]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - contrib/llvm/tools/clang/lib/CodeGen/CGExprAgg.cpp
Merge ^/head r293430 through r293685.
[FreeBSD/FreeBSD.git] / contrib / llvm / tools / clang / lib / CodeGen / CGExprAgg.cpp
1 //===--- CGExprAgg.cpp - Emit LLVM Code from Aggregate Expressions --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Aggregate Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenModule.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclTemplate.h"
20 #include "clang/AST/StmtVisitor.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/Function.h"
23 #include "llvm/IR/GlobalVariable.h"
24 #include "llvm/IR/Intrinsics.h"
25 using namespace clang;
26 using namespace CodeGen;
27
28 //===----------------------------------------------------------------------===//
29 //                        Aggregate Expression Emitter
30 //===----------------------------------------------------------------------===//
31
32 namespace  {
33 class AggExprEmitter : public StmtVisitor<AggExprEmitter> {
34   CodeGenFunction &CGF;
35   CGBuilderTy &Builder;
36   AggValueSlot Dest;
37   bool IsResultUnused;
38
39   /// We want to use 'dest' as the return slot except under two
40   /// conditions:
41   ///   - The destination slot requires garbage collection, so we
42   ///     need to use the GC API.
43   ///   - The destination slot is potentially aliased.
44   bool shouldUseDestForReturnSlot() const {
45     return !(Dest.requiresGCollection() || Dest.isPotentiallyAliased());
46   }
47
48   ReturnValueSlot getReturnValueSlot() const {
49     if (!shouldUseDestForReturnSlot())
50       return ReturnValueSlot();
51
52     return ReturnValueSlot(Dest.getAddress(), Dest.isVolatile(),
53                            IsResultUnused);
54   }
55
56   AggValueSlot EnsureSlot(QualType T) {
57     if (!Dest.isIgnored()) return Dest;
58     return CGF.CreateAggTemp(T, "agg.tmp.ensured");
59   }
60   void EnsureDest(QualType T) {
61     if (!Dest.isIgnored()) return;
62     Dest = CGF.CreateAggTemp(T, "agg.tmp.ensured");
63   }
64
65 public:
66   AggExprEmitter(CodeGenFunction &cgf, AggValueSlot Dest, bool IsResultUnused)
67     : CGF(cgf), Builder(CGF.Builder), Dest(Dest),
68     IsResultUnused(IsResultUnused) { }
69
70   //===--------------------------------------------------------------------===//
71   //                               Utilities
72   //===--------------------------------------------------------------------===//
73
74   /// EmitAggLoadOfLValue - Given an expression with aggregate type that
75   /// represents a value lvalue, this method emits the address of the lvalue,
76   /// then loads the result into DestPtr.
77   void EmitAggLoadOfLValue(const Expr *E);
78
79   /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
80   void EmitFinalDestCopy(QualType type, const LValue &src);
81   void EmitFinalDestCopy(QualType type, RValue src);
82   void EmitCopy(QualType type, const AggValueSlot &dest,
83                 const AggValueSlot &src);
84
85   void EmitMoveFromReturnSlot(const Expr *E, RValue Src);
86
87   void EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
88                      QualType elementType, InitListExpr *E);
89
90   AggValueSlot::NeedsGCBarriers_t needsGC(QualType T) {
91     if (CGF.getLangOpts().getGC() && TypeRequiresGCollection(T))
92       return AggValueSlot::NeedsGCBarriers;
93     return AggValueSlot::DoesNotNeedGCBarriers;
94   }
95
96   bool TypeRequiresGCollection(QualType T);
97
98   //===--------------------------------------------------------------------===//
99   //                            Visitor Methods
100   //===--------------------------------------------------------------------===//
101
102   void Visit(Expr *E) {
103     ApplyDebugLocation DL(CGF, E);
104     StmtVisitor<AggExprEmitter>::Visit(E);
105   }
106
107   void VisitStmt(Stmt *S) {
108     CGF.ErrorUnsupported(S, "aggregate expression");
109   }
110   void VisitParenExpr(ParenExpr *PE) { Visit(PE->getSubExpr()); }
111   void VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
112     Visit(GE->getResultExpr());
113   }
114   void VisitUnaryExtension(UnaryOperator *E) { Visit(E->getSubExpr()); }
115   void VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
116     return Visit(E->getReplacement());
117   }
118
119   // l-values.
120   void VisitDeclRefExpr(DeclRefExpr *E) {
121     // For aggregates, we should always be able to emit the variable
122     // as an l-value unless it's a reference.  This is due to the fact
123     // that we can't actually ever see a normal l2r conversion on an
124     // aggregate in C++, and in C there's no language standard
125     // actively preventing us from listing variables in the captures
126     // list of a block.
127     if (E->getDecl()->getType()->isReferenceType()) {
128       if (CodeGenFunction::ConstantEmission result
129             = CGF.tryEmitAsConstant(E)) {
130         EmitFinalDestCopy(E->getType(), result.getReferenceLValue(CGF, E));
131         return;
132       }
133     }
134
135     EmitAggLoadOfLValue(E);
136   }
137
138   void VisitMemberExpr(MemberExpr *ME) { EmitAggLoadOfLValue(ME); }
139   void VisitUnaryDeref(UnaryOperator *E) { EmitAggLoadOfLValue(E); }
140   void VisitStringLiteral(StringLiteral *E) { EmitAggLoadOfLValue(E); }
141   void VisitCompoundLiteralExpr(CompoundLiteralExpr *E);
142   void VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
143     EmitAggLoadOfLValue(E);
144   }
145   void VisitPredefinedExpr(const PredefinedExpr *E) {
146     EmitAggLoadOfLValue(E);
147   }
148
149   // Operators.
150   void VisitCastExpr(CastExpr *E);
151   void VisitCallExpr(const CallExpr *E);
152   void VisitStmtExpr(const StmtExpr *E);
153   void VisitBinaryOperator(const BinaryOperator *BO);
154   void VisitPointerToDataMemberBinaryOperator(const BinaryOperator *BO);
155   void VisitBinAssign(const BinaryOperator *E);
156   void VisitBinComma(const BinaryOperator *E);
157
158   void VisitObjCMessageExpr(ObjCMessageExpr *E);
159   void VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
160     EmitAggLoadOfLValue(E);
161   }
162
163   void VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E);
164   void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
165   void VisitChooseExpr(const ChooseExpr *CE);
166   void VisitInitListExpr(InitListExpr *E);
167   void VisitImplicitValueInitExpr(ImplicitValueInitExpr *E);
168   void VisitNoInitExpr(NoInitExpr *E) { } // Do nothing.
169   void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
170     Visit(DAE->getExpr());
171   }
172   void VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
173     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
174     Visit(DIE->getExpr());
175   }
176   void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E);
177   void VisitCXXConstructExpr(const CXXConstructExpr *E);
178   void VisitLambdaExpr(LambdaExpr *E);
179   void VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E);
180   void VisitExprWithCleanups(ExprWithCleanups *E);
181   void VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E);
182   void VisitCXXTypeidExpr(CXXTypeidExpr *E) { EmitAggLoadOfLValue(E); }
183   void VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E);
184   void VisitOpaqueValueExpr(OpaqueValueExpr *E);
185
186   void VisitPseudoObjectExpr(PseudoObjectExpr *E) {
187     if (E->isGLValue()) {
188       LValue LV = CGF.EmitPseudoObjectLValue(E);
189       return EmitFinalDestCopy(E->getType(), LV);
190     }
191
192     CGF.EmitPseudoObjectRValue(E, EnsureSlot(E->getType()));
193   }
194
195   void VisitVAArgExpr(VAArgExpr *E);
196
197   void EmitInitializationToLValue(Expr *E, LValue Address);
198   void EmitNullInitializationToLValue(LValue Address);
199   //  case Expr::ChooseExprClass:
200   void VisitCXXThrowExpr(const CXXThrowExpr *E) { CGF.EmitCXXThrowExpr(E); }
201   void VisitAtomicExpr(AtomicExpr *E) {
202     RValue Res = CGF.EmitAtomicExpr(E);
203     EmitFinalDestCopy(E->getType(), Res);
204   }
205 };
206 }  // end anonymous namespace.
