);
237         return;
238
239       case SD_Dynamic:
240         llvm_unreachable("temporary cannot have dynamic storage duration");
241       }
242       llvm_unreachable("unknown storage duration");
243     }
244   }
245
246   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
247   if (const RecordType *RT =
248           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
249     // Get the destructor for the reference temporary.
250     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
251     if (!ClassDecl->hasTrivialDestructor())
252       ReferenceTemporaryDtor = ClassDecl->getDestructor();
253   }
254
255   if (!ReferenceTemporaryDtor)
256     return;
257
258   // Call the destructor for the temporary.
259   switch (M->getStorageDuration()) {
260   case SD_Static:
261   case SD_Thread: {
262     llvm::Constant *CleanupFn;
263     llvm::Constant *CleanupArg;
264     if (E->getType()->isArrayType()) {
265       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
266           cast<llvm::Constant>(ReferenceTemporary), E->getType(),
267           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
268           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
269       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
270     } else {
271       CleanupFn = CGF.CGM.getAddrOfCXXStructor(ReferenceTemporaryDtor,
272                                                StructorType::Complete);
273       CleanupArg = cast<llvm::Constant>(ReferenceTemporary);
274     }
275     CGF.CGM.getCXXABI().registerGlobalDtor(
276         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
277     break;
278   }
279
280   case SD_FullExpression:
281     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
282                     CodeGenFunction::destroyCXXObject,
283                     CGF.getLangOpts().Exceptions);
284     break;
285
286   case SD_Automatic:
287     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
288                                     ReferenceTemporary, E->getType(),
289                                     CodeGenFunction::destroyCXXObject,
290                                     CGF.getLangOpts().Exceptions);
291     break;
292
293   case SD_Dynamic:
294     llvm_unreachable("temporary cannot have dynamic storage duration");
295   }
296 }
297
298 static llvm::Value *
299 createReferenceTemporary(CodeGenFunction &CGF,
300                          const MaterializeTemporaryExpr *M, const Expr *Inner) {
301   switch (M->getStorageDuration()) {
302   case SD_FullExpression:
303   case SD_Automatic:
304     return CGF.CreateMemTemp(Inner->getType(), "ref.tmp");
305
306   case SD_Thread:
307   case SD_Static:
308     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
309
310   case SD_Dynamic:
311     llvm_unreachable("temporary can't have dynamic storage duration");
312   }
313   llvm_unreachable("unknown storage duration");
314 }
315
316 LValue CodeGenFunction::
317 EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
318   const Expr *E = M->GetTemporaryExpr();
319
320     // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
321     // as that will cause the lifetime adjustment to be lost for ARC
322   if (getLangOpts().ObjCAutoRefCount &&
323       M->getType()->isObjCLifetimeType() &&
324       M->getType().getObjCLifetime() != Qualifiers::OCL_None &&
325       M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
326     llvm::Value *Object = createReferenceTemporary(*this, M, E);
327     LValue RefTempDst = MakeAddrLValue(Object, M->getType());
328
329     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
330       // We should not have emitted the initializer for this temporary as a
331       // constant.
332       assert(!Var->hasInitializer());
333       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
334     }
335
336     switch (getEvaluationKind(E->getType())) {
337     default: llvm_unreachable("expected scalar or aggregate expression");
338     case TEK_Scalar:
339       EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
340       break;
341     case TEK_Aggregate: {
342       CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
343       EmitAggExpr(E, AggValueSlot::forAddr(Object, Alignment,
344                                            E->getType().getQualifiers(),
345                                            AggValueSlot::IsDestructed,
346                                            AggValueSlot::DoesNotNeedGCBarriers,
347                                            AggValueSlot::IsNotAliased));
348       break;
349     }
350     }
351
352     pushTemporaryCleanup(*this, M, E, Object);
353     return RefTempDst;
354   }
355
356   SmallVector<const Expr *, 2> CommaLHSs;
357   SmallVector<SubobjectAdjustment, 2> Adjustments;
358   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
359
360   for (const auto &Ignored : CommaLHSs)
361     EmitIgnoredExpr(Ignored);
362
363   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
364     if (opaque->getType()->isRecordType()) {
365       assert(Adjustments.empty());
366       return EmitOpaqueValueLValue(opaque);
367     }
368   }
369
370   // Create and initialize the reference temporary.
371   llvm::Value *Object = createReferenceTemporary(*this, M, E);
372   if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
373     // If the temporary is a global and has a constant initializer, we may
374     // have already initialized it.
375     if (!Var->hasInitializer()) {
376       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
377       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
378     }
379   } else {
380     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
381   }
382   pushTemporaryCleanup(*this, M, E, Object);
383
384   // Perform derived-to-base casts and/or field accesses, to get from the
385   // temporary object we created (and, potentially, for which we extended
386   // the lifetime) to the subobject we're binding the reference to.
387   for (unsigned I = Adjustments.size(); I != 0; --I) {
388     SubobjectAdjustment &Adjustment = Adjustments[I-1];
389     switch (Adjustment.Kind) {
390     case SubobjectAdjustment::DerivedToBaseAdjustment:
391       Object =
392           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
393                                 Adjustment.DerivedToBase.BasePath->path_begin(),
394                                 Adjustment.DerivedToBase.BasePath->path_end(),
395                                 /*NullCheckValue=*/ false, E->getExprLoc());
396       break;
397
398     case SubobjectAdjustment::FieldAdjustment: {
399       LValue LV = MakeAddrLValue(Object, E->getType());
400       LV = EmitLValueForField(LV, Adjustment.Field);
401       assert(LV.isSimple() &&
402              "materialized temporary field is not a simple lvalue");
403       Object = LV.getAddress();
404       break;
405     }
406
407     case SubobjectAdjustment::MemberPointerAdjustment: {
408       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
409       Object = CGM.getCXXABI().EmitMemberDataPointerAddress(
410           *this, E, Object, Ptr, Adjustment.Ptr.MPT);
411       break;
412     }
413     }
414   }
415
416   return MakeAddrLValue(Object, M->getType());
417 }
418
419 RValue
420 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
421   // Emit the expression as an lvalue.
422   LValue LV = EmitLValue(E);
423   assert(LV.isSimple());
424   llvm::Value *Value = LV.getAddress();
425
426   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
427     // C++11 [dcl.ref]p5 (as amended by core issue 453):
428     //   If a glvalue to which a reference is directly bound designates neither
429     //   an existing object or function of an appropriate type nor a region of
430     //   storage of suitable size and alignment to contain an object of the
431     //   reference's type, the behavior is undefined.
432     QualType Ty = E->getType();
433     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
434   }
435
436   return RValue::get(Value);
437 }
438
439
440 /// getAccessedFieldNo - Given an encoded value and a result number, return the
441 /// input field number being accessed.
442 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
443                                              const llvm::Constant *Elts) {
444   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
445       ->getZExtValue();
446 }
447
448 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
449 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
450                                     llvm::Value *High) {
451   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
452   llvm::Value *K47 = Builder.getInt64(47);
453   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
454   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
455   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
456   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
457   return Builder.CreateMul(B1, KMul);
458 }
459
460 bool CodeGenFunction::sanitizePerformTypeCheck() const {
461   return SanOpts.has(SanitizerKind::Null) |
462          SanOpts.has(SanitizerKind::Alignment) |
463          SanOpts.has(SanitizerKind::ObjectSize) |
464          SanOpts.has(SanitizerKind::Vptr);
465 }
466
467 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
468                                     llvm::Value *Address, QualType Ty,
469                                     CharUnits Alignment, bool SkipNullCheck) {
470   if (!sanitizePerformTypeCheck())
471     return;
472
473   // Don't check pointers outside the default address space. The null check
474   // isn't correct, the object-size check isn't supported by LLVM, and we can't
475   // communicate the addresses to the runtime handler for the vptr check.
476   if (Address->getType()->getPointerAddressSpace())
477     return;
478
479   SanitizerScope SanScope(this);
480
481   SmallVector<std::pair<llvm::Value *, SanitizerKind>, 3> Checks;
482   llvm::BasicBlock *Done = nullptr;
483
484   bool AllowNullPointers = TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
485                            TCK == TCK_UpcastToVirtualBase;
486   if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
487       !SkipNullCheck) {
488     // The glvalue must not be an empty glvalue.
489     llvm::Value *IsNonNull = Builder.CreateICmpNE(
490         Address, llvm::Constant::getNullValue(Address->getType()));
491
492     if (AllowNullPointers) {
493       // When performing pointer casts, it's OK if the value is null.
494       // Skip the remaining checks in that case.
495       Done = createBasicBlock("null");
496       llvm::BasicBlock *Rest = createBasicBlock("not.null");
497       Builder.CreateCondBr(IsNonNull, Rest, Done);
498       EmitBlock(Rest);
499     } else {
500       Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
501     }
502   }
503
504   if (SanOpts.has(SanitizerKind::ObjectSize) && !Ty->isIncompleteType()) {
505     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
506
507     // The glvalue must refer to a large enough storage region.
508     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
509     //        to check this.
510     // FIXME: Get object address space
511     llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
512     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
513     llvm::Value *Min = Builder.getFalse();
514     llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy);
515     llvm::Value *LargeEnough =
516         Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min),
517                               llvm::ConstantInt::get(IntPtrTy, Size));
518     Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
519   }
520
521   uint64_t AlignVal = 0;
522
523   if (SanOpts.has(SanitizerKind::Alignment)) {
524     AlignVal = Alignment.getQuantity();
525     if (!Ty->isIncompleteType() && !AlignVal)
526       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
527
528     // The glvalue must be suitably aligned.
529     if (AlignVal) {
530       llvm::Value *Align =
531           Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy),
532                             llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
533       llvm::Value *Aligned =
534         Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
535       Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
536     }
537   }
538
539   if (Checks.size() > 0) {
540     llvm::Constant *StaticData[] = {
541       EmitCheckSourceLocation(Loc),
542       EmitCheckTypeDescriptor(Ty),
543       llvm::ConstantInt::get(SizeTy, AlignVal),
544       llvm::ConstantInt::get(Int8Ty, TCK)
545     };
546     EmitCheck(Checks, "type_mismatch", StaticData, Address);
547   }
548
549   // If possible, check that the vptr indicates that there is a subobject of
550   // type Ty at offset zero within this object.
551   //
552   // C++11 [basic.life]p5,6:
553   //   [For storage which does not refer to an object within its lifetime]
554   //   The program has undefined behavior if:
555   //    -- the [pointer or glvalue] is used to access a non-static data member
556   //       or call a non-static member function
557   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
558   if (SanOpts.has(SanitizerKind::Vptr) &&
559       (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
560        TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
561        TCK == TCK_UpcastToVirtualBase) &&
562       RD && RD->hasDefinition() && RD->isDynamicClass()) {
563     // Compute a hash of the mangled name of the type.
564     //
565     // FIXME: This is not guaranteed to be deterministic! Move to a
566     //        fingerprinting mechanism once LLVM provides one. For the time
567     //        being the implementation happens to be deterministic.
568     SmallString<64> MangledName;
569     llvm::raw_svector_ostream Out(MangledName);
570     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
571                                                      Out);
572
573     // Blacklist based on the mangled type.
574     if (!CGM.getContext().getSanitizerBlacklist().isBlacklistedType(
575             Out.str())) {
576       llvm::hash_code TypeHash = hash_value(Out.str());
577
578       // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
579       llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
580       llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
581       llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy);
582       llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
583       llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
584
585       llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
586       Hash = Builder.CreateTrunc(Hash, IntPtrTy);
587
588       // Look the hash up in our cache.
589       const int CacheSize = 128;
590       llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
591       llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
592                                                      "__ubsan_vptr_type_cache");
593       llvm::Value *Slot = Builder.CreateAnd(Hash,
594                                             llvm::ConstantInt::get(IntPtrTy,
595                                                                    CacheSize-1));
596       llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
597       llvm::Value *CacheVal =
598         Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices));
599
600       // If the hash isn't in the cache, call a runtime handler to perform the
601       // hard work of checking whether the vptr is for an object of the right
602       // type. This will either fill in the cache and return, or produce a
603       // diagnostic.
604       llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
605       llvm::Constant *StaticData[] = {
606         EmitCheckSourceLocation(Loc),
607         EmitCheckTypeDescriptor(Ty),
608         CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
609         llvm::ConstantInt::get(Int8Ty, TCK)
610       };
611       llvm::Value *DynamicData[] = { Address, Hash };
612       EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
613                 "dynamic_type_cache_miss", StaticData, DynamicData);
614     }
615   }
616
617   if (Done) {
618     Builder.CreateBr(Done);
619     EmitBlock(Done);
620   }
621 }
622
623 /// Determine whether this expression refers to a flexible array member in a
624 /// struct. We disable array bounds checks for such members.
625 static bool isFlexibleArrayMemberExpr(const Expr *E) {
626   // For compatibility with existing code, we treat arrays of length 0 or
627   // 1 as flexible array members.
628   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
629   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
630     if (CAT->getSize().ugt(1))
631       return false;
632   } else if (!isa<IncompleteArrayType>(AT))
633     return false;
634
635   E = E->IgnoreParens();
636
637   // A flexible array member must be the last member in the class.
638   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
639     // FIXME: If the base type of the member expr is not FD->getParent(),
640     // this should not be treated as a flexible array member access.
641     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
642       RecordDecl::field_iterator FI(
643           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
644       return ++FI == FD->getParent()->field_end();
645     }
646   }
647
648   return false;
649 }
650
651 /// If Base is known to point to the start of an array, return the length of
652 /// that array. Return 0 if the length cannot be determined.
653 static llvm::Value *getArrayIndexingBound(
654     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
655   // For the vector indexing extension, the bound is the number of elements.
