]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/CodeGen/CGExprAgg.cpp
Merge clang 7.0.1 and several follow-up changes
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / CodeGen / CGExprAgg.cpp
1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGObjCRuntime.h"
17 #include "CodeGenModule.h"
18 #include "ConstantEmitter.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/DeclTemplate.h"
22 #include "clang/AST/StmtVisitor.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/Intrinsics.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 using namespace clang;
29 using namespace CodeGen;
30
31 //===----------------------------------------------------------------------===//
32 //                        Aggregate Expression Emitter
33 //===----------------------------------------------------------------------===//
34
35 namespace  {
36 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
37   CodeGenFunction &CGF;
38   CGBuilderTy &Builder;
39   AggValueSlot Dest;
40   bool IsResultUnused;
41
42   AggValueSlot EnsureSlot(QualType T) {
43     if (!Dest.isIgnored()) return Dest;
44     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
45   }
46   void EnsureDest(QualType T) {
47     if (!Dest.isIgnored()) return;
48     Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
49   }
50
51   // Calls `Fn` with a valid return value slot, potentially creating a temporary
52   // to do so. If a temporary is created, an appropriate copy into `Dest` will
53   // be emitted, as will lifetime markers.
54   //
55   // The given function should take a ReturnValueSlot, and return an RValue that
56   // points to said slot.
57   void withReturnValueSlot(const Expr *E,
58                            llvm::function_ref<RValue(ReturnValueSlot)> Fn);
59
60 public:
61   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused)
62     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
63     IsResultUnused(IsResultUnused) { }
64
65   //===--------------------------------------------------------------------===//
66   //                               Utilities
67   //===--------------------------------------------------------------------===//
68
69   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
70   /// represents a value lvalue, this method emits the address of the lvalue,
71   /// then loads the result into DestPtr.
72   void EmitAggLoadOfLValue(const Expr *E);
73
74   enum ExprValueKind {
75     EVK_RValue,
76     EVK_NonRValue
77   };
78
79   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
80   /// SrcIsRValue is true if source comes from an RValue.
81   void EmitFinalDestCopy(QualType type, const LValue &src,
82                          ExprValueKind SrcValueKind = EVK_NonRValue);
83   void EmitFinalDestCopy(QualType type, RValue src);
84   void EmitCopy(QualType type, const AggValueSlot &dest,
85                 const AggValueSlot &src);
86
87   void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
88
89   void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
90                      QualType ArrayQTy, InitListExpr *E);
91
92   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
93     if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
94       return AggValueSlot::NeedsGCBarriers;
95     return AggValueSlot::DoesNotNeedGCBarriers;
96   }
97
98   bool TypeRequiresGCollection(QualType T);
99
100   //===--------------------------------------------------------------------===//
101   //                            Visitor Methods
102   //===--------------------------------------------------------------------===//
103
104   void Visit(Expr *E) {
105     ApplyDebugLocation DL(CGF, E);
106     StmtVisitor<AggExprEmitter>::Visit(E);
107   }
108
109   void VisitStmt(Stmt *S) {
110     CGF.ErrorUnsupported(S, "aggregate expression");
111   }
112   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
113   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
114     Visit(GE->getResultExpr());
115   }
116   void VisitCoawaitExpr(CoawaitExpr *E) {
117     CGF.EmitCoawaitExpr(*E, Dest, IsResultUnused);
118   }
119   void VisitCoyieldExpr(CoyieldExpr *E) {
120     CGF.EmitCoyieldExpr(*E, Dest, IsResultUnused);
121   }
122   void VisitUnaryCoawait(UnaryOperator *E) { Visit(E->getSubExpr()); }
123   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
124   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
125     return Visit(E->getReplacement());
126   }
127
128   // l-values.
129   void VisitDeclRefExpr(DeclRefExpr *E) { EmitAggLoadOfLValue(E); }
130   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
131   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
132   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
133   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
134   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
135     EmitAggLoadOfLValue(E);
136   }
137   void VisitPredefinedExpr(const PredefinedExpr *E) {
138     EmitAggLoadOfLValue(E);
139   }
140
141   // Operators.
142   void VisitCastExpr(CastExpr *E);
143   void VisitCallExpr(const CallExpr *E);
144   void VisitStmtExpr(const StmtExpr *E);
145   void VisitBinaryOperator(const BinaryOperator *BO);
146   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
147   void VisitBinAssign(const BinaryOperator *E);
148   void VisitBinComma(const BinaryOperator *E);
149   void VisitBinCmp(const BinaryOperator *E);
150
151   void VisitObjCMessageExpr(ObjCMessageExpr *E);
152   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
153     EmitAggLoadOfLValue(E);
154   }
155
156   void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E);
157   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
158   void VisitChooseExpr(const ChooseExpr *CE);
159   void VisitInitListExpr(InitListExpr *E);
160   void VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
161                               llvm::Value *outerBegin = nullptr);
162   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
163   void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing.
164   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
165     Visit(DAE->getExpr());
166   }
167   void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
168     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
169     Visit(DIE->getExpr());
170   }
171   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
172   void VisitCXXConstructExpr(const CXXConstructExpr *E);
173   void VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E);
174   void VisitLambdaExpr(LambdaExpr *E);
175   void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E);
176   void VisitExprWithCleanups(ExprWithCleanups *E);
177   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
178   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
179   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
180   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
181
182   void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
183     if (E->isGLValue()) {
184       LValue LV = CGF.EmitPseudoObjectLValue(E);
185       return EmitFinalDestCopy(E->getType(), LV);
186     }
187
188     CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
189   }
190
191   void VisitVAArgExpr(VAArgExpr *E);
192
193   void EmitInitializationToLValue(Expr *E, LValue Address);
194   void EmitNullInitializationToLValue(LValue Address);
195   //  case Expr::ChooseExprClass:
196   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
197   void VisitAtomicExpr(AtomicExpr *E) {
198     RValue Res = CGF.EmitAtomicExpr(E);
199     EmitFinalDestCopy(E->getType(), Res);
200   }
201 };
202 }  // end anonymous namespace.
203
204 //===----------------------------------------------------------------------===//
205 //                                Utilities
206 //===----------------------------------------------------------------------===//
207
208 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
209 /// represents a value lvalue, this method emits the address of the lvalue,
210 /// then loads the result into DestPtr.
211 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
212   LValue LV = CGF.EmitLValue(E);
213
214   // If the type of the l-value is atomic, then do an atomic load.
215   if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) {
216     CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest);
217     return;
218   }
219
220   EmitFinalDestCopy(E->getType(), LV);
221 }
222
223 /// True if the given aggregate type requires special GC API calls.
224 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
225   // Only record types have members that might require garbage collection.
226   const RecordType *RecordTy = T->getAs<RecordType>();
227   if (!RecordTy) return false;
228
229   // Don't mess with non-trivial C++ types.
230   RecordDecl *Record = RecordTy->getDecl();
231   if (isa<CXXRecordDecl>(Record) &&
232       (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() ||
233        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
234     return false;
235
236   // Check whether the type has an object member.
237   return Record->hasObjectMember();
238 }
239
240 void AggExprEmitter::withReturnValueSlot(
241     const Expr *E, llvm::function_ref<RValue(ReturnValueSlot)> EmitCall) {
242   QualType RetTy = E->getType();
243   bool RequiresDestruction =
244       Dest.isIgnored() &&
245       RetTy.isDestructedType() == QualType::DK_nontrivial_c_struct;
246
247   // If it makes no observable difference, save a memcpy + temporary.
248   //
249   // We need to always provide our own temporary if destruction is required.
250   // Otherwise, EmitCall will emit its own, notice that it's "unused", and end
251   // its lifetime before we have the chance to emit a proper destructor call.
252   bool UseTemp = Dest.isPotentiallyAliased() || Dest.requiresGCollection() ||
253                  (RequiresDestruction && !Dest.getAddress().isValid());
254
255   Address RetAddr = Address::invalid();
256   Address RetAllocaAddr = Address::invalid();
257
258   EHScopeStack::stable_iterator LifetimeEndBlock;
259   llvm::Value *LifetimeSizePtr = nullptr;
260   llvm::IntrinsicInst *LifetimeStartInst = nullptr;
261   if (!UseTemp) {
262     RetAddr = Dest.getAddress();
263   } else {
264     RetAddr = CGF.CreateMemTemp(RetTy, "tmp", &RetAllocaAddr);
265     uint64_t Size =
266         CGF.CGM.getDataLayout().getTypeAllocSize(CGF.ConvertTypeForMem(RetTy));
267     LifetimeSizePtr = CGF.EmitLifetimeStart(Size, RetAllocaAddr.getPointer());
268     if (LifetimeSizePtr) {
269       LifetimeStartInst =
270           cast<llvm::IntrinsicInst>(std::prev(Builder.GetInsertPoint()));
271       assert(LifetimeStartInst->getIntrinsicID() ==
272                  llvm::Intrinsic::lifetime_start &&
273              "Last insertion wasn't a lifetime.start?");
274
275       CGF.pushFullExprCleanup<CodeGenFunction::CallLifetimeEnd>(
276           NormalEHLifetimeMarker, RetAllocaAddr, LifetimeSizePtr);
277       LifetimeEndBlock = CGF.EHStack.stable_begin();
278     }
279   }
280
281   RValue Src =
282       EmitCall(ReturnValueSlot(RetAddr, Dest.isVolatile(), IsResultUnused));
283
284   if (RequiresDestruction)
285     CGF.pushDestroy(RetTy.isDestructedType(), Src.getAggregateAddress(), RetTy);
286
287   if (!UseTemp)
288     return;
289
290   assert(Dest.getPointer() != Src.getAggregatePointer());
291   EmitFinalDestCopy(E->getType(), Src);
292
293   if (!RequiresDestruction && LifetimeStartInst) {
294     // If there's no dtor to run, the copy was the last use of our temporary.