207
208 //===----------------------------------------------------------------------===//
209 //                                Utilities
210 //===----------------------------------------------------------------------===//
211
212 /// EmitAggLoadOfLValue - Given an expression with aggregate type that
213 /// represents a value lvalue, this method emits the address of the lvalue,
214 /// then loads the result into DestPtr.
215 void AggExprEmitter::EmitAggLoadOfLValue(const Expr *E) {
216   LValue LV = CGF.EmitLValue(E);
217
218   // If the type of the l-value is atomic, then do an atomic load.
219   if (LV.getType()->isAtomicType() || CGF.LValueIsSuitableForInlineAtomic(LV)) {
220     CGF.EmitAtomicLoad(LV, E->getExprLoc(), Dest);
221     return;
222   }
223
224   EmitFinalDestCopy(E->getType(), LV);
225 }
226
227 /// \brief True if the given aggregate type requires special GC API calls.
228 bool AggExprEmitter::TypeRequiresGCollection(QualType T) {
229   // Only record types have members that might require garbage collection.
230   const RecordType *RecordTy = T->getAs<RecordType>();
231   if (!RecordTy) return false;
232
233   // Don't mess with non-trivial C++ types.
234   RecordDecl *Record = RecordTy->getDecl();
235   if (isa<CXXRecordDecl>(Record) &&
236       (cast<CXXRecordDecl>(Record)->hasNonTrivialCopyConstructor() ||
237        !cast<CXXRecordDecl>(Record)->hasTrivialDestructor()))
238     return false;
239
240   // Check whether the type has an object member.
241   return Record->hasObjectMember();
242 }
243
244 /// \brief Perform the final move to DestPtr if for some reason
245 /// getReturnValueSlot() didn't use it directly.
246 ///
247 /// The idea is that you do something like this:
248 ///   RValue Result = EmitSomething(..., getReturnValueSlot());
249 ///   EmitMoveFromReturnSlot(E, Result);
250 ///
251 /// If nothing interferes, this will cause the result to be emitted
252 /// directly into the return value slot.  Otherwise, a final move
253 /// will be performed.
254 void AggExprEmitter::EmitMoveFromReturnSlot(const Expr *E, RValue src) {
255   if (shouldUseDestForReturnSlot()) {
256     // Logically, Dest.getAddr() should equal Src.getAggregateAddr().
257     // The possibility of undef rvalues complicates that a lot,
258     // though, so we can't really assert.
259     return;
260   }
261
262   // Otherwise, copy from there to the destination.
263   assert(Dest.getPointer() != src.getAggregatePointer());
264   EmitFinalDestCopy(E->getType(), src);
265 }
266
267 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
268 void AggExprEmitter::EmitFinalDestCopy(QualType type, RValue src) {
269   assert(src.isAggregate() && "value must be aggregate value!");
270   LValue srcLV = CGF.MakeAddrLValue(src.getAggregateAddress(), type);
271   EmitFinalDestCopy(type, srcLV);
272 }
273
274 /// EmitFinalDestCopy - Perform the final copy to DestPtr, if desired.
275 void AggExprEmitter::EmitFinalDestCopy(QualType type, const LValue &src) {
276   // If Dest is ignored, then we're evaluating an aggregate expression
277   // in a context that doesn't care about the result.  Note that loads
278   // from volatile l-values force the existence of a non-ignored
279   // destination.
280   if (Dest.isIgnored())
281     return;
282
283   AggValueSlot srcAgg =
284     AggValueSlot::forLValue(src, AggValueSlot::IsDestructed,
285                             needsGC(type), AggValueSlot::IsAliased);
286   EmitCopy(type, Dest, srcAgg);
287 }
288
289 /// Perform a copy from the source into the destination.
290 ///
291 /// \param type - the type of the aggregate being copied; qualifiers are
292 ///   ignored
293 void AggExprEmitter::EmitCopy(QualType type, const AggValueSlot &dest,
294                               const AggValueSlot &src) {
295   if (dest.requiresGCollection()) {
296     CharUnits sz = CGF.getContext().getTypeSizeInChars(type);
297     llvm::Value *size = llvm::ConstantInt::get(CGF.SizeTy, sz.getQuantity());
298     CGF.CGM.getObjCRuntime().EmitGCMemmoveCollectable(CGF,
299                                                       dest.getAddress(),
300                                                       src.getAddress(),
301                                                       size);
302     return;
303   }
304
305   // If the result of the assignment is used, copy the LHS there also.
306   // It's volatile if either side is.  Use the minimum alignment of
307   // the two sides.
308   CGF.EmitAggregateCopy(dest.getAddress(), src.getAddress(), type,
309                         dest.isVolatile() || src.isVolatile());
310 }
311
312 /// \brief Emit the initializer for a std::initializer_list initialized with a
313 /// real initializer list.
314 void
315 AggExprEmitter::VisitCXXStdInitializerListExpr(CXXStdInitializerListExpr *E) {
316   // Emit an array containing the elements.  The array is externally destructed
317   // if the std::initializer_list object is.
318   ASTContext &Ctx = CGF.getContext();
319   LValue Array = CGF.EmitLValue(E->getSubExpr());
320   assert(Array.isSimple() && "initializer_list array not a simple lvalue");
321   Address ArrayPtr = Array.getAddress();
322
323   const ConstantArrayType *ArrayType =
324       Ctx.getAsConstantArrayType(E->getSubExpr()->getType());
325   assert(ArrayType && "std::initializer_list constructed from non-array");
326
327   // FIXME: Perform the checks on the field types in SemaInit.
328   RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl();
329   RecordDecl::field_iterator Field = Record->field_begin();
330   if (Field == Record->field_end()) {
331     CGF.ErrorUnsupported(E, "weird std::initializer_list");
332     return;
333   }
334
335   // Start pointer.
336   if (!Field->getType()->isPointerType() ||
337       !Ctx.hasSameType(Field->getType()->getPointeeType(),
338                        ArrayType->getElementType())) {
339     CGF.ErrorUnsupported(E, "weird std::initializer_list");
340     return;
341   }
342
343   AggValueSlot Dest = EnsureSlot(E->getType());
344   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
345   LValue Start = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
346   llvm::Value *Zero = llvm::ConstantInt::get(CGF.PtrDiffTy, 0);
347   llvm::Value *IdxStart[] = { Zero, Zero };
348   llvm::Value *ArrayStart =
349       Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxStart, "arraystart");
350   CGF.EmitStoreThroughLValue(RValue::get(ArrayStart), Start);
351   ++Field;
352
353   if (Field == Record->field_end()) {
354     CGF.ErrorUnsupported(E, "weird std::initializer_list");
355     return;
356   }
357
358   llvm::Value *Size = Builder.getInt(ArrayType->getSize());
359   LValue EndOrLength = CGF.EmitLValueForFieldInitialization(DestLV, *Field);
360   if (Field->getType()->isPointerType() &&
361       Ctx.hasSameType(Field->getType()->getPointeeType(),
362                       ArrayType->getElementType())) {
363     // End pointer.
364     llvm::Value *IdxEnd[] = { Zero, Size };
365     llvm::Value *ArrayEnd =
366         Builder.CreateInBoundsGEP(ArrayPtr.getPointer(), IdxEnd, "arrayend");
367     CGF.EmitStoreThroughLValue(RValue::get(ArrayEnd), EndOrLength);
368   } else if (Ctx.hasSameType(Field->getType(), Ctx.getSizeType())) {
369     // Length.
370     CGF.EmitStoreThroughLValue(RValue::get(Size), EndOrLength);
371   } else {
372     CGF.ErrorUnsupported(E, "weird std::initializer_list");
373     return;
374   }
375 }
376
377 /// \brief Determine if E is a trivial array filler, that is, one that is
378 /// equivalent to zero-initialization.
379 static bool isTrivialFiller(Expr *E) {
380   if (!E)
381     return true;
382
383   if (isa<ImplicitValueInitExpr>(E))
384     return true;
385
386   if (auto *ILE = dyn_cast<InitListExpr>(E)) {
387     if (ILE->getNumInits())
388       return false;
389     return isTrivialFiller(ILE->getArrayFiller());
390   }
391
392   if (auto *Cons = dyn_cast_or_null<CXXConstructExpr>(E))
393     return Cons->getConstructor()->isDefaultConstructor() &&
394            Cons->getConstructor()->isTrivial();
395
396   // FIXME: Are there other cases where we can avoid emitting an initializer?