656   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
657     IndexedType = Base->getType();
658     return CGF.Builder.getInt32(VT->getNumElements());
659   }
660
661   Base = Base->IgnoreParens();
662
663   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
664     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
665         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
666       IndexedType = CE->getSubExpr()->getType();
667       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
668       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
669         return CGF.Builder.getInt(CAT->getSize());
670       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
671         return CGF.getVLASize(VAT).first;
672     }
673   }
674
675   return nullptr;
676 }
677
678 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
679                                       llvm::Value *Index, QualType IndexType,
680                                       bool Accessed) {
681   assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
682          "should not be called unless adding bounds checks");
683   SanitizerScope SanScope(this);
684
685   QualType IndexedType;
686   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
687   if (!Bound)
688     return;
689
690   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
691   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
692   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
693
694   llvm::Constant *StaticData[] = {
695     EmitCheckSourceLocation(E->getExprLoc()),
696     EmitCheckTypeDescriptor(IndexedType),
697     EmitCheckTypeDescriptor(IndexType)
698   };
699   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
700                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
701   EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds), "out_of_bounds",
702             StaticData, Index);
703 }
704
705
706 CodeGenFunction::ComplexPairTy CodeGenFunction::
707 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
708                          bool isInc, bool isPre) {
709   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
710
711   llvm::Value *NextVal;
712   if (isa<llvm::IntegerType>(InVal.first->getType())) {
713     uint64_t AmountVal = isInc ? 1 : -1;
714     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
715
716     // Add the inc/dec to the real part.
717     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
718   } else {
719     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
720     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
721     if (!isInc)
722       FVal.changeSign();
723     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
724
725     // Add the inc/dec to the real part.
726     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
727   }
728
729   ComplexPairTy IncVal(NextVal, InVal.second);
730
731   // Store the updated result through the lvalue.
732   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
733
734   // If this is a postinc, return the value read from memory, otherwise use the
735   // updated value.
736   return isPre ? IncVal : InVal;
737 }
738
739 //===----------------------------------------------------------------------===//
740 //                         LValue Expression Emission
741 //===----------------------------------------------------------------------===//
742
743 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
744   if (Ty->isVoidType())
745     return RValue::get(nullptr);
746
747   switch (getEvaluationKind(Ty)) {
748   case TEK_Complex: {
749     llvm::Type *EltTy =
750       ConvertType(Ty->castAs<ComplexType>()->getElementType());
751     llvm::Value *U = llvm::UndefValue::get(EltTy);
752     return RValue::getComplex(std::make_pair(U, U));
753   }
754
755   // If this is a use of an undefined aggregate type, the aggregate must have an
756   // identifiable address.  Just because the contents of the value are undefined
757   // doesn't mean that the address can't be taken and compared.
758   case TEK_Aggregate: {
759     llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
760     return RValue::getAggregate(DestPtr);
761   }
762
763   case TEK_Scalar:
764     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
765   }
766   llvm_unreachable("bad evaluation kind");
767 }
768
769 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
770                                               const char *Name) {
771   ErrorUnsupported(E, Name);
772   return GetUndefRValue(E->getType());
773 }
774
775 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
776                                               const char *Name) {
777   ErrorUnsupported(E, Name);
778   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
779   return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
780 }
781
782 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
783   LValue LV;
784   if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
785     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
786   else
787     LV = EmitLValue(E);
788   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
789     EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(),
790                   E->getType(), LV.getAlignment());
791   return LV;
792 }
793
794 /// EmitLValue - Emit code to compute a designator that specifies the location
795 /// of the expression.
796 ///
797 /// This can return one of two things: a simple address or a bitfield reference.
798 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
799 /// an LLVM pointer type.
800 ///
801 /// If this returns a bitfield reference, nothing about the pointee type of the
802 /// LLVM value is known: For example, it may not be a pointer to an integer.
803 ///
804 /// If this returns a normal address, and if the lvalue's C type is fixed size,
805 /// this method guarantees that the returned pointer type will point to an LLVM
806 /// type of the same size of the lvalue's type.  If the lvalue has a variable
807 /// length type, this is not possible.
808 ///
809 LValue CodeGenFunction::EmitLValue(const Expr *E) {
810   switch (E->getStmtClass()) {
811   default: return EmitUnsupportedLValue(E, "l-value expression");
812
813   case Expr::ObjCPropertyRefExprClass:
814     llvm_unreachable("cannot emit a property reference directly");
815
816   case Expr::ObjCSelectorExprClass:
817     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
818   case Expr::ObjCIsaExprClass:
819     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
820   case Expr::BinaryOperatorClass:
821     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
822   case Expr::CompoundAssignOperatorClass:
823     if (!E->getType()->isAnyComplexType())
824       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
825     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
826   case Expr::CallExprClass:
827   case Expr::CXXMemberCallExprClass:
828   case Expr::CXXOperatorCallExprClass:
829   case Expr::UserDefinedLiteralClass:
830     return EmitCallExprLValue(cast<CallExpr>(E));
831   case Expr::VAArgExprClass:
832     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
833   case Expr::DeclRefExprClass:
834     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
835   case Expr::ParenExprClass:
836     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
837   case Expr::GenericSelectionExprClass:
838     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
839   case Expr::PredefinedExprClass:
840     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
841   case Expr::StringLiteralClass:
842     return EmitStringLiteralLValue(cast<StringLiteral>(E));
843   case Expr::ObjCEncodeExprClass:
844     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
845   case Expr::PseudoObjectExprClass:
846     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
847   case Expr::InitListExprClass:
848     return EmitInitListLValue(cast<InitListExpr>(E));
849   case Expr::CXXTemporaryObjectExprClass:
850   case Expr::CXXConstructExprClass:
851     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
852   case Expr::CXXBindTemporaryExprClass:
853     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
854   case Expr::CXXUuidofExprClass:
855     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
856   case Expr::LambdaExprClass:
857     return EmitLambdaLValue(cast<LambdaExpr>(E));
858
859   case Expr::ExprWithCleanupsClass: {
860     const auto *cleanups = cast<ExprWithCleanups>(E);
861     enterFullExpression(cleanups);
862     RunCleanupsScope Scope(*this);
863     return EmitLValue(cleanups->getSubExpr());
864   }
865
866   case Expr::CXXDefaultArgExprClass:
867     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
868   case Expr::CXXDefaultInitExprClass: {
869     CXXDefaultInitExprScope Scope(*this);
870     return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
871   }
872   case Expr::CXXTypeidExprClass:
873     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
874
875   case Expr::ObjCMessageExprClass:
876     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
877   case Expr::ObjCIvarRefExprClass:
878     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
879   case Expr::StmtExprClass:
880     return EmitStmtExprLValue(cast<StmtExpr>(E));
881   case Expr::UnaryOperatorClass:
882     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
883   case Expr::ArraySubscriptExprClass:
884     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
885   case Expr::ExtVectorElementExprClass:
886     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
887   case Expr::MemberExprClass:
888     return EmitMemberExpr(cast<MemberExpr>(E));
889   case Expr::CompoundLiteralExprClass:
890     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
891   case Expr::ConditionalOperatorClass:
892     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
893   case Expr::BinaryConditionalOperatorClass:
894     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
895   case Expr::ChooseExprClass:
896     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
897   case Expr::OpaqueValueExprClass:
898     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
899   case Expr::SubstNonTypeTemplateParmExprClass:
900     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
901   case Expr::ImplicitCastExprClass:
902   case Expr::CStyleCastExprClass:
903   case Expr::CXXFunctionalCastExprClass:
904   case Expr::CXXStaticCastExprClass:
905   case Expr::CXXDynamicCastExprClass:
906   case Expr::CXXReinterpretCastExprClass:
907   case Expr::CXXConstCastExprClass:
908   case Expr::ObjCBridgedCastExprClass:
909     return EmitCastLValue(cast<CastExpr>(E));
910
911   case Expr::MaterializeTemporaryExprClass:
912     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
913   }
914 }
915
916 /// Given an object of the given canonical type, can we safely copy a
917 /// value out of it based on its initializer?
918 static bool isConstantEmittableObjectType(QualType type) {
919   assert(type.isCanonical());
920   assert(!type->isReferenceType());
921
922   // Must be const-qualified but non-volatile.
923   Qualifiers qs = type.getLocalQualifiers();
924   if (!qs.hasConst() || qs.hasVolatile()) return false;
925
926   // Otherwise, all object types satisfy this except C++ classes with
927   // mutable subobjects or non-trivial copy/destroy behavior.
928   if (const auto *RT = dyn_cast<RecordType>(type))
929     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
930       if (RD->hasMutableFields() || !RD->isTrivial())
931         return false;
932
933   return true;
934 }
935
936 /// Can we constant-emit a load of a reference to a variable of the
937 /// given type?  This is different from predicates like
938 /// Decl::isUsableInConstantExpressions because we do want it to apply
939 /// in situations that don't necessarily satisfy the language's rules
940 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
941 /// to do this with const float variables even if those variables
942 /// aren't marked 'constexpr'.
943 enum ConstantEmissionKind {
944   CEK_None,
945   CEK_AsReferenceOnly,
946   CEK_AsValueOrReference,
947   CEK_AsValueOnly
948 };
949 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
950   type = type.getCanonicalType();
951   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
952     if (isConstantEmittableObjectType(ref->getPointeeType()))
953       return CEK_AsValueOrReference;
954     return CEK_AsReferenceOnly;
955   }
956   if (isConstantEmittableObjectType(type))
957     return CEK_AsValueOnly;
958   return CEK_None;
959 }
960
961 /// Try to emit a reference to the given value without producing it as
962 /// an l-value.  This is actually more than an optimization: we can't
963 /// produce an l-value for variables that we never actually captured
964 /// in a block or lambda, which means const int variables or constexpr
965 /// literals or similar.
966 CodeGenFunction::ConstantEmission
967 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
968   ValueDecl *value = refExpr->getDecl();
969
970   // The value needs to be an enum constant or a constant variable.
971   ConstantEmissionKind CEK;
972   if (isa<ParmVarDecl>(value)) {
973     CEK = CEK_None;
974   } else if (auto *var = dyn_cast<VarDecl>(value)) {
975     CEK = checkVarTypeForConstantEmission(var->getType());
976   } else if (isa<EnumConstantDecl>(value)) {
977     CEK = CEK_AsValueOnly;
978   } else {
979     CEK = CEK_None;
980   }
981   if (CEK == CEK_None) return ConstantEmission();
982
983   Expr::EvalResult result;
984   bool resultIsReference;
985   QualType resultType;
986
987   // It's best to evaluate all the way as an r-value if that's permitted.
988   if (CEK != CEK_AsReferenceOnly &&
989       refExpr->EvaluateAsRValue(result, getContext())) {
990     resultIsReference = false;
991     resultType = refExpr->getType();
992
993   // Otherwise, try to evaluate as an l-value.
994   } else if (CEK != CEK_AsValueOnly &&
995              refExpr->EvaluateAsLValue(result, getContext())) {
996     resultIsReference = true;
997     resultType = value->getType();
998
999   // Failure.
1000   } else {
1001     return ConstantEmission();
1002   }
1003
1004   // In any case, if the initializer has side-effects, abandon ship.
1005   if (result.HasSideEffects)
1006     return ConstantEmission();
1007
1008   // Emit as a constant.
1009   llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
1010
1011   // Make sure we emit a debug reference to the global variable.
1012   // This should probably fire even for
1013   if (isa<VarDecl>(value)) {
1014     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1015       EmitDeclRefExprDbgValue(refExpr, C);
1016   } else {
1017     assert(isa<EnumConstantDecl>(value));
1018     EmitDeclRefExprDbgValue(refExpr, C);
1019   }
1020
1021   // If we emitted a reference constant, we need to dereference that.
1022   if (resultIsReference)
1023     return ConstantEmission::forReference(C);
1024
1025   return ConstantEmission::forValue(C);
1026 }
1027
1028 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1029                                                SourceLocation Loc) {
1030   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1031                           lvalue.getAlignment().getQuantity(),
1032                           lvalue.getType(), Loc, lvalue.getTBAAInfo(),
1033                           lvalue.getTBAABaseType(), lvalue.getTBAAOffset());
1034 }
1035
1036 static bool hasBooleanRepresentation(QualType Ty) {
1037   if (Ty->isBooleanType())
1038     return true;
1039
1040   if (const EnumType *ET = Ty->getAs<EnumType>())
1041     return ET->getDecl()->getIntegerType()->isBooleanType();
1042
1043   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1044     return hasBooleanRepresentation(AT->getValueType());
1045
1046   return false;
1047 }
1048
1049 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1050                             llvm::APInt &Min, llvm::APInt &End,
1051                             bool StrictEnums) {
1052   const EnumType *ET = Ty->getAs<EnumType>();
1053   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1054                                 ET && !ET->getDecl()->isFixed();
1055   bool IsBool = hasBooleanRepresentation(Ty);
1056   if (!IsBool && !IsRegularCPlusPlusEnum)
1057     return false;
1058
1059   if (IsBool) {
1060     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1061     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1062   } else {
1063     const EnumDecl *ED = ET->getDecl();
1064     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1065     unsigned Bitwidth = LTy->getScalarSizeInBits();
1066     unsigned NumNegativeBits = ED->getNumNegativeBits();
1067     unsigned NumPositiveBits = ED->getNumPositiveBits();
1068
1069     if (NumNegativeBits) {
1070       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1071       assert(NumBits <= Bitwidth);
1072       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1073       Min = -End;
1074     } else {
1075       assert(NumPositiveBits <= Bitwidth);
1076       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1077       Min = llvm::APInt(Bitwidth, 0);
1078     }
1079   }
1080   return true;
1081 }
1082
1083 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1084   llvm::APInt Min, End;
1085   if (!getRangeForType(*this, Ty, Min, End,
1086                        CGM.getCodeGenOpts().StrictEnums))
1087     return nullptr;
1088
1089   llvm::MDBuilder MDHelper(getLLVMContext());
1090   return MDHelper.createRange(Min, End);
1091 }
1092
1093 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1094                                                unsigned Alignment, QualType Ty,
1095                                                SourceLocation Loc,
1096                                                llvm::MDNode *TBAAInfo,
1097                                                QualType TBAABaseType,
1098                                                uint64_t TBAAOffset) {
1099   // For better performance, handle vector loads differently.
1100   if (Ty->isVectorType()) {
1101     llvm::Value *V;
1102     const llvm::Type *EltTy =
1103     cast<llvm::PointerType>(Addr->getType())->getElementType();
1104
1105     const auto *VTy = cast<llvm::VectorType>(EltTy);
1106
1107     // Handle vectors of size 3, like size 4 for better performance.