295     // Since we're not guaranteed to be in an ExprWithCleanups, clean up
296     // eagerly.
297     CGF.DeactivateCleanupBlock(LifetimeEndBlock, LifetimeStartInst);
298     CGF.EmitLifetimeEnd(LifetimeSizePtr, RetAllocaAddr.getPointer());
299   }
300 }
301
302 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
303 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) {
304   assert(src.isAggregate() && "value must be aggregate value!");
305   LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type);
306   EmitFinalDestCopy(type, srcLV, EVK_RValue);
307 }
308
309 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
310 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src,
311                                        ExprValueKind SrcValueKind) {
312   // If Dest is ignored, then we're evaluating an aggregate expression
313   // in a context that doesn't care about the result.  Note that loads
314   // from volatile l-values force the existence of a non-ignored
315   // destination.
316   if (Dest.isIgnored())
317     return;
318
319   // Copy non-trivial C structs here.
320   LValue DstLV = CGF.MakeAddrLValue(
321       Dest.getAddress(), Dest.isVolatile() ? type.withVolatile() : type);
322
323   if (SrcValueKind == EVK_RValue) {
324     if (type.isNonTrivialToPrimitiveDestructiveMove() == QualType::PCK_Struct) {
325       if (Dest.isPotentiallyAliased())
326         CGF.callCStructMoveAssignmentOperator(DstLV, src);
327       else
328         CGF.callCStructMoveConstructor(DstLV, src);
329       return;
330     }
331   } else {
332     if (type.isNonTrivialToPrimitiveCopy() == QualType::PCK_Struct) {
333       if (Dest.isPotentiallyAliased())
334         CGF.callCStructCopyAssignmentOperator(DstLV, src);
335       else
336         CGF.callCStructCopyConstructor(DstLV, src);
337       return;
338     }
339   }
340
341   AggValueSlot srcAgg =
342     AggValueSlot::forLValue(src, AggValueSlot::IsDestructed,
343                             needsGC(type), AggValueSlot::IsAliased,
344                             AggValueSlot::MayOverlap);
345   EmitCopy(type, Dest, srcAgg);
346 }
347
348 /// Perform a copy from the source into the destination.
349 ///
350 /// \param type - the type of the aggregate being copied; qualifiers are
351 ///   ignored
352 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
353                               const AggValueSlot &src) {
354   if (dest.requiresGCollection()) {
355     CharUnits sz = dest.getPreferredSize(CGF.getContext(), type);
356     llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
357     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
358                                                       dest.getAddress(),
359                                                       src.getAddress(),
360                                                       size);
361     return;
362   }
363
364   // If the result of the assignment is used, copy the LHS there also.
365   // It's volatile if either side is.  Use the minimum alignment of
366   // the two sides.
367   LValue DestLV = CGF.MakeAddrLValue(dest.getAddress(), type);
368   LValue SrcLV = CGF.MakeAddrLValue(src.getAddress(), type);
369   CGF.EmitAggregateCopy(DestLV, SrcLV, type, dest.mayOverlap(),
370                         dest.isVolatile() || src.isVolatile());
371 }
372
373 /// Emit the initializer for a std::initializer_list initialized with a
374 /// real initializer list.
375 void
376 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
377   // Emit an array containing the elements.  The array is externally destructed
378   // if the std::initializer_list object is.
379   ASTContext &Ctx = CGF.getContext();
380   LValue Array = CGF.EmitLValue(E->getSubExpr());
381   assert(Array.isSimple() && "initializer_list array not a simple lvalue");
382   Address ArrayPtr = Array.getAddress();
383
384   const ConstantArrayType *ArrayType =
385       Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
386   assert(ArrayType && "std::initializer_list constructed from non-array");
387
388   // FIXME: Perform the checks on the field types in SemaInit.
389   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
390   RecordDecl::field_iterator Field = Record->field_begin();
391   if (Field == Record->field_end()) {
392     CGF.ErrorUnsupported(E, "weird std::initializer_list");
393     return;
394   }
395
396   // Start pointer.
397   if (!Field->getType()->isPointerType() ||
398       !Ctx.hasSameType(Field->getType()->getPointeeType(),
399                        ArrayType->getElementType())) {
400     CGF.ErrorUnsupported(E, "weird std::initializer_list");
401     return;
402   }
403
404   AggValueSlot Dest = EnsureSlot(E->getType());
405   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
406   LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
407   llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0);
408   llvm::Value *IdxStart[] = { Zero, Zero };
409   llvm::Value *ArrayStart =
410       Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart");
411   CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start);
412   ++Field;
413
414   if (Field == Record->field_end()) {
415     CGF.ErrorUnsupported(E, "weird std::initializer_list");
416     return;
417   }
418
419   llvm::Value *Size = Builder.getInt(ArrayType->getSize());
420   LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
421   if (Field->getType()->isPointerType() &&
422       Ctx.hasSameType(Field->getType()->getPointeeType(),
423                       ArrayType->getElementType())) {
424     // End pointer.
425     llvm::Value *IdxEnd[] = { Zero, Size };
426     llvm::Value *ArrayEnd =
427         Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend");
428     CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength);
429   } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) {
430     // Length.
431     CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength);
432   } else {
433     CGF.ErrorUnsupported(E, "weird std::initializer_list");
434     return;
435   }
436 }
437
438 /// Determine if E is a trivial array filler, that is, one that is
439 /// equivalent to zero-initialization.
440 static bool isTrivialFiller(Expr *E) {
441   if (!E)
442     return true;
443
444   if (isa<ImplicitValueInitExpr>(E))
445     return true;
446
447   if (auto *ILE = dyn_cast<InitListExpr>(E)) {
448     if (ILE->getNumInits())
449       return false;
450     return isTrivialFiller(ILE->getArrayFiller());
451   }
452
453   if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E))
454     return Cons->getConstructor()->isDefaultConstructor() &&
455            Cons->getConstructor()->isTrivial();
456
457   // FIXME: Are there other cases where we can avoid emitting an initializer?
458   return false;
459 }
460
461 /// Emit initialization of an array from an initializer list.
462 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
463                                    QualType ArrayQTy, InitListExpr *E) {
464   uint64_t NumInitElements = E->getNumInits();
465
466   uint64_t NumArrayElements = AType->getNumElements();
467   assert(NumInitElements <= NumArrayElements);
468
469   QualType elementType =
470       CGF.getContext().getAsArrayType(ArrayQTy)->getElementType();
471
472   // DestPtr is an array*.  Construct an elementType* by drilling
473   // down a level.
474   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
475   llvm::Value *indices[] = { zero, zero };
476   llvm::Value *begin =
477     Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin");
478
479   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
480   CharUnits elementAlign =
481     DestPtr.getAlignment().alignmentOfArrayElement(elementSize);
482
483   // Consider initializing the array by copying from a global. For this to be
484   // more efficient than per-element initialization, the size of the elements
485   // with explicit initializers should be large enough.
486   if (NumInitElements * elementSize.getQuantity() > 16 &&
487       elementType.isTriviallyCopyableType(CGF.getContext())) {
488     CodeGen::CodeGenModule &CGM = CGF.CGM;
489     ConstantEmitter Emitter(CGM);
490     LangAS AS = ArrayQTy.getAddressSpace();
491     if (llvm::Constant *C = Emitter.tryEmitForInitializer(E, AS, ArrayQTy)) {
492       auto GV = new llvm::GlobalVariable(
493           CGM.getModule(), C->getType(),
494           CGM.isTypeConstant(ArrayQTy, /* ExcludeCtorDtor= */ true),
495           llvm::GlobalValue::PrivateLinkage, C, "constinit",
496           /* InsertBefore= */ nullptr, llvm::GlobalVariable::NotThreadLocal,
497           CGM.getContext().getTargetAddressSpace(AS));
498       Emitter.finalize(GV);
499       CharUnits Align = CGM.getContext().getTypeAlignInChars(ArrayQTy);
500       GV->setAlignment(Align.getQuantity());
501       EmitFinalDestCopy(ArrayQTy, CGF.MakeAddrLValue(GV, ArrayQTy, Align));
502       return;
503     }
504   }
505
506   // Exception safety requires us to destroy all the
507   // already-constructed members if an initializer throws.