397   return false;
398 }
399
400 /// \brief Emit initialization of an array from an initializer list.
401 void AggExprEmitter::EmitArrayInit(Address DestPtr, llvm::ArrayType *AType,
402                                    QualType elementType, InitListExpr *E) {
403   uint64_t NumInitElements = E->getNumInits();
404
405   uint64_t NumArrayElements = AType->getNumElements();
406   assert(NumInitElements <= NumArrayElements);
407
408   // DestPtr is an array*.  Construct an elementType* by drilling
409   // down a level.
410   llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
411   llvm::Value *indices[] = { zero, zero };
412   llvm::Value *begin =
413     Builder.CreateInBoundsGEP(DestPtr.getPointer(), indices, "arrayinit.begin");
414
415   CharUnits elementSize = CGF.getContext().getTypeSizeInChars(elementType);
416   CharUnits elementAlign =
417     DestPtr.getAlignment().alignmentOfArrayElement(elementSize);
418
419   // Exception safety requires us to destroy all the
420   // already-constructed members if an initializer throws.
421   // For that, we'll need an EH cleanup.
422   QualType::DestructionKind dtorKind = elementType.isDestructedType();
423   Address endOfInit = Address::invalid();
424   EHScopeStack::stable_iterator cleanup;
425   llvm::Instruction *cleanupDominator = nullptr;
426   if (CGF.needsEHCleanup(dtorKind)) {
427     // In principle we could tell the cleanup where we are more
428     // directly, but the control flow can get so varied here that it
429     // would actually be quite complex.  Therefore we go through an
430     // alloca.
431     endOfInit = CGF.CreateTempAlloca(begin->getType(), CGF.getPointerAlign(),
432                                      "arrayinit.endOfInit");
433     cleanupDominator = Builder.CreateStore(begin, endOfInit);
434     CGF.pushIrregularPartialArrayCleanup(begin, endOfInit, elementType,
435                                          elementAlign,
436                                          CGF.getDestroyer(dtorKind));
437     cleanup = CGF.EHStack.stable_begin();
438
439   // Otherwise, remember that we didn't need a cleanup.
440   } else {
441     dtorKind = QualType::DK_none;
442   }
443
444   llvm::Value *one = llvm::ConstantInt::get(CGF.SizeTy, 1);
445
446   // The 'current element to initialize'.  The invariants on this
447   // variable are complicated.  Essentially, after each iteration of
448   // the loop, it points to the last initialized element, except
449   // that it points to the beginning of the array before any
450   // elements have been initialized.
451   llvm::Value *element = begin;
452
453   // Emit the explicit initializers.
454   for (uint64_t i = 0; i != NumInitElements; ++i) {
455     // Advance to the next element.
456     if (i > 0) {
457       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.element");
458
459       // Tell the cleanup that it needs to destroy up to this
460       // element.  TODO: some of these stores can be trivially
461       // observed to be unnecessary.
462       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
463     }
464
465     LValue elementLV =
466       CGF.MakeAddrLValue(Address(element, elementAlign), elementType);
467     EmitInitializationToLValue(E->getInit(i), elementLV);
468   }
469
470   // Check whether there's a non-trivial array-fill expression.
471   Expr *filler = E->getArrayFiller();
472   bool hasTrivialFiller = isTrivialFiller(filler);
473
474   // Any remaining elements need to be zero-initialized, possibly
475   // using the filler expression.  We can skip this if the we're
476   // emitting to zeroed memory.
477   if (NumInitElements != NumArrayElements &&
478       !(Dest.isZeroed() && hasTrivialFiller &&
479         CGF.getTypes().isZeroInitializable(elementType))) {
480
481     // Use an actual loop.  This is basically
482     //   do { *array++ = filler; } while (array != end);
483
484     // Advance to the start of the rest of the array.
485     if (NumInitElements) {
486       element = Builder.CreateInBoundsGEP(element, one, "arrayinit.start");
487       if (endOfInit.isValid()) Builder.CreateStore(element, endOfInit);
488     }
489
490     // Compute the end of the array.
491     llvm::Value *end = Builder.CreateInBoundsGEP(begin,
492                       llvm::ConstantInt::get(CGF.SizeTy, NumArrayElements),
493                                                  "arrayinit.end");
494
495     llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
496     llvm::BasicBlock *bodyBB = CGF.createBasicBlock("arrayinit.body");
497
498     // Jump into the body.
499     CGF.EmitBlock(bodyBB);
500     llvm::PHINode *currentElement =
501       Builder.CreatePHI(element->getType(), 2, "arrayinit.cur");
502     currentElement->addIncoming(element, entryBB);
503
504     // Emit the actual filler expression.
505     LValue elementLV =
506       CGF.MakeAddrLValue(Address(currentElement, elementAlign), elementType);
507     if (filler)
508       EmitInitializationToLValue(filler, elementLV);
509     else
510       EmitNullInitializationToLValue(elementLV);
511
512     // Move on to the next element.
513     llvm::Value *nextElement =
514       Builder.CreateInBoundsGEP(currentElement, one, "arrayinit.next");
515
516     // Tell the EH cleanup that we finished with the last element.
517     if (endOfInit.isValid()) Builder.CreateStore(nextElement, endOfInit);
518
519     // Leave the loop if we're done.
520     llvm::Value *done = Builder.CreateICmpEQ(nextElement, end,
521                                              "arrayinit.done");
522     llvm::BasicBlock *endBB = CGF.createBasicBlock("arrayinit.end");
523     Builder.CreateCondBr(done, endBB, bodyBB);
524     currentElement->addIncoming(nextElement, Builder.GetInsertBlock());
525
526     CGF.EmitBlock(endBB);
527   }
528
529   // Leave the partial-array cleanup if we entered one.
530   if (dtorKind) CGF.DeactivateCleanupBlock(cleanup, cleanupDominator);
531 }
532
533 //===----------------------------------------------------------------------===//
534 //                            Visitor Methods
535 //===----------------------------------------------------------------------===//
536
537 void AggExprEmitter::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E){
538   Visit(E->GetTemporaryExpr());
539 }
540
541 void AggExprEmitter::VisitOpaqueValueExpr(OpaqueValueExpr *e) {
542   EmitFinalDestCopy(e->getType(), CGF.getOpaqueLValueMapping(e));
543 }
544
545 void
546 AggExprEmitter::VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
547   if (Dest.isPotentiallyAliased() &&
548       E->getType().isPODType(CGF.getContext())) {
549     // For a POD type, just emit a load of the lvalue + a copy, because our
550     // compound literal might alias the destination.
551     EmitAggLoadOfLValue(E);
552     return;
553   }
554   
555   AggValueSlot Slot = EnsureSlot(E->getType());
556   CGF.EmitAggExpr(E->getInitializer(), Slot);
557 }
558
559 /// Attempt to look through various unimportant expressions to find a
560 /// cast of the given kind.
561 static Expr *findPeephole(Expr *op, CastKind kind) {
562   while (true) {
563     op = op->IgnoreParens();
564     if (CastExpr *castE = dyn_cast<CastExpr>(op)) {
565       if (castE->getCastKind() == kind)
566         return castE->getSubExpr();
567       if (castE->getCastKind() == CK_NoOp)
568         continue;
569     }
570     return nullptr;
571   }
572 }
573
574 void AggExprEmitter::VisitCastExpr(CastExpr *E) {
575   if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
576     CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
577   switch (E->getCastKind()) {
578   case CK_Dynamic: {
579     // FIXME: Can this actually happen? We have no test coverage for it.
580     assert(isa<CXXDynamicCastExpr>(E) && "CK_Dynamic without a dynamic_cast?");
581     LValue LV = CGF.EmitCheckedLValue(E->getSubExpr(),
582                                       CodeGenFunction::TCK_Load);
583     // FIXME: Do we also need to handle property references here?