1108     if (VTy->getNumElements() == 3) {
1109
1110       // Bitcast to vec4 type.
1111       llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
1112                                                          4);
1113       llvm::PointerType *ptVec4Ty =
1114       llvm::PointerType::get(vec4Ty,
1115                              (cast<llvm::PointerType>(
1116                                       Addr->getType()))->getAddressSpace());
1117       llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty,
1118                                                 "castToVec4");
1119       // Now load value.
1120       llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1121
1122       // Shuffle vector to get vec3.
1123       llvm::Constant *Mask[] = {
1124         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0),
1125         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1),
1126         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2)
1127       };
1128
1129       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1130       V = Builder.CreateShuffleVector(LoadVal,
1131                                       llvm::UndefValue::get(vec4Ty),
1132                                       MaskV, "extractVec");
1133       return EmitFromMemory(V, Ty);
1134     }
1135   }
1136
1137   // Atomic operations have to be done on integral types.
1138   if (Ty->isAtomicType()) {
1139     LValue lvalue = LValue::MakeAddr(Addr, Ty,
1140                                      CharUnits::fromQuantity(Alignment),
1141                                      getContext(), TBAAInfo);
1142     return EmitAtomicLoad(lvalue, Loc).getScalarVal();
1143   }
1144
1145   llvm::LoadInst *Load = Builder.CreateLoad(Addr);
1146   if (Volatile)
1147     Load->setVolatile(true);
1148   if (Alignment)
1149     Load->setAlignment(Alignment);
1150   if (TBAAInfo) {
1151     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1152                                                       TBAAOffset);
1153     if (TBAAPath)
1154       CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/);
1155   }
1156
1157   bool NeedsBoolCheck =
1158       SanOpts.has(SanitizerKind::Bool) && hasBooleanRepresentation(Ty);
1159   bool NeedsEnumCheck =
1160       SanOpts.has(SanitizerKind::Enum) && Ty->getAs<EnumType>();
1161   if (NeedsBoolCheck || NeedsEnumCheck) {
1162     SanitizerScope SanScope(this);
1163     llvm::APInt Min, End;
1164     if (getRangeForType(*this, Ty, Min, End, true)) {
1165       --End;
1166       llvm::Value *Check;
1167       if (!Min)
1168         Check = Builder.CreateICmpULE(
1169           Load, llvm::ConstantInt::get(getLLVMContext(), End));
1170       else {
1171         llvm::Value *Upper = Builder.CreateICmpSLE(
1172           Load, llvm::ConstantInt::get(getLLVMContext(), End));
1173         llvm::Value *Lower = Builder.CreateICmpSGE(
1174           Load, llvm::ConstantInt::get(getLLVMContext(), Min));
1175         Check = Builder.CreateAnd(Upper, Lower);
1176       }
1177       llvm::Constant *StaticArgs[] = {
1178         EmitCheckSourceLocation(Loc),
1179         EmitCheckTypeDescriptor(Ty)
1180       };
1181       SanitizerKind Kind = NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1182       EmitCheck(std::make_pair(Check, Kind), "load_invalid_value", StaticArgs,
1183                 EmitCheckValue(Load));
1184     }
1185   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1186     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1187       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1188
1189   return EmitFromMemory(Load, Ty);
1190 }
1191
1192 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1193   // Bool has a different representation in memory than in registers.
1194   if (hasBooleanRepresentation(Ty)) {
1195     // This should really always be an i1, but sometimes it's already
1196     // an i8, and it's awkward to track those cases down.
1197     if (Value->getType()->isIntegerTy(1))
1198       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1199     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1200            "wrong value rep of bool");
1201   }
1202
1203   return Value;
1204 }
1205
1206 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1207   // Bool has a different representation in memory than in registers.
1208   if (hasBooleanRepresentation(Ty)) {
1209     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1210            "wrong value rep of bool");
1211     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1212   }
1213
1214   return Value;
1215 }
1216
1217 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1218                                         bool Volatile, unsigned Alignment,
1219                                         QualType Ty, llvm::MDNode *TBAAInfo,
1220                                         bool isInit, QualType TBAABaseType,
1221                                         uint64_t TBAAOffset) {
1222
1223   // Handle vectors differently to get better performance.
1224   if (Ty->isVectorType()) {
1225     llvm::Type *SrcTy = Value->getType();
1226     auto *VecTy = cast<llvm::VectorType>(SrcTy);
1227     // Handle vec3 special.
1228     if (VecTy->getNumElements() == 3) {
1229       llvm::LLVMContext &VMContext = getLLVMContext();
1230
1231       // Our source is a vec3, do a shuffle vector to make it a vec4.
1232       SmallVector<llvm::Constant*, 4> Mask;
1233       Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1234                                             0));
1235       Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1236                                             1));
1237       Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1238                                             2));
1239       Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext)));
1240
1241       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1242       Value = Builder.CreateShuffleVector(Value,
1243                                           llvm::UndefValue::get(VecTy),
1244                                           MaskV, "extractVec");
1245       SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1246     }
1247     auto *DstPtr = cast<llvm::PointerType>(Addr->getType());
1248     if (DstPtr->getElementType() != SrcTy) {
1249       llvm::Type *MemTy =
1250       llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace());
1251       Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp");
1252     }
1253   }
1254
1255   Value = EmitToMemory(Value, Ty);
1256
1257   if (Ty->isAtomicType()) {
1258     EmitAtomicStore(RValue::get(Value),
1259                     LValue::MakeAddr(Addr, Ty,
1260                                      CharUnits::fromQuantity(Alignment),
1261                                      getContext(), TBAAInfo),
1262                     isInit);
1263     return;
1264   }
1265
1266   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1267   if (Alignment)
1268     Store->setAlignment(Alignment);
1269   if (TBAAInfo) {
1270     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1271                                                       TBAAOffset);
1272     if (TBAAPath)
1273       CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/);
1274   }
1275 }
1276
1277 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1278                                         bool isInit) {
1279   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1280                     lvalue.getAlignment().getQuantity(), lvalue.getType(),
1281                     lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
1282                     lvalue.getTBAAOffset());
1283 }
1284
1285 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1286 /// method emits the address of the lvalue, then loads the result as an rvalue,
1287 /// returning the rvalue.
1288 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1289   if (LV.isObjCWeak()) {
1290     // load of a __weak object.
1291     llvm::Value *AddrWeakObj = LV.getAddress();
1292     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1293                                                              AddrWeakObj));
1294   }
1295   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1296     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1297     Object = EmitObjCConsumeObject(LV.getType(), Object);
1298     return RValue::get(Object);
1299   }
1300
1301   if (LV.isSimple()) {
1302     assert(!LV.getType()->isFunctionType());
1303
1304     // Everything needs a load.
1305     return RValue::get(EmitLoadOfScalar(LV, Loc));
1306   }
1307
1308   if (LV.isVectorElt()) {
1309     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(),
1310                                               LV.isVolatileQualified());
1311     Load->setAlignment(LV.getAlignment().getQuantity());
1312     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1313                                                     "vecext"));
1314   }
1315
1316   // If this is a reference to a subset of the elements of a vector, either
1317   // shuffle the input or extract/insert them as appropriate.
1318   if (LV.isExtVectorElt())
1319     return EmitLoadOfExtVectorElementLValue(LV);
1320
1321   // Global Register variables always invoke intrinsics
1322   if (LV.isGlobalReg())
1323     return EmitLoadOfGlobalRegLValue(LV);
1324
1325   assert(LV.isBitField() && "Unknown LValue type!");
1326   return EmitLoadOfBitfieldLValue(LV);
1327 }
1328
1329 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
1330   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1331
1332   // Get the output type.
1333   llvm::Type *ResLTy = ConvertType(LV.getType());
1334
1335   llvm::Value *Ptr = LV.getBitFieldAddr();
1336   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(),
1337                                         "bf.load");
1338   cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1339
1340   if (Info.IsSigned) {
1341     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1342     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1343     if (HighBits)
1344       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1345     if (Info.Offset + HighBits)
1346       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1347   } else {
1348     if (Info.Offset)
1349       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1350     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1351       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1352                                                               Info.Size),
1353                               "bf.clear");
1354   }
1355   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1356
1357   return RValue::get(Val);
1358 }
1359
1360 // If this is a reference to a subset of the elements of a vector, create an
1361 // appropriate shufflevector.
1362 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1363   llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(),
1364                                             LV.isVolatileQualified());
1365   Load->setAlignment(LV.getAlignment().getQuantity());
1366   llvm::Value *Vec = Load;
1367
1368   const llvm::Constant *Elts = LV.getExtVectorElts();
1369
1370   // If the result of the expression is a non-vector type, we must be extracting
1371   // a single element.  Just codegen as an extractelement.
1372   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1373   if (!ExprVT) {
1374     unsigned InIdx = getAccessedFieldNo(0, Elts);
1375     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1376     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1377   }
1378
1379   // Always use shuffle vector to try to retain the original program structure
1380   unsigned NumResultElts = ExprVT->getNumElements();
1381
1382   SmallVector<llvm::Constant*, 4> Mask;
1383   for (unsigned i = 0; i != NumResultElts; ++i)
1384     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1385
1386   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1387   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1388                                     MaskV);
1389   return RValue::get(Vec);
1390 }
1391
1392 /// @brief Generates lvalue for partial ext_vector access.
1393 llvm::Value *CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
1394   llvm::Value *VectorAddress = LV.getExtVectorAddr();
1395   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1396   QualType EQT = ExprVT->getElementType();
1397   llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
1398   llvm::Type *VectorElementPtrToTy = VectorElementTy->getPointerTo();
1399   
1400   llvm::Value *CastToPointerElement =
1401     Builder.CreateBitCast(VectorAddress,
1402                           VectorElementPtrToTy, "conv.ptr.element");
1403   
1404   const llvm::Constant *Elts = LV.getExtVectorElts();
1405   unsigned ix = getAccessedFieldNo(0, Elts);
1406   
1407   llvm::Value *VectorBasePtrPlusIx =
1408     Builder.CreateInBoundsGEP(CastToPointerElement,
1409                               llvm::ConstantInt::get(SizeTy, ix), "add.ptr");
1410   
1411   return VectorBasePtrPlusIx;
1412 }
1413
1414 /// @brief Load of global gamed gegisters are always calls to intrinsics.
1415 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1416   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1417          "Bad type for register variable");
1418   llvm::MDNode *RegName = cast<llvm::MDNode>(
1419       cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
1420
1421   // We accept integer and pointer types only
1422   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1423   llvm::Type *Ty = OrigTy;
1424   if (OrigTy->isPointerTy())
1425     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1426   llvm::Type *Types[] = { Ty };
1427
1428   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1429   llvm::Value *Call = Builder.CreateCall(
1430       F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
1431   if (OrigTy->isPointerTy())
1432     Call = Builder.CreateIntToPtr(Call, OrigTy);
1433   return RValue::get(Call);
1434 }
1435
1436
1437 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1438 /// lvalue, where both are guaranteed to the have the same type, and that type
1439 /// is 'Ty'.
1440 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1441                                              bool isInit) {
1442   if (!Dst.isSimple()) {
1443     if (Dst.isVectorElt()) {
1444       // Read/modify/write the vector, inserting the new element.
1445       llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(),
1446                                                 Dst.isVolatileQualified());
1447       Load->setAlignment(Dst.getAlignment().getQuantity());
1448       llvm::Value *Vec = Load;
1449       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1450                                         Dst.getVectorIdx(), "vecins");
1451       llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(),
1452                                                    Dst.isVolatileQualified());
1453       Store->setAlignment(Dst.getAlignment().getQuantity());
1454       return;
1455     }
1456
1457     // If this is an update of extended vector elements, insert them as
1458     // appropriate.
1459     if (Dst.isExtVectorElt())
1460       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1461
1462     if (Dst.isGlobalReg())
1463       return EmitStoreThroughGlobalRegLValue(Src, Dst);
1464
1465     assert(Dst.isBitField() && "Unknown LValue type");
1466     return EmitStoreThroughBitfieldLValue(Src, Dst);
1467   }
1468
1469   // There's special magic for assigning into an ARC-qualified l-value.
1470   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1471     switch (Lifetime) {
1472     case Qualifiers::OCL_None:
1473       llvm_unreachable("present but none");
1474
1475     case Qualifiers::OCL_ExplicitNone:
1476       // nothing special
1477       break;
1478
1479     case Qualifiers::OCL_Strong:
1480       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1481       return;
1482
1483     case Qualifiers::OCL_Weak:
1484       EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1485       return;
1486
1487     case Qualifiers::OCL_Autoreleasing:
1488       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1489                                                      Src.getScalarVal()));
1490       // fall into the normal path
1491       break;
1492     }
1493   }
1494
1495   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1496     // load of a __weak object.
1497     llvm::Value *LvalueDst = Dst.getAddress();
1498     llvm::Value *src = Src.getScalarVal();
1499      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1500     return;
1501   }
1502
1503   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1504     // load of a __strong object.
1505     llvm::Value *LvalueDst = Dst.getAddress();
1506     llvm::Value *src = Src.getScalarVal();
1507     if (Dst.isObjCIvar()) {
1508       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1509       llvm::Type *ResultType = ConvertType(getContext().LongTy);
1510       llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
1511       llvm::Value *dst = RHS;
1512       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1513       llvm::Value *LHS =
1514         Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
1515       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1516       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1517                                               BytesBetween);
1518     } else if (Dst.isGlobalObjCRef()) {
1519       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1520                                                 Dst.isThreadLocalRef());
1521     }
1522     else
1523       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1524     return;
1525   }
1526
1527   assert(Src.isScalar() && "Can't emit an agg store with this method");
1528   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1529 }
1530
1531 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1532                                                      llvm::Value **Result) {
1533   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1534   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1535   llvm::Value *Ptr = Dst.getBitFieldAddr();
1536
1537   // Get the source value, truncated to the width of the bit-field.
1538   llvm::Value *SrcVal = Src.getScalarVal();
1539
1540   // Cast the source to the storage type and shift it into place.
1541   SrcVal = Builder.CreateIntCast(SrcVal,
1542                                  Ptr->getType()->getPointerElementType(),
1543                                  /*IsSigned=*/false);
1544   llvm::Value *MaskedVal = SrcVal;
1545
1546   // See if there are other bits in the bitfield's storage we'll need to load
1547   // and mask together with source before storing.