508   // For that, we'll need an EH cleanup.
509   QualType::DestructionKind dtorKind = elementType.isDestructedType();
510   Address endOfInit = Address::invalid();
511   EHScopeStack::stable_iterator cleanup;
512   llvm::Instruction *cleanupDominator = nullptr;
513   if (CGF.needsEHCleanup(dtorKind)) {
514     // In principle we could tell the cleanup where we are more
515     // directly, but the control flow can get so varied here that it
516     // would actually be quite complex.  Therefore we go through an
517     // alloca.
518     endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(),
519                                      "arrayinit.endOfInit");
520     cleanupDominator = Builder.CreateStore(begin, endOfInit);
521     CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
522                                          elementAlign,
523                                          CGF.getDestroyer(dtorKind));
524     cleanup = CGF.EHStack.stable_begin();
525
526   // Otherwise, remember that we didn't need a cleanup.
527   } else {
528     dtorKind = QualType::DK_none;
529   }
530
531   llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
532
533   // The 'current element to initialize'.  The invariants on this
534   // variable are complicated.  Essentially, after each iteration of
535   // the loop, it points to the last initialized element, except
536   // that it points to the beginning of the array before any
537   // elements have been initialized.
538   llvm::Value *element = begin;
539
540   // Emit the explicit initializers.
541   for (uint64_t i = 0; i != NumInitElements; ++i) {
542     // Advance to the next element.
543     if (i > 0) {
544       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
545
546       // Tell the cleanup that it needs to destroy up to this
547       // element.  TODO: some of these stores can be trivially
548       // observed to be unnecessary.
549       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
550     }
551
552     LValue elementLV =
553       CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
554     EmitInitializationToLValue(E->getInit(i), elementLV);
555   }
556
557   // Check whether there's a non-trivial array-fill expression.
558   Expr *filler = E->getArrayFiller();
559   bool hasTrivialFiller = isTrivialFiller(filler);
560
561   // Any remaining elements need to be zero-initialized, possibly
562   // using the filler expression.  We can skip this if the we're
563   // emitting to zeroed memory.
564   if (NumInitElements != NumArrayElements &&
565       !(Dest.isZeroed() && hasTrivialFiller &&
566         CGF.getTypes().isZeroInitializable(elementType))) {
567
568     // Use an actual loop.  This is basically
569     //   do { *array++ = filler; } while (array != end);
570
571     // Advance to the start of the rest of the array.
572     if (NumInitElements) {
573       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
574       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
575     }
576
577     // Compute the end of the array.
578     llvm::Value *end = Builder.CreateInBoundsGEP(begin,
579                       llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
580                                                  "arrayinit.end");
581
582     llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
583     llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
584
585     // Jump into the body.
586     CGF.EmitBlock(bodyBB);
587     llvm::PHINode *currentElement =
588       Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
589     currentElement->addIncoming(element, entryBB);
590
591     // Emit the actual filler expression.
592     {
593       // C++1z [class.temporary]p5:
594       //   when a default constructor is called to initialize an element of
595       //   an array with no corresponding initializer [...] the destruction of
596       //   every temporary created in a default argument is sequenced before
597       //   the construction of the next array element, if any
598       CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
599       LValue elementLV =
600         CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType);
601       if (filler)
602         EmitInitializationToLValue(filler, elementLV);
603       else
604         EmitNullInitializationToLValue(elementLV);
605     }
606
607     // Move on to the next element.
608     llvm::Value *nextElement =
609       Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
610
611     // Tell the EH cleanup that we finished with the last element.
612     if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit);
613
614     // Leave the loop if we're done.
615     llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
616                                              "arrayinit.done");
617     llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
618     Builder.CreateCondBr(done, endBB, bodyBB);
619     currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
620
621     CGF.EmitBlock(endBB);
622   }
623
624   // Leave the partial-array cleanup if we entered one.
625   if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
626 }
627
628 //===----------------------------------------------------------------------===//
629 //                            Visitor Methods
630 //===----------------------------------------------------------------------===//
631
632 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
633   Visit(E->GetTemporaryExpr());
634 }
635
636 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
637   // If this is a unique OVE, just visit its source expression.
638   if (e->isUnique())
639     Visit(e->getSourceExpr());
640   else
641     EmitFinalDestCopy(e->getType(), CGF.getOrCreateOpaqueLValueMapping(e));
642 }
643
644 void
645 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
646   if (Dest.isPotentiallyAliased() &&
647       E->getType().isPODType(CGF.getContext())) {
648     // For a POD type, just emit a load of the lvalue + a copy, because our
649     // compound literal might alias the destination.
650     EmitAggLoadOfLValue(E);
651     return;
652   }
653
654   AggValueSlot Slot = EnsureSlot(E->getType());
655   CGF.EmitAggExpr(E->getInitializer(), Slot);
656 }
657
658 /// Attempt to look through various unimportant expressions to find a
659 /// cast of the given kind.
660 static Expr *findPeephole(Expr *op, CastKind kind) {
661   while (true) {
662     op = op->IgnoreParens();
663     if (CastExpr *castE = dyn_cast<CastExpr>(op)) {
664       if (castE->getCastKind() == kind)
665         return castE->getSubExpr();
666       if (castE->getCastKind() == CK_NoOp)
667         continue;
668     }
669     return nullptr;
670   }
671 }
672
673 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
674   if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
675     CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
676   switch (E->getCastKind()) {
677   case CK_Dynamic: {
678     // FIXME: Can this actually happen? We have no test coverage for it.
679     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
680     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
681                                       CodeGenFunction::TCK_Load);
682     // FIXME: Do we also need to handle property references here?
683     if (LV.isSimple())
684       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
685     else
686       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
687
688     if (!Dest.isIgnored())
689       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
690     break;
691   }
692
693   case CK_ToUnion: {
694     // Evaluate even if the destination is ignored.
695     if (Dest.isIgnored()) {
696       CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
697                       /*ignoreResult=*/true);
698       break;
699     }
700
701     // GCC union extension
702     QualType Ty = E->getSubExpr()->getType();
703     Address CastPtr =
704       Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty));
705     EmitInitializationToLValue(E->getSubExpr(),
706                                CGF.MakeAddrLValue(CastPtr, Ty));
707     break;
708   }
709
710   case CK_DerivedToBase:
711   case CK_BaseToDerived:
712   case CK_UncheckedDerivedToBase: {
713     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
714                 "should have been unpacked before we got here");
715   }
716
717   case CK_NonAtomicToAtomic:
718   case CK_AtomicToNonAtomic: {
719     bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic);
720
721     // Determine the atomic and value types.
722     QualType atomicType = E->getSubExpr()->getType();
723     QualType valueType = E->getType();
724     if (isToAtomic) std::swap(atomicType, valueType);
725
726     assert(atomicType->isAtomicType());
727     assert(CGF.getContext().hasSameUnqualifiedType(valueType,
728                           atomicType->castAs<AtomicType>()->getValueType()));
729
730     // Just recurse normally if we're ignoring the result or the
731     // atomic type doesn't change representation.
732     if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) {
733       return Visit(E->getSubExpr());
734     }
735
736     CastKind peepholeTarget =
737       (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic);
738
739     // These two cases are reverses of each other; try to peephole them.
740     if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) {
741       assert(CGF.getContext().hasSameUnqualifiedType(op->getType(),
742                                                      E->getType()) &&
743            "peephole significantly changed types?");
744       return Visit(op);
745     }
746
747     // If we're converting an r-value of non-atomic type to an r-value
748     // of atomic type, just emit directly into the relevant sub-object.
749     if (isToAtomic) {
750       AggValueSlot valueDest = Dest;
751       if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) {
752         // Zero-initialize.  (Strictly speaking, we only need to initialize
753         // the padding at the end, but this is simpler.)
754         if (!Dest.isZeroed())
755           CGF.EmitNullInitialization(Dest.getAddress(), atomicType);
756
757         // Build a GEP to refer to the subobject.
758         Address valueAddr =
759             CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0,
760                                         CharUnits());
761         valueDest = AggValueSlot::forAddr(valueAddr,
762                                           valueDest.getQualifiers(),
763                                           valueDest.isExternallyDestructed(),
764                                           valueDest.requiresGCollection(),
765                                           valueDest.isPotentiallyAliased(),
766                                           AggValueSlot::DoesNotOverlap,
767                                           AggValueSlot::IsZeroed);
768       }
769
770       CGF.EmitAggExpr(E->getSubExpr(), valueDest);
771       return;
772     }
773
774     // Otherwise, we're converting an atomic type to a non-atomic type.