584     if (LV.isSimple())
585       CGF.EmitDynamicCast(LV.getAddress(), cast<CXXDynamicCastExpr>(E));
586     else
587       CGF.CGM.ErrorUnsupported(E, "non-simple lvalue dynamic_cast");
588     
589     if (!Dest.isIgnored())
590       CGF.CGM.ErrorUnsupported(E, "lvalue dynamic_cast with a destination");
591     break;
592   }
593       
594   case CK_ToUnion: {
595     // Evaluate even if the destination is ignored.
596     if (Dest.isIgnored()) {
597       CGF.EmitAnyExpr(E->getSubExpr(), AggValueSlot::ignored(),
598                       /*ignoreResult=*/true);
599       break;
600     }
601
602     // GCC union extension
603     QualType Ty = E->getSubExpr()->getType();
604     Address CastPtr =
605       Builder.CreateElementBitCast(Dest.getAddress(), CGF.ConvertType(Ty));
606     EmitInitializationToLValue(E->getSubExpr(),
607                                CGF.MakeAddrLValue(CastPtr, Ty));
608     break;
609   }
610
611   case CK_DerivedToBase:
612   case CK_BaseToDerived:
613   case CK_UncheckedDerivedToBase: {
614     llvm_unreachable("cannot perform hierarchy conversion in EmitAggExpr: "
615                 "should have been unpacked before we got here");
616   }
617
618   case CK_NonAtomicToAtomic:
619   case CK_AtomicToNonAtomic: {
620     bool isToAtomic = (E->getCastKind() == CK_NonAtomicToAtomic);
621
622     // Determine the atomic and value types.
623     QualType atomicType = E->getSubExpr()->getType();
624     QualType valueType = E->getType();
625     if (isToAtomic) std::swap(atomicType, valueType);
626
627     assert(atomicType->isAtomicType());
628     assert(CGF.getContext().hasSameUnqualifiedType(valueType,
629                           atomicType->castAs<AtomicType>()->getValueType()));
630
631     // Just recurse normally if we're ignoring the result or the
632     // atomic type doesn't change representation.
633     if (Dest.isIgnored() || !CGF.CGM.isPaddedAtomicType(atomicType)) {
634       return Visit(E->getSubExpr());
635     }
636
637     CastKind peepholeTarget =
638       (isToAtomic ? CK_AtomicToNonAtomic : CK_NonAtomicToAtomic);
639
640     // These two cases are reverses of each other; try to peephole them.
641     if (Expr *op = findPeephole(E->getSubExpr(), peepholeTarget)) {
642       assert(CGF.getContext().hasSameUnqualifiedType(op->getType(),
643                                                      E->getType()) &&
644            "peephole significantly changed types?");
645       return Visit(op);
646     }
647
648     // If we're converting an r-value of non-atomic type to an r-value
649     // of atomic type, just emit directly into the relevant sub-object.
650     if (isToAtomic) {
651       AggValueSlot valueDest = Dest;
652       if (!valueDest.isIgnored() && CGF.CGM.isPaddedAtomicType(atomicType)) {
653         // Zero-initialize.  (Strictly speaking, we only need to intialize
654         // the padding at the end, but this is simpler.)
655         if (!Dest.isZeroed())
656           CGF.EmitNullInitialization(Dest.getAddress(), atomicType);
657
658         // Build a GEP to refer to the subobject.
659         Address valueAddr =
660             CGF.Builder.CreateStructGEP(valueDest.getAddress(), 0,
661                                         CharUnits());
662         valueDest = AggValueSlot::forAddr(valueAddr,
663                                           valueDest.getQualifiers(),
664                                           valueDest.isExternallyDestructed(),
665                                           valueDest.requiresGCollection(),
666                                           valueDest.isPotentiallyAliased(),
667                                           AggValueSlot::IsZeroed);
668       }
669       
670       CGF.EmitAggExpr(E->getSubExpr(), valueDest);
671       return;
672     }
673
674     // Otherwise, we're converting an atomic type to a non-atomic type.
675     // Make an atomic temporary, emit into that, and then copy the value out.
676     AggValueSlot atomicSlot =
677       CGF.CreateAggTemp(atomicType, "atomic-to-nonatomic.temp");
678     CGF.EmitAggExpr(E->getSubExpr(), atomicSlot);
679
680     Address valueAddr =
681       Builder.CreateStructGEP(atomicSlot.getAddress(), 0, CharUnits());
682     RValue rvalue = RValue::getAggregate(valueAddr, atomicSlot.isVolatile());
683     return EmitFinalDestCopy(valueType, rvalue);
684   }
685
686   case CK_LValueToRValue:
687     // If we're loading from a volatile type, force the destination
688     // into existence.
689     if (E->getSubExpr()->getType().isVolatileQualified()) {
690       EnsureDest(E->getType());
691       return Visit(E->getSubExpr());
692     }
693
694     // fallthrough
695
696   case CK_NoOp:
697   case CK_UserDefinedConversion:
698   case CK_ConstructorConversion:
699     assert(CGF.getContext().hasSameUnqualifiedType(E->getSubExpr()->getType(),
700                                                    E->getType()) &&
701            "Implicit cast types must be compatible");
702     Visit(E->getSubExpr());
703     break;
704       
705   case CK_LValueBitCast:
706     llvm_unreachable("should not be emitting lvalue bitcast as rvalue");
707
708   case CK_Dependent:
709   case CK_BitCast:
710   case CK_ArrayToPointerDecay:
711   case CK_FunctionToPointerDecay:
712   case CK_NullToPointer:
713   case CK_NullToMemberPointer:
714   case CK_BaseToDerivedMemberPointer:
715   case CK_DerivedToBaseMemberPointer:
716   case CK_MemberPointerToBoolean:
717   case CK_ReinterpretMemberPointer:
718   case CK_IntegralToPointer:
719   case CK_PointerToIntegral:
720   case CK_PointerToBoolean:
721   case CK_ToVoid:
722   case CK_VectorSplat:
723   case CK_IntegralCast:
724   case CK_IntegralToBoolean:
725   case CK_IntegralToFloating:
726   case CK_FloatingToIntegral:
727   case CK_FloatingToBoolean:
728   case CK_FloatingCast:
729   case CK_CPointerToObjCPointerCast:
730   case CK_BlockPointerToObjCPointerCast:
731   case CK_AnyPointerToBlockPointerCast:
732   case CK_ObjCObjectLValueCast:
733   case CK_FloatingRealToComplex:
734   case CK_FloatingComplexToReal:
735   case CK_FloatingComplexToBoolean:
736   case CK_FloatingComplexCast:
737   case CK_FloatingComplexToIntegralComplex:
738   case CK_IntegralRealToComplex:
739   case CK_IntegralComplexToReal:
740   case CK_IntegralComplexToBoolean:
741   case CK_IntegralComplexCast:
742   case CK_IntegralComplexToFloatingComplex:
743   case CK_ARCProduceObject:
744   case CK_ARCConsumeObject:
745   case CK_ARCReclaimReturnedObject:
746   case CK_ARCExtendBlockObject:
747   case CK_CopyAndAutoreleaseBlockObject:
748   case CK_BuiltinFnToFnPtr:
749   case CK_ZeroToOCLEvent:
750   case CK_AddressSpaceConversion:
751     llvm_unreachable("cast kind invalid for aggregate types");
752   }
753 }
754
755 void AggExprEmitter::VisitCallExpr(const CallExpr *E) {
756   if (E->getCallReturnType(CGF.getContext())->isReferenceType()) {
757     EmitAggLoadOfLValue(E);
758     return;
759   }
760
761   RValue RV = CGF.EmitCallExpr(E, getReturnValueSlot());
762   EmitMoveFromReturnSlot(E, RV);
763 }
764
765 void AggExprEmitter::VisitObjCMessageExpr(ObjCMessageExpr *E) {
766   RValue RV = CGF.EmitObjCMessageExpr(E, getReturnValueSlot());
767   EmitMoveFromReturnSlot(E, RV);
768 }
769
770 void AggExprEmitter::VisitBinComma(const BinaryOperator *E) {
771   CGF.EmitIgnoredExpr(E->getLHS());
772   Visit(E->getRHS());
773 }
774
775 void AggExprEmitter::VisitStmtExpr(const StmtExpr *E) {
776   CodeGenFunction::StmtExprEvaluation eval(CGF);
777   CGF.EmitCompoundStmt(*E->getSubStmt(), true, Dest);
778 }
779
780 void AggExprEmitter::VisitBinaryOperator(const BinaryOperator *E) {
781   if (E->getOpcode() == BO_PtrMemD || E->getOpcode() == BO_PtrMemI)
782     VisitPointerToDataMemberBinaryOperator(E);
783   else
784     CGF.ErrorUnsupported(E, "aggregate binary expression");
785 }
786
787 void AggExprEmitter::VisitPointerToDataMemberBinaryOperator(
788                                                     const BinaryOperator *E) {
789   LValue LV = CGF.EmitPointerToDataMemberBinaryExpr(E);
790   EmitFinalDestCopy(E->getType(), LV);
791 }
792
793 /// Is the value of the given expression possibly a reference to or
794 /// into a __block variable?