1548   if (Info.StorageSize != Info.Size) {
1549     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1550     llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(),
1551                                           "bf.load");
1552     cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1553
1554     // Mask the source value as needed.
1555     if (!hasBooleanRepresentation(Dst.getType()))
1556       SrcVal = Builder.CreateAnd(SrcVal,
1557                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
1558                                                             Info.Size),
1559                                  "bf.value");
1560     MaskedVal = SrcVal;
1561     if (Info.Offset)
1562       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1563
1564     // Mask out the original value.
1565     Val = Builder.CreateAnd(Val,
1566                             ~llvm::APInt::getBitsSet(Info.StorageSize,
1567                                                      Info.Offset,
1568                                                      Info.Offset + Info.Size),
1569                             "bf.clear");
1570
1571     // Or together the unchanged values and the source value.
1572     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1573   } else {
1574     assert(Info.Offset == 0);
1575   }
1576
1577   // Write the new value back out.
1578   llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr,
1579                                                Dst.isVolatileQualified());
1580   Store->setAlignment(Info.StorageAlignment);
1581
1582   // Return the new value of the bit-field, if requested.
1583   if (Result) {
1584     llvm::Value *ResultVal = MaskedVal;
1585
1586     // Sign extend the value if needed.
1587     if (Info.IsSigned) {
1588       assert(Info.Size <= Info.StorageSize);
1589       unsigned HighBits = Info.StorageSize - Info.Size;
1590       if (HighBits) {
1591         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1592         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1593       }
1594     }
1595
1596     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
1597                                       "bf.result.cast");
1598     *Result = EmitFromMemory(ResultVal, Dst.getType());
1599   }
1600 }
1601
1602 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1603                                                                LValue Dst) {
1604   // This access turns into a read/modify/write of the vector.  Load the input
1605   // value now.
1606   llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(),
1607                                             Dst.isVolatileQualified());
1608   Load->setAlignment(Dst.getAlignment().getQuantity());
1609   llvm::Value *Vec = Load;
1610   const llvm::Constant *Elts = Dst.getExtVectorElts();
1611
1612   llvm::Value *SrcVal = Src.getScalarVal();
1613
1614   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1615     unsigned NumSrcElts = VTy->getNumElements();
1616     unsigned NumDstElts =
1617        cast<llvm::VectorType>(Vec->getType())->getNumElements();
1618     if (NumDstElts == NumSrcElts) {
1619       // Use shuffle vector is the src and destination are the same number of
1620       // elements and restore the vector mask since it is on the side it will be
1621       // stored.
1622       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1623       for (unsigned i = 0; i != NumSrcElts; ++i)
1624         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1625
1626       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1627       Vec = Builder.CreateShuffleVector(SrcVal,
1628                                         llvm::UndefValue::get(Vec->getType()),
1629                                         MaskV);
1630     } else if (NumDstElts > NumSrcElts) {
1631       // Extended the source vector to the same length and then shuffle it
1632       // into the destination.
1633       // FIXME: since we're shuffling with undef, can we just use the indices
1634       //        into that?  This could be simpler.
1635       SmallVector<llvm::Constant*, 4> ExtMask;
1636       for (unsigned i = 0; i != NumSrcElts; ++i)
1637         ExtMask.push_back(Builder.getInt32(i));
1638       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1639       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1640       llvm::Value *ExtSrcVal =
1641         Builder.CreateShuffleVector(SrcVal,
1642                                     llvm::UndefValue::get(SrcVal->getType()),
1643                                     ExtMaskV);
1644       // build identity
1645       SmallVector<llvm::Constant*, 4> Mask;
1646       for (unsigned i = 0; i != NumDstElts; ++i)
1647         Mask.push_back(Builder.getInt32(i));
1648
1649       // When the vector size is odd and .odd or .hi is used, the last element
1650       // of the Elts constant array will be one past the size of the vector.
1651       // Ignore the last element here, if it is greater than the mask size.
1652       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
1653         NumSrcElts--;
1654
1655       // modify when what gets shuffled in
1656       for (unsigned i = 0; i != NumSrcElts; ++i)
1657         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1658       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1659       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1660     } else {
1661       // We should never shorten the vector
1662       llvm_unreachable("unexpected shorten vector length");
1663     }
1664   } else {
1665     // If the Src is a scalar (not a vector) it must be updating one element.
1666     unsigned InIdx = getAccessedFieldNo(0, Elts);
1667     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1668     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1669   }
1670
1671   llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(),
1672                                                Dst.isVolatileQualified());
1673   Store->setAlignment(Dst.getAlignment().getQuantity());
1674 }
1675
1676 /// @brief Store of global named registers are always calls to intrinsics.
1677 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
1678   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
1679          "Bad type for register variable");
1680   llvm::MDNode *RegName = cast<llvm::MDNode>(
1681       cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
1682   assert(RegName && "Register LValue is not metadata");
1683
1684   // We accept integer and pointer types only
1685   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
1686   llvm::Type *Ty = OrigTy;
1687   if (OrigTy->isPointerTy())
1688     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1689   llvm::Type *Types[] = { Ty };
1690
1691   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
1692   llvm::Value *Value = Src.getScalarVal();
1693   if (OrigTy->isPointerTy())
1694     Value = Builder.CreatePtrToInt(Value, Ty);
1695   Builder.CreateCall2(F, llvm::MetadataAsValue::get(Ty->getContext(), RegName),
1696                       Value);
1697 }
1698
1699 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
1700 // generating write-barries API. It is currently a global, ivar,
1701 // or neither.
1702 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1703                                  LValue &LV,
1704                                  bool IsMemberAccess=false) {
1705   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1706     return;
1707
1708   if (isa<ObjCIvarRefExpr>(E)) {
1709     QualType ExpTy = E->getType();
1710     if (IsMemberAccess && ExpTy->isPointerType()) {
1711       // If ivar is a structure pointer, assigning to field of
1712       // this struct follows gcc's behavior and makes it a non-ivar
1713       // writer-barrier conservatively.
1714       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1715       if (ExpTy->isRecordType()) {
1716         LV.setObjCIvar(false);
1717         return;
1718       }
1719     }
1720     LV.setObjCIvar(true);
1721     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
1722     LV.setBaseIvarExp(Exp->getBase());
1723     LV.setObjCArray(E->getType()->isArrayType());
1724     return;
1725   }
1726
1727   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
1728     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1729       if (VD->hasGlobalStorage()) {
1730         LV.setGlobalObjCRef(true);
1731         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
1732       }
1733     }
1734     LV.setObjCArray(E->getType()->isArrayType());
1735     return;
1736   }
1737
1738   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
1739     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1740     return;
1741   }
1742
1743   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
1744     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1745     if (LV.isObjCIvar()) {
1746       // If cast is to a structure pointer, follow gcc's behavior and make it
1747       // a non-ivar write-barrier.
1748       QualType ExpTy = E->getType();
1749       if (ExpTy->isPointerType())
1750         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1751       if (ExpTy->isRecordType())
1752         LV.setObjCIvar(false);
1753     }
1754     return;
1755   }
1756
1757   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1758     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1759     return;
1760   }
1761
1762   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1763     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1764     return;
1765   }
1766
1767   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
1768     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1769     return;
1770   }
1771
1772   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1773     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1774     return;
1775   }
1776
1777   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1778     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1779     if (LV.isObjCIvar() && !LV.isObjCArray())
1780       // Using array syntax to assigning to what an ivar points to is not
1781       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1782       LV.setObjCIvar(false);
1783     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1784       // Using array syntax to assigning to what global points to is not
1785       // same as assigning to the global itself. {id *G;} G[i] = 0;
1786       LV.setGlobalObjCRef(false);
1787     return;
1788   }
1789
1790   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
1791     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1792     // We don't know if member is an 'ivar', but this flag is looked at
1793     // only in the context of LV.isObjCIvar().
1794     LV.setObjCArray(E->getType()->isArrayType());
1795     return;
1796   }
1797 }
1798
1799 static llvm::Value *
1800 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1801                                 llvm::Value *V, llvm::Type *IRType,
1802                                 StringRef Name = StringRef()) {
1803   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1804   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1805 }
1806
1807 static LValue EmitThreadPrivateVarDeclLValue(
1808     CodeGenFunction &CGF, const VarDecl *VD, QualType T, llvm::Value *V,
1809     llvm::Type *RealVarTy, CharUnits Alignment, SourceLocation Loc) {
1810   V = CGF.CGM.getOpenMPRuntime().getOMPAddrOfThreadPrivate(CGF, VD, V, Loc);
1811   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1812   return CGF.MakeAddrLValue(V, T, Alignment);
1813 }
1814
1815 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1816                                       const Expr *E, const VarDecl *VD) {
1817   QualType T = E->getType();
1818
1819   // If it's thread_local, emit a call to its wrapper function instead.
1820   if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
1821       CGF.CGM.getCXXABI().usesThreadWrapperFunction())
1822     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
1823
1824   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1825   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1826   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1827   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1828   LValue LV;
1829   // Emit reference to the private copy of the variable if it is an OpenMP
1830   // threadprivate variable.
1831   if (CGF.getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>())
1832     return EmitThreadPrivateVarDeclLValue(CGF, VD, T, V, RealVarTy, Alignment,
1833                                           E->getExprLoc());
1834   if (VD->getType()->isReferenceType()) {
1835     llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
1836     LI->setAlignment(Alignment.getQuantity());
1837     V = LI;
1838     LV = CGF.MakeNaturalAlignAddrLValue(V, T);
1839   } else {
1840     LV = CGF.MakeAddrLValue(V, T, Alignment);
1841   }
1842   setObjCGCLValueClass(CGF.getContext(), E, LV);
1843   return LV;
1844 }
1845
1846 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1847                                      const Expr *E, const FunctionDecl *FD) {
1848   llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1849   if (!FD->hasPrototype()) {
1850     if (const FunctionProtoType *Proto =
1851             FD->getType()->getAs<FunctionProtoType>()) {
1852       // Ugly case: for a K&R-style definition, the type of the definition
1853       // isn't the same as the type of a use.  Correct for this with a
1854       // bitcast.
1855       QualType NoProtoType =
1856           CGF.getContext().getFunctionNoProtoType(Proto->getReturnType());
1857       NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1858       V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1859     }
1860   }
1861   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1862   return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1863 }
1864
1865 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
1866                                       llvm::Value *ThisValue) {
1867   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
1868   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
1869   return CGF.EmitLValueForField(LV, FD);
1870 }
1871
1872 /// Named Registers are named metadata pointing to the register name
1873 /// which will be read from/written to as an argument to the intrinsic
1874 /// @llvm.read/write_register.
1875 /// So far, only the name is being passed down, but other options such as
1876 /// register type, allocation type or even optimization options could be
1877 /// passed down via the metadata node.
1878 static LValue EmitGlobalNamedRegister(const VarDecl *VD,
1879                                       CodeGenModule &CGM,
1880                                       CharUnits Alignment) {
1881   SmallString<64> Name("llvm.named.register.");
1882   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
1883   assert(Asm->getLabel().size() < 64-Name.size() &&
1884       "Register name too big");
1885   Name.append(Asm->getLabel());
1886   llvm::NamedMDNode *M =
1887     CGM.getModule().getOrInsertNamedMetadata(Name);
1888   if (M->getNumOperands() == 0) {
1889     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
1890                                               Asm->getLabel());
1891     llvm::Metadata *Ops[] = {Str};
1892     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
1893   }
1894   return LValue::MakeGlobalReg(
1895       llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0)),
1896       VD->getType(), Alignment);
1897 }
1898
1899 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1900   const NamedDecl *ND = E->getDecl();
1901   CharUnits Alignment = getContext().getDeclAlign(ND);
1902   QualType T = E->getType();
1903
1904   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
1905     // Global Named registers access via intrinsics only
1906     if (VD->getStorageClass() == SC_Register &&
1907         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
1908       return EmitGlobalNamedRegister(VD, CGM, Alignment);
1909
1910     // A DeclRefExpr for a reference initialized by a constant expression can
1911     // appear without being odr-used. Directly emit the constant initializer.
1912     const Expr *Init = VD->getAnyInitializer(VD);
1913     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
1914         VD->isUsableInConstantExpressions(getContext()) &&
1915         VD->checkInitIsICE()) {
1916       llvm::Constant *Val =
1917         CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
1918       assert(Val && "failed to emit reference constant expression");
1919       // FIXME: Eventually we will want to emit vector element references.
1920       return MakeAddrLValue(Val, T, Alignment);
1921     }
1922
1923     // Check for captured variables.
1924     if (E->refersToEnclosingVariableOrCapture()) {
1925       if (auto *FD = LambdaCaptureFields.lookup(VD))
1926         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
1927       else if (CapturedStmtInfo) {
1928         if (auto *V = LocalDeclMap.lookup(VD))
1929           return MakeAddrLValue(V, T, Alignment);
1930         else
1931           return EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
1932                                          CapturedStmtInfo->getContextValue());
1933       }
1934       assert(isa<BlockDecl>(CurCodeDecl));
1935       return MakeAddrLValue(GetAddrOfBlockDecl(VD, VD->hasAttr<BlocksAttr>()),
1936                             T, Alignment);
1937     }
1938   }
1939
1940   // FIXME: We should be able to assert this for FunctionDecls as well!
1941   // FIXME: We should be able to assert this for all DeclRefExprs, not just
1942   // those with a valid source location.
1943   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
1944           !E->getLocation().isValid()) &&
1945          "Should not use decl without marking it used!");
1946
1947   if (ND->hasAttr<WeakRefAttr>()) {
1948     const auto *VD = cast<ValueDecl>(ND);
1949     llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1950     return MakeAddrLValue(Aliasee, T, Alignment);
1951   }
1952
1953   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
1954     // Check if this is a global variable.
1955     if (VD->hasLinkage() || VD->isStaticDataMember())
1956       return EmitGlobalVarDeclLValue(*this, E, VD);
1957
1958     bool isBlockVariable = VD->hasAttr<BlocksAttr>();
1959
1960     llvm::Value *V = LocalDeclMap.lookup(VD);
1961     if (!V && VD->isStaticLocal())
1962       V = CGM.getOrCreateStaticVarDecl(
1963           *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false));
1964
1965     // Check if variable is threadprivate.