775     // Make an atomic temporary, emit into that, and then copy the value out.
776     AggValueSlot atomicSlot =
777       CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp");
778     CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
779
780     Address valueAddr =
781       Builder.CreateStructGEP(atomicSlot.getAddress(), 0, CharUnits());
782     RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile());
783     return EmitFinalDestCopy(valueType, rvalue);
784   }
785
786   case CK_LValueToRValue:
787     // If we're loading from a volatile type, force the destination
788     // into existence.
789     if (E->getSubExpr()->getType().isVolatileQualified()) {
790       EnsureDest(E->getType());
791       return Visit(E->getSubExpr());
792     }
793
794     LLVM_FALLTHROUGH;
795
796   case CK_NoOp:
797   case CK_UserDefinedConversion:
798   case CK_ConstructorConversion:
799     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
800                                                    E->getType()) &&
801            "Implicit cast types must be compatible");
802     Visit(E->getSubExpr());
803     break;
804
805   case CK_LValueBitCast:
806     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
807
808   case CK_Dependent:
809   case CK_BitCast:
810   case CK_ArrayToPointerDecay:
811   case CK_FunctionToPointerDecay:
812   case CK_NullToPointer:
813   case CK_NullToMemberPointer:
814   case CK_BaseToDerivedMemberPointer:
815   case CK_DerivedToBaseMemberPointer:
816   case CK_MemberPointerToBoolean:
817   case CK_ReinterpretMemberPointer:
818   case CK_IntegralToPointer:
819   case CK_PointerToIntegral:
820   case CK_PointerToBoolean:
821   case CK_ToVoid:
822   case CK_VectorSplat:
823   case CK_IntegralCast:
824   case CK_BooleanToSignedIntegral:
825   case CK_IntegralToBoolean:
826   case CK_IntegralToFloating:
827   case CK_FloatingToIntegral:
828   case CK_FloatingToBoolean:
829   case CK_FloatingCast:
830   case CK_CPointerToObjCPointerCast:
831   case CK_BlockPointerToObjCPointerCast:
832   case CK_AnyPointerToBlockPointerCast:
833   case CK_ObjCObjectLValueCast:
834   case CK_FloatingRealToComplex:
835   case CK_FloatingComplexToReal:
836   case CK_FloatingComplexToBoolean:
837   case CK_FloatingComplexCast:
838   case CK_FloatingComplexToIntegralComplex:
839   case CK_IntegralRealToComplex:
840   case CK_IntegralComplexToReal:
841   case CK_IntegralComplexToBoolean:
842   case CK_IntegralComplexCast:
843   case CK_IntegralComplexToFloatingComplex:
844   case CK_ARCProduceObject:
845   case CK_ARCConsumeObject:
846   case CK_ARCReclaimReturnedObject:
847   case CK_ARCExtendBlockObject:
848   case CK_CopyAndAutoreleaseBlockObject:
849   case CK_BuiltinFnToFnPtr:
850   case CK_ZeroToOCLEvent:
851   case CK_ZeroToOCLQueue:
852   case CK_AddressSpaceConversion:
853   case CK_IntToOCLSampler:
854     llvm_unreachable("cast kind invalid for aggregate types");
855   }
856 }
857
858 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
859   if (E->getCallReturnType(CGF.getContext())->isReferenceType()) {
860     EmitAggLoadOfLValue(E);
861     return;
862   }
863
864   withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
865     return CGF.EmitCallExpr(E, Slot);
866   });
867 }
868
869 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
870   withReturnValueSlot(E, [&](ReturnValueSlot Slot) {
871     return CGF.EmitObjCMessageExpr(E, Slot);
872   });
873 }
874
875 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
876   CGF.EmitIgnoredExpr(E->getLHS());
877   Visit(E->getRHS());
878 }
879
880 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
881   CodeGenFunction::StmtExprEvaluation eval(CGF);
882   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
883 }
884
885 enum CompareKind {
886   CK_Less,
887   CK_Greater,
888   CK_Equal,
889 };
890
891 static llvm::Value *EmitCompare(CGBuilderTy &Builder, CodeGenFunction &CGF,
892                                 const BinaryOperator *E, llvm::Value *LHS,
893                                 llvm::Value *RHS, CompareKind Kind,
894                                 const char *NameSuffix = "") {
895   QualType ArgTy = E->getLHS()->getType();
896   if (const ComplexType *CT = ArgTy->getAs<ComplexType>())
897     ArgTy = CT->getElementType();
898
899   if (const auto *MPT = ArgTy->getAs<MemberPointerType>()) {
900     assert(Kind == CK_Equal &&
901            "member pointers may only be compared for equality");
902     return CGF.CGM.getCXXABI().EmitMemberPointerComparison(
903         CGF, LHS, RHS, MPT, /*IsInequality*/ false);
904   }
905
906   // Compute the comparison instructions for the specified comparison kind.
907   struct CmpInstInfo {
908     const char *Name;
909     llvm::CmpInst::Predicate FCmp;
910     llvm::CmpInst::Predicate SCmp;
911     llvm::CmpInst::Predicate UCmp;
912   };
913   CmpInstInfo InstInfo = [&]() -> CmpInstInfo {
914     using FI = llvm::FCmpInst;
915     using II = llvm::ICmpInst;
916     switch (Kind) {
917     case CK_Less:
918       return {"cmp.lt", FI::FCMP_OLT, II::ICMP_SLT, II::ICMP_ULT};
919     case CK_Greater:
920       return {"cmp.gt", FI::FCMP_OGT, II::ICMP_SGT, II::ICMP_UGT};
921     case CK_Equal:
922       return {"cmp.eq", FI::FCMP_OEQ, II::ICMP_EQ, II::ICMP_EQ};
923     }
924     llvm_unreachable("Unrecognised CompareKind enum");
925   }();
926
927   if (ArgTy->hasFloatingRepresentation())
928     return Builder.CreateFCmp(InstInfo.FCmp, LHS, RHS,
929                               llvm::Twine(InstInfo.Name) + NameSuffix);
930   if (ArgTy->isIntegralOrEnumerationType() || ArgTy->isPointerType()) {
931     auto Inst =
932         ArgTy->hasSignedIntegerRepresentation() ? InstInfo.SCmp : InstInfo.UCmp;
933     return Builder.CreateICmp(Inst, LHS, RHS,
934                               llvm::Twine(InstInfo.Name) + NameSuffix);
935   }
936
937   llvm_unreachable("unsupported aggregate binary expression should have "
938                    "already been handled");
939 }
940
941 void AggExprEmitter::VisitBinCmp(const BinaryOperator *E) {
942   using llvm::BasicBlock;
943   using llvm::PHINode;
944   using llvm::Value;
945   assert(CGF.getContext().hasSameType(E->getLHS()->getType(),
946                                       E->getRHS()->getType()));
947   const ComparisonCategoryInfo &CmpInfo =
948       CGF.getContext().CompCategories.getInfoForType(E->getType());
949   assert(CmpInfo.Record->isTriviallyCopyable() &&
950          "cannot copy non-trivially copyable aggregate");
951
952   QualType ArgTy = E->getLHS()->getType();
953
954   // TODO: Handle comparing these types.
955   if (ArgTy->isVectorType())
956     return CGF.ErrorUnsupported(
957         E, "aggregate three-way comparison with vector arguments");
958   if (!ArgTy->isIntegralOrEnumerationType() && !ArgTy->isRealFloatingType() &&
959       !ArgTy->isNullPtrType() && !ArgTy->isPointerType() &&
960       !ArgTy->isMemberPointerType() && !ArgTy->isAnyComplexType()) {
961     return CGF.ErrorUnsupported(E, "aggregate three-way comparison");
962   }
963   bool IsComplex = ArgTy->isAnyComplexType();
964
965   // Evaluate the operands to the expression and extract their values.