795 static bool isBlockVarRef(const Expr *E) {
796   // Make sure we look through parens.
797   E = E->IgnoreParens();
798
799   // Check for a direct reference to a __block variable.
800   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
801     const VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
802     return (var && var->hasAttr<BlocksAttr>());
803   }
804
805   // More complicated stuff.
806
807   // Binary operators.
808   if (const BinaryOperator *op = dyn_cast<BinaryOperator>(E)) {
809     // For an assignment or pointer-to-member operation, just care
810     // about the LHS.
811     if (op->isAssignmentOp() || op->isPtrMemOp())
812       return isBlockVarRef(op->getLHS());
813
814     // For a comma, just care about the RHS.
815     if (op->getOpcode() == BO_Comma)
816       return isBlockVarRef(op->getRHS());
817
818     // FIXME: pointer arithmetic?
819     return false;
820
821   // Check both sides of a conditional operator.
822   } else if (const AbstractConditionalOperator *op
823                = dyn_cast<AbstractConditionalOperator>(E)) {
824     return isBlockVarRef(op->getTrueExpr())
825         || isBlockVarRef(op->getFalseExpr());
826
827   // OVEs are required to support BinaryConditionalOperators.
828   } else if (const OpaqueValueExpr *op
829                = dyn_cast<OpaqueValueExpr>(E)) {
830     if (const Expr *src = op->getSourceExpr())
831       return isBlockVarRef(src);
832
833   // Casts are necessary to get things like (*(int*)&var) = foo().
834   // We don't really care about the kind of cast here, except
835   // we don't want to look through l2r casts, because it's okay
836   // to get the *value* in a __block variable.
837   } else if (const CastExpr *cast = dyn_cast<CastExpr>(E)) {
838     if (cast->getCastKind() == CK_LValueToRValue)
839       return false;
840     return isBlockVarRef(cast->getSubExpr());
841
842   // Handle unary operators.  Again, just aggressively look through
843   // it, ignoring the operation.
844   } else if (const UnaryOperator *uop = dyn_cast<UnaryOperator>(E)) {
845     return isBlockVarRef(uop->getSubExpr());
846
847   // Look into the base of a field access.
848   } else if (const MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
849     return isBlockVarRef(mem->getBase());
850
851   // Look into the base of a subscript.
852   } else if (const ArraySubscriptExpr *sub = dyn_cast<ArraySubscriptExpr>(E)) {
853     return isBlockVarRef(sub->getBase());
854   }
855
856   return false;
857 }
858
859 void AggExprEmitter::VisitBinAssign(const BinaryOperator *E) {
860   // For an assignment to work, the value on the right has
861   // to be compatible with the value on the left.
862   assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
863                                                  E->getRHS()->getType())
864          && "Invalid assignment");
865
866   // If the LHS might be a __block variable, and the RHS can
867   // potentially cause a block copy, we need to evaluate the RHS first
868   // so that the assignment goes the right place.
869   // This is pretty semantically fragile.
870   if (isBlockVarRef(E->getLHS()) &&
871       E->getRHS()->HasSideEffects(CGF.getContext())) {
872     // Ensure that we have a destination, and evaluate the RHS into that.
873     EnsureDest(E->getRHS()->getType());
874     Visit(E->getRHS());
875
876     // Now emit the LHS and copy into it.
877     LValue LHS = CGF.EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
878
879     // That copy is an atomic copy if the LHS is atomic.
880     if (LHS.getType()->isAtomicType() ||
881         CGF.LValueIsSuitableForInlineAtomic(LHS)) {
882       CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
883       return;
884     }
885
886     EmitCopy(E->getLHS()->getType(),
887              AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed,
888                                      needsGC(E->getLHS()->getType()),
889                                      AggValueSlot::IsAliased),
890              Dest);
891     return;
892   }
893   
894   LValue LHS = CGF.EmitLValue(E->getLHS());
895
896   // If we have an atomic type, evaluate into the destination and then
897   // do an atomic copy.
898   if (LHS.getType()->isAtomicType() ||
899       CGF.LValueIsSuitableForInlineAtomic(LHS)) {
900     EnsureDest(E->getRHS()->getType());
901     Visit(E->getRHS());
902     CGF.EmitAtomicStore(Dest.asRValue(), LHS, /*isInit*/ false);
903     return;
904   }
905
906   // Codegen the RHS so that it stores directly into the LHS.
907   AggValueSlot LHSSlot =
908     AggValueSlot::forLValue(LHS, AggValueSlot::IsDestructed, 
909                             needsGC(E->getLHS()->getType()),
910                             AggValueSlot::IsAliased);
911   // A non-volatile aggregate destination might have volatile member.
912   if (!LHSSlot.isVolatile() &&
913       CGF.hasVolatileMember(E->getLHS()->getType()))
914     LHSSlot.setVolatile(true);
915       
916   CGF.EmitAggExpr(E->getRHS(), LHSSlot);
917
918   // Copy into the destination if the assignment isn't ignored.
919   EmitFinalDestCopy(E->getType(), LHS);
920 }
921
922 void AggExprEmitter::
923 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
924   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
925   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
926   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
927
928   // Bind the common expression if necessary.
929   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
930
931   CodeGenFunction::ConditionalEvaluation eval(CGF);
932   CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
933                            CGF.getProfileCount(E));
934
935   // Save whether the destination's lifetime is externally managed.
936   bool isExternallyDestructed = Dest.isExternallyDestructed();
937
938   eval.begin(CGF);
939   CGF.EmitBlock(LHSBlock);
940   CGF.incrementProfileCounter(E);
941   Visit(E->getTrueExpr());
942   eval.end(CGF);
943
944   assert(CGF.HaveInsertPoint() && "expression evaluation ended with no IP!");
945   CGF.Builder.CreateBr(ContBlock);
946
947   // If the result of an agg expression is unused, then the emission
948   // of the LHS might need to create a destination slot.  That's fine
949   // with us, and we can safely emit the RHS into the same slot, but
950   // we shouldn't claim that it's already being destructed.
951   Dest.setExternallyDestructed(isExternallyDestructed);
952
953   eval.begin(CGF);
954   CGF.EmitBlock(RHSBlock);
955   Visit(E->getFalseExpr());
956   eval.end(CGF);
957
958   CGF.EmitBlock(ContBlock);
959 }
960
961 void AggExprEmitter::VisitChooseExpr(const ChooseExpr *CE) {
962   Visit(CE->getChosenSubExpr());
963 }
964
965 void AggExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
966   Address ArgValue = Address::invalid();
967   Address ArgPtr = CGF.EmitVAArg(VE, ArgValue);
968
969   if (!ArgPtr.isValid()) {
970     // If EmitVAArg fails, we fall back to the LLVM instruction.
971     llvm::Value *Val = Builder.CreateVAArg(ArgValue.getPointer(),
972                                            CGF.ConvertType(VE->getType()));
973     if (!Dest.isIgnored())
974       Builder.CreateStore(Val, Dest.getAddress());
975     return;
976   }
977
978   EmitFinalDestCopy(VE->getType(), CGF.MakeAddrLValue(ArgPtr, VE->getType()));
979 }
980
981 void AggExprEmitter::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
982   // Ensure that we have a slot, but if we already do, remember
983   // whether it was externally destructed.
984   bool wasExternallyDestructed = Dest.isExternallyDestructed();
985   EnsureDest(E->getType());
986
987   // We're going to push a destructor if there isn't already one.
988   Dest.setExternallyDestructed();
989
990   Visit(E->getSubExpr());
991
992   // Push that destructor we promised.