1966     if (V && getLangOpts().OpenMP && VD->hasAttr<OMPThreadPrivateDeclAttr>())
1967       return EmitThreadPrivateVarDeclLValue(
1968           *this, VD, T, V, getTypes().ConvertTypeForMem(VD->getType()),
1969           Alignment, E->getExprLoc());
1970
1971     assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1972
1973     if (isBlockVariable)
1974       V = BuildBlockByrefAddress(V, VD);
1975
1976     LValue LV;
1977     if (VD->getType()->isReferenceType()) {
1978       llvm::LoadInst *LI = Builder.CreateLoad(V);
1979       LI->setAlignment(Alignment.getQuantity());
1980       V = LI;
1981       LV = MakeNaturalAlignAddrLValue(V, T);
1982     } else {
1983       LV = MakeAddrLValue(V, T, Alignment);
1984     }
1985
1986     bool isLocalStorage = VD->hasLocalStorage();
1987
1988     bool NonGCable = isLocalStorage &&
1989                      !VD->getType()->isReferenceType() &&
1990                      !isBlockVariable;
1991     if (NonGCable) {
1992       LV.getQuals().removeObjCGCAttr();
1993       LV.setNonGC(true);
1994     }
1995
1996     bool isImpreciseLifetime =
1997       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
1998     if (isImpreciseLifetime)
1999       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
2000     setObjCGCLValueClass(getContext(), E, LV);
2001     return LV;
2002   }
2003
2004   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2005     return EmitFunctionDeclLValue(*this, E, FD);
2006
2007   llvm_unreachable("Unhandled DeclRefExpr");
2008 }
2009
2010 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
2011   // __extension__ doesn't affect lvalue-ness.
2012   if (E->getOpcode() == UO_Extension)
2013     return EmitLValue(E->getSubExpr());
2014
2015   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
2016   switch (E->getOpcode()) {
2017   default: llvm_unreachable("Unknown unary operator lvalue!");
2018   case UO_Deref: {
2019     QualType T = E->getSubExpr()->getType()->getPointeeType();
2020     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
2021
2022     LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
2023     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
2024
2025     // We should not generate __weak write barrier on indirect reference
2026     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
2027     // But, we continue to generate __strong write barrier on indirect write
2028     // into a pointer to object.
2029     if (getLangOpts().ObjC1 &&
2030         getLangOpts().getGC() != LangOptions::NonGC &&
2031         LV.isObjCWeak())
2032       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2033     return LV;
2034   }
2035   case UO_Real:
2036   case UO_Imag: {
2037     LValue LV = EmitLValue(E->getSubExpr());
2038     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
2039     llvm::Value *Addr = LV.getAddress();
2040
2041     // __real is valid on scalars.  This is a faster way of testing that.
2042     // __imag can only produce an rvalue on scalars.
2043     if (E->getOpcode() == UO_Real &&
2044         !cast<llvm::PointerType>(Addr->getType())
2045            ->getElementType()->isStructTy()) {
2046       assert(E->getSubExpr()->getType()->isArithmeticType());
2047       return LV;
2048     }
2049
2050     assert(E->getSubExpr()->getType()->isAnyComplexType());
2051
2052     unsigned Idx = E->getOpcode() == UO_Imag;
2053     return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
2054                                                   Idx, "idx"),
2055                           ExprTy);
2056   }
2057   case UO_PreInc:
2058   case UO_PreDec: {
2059     LValue LV = EmitLValue(E->getSubExpr());
2060     bool isInc = E->getOpcode() == UO_PreInc;
2061
2062     if (E->getType()->isAnyComplexType())
2063       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
2064     else
2065       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
2066     return LV;
2067   }
2068   }
2069 }
2070
2071 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
2072   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
2073                         E->getType());
2074 }
2075
2076 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
2077   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
2078                         E->getType());
2079 }
2080
2081 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2082   auto SL = E->getFunctionName();
2083   assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
2084   StringRef FnName = CurFn->getName();
2085   if (FnName.startswith("\01"))
2086     FnName = FnName.substr(1);
2087   StringRef NameItems[] = {
2088       PredefinedExpr::getIdentTypeName(E->getIdentType()), FnName};
2089   std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
2090   if (CurCodeDecl && isa<BlockDecl>(CurCodeDecl)) {
2091     auto C = CGM.GetAddrOfConstantCString(FnName, GVName.c_str(), 1);
2092     return MakeAddrLValue(C, E->getType());
2093   }
2094   auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
2095   return MakeAddrLValue(C, E->getType());
2096 }
2097
2098 /// Emit a type description suitable for use by a runtime sanitizer library. The
2099 /// format of a type descriptor is
2100 ///
2101 /// \code
2102 ///   { i16 TypeKind, i16 TypeInfo }
2103 /// \endcode
2104 ///
2105 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2106 /// integer, 1 for a floating point value, and -1 for anything else.
2107 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2108   // Only emit each type's descriptor once.
2109   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2110     return C;
2111
2112   uint16_t TypeKind = -1;
2113   uint16_t TypeInfo = 0;
2114
2115   if (T->isIntegerType()) {
2116     TypeKind = 0;
2117     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2118                (T->isSignedIntegerType() ? 1 : 0);
2119   } else if (T->isFloatingType()) {
2120     TypeKind = 1;
2121     TypeInfo = getContext().getTypeSize(T);
2122   }
2123
2124   // Format the type name as if for a diagnostic, including quotes and
2125   // optionally an 'aka'.
2126   SmallString<32> Buffer;
2127   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2128                                     (intptr_t)T.getAsOpaquePtr(),
2129                                     StringRef(), StringRef(), None, Buffer,
2130                                     None);
2131
2132   llvm::Constant *Components[] = {
2133     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2134     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2135   };
2136   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2137
2138   auto *GV = new llvm::GlobalVariable(
2139       CGM.getModule(), Descriptor->getType(),
2140       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2141   GV->setUnnamedAddr(true);
2142   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
2143
2144   // Remember the descriptor for this type.
2145   CGM.setTypeDescriptorInMap(T, GV);
2146
2147   return GV;
2148 }
2149
2150 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2151   llvm::Type *TargetTy = IntPtrTy;
2152
2153   // Floating-point types which fit into intptr_t are bitcast to integers
2154   // and then passed directly (after zero-extension, if necessary).
2155   if (V->getType()->isFloatingPointTy()) {
2156     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2157     if (Bits <= TargetTy->getIntegerBitWidth())
2158       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2159                                                          Bits));
2160   }
2161
2162   // Integers which fit in intptr_t are zero-extended and passed directly.
2163   if (V->getType()->isIntegerTy() &&
2164       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2165     return Builder.CreateZExt(V, TargetTy);
2166
2167   // Pointers are passed directly, everything else is passed by address.
2168   if (!V->getType()->isPointerTy()) {
2169     llvm::Value *Ptr = CreateTempAlloca(V->getType());
2170     Builder.CreateStore(V, Ptr);
2171     V = Ptr;
2172   }
2173   return Builder.CreatePtrToInt(V, TargetTy);
2174 }
2175
2176 /// \brief Emit a representation of a SourceLocation for passing to a handler
2177 /// in a sanitizer runtime library. The format for this data is:
2178 /// \code
2179 ///   struct SourceLocation {
2180 ///     const char *Filename;
2181 ///     int32_t Line, Column;
2182 ///   };
2183 /// \endcode
2184 /// For an invalid SourceLocation, the Filename pointer is null.
2185 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2186   llvm::Constant *Filename;
2187   int Line, Column;
2188
2189   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2190   if (PLoc.isValid()) {
2191     auto FilenameGV = CGM.GetAddrOfConstantCString(PLoc.getFilename(), ".src");
2192     CGM.getSanitizerMetadata()->disableSanitizerForGlobal(FilenameGV);
2193     Filename = FilenameGV;
2194     Line = PLoc.getLine();
2195     Column = PLoc.getColumn();
2196   } else {
2197     Filename = llvm::Constant::getNullValue(Int8PtrTy);
2198     Line = Column = 0;
2199   }
2200
2201   llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
2202                             Builder.getInt32(Column)};
2203
2204   return llvm::ConstantStruct::getAnon(Data);
2205 }
2206
2207 namespace {
2208 /// \brief Specify under what conditions this check can be recovered
2209 enum class CheckRecoverableKind {
2210   /// Always terminate program execution if this check fails.
2211   Unrecoverable,
2212   /// Check supports recovering, runtime has both fatal (noreturn) and
2213   /// non-fatal handlers for this check.
2214   Recoverable,
2215   /// Runtime conditionally aborts, always need to support recovery.
2216   AlwaysRecoverable
2217 };
2218 }
2219
2220 static CheckRecoverableKind getRecoverableKind(SanitizerKind Kind) {
2221   switch (Kind) {
2222   case SanitizerKind::Vptr:
2223     return CheckRecoverableKind::AlwaysRecoverable;
2224   case SanitizerKind::Return:
2225   case SanitizerKind::Unreachable:
2226     return CheckRecoverableKind::Unrecoverable;
2227   default:
2228     return CheckRecoverableKind::Recoverable;
2229   }
2230 }
2231
2232 static void emitCheckHandlerCall(CodeGenFunction &CGF,
2233                                  llvm::FunctionType *FnType,
2234                                  ArrayRef<llvm::Value *> FnArgs,
2235                                  StringRef CheckName,
2236                                  CheckRecoverableKind RecoverKind, bool IsFatal,
2237                                  llvm::BasicBlock *ContBB) {
2238   assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
2239   bool NeedsAbortSuffix =
2240       IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
2241   std::string FnName = ("__ubsan_handle_" + CheckName +
2242                         (NeedsAbortSuffix ? "_abort" : "")).str();
2243   bool MayReturn =
2244       !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
2245
2246   llvm::AttrBuilder B;
2247   if (!MayReturn) {
2248     B.addAttribute(llvm::Attribute::NoReturn)
2249         .addAttribute(llvm::Attribute::NoUnwind);
2250   }
2251   B.addAttribute(llvm::Attribute::UWTable);
2252
2253   llvm::Value *Fn = CGF.CGM.CreateRuntimeFunction(
2254       FnType, FnName,
2255       llvm::AttributeSet::get(CGF.getLLVMContext(),
2256                               llvm::AttributeSet::FunctionIndex, B));
2257   llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
2258   if (!MayReturn) {
2259     HandlerCall->setDoesNotReturn();
2260     CGF.Builder.CreateUnreachable();
2261   } else {
2262     CGF.Builder.CreateBr(ContBB);
2263   }
2264 }
2265
2266 void CodeGenFunction::EmitCheck(
2267     ArrayRef<std::pair<llvm::Value *, SanitizerKind>> Checked,
2268     StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs,
2269     ArrayRef<llvm::Value *> DynamicArgs) {
2270   assert(IsSanitizerScope);
2271   assert(Checked.size() > 0);
2272
2273   llvm::Value *FatalCond = nullptr;
2274   llvm::Value *RecoverableCond = nullptr;
2275   for (int i = 0, n = Checked.size(); i < n; ++i) {
2276     llvm::Value *Check = Checked[i].first;
2277     llvm::Value *&Cond =
2278         CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
2279             ? RecoverableCond
2280             : FatalCond;
2281     Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
2282   }
2283
2284   llvm::Value *JointCond;
2285   if (FatalCond && RecoverableCond)
2286     JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
2287   else
2288     JointCond = FatalCond ? FatalCond : RecoverableCond;
2289   assert(JointCond);
2290
2291   CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
2292   assert(SanOpts.has(Checked[0].second));
2293 #ifndef NDEBUG
2294   for (int i = 1, n = Checked.size(); i < n; ++i) {
2295     assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
2296            "All recoverable kinds in a single check must be same!");
2297     assert(SanOpts.has(Checked[i].second));
2298   }
2299 #endif
2300
2301   if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) {
2302     assert(RecoverKind != CheckRecoverableKind::AlwaysRecoverable &&
2303            "Runtime call required for AlwaysRecoverable kind!");
2304     // Assume that -fsanitize-undefined-trap-on-error overrides
2305     // -fsanitize-recover= options, as we can only print meaningful error
2306     // message and recover if we have a runtime support.
2307     return EmitTrapCheck(JointCond);
2308   }
2309
2310   llvm::BasicBlock *Cont = createBasicBlock("cont");
2311   llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
2312   llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
2313   // Give hint that we very much don't expect to execute the handler
2314   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2315   llvm::MDBuilder MDHelper(getLLVMContext());
2316   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2317   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2318   EmitBlock(Handlers);
2319
2320   // Emit handler arguments and create handler function type.
2321   llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2322   auto *InfoPtr =
2323       new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2324                                llvm::GlobalVariable::PrivateLinkage, Info);
2325   InfoPtr->setUnnamedAddr(true);
2326   CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
2327
2328   SmallVector<llvm::Value *, 4> Args;
2329   SmallVector<llvm::Type *, 4> ArgTypes;
2330   Args.reserve(DynamicArgs.size() + 1);
2331   ArgTypes.reserve(DynamicArgs.size() + 1);
2332
2333   // Handler functions take an i8* pointing to the (handler-specific) static
2334   // information block, followed by a sequence of intptr_t arguments
2335   // representing operand values.
2336   Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2337   ArgTypes.push_back(Int8PtrTy);
2338   for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2339     Args.push_back(EmitCheckValue(DynamicArgs[i]));
2340     ArgTypes.push_back(IntPtrTy);
2341   }
2342
2343   llvm::FunctionType *FnType =
2344     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2345
2346   if (!FatalCond || !RecoverableCond) {
2347     // Simple case: we need to generate a single handler call, either
2348     // fatal, or non-fatal.
2349     emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind,
2350                          (FatalCond != nullptr), Cont);
2351   } else {
2352     // Emit two handler calls: first one for set of unrecoverable checks,
2353     // another one for recoverable.