966   auto EmitOperand = [&](Expr *E) -> std::pair<Value *, Value *> {
967     RValue RV = CGF.EmitAnyExpr(E);
968     if (RV.isScalar())
969       return {RV.getScalarVal(), nullptr};
970     if (RV.isAggregate())
971       return {RV.getAggregatePointer(), nullptr};
972     assert(RV.isComplex());
973     return RV.getComplexVal();
974   };
975   auto LHSValues = EmitOperand(E->getLHS()),
976        RHSValues = EmitOperand(E->getRHS());
977
978   auto EmitCmp = [&](CompareKind K) {
979     Value *Cmp = EmitCompare(Builder, CGF, E, LHSValues.first, RHSValues.first,
980                              K, IsComplex ? ".r" : "");
981     if (!IsComplex)
982       return Cmp;
983     assert(K == CompareKind::CK_Equal);
984     Value *CmpImag = EmitCompare(Builder, CGF, E, LHSValues.second,
985                                  RHSValues.second, K, ".i");
986     return Builder.CreateAnd(Cmp, CmpImag, "and.eq");
987   };
988   auto EmitCmpRes = [&](const ComparisonCategoryInfo::ValueInfo *VInfo) {
989     return Builder.getInt(VInfo->getIntValue());
990   };
991
992   Value *Select;
993   if (ArgTy->isNullPtrType()) {
994     Select = EmitCmpRes(CmpInfo.getEqualOrEquiv());
995   } else if (CmpInfo.isEquality()) {
996     Select = Builder.CreateSelect(
997         EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()),
998         EmitCmpRes(CmpInfo.getNonequalOrNonequiv()), "sel.eq");
999   } else if (!CmpInfo.isPartial()) {
1000     Value *SelectOne =
1001         Builder.CreateSelect(EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()),
1002                              EmitCmpRes(CmpInfo.getGreater()), "sel.lt");
1003     Select = Builder.CreateSelect(EmitCmp(CK_Equal),
1004                                   EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1005                                   SelectOne, "sel.eq");
1006   } else {
1007     Value *SelectEq = Builder.CreateSelect(
1008         EmitCmp(CK_Equal), EmitCmpRes(CmpInfo.getEqualOrEquiv()),
1009         EmitCmpRes(CmpInfo.getUnordered()), "sel.eq");
1010     Value *SelectGT = Builder.CreateSelect(EmitCmp(CK_Greater),
1011                                            EmitCmpRes(CmpInfo.getGreater()),
1012                                            SelectEq, "sel.gt");
1013     Select = Builder.CreateSelect(
1014         EmitCmp(CK_Less), EmitCmpRes(CmpInfo.getLess()), SelectGT, "sel.lt");
1015   }
1016   // Create the return value in the destination slot.
1017   EnsureDest(E->getType());
1018   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1019
1020   // Emit the address of the first (and only) field in the comparison category
1021   // type, and initialize it from the constant integer value selected above.
1022   LValue FieldLV = CGF.EmitLValueForFieldInitialization(
1023       DestLV, *CmpInfo.Record->field_begin());
1024   CGF.EmitStoreThroughLValue(RValue::get(Select), FieldLV, /*IsInit*/ true);
1025
1026   // All done! The result is in the Dest slot.
1027 }
1028
1029 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
1030   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
1031     VisitPointerToDataMemberBinaryOperator(E);
1032   else
1033     CGF.ErrorUnsupported(E, "aggregate binary expression");
1034 }
1035
1036 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
1037                                                     const BinaryOperator *E) {
1038   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
1039   EmitFinalDestCopy(E->getType(), LV);
1040 }
1041
1042 /// Is the value of the given expression possibly a reference to or
1043 /// into a __block variable?
1044 static bool isBlockVarRef(const Expr *E) {
1045   // Make sure we look through parens.
1046   E = E->IgnoreParens();
1047
1048   // Check for a direct reference to a __block variable.
1049   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
1050     const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
1051     return (var && var->hasAttr<BlocksAttr>());
1052   }
1053
1054   // More complicated stuff.
1055
1056   // Binary operators.
1057   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
1058     // For an assignment or pointer-to-member operation, just care
1059     // about the LHS.
1060     if (op->isAssignmentOp() || op->isPtrMemOp())
1061       return isBlockVarRef(op->getLHS());
1062
1063     // For a comma, just care about the RHS.
1064     if (op->getOpcode() == BO_Comma)
1065       return isBlockVarRef(op->getRHS());
1066
1067     // FIXME: pointer arithmetic?
1068     return false;
1069
1070   // Check both sides of a conditional operator.
1071   } else if (const AbstractConditionalOperator *op
1072                = dyn_cast<AbstractConditionalOperator>(E)) {
1073     return isBlockVarRef(op->getTrueExpr())
1074         || isBlockVarRef(op->getFalseExpr());
1075
1076   // OVEs are required to support BinaryConditionalOperators.
1077   } else if (const OpaqueValueExpr *op
1078                = dyn_cast<OpaqueValueExpr>(E)) {
1079     if (const Expr *src = op->getSourceExpr())
1080       return isBlockVarRef(src);
1081
1082   // Casts are necessary to get things like (*(int*)&var) = foo().
1083   // We don't really care about the kind of cast here, except
1084   // we don't want to look through l2r casts, because it's okay
1085   // to get the *value* in a __block variable.
1086   } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
1087     if (cast->getCastKind() == CK_LValueToRValue)
1088       return false;
1089     return isBlockVarRef(cast->getSubExpr());
1090
1091   // Handle unary operators.  Again, just aggressively look through
1092   // it, ignoring the operation.
1093   } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
1094     return isBlockVarRef(uop->getSubExpr());
1095
1096   // Look into the base of a field access.
1097   } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
1098     return isBlockVarRef(mem->getBase());
1099
1100   // Look into the base of a subscript.
1101   } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
1102     return isBlockVarRef(sub->getBase());
1103   }
1104
1105   return false;
1106 }
1107
1108 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1109   // For an assignment to work, the value on the right has
1110   // to be compatible with the value on the left.
1111   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
1112                                                  E->getRHS()->getType())
1113          && "Invalid assignment");
1114
1115   // If the LHS might be a __block variable, and the RHS can
1116   // potentially cause a block copy, we need to evaluate the RHS first
1117   // so that the assignment goes the right place.
1118   // This is pretty semantically fragile.
1119   if (isBlockVarRef(E->getLHS()) &&
1120       E->getRHS()->HasSideEffects(CGF.getContext())) {
1121     // Ensure that we have a destination, and evaluate the RHS into that.
1122     EnsureDest(E->getRHS()->getType());
1123     Visit(E->getRHS());
1124
1125     // Now emit the LHS and copy into it.
1126     LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
1127
1128     // That copy is an atomic copy if the LHS is atomic.
1129     if (LHS.getType()->isAtomicType() ||
1130         CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1131       CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1132       return;
1133     }
1134
1135     EmitCopy(E->getLHS()->getType(),
1136              AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
1137                                      needsGC(E->getLHS()->getType()),
1138                                      AggValueSlot::IsAliased,
1139                                      AggValueSlot::MayOverlap),
1140              Dest);
1141     return;
1142   }
1143
1144   LValue LHS = CGF.EmitLValue(E->getLHS());
1145
1146   // If we have an atomic type, evaluate into the destination and then
1147   // do an atomic copy.
1148   if (LHS.getType()->isAtomicType() ||
1149       CGF.LValueIsSuitableForInlineAtomic(LHS)) {
1150     EnsureDest(E->getRHS()->getType());
1151     Visit(E->getRHS());
1152     CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
1153     return;
1154   }
1155
1156   // Codegen the RHS so that it stores directly into the LHS.
1157   AggValueSlot LHSSlot =
1158     AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
1159                             needsGC(E->getLHS()->getType()),
1160                             AggValueSlot::IsAliased,
1161                             AggValueSlot::MayOverlap);
1162   // A non-volatile aggregate destination might have volatile member.
1163   if (!LHSSlot.isVolatile() &&
1164       CGF.hasVolatileMember(E->getLHS()->getType()))
1165     LHSSlot.setVolatile(true);
1166
1167   CGF.EmitAggExpr(E->getRHS(), LHSSlot);
1168
1169   // Copy into the destination if the assignment isn't ignored.
1170   EmitFinalDestCopy(E->getType(), LHS);
1171 }
1172
1173 void AggExprEmitter::
1174 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
1175   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1176   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1177   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1178
1179   // Bind the common expression if necessary.
1180   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
1181
1182   CodeGenFunction::ConditionalEvaluation eval(CGF);
1183   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
1184                            CGF.getProfileCount(E));
1185
1186   // Save whether the destination's lifetime is externally managed.
1187   bool isExternallyDestructed = Dest.isExternallyDestructed();
1188
1189   eval.begin(CGF);
1190   CGF.EmitBlock(LHSBlock);
1191   CGF.incrementProfileCounter(E);
1192   Visit(E->getTrueExpr());
1193   eval.end(CGF);
1194
1195   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
1196   CGF.Builder.CreateBr(ContBlock);
1197
1198   // If the result of an agg expression is unused, then the emission
1199   // of the LHS might need to create a destination slot.  That's fine
1200   // with us, and we can safely emit the RHS into the same slot, but
1201   // we shouldn't claim that it's already being destructed.