993   if (!wasExternallyDestructed)
994     CGF.EmitCXXTemporary(E->getTemporary(), E->getType(), Dest.getAddress());
995 }
996
997 void
998 AggExprEmitter::VisitCXXConstructExpr(const CXXConstructExpr *E) {
999   AggValueSlot Slot = EnsureSlot(E->getType());
1000   CGF.EmitCXXConstructExpr(E, Slot);
1001 }
1002
1003 void
1004 AggExprEmitter::VisitLambdaExpr(LambdaExpr *E) {
1005   AggValueSlot Slot = EnsureSlot(E->getType());
1006   CGF.EmitLambdaExpr(E, Slot);
1007 }
1008
1009 void AggExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) {
1010   CGF.enterFullExpression(E);
1011   CodeGenFunction::RunCleanupsScope cleanups(CGF);
1012   Visit(E->getSubExpr());
1013 }
1014
1015 void AggExprEmitter::VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
1016   QualType T = E->getType();
1017   AggValueSlot Slot = EnsureSlot(T);
1018   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1019 }
1020
1021 void AggExprEmitter::VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
1022   QualType T = E->getType();
1023   AggValueSlot Slot = EnsureSlot(T);
1024   EmitNullInitializationToLValue(CGF.MakeAddrLValue(Slot.getAddress(), T));
1025 }
1026
1027 /// isSimpleZero - If emitting this value will obviously just cause a store of
1028 /// zero to memory, return true.  This can return false if uncertain, so it just
1029 /// handles simple cases.
1030 static bool isSimpleZero(const Expr *E, CodeGenFunction &CGF) {
1031   E = E->IgnoreParens();
1032
1033   // 0
1034   if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E))
1035     return IL->getValue() == 0;
1036   // +0.0
1037   if (const FloatingLiteral *FL = dyn_cast<FloatingLiteral>(E))
1038     return FL->getValue().isPosZero();
1039   // int()
1040   if ((isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) &&
1041       CGF.getTypes().isZeroInitializable(E->getType()))
1042     return true;
1043   // (int*)0 - Null pointer expressions.
1044   if (const CastExpr *ICE = dyn_cast<CastExpr>(E))
1045     return ICE->getCastKind() == CK_NullToPointer;
1046   // '\0'
1047   if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E))
1048     return CL->getValue() == 0;
1049   
1050   // Otherwise, hard case: conservatively return false.
1051   return false;
1052 }
1053
1054
1055 void 
1056 AggExprEmitter::EmitInitializationToLValue(Expr *E, LValue LV) {
1057   QualType type = LV.getType();
1058   // FIXME: Ignore result?
1059   // FIXME: Are initializers affected by volatile?
1060   if (Dest.isZeroed() && isSimpleZero(E, CGF)) {
1061     // Storing "i32 0" to a zero'd memory location is a noop.
1062     return;
1063   } else if (isa<ImplicitValueInitExpr>(E) || isa<CXXScalarValueInitExpr>(E)) {
1064     return EmitNullInitializationToLValue(LV);
1065   } else if (isa<NoInitExpr>(E)) {
1066     // Do nothing.
1067     return;
1068   } else if (type->isReferenceType()) {
1069     RValue RV = CGF.EmitReferenceBindingToExpr(E);
1070     return CGF.EmitStoreThroughLValue(RV, LV);
1071   }
1072   
1073   switch (CGF.getEvaluationKind(type)) {
1074   case TEK_Complex:
1075     CGF.EmitComplexExprIntoLValue(E, LV, /*isInit*/ true);
1076     return;
1077   case TEK_Aggregate:
1078     CGF.EmitAggExpr(E, AggValueSlot::forLValue(LV,
1079                                                AggValueSlot::IsDestructed,
1080                                       AggValueSlot::DoesNotNeedGCBarriers,
1081                                                AggValueSlot::IsNotAliased,
1082                                                Dest.isZeroed()));
1083     return;
1084   case TEK_Scalar:
1085     if (LV.isSimple()) {
1086       CGF.EmitScalarInit(E, /*D=*/nullptr, LV, /*Captured=*/false);
1087     } else {
1088       CGF.EmitStoreThroughLValue(RValue::get(CGF.EmitScalarExpr(E)), LV);
1089     }
1090     return;
1091   }
1092   llvm_unreachable("bad evaluation kind");
1093 }
1094
1095 void AggExprEmitter::EmitNullInitializationToLValue(LValue lv) {
1096   QualType type = lv.getType();
1097
1098   // If the destination slot is already zeroed out before the aggregate is
1099   // copied into it, we don't have to emit any zeros here.
1100   if (Dest.isZeroed() && CGF.getTypes().isZeroInitializable(type))
1101     return;
1102   
1103   if (CGF.hasScalarEvaluationKind(type)) {
1104     // For non-aggregates, we can store the appropriate null constant.
1105     llvm::Value *null = CGF.CGM.EmitNullConstant(type);
1106     // Note that the following is not equivalent to
1107     // EmitStoreThroughBitfieldLValue for ARC types.
1108     if (lv.isBitField()) {
1109       CGF.EmitStoreThroughBitfieldLValue(RValue::get(null), lv);
1110     } else {
1111       assert(lv.isSimple());
1112       CGF.EmitStoreOfScalar(null, lv, /* isInitialization */ true);
1113     }
1114   } else {
1115     // There's a potential optimization opportunity in combining
1116     // memsets; that would be easy for arrays, but relatively
1117     // difficult for structures with the current code.
1118     CGF.EmitNullInitialization(lv.getAddress(), lv.getType());
1119   }
1120 }
1121
1122 void AggExprEmitter::VisitInitListExpr(InitListExpr *E) {
1123 #if 0
1124   // FIXME: Assess perf here?  Figure out what cases are worth optimizing here
1125   // (Length of globals? Chunks of zeroed-out space?).
1126   //
1127   // If we can, prefer a copy from a global; this is a lot less code for long
1128   // globals, and it's easier for the current optimizers to analyze.
1129   if (llvm::Constant* C = CGF.CGM.EmitConstantExpr(E, E->getType(), &CGF)) {
1130     llvm::GlobalVariable* GV =
1131     new llvm::GlobalVariable(CGF.CGM.getModule(), C->getType(), true,
1132                              llvm::GlobalValue::InternalLinkage, C, "");
1133     EmitFinalDestCopy(E->getType(), CGF.MakeAddrLValue(GV, E->getType()));
1134     return;
1135   }
1136 #endif
1137   if (E->hadArrayRangeDesignator())
1138     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1139
1140   AggValueSlot Dest = EnsureSlot(E->getType());
1141
1142   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1143
1144   // Handle initialization of an array.
1145   if (E->getType()->isArrayType()) {
1146     if (E->isStringLiteralInit())
1147       return Visit(E->getInit(0));
1148
1149     QualType elementType =
1150         CGF.getContext().getAsArrayType(E->getType())->getElementType();
1151
1152     auto AType = cast<llvm::ArrayType>(Dest.getAddress().getElementType());
1153     EmitArrayInit(Dest.getAddress(), AType, elementType, E);
1154     return;
1155   }
1156
1157   if (E->getType()->isAtomicType()) {
1158     // An _Atomic(T) object can be list-initialized from an expression
1159     // of the same type.
1160     assert(E->getNumInits() == 1 &&
1161            CGF.getContext().hasSameUnqualifiedType(E->getInit(0)->getType(),
1162                                                    E->getType()) &&
1163            "unexpected list initialization for atomic object");
1164     return Visit(E->getInit(0));
1165   }
1166
1167   assert(E->getType()->isRecordType() && "Only support structs/unions here!");
1168
1169   // Do struct initialization; this code just sets each individual member
1170   // to the approprate value.  This makes bitfield support automatic;
1171   // the disadvantage is that the generated code is more difficult for
1172   // the optimizer, especially with bitfields.
1173   unsigned NumInitElements = E->getNumInits();
1174   RecordDecl *record = E->getType()->castAs<RecordType>()->getDecl();
1175
1176   // Prepare a 'this' for CXXDefaultInitExprs.