2354     llvm::BasicBlock *NonFatalHandlerBB =
2355         createBasicBlock("non_fatal." + CheckName);
2356     llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
2357     Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
2358     EmitBlock(FatalHandlerBB);
2359     emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, true,
2360                          NonFatalHandlerBB);
2361     EmitBlock(NonFatalHandlerBB);
2362     emitCheckHandlerCall(*this, FnType, Args, CheckName, RecoverKind, false,
2363                          Cont);
2364   }
2365
2366   EmitBlock(Cont);
2367 }
2368
2369 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
2370   llvm::BasicBlock *Cont = createBasicBlock("cont");
2371
2372   // If we're optimizing, collapse all calls to trap down to just one per
2373   // function to save on code size.
2374   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
2375     TrapBB = createBasicBlock("trap");
2376     Builder.CreateCondBr(Checked, Cont, TrapBB);
2377     EmitBlock(TrapBB);
2378     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
2379     llvm::CallInst *TrapCall = Builder.CreateCall(F);
2380     TrapCall->setDoesNotReturn();
2381     TrapCall->setDoesNotThrow();
2382     Builder.CreateUnreachable();
2383   } else {
2384     Builder.CreateCondBr(Checked, Cont, TrapBB);
2385   }
2386
2387   EmitBlock(Cont);
2388 }
2389
2390 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
2391 /// array to pointer, return the array subexpression.
2392 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
2393   // If this isn't just an array->pointer decay, bail out.
2394   const auto *CE = dyn_cast<CastExpr>(E);
2395   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
2396     return nullptr;
2397
2398   // If this is a decay from variable width array, bail out.
2399   const Expr *SubExpr = CE->getSubExpr();
2400   if (SubExpr->getType()->isVariableArrayType())
2401     return nullptr;
2402
2403   return SubExpr;
2404 }
2405
2406 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2407                                                bool Accessed) {
2408   // The index must always be an integer, which is not an aggregate.  Emit it.
2409   llvm::Value *Idx = EmitScalarExpr(E->getIdx());
2410   QualType IdxTy  = E->getIdx()->getType();
2411   bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
2412
2413   if (SanOpts.has(SanitizerKind::ArrayBounds))
2414     EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
2415
2416   // If the base is a vector type, then we are forming a vector element lvalue
2417   // with this subscript.
2418   if (E->getBase()->getType()->isVectorType() &&
2419       !isa<ExtVectorElementExpr>(E->getBase())) {
2420     // Emit the vector as an lvalue to get its address.
2421     LValue LHS = EmitLValue(E->getBase());
2422     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
2423     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
2424                                  E->getBase()->getType(), LHS.getAlignment());
2425   }
2426
2427   // Extend or truncate the index type to 32 or 64-bits.
2428   if (Idx->getType() != IntPtrTy)
2429     Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
2430
2431   // We know that the pointer points to a type of the correct size, unless the
2432   // size is a VLA or Objective-C interface.
2433   llvm::Value *Address = nullptr;
2434   CharUnits ArrayAlignment;
2435   if (isa<ExtVectorElementExpr>(E->getBase())) {
2436     LValue LV = EmitLValue(E->getBase());
2437     Address = EmitExtVectorElementLValue(LV);
2438     Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
2439     const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
2440     QualType EQT = ExprVT->getElementType();
2441     return MakeAddrLValue(Address, EQT,
2442                           getContext().getTypeAlignInChars(EQT));
2443   }
2444   else if (const VariableArrayType *vla =
2445            getContext().getAsVariableArrayType(E->getType())) {
2446     // The base must be a pointer, which is not an aggregate.  Emit
2447     // it.  It needs to be emitted first in case it's what captures
2448     // the VLA bounds.
2449     Address = EmitScalarExpr(E->getBase());
2450
2451     // The element count here is the total number of non-VLA elements.
2452     llvm::Value *numElements = getVLASize(vla).first;
2453
2454     // Effectively, the multiply by the VLA size is part of the GEP.
2455     // GEP indexes are signed, and scaling an index isn't permitted to
2456     // signed-overflow, so we use the same semantics for our explicit
2457     // multiply.  We suppress this if overflow is not undefined behavior.
2458     if (getLangOpts().isSignedOverflowDefined()) {
2459       Idx = Builder.CreateMul(Idx, numElements);
2460       Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2461     } else {
2462       Idx = Builder.CreateNSWMul(Idx, numElements);
2463       Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
2464     }
2465   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
2466     // Indexing over an interface, as in "NSString *P; P[4];"
2467     llvm::Value *InterfaceSize =
2468       llvm::ConstantInt::get(Idx->getType(),
2469           getContext().getTypeSizeInChars(OIT).getQuantity());
2470
2471     Idx = Builder.CreateMul(Idx, InterfaceSize);
2472
2473     // The base must be a pointer, which is not an aggregate.  Emit it.
2474     llvm::Value *Base = EmitScalarExpr(E->getBase());
2475     Address = EmitCastToVoidPtr(Base);
2476     Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2477     Address = Builder.CreateBitCast(Address, Base->getType());
2478   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
2479     // If this is A[i] where A is an array, the frontend will have decayed the
2480     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
2481     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
2482     // "gep x, i" here.  Emit one "gep A, 0, i".
2483     assert(Array->getType()->isArrayType() &&
2484            "Array to pointer decay must have array source type!");
2485     LValue ArrayLV;
2486     // For simple multidimensional array indexing, set the 'accessed' flag for
2487     // better bounds-checking of the base expression.
2488     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
2489       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
2490     else
2491       ArrayLV = EmitLValue(Array);
2492     llvm::Value *ArrayPtr = ArrayLV.getAddress();
2493     llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
2494     llvm::Value *Args[] = { Zero, Idx };
2495
2496     // Propagate the alignment from the array itself to the result.
2497     ArrayAlignment = ArrayLV.getAlignment();
2498
2499     if (getLangOpts().isSignedOverflowDefined())
2500       Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
2501     else
2502       Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
2503   } else {
2504     // The base must be a pointer, which is not an aggregate.  Emit it.
2505     llvm::Value *Base = EmitScalarExpr(E->getBase());
2506     if (getLangOpts().isSignedOverflowDefined())
2507       Address = Builder.CreateGEP(Base, Idx, "arrayidx");
2508     else
2509       Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
2510   }
2511
2512   QualType T = E->getBase()->getType()->getPointeeType();
2513   assert(!T.isNull() &&
2514          "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
2515
2516
2517   // Limit the alignment to that of the result type.
2518   LValue LV;
2519   if (!ArrayAlignment.isZero()) {
2520     CharUnits Align = getContext().getTypeAlignInChars(T);
2521     ArrayAlignment = std::min(Align, ArrayAlignment);
2522     LV = MakeAddrLValue(Address, T, ArrayAlignment);
2523   } else {
2524     LV = MakeNaturalAlignAddrLValue(Address, T);
2525   }
2526
2527   LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
2528
2529   if (getLangOpts().ObjC1 &&
2530       getLangOpts().getGC() != LangOptions::NonGC) {
2531     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2532     setObjCGCLValueClass(getContext(), E, LV);
2533   }
2534   return LV;
2535 }
2536
2537 static
2538 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
2539                                        SmallVectorImpl<unsigned> &Elts) {
2540   SmallVector<llvm::Constant*, 4> CElts;
2541   for (unsigned i = 0, e = Elts.size(); i != e; ++i)
2542     CElts.push_back(Builder.getInt32(Elts[i]));
2543
2544   return llvm::ConstantVector::get(CElts);
2545 }
2546
2547 LValue CodeGenFunction::
2548 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
2549   // Emit the base vector as an l-value.
2550   LValue Base;
2551
2552   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
2553   if (E->isArrow()) {
2554     // If it is a pointer to a vector, emit the address and form an lvalue with
2555     // it.
2556     llvm::Value *Ptr = EmitScalarExpr(E->getBase());
2557     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
2558     Base = MakeAddrLValue(Ptr, PT->getPointeeType());
2559     Base.getQuals().removeObjCGCAttr();
2560   } else if (E->getBase()->isGLValue()) {
2561     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
2562     // emit the base as an lvalue.
2563     assert(E->getBase()->getType()->isVectorType());
2564     Base = EmitLValue(E->getBase());
2565   } else {
2566     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
2567     assert(E->getBase()->getType()->isVectorType() &&
2568            "Result must be a vector");
2569     llvm::Value *Vec = EmitScalarExpr(E->getBase());
2570
2571     // Store the vector to memory (because LValue wants an address).
2572     llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
2573     Builder.CreateStore(Vec, VecMem);
2574     Base = MakeAddrLValue(VecMem, E->getBase()->getType());
2575   }
2576
2577   QualType type =
2578     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
2579
2580   // Encode the element access list into a vector of unsigned indices.
2581   SmallVector<unsigned, 4> Indices;
2582   E->getEncodedElementAccess(Indices);
2583
2584   if (Base.isSimple()) {
2585     llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
2586     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
2587                                     Base.getAlignment());
2588   }
2589   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
2590
2591   llvm::Constant *BaseElts = Base.getExtVectorElts();
2592   SmallVector<llvm::Constant *, 4> CElts;
2593
2594   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
2595     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
2596   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
2597   return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type,
2598                                   Base.getAlignment());
2599 }
2600
2601 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
2602   Expr *BaseExpr = E->getBase();
2603
2604   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
2605   LValue BaseLV;
2606   if (E->isArrow()) {
2607     llvm::Value *Ptr = EmitScalarExpr(BaseExpr);
2608     QualType PtrTy = BaseExpr->getType()->getPointeeType();
2609     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy);
2610     BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy);
2611   } else
2612     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
2613
2614   NamedDecl *ND = E->getMemberDecl();
2615   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
2616     LValue LV = EmitLValueForField(BaseLV, Field);
2617     setObjCGCLValueClass(getContext(), E, LV);
2618     return LV;
2619   }
2620
2621   if (auto *VD = dyn_cast<VarDecl>(ND))
2622     return EmitGlobalVarDeclLValue(*this, E, VD);
2623
2624   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2625     return EmitFunctionDeclLValue(*this, E, FD);
2626
2627   llvm_unreachable("Unhandled member declaration!");
2628 }
2629
2630 /// Given that we are currently emitting a lambda, emit an l-value for
2631 /// one of its members.
2632 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
2633   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
2634   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
2635   QualType LambdaTagType =
2636     getContext().getTagDeclType(Field->getParent());
2637   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
2638   return EmitLValueForField(LambdaLV, Field);
2639 }
2640
2641 LValue CodeGenFunction::EmitLValueForField(LValue base,
2642                                            const FieldDecl *field) {
2643   if (field->isBitField()) {
2644     const CGRecordLayout &RL =
2645       CGM.getTypes().getCGRecordLayout(field->getParent());
2646     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
2647     llvm::Value *Addr = base.getAddress();
2648     unsigned Idx = RL.getLLVMFieldNo(field);
2649     if (Idx != 0)
2650       // For structs, we GEP to the field that the record layout suggests.
2651       Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
2652     // Get the access type.
2653     llvm::Type *PtrTy = llvm::Type::getIntNPtrTy(
2654       getLLVMContext(), Info.StorageSize,
2655       CGM.getContext().getTargetAddressSpace(base.getType()));
2656     if (Addr->getType() != PtrTy)
2657       Addr = Builder.CreateBitCast(Addr, PtrTy);
2658
2659     QualType fieldType =
2660       field->getType().withCVRQualifiers(base.getVRQualifiers());
2661     return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment());
2662   }
2663
2664   const RecordDecl *rec = field->getParent();
2665   QualType type = field->getType();
2666   CharUnits alignment = getContext().getDeclAlign(field);
2667
2668   // FIXME: It should be impossible to have an LValue without alignment for a
2669   // complete type.
2670   if (!base.getAlignment().isZero())
2671     alignment = std::min(alignment, base.getAlignment());
2672
2673   bool mayAlias = rec->hasAttr<MayAliasAttr>();
2674
2675   llvm::Value *addr = base.getAddress();
2676   unsigned cvr = base.getVRQualifiers();
2677   bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
2678   if (rec->isUnion()) {
2679     // For unions, there is no pointer adjustment.
2680     assert(!type->isReferenceType() && "union has reference member");
2681     // TODO: handle path-aware TBAA for union.
2682     TBAAPath = false;
2683   } else {
2684     // For structs, we GEP to the field that the record layout suggests.
2685     unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
2686     addr = Builder.CreateStructGEP(addr, idx, field->getName());
2687
2688     // If this is a reference field, load the reference right now.
2689     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
2690       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
2691       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
2692       load->setAlignment(alignment.getQuantity());
2693
2694       // Loading the reference will disable path-aware TBAA.
2695       TBAAPath = false;
2696       if (CGM.shouldUseTBAA()) {
2697         llvm::MDNode *tbaa;
2698         if (mayAlias)
2699           tbaa = CGM.getTBAAInfo(getContext().CharTy);
2700         else
2701           tbaa = CGM.getTBAAInfo(type);
2702         if (tbaa)
2703           CGM.DecorateInstruction(load, tbaa);
2704       }
2705
2706       addr = load;
2707       mayAlias = false;
2708       type = refType->getPointeeType();
2709       if (type->isIncompleteType())
2710         alignment = CharUnits();
2711       else
2712         alignment = getContext().getTypeAlignInChars(type);
2713       cvr = 0; // qualifiers don't recursively apply to referencee
2714     }
2715   }
2716
2717   // Make sure that the address is pointing to the right type.  This is critical
2718   // for both unions and structs.  A union needs a bitcast, a struct element
2719   // will need a bitcast if the LLVM type laid out doesn't match the desired
2720   // type.
2721   addr = EmitBitCastOfLValueToProperType(*this, addr,
2722                                          CGM.getTypes().ConvertTypeForMem(type),
2723                                          field->getName());
2724
2725   if (field->hasAttr<AnnotateAttr>())
2726     addr = EmitFieldAnnotations(field, addr);
2727
2728   LValue LV = MakeAddrLValue(addr, type, alignment);
2729   LV.getQuals().addCVRQualifiers(cvr);
2730   if (TBAAPath) {
2731     const ASTRecordLayout &Layout =
2732         getContext().getASTRecordLayout(field->getParent());
2733     // Set the base type to be the base type of the base LValue and
2734     // update offset to be relative to the base type.
2735     LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType());
2736     LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() +
2737                      Layout.getFieldOffset(field->getFieldIndex()) /
2738                                            getContext().getCharWidth());
2739   }
2740
2741   // __weak attribute on a field is ignored.