1202   Dest.setExternallyDestructed(isExternallyDestructed);
1203
1204   eval.begin(CGF);
1205   CGF.EmitBlock(RHSBlock);
1206   Visit(E->getFalseExpr());
1207   eval.end(CGF);
1208
1209   CGF.EmitBlock(ContBlock);
1210 }
1211
1212 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
1213   Visit(CE->getChosenSubExpr());
1214 }
1215
1216 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1217   Address ArgValue = Address::invalid();
1218   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
1219
1220   // If EmitVAArg fails, emit an error.
1221   if (!ArgPtr.isValid()) {
1222     CGF.ErrorUnsupported(VE, "aggregate va_arg expression");
1223     return;
1224   }
1225
1226   EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType()));
1227 }
1228
1229 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
1230   // Ensure that we have a slot, but if we already do, remember
1231   // whether it was externally destructed.
1232   bool wasExternallyDestructed = Dest.isExternallyDestructed();
1233   EnsureDest(E->getType());
1234
1235   // We're going to push a destructor if there isn't already one.
1236   Dest.setExternallyDestructed();
1237
1238   Visit(E->getSubExpr());
1239
1240   // Push that destructor we promised.
1241   if (!wasExternallyDestructed)
1242     CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress());
1243 }
1244
1245 void
1246 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
1247   AggValueSlot Slot = EnsureSlot(E->getType());
1248   CGF.EmitCXXConstructExpr(E, Slot);
1249 }
1250
1251 void AggExprEmitter::VisitCXXInheritedCtorInitExpr(
1252     const CXXInheritedCtorInitExpr *E) {
1253   AggValueSlot Slot = EnsureSlot(E->getType());
1254   CGF.EmitInheritedCXXConstructorCall(
1255       E->getConstructor(), E->constructsVBase(), Slot.getAddress(),
1256       E->inheritedFromVBase(), E);
1257 }
1258
1259 void
1260 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
1261   AggValueSlot Slot = EnsureSlot(E->getType());
1262   CGF.EmitLambdaExpr(E, Slot);
1263 }
1264
1265 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1266   CGF.enterFullExpression(E);
1267   CodeGenFunction::RunCleanupsScope cleanups(CGF);
1268   Visit(E->getSubExpr());
1269 }
1270
1271 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
1272   QualType T = E->getType();
1273   AggValueSlot Slot = EnsureSlot(T);
1274   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1275 }
1276
1277 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
1278   QualType T = E->getType();
1279   AggValueSlot Slot = EnsureSlot(T);
1280   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1281 }
1282
1283 /// isSimpleZero - If emitting this value will obviously just cause a store of
1284 /// zero to memory, return true.  This can return false if uncertain, so it just
1285 /// handles simple cases.
1286 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
1287   E = E->IgnoreParens();
1288
1289   // 0
1290   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
1291     return IL->getValue() == 0;
1292   // +0.0
1293   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
1294     return FL->getValue().isPosZero();
1295   // int()
1296   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
1297       CGF.getTypes().isZeroInitializable(E->getType()))
1298     return true;
1299   // (int*)0 - Null pointer expressions.
1300   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
1301     return ICE->getCastKind() == CK_NullToPointer &&
1302         CGF.getTypes().isPointerZeroInitializable(E->getType());
1303   // '\0'
1304   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
1305     return CL->getValue() == 0;
1306
1307   // Otherwise, hard case: conservatively return false.
1308   return false;
1309 }
1310
1311
1312 void
1313 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) {
1314   QualType type = LV.getType();
1315   // FIXME: Ignore result?
1316   // FIXME: Are initializers affected by volatile?
1317   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
1318     // Storing "i32 0" to a zero'd memory location is a noop.
1319     return;
1320   } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) {
1321     return EmitNullInitializationToLValue(LV);
1322   } else if (isa<NoInitExpr>(E)) {
1323     // Do nothing.
1324     return;
1325   } else if (type->isReferenceType()) {
1326     RValue RV = CGF.EmitReferenceBindingToExpr(E);
1327     return CGF.EmitStoreThroughLValue(RV, LV);
1328   }
1329
1330   switch (CGF.getEvaluationKind(type)) {
1331   case TEK_Complex:
1332     CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true);
1333     return;
1334   case TEK_Aggregate:
1335     CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV,
1336                                                AggValueSlot::IsDestructed,
1337                                       AggValueSlot::DoesNotNeedGCBarriers,
1338                                                AggValueSlot::IsNotAliased,
1339                                                AggValueSlot::MayOverlap,
1340                                                Dest.isZeroed()));
1341     return;
1342   case TEK_Scalar:
1343     if (LV.isSimple()) {
1344       CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false);
1345     } else {
1346       CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
1347     }
1348     return;
1349   }
1350   llvm_unreachable("bad evaluation kind");
1351 }
1352
1353 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
1354   QualType type = lv.getType();
1355
1356   // If the destination slot is already zeroed out before the aggregate is
1357   // copied into it, we don't have to emit any zeros here.
1358   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
1359     return;
1360
1361   if (CGF.hasScalarEvaluationKind(type)) {
1362     // For non-aggregates, we can store the appropriate null constant.
1363     llvm::Value *null = CGF.CGM.EmitNullConstant(type);
1364     // Note that the following is not equivalent to
1365     // EmitStoreThroughBitfieldLValue for ARC types.
1366     if (lv.isBitField()) {
1367       CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
1368     } else {
1369       assert(lv.isSimple());
1370       CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
1371     }
1372   } else {
1373     // There's a potential optimization opportunity in combining
1374     // memsets; that would be easy for arrays, but relatively
1375     // difficult for structures with the current code.
1376     CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
1377   }
1378 }
1379
1380 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
1381 #if 0
1382   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
1383   // (Length of globals? Chunks of zeroed-out space?).
1384   //
1385   // If we can, prefer a copy from a global; this is a lot less code for long
1386   // globals, and it's easier for the current optimizers to analyze.
1387   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
1388     llvm::GlobalVariable* GV =
1389     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
1390                              llvm::GlobalValue::InternalLinkage, C, "");
1391     EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType()));
1392     return;
1393   }
1394 #endif
1395   if (E->hadArrayRangeDesignator())
1396     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1397
1398   if (E->isTransparent())
1399     return Visit(E->getInit(0));
1400
1401   AggValueSlot Dest = EnsureSlot(E->getType());
1402
1403   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1404
1405   // Handle initialization of an array.
1406   if (E->getType()->isArrayType()) {
1407     auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType());
1408     EmitArrayInit(Dest.getAddress(), AType, E->getType(), E);
1409     return;
1410   }
1411
1412   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
1413
1414   // Do struct initialization; this code just sets each individual member
1415   // to the approprate value.  This makes bitfield support automatic;
1416   // the disadvantage is that the generated code is more difficult for
1417   // the optimizer, especially with bitfields.
1418   unsigned NumInitElements = E->getNumInits();
1419   RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
1420
1421   // We'll need to enter cleanup scopes in case any of the element
1422   // initializers throws an exception.
1423   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
1424   llvm::Instruction *cleanupDominator = nullptr;
1425
1426   unsigned curInitIndex = 0;
1427
1428   // Emit initialization of base classes.
1429   if (auto *CXXRD = dyn_cast<CXXRecordDecl>(record)) {
1430     assert(E->getNumInits() >= CXXRD->getNumBases() &&
1431            "missing initializer for base class");
1432     for (auto &Base : CXXRD->bases()) {
1433       assert(!Base.isVirtual() && "should not see vbases here");
1434       auto *BaseRD = Base.getType()->getAsCXXRecordDecl();
1435       Address V = CGF.GetAddressOfDirectBaseInCompleteClass(
1436           Dest.getAddress(), CXXRD, BaseRD,
1437           /*isBaseVirtual*/ false);
1438       AggValueSlot AggSlot = AggValueSlot::forAddr(
1439           V, Qualifiers(),
1440           AggValueSlot::IsDestructed,
1441           AggValueSlot::DoesNotNeedGCBarriers,
1442           AggValueSlot::IsNotAliased,
1443           CGF.overlapForBaseInit(CXXRD, BaseRD, Base.isVirtual()));
1444       CGF.EmitAggExpr(E->getInit(curInitIndex++), AggSlot);
1445
1446       if (QualType::DestructionKind dtorKind =
1447               Base.getType().isDestructedType()) {
1448         CGF.pushDestroy(dtorKind, V, Base.getType());
1449         cleanups.push_back(CGF.EHStack.stable_begin());
1450       }
1451     }
1452   }
1453
1454   // Prepare a 'this' for CXXDefaultInitExprs.
1455   CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress());
1456
1457   if (record->isUnion()) {
1458     // Only initialize one field of a union. The field itself is
1459     // specified by the initializer list.
1460     if (!E->getInitializedFieldInUnion()) {
1461       // Empty union; we have nothing to do.
1462
1463 #ifndef NDEBUG
1464       // Make sure that it's really an empty and not a failure of
1465       // semantic analysis.