1177   CodeGenFunction::FieldConstructionScope FCS(CGF, Dest.getAddress());
1178
1179   if (record->isUnion()) {
1180     // Only initialize one field of a union. The field itself is
1181     // specified by the initializer list.
1182     if (!E->getInitializedFieldInUnion()) {
1183       // Empty union; we have nothing to do.
1184
1185 #ifndef NDEBUG
1186       // Make sure that it's really an empty and not a failure of
1187       // semantic analysis.
1188       for (const auto *Field : record->fields())
1189         assert(Field->isUnnamedBitfield() && "Only unnamed bitfields allowed");
1190 #endif
1191       return;
1192     }
1193
1194     // FIXME: volatility
1195     FieldDecl *Field = E->getInitializedFieldInUnion();
1196
1197     LValue FieldLoc = CGF.EmitLValueForFieldInitialization(DestLV, Field);
1198     if (NumInitElements) {
1199       // Store the initializer into the field
1200       EmitInitializationToLValue(E->getInit(0), FieldLoc);
1201     } else {
1202       // Default-initialize to null.
1203       EmitNullInitializationToLValue(FieldLoc);
1204     }
1205
1206     return;
1207   }
1208
1209   // We'll need to enter cleanup scopes in case any of the member
1210   // initializers throw an exception.
1211   SmallVector<EHScopeStack::stable_iterator, 16> cleanups;
1212   llvm::Instruction *cleanupDominator = nullptr;
1213
1214   // Here we iterate over the fields; this makes it simpler to both
1215   // default-initialize fields and skip over unnamed fields.
1216   unsigned curInitIndex = 0;
1217   for (const auto *field : record->fields()) {
1218     // We're done once we hit the flexible array member.
1219     if (field->getType()->isIncompleteArrayType())
1220       break;
1221
1222     // Always skip anonymous bitfields.
1223     if (field->isUnnamedBitfield())
1224       continue;
1225
1226     // We're done if we reach the end of the explicit initializers, we
1227     // have a zeroed object, and the rest of the fields are
1228     // zero-initializable.
1229     if (curInitIndex == NumInitElements && Dest.isZeroed() &&
1230         CGF.getTypes().isZeroInitializable(E->getType()))
1231       break;
1232     
1233
1234     LValue LV = CGF.EmitLValueForFieldInitialization(DestLV, field);
1235     // We never generate write-barries for initialized fields.
1236     LV.setNonGC(true);
1237     
1238     if (curInitIndex < NumInitElements) {
1239       // Store the initializer into the field.
1240       EmitInitializationToLValue(E->getInit(curInitIndex++), LV);
1241     } else {
1242       // We're out of initalizers; default-initialize to null
1243       EmitNullInitializationToLValue(LV);
1244     }
1245
1246     // Push a destructor if necessary.
1247     // FIXME: if we have an array of structures, all explicitly
1248     // initialized, we can end up pushing a linear number of cleanups.
1249     bool pushedCleanup = false;
1250     if (QualType::DestructionKind dtorKind
1251           = field->getType().isDestructedType()) {
1252       assert(LV.isSimple());
1253       if (CGF.needsEHCleanup(dtorKind)) {
1254         if (!cleanupDominator)
1255           cleanupDominator = CGF.Builder.CreateAlignedLoad(
1256               CGF.Int8Ty,
1257               llvm::Constant::getNullValue(CGF.Int8PtrTy),
1258               CharUnits::One()); // placeholder
1259
1260         CGF.pushDestroy(EHCleanup, LV.getAddress(), field->getType(),
1261                         CGF.getDestroyer(dtorKind), false);
1262         cleanups.push_back(CGF.EHStack.stable_begin());
1263         pushedCleanup = true;
1264       }
1265     }
1266     
1267     // If the GEP didn't get used because of a dead zero init or something
1268     // else, clean it up for -O0 builds and general tidiness.
1269     if (!pushedCleanup && LV.isSimple()) 
1270       if (llvm::GetElementPtrInst *GEP =
1271             dyn_cast<llvm::GetElementPtrInst>(LV.getPointer()))
1272         if (GEP->use_empty())
1273           GEP->eraseFromParent();
1274   }
1275
1276   // Deactivate all the partial cleanups in reverse order, which
1277   // generally means popping them.
1278   for (unsigned i = cleanups.size(); i != 0; --i)
1279     CGF.DeactivateCleanupBlock(cleanups[i-1], cleanupDominator);
1280
1281   // Destroy the placeholder if we made one.
1282   if (cleanupDominator)
1283     cleanupDominator->eraseFromParent();
1284 }
1285
1286 void AggExprEmitter::VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) {
1287   AggValueSlot Dest = EnsureSlot(E->getType());
1288
1289   LValue DestLV = CGF.MakeAddrLValue(Dest.getAddress(), E->getType());
1290   EmitInitializationToLValue(E->getBase(), DestLV);
1291   VisitInitListExpr(E->getUpdater());
1292 }
1293
1294 //===----------------------------------------------------------------------===//
1295 //                        Entry Points into this File
1296 //===----------------------------------------------------------------------===//
1297
1298 /// GetNumNonZeroBytesInInit - Get an approximate count of the number of
1299 /// non-zero bytes that will be stored when outputting the initializer for the
1300 /// specified initializer expression.
1301 static CharUnits GetNumNonZeroBytesInInit(const Expr *E, CodeGenFunction &CGF) {
1302   E = E->IgnoreParens();
1303
1304   // 0 and 0.0 won't require any non-zero stores!
1305   if (isSimpleZero(E, CGF)) return CharUnits::Zero();
1306
1307   // If this is an initlist expr, sum up the size of sizes of the (present)
1308   // elements.  If this is something weird, assume the whole thing is non-zero.
1309   const InitListExpr *ILE = dyn_cast<InitListExpr>(E);
1310   if (!ILE || !CGF.getTypes().isZeroInitializable(ILE->getType()))
1311     return CGF.getContext().getTypeSizeInChars(E->getType());
1312   
1313   // InitListExprs for structs have to be handled carefully.  If there are
1314   // reference members, we need to consider the size of the reference, not the
1315   // referencee.  InitListExprs for unions and arrays can't have references.
1316   if (const RecordType *RT = E->getType()->getAs<RecordType>()) {
1317     if (!RT->isUnionType()) {
1318       RecordDecl *SD = E->getType()->getAs<RecordType>()->getDecl();
1319       CharUnits NumNonZeroBytes = CharUnits::Zero();
1320       
1321       unsigned ILEElement = 0;
1322       for (const auto *Field : SD->fields()) {
1323         // We're done once we hit the flexible array member or run out of
1324         // InitListExpr elements.
1325         if (Field->getType()->isIncompleteArrayType() ||
1326             ILEElement == ILE->getNumInits())
1327           break;
1328         if (Field->isUnnamedBitfield())
1329           continue;
1330
1331         const Expr *E = ILE->getInit(ILEElement++);
1332         
1333         // Reference values are always non-null and have the width of a pointer.
1334         if (Field->getType()->isReferenceType())
1335           NumNonZeroBytes += CGF.getContext().toCharUnitsFromBits(
1336               CGF.getTarget().getPointerWidth(0));
1337         else
1338           NumNonZeroBytes += GetNumNonZeroBytesInInit(E, CGF);
1339       }
1340       
1341       return NumNonZeroBytes;
1342     }
1343   }
1344   
1345   
1346   CharUnits NumNonZeroBytes = CharUnits::Zero();
1347   for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
1348     NumNonZeroBytes += GetNumNonZeroBytesInInit(ILE->getInit(i), CGF);
1349   return NumNonZeroBytes;
1350 }
1351
1352 /// CheckAggExprForMemSetUse - If the initializer is large and has a lot of
1353 /// zeros in it, emit a memset and avoid storing the individual zeros.
1354 ///
1355 static void CheckAggExprForMemSetUse(AggValueSlot &Slot, const Expr *E,
1356                                      CodeGenFunction &CGF) {
1357   // If the slot is already known to be zeroed, nothing to do.  Don't mess with
1358   // volatile stores.
1359   if (Slot.isZeroed() || Slot.isVolatile() || !Slot.getAddress().isValid())
1360     return;
1361
1362   // C++ objects with a user-declared constructor don't need zero'ing.