2742   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
2743     LV.getQuals().removeObjCGCAttr();
2744
2745   // Fields of may_alias structs act like 'char' for TBAA purposes.
2746   // FIXME: this should get propagated down through anonymous structs
2747   // and unions.
2748   if (mayAlias && LV.getTBAAInfo())
2749     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
2750
2751   return LV;
2752 }
2753
2754 LValue
2755 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
2756                                                   const FieldDecl *Field) {
2757   QualType FieldType = Field->getType();
2758
2759   if (!FieldType->isReferenceType())
2760     return EmitLValueForField(Base, Field);
2761
2762   const CGRecordLayout &RL =
2763     CGM.getTypes().getCGRecordLayout(Field->getParent());
2764   unsigned idx = RL.getLLVMFieldNo(Field);
2765   llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx);
2766   assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
2767
2768   // Make sure that the address is pointing to the right type.  This is critical
2769   // for both unions and structs.  A union needs a bitcast, a struct element
2770   // will need a bitcast if the LLVM type laid out doesn't match the desired
2771   // type.
2772   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
2773   V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName());
2774
2775   CharUnits Alignment = getContext().getDeclAlign(Field);
2776
2777   // FIXME: It should be impossible to have an LValue without alignment for a
2778   // complete type.
2779   if (!Base.getAlignment().isZero())
2780     Alignment = std::min(Alignment, Base.getAlignment());
2781
2782   return MakeAddrLValue(V, FieldType, Alignment);
2783 }
2784
2785 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
2786   if (E->isFileScope()) {
2787     llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
2788     return MakeAddrLValue(GlobalPtr, E->getType());
2789   }
2790   if (E->getType()->isVariablyModifiedType())
2791     // make sure to emit the VLA size.
2792     EmitVariablyModifiedType(E->getType());
2793
2794   llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
2795   const Expr *InitExpr = E->getInitializer();
2796   LValue Result = MakeAddrLValue(DeclPtr, E->getType());
2797
2798   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
2799                    /*Init*/ true);
2800
2801   return Result;
2802 }
2803
2804 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
2805   if (!E->isGLValue())
2806     // Initializing an aggregate temporary in C++11: T{...}.
2807     return EmitAggExprToLValue(E);
2808
2809   // An lvalue initializer list must be initializing a reference.
2810   assert(E->getNumInits() == 1 && "reference init with multiple values");
2811   return EmitLValue(E->getInit(0));
2812 }
2813
2814 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
2815 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
2816 /// LValue is returned and the current block has been terminated.
2817 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
2818                                                     const Expr *Operand) {
2819   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
2820     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
2821     return None;
2822   }
2823
2824   return CGF.EmitLValue(Operand);
2825 }
2826
2827 LValue CodeGenFunction::
2828 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
2829   if (!expr->isGLValue()) {
2830     // ?: here should be an aggregate.
2831     assert(hasAggregateEvaluationKind(expr->getType()) &&
2832            "Unexpected conditional operator!");
2833     return EmitAggExprToLValue(expr);
2834   }
2835
2836   OpaqueValueMapping binding(*this, expr);
2837   RegionCounter Cnt = getPGORegionCounter(expr);
2838
2839   const Expr *condExpr = expr->getCond();
2840   bool CondExprBool;
2841   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2842     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
2843     if (!CondExprBool) std::swap(live, dead);
2844
2845     if (!ContainsLabel(dead)) {
2846       // If the true case is live, we need to track its region.
2847       if (CondExprBool)
2848         Cnt.beginRegion(Builder);
2849       return EmitLValue(live);
2850     }
2851   }
2852
2853   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
2854   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
2855   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
2856
2857   ConditionalEvaluation eval(*this);
2858   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, Cnt.getCount());
2859
2860   // Any temporaries created here are conditional.
2861   EmitBlock(lhsBlock);
2862   Cnt.beginRegion(Builder);
2863   eval.begin(*this);
2864   Optional<LValue> lhs =
2865       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
2866   eval.end(*this);
2867
2868   if (lhs && !lhs->isSimple())
2869     return EmitUnsupportedLValue(expr, "conditional operator");
2870
2871   lhsBlock = Builder.GetInsertBlock();
2872   if (lhs)
2873     Builder.CreateBr(contBlock);
2874
2875   // Any temporaries created here are conditional.
2876   EmitBlock(rhsBlock);
2877   eval.begin(*this);
2878   Optional<LValue> rhs =
2879       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
2880   eval.end(*this);
2881   if (rhs && !rhs->isSimple())
2882     return EmitUnsupportedLValue(expr, "conditional operator");
2883   rhsBlock = Builder.GetInsertBlock();
2884
2885   EmitBlock(contBlock);
2886
2887   if (lhs && rhs) {
2888     llvm::PHINode *phi = Builder.CreatePHI(lhs->getAddress()->getType(),
2889                                            2, "cond-lvalue");
2890     phi->addIncoming(lhs->getAddress(), lhsBlock);
2891     phi->addIncoming(rhs->getAddress(), rhsBlock);
2892     return MakeAddrLValue(phi, expr->getType());
2893   } else {
2894     assert((lhs || rhs) &&
2895            "both operands of glvalue conditional are throw-expressions?");
2896     return lhs ? *lhs : *rhs;
2897   }
2898 }
2899
2900 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
2901 /// type. If the cast is to a reference, we can have the usual lvalue result,
2902 /// otherwise if a cast is needed by the code generator in an lvalue context,
2903 /// then it must mean that we need the address of an aggregate in order to
2904 /// access one of its members.  This can happen for all the reasons that casts
2905 /// are permitted with aggregate result, including noop aggregate casts, and
2906 /// cast from scalar to union.
2907 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
2908   switch (E->getCastKind()) {
2909   case CK_ToVoid:
2910   case CK_BitCast:
2911   case CK_ArrayToPointerDecay:
2912   case CK_FunctionToPointerDecay:
2913   case CK_NullToMemberPointer:
2914   case CK_NullToPointer:
2915   case CK_IntegralToPointer:
2916   case CK_PointerToIntegral:
2917   case CK_PointerToBoolean:
2918   case CK_VectorSplat:
2919   case CK_IntegralCast:
2920   case CK_IntegralToBoolean:
2921   case CK_IntegralToFloating:
2922   case CK_FloatingToIntegral:
2923   case CK_FloatingToBoolean:
2924   case CK_FloatingCast:
2925   case CK_FloatingRealToComplex:
2926   case CK_FloatingComplexToReal:
2927   case CK_FloatingComplexToBoolean:
2928   case CK_FloatingComplexCast:
2929   case CK_FloatingComplexToIntegralComplex:
2930   case CK_IntegralRealToComplex:
2931   case CK_IntegralComplexToReal:
2932   case CK_IntegralComplexToBoolean:
2933   case CK_IntegralComplexCast:
2934   case CK_IntegralComplexToFloatingComplex:
2935   case CK_DerivedToBaseMemberPointer:
2936   case CK_BaseToDerivedMemberPointer:
2937   case CK_MemberPointerToBoolean:
2938   case CK_ReinterpretMemberPointer:
2939   case CK_AnyPointerToBlockPointerCast:
2940   case CK_ARCProduceObject:
2941   case CK_ARCConsumeObject:
2942   case CK_ARCReclaimReturnedObject:
2943   case CK_ARCExtendBlockObject:
2944   case CK_CopyAndAutoreleaseBlockObject:
2945   case CK_AddressSpaceConversion:
2946     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
2947
2948   case CK_Dependent:
2949     llvm_unreachable("dependent cast kind in IR gen!");
2950
2951   case CK_BuiltinFnToFnPtr:
2952     llvm_unreachable("builtin functions are handled elsewhere");
2953
2954   // These are never l-values; just use the aggregate emission code.
2955   case CK_NonAtomicToAtomic:
2956   case CK_AtomicToNonAtomic:
2957     return EmitAggExprToLValue(E);
2958
2959   case CK_Dynamic: {
2960     LValue LV = EmitLValue(E->getSubExpr());
2961     llvm::Value *V = LV.getAddress();
2962     const auto *DCE = cast<CXXDynamicCastExpr>(E);
2963     return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
2964   }
2965
2966   case CK_ConstructorConversion:
2967   case CK_UserDefinedConversion:
2968   case CK_CPointerToObjCPointerCast:
2969   case CK_BlockPointerToObjCPointerCast:
2970   case CK_NoOp:
2971   case CK_LValueToRValue:
2972     return EmitLValue(E->getSubExpr());
2973
2974   case CK_UncheckedDerivedToBase:
2975   case CK_DerivedToBase: {
2976     const RecordType *DerivedClassTy =
2977       E->getSubExpr()->getType()->getAs<RecordType>();
2978     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2979
2980     LValue LV = EmitLValue(E->getSubExpr());
2981     llvm::Value *This = LV.getAddress();
2982
2983     // Perform the derived-to-base conversion
2984     llvm::Value *Base = GetAddressOfBaseClass(
2985         This, DerivedClassDecl, E->path_begin(), E->path_end(),
2986         /*NullCheckValue=*/false, E->getExprLoc());
2987
2988     return MakeAddrLValue(Base, E->getType());
2989   }
2990   case CK_ToUnion:
2991     return EmitAggExprToLValue(E);
2992   case CK_BaseToDerived: {
2993     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
2994     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2995
2996     LValue LV = EmitLValue(E->getSubExpr());
2997
2998     // Perform the base-to-derived conversion
2999     llvm::Value *Derived =
3000       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
3001                                E->path_begin(), E->path_end(),
3002                                /*NullCheckValue=*/false);
3003
3004     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
3005     // performed and the object is not of the derived type.
3006     if (sanitizePerformTypeCheck())
3007       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
3008                     Derived, E->getType());
3009
3010     return MakeAddrLValue(Derived, E->getType());
3011   }
3012   case CK_LValueBitCast: {
3013     // This must be a reinterpret_cast (or c-style equivalent).
3014     const auto *CE = cast<ExplicitCastExpr>(E);
3015
3016     LValue LV = EmitLValue(E->getSubExpr());
3017     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
3018                                            ConvertType(CE->getTypeAsWritten()));
3019     return MakeAddrLValue(V, E->getType());
3020   }
3021   case CK_ObjCObjectLValueCast: {
3022     LValue LV = EmitLValue(E->getSubExpr());
3023     QualType ToType = getContext().getLValueReferenceType(E->getType());
3024     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
3025                                            ConvertType(ToType));
3026     return MakeAddrLValue(V, E->getType());
3027   }
3028   case CK_ZeroToOCLEvent:
3029     llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
3030   }
3031
3032   llvm_unreachable("Unhandled lvalue cast kind?");
3033 }
3034
3035 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
3036   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
3037   return getOpaqueLValueMapping(e);
3038 }
3039
3040 RValue CodeGenFunction::EmitRValueForField(LValue LV,
3041                                            const FieldDecl *FD,
3042                                            SourceLocation Loc) {
3043   QualType FT = FD->getType();
3044   LValue FieldLV = EmitLValueForField(LV, FD);
3045   switch (getEvaluationKind(FT)) {
3046   case TEK_Complex:
3047     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
3048   case TEK_Aggregate:
3049     return FieldLV.asAggregateRValue();
3050   case TEK_Scalar:
3051     return EmitLoadOfLValue(FieldLV, Loc);
3052   }
3053   llvm_unreachable("bad evaluation kind");
3054 }
3055
3056 //===--------------------------------------------------------------------===//
3057 //                             Expression Emission
3058 //===--------------------------------------------------------------------===//
3059
3060 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
3061                                      ReturnValueSlot ReturnValue) {
3062   // Force column info to be generated so we can differentiate
3063   // multiple call sites on the same line in the debug info.
3064   // FIXME: This is insufficient. Two calls coming from the same macro
3065   // expansion will still get the same line/column and break debug info. It's
3066   // possible that LLVM can be fixed to not rely on this uniqueness, at which
3067   // point this workaround can be removed.
3068   ApplyDebugLocation DL(*this, E->getLocStart(),
3069                         E->getDirectCallee() &&
3070                             E->getDirectCallee()->isInlineSpecified());
3071
3072   // Builtins never have block type.
3073   if (E->getCallee()->getType()->isBlockPointerType())
3074     return EmitBlockCallExpr(E, ReturnValue);
3075
3076   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
3077     return EmitCXXMemberCallExpr(CE, ReturnValue);
3078
3079   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
3080     return EmitCUDAKernelCallExpr(CE, ReturnValue);
3081
3082   const Decl *TargetDecl = E->getCalleeDecl();
3083   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
3084     if (unsigned builtinID = FD->getBuiltinID())
3085       return EmitBuiltinExpr(FD, builtinID, E, ReturnValue);
3086   }
3087
3088   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
3089     if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
3090       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
3091
3092   if (const auto *PseudoDtor =
3093           dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
3094     QualType DestroyedType = PseudoDtor->getDestroyedType();
3095     if (getLangOpts().ObjCAutoRefCount &&
3096         DestroyedType->isObjCLifetimeType() &&
3097         (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
3098          DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
3099       // Automatic Reference Counting:
3100       //   If the pseudo-expression names a retainable object with weak or
3101       //   strong lifetime, the object shall be released.
3102       Expr *BaseExpr = PseudoDtor->getBase();
3103       llvm::Value *BaseValue = nullptr;
3104       Qualifiers BaseQuals;
3105
3106       // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
3107       if (PseudoDtor->isArrow()) {
3108         BaseValue = EmitScalarExpr(BaseExpr);
3109         const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
3110         BaseQuals = PTy->getPointeeType().getQualifiers();
3111       } else {
3112         LValue BaseLV = EmitLValue(BaseExpr);
3113         BaseValue = BaseLV.getAddress();
3114         QualType BaseTy = BaseExpr->getType();
3115         BaseQuals = BaseTy.getQualifiers();
3116       }
3117
3118       switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
3119       case Qualifiers::OCL_None:
3120       case Qualifiers::OCL_ExplicitNone:
3121       case Qualifiers::OCL_Autoreleasing:
3122         break;
3123
3124       case Qualifiers::OCL_Strong:
3125         EmitARCRelease(Builder.CreateLoad(BaseValue,
3126                           PseudoDtor->getDestroyedType().isVolatileQualified()),
3127                        ARCPreciseLifetime);
3128         break;
3129
3130       case Qualifiers::OCL_Weak:
3131         EmitARCDestroyWeak(BaseValue);
3132         break;
3133       }
3134     } else {
3135       // C++ [expr.pseudo]p1:
3136       //   The result shall only be used as the operand for the function call
3137       //   operator (), and the result of such a call has type void. The only
3138       //   effect is the evaluation of the postfix-expression before the dot or
3139       //   arrow.