1466       for (const auto *Field : record->fields())
1467         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
1468 #endif
1469       return;
1470     }
1471
1472     // FIXME: volatility
1473     FieldDecl *Field = E->getInitializedFieldInUnion();
1474
1475     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
1476     if (NumInitElements) {
1477       // Store the initializer into the field
1478       EmitInitializationToLValue(E->getInit(0), FieldLoc);
1479     } else {
1480       // Default-initialize to null.
1481       EmitNullInitializationToLValue(FieldLoc);
1482     }
1483
1484     return;
1485   }
1486
1487   // Here we iterate over the fields; this makes it simpler to both
1488   // default-initialize fields and skip over unnamed fields.
1489   for (const auto *field : record->fields()) {
1490     // We're done once we hit the flexible array member.
1491     if (field->getType()->isIncompleteArrayType())
1492       break;
1493
1494     // Always skip anonymous bitfields.
1495     if (field->isUnnamedBitfield())
1496       continue;
1497
1498     // We're done if we reach the end of the explicit initializers, we
1499     // have a zeroed object, and the rest of the fields are
1500     // zero-initializable.
1501     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
1502         CGF.getTypes().isZeroInitializable(E->getType()))
1503       break;
1504
1505
1506     LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field);
1507     // We never generate write-barries for initialized fields.
1508     LV.setNonGC(true);
1509
1510     if (curInitIndex < NumInitElements) {
1511       // Store the initializer into the field.
1512       EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
1513     } else {
1514       // We're out of initializers; default-initialize to null
1515       EmitNullInitializationToLValue(LV);
1516     }
1517
1518     // Push a destructor if necessary.
1519     // FIXME: if we have an array of structures, all explicitly
1520     // initialized, we can end up pushing a linear number of cleanups.
1521     bool pushedCleanup = false;
1522     if (QualType::DestructionKind dtorKind
1523           = field->getType().isDestructedType()) {
1524       assert(LV.isSimple());
1525       if (CGF.needsEHCleanup(dtorKind)) {
1526         if (!cleanupDominator)
1527           cleanupDominator = CGF.Builder.CreateAlignedLoad(
1528               CGF.Int8Ty,
1529               llvm::Constant::getNullValue(CGF.Int8PtrTy),
1530               CharUnits::One()); // placeholder
1531
1532         CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
1533                         CGF.getDestroyer(dtorKind), false);
1534         cleanups.push_back(CGF.EHStack.stable_begin());
1535         pushedCleanup = true;
1536       }
1537     }
1538
1539     // If the GEP didn't get used because of a dead zero init or something
1540     // else, clean it up for -O0 builds and general tidiness.
1541     if (!pushedCleanup && LV.isSimple())
1542       if (llvm::GetElementPtrInst *GEP =
1543             dyn_cast<llvm::GetElementPtrInst>(LV.getPointer()))
1544         if (GEP->use_empty())
1545           GEP->eraseFromParent();
1546   }
1547
1548   // Deactivate all the partial cleanups in reverse order, which
1549   // generally means popping them.
1550   for (unsigned i = cleanups.size(); i != 0; --i)
1551     CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
1552
1553   // Destroy the placeholder if we made one.
1554   if (cleanupDominator)
1555     cleanupDominator->eraseFromParent();
1556 }
1557
1558 void AggExprEmitter::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E,
1559                                             llvm::Value *outerBegin) {
1560   // Emit the common subexpression.
1561   CodeGenFunction::OpaqueValueMapping binding(CGF, E->getCommonExpr());
1562
1563   Address destPtr = EnsureSlot(E->getType()).getAddress();
1564   uint64_t numElements = E->getArraySize().getZExtValue();
1565
1566   if (!numElements)
1567     return;
1568
1569   // destPtr is an array*. Construct an elementType* by drilling down a level.
1570   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
1571   llvm::Value *indices[] = {zero, zero};
1572   llvm::Value *begin = Builder.CreateInBoundsGEP(destPtr.getPointer(), indices,
1573                                                  "arrayinit.begin");
1574
1575   // Prepare to special-case multidimensional array initialization: we avoid
1576   // emitting multiple destructor loops in that case.
1577   if (!outerBegin)
1578     outerBegin = begin;
1579   ArrayInitLoopExpr *InnerLoop = dyn_cast<ArrayInitLoopExpr>(E->getSubExpr());
1580
1581   QualType elementType =
1582       CGF.getContext().getAsArrayType(E->getType())->getElementType();
1583   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
1584   CharUnits elementAlign =
1585       destPtr.getAlignment().alignmentOfArrayElement(elementSize);
1586
1587   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1588   llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
1589
1590   // Jump into the body.
1591   CGF.EmitBlock(bodyBB);
1592   llvm::PHINode *index =
1593       Builder.CreatePHI(zero->getType(), 2, "arrayinit.index");
1594   index->addIncoming(zero, entryBB);
1595   llvm::Value *element = Builder.CreateInBoundsGEP(begin, index);
1596
1597   // Prepare for a cleanup.
1598   QualType::DestructionKind dtorKind = elementType.isDestructedType();
1599   EHScopeStack::stable_iterator cleanup;
1600   if (CGF.needsEHCleanup(dtorKind) && !InnerLoop) {
1601     if (outerBegin->getType() != element->getType())
1602       outerBegin = Builder.CreateBitCast(outerBegin, element->getType());
1603     CGF.pushRegularPartialArrayCleanup(outerBegin, element, elementType,
1604                                        elementAlign,
1605                                        CGF.getDestroyer(dtorKind));
1606     cleanup = CGF.EHStack.stable_begin();
1607   } else {
1608     dtorKind = QualType::DK_none;
1609   }
1610
1611   // Emit the actual filler expression.
1612   {
1613     // Temporaries created in an array initialization loop are destroyed
1614     // at the end of each iteration.
1615     CodeGenFunction::RunCleanupsScope CleanupsScope(CGF);
1616     CodeGenFunction::ArrayInitLoopExprScope Scope(CGF, index);
1617     LValue elementLV =
1618         CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
1619
1620     if (InnerLoop) {
1621       // If the subexpression is an ArrayInitLoopExpr, share its cleanup.
1622       auto elementSlot = AggValueSlot::forLValue(
1623           elementLV, AggValueSlot::IsDestructed,
1624           AggValueSlot::DoesNotNeedGCBarriers,
1625           AggValueSlot::IsNotAliased,
1626           AggValueSlot::DoesNotOverlap);
1627       AggExprEmitter(CGF, elementSlot, false)
1628           .VisitArrayInitLoopExpr(InnerLoop, outerBegin);
1629     } else
1630       EmitInitializationToLValue(E->getSubExpr(), elementLV);
1631   }
1632
1633   // Move on to the next element.
1634   llvm::Value *nextIndex = Builder.CreateNUWAdd(
1635       index, llvm::ConstantInt::get(CGF.SizeTy, 1), "arrayinit.next");
1636   index->addIncoming(nextIndex, Builder.GetInsertBlock());
1637
1638   // Leave the loop if we're done.
1639   llvm::Value *done = Builder.CreateICmpEQ(
1640       nextIndex, llvm::ConstantInt::get(CGF.SizeTy, numElements),
1641       "arrayinit.done");
1642   llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
1643   Builder.CreateCondBr(done, endBB, bodyBB);
1644
1645   CGF.EmitBlock(endBB);
1646
1647   // Leave the partial-array cleanup if we entered one.
1648   if (dtorKind)
1649     CGF.DeactivateCleanupBlock(cleanup, index);
1650 }
1651
1652 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) {
1653   AggValueSlot Dest = EnsureSlot(E->getType());
1654
1655   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1656   EmitInitializationToLValue(E->getBase(), DestLV);
1657   VisitInitListExpr(E->getUpdater());
1658 }
1659
1660 //===----------------------------------------------------------------------===//
1661 //                        Entry Points into this File
1662 //===----------------------------------------------------------------------===//
1663
1664 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1665 /// non-zero bytes that will be stored when outputting the initializer for the
1666 /// specified initializer expression.
1667 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1668   E = E->IgnoreParens();
1669
1670   // 0 and 0.0 won't require any non-zero stores!
1671   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1672
1673   // If this is an initlist expr, sum up the size of sizes of the (present)
1674   // elements.  If this is something weird, assume the whole thing is non-zero.
1675   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1676   while (ILE && ILE->isTransparent())
1677     ILE = dyn_cast<InitListExpr>(ILE->getInit(0));
1678   if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1679     return CGF.getContext().getTypeSizeInChars(E->getType());
1680
1681   // InitListExprs for structs have to be handled carefully.  If there are
1682   // reference members, we need to consider the size of the reference, not the
1683   // referencee.  InitListExprs for unions and arrays can't have references.