1363   if (CGF.getLangOpts().CPlusPlus)
1364     if (const RecordType *RT = CGF.getContext()
1365                        .getBaseElementType(E->getType())->getAs<RecordType>()) {
1366       const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
1367       if (RD->hasUserDeclaredConstructor())
1368         return;
1369     }
1370
1371   // If the type is 16-bytes or smaller, prefer individual stores over memset.
1372   CharUnits Size = CGF.getContext().getTypeSizeInChars(E->getType());
1373   if (Size <= CharUnits::fromQuantity(16))
1374     return;
1375
1376   // Check to see if over 3/4 of the initializer are known to be zero.  If so,
1377   // we prefer to emit memset + individual stores for the rest.
1378   CharUnits NumNonZeroBytes = GetNumNonZeroBytesInInit(E, CGF);
1379   if (NumNonZeroBytes*4 > Size)
1380     return;
1381   
1382   // Okay, it seems like a good idea to use an initial memset, emit the call.
1383   llvm::Constant *SizeVal = CGF.Builder.getInt64(Size.getQuantity());
1384
1385   Address Loc = Slot.getAddress();  
1386   Loc = CGF.Builder.CreateElementBitCast(Loc, CGF.Int8Ty);
1387   CGF.Builder.CreateMemSet(Loc, CGF.Builder.getInt8(0), SizeVal, false);
1388   
1389   // Tell the AggExprEmitter that the slot is known zero.
1390   Slot.setZeroed();
1391 }
1392
1393
1394
1395
1396 /// EmitAggExpr - Emit the computation of the specified expression of aggregate
1397 /// type.  The result is computed into DestPtr.  Note that if DestPtr is null,
1398 /// the value of the aggregate expression is not needed.  If VolatileDest is
1399 /// true, DestPtr cannot be 0.
1400 void CodeGenFunction::EmitAggExpr(const Expr *E, AggValueSlot Slot) {
1401   assert(E && hasAggregateEvaluationKind(E->getType()) &&
1402          "Invalid aggregate expression to emit");
1403   assert((Slot.getAddress().isValid() || Slot.isIgnored()) &&
1404          "slot has bits but no address");
1405
1406   // Optimize the slot if possible.
1407   CheckAggExprForMemSetUse(Slot, E, *this);
1408  
1409   AggExprEmitter(*this, Slot, Slot.isIgnored()).Visit(const_cast<Expr*>(E));
1410 }
1411
1412 LValue CodeGenFunction::EmitAggExprToLValue(const Expr *E) {
1413   assert(hasAggregateEvaluationKind(E->getType()) && "Invalid argument!");
1414   Address Temp = CreateMemTemp(E->getType());
1415   LValue LV = MakeAddrLValue(Temp, E->getType());
1416   EmitAggExpr(E, AggValueSlot::forLValue(LV, AggValueSlot::IsNotDestructed,
1417                                          AggValueSlot::DoesNotNeedGCBarriers,
1418                                          AggValueSlot::IsNotAliased));
1419   return LV;
1420 }
1421
1422 void CodeGenFunction::EmitAggregateCopy(Address DestPtr,
1423                                         Address SrcPtr, QualType Ty,
1424                                         bool isVolatile,
1425                                         bool isAssignment) {
1426   assert(!Ty->isAnyComplexType() && "Shouldn't happen for complex");
1427
1428   if (getLangOpts().CPlusPlus) {
1429     if (const RecordType *RT = Ty->getAs<RecordType>()) {
1430       CXXRecordDecl *Record = cast<CXXRecordDecl>(RT->getDecl());
1431       assert((Record->hasTrivialCopyConstructor() || 
1432               Record->hasTrivialCopyAssignment() ||
1433               Record->hasTrivialMoveConstructor() ||
1434               Record->hasTrivialMoveAssignment() ||
1435               Record->isUnion()) &&
1436              "Trying to aggregate-copy a type without a trivial copy/move "
1437              "constructor or assignment operator");
1438       // Ignore empty classes in C++.
1439       if (Record->isEmpty())
1440         return;
1441     }
1442   }
1443   
1444   // Aggregate assignment turns into llvm.memcpy.  This is almost valid per
1445   // C99 6.5.16.1p3, which states "If the value being stored in an object is
1446   // read from another object that overlaps in anyway the storage of the first
1447   // object, then the overlap shall be exact and the two objects shall have
1448   // qualified or unqualified versions of a compatible type."
1449   //
1450   // memcpy is not defined if the source and destination pointers are exactly
1451   // equal, but other compilers do this optimization, and almost every memcpy
1452   // implementation handles this case safely.  If there is a libc that does not
1453   // safely handle this, we can add a target hook.
1454
1455   // Get data size info for this aggregate. If this is an assignment,
1456   // don't copy the tail padding, because we might be assigning into a
1457   // base subobject where the tail padding is claimed.  Otherwise,
1458   // copying it is fine.
1459   std::pair<CharUnits, CharUnits> TypeInfo;
1460   if (isAssignment)
1461     TypeInfo = getContext().getTypeInfoDataSizeInChars(Ty);
1462   else
1463     TypeInfo = getContext().getTypeInfoInChars(Ty);
1464
1465   llvm::Value *SizeVal = nullptr;
1466   if (TypeInfo.first.isZero()) {
1467     // But note that getTypeInfo returns 0 for a VLA.
1468     if (auto *VAT = dyn_cast_or_null<VariableArrayType>(
1469             getContext().getAsArrayType(Ty))) {
1470       QualType BaseEltTy;
1471       SizeVal = emitArrayLength(VAT, BaseEltTy, DestPtr);
1472       TypeInfo = getContext().getTypeInfoDataSizeInChars(BaseEltTy);
1473       std::pair<CharUnits, CharUnits> LastElementTypeInfo;
1474       if (!isAssignment)
1475         LastElementTypeInfo = getContext().getTypeInfoInChars(BaseEltTy);
1476       assert(!TypeInfo.first.isZero());
1477       SizeVal = Builder.CreateNUWMul(
1478           SizeVal,
1479           llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()));
1480       if (!isAssignment) {
1481         SizeVal = Builder.CreateNUWSub(
1482             SizeVal,
1483             llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity()));
1484         SizeVal = Builder.CreateNUWAdd(
1485             SizeVal, llvm::ConstantInt::get(
1486                          SizeTy, LastElementTypeInfo.first.getQuantity()));
1487       }
1488     }
1489   }
1490   if (!SizeVal) {
1491     SizeVal = llvm::ConstantInt::get(SizeTy, TypeInfo.first.getQuantity());
1492   }
1493
1494   // FIXME: If we have a volatile struct, the optimizer can remove what might
1495   // appear to be `extra' memory ops:
1496   //
1497   // volatile struct { int i; } a, b;
1498   //
1499   // int main() {
1500   //   a = b;
1501   //   a = b;
1502   // }
1503   //
1504   // we need to use a different call here.  We use isVolatile to indicate when
1505   // either the source or the destination is volatile.
1506
1507   DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty);
1508   SrcPtr = Builder.CreateElementBitCast(SrcPtr, Int8Ty);
1509
1510   // Don't do any of the memmove_collectable tests if GC isn't set.
1511   if (CGM.getLangOpts().getGC() == LangOptions::NonGC) {
1512     // fall through
1513   } else if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
1514     RecordDecl *Record = RecordTy->getDecl();
1515     if (Record->hasObjectMember()) {
1516       CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 
1517                                                     SizeVal);
1518       return;
1519     }
1520   } else if (Ty->isArrayType()) {
1521     QualType BaseType = getContext().getBaseElementType(Ty);
1522     if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
1523       if (RecordTy->getDecl()->hasObjectMember()) {
1524         CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this, DestPtr, SrcPtr, 
1525                                                       SizeVal);
1526         return;
1527       }
1528     }
1529   }
1530
1531   auto Inst = Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, isVolatile);
1532
1533   // Determine the metadata to describe the position of any padding in this
1534   // memcpy, as well as the TBAA tags for the members of the struct, in case
1535   // the optimizer wishes to expand it in to scalar memory operations.
1536   if (llvm::MDNode *TBAAStructTag = CGM.getTBAAStructInfo(Ty))
1537     Inst->setMetadata(llvm::LLVMContext::MD_tbaa_struct, TBAAStructTag);
1538 }