3140       EmitScalarExpr(E->getCallee());
3141     }
3142
3143     return RValue::get(nullptr);
3144   }
3145
3146   llvm::Value *Callee = EmitScalarExpr(E->getCallee());
3147   return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue,
3148                   TargetDecl);
3149 }
3150
3151 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
3152   // Comma expressions just emit their LHS then their RHS as an l-value.
3153   if (E->getOpcode() == BO_Comma) {
3154     EmitIgnoredExpr(E->getLHS());
3155     EnsureInsertPoint();
3156     return EmitLValue(E->getRHS());
3157   }
3158
3159   if (E->getOpcode() == BO_PtrMemD ||
3160       E->getOpcode() == BO_PtrMemI)
3161     return EmitPointerToDataMemberBinaryExpr(E);
3162
3163   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
3164
3165   // Note that in all of these cases, __block variables need the RHS
3166   // evaluated first just in case the variable gets moved by the RHS.
3167
3168   switch (getEvaluationKind(E->getType())) {
3169   case TEK_Scalar: {
3170     switch (E->getLHS()->getType().getObjCLifetime()) {
3171     case Qualifiers::OCL_Strong:
3172       return EmitARCStoreStrong(E, /*ignored*/ false).first;
3173
3174     case Qualifiers::OCL_Autoreleasing:
3175       return EmitARCStoreAutoreleasing(E).first;
3176
3177     // No reason to do any of these differently.
3178     case Qualifiers::OCL_None:
3179     case Qualifiers::OCL_ExplicitNone:
3180     case Qualifiers::OCL_Weak:
3181       break;
3182     }
3183
3184     RValue RV = EmitAnyExpr(E->getRHS());
3185     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
3186     EmitStoreThroughLValue(RV, LV);
3187     return LV;
3188   }
3189
3190   case TEK_Complex:
3191     return EmitComplexAssignmentLValue(E);
3192
3193   case TEK_Aggregate:
3194     return EmitAggExprToLValue(E);
3195   }
3196   llvm_unreachable("bad evaluation kind");
3197 }
3198
3199 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
3200   RValue RV = EmitCallExpr(E);
3201
3202   if (!RV.isScalar())
3203     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3204
3205   assert(E->getCallReturnType()->isReferenceType() &&
3206          "Can't have a scalar return unless the return type is a "
3207          "reference type!");
3208
3209   return MakeAddrLValue(RV.getScalarVal(), E->getType());
3210 }
3211
3212 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
3213   // FIXME: This shouldn't require another copy.
3214   return EmitAggExprToLValue(E);
3215 }
3216
3217 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
3218   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
3219          && "binding l-value to type which needs a temporary");
3220   AggValueSlot Slot = CreateAggTemp(E->getType());
3221   EmitCXXConstructExpr(E, Slot);
3222   return MakeAddrLValue(Slot.getAddr(), E->getType());
3223 }
3224
3225 LValue
3226 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
3227   return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
3228 }
3229
3230 llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
3231   return Builder.CreateBitCast(CGM.GetAddrOfUuidDescriptor(E),
3232                                ConvertType(E->getType())->getPointerTo());
3233 }
3234
3235 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
3236   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType());
3237 }
3238
3239 LValue
3240 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
3241   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3242   Slot.setExternallyDestructed();
3243   EmitAggExpr(E->getSubExpr(), Slot);
3244   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
3245   return MakeAddrLValue(Slot.getAddr(), E->getType());
3246 }
3247
3248 LValue
3249 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
3250   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3251   EmitLambdaExpr(E, Slot);
3252   return MakeAddrLValue(Slot.getAddr(), E->getType());
3253 }
3254
3255 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
3256   RValue RV = EmitObjCMessageExpr(E);
3257
3258   if (!RV.isScalar())
3259     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3260
3261   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
3262          "Can't have a scalar return unless the return type is a "
3263          "reference type!");
3264
3265   return MakeAddrLValue(RV.getScalarVal(), E->getType());
3266 }
3267
3268 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
3269   llvm::Value *V =
3270     CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true);
3271   return MakeAddrLValue(V, E->getType());
3272 }
3273
3274 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3275                                              const ObjCIvarDecl *Ivar) {
3276   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
3277 }
3278
3279 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
3280                                           llvm::Value *BaseValue,
3281                                           const ObjCIvarDecl *Ivar,
3282                                           unsigned CVRQualifiers) {
3283   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
3284                                                    Ivar, CVRQualifiers);
3285 }
3286
3287 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
3288   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
3289   llvm::Value *BaseValue = nullptr;
3290   const Expr *BaseExpr = E->getBase();
3291   Qualifiers BaseQuals;
3292   QualType ObjectTy;
3293   if (E->isArrow()) {
3294     BaseValue = EmitScalarExpr(BaseExpr);
3295     ObjectTy = BaseExpr->getType()->getPointeeType();
3296     BaseQuals = ObjectTy.getQualifiers();
3297   } else {
3298     LValue BaseLV = EmitLValue(BaseExpr);
3299     // FIXME: this isn't right for bitfields.
3300     BaseValue = BaseLV.getAddress();
3301     ObjectTy = BaseExpr->getType();
3302     BaseQuals = ObjectTy.getQualifiers();
3303   }
3304
3305   LValue LV =
3306     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
3307                       BaseQuals.getCVRQualifiers());
3308   setObjCGCLValueClass(getContext(), E, LV);
3309   return LV;
3310 }
3311
3312 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
3313   // Can only get l-value for message expression returning aggregate type
3314   RValue RV = EmitAnyExprToTemp(E);
3315   return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3316 }
3317
3318 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
3319                                  const CallExpr *E, ReturnValueSlot ReturnValue,
3320                                  const Decl *TargetDecl, llvm::Value *Chain) {
3321   // Get the actual function type. The callee type will always be a pointer to
3322   // function type or a block pointer type.
3323   assert(CalleeType->isFunctionPointerType() &&
3324          "Call must have function pointer type!");
3325
3326   CalleeType = getContext().getCanonicalType(CalleeType);
3327
3328   const auto *FnType =
3329       cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
3330
3331   // Force column info to differentiate multiple inlined call sites on
3332   // the same line, analoguous to EmitCallExpr.
3333   // FIXME: This is insufficient. Two calls coming from the same macro expansion
3334   // will still get the same line/column and break debug info. It's possible
3335   // that LLVM can be fixed to not rely on this uniqueness, at which point this
3336   // workaround can be removed.
3337   bool ForceColumnInfo = false;
3338   if (const FunctionDecl* FD = dyn_cast_or_null<const FunctionDecl>(TargetDecl))
3339     ForceColumnInfo = FD->isInlineSpecified();
3340
3341   if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function) &&
3342       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
3343     if (llvm::Constant *PrefixSig =
3344             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
3345       SanitizerScope SanScope(this);
3346       llvm::Constant *FTRTTIConst =
3347           CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true);
3348       llvm::Type *PrefixStructTyElems[] = {
3349         PrefixSig->getType(),
3350         FTRTTIConst->getType()
3351       };
3352       llvm::StructType *PrefixStructTy = llvm::StructType::get(
3353           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
3354
3355       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
3356           Callee, llvm::PointerType::getUnqual(PrefixStructTy));
3357       llvm::Value *CalleeSigPtr =
3358           Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 0);
3359       llvm::Value *CalleeSig = Builder.CreateLoad(CalleeSigPtr);
3360       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
3361
3362       llvm::BasicBlock *Cont = createBasicBlock("cont");
3363       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
3364       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
3365
3366       EmitBlock(TypeCheck);
3367       llvm::Value *CalleeRTTIPtr =
3368           Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 1);
3369       llvm::Value *CalleeRTTI = Builder.CreateLoad(CalleeRTTIPtr);
3370       llvm::Value *CalleeRTTIMatch =
3371           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
3372       llvm::Constant *StaticData[] = {
3373         EmitCheckSourceLocation(E->getLocStart()),
3374         EmitCheckTypeDescriptor(CalleeType)
3375       };
3376       EmitCheck(std::make_pair(CalleeRTTIMatch, SanitizerKind::Function),
3377                 "function_type_mismatch", StaticData, Callee);
3378
3379       Builder.CreateBr(Cont);
3380       EmitBlock(Cont);
3381     }
3382   }
3383
3384   CallArgList Args;
3385   if (Chain)
3386     Args.add(RValue::get(Builder.CreateBitCast(Chain, CGM.VoidPtrTy)),
3387              CGM.getContext().VoidPtrTy);
3388   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arg_begin(),
3389                E->arg_end(), E->getDirectCallee(), /*ParamsToSkip*/ 0,
3390                ForceColumnInfo);
3391
3392   const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
3393       Args, FnType, /*isChainCall=*/Chain);
3394
3395   // C99 6.5.2.2p6:
3396   //   If the expression that denotes the called function has a type
3397   //   that does not include a prototype, [the default argument
3398   //   promotions are performed]. If the number of arguments does not
3399   //   equal the number of parameters, the behavior is undefined. If
3400   //   the function is defined with a type that includes a prototype,
3401   //   and either the prototype ends with an ellipsis (, ...) or the
3402   //   types of the arguments after promotion are not compatible with
3403   //   the types of the parameters, the behavior is undefined. If the
3404   //   function is defined with a type that does not include a
3405   //   prototype, and the types of the arguments after promotion are
3406   //   not compatible with those of the parameters after promotion,
3407   //   the behavior is undefined [except in some trivial cases].
3408   // That is, in the general case, we should assume that a call
3409   // through an unprototyped function type works like a *non-variadic*
3410   // call.  The way we make this work is to cast to the exact type
3411   // of the promoted arguments.
3412   //
3413   // Chain calls use this same code path to add the invisible chain parameter
3414   // to the function type.
3415   if (isa<FunctionNoProtoType>(FnType) || Chain) {
3416     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
3417     CalleeTy = CalleeTy->getPointerTo();
3418     Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
3419   }
3420
3421   return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
3422 }
3423
3424 LValue CodeGenFunction::
3425 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
3426   llvm::Value *BaseV;
3427   if (E->getOpcode() == BO_PtrMemI)
3428     BaseV = EmitScalarExpr(E->getLHS());
3429   else
3430     BaseV = EmitLValue(E->getLHS()).getAddress();
3431
3432   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
3433
3434   const MemberPointerType *MPT
3435     = E->getRHS()->getType()->getAs<MemberPointerType>();
3436
3437   llvm::Value *AddV = CGM.getCXXABI().EmitMemberDataPointerAddress(
3438       *this, E, BaseV, OffsetV, MPT);
3439
3440   return MakeAddrLValue(AddV, MPT->getPointeeType());
3441 }
3442
3443 /// Given the address of a temporary variable, produce an r-value of
3444 /// its type.
3445 RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr,
3446                                             QualType type,
3447                                             SourceLocation loc) {
3448   LValue lvalue = MakeNaturalAlignAddrLValue(addr, type);
3449   switch (getEvaluationKind(type)) {
3450   case TEK_Complex:
3451     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
3452   case TEK_Aggregate:
3453     return lvalue.asAggregateRValue();
3454   case TEK_Scalar:
3455     return RValue::get(EmitLoadOfScalar(lvalue, loc));
3456   }
3457   llvm_unreachable("bad evaluation kind");
3458 }
3459
3460 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
3461   assert(Val->getType()->isFPOrFPVectorTy());
3462   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
3463     return;
3464
3465   llvm::MDBuilder MDHelper(getLLVMContext());
3466   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
3467
3468   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
3469 }
3470
3471 namespace {
3472   struct LValueOrRValue {
3473     LValue LV;
3474     RValue RV;
3475   };
3476 }
3477
3478 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
3479                                            const PseudoObjectExpr *E,
3480                                            bool forLValue,
3481                                            AggValueSlot slot) {
3482   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3483
3484   // Find the result expression, if any.
3485   const Expr *resultExpr = E->getResultExpr();
3486   LValueOrRValue result;
3487
3488   for (PseudoObjectExpr::const_semantics_iterator
3489          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3490     const Expr *semantic = *i;
3491
3492     // If this semantic expression is an opaque value, bind it
3493     // to the result of its source expression.
3494     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3495
3496       // If this is the result expression, we may need to evaluate
3497       // directly into the slot.
3498       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3499       OVMA opaqueData;
3500       if (ov == resultExpr && ov->isRValue() && !forLValue &&
3501           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
3502         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
3503
3504         LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
3505         opaqueData = OVMA::bind(CGF, ov, LV);
3506         result.RV = slot.asRValue();
3507
3508       // Otherwise, emit as normal.
3509       } else {
3510         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3511
3512         // If this is the result, also evaluate the result now.
3513         if (ov == resultExpr) {
3514           if (forLValue)
3515             result.LV = CGF.EmitLValue(ov);
3516           else
3517             result.RV = CGF.EmitAnyExpr(ov, slot);
3518         }
3519       }
3520
3521       opaques.push_back(opaqueData);
3522
3523     // Otherwise, if the expression is the result, evaluate it
3524     // and remember the result.
3525     } else if (semantic == resultExpr) {
3526       if (forLValue)
3527         result.LV = CGF.EmitLValue(semantic);
3528       else
3529         result.RV = CGF.EmitAnyExpr(semantic, slot);
3530
3531     // Otherwise, evaluate the expression in an ignored context.
3532     } else {
3533       CGF.EmitIgnoredExpr(semantic);
3534     }
3535   }
3536
3537   // Unbind all the opaques now.
3538   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3539     opaques[i].unbind(CGF);
3540
3541   return result;
3542 }
3543
3544 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
3545                                                AggValueSlot slot) {
3546   return emitPseudoObjectExpr(*this, E, false, slot).RV;
3547 }
3548
3549 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
3550   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
3551 }