1684   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1685     if (!RT->isUnionType()) {
1686       RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
1687       CharUnits NumNonZeroBytes = CharUnits::Zero();
1688
1689       unsigned ILEElement = 0;
1690       if (auto *CXXRD = dyn_cast<CXXRecordDecl>(SD))
1691         while (ILEElement != CXXRD->getNumBases())
1692           NumNonZeroBytes +=
1693               GetNumNonZeroBytesInInit(ILE->getInit(ILEElement++), CGF);
1694       for (const auto *Field : SD->fields()) {
1695         // We're done once we hit the flexible array member or run out of
1696         // InitListExpr elements.
1697         if (Field->getType()->isIncompleteArrayType() ||
1698             ILEElement == ILE->getNumInits())
1699           break;
1700         if (Field->isUnnamedBitfield())
1701           continue;
1702
1703         const Expr *E = ILE->getInit(ILEElement++);
1704
1705         // Reference values are always non-null and have the width of a pointer.
1706         if (Field->getType()->isReferenceType())
1707           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
1708               CGF.getTarget().getPointerWidth(0));
1709         else
1710           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
1711       }
1712
1713       return NumNonZeroBytes;
1714     }
1715   }
1716
1717
1718   CharUnits NumNonZeroBytes = CharUnits::Zero();
1719   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1720     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
1721   return NumNonZeroBytes;
1722 }
1723
1724 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1725 /// zeros in it, emit a memset and avoid storing the individual zeros.
1726 ///
1727 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1728                                      CodeGenFunction &CGF) {
1729   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
1730   // volatile stores.
1731   if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid())
1732     return;
1733
1734   // C++ objects with a user-declared constructor don't need zero'ing.
1735   if (CGF.getLangOpts().CPlusPlus)
1736     if (const RecordType *RT = CGF.getContext()
1737                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
1738       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1739       if (RD->hasUserDeclaredConstructor())
1740         return;
1741     }
1742
1743   // If the type is 16-bytes or smaller, prefer individual stores over memset.
1744   CharUnits Size = Slot.getPreferredSize(CGF.getContext(), E->getType());
1745   if (Size <= CharUnits::fromQuantity(16))
1746     return;
1747
1748   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
1749   // we prefer to emit memset + individual stores for the rest.
1750   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1751   if (NumNonZeroBytes*4 > Size)
1752     return;
1753
1754   // Okay, it seems like a good idea to use an initial memset, emit the call.
1755   llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity());
1756
1757   Address Loc = Slot.getAddress();
1758   Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty);
1759   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false);
1760
1761   // Tell the AggExprEmitter that the slot is known zero.
1762   Slot.setZeroed();
1763 }
1764
1765
1766
1767
1768 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
1769 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
1770 /// the value of the aggregate expression is not needed.  If VolatileDest is
1771 /// true, DestPtr cannot be 0.
1772 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
1773   assert(E && hasAggregateEvaluationKind(E->getType()) &&
1774          "Invalid aggregate expression to emit");
1775   assert((Slot.getAddress().isValid() || Slot.isIgnored()) &&
1776          "slot has bits but no address");
1777
1778   // Optimize the slot if possible.
1779   CheckAggExprForMemSetUse(Slot, E, *this);
1780
1781   AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E));
1782 }
1783
1784 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1785   assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!");
1786   Address Temp = CreateMemTemp(E->getType());
1787   LValue LV = MakeAddrLValue(Temp, E->getType());
1788   EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
1789                                          AggValueSlot::DoesNotNeedGCBarriers,
1790                                          AggValueSlot::IsNotAliased,
1791                                          AggValueSlot::DoesNotOverlap));
1792   return LV;
1793 }
1794
1795 AggValueSlot::Overlap_t CodeGenFunction::overlapForBaseInit(
1796     const CXXRecordDecl *RD, const CXXRecordDecl *BaseRD, bool IsVirtual) {
1797   // Virtual bases are initialized first, in address order, so there's never
1798   // any overlap during their initialization.
1799   //
1800   // FIXME: Under P0840, this is no longer true: the tail padding of a vbase
1801   // of a field could be reused by a vbase of a containing class.
1802   if (IsVirtual)
1803     return AggValueSlot::DoesNotOverlap;
1804
1805   // If the base class is laid out entirely within the nvsize of the derived
1806   // class, its tail padding cannot yet be initialized, so we can issue
1807   // stores at the full width of the base class.
1808   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1809   if (Layout.getBaseClassOffset(BaseRD) +
1810           getContext().getASTRecordLayout(BaseRD).getSize() <=
1811       Layout.getNonVirtualSize())
1812     return AggValueSlot::DoesNotOverlap;
1813
1814   // The tail padding may contain values we need to preserve.
1815   return AggValueSlot::MayOverlap;
1816 }
1817
1818 void CodeGenFunction::EmitAggregateCopy(LValue Dest, LValue Src, QualType Ty,
1819                                         AggValueSlot::Overlap_t MayOverlap,
1820                                         bool isVolatile) {
1821   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
1822
1823   Address DestPtr = Dest.getAddress();
1824   Address SrcPtr = Src.getAddress();
1825
1826   if (getLangOpts().CPlusPlus) {
1827     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1828       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
1829       assert((Record->hasTrivialCopyConstructor() ||
1830               Record->hasTrivialCopyAssignment() ||
1831               Record->hasTrivialMoveConstructor() ||
1832               Record->hasTrivialMoveAssignment() ||
1833               Record->isUnion()) &&
1834              "Trying to aggregate-copy a type without a trivial copy/move "
1835              "constructor or assignment operator");
1836       // Ignore empty classes in C++.
1837       if (Record->isEmpty())
1838         return;
1839     }
1840   }
1841
1842   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
1843   // C99 6.5.16.1p3, which states "If the value being stored in an object is
1844   // read from another object that overlaps in anyway the storage of the first
1845   // object, then the overlap shall be exact and the two objects shall have
1846   // qualified or unqualified versions of a compatible type."
1847   //
1848   // memcpy is not defined if the source and destination pointers are exactly
1849   // equal, but other compilers do this optimization, and almost every memcpy
1850   // implementation handles this case safely.  If there is a libc that does not
1851   // safely handle this, we can add a target hook.
1852
1853   // Get data size info for this aggregate. Don't copy the tail padding if this
1854   // might be a potentially-overlapping subobject, since the tail padding might
1855   // be occupied by a different object. Otherwise, copying it is fine.
1856   std::pair<CharUnits, CharUnits> TypeInfo;
1857   if (MayOverlap)
1858     TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty);
1859   else
1860     TypeInfo = getContext().getTypeInfoInChars(Ty);
1861
1862   llvm::Value *SizeVal = nullptr;
1863   if (TypeInfo.first.isZero()) {
1864     // But note that getTypeInfo returns 0 for a VLA.
1865     if (auto *VAT = dyn_cast_or_null<VariableArrayType>(
1866             getContext().getAsArrayType(Ty))) {
1867       QualType BaseEltTy;
1868       SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr);
1869       TypeInfo = getContext().getTypeInfoInChars(BaseEltTy);
1870       assert(!TypeInfo.first.isZero());
1871       SizeVal = Builder.CreateNUWMul(
1872           SizeVal,
1873           llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()));
1874     }
1875   }
1876   if (!SizeVal) {
1877     SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity());
1878   }
1879
1880   // FIXME: If we have a volatile struct, the optimizer can remove what might
1881   // appear to be `extra' memory ops:
1882   //
1883   // volatile struct { int i; } a, b;
1884   //
1885   // int main() {
1886   //   a = b;
1887   //   a = b;
1888   // }
1889   //
1890   // we need to use a different call here.  We use isVolatile to indicate when
1891   // either the source or the destination is volatile.
1892
1893   DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1894   SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty);
1895
1896   // Don't do any of the memmove_collectable tests if GC isn't set.
1897   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
1898     // fall through
1899   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1900     RecordDecl *Record = RecordTy->getDecl();
1901     if (Record->hasObjectMember()) {
1902       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1903                                                     SizeVal);
1904       return;
1905     }
1906   } else if (Ty->isArrayType()) {
1907     QualType BaseType = getContext().getBaseElementType(Ty);
1908     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
1909       if (RecordTy->getDecl()->hasObjectMember()) {
1910         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr,
1911                                                       SizeVal);
1912         return;
1913       }
1914     }
1915   }
1916
1917   auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile);
1918
1919   // Determine the metadata to describe the position of any padding in this
1920   // memcpy, as well as the TBAA tags for the members of the struct, in case
1921   // the optimizer wishes to expand it in to scalar memory operations.
1922   if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty))
1923     Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag);
1924
1925   if (CGM.getCodeGenOpts().NewStructPathTBAA) {
1926     TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForMemoryTransfer(
1927         Dest.getTBAAInfo(), Src.getTBAAInfo());
1928     CGM.DecorateInstructionWithTBAA(Inst, TBAAInfo);
1929   }
1930 }